Science.gov

Sample records for ray titanium cage

  1. Percutaneous Vertebroplasty in a Broken Vertebral Titanium Implant (Titanium Mesh Cage)

    SciTech Connect

    Bierry, G.; Buy, X.; Mohan, P. Chandra; Cupelli, J.; Steib, J.P.; Gangi, A.

    2006-08-15

    We report the case of a percutaneous consolidation of a broken vertebral implant (Surgical Titanium Mesh Implants; DePuy Spine, Raynham, MA, USA) by vertebroplasty. Four years after anterior spondylectomy with cage implantation and stabilization with posterior instrumentation, the patient was admitted for excruciating back pain. Radiographs showed fracture of the cage, screw, and rod. An anterior surgical approach was deemed difficult and a percutaneous injection of polymethyl methacrylate into the cage was performed following posterior instrumentation replacement. This seems to be an interesting alternative to the classical anterior surgical approach, which is often difficult in postoperative conditions.

  2. Outcomes of contemporary use of rectangular titanium stand-alone cages in anterior cervical discectomy and fusion: cage subsidence and cervical alignment.

    PubMed

    Yamagata, Toru; Takami, Toshihiro; Uda, Takehiro; Ikeda, Hidetoshi; Nagata, Takashi; Sakamoto, Shinichi; Tsuyuguchi, Naohiro; Ohata, Kenji

    2012-12-01

    Cervical intervertebral disc replacement using a rectangular titanium stand-alone cage has become a standard procedure for anterior cervical discectomy and fusion (ACDF). We examined outcomes resulting from the contemporary use of rectangular titanium stand-alone cages for ACDF, particularly focusing on cage subsidence and subsequent kyphotic malalignment. Patient data were collected prospectively, and a total of 47 consecutive patients who underwent periodic follow-up of at least 1 year's duration after ACDF were studied retrospectively. Sixty-three rectangular titanium cages were implanted during 31 1-level and 16 2-level procedures. None of the patients developed surgery-related complications (including cage displacement or extrusion). Mean Neurosurgical Cervical Spine Scale scores were significantly improved at 1 year after surgery. Twelve of the 63 inserted cages (19.0%) were found to have cage subsidence, occurring in 11 of 47 patients (23.4%). There was no significant difference in functional recovery between patients with and without cage subsidence. Logistic regression analysis indicated that fusion level, cage size and cage position were significantly related to cage subsidence. The distraction ratio among patients with cage subsidence was significantly higher than that among patients without cage subsidence. Cage subsidence resulted in early deterioration of local angle and total alignment of the cervical spine. Although a longer follow-up is warranted, a good surgical outcome with negligible complications appears to justify the use of rectangular titanium stand-alone cages in 1- and 2-level ACDF. Excessive distraction at the fusion level should be avoided, and cage position should be adjusted to the anterior vertical line.

  3. Anterior cervical corpectomy: review and comparison of results using titanium mesh cages and carbon fibre reinforced polymer cages.

    PubMed

    Kabir, Syed M R; Alabi, J; Rezajooi, Kia; Casey, Adrian T H

    2010-10-01

    Different types of cages have recently become available for reconstruction following anterior cervical corpectomy. We review the results using titanium mesh cages (TMC) and stackable CFRP (carbon fibre reinforced polymer) cages. Forty-two patients who underwent anterior cervical corpectomy between November 2001 and September 2008 were retrospectively reviewed. Pathologies included cervical spondylotic myelopathy (CSM), cervical radiculopathy, OPLL (ossified posterior longitudinal ligament), metastasis/primary bone tumour, rheumatoid arthritis and deformity correction. All patients were evaluated clinically and radiologically. Outcome was assessed on the basis of the Odom's criteria, neck disability index (NDI) and myelopathy disability index (MDI). Mean age was 60 years and mean follow-up was 1½ years. Majority of the patients had single-level corpectomy. Twenty-three patients had TMC cages while 19 patients had CFRP cages. The mean subsidence noted with TMC cage was 1.91 mm, while with the stackable CFRP cage it was 0.5 mm. This difference was statistically significant (p < 0.05). However, there was no statistically significant correlation noted between subsidence and clinical outcome (p > 0.05) or between subsidence and post-operative sagittal alignment (p > 0.05) in either of the groups. Three patients had significant subsidence (> 3 mm), one of whom was symptomatic. There were no hardware-related complications. On the basis of the Odom's criterion, 9 patients (21.4%) had an excellent outcome, 14 patients (33.3%) had a good outcome, 9 patients (21.4%) had a fair outcome and 5 patients (11.9%) had a poor outcome, i.e. symptoms and signs unchanged or exacerbated. Mean post-operative NDI was 26.27% and mean post-operative MDI was 19.31%. Fusion was noted in all 42 cases. Both TMC and stackable CFRP cages provide solid anterior column reconstruction with good outcome following anterior cervical corpectomy. However, more subsidence is noted with TMC cages though

  4. Anterior cervical discectomy and fusion: Comparison of titanium and polyetheretherketone cages

    PubMed Central

    2012-01-01

    Background Titanium (TTN) cages have a higher modulus of elasticity when compared with polyetheretherketone (PEEK) cages. This suggests that TTN-cages could show more frequent cage subsidence after anterior cervical discectomy and fusion (ACDF) and therefore might lead to a higher loss of correction. We compared the long term results of stand-alone PEEK- and TTN-cages in a comparable patient collective that was operated under identical operative settings. Methods From 2002 to 2007 154 patients underwent single-level ACDF for degenerative disc disease (DDD). Clinical and radiological outcome were assessed in 86 eligible patients after a mean of 28.4 months. 44 patients received a TTN- and 42 patients a PEEK-cage. Results Solid arthrodesis was found in 93.2% of the TTN-group and 88.1% of the PEEK-group. Cage subsidence was observed in 20.5% of the TTN- and 14.3% of the PEEK-group. A significant segmental lordotic correction was achieved by both cage-types. Even though a loss of correction was found at the last follow-up in both groups, it did not reach the level of statistical significance. Statistical analysis of these results revealed no differences between the TTN- and PEEK-group. When assessed with the neck disability index (NDI), the visual analogue scale (VAS) of neck and arm pain and Odom’s criteria the clinical data showed no significant differences between the groups. Conclusions Clinical and radiological outcomes of ACDF with TTN- or PEEK-cages do not appear to be influenced by the chosen synthetic graft. The modulus of elasticity represents only one of many physical properties of a cage. Design, shape, size, surface architecture of a cage as well as bone density, endplate preparation and applied distraction during surgery need to be considered as further important factors. PMID:22978810

  5. Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity.

    PubMed

    Lee, Yung-Heng; Chung, Chi-Jen; Wang, Chih-Wei; Peng, Yao-Te; Chang, Chih-Han; Chen, Chih-Hsien; Chen, Yen-Nien; Li, Chun-Ting

    2016-04-01

    This study investigated the biomechanical response of porous cages and lumbar spine segments immediately after surgery and after bone fusion, in addition to the long-term effects of various posterior lumbar interbody fusion (PLIF) techniques, by using the finite element method. Lumbar L3-L4 models based on three PLIF techniques (a single cage at the center of the intervertebral space, a single cage half-anterior to the intervertebral space, and two cages bilateral to the intervertebral space) with and without bone ingrowth were used to determine the biomechanical response of porous cages and lumbar segments instrumented with porous titanium cages (cage porosity=50%, pore diameter=1mm). The results indicated that bone fusion enhanced the stability of the lumbar segments with porous cages without any posterior instrumentation and reduced the peak von Mises stress in the cortical bones and porous cages. Two cages placed bilateral to the intervertebral space achieved the highest structural stability in the lumbar segment and lowest von Mises stress in the cages under both bone fusion conditions. Under identical loading (2-Nm), the range of motion in the single cage at the center of the intervertebral space with bone fusion decreased by 11% (from 1.18° to 1.05°) during flexion and by 66.5% (from 4.46° to 1.5°) during extension in the single cage half-anterior to the intervertebral space with bone fusion compared with no-fusion models. Thus, two porous titanium cages with 50% porosity can achieve high stability of a lumbar segment with PLIF. If only one cage is available, placing the cage half-anterior to the intervertebral space is recommended for managing degenerated lumbar segments. PMID:26874064

  6. Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage.

    PubMed

    Svitova, A L; Ghiassi, K B; Schlesier, C; Junghans, K; Zhang, Y; Olmstead, M M; Balch, A L; Dunsch, L; Popov, A A

    2014-01-01

    In all metallofullerenes known before this work, metal atoms form single highly polar bonds with non-metal atoms in endohedral cluster. This is rather surprising for titanium taking into account the diversity of organotitanium compounds. Here we show that the arc-discharge synthesis of mixed titanium-lutetium metallofullerenes in the presence of ammonia, melamine or methane unexpectedly results in the formation of TiLu2C@I(h)-C80 with an icosahedral Ih(7) carbon cage. Single-crystal X-ray diffraction and spectroscopic studies of the compound reveal an unprecedented endohedral cluster with a μ3-carbido ligand and Ti-C double bond. The Ti(IV) in TiLu2C@I(h)-C80 can be reversibly reduced to the Ti(III) state. The Ti = C bonding and Ti-localized lowest unoccupied molecular orbital in TiLu2C@Ih-C80 bear a certain resemblance to titanium alkylidenes. TiLu2C@I(h)-C80 is the first metallofullerene with a multiple bond between a metal and the central, non-metal atom of the endohedral cluster.

  7. Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage.

    PubMed

    Svitova, A L; Ghiassi, K B; Schlesier, C; Junghans, K; Zhang, Y; Olmstead, M M; Balch, A L; Dunsch, L; Popov, A A

    2014-01-01

    In all metallofullerenes known before this work, metal atoms form single highly polar bonds with non-metal atoms in endohedral cluster. This is rather surprising for titanium taking into account the diversity of organotitanium compounds. Here we show that the arc-discharge synthesis of mixed titanium-lutetium metallofullerenes in the presence of ammonia, melamine or methane unexpectedly results in the formation of TiLu2C@I(h)-C80 with an icosahedral Ih(7) carbon cage. Single-crystal X-ray diffraction and spectroscopic studies of the compound reveal an unprecedented endohedral cluster with a μ3-carbido ligand and Ti-C double bond. The Ti(IV) in TiLu2C@I(h)-C80 can be reversibly reduced to the Ti(III) state. The Ti = C bonding and Ti-localized lowest unoccupied molecular orbital in TiLu2C@Ih-C80 bear a certain resemblance to titanium alkylidenes. TiLu2C@I(h)-C80 is the first metallofullerene with a multiple bond between a metal and the central, non-metal atom of the endohedral cluster. PMID:24699547

  8. SU-E-T-82: Comparison of Several Lumbar Intervertebral Fusion Titanium Cages with Respect to Their Backscattering Properties

    SciTech Connect

    Failing, T; Chofor, N; Poppinga, D; Schoenfeld, A; Poppe, B; Willborn, K

    2014-06-01

    Purpose: Investigating the backscatter dose factor with regards to structure and geometry of the surface material. Methods: The titanium cages used for this study representing both prototypes and well established products are made of a laser-sintered titanium alloy (AditusV GmbH, Berlin, Germany). A set of four radiochromic EBT3 films was used in a stacked geometry to measure the range and the magnitude of the expected surface dose enhancement due to the in comparison to water increased secondary electron release from the material. The measurement geometry and the small thickness of radiochromic EBT3 film allowed the dose measurement at distances of 0.1 mm, 0.9 mm, 1.7 mm and 2.5 mm from the probe surfaces. Water reference measurements were taken under equal conditions, in order to allow the calculation of the relative dose enhancement at the surface of a probe. Measurements were performed within a water phantom. An Epson Expression 10000 XL flatbed scanner was used for digitization. Results: Sintered titanium showed a dose enhancement factor of 1.22 at the surface of the material. The factor can be reduced to less than 1.10 by utilizing mesh structures. In both cases, the dose enhancement factor decreased to less than 1.03 at a distance of 1.7mm indicating the low energy of scattered electrons. Conclusion: Backscattering of titanium cages should be considered in treatment planning, especially when the cages are located close to organs at risk. While mesh structures were introduced to improve bone fusion with the implant structure, the potentially harmful surface dose enhancement is significantly reduced.

  9. Titanium embedded cage structure formation in Al(n)Ti+ clusters and their interaction with Ar.

    PubMed

    Torres, M B; Vega, A; Aguilera-Granja, F; Balbás, L C

    2014-05-01

    Recently, Ar physisorption was used as a structural probe for the location of the Ti dopant atom in aluminium cluster cations, Al(n)Ti(+) [Lang et al., J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. As an experiment result, the lack of Ar complexes for n > nc determines the cluster size for which the Ti atom is located inside of an Al cage. To elucidate the decisive factors for the formation of endohedrally Al(n)Ti(+), experimentalists proposed detailed computational studies as indispensable. In this work, we investigated, using the density functional theory, the structural and electronic properties of singly titanium doped cationic clusters, Al(n)Ti(+) (n = 16-21) as well as the adsorption of an Ar atom on them. The first endohedral doped cluster, with Ti encapsulated in a fcc-like cage skeleton, appears at nc = 21, which is the critical number consistent with the exohedral-endohedral transition experimentally observed. At this critical size the non-crystalline icosahedral growth pattern, related to the pure aluminium clusters, with the Ti atom in the surface, changes into a endohedral fcc-like pattern. The map of structural isomers, relative energy differences, second energy differences, and structural parameters were determined and analyzed. Moreover, we show the critical size depends on the net charge of the cluster, being different for the cationic clusters (nc = 21) and their neutral counterparts (nc = 20). For the Al(n)Ti(+) · Ar complexes, and for n < 21, the preferred Ar adsorption site is on top of the exohedral Ti atom, with adsorption energy in very good agreement with the experimental value. Instead, for n = 21, the Ar adsorption occurs on the top an Al atom with very low absorption energy. For all sizes the geometry of the Al(n)Ti(+) clusters keeps unaltered in the Ar-cluster complexes. This fact indicates that Ar adsorption does not influence the cluster structure, providing support to the experimental technique used. For nc = 21, the smallest size of

  10. Titanium embedded cage structure formation in AlnTi+ clusters and their interaction with Ar

    NASA Astrophysics Data System (ADS)

    Torres, M. B.; Vega, A.; Aguilera-Granja, F.; Balbás, L. C.

    2014-05-01

    Recently, Ar physisorption was used as a structural probe for the location of the Ti dopant atom in aluminium cluster cations, AlnTi+ [Lang et al., J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. As an experiment result, the lack of Ar complexes for n > nc determines the cluster size for which the Ti atom is located inside of an Al cage. To elucidate the decisive factors for the formation of endohedrally AlnTi+, experimentalists proposed detailed computational studies as indispensable. In this work, we investigated, using the density functional theory, the structural and electronic properties of singly titanium doped cationic clusters, AlnTi+ (n = 16-21) as well as the adsorption of an Ar atom on them. The first endohedral doped cluster, with Ti encapsulated in a fcc-like cage skeleton, appears at nc = 21, which is the critical number consistent with the exohedral-endohedral transition experimentally observed. At this critical size the non-crystalline icosahedral growth pattern, related to the pure aluminium clusters, with the Ti atom in the surface, changes into a endohedral fcc-like pattern. The map of structural isomers, relative energy differences, second energy differences, and structural parameters were determined and analyzed. Moreover, we show the critical size depends on the net charge of the cluster, being different for the cationic clusters (nc = 21) and their neutral counterparts (nc = 20). For the {Al_nTi^+ {\\cdot} Ar} complexes, and for n < 21, the preferred Ar adsorption site is on top of the exohedral Ti atom, with adsorption energy in very good agreement with the experimental value. Instead, for n = 21, the Ar adsorption occurs on the top an Al atom with very low absorption energy. For all sizes the geometry of the AlnTi+ clusters keeps unaltered in the Ar-cluster complexes. This fact indicates that Ar adsorption does not influence the cluster structure, providing support to the experimental technique used. For nc = 21, the smallest size of

  11. Vanadium-pumped titanium x-ray laser

    SciTech Connect

    Nilsen, J.

    1991-02-13

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions.

  12. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, J.

    1992-05-26

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions. 4 figs.

  13. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, Joseph

    1992-01-01

    A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).

  14. Gamma ray treatment enhances bioactivity and osseointegration capability of titanium.

    PubMed

    Ueno, Takeshi; Takeuchi, Masato; Hori, Norio; Iwasa, Fuminori; Minamikawa, Hajime; Igarashi, Yoshimasa; Anpo, Masakazu; Ogawa, Takahiro

    2012-11-01

    The time-dependent degradation of titanium bioactivity (i.e., the biological aging of titanium) has been reported in previous studies. This phenomenon is caused by the loss of hydrophilicity and the inevitable occurrence of progressive contamination of titanium surfaces by hydrocarbons. In this study, we tested the hypothesis that gamma ray treatment, owing to its high energy to decompose and remove organic contaminants, enhances the bioactivity and osteoconductivity of titanium. Titanium disks were acid-etched and stored for 4 weeks. Rat bone marrow-derived osteoblasts (BMOs) were cultured on titanium disks with or without gamma ray treatment (30 kGy) immediately before experiments. The cell density at day 2 increased by 50% on gamma-treated surfaces, which reflected the 25% higher rate of cell proliferation. Osteoblasts on gamma-treated surfaces showed 30% higher alkaline phosphatase activity at day 5 and 60% higher calcium deposition at day 20. The strength of in vivo bone-implant integration increased by 40% at the early healing stage of week 2 for gamma-treated implants. Gamma ray-treated surfaces regained hydrophilicity and showed a lower percentage of carbon (35%) as opposed to 48% on untreated aged surfaces. The data indicated that gamma ray pretreatment of titanium substantially enhances its bioactivity and osteoconductivity, in association with the significant reduction in surface carbon and the recovery of hydrophilicity. The results suggest that gamma ray treatment could be an effective surface enhancement technology to overcome biological aging of titanium and improve the biological properties of titanium implants.

  15. An X-ray diffraction study of titanium oxidation

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Unnam, J.

    1984-01-01

    Titanium specimens of commercial purity were exposed at 1100 to 1400 F to laboratory air for times up to 100 hours. The extent of substrate contamination by interstitial oxygen was was determined by a new X-ray diffraction analysis involving transformation of X-ray diffraction intensity bands. The oxygen solid-solubility at the oxide-metal interfaces and its variation with time at temperature were also determined. Diffusion coefficients are deduced from the oxygen depth profiles.

  16. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion.

    PubMed

    Wu, Su-Hua; Li, Yi; Zhang, Yong-Quan; Li, Xiao-Kang; Yuan, Chao-Fan; Hao, Yu-Lin; Zhang, Zhi-Yong; Guo, Zheng

    2013-12-01

    Interbody fusion cages made of poly-ether-ether-ketone (PEEK) have been widely used in clinics for spinal disorders treatment; however, they do not integrate well with surrounding bone tissue. Ti-6Al-4V (Ti) has demonstrated greater osteoconductivity than PEEK, but the traditional Ti cage is generally limited by its much greater elastic modulus (110 GPa) than natural bone (0.05-30 GPa). In this study, we developed a porous Ti cage using electron beam melting (EBM) technique to reduce its elastic modulus and compared its spinal fusion efficacy with a PEEK cage in a preclinical sheep anterior cervical fusion model. A porous Ti cage possesses a fully interconnected porous structure (porosity: 68 ± 5.3%; pore size: 710 ± 42 μm) and a similar Young's modulus as natural bone (2.5 ± 0.2 GPa). When implanted in vivo, the porous Ti cage promoted fast bone ingrowth, achieving similar bone volume fraction at 6 months as the PEEK cage without autograft transplantation. Moreover, it promoted better osteointegration with higher degree (2-10x) of bone-material binding, demonstrated by histomorphometrical analysis, and significantly higher mechanical stability (P < 0.01), shown by biomechanical testing. The porous Ti cage fabricated by EBM could achieve fast bone ingrowth. In addition, it had better osseointegration and superior mechanical stability than the conventional PEEK cage, demonstrating great potential for clinical application.

  17. Anatomy-related risk factors for the subsidence of titanium mesh cage in cervical reconstruction after one-level corpectomy.

    PubMed

    Wu, Jianxin; Luo, Dan; Ye, Xiaojian; Luo, Xuyao; Yan, Lisheng; Qian, Haiping

    2015-01-01

    To clarify anatomy-related risk factors in the cervical spine with subsidence of titanium mesh cage (TMC) after one-level cervical corpectomy and fusion, we have assessed the radiological examinations and clinical outcomes for 236 patients. All the patients were underwent one-level corpectomy and TMC fusion between August 2003 and March 2006. The effects of the cervical posture, segmental curvature and endplate gradient on the postoperative phenomenon for these patients were evaluated. Our results suggested that in the patients who were followed up for 12 months, TMC subsidence occurred in 54 (28.6%) cases. C6 corpectomy had a significant higher risk (26/60, 43.3%) for TMC subsidence, which was correlated with the variation of the gradient of the vertebral endplates against cervical levels. Although the clinical outcome was comparable with those in the literature, the patients may have subsidence-related problems such as neck-shoulder pain, neurological deterioration and instrumental failure. In conclusion, to reduce the incidence of subsidence, TMC design should be optimized to be in line with anatomic characteristics of the cervical spine.

  18. Anterior cervical discectomy and fusion with titanium cages for simple or multilevel herniated discs and spur of the cervical spine: Report of 2 cases and experience in Bali

    PubMed Central

    Mahadewa Tjokorda, G. B.; Nyoman, Golden; Sri, Maliawan; Junichi, Mizuno

    2016-01-01

    This report presents two cases of cervicobrachialgia and radiculopathy due to multiple cervical herniated discs and spur formation that dealt with anterior cervical discectomy and fusion (ACDF) using different titanium interbody cages. The description of the clinical presentation, magnetic resonance imaging (MRI) appearances and management strategy are discussed. Both cases showed chronic neck pain and radiating pain from the shoulder to the arm. They had a history of blurry vision, cluster head ache, weakness, and numbness on the shoulder for 2 years. MRI revealed multiple herniated discs between C4-7 and accompanied by the spur formation leading to the narrowness of the spinal canal and its foramina bilaterally. ACDF were performed and complete decompression of the spinal canal and its foramina were carried out. Twin M-cages (Ammtec Inc.-Japan) were placed in the first case at C5-7 levels and single cage of Smith Robinson (SR) was placed in the second case at C5-6 levels. There were no more blurry vision, cluster headache, weakness, and numbness, immediately after surgery. To our knowledge, this is the first reported cases of ACDF, using twin M-cages and single SR cage in Indonesia, with improvement immediately after surgery. Cervical spondylosis can present with cervicobrachialgia and radiculopathy and surgical treatment produces good functional outcome.

  19. Anterior cervical discectomy and fusion with titanium cages for simple or multilevel herniated discs and spur of the cervical spine: Report of 2 cases and experience in Bali

    PubMed Central

    Mahadewa Tjokorda, G. B.; Nyoman, Golden; Sri, Maliawan; Junichi, Mizuno

    2016-01-01

    This report presents two cases of cervicobrachialgia and radiculopathy due to multiple cervical herniated discs and spur formation that dealt with anterior cervical discectomy and fusion (ACDF) using different titanium interbody cages. The description of the clinical presentation, magnetic resonance imaging (MRI) appearances and management strategy are discussed. Both cases showed chronic neck pain and radiating pain from the shoulder to the arm. They had a history of blurry vision, cluster head ache, weakness, and numbness on the shoulder for 2 years. MRI revealed multiple herniated discs between C4-7 and accompanied by the spur formation leading to the narrowness of the spinal canal and its foramina bilaterally. ACDF were performed and complete decompression of the spinal canal and its foramina were carried out. Twin M-cages (Ammtec Inc.-Japan) were placed in the first case at C5-7 levels and single cage of Smith Robinson (SR) was placed in the second case at C5-6 levels. There were no more blurry vision, cluster headache, weakness, and numbness, immediately after surgery. To our knowledge, this is the first reported cases of ACDF, using twin M-cages and single SR cage in Indonesia, with improvement immediately after surgery. Cervical spondylosis can present with cervicobrachialgia and radiculopathy and surgical treatment produces good functional outcome. PMID:27695567

  20. Titanium embedded cage structure formation in Al{sub n}Ti{sup +} clusters and their interaction with Ar

    SciTech Connect

    Torres, M. B.; Vega, A.; Balbás, L. C.; Aguilera-Granja, F.

    2014-05-07

    Recently, Ar physisorption was used as a structural probe for the location of the Ti dopant atom in aluminium cluster cations, Al{sub n}Ti{sup +} [Lang et al., J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. As an experiment result, the lack of Ar complexes for n > n{sub c} determines the cluster size for which the Ti atom is located inside of an Al cage. To elucidate the decisive factors for the formation of endohedrally Al{sub n}Ti{sup +}, experimentalists proposed detailed computational studies as indispensable. In this work, we investigated, using the density functional theory, the structural and electronic properties of singly titanium doped cationic clusters, Al{sub n}Ti{sup +} (n = 16–21) as well as the adsorption of an Ar atom on them. The first endohedral doped cluster, with Ti encapsulated in a fcc-like cage skeleton, appears at n{sub c} = 21, which is the critical number consistent with the exohedral-endohedral transition experimentally observed. At this critical size the non-crystalline icosahedral growth pattern, related to the pure aluminium clusters, with the Ti atom in the surface, changes into a endohedral fcc-like pattern. The map of structural isomers, relative energy differences, second energy differences, and structural parameters were determined and analyzed. Moreover, we show the critical size depends on the net charge of the cluster, being different for the cationic clusters (n{sub c} = 21) and their neutral counterparts (n{sub c} = 20). For the Al {sub n} Ti {sup +} · Ar complexes, and for n < 21, the preferred Ar adsorption site is on top of the exohedral Ti atom, with adsorption energy in very good agreement with the experimental value. Instead, for n = 21, the Ar adsorption occurs on the top an Al atom with very low absorption energy. For all sizes the geometry of the Al{sub n}Ti{sup +} clusters keeps unaltered in the Ar-cluster complexes. This fact indicates that Ar adsorption does not influence the cluster structure, providing support

  1. Management of a long segmental defect at the proximal meta-diaphyseal junction of the tibia using a cylindrical titanium mesh cage.

    PubMed

    Ostermann, Peter A W; Haase, Nina; Rübberdt, Alexander; Wich, Michael; Ekkernkamp, Axel

    2002-09-01

    This case report describes a Gustilo Anderson type IIIB tibia fracture associated with extensive segmental bone loss at the proximal meta-diaphyseal junction associated with a tibial plateau fracture and an avulsion of the tibial tubercle. After the tibial plateau fracture was stabilized using cannulated lag screws, the shaft fracture was stabilized using a statically locked intramedullary nail in combination with a cylindrical titanium mesh cage and cancellous bone graft. The soft tissue defect was covered with local flaps. Immediate full weight bearing was initiated, and early functional recovery was achieved. At the final follow-up, plain radiographs demonstrated excellent limb alignment, and bony healing with computed tomography examination revealed bony ingrowth through the cage. This technique may be a reasonable alternative in the treatment of segmental bone loss of long bones.

  2. A minimum 2-year comparative study of autologous cancellous bone grafting versus beta-tricalcium phosphate in anterior cervical discectomy and fusion using a rectangular titanium stand-alone cage.

    PubMed

    Yamagata, Toru; Naito, Kentaro; Arima, Hironori; Yoshimura, Masaki; Ohata, Kenji; Takami, Toshihiro

    2016-07-01

    Although titanium stand-alone cages are commonly used in anterior cervical discectomy and fusion (ACDF), there are several concerns such as cage subsidence after surgery. The efficacy of β-tricalcium phosphate (β-TCP) granules as a packing material in 1- or 2-level ACDF using a rectangular titanium stand-alone cage is not fully understood. The purpose of this study is to investigate the validity of rectangular titanium stand-alone cages in 1- and 2-level ACDF with β-TCP. This retrospective study included 55 consecutive patients who underwent ACDF with autologous iliac cancellous bone grafting and 45 consecutive patients with β-TCP grafting. All patients completed at least 2-year postoperative follow-up. Univariate and multivariate analyses were performed to examine the associations between study variables and nonunion after surgery. Significant neurological recovery after surgery was obtained in both groups. Cage subsidence was noted in 14 of 72 cages (19.4 %) in the autograft group and 12 of 64 cages (18.8 %) in the β-TCP group. A total of 66 cages (91.7 %) in the autograft group showed osseous or partial union, and 58 cages (90.6 %) in the β-TCP group showed osseous or partial union by 2 years after surgery. There were no significant differences in cage subsidence and the bony fusion rate between the two groups. Multivariate analysis using a logistic regression model showed that fusion level at C6/7, 2-level fusion, and cage subsidence of grades 2-3 were significantly associated with nonunion at 2 years after surgery. Although an acceptable surgical outcome with negligible complication appears to justify the use of rectangular titanium stand-alone cages in 1- and 2-level ACDF with β-TCP, cage subsidence after surgery needs to be avoided to achieve acceptable bony fusion at the fused segments. Fusion level at C6/7 or 2-level fusion may be another risk factor of nonunion. PMID:27098659

  3. A minimum 2-year comparative study of autologous cancellous bone grafting versus beta-tricalcium phosphate in anterior cervical discectomy and fusion using a rectangular titanium stand-alone cage.

    PubMed

    Yamagata, Toru; Naito, Kentaro; Arima, Hironori; Yoshimura, Masaki; Ohata, Kenji; Takami, Toshihiro

    2016-07-01

    Although titanium stand-alone cages are commonly used in anterior cervical discectomy and fusion (ACDF), there are several concerns such as cage subsidence after surgery. The efficacy of β-tricalcium phosphate (β-TCP) granules as a packing material in 1- or 2-level ACDF using a rectangular titanium stand-alone cage is not fully understood. The purpose of this study is to investigate the validity of rectangular titanium stand-alone cages in 1- and 2-level ACDF with β-TCP. This retrospective study included 55 consecutive patients who underwent ACDF with autologous iliac cancellous bone grafting and 45 consecutive patients with β-TCP grafting. All patients completed at least 2-year postoperative follow-up. Univariate and multivariate analyses were performed to examine the associations between study variables and nonunion after surgery. Significant neurological recovery after surgery was obtained in both groups. Cage subsidence was noted in 14 of 72 cages (19.4 %) in the autograft group and 12 of 64 cages (18.8 %) in the β-TCP group. A total of 66 cages (91.7 %) in the autograft group showed osseous or partial union, and 58 cages (90.6 %) in the β-TCP group showed osseous or partial union by 2 years after surgery. There were no significant differences in cage subsidence and the bony fusion rate between the two groups. Multivariate analysis using a logistic regression model showed that fusion level at C6/7, 2-level fusion, and cage subsidence of grades 2-3 were significantly associated with nonunion at 2 years after surgery. Although an acceptable surgical outcome with negligible complication appears to justify the use of rectangular titanium stand-alone cages in 1- and 2-level ACDF with β-TCP, cage subsidence after surgery needs to be avoided to achieve acceptable bony fusion at the fused segments. Fusion level at C6/7 or 2-level fusion may be another risk factor of nonunion.

  4. Effect of posterior subsidence on cervical alignment after anterior cervical corpectomy and reconstruction using titanium mesh cages in degenerative cervical disease.

    PubMed

    Jang, Jae-Won; Lee, Jung-Kil; Lee, Jung-Heon; Hur, Hyuk; Kim, Tae-Wan; Kim, Soo-Han

    2014-10-01

    Subsidence after anterior cervical reconstruction using a titanium mesh cage (TMC) has been a matter of debate. The authors investigated and analyzed subsidence and its effect on clinical and radiologic parameters after cervical reconstruction using a TMC for degenerative cervical disease. Thirty consecutive patients with degenerative cervical spine disorders underwent anterior cervical corpectomy followed by reconstruction with TMC. Twenty-four patients underwent a single-level corpectomy, and six patients underwent a two-level corpectomy. Clinical outcomes were assessed using a Visual Analogue Scale (VAS), the Japanese Orthopedic Association (JOA) score and the Neck Disability Index (NDI). Fusion status, anterior and posterior subsidence of the TMC, segmental angle (SA) and cervical sagittal angle (CSA) were assessed by lateral and flexion-extension radiographs of the neck. The mean follow-up period was 27.6 months (range, 24 to 49 months). The VAS, NDI and JOA scores were all significantly improved at the last follow-up. No instances of radiolucency or motion-related pseudoarthrosis were detected on radiographic analysis, yielding a fusion rate of 100%. Subsidence occurred in 28 of 30 patients (93.3%). The average anterior subsidence of the cage was 1.4 ± 0.9 mm, and the average posterior subsidence was 2.9 ± 1.2 mm. The SA and CSA at the final follow-up were significantly increased toward a lordotic angle. Anterior cervical reconstruction using TMC and plating in patients with cervical degenerative disease provides good clinical and radiologic outcomes. Cage subsidence occurred frequently, especially at the posterior part of the cage. Despite the prominent posterior subsidence of the TMC, SA and CSA were improved on final follow-up radiographs, suggesting that posterior subsidence may contribute to cervical lordosis.

  5. Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process.

    PubMed

    Lin, Chia-Ying; Wirtz, Tobias; LaMarca, Frank; Hollister, Scott J

    2007-11-01

    A topology optimized lumbar interbody fusion cage was made of Ti-Al6-V4 alloy by the rapid prototyping process of selective laser melting (SLM) to reproduce designed microstructure features. Radiographic characterizations and the mechanical properties were investigated to determine how the structural characteristics of the fabricated cage were reproduced from design characteristics using micro-computed tomography scanning. The mechanical modulus of the designed cage was also measured to compare with tantalum, a widely used porous metal. The designed microstructures can be clearly seen in the micrographs of the micro-CT and scanning electron microscopy examinations, showing the SLM process can reproduce intricate microscopic features from the original designs. No imaging artifacts from micro-CT were found. The average compressive modulus of the tested caged was 2.97+/-0.90 GPa, which is comparable with the reported porous tantalum modulus of 3 GPa and falls between that of cortical bone (15 GPa) and trabecular bone (0.1-0.5 GPa). The new porous Ti-6Al-4V optimal-structure cage fabricated by SLM process gave consistent mechanical properties without artifactual distortion in the imaging modalities and thus it can be a promising alternative as a porous implant for spine fusion.

  6. Titanium

    SciTech Connect

    Fox, G.J.

    1997-01-01

    The article contains a summary of factors pertinent to titanium use. Geology and exploitation, production processes, global production, titanium dioxide and alloy applications, and the titanium market are reviewed. Potential applications outlined are for oil and gas equipment and for the automotive industry. Titanium alloys were selected for drilling risers for North Sea oil and gas drilling platforms due to a high strength-to-weight ratio and corrosion resistance. These properties also make titanium alloys attractive for auto parts, although the cost is currently prohibitive.

  7. The determination of iron, titanium, and nickel in Apollo 14 samples by cathode ray polarography.

    NASA Technical Reports Server (NTRS)

    Maienthal, E. J.

    1972-01-01

    Methods have been developed and applied to the determination of iron, titanium, and nickel in Apollo 14 fine soil and rock by differential cathode ray polarography on the same sample. A 5 mg sample was sufficient for the determination of all 3 elements. Iron and titanium were determined either directly or after cupferron separation. Nickel was determined after dimethylglyoxime separation.

  8. Titanium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  9. The influence of cage positioning and cage type on cage migration and fusion rates in patients with monosegmental posterior lumbar interbody fusion and posterior fixation

    PubMed Central

    Abbushi, Alexander; Čabraja, Mario; Thomale, Ulrich-Wilhelm; Woiciechowsky, Christian

    2009-01-01

    In posterior lumbar interbody fusion, cage migrations and lower fusion rates compared to autologous bone graft used in the anterior lumbar interbody fusion procedure are documented. Anatomical and biomechanical data have shown that the cage positioning and cage type seem to play an important role. Therefore, the aim of the present study was to evaluate the impact of cage positioning and cage type on cage migration and fusion. We created a grid system for the endplates to analyze different cage positions. To analyze the influence of the cage type, we compared “closed” box titanium cages with “open” box titanium cages. This study included 40 patients with 80 implanted cages. After pedicle screw fixation, 23 patients were treated with a “closed box” cage and 17 patients with an “open box” cage. The follow-up period averaged 25 months. Twenty cages (25%) showed a migration into one vertebral endplate of <3 mm and four cages (5%) showed a migration of ≥3 mm. Cage migration was highest in the medio-medial position (84.6%), followed by the postero-lateral (42.9%), and the postero-medial (16%) cage position. Closed box cages had a significantly higher migration rate than open box cages, but fusion rates did not differ. In conclusion, cage positioning and cage type influence cage migration. The medio-medial cage position showed the highest migration rate. Regarding the cage type, open box cages seem to be associated with lower migration rates compared to closed box cages. However, the cage type did not influence bone fusion. PMID:19475436

  10. Advances in Spinal Interbody Cages.

    PubMed

    Jain, Sukrit; Eltorai, Adam E M; Ruttiman, Roy; Daniels, Alan H

    2016-08-01

    Since the late 1980s, spinal interbody cages (ICs) have been used to aid bone fusion in a variety of spinal disorders. Utilized to restore intervertebral height, enable bone graft containment for arthrodesis, and restore anterior column biomechanical stability, ICs have since evolved to become a highly successful means of achieving fusion, being associated with less postoperative pain, shorter hospital stay, fewer complications and higher rates of fusion when than bone graft only spinal fusion. IC design and materials have changed considerably over the past two decades. The threaded titanium-alloy cylindrical screw cages, typically filled with autologous bone graft, of the mid-1990s achieved greater fusion rates than bone grafts and non-threaded cages. Threaded screw cages, however, were soon found to be less stable in extension and flexion; additionally, they had a high incidence of cage subsidence. As of the early 2000s, non-threaded box-shaped titanium or polyether ether ketone IC designs have become increasingly more common. This modern design continues to achieve greater cage stability in flexion, axial rotation and bending. However, cage stability and subsidence, bone fusion rates and surgical complications still require optimization. Thus, this review provides an update of recent research findings relevant to ICs over the past 3 years, highlighting trends in optimization of cage design, materials, alternatives to bone grafts, and coatings that may enhance fusion. PMID:27627709

  11. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  12. An X-ray monitor for measurement of a titanium tritide target thickness.

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 microns has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy.

  13. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece. PMID:27359150

  14. An X-ray monitor for measurement of a titanium tritide target thickness

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 micrometers has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy.

  15. Outcome of instrumented lumbar fusion for low grade spondylolisthesis; Evaluation of interbody fusion with & without cages

    PubMed Central

    Fathy, Mostafa; Fahmy, Mohamed; Fakhri, Mazen; Aref, Khaled; Abdin, Khaled; Zidan, Ihab

    2010-01-01

    Object: The aim is to evalute the outcome of posterior lumbar interbody fusion with autologous bone graft versus titanium Cages, BAK system (Bagby – Kuslich, Spine Tech, Inc. Minneapolis, MN) for low grade spondyloisthesis (Grade1,11). Interbody cages have been developed to replace tricortical Interbody grafts in posterior lumbar interbody fusion (PLIF) procedures. The cages provide immediate post operative stability and facilitate bony union with cancellous bone packed in the cage itself. METHOD: We Evaluated 50 consecutive patients in whom surgery was performed between June 2000 to June 2003 in the Main Alexandria University Hospital at EGYPT. Twenty five patients were operated using autologous bone graft and 25 patients using the BAK cages. The neuro–radiologic al work up consisted of; plain X – ray lumbosacral spine including dynamic films preoperative and postoperative follow up; C.T lumbosacral spine and MRI lumbosacral spine. The surgery was performed at L4-5 level in 34 cases and at L5-S1 level in 16 cases. The median follow up was 15 months. RESULTS: Satisfactory fusion was obtained at all levels at a minimum one year follow – up. The fusion rate was 96% (24 patients) for the cage group and 80% (20 patients) for bone graft group however clinical improvement was 64% (16 patients) for those with bone graft group. CONCLUSION: A higher fusion rates and a better clinical outcome have been obtained by Instrumented PLIF with titanium cages that with bone graft. Inderbody fusion cages help to stabilize spainal segment primarily by distracting them as well as by allowing bone ingrowth and fusion. The procedure is safe and effective with 96% fusion rate and 76% overall Satisfactory rate. The use of cages help to distract the space between the vertebral bodies making the correction of the degree of spondylolisthesis easier. Long term follow up revealed better fusion rate and better realignment and less resorption with cages than with bone grafts. PMID

  16. X-ray photoemission and energy dispersive spectroscopy of hydroxyapatite-coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-07-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (X-ray photoemission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls and specimens aged 30 min and 3 h at room temperature in distilled water and 0.2M sodium phosphate buffer (pH 7.2). Each X-ray photoemission cycle consisted of three scans followed by argon sputtering for 10 min for usually 20 cycles, corresponding to a sampling depth of {approximately}1,500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {micro}m area for 500 s. The X-ray photoemission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorus. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis.

  17. Titanium dioxide nanofiber-cotton targets for efficient multi-keV x-ray generation

    SciTech Connect

    Tanabe, Minoru; Nishimura, Hiroaki; Fujioka, Shinsuke; Nagai, Keiji; Yamamoto, Norimasa; Mima, Kunioki; Gu, Zhong-Ze; Pan, Chao; Girard, Frederic; Primout, Michel; Villette, Bruno; Brebion, Didier; Fournier, Kevin B.; Fujishima, Akira

    2008-08-04

    Multi-keV x-ray generation from low-density (27{+-}7 mg/cm{sup 3}) nanofiber-cotton targets composed of titanium dioxide has been investigated. The cotton targets were heated volumetrically and supersonically to a peak electron temperature of 2.3 keV, which is optimal to yield Ti K-shell x rays. Considerable enhancement of conversion efficiency [(3.7{+-}0.5)%] from incident laser energy into Ti K-shell x rays (4-6 keV band) was attained in comparison with that [(1.4{+-}0.9)%] for a planar Ti-foil target.

  18. Titanium dioxide nanofiber-cotton targets for efficient multi-keV x-ray generation

    NASA Astrophysics Data System (ADS)

    Tanabe, Minoru; Nishimura, Hiroaki; Fujioka, Shinsuke; Nagai, Keiji; Yamamoto, Norimasa; Gu, Zhong-Ze; Pan, Chao; Girard, Frederic; Primout, Michel; Villette, Bruno; Brebion, Didier; Fournier, Kevin B.; Fujishima, Akira; Mima, Kunioki

    2008-08-01

    Multi-keV x-ray generation from low-density (27±7mg/cm3) nanofiber-cotton targets composed of titanium dioxide has been investigated. The cotton targets were heated volumetrically and supersonically to a peak electron temperature of 2.3keV, which is optimal to yield Ti K-shell x rays. Considerable enhancement of conversion efficiency [(3.7±0.5)%] from incident laser energy into Ti K-shell x rays (4-6keV band) was attained in comparison with that [(1.4±0.9)%] for a planar Ti-foil target.

  19. [SIMS (secondary ion mass spectroscopy) and XPS (x-ray photoelectron spectroscopy) study of titanium implant surfaces coated with anodic titanium-oxide layer].

    PubMed

    Suba, Csongor; Velich, Norbert; Vida, György; Kovács, Lajos; Kiss, Gábor; Szabó, György

    2003-10-01

    The demands that must be satisfied by titanium implants applied in medical practice include chemical and physical durability. An anodic oxide protective layer formed on the surface of titanium implants serves for the better attainment of this aim. The composition of the passivizing layer and the changes in its thickness and binding state can be studied by method of material science, e.g. by secondary ion mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS). In this way a possibility arises for the material technological classification of the Ti-TiO2 layer structure and for the observation of the physical and chemical reactions that occur between the implants and the tissues in the organism. The present XPS examinations revealed that the binding state of the titanium forming the surface of the plates involve neither significant quantities of titanium oxide nor impurities. In the SIMS investigation the thickness of the titanium oxide layer was found to be 120-150 nm. Determination of the thickness of the surface, the binding state of the titanium and the exact proportions of the impurities and additives furnishes a possibility for a subsequent comparison with the surface structure of plates removed from the organism. It is important for the assessment of the practical value of the protective layer.

  20. Titanium and germanium lined hohlraums and halfraums as multi-keV x-ray radiators

    SciTech Connect

    Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.; Jacquet, L.; Babonneau, D.; Fournier, K. B.

    2009-05-15

    As multi-keV x-ray radiators, hohlraums and halfraums with inner walls coated with metallic materials (called liner) have been tested for the first time with laser as the energy drive. For titanium, conversion efficiencies (CEs) are up to {approx}14% for emission into 4{pi}, integrating between 4.6 and 6.5 keV when a large diameter hohlraum is used. Germanium CE is {approx}0.8% into 4{pi} between 9 and 13 keV. The highest CEs have been obtained with a 1 ns squared pulse and phase plates giving laser absorption near 99%. These high CEs are due to long-lasting, good plasma conditions for multi-keV x-ray production maintained by plasma confinement inside the plastic cylinder and plasma collision leading to a burst of x rays at a time that depends on target size. As photon emitters at 4.7 keV, titanium-lined hohlraums are the most efficient solid targets and data are close to CEs for gas targets, which are considered as the upper limit for x-ray yields since their low density allows good laser absorption and low kinetics losses. As 10.3 keV x-ray emitters, exploded germanium foils give best results one order of magnitude more efficient than thick targets; doped aerogels and lined hohlraums give similar yields, about three times lower than those from exploded foils.

  1. Titanium local structure in tektite probed by X-ray absorption fine structure spectroscopy.

    PubMed

    Wang, Ling; Yoshiasa, Akira; Okube, Maki; Takeda, Takashi

    2011-11-01

    The local structure of titanium in tektites from six strewn fields was studied by Ti K-edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in order to provide quantitative data on Ti-O distance and Ti coordination number. The titanium in tektites possessed different coordination environment types. XANES spectra patterns revealed resemblance to high-temperature TiO(2)-SiO(2) glass and TiO(2) anatase. All samples showed that the valence of Ti is 4+. Based on the Ti-O distances, coordination numbers and radial distribution function determined by EXAFS analyses, the tektites were classified into three types: type I, Ti occupies a four-coordinated tetrahedral site with Ti-O distances of 1.84-1.79 Å; type II, Ti occupies a five-coordinated trigonal bipyramidal or tetragonal pyramidal site with Ti-O distances of 1.92-1.89 Å; type III, Ti occupies a six-coordinated octahedral site with Ti-O distances of 2.00-1.96 Å. Although Ti occupies the TiO(6) octahedral site in most titanium minerals under ambient conditions, some tektites have four- and five-coordinated Ti. This study indicated that the local structure of Ti might change in impact events and the following stages.

  2. Titanium local structure in tektite probed by X-ray absorption fine structure spectroscopy.

    PubMed

    Wang, Ling; Yoshiasa, Akira; Okube, Maki; Takeda, Takashi

    2011-11-01

    The local structure of titanium in tektites from six strewn fields was studied by Ti K-edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in order to provide quantitative data on Ti-O distance and Ti coordination number. The titanium in tektites possessed different coordination environment types. XANES spectra patterns revealed resemblance to high-temperature TiO(2)-SiO(2) glass and TiO(2) anatase. All samples showed that the valence of Ti is 4+. Based on the Ti-O distances, coordination numbers and radial distribution function determined by EXAFS analyses, the tektites were classified into three types: type I, Ti occupies a four-coordinated tetrahedral site with Ti-O distances of 1.84-1.79 Å; type II, Ti occupies a five-coordinated trigonal bipyramidal or tetragonal pyramidal site with Ti-O distances of 1.92-1.89 Å; type III, Ti occupies a six-coordinated octahedral site with Ti-O distances of 2.00-1.96 Å. Although Ti occupies the TiO(6) octahedral site in most titanium minerals under ambient conditions, some tektites have four- and five-coordinated Ti. This study indicated that the local structure of Ti might change in impact events and the following stages. PMID:21997913

  3. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts.

  4. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts. PMID:27359151

  5. Time-Resolved X-ray Scattering and Raman Spectroscopic Studies of Formation of a Uranium-Vanadium-Phosphorus-Peroxide Cage Cluster.

    PubMed

    Qiu, Jie; Dembowski, Mateusz; Szymanowski, Jennifer E S; Toh, Wen Cong; Burns, Peter C

    2016-07-18

    Combining reactants in water under ambient conditions results in the assembly and crystallization of 2.6 nm diameter cage clusters designated U48V6P48 within 3 weeks. These consist of 24 uranyl hexagonal bipyramids, 24 uranyl pentagonal bipyramids, six vanadyl square pyramids, and 48 phosphate tetrahedra. Peroxide-bridged dimers of uranyl hexagonal bipyramids are linked directly to vanadyl-stabilized tetramers of uranyl pentagonal bipyramids to form the cage, with phosphate tetrahedra providing additional linkages between these two units. Time-resolved small-angle X-ray scattering and Raman spectroscopy indicate that the combination of the reactants initially resulted in simultaneous formation of smaller uranyl peroxide cages and vanadyl peroxide complexes. The disappearance of the smaller uranyl peroxide cages from solution coincides with the diminution of uncoordinated peroxide, both of which occurred before the assembly of the relatively peroxide-poor U48V6P48, which clearly occurred in solution prior to its crystallization. PMID:27355615

  6. Strain measurement of pure titanium covered with soft tissue using X-ray diffraction.

    PubMed

    Fujisaki, Kazuhiro; Tadano, Shigeru

    2010-03-01

    Measurement of the stress and strain applied to implants and bone tissue in the human body are important for fracture prediction and evaluations of implant adaptation. The strain of titanium (Ti) materials can be measuring by X-ray diffraction techniques. This study applied X-ray diffraction to the skin tissue-covered Ti. Characteristic X-rays of Mo Kalpha were used and the X-rays diffracted from the Ti were detected through the covering skin tissue. The X-ray absorption by skin tissue is large under the diffracted X-rays detected in low angles because the length of penetration depends on the angle of inclination, equal to the Bragg angle. The effects of skin tissue to detect the diffracted X-rays were investigated in the experiments. And the strain measurements were conducted under bending loads applied to the Ti specimen. The effect of skin tissue was absorption of X-rays as well as the X-rays scattered from the physiological saline contained in the tissue. The X-rays scattered by the physiological saline creates a specific background pattern near the peaks from the (002) and (011) lattice planes of Ti in the X-ray diffraction profile. Diffracted X-rays from the Ti were detected after being transmitted through 1 mm thick skin tissue by Mo Kalpha. Individual peaks such as (010), (002), (011), and (110) were clearly established by using a parallel beam arrangement. The strains of (110) lattice planes were measured with or without the tissue cover were very similar. The strain of the (110) lattice planes of Ti could be measured by Mo Kalpha when the Ti specimen was located under the skin tissue. PMID:20459192

  7. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  8. Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters

    SciTech Connect

    Seraphin, S.; Zhou, D. ); Jiao, J. ); Withers, J.C.; Loutfy, R. )

    1993-10-11

    Characterization of the arc-discharge deposits at the cathode from anodes containing yttrium oxide and titanium by transmission electron microscopy and x-ray diffraction shows different results with respect to an encapsulation of the metal carbides into carbon clusters. Yttrium carbide is encapsulated into carbon nanoclusters in a crystalline phase. The formation of titanium carbide, on the other hand, preempts the formation of the carbon---carbon bonds necessary to form the carbon cages, so that only titanium carbide clusters are observed. Thermodynamic data support the interpretation of the results.

  9. Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters

    NASA Astrophysics Data System (ADS)

    Seraphin, Supapan; Zhou, Dan; Jiao, Jun; Withers, James C.; Loutfy, Raouf

    1993-10-01

    Characterization of the arc-discharge deposits at the cathode from anodes containing yttrium oxide and titanium by transmission electron microscopy and x-ray diffraction shows different results with respect to an encapsulation of the metal carbides into carbon clusters. Yttrium carbide is encapsulated into carbon nanoclusters in a crystalline phase. The formation of titanium carbide, on the other hand, preempts the formation of the carbon—carbon bonds necessary to form the carbon cages, so that only titanium carbide clusters are observed. Thermodynamic data support the interpretation of the results.

  10. X-Ray photoelectron spectroscopy study of radiofrequency-sputtered titanium, carbide, molybdenum carbide, and titanium boride coatings and their friction properties

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1977-01-01

    Radiofrequency sputtered coatings of titanium carbide, molybdenum carbide and titanium boride were tested as wear resistant coatings on stainless steel in a pin on disk apparatus. X-ray photoelectron spectroscopy (XPS) was used to analyze the sputtered films with regard to both bulk and interface composition in order to obtain maximum film performance. Significant improvements in friction behavior were obtained when properly biased films were deposited on deliberately preoxidized substrates. XPS depth profile data showed thick graded interfaces for bias deposited films even when adherence was poor. The addition of 10 percent hydrogen to the sputtering gas produced coatings with thin poorly adherent interfaces. Results suggest that some of the common practices in the field of sputtering may be detrimental to achieving maximum adherence and optimum composition for these refractory compounds.

  11. Titanium-Dioxide Nano-Fiber-Cotton Targets for Efficient Multi-keV X-Ray Generation

    SciTech Connect

    Tanabe, M; Nishimura, H; Fujioka, S; Nagai, K; Yamamoto, N; Gu, Z; Pan, C; Girard, F; Primout, M; Villette, B; Brebion, D; Fournier, K B; Fujishima, A; Mima, K

    2008-06-12

    Multi-keV x-ray generation from low-density (27 {+-} 7 mg/cc) nano-fiber-cotton targets composed of titanium-dioxide has been investigated. The cotton targets were heated volumetrically and supersonically to a peak electron temperature of 2.3 keV, which is optimal to yield Ti K-shell x rays. Considerable enhancement of conversion efficiency (3.7 {+-} 0.5%) from incident laser energy into Ti K-shell x rays (4-6 keV band) was attained in comparison with that (1.4 {+-} 0.9%) for a planar Ti-foil target.

  12. Mechanical study of rat soleus muscle using caged ATP and X-ray diffraction: high ADP affinity of slow cross-bridges.

    PubMed Central

    Horiuti, K; Yagi, N; Takemori, S

    1997-01-01

    1. The cross-bridges in slow- and fast-twitch fibres (taken, respectively, from soleus and psoas muscles of rats) were examined in mechanical experiments using caged ATP and X-ray diffraction, to compare their binding of ATP and ADP. 2. Caged ATP was photolysed in rigor fibres. When ADP was removed from pre-photolysis fibres, the initial relaxation (+/- Ca2+) in soleus was as fast as that in psoas fibres, whereas the subsequent contraction (+Ca2+) was slower in soleus than in psoas. The ATPase rate during the steady-state contraction was also slower in soleus fibres. 3. When ADP was added to pre-photolysis fibres (+/- Ca2+), tension developed even in the initial phase, the overall tension development being biphasic. Both initial and late components of the Ca(2+)-free contraction were enhanced when ADP was added before photolysis, although pre-photolysis ADP was not a prerequisite for the late component. The effect of ADP was greater in soleus than in psoas fibres. Static experiments on rigor fibres revealed a higher ADP affinity in soleus fibres. 4. The intensity of the actin layer-line from ADP rigor soleus fibres decreased rapidly on photorelease of ATP. We conclude that, despite the tight ADP binding of the soleus cross-bridge, its isometric reaction is not rate limited by the 'off' rate of ADP. PMID:9263922

  13. Titanium K-Shell X-Ray Production from High Velocity Wire Arrays Implosions on the 20-MA Z Accelerator

    SciTech Connect

    Apruzese, J.P.; Beg, F.N.; Clark, R.C.; Coverdale, C.A.; Davis, J.; Deeney, C.; Douglas, M.R.; Nash, T.J.; Ruiz-Comacho, J.; Spielman, R.B.; Struve, K.W.; Thornhill, J.W.; Whitney, K.G.

    1999-01-27

    The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75{+-}15 to 125{+-}20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7{+-}0.1 to 3.2{+-}0.2 keV and obtained a K-shell emission mass participation of up to 12%.

  14. X-ray diffraction analysis of titanium tritide film during 1600 days

    NASA Astrophysics Data System (ADS)

    Xiaosong, Zhou; Xinggui, Long; Lin, Zhang; Shuming, Peng; Shunzhong, Luo

    2010-01-01

    The generation and accumulation of 3He by tritium decay modified the physical and chemical properties of tritides. Here the evolution of lattice defects in long-aged titanium tritide films is investigated by X-ray diffraction and changes in the positions, intensities and line shapes of diffraction peaks have been determined over a period of about 1600 days (>4 years). Texture effects are also observed by biased intensities in standard θ-2θ scans. The results show that the TiT1.5 film keeps an fcc structure during 1600 days and reveals an hkl-dependent unit-cell expansion and line width broadening which are interpreted in terms of isolated tetrahedral interstitial 3He atoms and isolated bubble growth models by dislocation loop-punching or dislocation dipole expansion combined with Krivoglaz theory. In the first 12 days of aging, isolated tetrahedral interstitial 3He atoms or 3He clusters are formed, then interstitial 3He atoms diffuse into (1 1 1) planes and precipitate into clusters. The spontaneous formation of Frenkel pairs, the self-interstitial atoms produced are built into dislocations resulting in formation platelet bubbles and dislocation dipoles between 12 and 27 days. Above 27 days, multiple stages of 3He bubbles growth appear: (1) between 27 and 85 days platelet helium bubbles growth by dislocation dipoles expansion, (2) between 85 and 231 days the transition from platelet bubbles to sphere bubbles by loop emission, (3) after 231 days sphere bubbles growth by dislocation loop-punching and probably formation of sub-grain boundaries by dislocation rearrangement.

  15. X-ray line broadening studies on aluminum nitride, titanium carbide and titanium diboride modified by high pressure shock loading

    SciTech Connect

    Morosin, B.; Graham, R.A.

    1983-01-01

    Powders of AlN, TiC and TiB/sub 2/ have been subjected to controlled shock loading with peak pressures in the samples between 14 to 27 GPa and preserved for post-shock study. Broadened x-ray diffraction peak profiles are analyzed by a simplified method and show increases in residual lattice strain and small decreases in crystallite size. Strain values range from 10/sup -5/ to 10/sup -4/ for TiB/sub 2/ and to values larger than 10/sup -3/ for TiC and AlN.

  16. Swift/BAT Detection of Hard X-Rays from Tycho's Supernova Remnant: Evidence for Titanium-44

    NASA Astrophysics Data System (ADS)

    Troja, E.; Segreto, A.; La Parola, V.; Hartmann, D.; Baumgartner, W.; Markwardt, C.; Barthelmy, S.; Cusumano, G.; Gehrels, N.

    2014-12-01

    We report Swift/Burst Alert Telescope survey observations of the Tycho's supernova remnant, performed over a period of 104 months since the mission's launch. The remnant is detected with high significance (>10σ) below 50 keV. We detect significant hard X-ray emission in the 60-85 keV band, above the continuum level predicted by a simple synchrotron model. The location of the observed excess is consistent with line emission from radioactive titanium-44, so far reported only for Type II supernova explosions. We discuss the implications of these results in the context of the galactic supernova rate, and nucleosynthesis in Type Ia supernova.

  17. Local structure of Titanium in natural glasses probed by X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yoshiasa, A.; Okube, M.; Nakatani, T.; Hayasaka, Y.; Isobe, H.

    2013-04-01

    Synchrotron radiation has been used to collect titanium K-edge absorption spectra of a suite of natural glasses (tektites, impact glasses, fault rocks and volcanic glasses). XANES and XAFS analysis provided the qualitative and quantitative information of Ti oxidation state, Ti-O distance and site geometry. Tektites possess four-, five-, six-coordinated Ti, whereas fault rock-pseudotachylite, volcanic glasses and impact glass only presented five- and six-coordinated Ti. This study indicated that different petrogenesis of natural glasses has different local structures of titanium.

  18. CHARACTERIZATION OF THE LOCAL TITANIUM ENVIRONMENT IN DOPED SODIUM ALUMINUM HYDRIDE USING X-RAY ADSORPTION SPECTROSCOPY.

    SciTech Connect

    GRAETZ, J.; IGNATOV, A. YU; TYSON, T.A.; REILLY, J.J.; JOHNSON, J.

    2004-11-30

    Ti K-edge x-ray absorption spectroscopy was used to explore the local titanium environment and valence in 2-4 mol% Ti-doped sodium alanate. An estimate of the oxidation state of the dopant, based upon known standards, revealed a zero-valent titanium atom. An analysis of the near-edge and extended fine structures indicates that the Ti does not enter substitutional or interstitial sites in the NaAlH{sub 4} lattice. Rather, the Ti is located on/near the surface and is coordinated by 10.2 {+-} 1 aluminum atoms with an interatomic distance of 2.82 {+-} 0.01 {angstrom}, similar to that of TiAl{sub 3}. The Fourier transformed EXAFS spectra reveals a lack of long-range order around the Ti dopant indicating that the Ti forms nano-clusters of TiAl{sub 3}. The similarity of the spectra in the hydrided and dehydrided samples suggests that the local Ti environment is nearly invariant during hydrogen cycling.

  19. SWIFT/BAT DETECTION OF HARD X-RAYS FROM TYCHO'S SUPERNOVA REMNANT: EVIDENCE FOR TITANIUM-44

    SciTech Connect

    Troja, E.; Baumgartner, W.; Markwardt, C.; Barthelmy, S.; Gehrels, N.; Segreto, A.; La Parola, V.; Cusumano, G.; Hartmann, D.

    2014-12-10

    We report Swift/Burst Alert Telescope survey observations of the Tycho's supernova remnant, performed over a period of 104 months since the mission's launch. The remnant is detected with high significance (>10σ) below 50 keV. We detect significant hard X-ray emission in the 60-85 keV band, above the continuum level predicted by a simple synchrotron model. The location of the observed excess is consistent with line emission from radioactive titanium-44, so far reported only for Type II supernova explosions. We discuss the implications of these results in the context of the galactic supernova rate, and nucleosynthesis in Type Ia supernova.

  20. Self-Assembled Pyridine-Dipyrrolate Cages.

    PubMed

    Zhang, Huacheng; Lee, Juhoon; Lammer, Aaron D; Chi, Xiaodong; Brewster, James T; Lynch, Vincent M; Li, Hao; Zhang, Zhan; Sessler, Jonathan L

    2016-04-01

    An inherently nonlinear pyridine dipyrrolate ligand, namely 2,6-bis(3,4-diethyl-5-carboxy-1H-pyrrol-2yl)pyridine (compound 1), is able to distinguish between different zinc(II) cation sources, namely Zn(acac)2 and Zn(OAc)2, respectively. This differentiation is manifest both in terms of the observed fluorescent behavior in mixed organic media and the reaction chemistry. Treatment of 1 with Zn(acac)2 gives rise to a cage dimer, cage-1, wherein two molecules of compound 1 act as double bridging units to connect two individual cage subunits. As inferred from X-ray crystallographic studies, this cage system consists of discrete zinc dimers with hydroxide bridges that, with the assistance of bound DMF solvent molecules, serve to fix the geometry and orientation of the pyridine dipyrrolate building blocks. When a different zinc source, Zn(OAc)2, is used to carry out an ostensibly similar complexation reaction with compound 1, an acetate-bridged 1D abacus-like cage polymer is obtained as inferred from X-ray diffraction analysis. This extended solid state structure, cage-2, contains individual zinc dimer cage submits and appears stabilized by solvent molecules (DMF) and the counteranion (acetate). Rod-like assemblies are also observed by DLS and SEM. This construct, in contrast to cage-1, proved fluorescent in mixed organic media. The structure of the ligand itself (i.e., in the absence of Zn(II)) was confirmed by X-ray crystallographic analysis and was found to assemble into a supramolecular polymer. Conversion to a dimer form was seen upon the addition of TBAOAc. On the basis of the metric parameters, the structures seen in the solid state are stabilized via hydrogen bonding interactions involving solvent molecules.

  1. Self-Assembled Pyridine-Dipyrrolate Cages.

    PubMed

    Zhang, Huacheng; Lee, Juhoon; Lammer, Aaron D; Chi, Xiaodong; Brewster, James T; Lynch, Vincent M; Li, Hao; Zhang, Zhan; Sessler, Jonathan L

    2016-04-01

    An inherently nonlinear pyridine dipyrrolate ligand, namely 2,6-bis(3,4-diethyl-5-carboxy-1H-pyrrol-2yl)pyridine (compound 1), is able to distinguish between different zinc(II) cation sources, namely Zn(acac)2 and Zn(OAc)2, respectively. This differentiation is manifest both in terms of the observed fluorescent behavior in mixed organic media and the reaction chemistry. Treatment of 1 with Zn(acac)2 gives rise to a cage dimer, cage-1, wherein two molecules of compound 1 act as double bridging units to connect two individual cage subunits. As inferred from X-ray crystallographic studies, this cage system consists of discrete zinc dimers with hydroxide bridges that, with the assistance of bound DMF solvent molecules, serve to fix the geometry and orientation of the pyridine dipyrrolate building blocks. When a different zinc source, Zn(OAc)2, is used to carry out an ostensibly similar complexation reaction with compound 1, an acetate-bridged 1D abacus-like cage polymer is obtained as inferred from X-ray diffraction analysis. This extended solid state structure, cage-2, contains individual zinc dimer cage submits and appears stabilized by solvent molecules (DMF) and the counteranion (acetate). Rod-like assemblies are also observed by DLS and SEM. This construct, in contrast to cage-1, proved fluorescent in mixed organic media. The structure of the ligand itself (i.e., in the absence of Zn(II)) was confirmed by X-ray crystallographic analysis and was found to assemble into a supramolecular polymer. Conversion to a dimer form was seen upon the addition of TBAOAc. On the basis of the metric parameters, the structures seen in the solid state are stabilized via hydrogen bonding interactions involving solvent molecules. PMID:26972781

  2. Distribution of iron&titanium on the lunar surface from lunar prospector gamma ray spectra

    SciTech Connect

    Prettyman, T. H.; Feldman, W. C.; Lawrence, David J. ,; Elphic, R. C.; Gasnault, O. M.; Maurice, S.; Moore, K. R.; Binder, A. B.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. {approx}140 g/cm{sup 2} for inelastic scattering and {approx}50 g/cm{sup 2} for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods [e.g. Clementine Spectral Reflectance (CSR)], which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.

  3. Distribution of iron and titanium on the lunar surface from lunar prospector gamma ray spectra

    NASA Astrophysics Data System (ADS)

    Prettyman, T.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. approximately 140g/cm2 for inelastic scattering and approximately 50 g/cm2 for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods (e.g. Clementine Spectral Reflectance (CSR)), which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum on order to determine the contribution of individual elements.

  4. High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique

    SciTech Connect

    Witte, K.; Bodnar, W.; Schell, N.; Lang, H.; Burkel, E.

    2014-09-15

    A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. The crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength.

  5. Cage redesign explains assembly

    PubMed Central

    Theil, Elizabeth C; Turano, Paola

    2013-01-01

    Control of protein self-assembly and disassembly, which is central to metabolism and engineering applications, remains challenging. Here, a perspicacious redesign of interfaces in the multisubunit ferritin protein cage provides single, modifiable subunits that assemble with Cu2+ templating and give insights into the cage assembly code. PMID:23416399

  6. New Ventilated Isolation Cage

    PubMed Central

    Cook, Reginald O.

    1968-01-01

    A multifunction lid has been developed for a commercially available transparent animal cage which permits feeding, watering, viewing, long-term holding, and local transport of laboratory rodents on experiment while isolating the surrounding environment. The cage is airtight except for its inlet and exhaust high-efficiency particulate air filters, and it is completely steam-sterilizable. Opening of the cage's feed and water ports causes an inrush of high velocity air which prevents back-migration of aerosols and permits feeding and watering while eliminating need for chemical vapor decontamination. Ventilation system design permits the holding in adjacent cages of animals infected with different organisms without danger of cross-contamination; leaves the animal room odor-free; reduces required bedding changes to twice a month or less, and provides investigators with capability to control precisely individual cage ventilation rates. Forty-eight cages can be conveniently placed on a standard NIH “shoebox” cage rack (60 inches wide × 28 inches deep × 74 inches high) fitted with a simple manifold exhaust system. The entire system is mobile, requiring only an electrical power outlet. Principal application of the caging system is in the area of preventing exposure of animal caretakers to pathogenic substances associated with the animal host, and in reducing handling of animals and their exposure to extraneous contamination. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 9 PMID:5659368

  7. Cathodic cage plasma deposition of TiN and TiO{sub 2} thin films on silicon substrates

    SciTech Connect

    Sousa, Romulo R. M. de; Sato, Patricia S.; Nascente, Pedro A. P.; Viana, Bartolomeu C.; Alves, Clodomiro; Nishimoto, Akio

    2015-07-15

    Cathodic cage plasma deposition (CCPD) was used for growing titanium nitride (TiN) and titanium dioxide (TiO{sub 2}) thin films on silicon substrates. The main advantages of the CCPD technique are the uniformity, tridimensionality, and high rate of the film deposition that occurs at higher pressures, lower temperatures, and lower treatment times than those used in conventional nitriding treatments. In this work, the influence of the temperature and gas atmosphere upon the characteristics of the deposited films was investigated. The TiN and TiO{sub 2} thin films were characterized by x-ray diffraction, scanning electron microscopy, and Raman spectroscopy to analyze their chemical, structural, and morphological characteristics, and the combination of these results indicates that the low-cost CCPD technique can be used to produce even and highly crystalline TiN and TiO{sub 2} films.

  8. High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide (TiC) using the DV-X alpha Molecular Orbital Method

    SciTech Connect

    Shimomura, Kenta; Muramatsu, Yasuji; Denlinger, Jonathan D.; Gullikson, Eric M.

    2008-10-31

    We used the DV-X alpha method to analyze the high-resolution soft X-ray emission and absorption spectra in the CK region of titanium carbide (TiC). The spectral profiles of the X-ray emission and absorption can be ssuscfucelly reproduced by the occupied and unoccupied density of states (DOS ), respectively, in the C2p orbitals of the center carbon atoms in a Ti62C63 cluster model, suggesting that the center carbon atom in a large cluster model expanded to the cubic-structured 53 (= 125) atoms provides sufficient DOS for the X-ray spectral analysis of rock-salt structured metal carbides.

  9. Cage Destruction in Metal-Fullerene Clusters

    SciTech Connect

    Tast, F.; Malinowski, N.; Frank, S.; Heinebrodt, M.; Billas, I.M.; Martin, T.P.

    1996-10-01

    Mass spectrometric studies on free clusters composed of single fullerene molecules and transition metal atoms (C{sub 60}{ital M}{sub {ital x}} and C{sub 70}{ital M}{sub {ital x}}; {ital x}=0.150, {ital M}{element_of}{l_brace}Ti,V,Nb,Ta{r_brace}) reveal that they undergo a laser induced transformation from metal-fullerene clusters to metal carbide and metallo-carbohedrene clusters. Two types of fragmentation behavior are observed. Fullerenes doped with titanium or vanadium seem to be stable at low laser intensities, whereas tantalum and niobium severely destabilize the fullerene cage. Photofragmentation spectra of preselected C{sub 60}Ta{sub {ital x}} indicate that the C{sub 60} cage is destroyed for {ital x}{ge}3. {copyright} {ital 1996 The American Physical Society.}

  10. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    SciTech Connect

    Singh, S.; Solak, H.; Cerrina, F.

    1997-04-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi{sub 2} exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 {mu}{Omega}-cm that is formed at a lower temperature (formation anneal) and the stable 12-15 {mu}{Omega}-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick {open_quotes}as is{close_quotes} industrial samples.

  11. Porous Triphenylbenzene-Based Bicyclooxacalixarene Cage for Selective Adsorption of CO2/N2.

    PubMed

    Wang, Zhen; Luo, Yi; Zhai, Tian-Long; Ma, Hui; Chen, Jing-Jing; Shu, Yuanjie; Zhang, Chun

    2016-09-16

    A bicyclooxacalixarene cage with triangular prism structure was synthesized by a one-pot SNAr reaction. The structure of the oxacalixarene cage 1 was characterized by NMR, MS spectra, and X-ray crystal structure analyses. In the solid state, the molecular cage was assembled into an interlaced porous network structure. Gas adsorption studies indicated that cage 1 exhibited high CO2/N2 selectivity of 106. PMID:27585239

  12. Mandrel replication for hard x-ray optics using titanium nitride

    NASA Astrophysics Data System (ADS)

    Romaine, S.; Boike, J.; Bruni, R.; Engelhaupt, D.; Gorenstein, P.; Gubarev, M.; Ramsey, B.

    2009-08-01

    X-ray astronomy grazing incidence telescopes use the principle of nested shells to maximize the collecting area. Some of the more recent missions, such as XMM-Newton, have used an electroformed nickel replication process to fabricate the mirror shells. We have been developing coatings to simplify and improve this electroforming process. This paper discusses our most recent results from studies using TiN as a mandrel hardcoat in the electroforming process of fabricating nickel shell optics. The results indicate that nickel replicas separate easily from the TiN coated mandrel, and little (if any) degradation of the mandrel occurs after more than 20 replications. AFM characterization of the mandrel and replica surfaces is shown. Preliminary results are also included from studies which use this same process to replicate multilayer coatings; these results indicate no change in the multilayer stack after separation from the mandrel.

  13. Research of online automatic titanium grade analyzer and method based on energy dispersive X-ray fluorescence technology.

    PubMed

    Tuo, Xianguo; Li, Zhe; Cheng, Yi; Mu, Keliang; Yang, Jianbo; Luo, Hui; Yang, Xuemei; Gao, Lan

    2010-01-01

    An online automatic Ti-grade analyzer (OATGA), consisting of a (238)Pu source and a proportional counter, is designed for assuring product quality. The advantage of this system was its time-effectiveness; the entire monitoring process can be finished within approximately 5 min. This system has successfully solved some key analysis issues in titanium ore concentrate production process. The results obtained by feature measurements and chemical analysis were in agreement with each other. After two-year usage of OATGA at PANGANG, southwestern China, it was proved as a reliable method for online quality control in the production process of titanium ore concentrate.

  14. Endohedral dynamics of push-pull rotor-functionalized cages.

    PubMed

    Krick, Marcel; Holstein, Julian; Würtele, Christian; Clever, Guido H

    2016-08-16

    A series of [Pd2L4] coordination cages featuring endohedral functionalities in central backbone positions was synthesized. Although attached via C[double bond, length as m-dash]C double bonds, the substituents behave as molecular rotors. This is explained by their pronounced donor-acceptor character which lowers rotational barriers and allows for electronic control over the spinning rates inside the cage. The dynamic behaviour of the free ligands, assembled cages and host-guest complexes is compared with the aid of NMR experiments, X-ray structure analysis and molecular modelling.

  15. Chemical effects on the K{beta}{sup ''} and K{beta}{sub 2,5} x-ray lines of titanium and its compounds

    SciTech Connect

    Mandic, Luka; Fazinic, Stjepko; Jaksic, Milko

    2009-10-15

    High-resolution K{beta} x-ray spectra induced by 2 MeV protons in thick Ti, TiO, Ti{sub 2}O{sub 3}, TiO{sub 2}, MgTiO{sub 3}, FeTiO{sub 3}, TiC, TiN, and TiB{sub 2} targets were measured using a wavelength dispersive spectrometer combined with a position-sensitive detector. The intensities and energies of the K{beta}{sub 2,5} and K{beta}{sup ''} lines relative to the K{beta}{sub 1,3} line were extracted. The influence of self-absorption in thick targets was investigated using related x-ray-absorption near-edge-structure spectra that are available in the literature to extract mass absorption coefficients close to the K absorption edge. The correlation of the relative position of the K{beta}{sub 2,5} line with a titanium formal oxidation state in oxide compounds confirmed that the oxidation state of Ti in FeTiO{sub 3} is probably a mixture of Ti III and Ti IV states, which has been recently reported by other authors using different methods. The strengths of the K{beta}{sub 2,5} and K{beta}{sup ''} transition probabilities per titanium-ligand pair were found to decrease exponentially as the average titanium-ligand bond distance increased, which is similar to results obtained for various compounds with vanadium or manganese as the central 3d metal atoms.

  16. Interpenetrated Cage Structures.

    PubMed

    Frank, Marina; Johnstone, Mark D; Clever, Guido H

    2016-09-26

    This Review covers design strategies, synthetic challenges, host-guest chemistry, and functional properties of interlocked supramolecular cages. Some dynamic covalent organic structures are discussed, as are selected examples of interpenetration in metal-organic frameworks, but the main focus is on discrete coordination architectures, that is, metal-mediated dimers. Factors leading to interpenetration, such as geometry, flexibility and chemical makeup of the ligands, coordination environment, solvent effects, and selection of suitable counter anions and guest molecules, are discussed. In particular, banana-shaped bis-pyridyl ligands together with square-planar metal cations have proven to be suitable building blocks for the construction of interpenetrated double-cages obeying the formula [M4 L8 ]. The peculiar topology of these double-cages results in a linear arrangement of three mechanically coupled pockets. This allows for the implementation of interesting guest encapsulation effects such as allosteric binding and template-controlled selectivity. In stimuli-responsive systems, anionic triggers can toggle the binding of neutral guests or even induce complete structural conversions. The increasing structural and functional complexity in this class of self-assembled hosts promises the construction of intelligent receptors, novel catalytic systems, and functional materials. PMID:27417259

  17. Interpenetrated Cage Structures.

    PubMed

    Frank, Marina; Johnstone, Mark D; Clever, Guido H

    2016-09-26

    This Review covers design strategies, synthetic challenges, host-guest chemistry, and functional properties of interlocked supramolecular cages. Some dynamic covalent organic structures are discussed, as are selected examples of interpenetration in metal-organic frameworks, but the main focus is on discrete coordination architectures, that is, metal-mediated dimers. Factors leading to interpenetration, such as geometry, flexibility and chemical makeup of the ligands, coordination environment, solvent effects, and selection of suitable counter anions and guest molecules, are discussed. In particular, banana-shaped bis-pyridyl ligands together with square-planar metal cations have proven to be suitable building blocks for the construction of interpenetrated double-cages obeying the formula [M4 L8 ]. The peculiar topology of these double-cages results in a linear arrangement of three mechanically coupled pockets. This allows for the implementation of interesting guest encapsulation effects such as allosteric binding and template-controlled selectivity. In stimuli-responsive systems, anionic triggers can toggle the binding of neutral guests or even induce complete structural conversions. The increasing structural and functional complexity in this class of self-assembled hosts promises the construction of intelligent receptors, novel catalytic systems, and functional materials.

  18. Characterization of a hybrid target multi-keV x-ray source by a multi-parameter statistical analysis of titanium K-shell emission

    SciTech Connect

    Primout, M.; Babonneau, D.; Jacquet, L.; Gilleron, F.; Peyrusse, O.; Fournier, K. B.; Marrs, R.; May, M. J.; Heeter, R. F.; Wallace, R. J.

    2015-11-10

    We studied the titanium K-shell emission spectra from multi-keV x-ray source experiments with hybrid targets on the OMEGA laser facility. Using the collisional-radiative TRANSPEC code, dedicated to K-shell spectroscopy, we reproduced the main features of the detailed spectra measured with the time-resolved MSPEC spectrometer. We developed a general method to infer the Ne, Te and Ti characteristics of the target plasma from the spectral analysis (ratio of integrated Lyman-α to Helium-α in-band emission and the peak amplitude of individual line ratios) of the multi-keV x-ray emission. Finally, these thermodynamic conditions are compared to those calculated independently by the radiation-hydrodynamics transport code FCI2.

  19. Characterization of a hybrid target multi-keV x-ray source by a multi-parameter statistical analysis of titanium K-shell emission

    DOE PAGES

    Primout, M.; Babonneau, D.; Jacquet, L.; Gilleron, F.; Peyrusse, O.; Fournier, K. B.; Marrs, R.; May, M. J.; Heeter, R. F.; Wallace, R. J.

    2015-11-10

    We studied the titanium K-shell emission spectra from multi-keV x-ray source experiments with hybrid targets on the OMEGA laser facility. Using the collisional-radiative TRANSPEC code, dedicated to K-shell spectroscopy, we reproduced the main features of the detailed spectra measured with the time-resolved MSPEC spectrometer. We developed a general method to infer the Ne, Te and Ti characteristics of the target plasma from the spectral analysis (ratio of integrated Lyman-α to Helium-α in-band emission and the peak amplitude of individual line ratios) of the multi-keV x-ray emission. Finally, these thermodynamic conditions are compared to those calculated independently by the radiation-hydrodynamics transportmore » code FCI2.« less

  20. Characterization of a hybrid target multi-keV x-ray source by a multi-parameter statistical analysis of titanium K-shell emission

    NASA Astrophysics Data System (ADS)

    Primout, M.; Babonneau, D.; Jacquet, L.; Gilleron, F.; Peyrusse, O.; Fournier, K. B.; Marrs, R.; May, M. J.; Heeter, R. F.; Wallace, R. J.

    2016-03-01

    We have studied the titanium K-shell emission spectra from multi-keV x-ray source experiments with hybrid targets on the OMEGA laser facility. Using the collisional-radiative TRANSPEC code, dedicated to K-shell spectroscopy, we reproduced the main features of the detailed spectra measured with the time-resolved MSPEC spectrometer. We have developed a general method to infer the Ne, Te and Ti characteristics of the target plasma from the spectral analysis (ratio of integrated Lyman-α to Helium-α in-band emission and the peak amplitude of individual line ratios) of the multi-keV x-ray emission. These thermodynamic conditions are compared to those calculated independently by the radiation-hydrodynamics transport code FCI2.

  1. Role of Cages in Revision Arthroplasty of the Acetabulum.

    PubMed

    Mäkinen, Tatu J; Kuzyk, Paul; Safir, Oleg A; Backstein, David; Gross, Allan E

    2016-02-01

    ➤ The outcome of acetabular revision is heavily influenced by the degree of associated bone loss.➤ Uncemented hemispherical acetabular components can be used in the majority of acetabular revisions, although occasionally the degree of bone loss precludes the stability of the hemispherical component at the correct anatomic level or there is minimal bleeding host bone left for biologic fixation.➤ Massive acetabular bone loss resulting in the need for bone grafts or highly porous augments involving more than half of the acetabulum is one of the main indications for the use of cages.➤ The cup-cage reconstruction is based on bone-grafting the deficient acetabulum and securing a hemispherical, highly porous metal component with multiple screws to bridge the discontinuity and off-loading the hemispherical component with a titanium cage spanning from ischium to ilium.➤ In addition to managing pelvic discontinuities, the cup-cage construct can also be used in hips without discontinuity as the hemispherical, highly porous metal component is used to restore bone stock.➤ In situations in which there is not enough bleeding host bone to secure a hemispherical component, a highly porous metal augment can be used to address the osseous deficiency. The augment is also protected with a cage to assist bone ingrowth. PMID:26842414

  2. Structural studies of amorphous titanium diboride thin films by extended x-ray-absorption fine-structure and extended electron-energy-loss fine-structure techniques

    NASA Astrophysics Data System (ADS)

    Kaloyeros, Alain E.; Hoffman, Mark P.; Williams, Wendell S.; Greene, Alex E.; McMillan, Joyce A.

    1988-10-01

    The local atomic structure of amorphous titanium diboride thin films, prepared by electron-beam vaporization (EBV) of the crystalline compound onto liquid-nitrogen-cooled substrates, was studied using extended x-ray-absorption fine-structure (EXAFS) and extended energy-loss fine-structure (EXELFS) techniques. From a comparison of the extended fine-structure spectra of the amorphous films with corresponding spectra of crystalline titanium diboride, accurate information was derived on the nature of the local structure, or short-range order, and on the coordination numbers, interatomic distances, and nanostructural atomic disorder in amorphous TiB2. A relaxation of the interatomic spacing and a reduction of coordination number for the nearest-neighbor atoms was inferred for the amorphous state. Local prismatic coordination with random 90° rotations about prismatic planes is proposed as a likely atomic structure consistent with the data for the amorphous form. Finally, EXAFS and EXELFS were employed to examine in detail the structural changes induced in amorphous TiB2 by variations in the EBV deposition parameters, and to determine a set of optimized parameters for the EBV deposition of a TiB2 stable amorphous phase.

  3. Metal dimer and trimer within spherical carbon cage

    NASA Astrophysics Data System (ADS)

    Kato, Tatsuhisa

    2007-07-01

    C 80 fulleren cage can be used to realize confinement with the highest possible icosahedral ( Ih) symmetry. As examples, La 2@C 80 and Sc 3C 2@C 80 are molecules in which metal dimer and trimer are encapsulated within the C 80 cage. They are recently purified in the substantial amount by using a high performance liquid chromatograph (HPLC), and studied by spectroscopy and X-ray diffraction. The confinement of the metal cluster with the high symmetry ( Ih) cage is reflected in their specific potential of the intra-molecular rotation for the cluster. The result of electron spin resonance (ESR) measurements indicates that the intra-molecular potential is modified by the chemical modification of the C 80 cage as well as by the injection of an excess electron.

  4. Position and flux stabilization of X-ray beams produced by double-crystal monochromators for EXAFS scans at the titanium K-edge.

    PubMed

    van Silfhout, Roelof; Kachatkou, Anton; Groppo, Elena; Lamberti, Carlo; Bras, Wim

    2014-03-01

    The simultaneous and active feedback stabilization of X-ray beam position and monochromatic beam flux during EXAFS scans at the titanium K-edge as produced by a double-crystal monochromator beamline is reported. The feedback is generated using two independent feedback loops using separate beam flux and position measurements. The flux is stabilized using a fast extremum-searching algorithm that is insensitive to changes in the synchrotron ring current and energy-dependent monochromator output. Corrections of beam height are made using an innovative transmissive beam position monitor instrument. The efficacy of the feedback stabilization method is demonstrated by comparing the measurements of EXAFS spectra on inhomogeneous diluted Ti-containing samples with and without feedback applied.

  5. Building a better Faraday cage

    NASA Astrophysics Data System (ADS)

    MartinAlfven; Wright, David; skocpol; Rounce, Graham; Richfield, Jon; W, Nick; wheelsonfire

    2015-11-01

    In reply to the physicsworld.com news article “Are Faraday cages less effective than previously thought?” (15 September, http://ow.ly/SfklO), about a study that indicated, based on mathematical modelling, that conducting wire-mesh cages may not be as good at excluding electromagnetic radiation as is commonly assumed.

  6. Cryogenic Caging for Science Instrumentation

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Chui, Talso C.

    2011-01-01

    A method has been developed for caging science instrumentation to protect from pyro-shock and EDL (entry, descent, and landing) acceleration damage. Caging can be achieved by immersing the instrument (or its critical parts) in a liquid and solidifying the liquid by cooling. After the launch shock and/or after the payload has landed, the solid is heated up and evaporated.

  7. The Cage-Busting Teacher

    ERIC Educational Resources Information Center

    Hess, Frederick M.

    2015-01-01

    "The Cage-Busting Teacher" adopts the logic of "Cage-Busting Leadership" and applies it to the unique challenges and opportunities of classroom teachers. Detailed, accessible, and thoroughly engaging, it uncovers the many ways in which teachers can break out of familiar constraints in order to influence school and classroom…

  8. Titanium 2013

    USGS Publications Warehouse

    2014-01-01

    Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  9. Caged Protein Prenyltransferase Substrates: Tools for Understanding Protein Prenylation

    SciTech Connect

    DeGraw, Amanda J.; Hast, Michael A.; Xu, Juhua; Mullen, Daniel; Beese, Lorena S.; Barany, George; Distefano, Mark D.

    2010-11-15

    Originally designed to block the prenylation of oncogenic Ras, inhibitors of protein farnesyltransferase currently in preclinical and clinical trials are showing efficacy in cancers with normal Ras. Blocking protein prenylation has also shown promise in the treatment of malaria, Chagas disease and progeria syndrome. A better understanding of the mechanism, targets and in vivo consequences of protein prenylation are needed to elucidate the mode of action of current PFTase (Protein Farnesyltransferase) inhibitors and to create more potent and selective compounds. Caged enzyme substrates are useful tools for understanding enzyme mechanism and biological function. Reported here is the synthesis and characterization of caged substrates of PFTase. The caged isoprenoid diphosphates are poor substrates prior to photolysis. The caged CAAX peptide is a true catalytically caged substrate of PFTase in that it is to not a substrate, yet is able to bind to the enzyme as established by inhibition studies and X-ray crystallography. Irradiation of the caged molecules with 350 nm light readily releases their cognate substrate and their photolysis products are benign. These properties highlight the utility of those analogs towards a variety of in vitro and in vivo applications.

  10. Synthesis and X-ray structure analysis of cytotoxic heptacoordinate sulfonamide salan titanium(IV)-bis-chelates.

    PubMed

    Zhao, Tiankun; Grützke, Martin; Götz, Kathrin H; Druzhenko, Tetiana; Huhn, Thomas

    2015-10-01

    A series of novel sulfonamide substituted heteroleptic salan titanium(IV)-bis-chelates complexed to 2,6-pyridinedicarboxylic acid were synthesized, structurally characterized and evaluated for their anticancer activity against two human carcinoma cell lines. All cytotoxic complexes showed complete inhibition of cell growth at active concentration, two complexes based on pyrrolidine and azepane substituted sulfonamides displayed IC50 values below 1.7 μM and are more cytotoxic than cisplatin in both tested cell lines. The azepane substituted complex [L3Ti(dipic)] exhibited excellent activity with an IC50 value of 0.5 ± 0.1 μM in Hela S3 and 1.0 ± 0.1 μM in Hep G2. PMID:26325575

  11. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  12. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  13. Molecular marriage through partner preferences in covalent cage formation and cage-to-cage transformation.

    PubMed

    Acharyya, Koushik; Mukherjee, Sandip; Mukherjee, Partha Sarathi

    2013-01-16

    Unprecedented self-sorting of three-dimensional purely organic cages driven by dynamic covalent bonds is described. Four different cages were first synthesized by condensation of two triamines and two dialdehydes separately. When a mixture of all the components was allowed to react, only two cages were formed, which suggests a high-fidelity self-recognition. The issue of the preference of one triamine for a particular dialdehyde was further probed by transforming a non-preferred combination to either of the two preferred combinations by reacting it with the appropriate triamine or dialdehyde.

  14. Scanning electron microscopy with energy dispersive X-ray spectrophotometry analysis of reciprocating and continuous rotary nickel-titanium instruments following root canal retreatment.

    PubMed

    Kalyoncuoğlu, Elif; Keskin, Cangül; Uzun, İsmail; Bengü, Aydın S; Guler, Buğra

    2016-01-01

    This study aimed to evaluate superficial defects and the composition of Reciproc R25 and ProTaper Retreatment file systems (Dentsply Maillefer, Ballaigues, Switzerland) used for retreatment. A total of 100 maxillary incisor teeth were randomly divided into the following two groups: Reciproc R25 (n = 25) and ProTaper Retreatment instrument (n = 75) groups. The nickel-titanium (Ni-Ti) compositions of the files before and after use were analyzed using energy dispersive X-ray spectrophotometry (EDX). Chi-square, Mann-Whitney U, and Kruskal-Wallis tests were used to analyze the data. ProTaper Retreatment instrument group showed a significantly higher number of defects than the Reciproc group (P < 0.05). No instrument fracture was detected. The presence of debris was observed in both groups before use, although the level was significantly higher in the ProTaper Retreatment group, which consisted of metals (P < 0.05). There was no significant difference between new and used instruments with regard to Ni-Ti composition (P < 0.05). EDX analysis showed that both the Reciproc and ProTaper Retreatment instruments had a Ni-Ti composition that was within the standards specified by the American Society of Testing and Materials. This study confirmed the use of both the Reciproc R25 file and ProTaper Retreatment file system for root canal filling removal in straight root canals as a safe procedure. (J Oral Sci 58, 401-406, 2016). PMID:27665980

  15. Evolution of Design of Interbody Cages for Anterior Lumbar Interbody Fusion.

    PubMed

    Phan, Kevin; Mobbs, Ralph J

    2016-08-01

    Anterior lumbar interbody fusion (ALIF) is one of the surgical procedures for the relief of chronic back pain, radiculopathy and neurogenic claudication in patients with degenerative lumbar spine disease that is refractory to conservative therapy, low-grade spondylolisthesis and pseudo arthrosis. Over the past half century, both the surgical techniques and instrumentation required for ALIF have changed significantly. In particular, the designs of ALIF cage and the materials used have evolved dramatically, the common goal being to improve fusion rates and optimize clinical outcomes. The increasing popularity of ALIF is reflected by the increasing abundance of published studies reporting clinical outcomes, surgical techniques and grafting options for ALIF. Developments in cage designs include cylindrical Bagby and Kuslich, cylindrical ray, cylindrical mesh, lumbar-tapered, polyethyl-etherketone cage and integral fixation cages. Biologic implants include bone dowels and femoral ring allografts. Methods for optimization of cage design have included cage dimensions, use of novel composite cage materials and integral fixation technologies. However, the historical development and evolution of cages used for ALIF has not been extensively documented. This article therefore aims to provide an overview of the historical basis for the anterior approach, evolution in design of ALIF cage implants and potential future research directions. PMID:27627708

  16. Furnished Cage System and Hen Well-Being: Comparative Effects of Furnished Cages and Battery Cages on Behavioral Exhibitions in White Leghorn Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The battery cage system is being banned in the European Union before or by 2012; and the furnished cage system will be the only cage system allowed after 2012. This study was conducted to examine the different effects of caging systems, furnished cages vs. battery cages, on bird behaviors. One hundr...

  17. Synthesis, characterization, substitution, and atom-transfer reactions of ([eta][sup 2]-alkyne)(tetratolylporphyrinato)titanium(II). X-ray structure of trans-bis(4-picoline)(tetratolylporphyrinato)titanium(II)

    SciTech Connect

    Woo, L.K.; Hays, J.A.; Young, V.G. Jr.; Day, C.L. ); Caron, C.; D'Souza, F.; Kadish, K.M. )

    1993-09-29

    A general preparative method for (tetratolylporphyrinato)titanium(II) [eta][sup 2]-acetylene complexes, (TTP)Ti([eta][sup 2]-RC[triple bond]CR[prime]), (R = R[prime] = CH[sub 3], CH[sub 2]CH[sub 3], C[sub 6]H[sub 5]; R = CH[sub 3], R[prime] = CH[sub 2]CH[sub 3]) is described. Displacement of 2-butyne from (TTP)Ti([eta][sup 2]-MeC[triple bond]CMe) with terminal acetylenes allows the preparation of (TTP)Ti([eta][sup 2]-HC[triple bond]CH) and (TTP)Ti([eta][sup 2]-PhC[triple bond]CH). The [pi] complexes undergo simple substitution reaction with pyridine (py) and 4-picoline (pic) to afford the bis(ligand) complexes trans-(TTP)Ti(py)[sub 2] and trans-(TTP)Ti(pic)[sub 2]. The structure of the bis(picoline) complex, C[sub 66]H[sub 56]N[sub 4]Ti, was determined by single-crystal X-ray diffraction (triclinic, P[bar 1]). Crystallographic symmetry requires that the Ti atom resides in the center of the 24 atom porphyrin plane. The Ti-N[sup pic] distance is 2.223(3) [angstrom], and the average Ti-N[sub pyrrole] distance is 2.047(8) [angstrom]. The two picoline ligands are coplanar, and the dihedral angle formed by the plane of the picoline rings and the Ti-N[sub 1] vector is 43[degrees]. When ([eta][sup 2]-PhC[triple bond]CPh)Ti(TTP) is treated with di-p-tolyldiazomethane, a diazo adduct (TTP)Ti=NN=C(C[sub 6]H[sub 4]CH[sub 3])[sub 2] is formed. Atom transfer occurs when ([eta][sup 2]-PhC[triple bond]CPh)Ti(TTP) is treated with X=PPh[sub 3] (X = S, Se), resulting in a two-electron oxidized product, (TTP)Ti=X, PPh[sub 3], and free PhC[triple bond]CPh. Treatment of (TTP)Ti([eta][sup 2]-PhC[triple bond]CPh) with elemental sulfur or selenium produces the perchalcogenido complexes (TTP)Ti(S[sub 2]) and (TTP)Ti(Se[sub 2]).

  18. An evaluation of intra-cage ventilation in three animal caging systems.

    PubMed

    Keller, L S; White, W J; Snider, M T; Lang, C M

    1989-05-01

    Although temperature and relative humidity have been quantitated and their effects on research data studied, few studies have measured the air turnover rates at cage level. We evaluated the air distribution and air turnover rates in unoccupied shoe-box mouse cages, filter-top covered cages and shoe-box mouse cages housed in a flexible film isolator by using discontinuous gas chromatography/mass spectrometry and smoke. Results showed that air turnover was most rapid in the unoccupied shoe-box mouse cage and slowest in the filter-top covered cage. Placing mice in the filter-top covered cage did not significantly improve the air turnover rate. Although filter-top covered cages reduce cage-to-cage transmission of disease, the poor airflow observed within these cages could lead to a buildup of gaseous pollutants that may adversely affect the animal's health. PMID:2724925

  19. SPATIAL DISTRIBUTION OF X-RAY EMITTING EJECTA IN TYCHO’S SNR: INDICATIONS OF SHOCKED TITANIUM

    SciTech Connect

    Miceli, M.; Sciortino, S.; Orlando, S.; Troja, E.

    2015-06-01

    Young supernova remnants (SNRs) show characteristic ejecta-dominated X-ray emission that allows us to probe the products of explosive nucleosynthesis processes and to ascertain important information about the physics of supernova explosions. Hard X-ray observations have recently revealed the presence of the radioactive decay lines of {sup 44}Ti at ∼67.9 and ∼78.4 keV in Tycho’s SNR. Here, we analyze a set of XMM-Newton archive observations of Tycho’s SNR. We produce equivalent width (EW) maps of the Fe K and Ca xix emission lines and find indications for a stratification of the abundances of these elements and significant anisotropies. We then perform spatially resolved spectral analysis by identifying five different regions characterized by high/low values of the Fe K EW. We find that the spatial distribution of the Fe K emission is correlated with that of Cr xxii. We also detect the Ti K line complex in the spectra extracted from the two regions with the highest values of Fe and Cr EWs. The Ti line emission remains undetected in regions where Fe and Cr EWs are low. Our results indicate that the post-shock Ti is spatially colocated with other iron-peak nuclei in Tycho’s SNR, in agreement with the predictions of multi-D models of SNe Ia.

  20. A Mobile Phone Faraday Cage

    ERIC Educational Resources Information Center

    French, M. M. J.

    2011-01-01

    A Faraday cage is an interesting physical phenomenon where an electromagnetic wave can be excluded from a volume of space by enclosure with an electrically conducting material. The practical application of this in the classroom is to block the signal to a mobile phone by enclosing it in a metal can. The background of the physics behind this is…

  1. Be a Cage-Buster

    ERIC Educational Resources Information Center

    Hess, Frederick M.

    2013-01-01

    "A cage-buster can't settle for ambiguity, banalities, or imprecision," writes well-known educator and author Rick Hess. "These things provide dark corners where all manners of ineptitude and excuse-making can hide." Hess suggests that leaders need to clearly define the problems they're trying to solve and open…

  2. DNA Cages with Icosahedral Symmetry in Bionanotechnology

    NASA Astrophysics Data System (ADS)

    Jonoska, Nataša; Taormina, Anne; Twarock, Reidun

    Blueprints for polyhedral cages with icosahedral symmetry made of circular DNA molecules are provided. The basic rule is that every edge of the cage is met twice in opposite directions by the DNA strand(s), and vertex junctions are realized by a set of admissible junction types. As nanocontainers for cargo storage and delivery, the icosidodecahedral cages are of special interest because they have the largest volume per surface ratio of all cages discussed here.

  3. Preparation and structure of novel hexaazaisowurtzitane cages.

    PubMed

    Herve, Grégoire; Jacob, Guy; Gallo, Roger

    2006-04-12

    Hexaazaisowurtzitane or cage molecules have attracted attention concerning their synthesis because hexanitrohexaazaisowurtzitane (HNIW or CL20) is presently the most powerful energetic compound. The synthesis of hexaazaisowurtzitanes was considered to be limited solely to the condensation of certain benzylamines with glyoxal. Here, we present the synthesis and characterization of seven novel non-benzylic hexaazaisowurtzitanes, such as hexapropargylhexaazaisowurtzitane. The substituents on the six nitrogen atoms are different to those of the benzyl or substituted benzyl groups to which previous syntheses were limited. X-ray structures are given for the hexapropargyl and hexa-2-thienylmethylene derivatives. Steric strains limit the synthesis with alpha-substituted benzyl and allyl derivatives. The reaction mechanism and the role of the intermediate diimines are discussed. Some of the novel hexaazaisowurtzitanes are potential precursors of hexanitrohexaazaisowurtzitane.

  4. Lactobacillusassisted synthesis of titanium nanoparticles

    PubMed Central

    2007-01-01

    An eco-friendlylactobacillussp. (microbe) assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  5. Metal allergy to titanium bars after the Nuss procedure for pectus excavatum.

    PubMed

    Sakamoto, Kazuhiro; Ando, Kohei; Noma, Daisuke

    2014-08-01

    The Nuss procedure requires the placement of metal bars in the chest cage to repair pectus excavatum. Metal allergies are one of the complications associated with this procedure. Given that titanium is a biocompatible metal, it induces few allergic symptoms. Therefore, titanium bars are recommended for patients with metal sensitivity. We report the case of a 17-year-old boy with pectus excavatum who had a metal allergy to titanium bars, which occurred after the Nuss procedure. The administration of oral steroids is useful for treating metal allergies. Metal allergies to titanium bars are very rare; however, they can still occur.

  6. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  7. Investigation of the compressive stiffness of spinal cages in various experimental conditions based on finite element analysis.

    PubMed

    Kim, Yoon Hyuk; Choi, Dae Kyung; Kim, Kyungsoo

    2012-04-01

    Recently, novel polymers, including polyetheretherketone and carbon fibre reinforced polymer, have been used for spinal implants. Because the in vitro experimental test uses metal blocks with different material properties from those of polymer cages in standard test protocols for prediction of the mechanical performance, it is necessary to analyse the influence of various experimental conditions, such as the material of the blocks. In this study, the compressive stiffness of spinal cages was investigated for different materials (polyetheretherketone, carbon fibre reinforced polymer, and titanium) under simulations of the mechanical experimental tests and the in vivo situation based on finite element analysis. The stiffness was affected by shapes of cage as well as experimental conditions, such as the load application method or fixation block. In the open cages, the polymer cages showed a greater dependence on the experimental situation than the metal cages. Hence, it may be necessary to consider the experimental conditions during in vitro mechanical tests for the stiffness evaluation of spinal cages made of novel polymers to obtain results relevant for an in vivo situation.

  8. Development of furnished cages for laying hens.

    PubMed

    Appleby, M C; Walker, A W; Nicol, C J; Lindberg, A C; Freire, R; Hughes, B O; Elson, H A

    2002-09-01

    1. A 3-year trial was carried out of cages for laying hens, occupying a full laying house. The main cage designs used were 5000 cm2 in area, 50 cm high at the rear and furnished with nests and perches. F cages had a front rollaway nest at the side, lined with artificial turf. FD cages also had a dust bath containing sand over the nest. H cages had two nest hollows at the side, one in front of the other. They were compared with conventional cages 2500 cm2 in area and 38 cm high at the rear. 2. Cages were stocked with from 4 to 8 ISA Brown hens per cage, resulting in varied allowances of area, feeder and perch per bird. No birds were beak trimmed. In F and FD cages two further treatments were applied: nests and dust baths were sometimes fitted with gates to exclude birds from dust baths in the morning and from both at night; elevated food troughs, with a lip 33 cm above the cage floor, were compared with standard troughs. 3. Management of the house was generally highly successful, with temperature control achieved by ventilation. Egg production was above breeders' standards and not significantly affected by cage design. More eggs per bird were collected when there were fewer birds per cage but food consumption also then tended to be higher. 4. The number of downgraded eggs was variable, with some tendency for more in furnished cages. Eggs laid in dust baths were often downgraded. Those laid at the back of the cage were frequently dirty because of accumulation of droppings. H nests were unsuccessful, with less than 50% of eggs laid in the nest hollows. However, up to 93% of eggs were laid in front rollaways, and few of these were downgraded. 5. Feather and foot damage were generally less in furnished than in conventional cages, greater where there were more birds per cage. With an elevated food trough there was less feather damage but more overgrowth of claws. In year 2, mortality was greater in cages with more birds. 6. Pre-laying behaviour was mostly settled in

  9. Omega phase formation in titanium and titanium alloys

    SciTech Connect

    Gray, G.T. III; Morris, C.E.; Lawson, A.C.

    1992-05-01

    Although the response of titanium alloys to dynamic loading is receiving increased attention in the literature (particularly in the area of shear-band formation), a more limited experimental database exists concerning the detailed structure/property relationships of titanium alloys subjected to shock loading. In this study, preliminary results concerning the influence of alloy chemistry on the property of omega-phase formation and its structure in three titanium alloys are presented. The influence of shock-wave deformation on the phase stability and substructure evolution of high-purity (low-interstitial) titanium, A-70 (3700 ppm oxygen) titanium, and Ti-6Al-4V were probed utilizing real-time velocity interferometry (VISAR) and ``soft`` shock-recovery techniques. VISAR wave profiles of shock-loaded high-purity titanium revealed the omega-phase pressure-induced transition to occur at approximately 10.4 GPa. Wave profile measurements on A-70 Ti shocked to pressures up to 35 GPa and Ti-6Al-4V shocked to pressures up to 25 GPa exhibited no evidence of a three-wave structure indicative of a pressure-induced phase transition. Neutron and X-ray diffractometry and TEM analysis confirmed the presence of retained {omega}-phase in the electrolytic-Ti and the absence of {omega}-phase in the shock-recovered A-70 Ti and Ti-6Al-4V. Suppression of the {alpha}-{omega} phase transition in A-70 Ti, containing a high interstitial oxygen content, is seen to simultaneously correlate with suppression of deformation twinning. Neutron diffraction was used to measure the in-situ bulk lattice constants and volume fraction of the {alpha} and {omega} phases in the recovered high-purity titanium samples that were shock loaded. The influence of alloy content on the kinetics of formation/retention of {omega}-phase and substructure evolution is discussed and contrasted in light of previous literature studies.

  10. Polymers containing borane or carborane cage compounds and related applications

    SciTech Connect

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-04-23

    Polymers comprising residues of cage compound monomers having at least one polyalkoxy silyl substituent are provided. The cage compound monomers are selected from borane cage compound monomers comprising at least 7 cage atoms and/or carborane cage compound monomers comprising 7 to 11 cage compound monomers. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Articles of manufacture comprising such polymers are also disclosed.

  11. Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques

    SciTech Connect

    Selva Kumar, M.; Chandrasekar, P.; Chandramohan, P.; Mohanraj, M.

    2012-11-15

    In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal the presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.

  12. Cleaning Animals' Cages With Little Water

    NASA Technical Reports Server (NTRS)

    Harman, Benjamin J.

    1989-01-01

    Proposed freeze/thaw method for cleaning animals' cages requires little extra weight and consumes little power and water. Cleaning concept developed for maintaining experimental rat cages on extended space missions. Adaptable as well to similar use on Earth. Reduces cleaning time. Makes use of already available facilities such as refrigerator, glove box, and autoclave. Rat waste adheres to steel-wire-mesh floor of cage. Feces removed by loosening action of freezing-and-thawing process, followed by blast of air.

  13. Humidity and cage and bedding temperatures in unoccupied static mouse caging after steam sterilization.

    PubMed

    Ward, Gina M; Cole, Kelly; Faerber, Jennifer; Hankenson, F Claire

    2009-11-01

    Contemporary rodent caging and equipment often are sterilized by steam autoclaves prior to use in facilities. This work assessed the microenvironment of unoccupied static mouse cages after steam sterilization to determine when internal temperatures had cooled to levels appropriate for rodent housing. Polycarbonate static cages containing food and corncob bedding were stacked (10 rows x 7 columns) in duplicate (front and back; n = 140 cages) on a storage truck and autoclaved to 249 degrees F (121 degrees C). Cages (n = 6) were assessed to represent top, middle, and bottom rows and edges of columns. After cage sterilization, hygrothermometers were placed in cages to measure internal cage temperature (IT), bedding temperature (BT), and cage humidity (CH) every 10 min for 150 min. At time 0, there were no significant differences in averaged temperatures or humidity across cage locations: IT, 95.9 degrees F; BT, 109.8 degrees F; and CH, 84.1%. Over time, significant positional effects occurred. Whereas IT and BT for cages in the center row cooled more slowly than those on the bottom row, CH in top row cages decreased more quickly compared with other cages. After 150 min, the average measures overall were IT, 75.8 degrees F; BT, 77.9 degrees F; and CH, 82.4%. Comparison of the overall measures at 150 min with those of cages cooled overnight (IT, 72.4 degrees F; BT, 71.0 degrees F; and CH, 49%) and cages housing mice (IT, 72.2 degrees F; BT, 70.7 degrees F; and CH, 82%) indicated that a poststerilization cooling period of greater than 2.5 h was necessary to achieve permissible rodent housing conditions at our institution, particularly with corncob bedding autoclaved within the cage.

  14. Humidity and Cage and Bedding Temperatures in Unoccupied Static Mouse Caging after Steam Sterilization

    PubMed Central

    Ward, Gina M; Cole, Kelly; Faerber, Jennifer; Hankenson, F Claire

    2009-01-01

    Contemporary rodent caging and equipment often are sterilized by steam autoclaves prior to use in facilities. This work assessed the microenvironment of unoccupied static mouse cages after steam sterilization to determine when internal temperatures had cooled to levels appropriate for rodent housing. Polycarbonate static cages containing food and corncob bedding were stacked (10 rows × 7 columns) in duplicate (front and back; n = 140 cages) on a storage truck and autoclaved to 249 °F (121 °C). Cages (n = 6) were assessed to represent top, middle, and bottom rows and edges of columns. After cage sterilization, hygrothermometers were placed in cages to measure internal cage temperature (IT), bedding temperature (BT), and cage humidity (CH) every 10 min for 150 min. At time 0, there were no significant differences in averaged temperatures or humidity across cage locations: IT, 95.9 °F; BT, 109.8 °F; and CH, 84.1%. Over time, significant positional effects occurred. Whereas IT and BT for cages in the center row cooled more slowly than those on the bottom row, CH in top row cages decreased more quickly compared with other cages. After 150 min, the average measures overall were IT, 75.8 °F; BT, 77.9 °F; and CH, 82.4%. Comparison of the overall measures at 150 min with those of cages cooled overnight (IT, 72.4 °F; BT, 71.0 °F; and CH, 49%) and cages housing mice (IT, 72.2 °F; BT, 70.7 °F; and CH, 82%) indicated that a poststerilization cooling period of greater than 2.5 h was necessary to achieve permissible rodent housing conditions at our institution, particularly with corncob bedding autoclaved within the cage. PMID:19930826

  15. Ultraviolet laser treatment of titanium surface

    NASA Astrophysics Data System (ADS)

    Balchev, Ivaylo; Minkovski, Nikolai; Dimitrov, Krasimir; Shipochka, Maria; Barbucha, Robert

    2016-02-01

    Interaction of a third harmonic of DPSS laser, wavelength 355 nm and pulse duration of 30 ns with titanium wafers was studied. It was investigated the structure of laser ablated titanium surface, depending on the laser beam scanning speed, and laser pulse frequency. The titanium surface modification was studied by scanning electron microscopy (SEM) and XPS (X- ray Photoelectron Spectroscopy). Nanosecond irradiation with ultraviolet light of Ti plate led to the formation of high porous granular structures consisting of agglomerated micro- and submicro- particles.

  16. A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model.

    PubMed

    Li, Yi; Wu, Zhi-gang; Li, Xiao-kang; Guo, Zheng; Wu, Su-hua; Zhang, Yong-quan; Shi, Lei; Teoh, Swee-hin; Liu, Yu-chun; Zhang, Zhi-yong

    2014-07-01

    Titanium (Ti) based spinal fusion cages are frequently used in the clinics for the treatment of spinal degeneration and related diseases, however, their further clinical application is generally harassed by several drawbacks such as stress shielding, non-biodegradability and additional bone grafting procedure. Our earlier work has demonstrated the efficacy of a biodegradable macro-porous polycaprolactone-tricalcium phosphate (PCL-TCP) composite scaffold in promoting bony tissue ingrowth as well as its ability to sustain mechanical loads upon implantation into an orthotopic defect site. In this study, we investigated the use of PCL-TCP scaffold as an autograft-free spinal fusion cage in a preclinical sheep model over 12 months, and compared the fusion efficacy against Ti cages incorporated with autografts. Results showed that despite PCL-TCP scaffold as an autograft-free cage attaining a slower fusion rate at early stage (6 month), it achieved similar degree of spinal fusion efficacy as Ti cages aided with autograft at 12 month post-operation as evidenced by the radiographic and histological evaluation. PCL-TCP cages alone demonstrated better bone ingrowth with 2.6 fold higher bone/interspace ratio (B/I) and more homogeneous bone tissue distribution compared with that of the Ti cages (88.10  ±  3.63% vs. 33.74  ±  2.78%, p < 0.05) as seen from the histological and micro-CT analysis. Moreover, besides the bone tissue ingrowth, a quantitative approach was illustrated to accurately evaluate the osteointegration of fusion cage with surrounding bone tissue, and showed a 1.36 fold higher degree of osteointegration occurred in PCL-TCP cage group than Ti cage group (CS/PC: 79.31  ±  3.15% vs 58.44  ±  2.43%, p < 0.05). Furthermore, biomechanical analysis showed comparable mechanical strength of fused segments in both groups in terms of the range of motion and stiffness at 12 month (p > 0.05). The degradation profile of the PCL-TCP cages was noted

  17. Interfacial reactions between titanium and borate glass

    SciTech Connect

    Brow, R.K.; Saha, S.K.; Goldstein, J.I.

    1992-12-31

    Interfacial reactions between melts of several borate glasses and titanium have been investigated by analytical scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). A thin titanium boride interfacial layer is detected by XPS after short (30 minutes) thermal treatments. ASEM analyses after longer thermal treatments (8--120 hours) reveal boron-rich interfacial layers and boride precipitates in the Ti side of the interface.

  18. Lumbar interbody expanding cage. A preliminary study on an animal model.

    PubMed

    Manunta, M L; Careddu, G M; Masala, G; Columbano, N; Doria, C; Crissantu, L; Sanna Passino, E

    2008-01-01

    Interbody fusion devices are used in human medicine for treating degenerative diseases of the spine. Currently, there is not a universally accepted assessment tool for determining fusion, and the definitive criteria for diagnosing a successful interbody fusion remain controversial. The aim of this study was to describe microscopic and helical computed tomography (CT) imaging in the assessment of lumbar interbody fusion using cylindrical threaded titanium expanding cage in sheep. One cylindrical threaded expanding titanium cage (Proconcept--SA, Orange, France) was inserted through a transperitoneal approach after radical discectomy and packed with cancellous bone autograft in five adult sheep. The subjects were euthanatized after three, six, 12, 18 and 24 months. CT images revealed lumbar fusion at 12 months post operation, whereas microscopic evaluations indicated the presence of lumbar fusion at 18 months. CT and histological grades were the same in 65% of the cases observed. There were not a significant difference between CT, histological and micro radiographic grades. Helical CT scanning can be considered to be a suitable method for the monitoring of lumbar fusion as it enables observation of the deposition of bony bridging within the cage. PMID:18704248

  19. COATING ALTERNATIVES GUIDE (CAGE) USER'S GUIDE

    EPA Science Inventory

    The guide provides instructions for using the Coating Alternatives GuidE (CAGE) software program, version 1.0. It assumes that the user is familiar with the fundamentals of operating an IBM-compatible personal computer (PC) under the Microsoft disk operating system (MS-DOS). CAGE...

  20. Opportunities in the electrowinning of molten titanium from titanium dioxide

    NASA Astrophysics Data System (ADS)

    van Vuuren, D. S.; Engelbrecht, A. D.; Hadley, T. D.

    2005-10-01

    The value chain of titanium products shows that the difference between the cost of titanium ingot and titanium dioxide is about 9/kg titanium. In contrast, the price of aluminum, which is produced in a similar way, is only about 1.7/kg. Electrowinning of molten titanium from titanium dioxide is therefore believed to have significant potential to reduce the cost of titanium products. The process is hampered by the high operating temperatures and sophisticated materials of construction required; the high affinity of titanium for carbon, oxygen, and nitrogen; and physical and chemical properties of the different titanium oxide species when reducing titanium from Ti4+ to metallic titanium.

  1. Titanium Coating of the Boston Keratoprosthesis

    PubMed Central

    Salvador-Culla, Borja; Jeong, Kyung Jae; Kolovou, Paraskevi Evi; Chiang, Homer H.; Chodosh, James; Dohlman, Claes H.; Kohane, Daniel S.

    2016-01-01

    Purpose We tested the feasibility of using titanium to enhance adhesion of the Boston Keratoprosthesis (B-KPro), ultimately to decrease the risk of implant-associated complications. Methods Cylindrical rods were made of poly(methyl methacrylate) (PMMA), PMMA coated with titanium dioxide (TiO2) over a layer of polydopamine (PMMATiO2), smooth (Ti) and sandblasted (TiSB) titanium, and titanium treated with oxygen plasma (Tiox and TiSBox). Topography and surface chemistry were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Adhesion force between rods and porcine corneas was measured ex vivo. Titanium sleeves, smooth and sandblasted, were inserted around the stem of the B-KPro and implanted in rabbits. Tissue adhesion to the stem was assessed and compared to an unmodified B-Kpro after 1 month. Results X-ray photoelectron spectroscopy demonstrated successful deposition of TiO2 on polydopamine-coated PMMA. Oxygen plasma treatment did not change the XPS spectra of titanium rods (Ti and TiSB), although it increased their hydrophilicity. The materials did not show cell toxicity. After 14 days of incubation, PMMATiO2, smooth titanium treated with oxygen plasma (Tiox), and sandblasted titanium rods (TiSB, TiSBox) showed significantly higher adhesion forces than PMMA ex vivo. In vivo, the use of a TiSB sleeve around the stem of the B-KPro induced a significant increase in tissue adhesion compared to a Ti sleeve or bare PMMA. Conclusions Sandblasted titanium sleeves greatly enhanced adherence of the B-KPro to the rabbit cornea. This approach may improve adhesion with the donor cornea in humans as well. Translational Relevance This approach may improve adhesion with donor corneas in humans. PMID:27152247

  2. Holographic photolysis of caged neurotransmitters

    PubMed Central

    Lutz, Christoph; Otis, Thomas S.; DeSars, Vincent; Charpak, Serge; DiGregorio, David A.; Emiliani, Valentina

    2009-01-01

    Stimulation of light-sensitive chemical probes has become a powerful tool for the study of dynamic signaling processes in living tissue. Classically, this approach has been constrained by limitations of lens–based and point-scanning illumination systems. Here we describe a novel microscope configuration that incorporates a nematic liquid crystal spatial light modulator (LC-SLM) to generate holographic patterns of illumination. This microscope can produce illumination spots of variable size and number and patterns shaped to precisely match user-defined elements in a specimen. Using holographic illumination to photolyse caged glutamate in brain slices, we demonstrate that shaped excitation on segments of neuronal dendrites and simultaneous, multi-spot excitation of different dendrites enables precise spatial and rapid temporal control of glutamate receptor activation. By allowing the excitation volume shape to be tailored precisely, the holographic microscope provides an extremely flexible method for activation of various photosensitive proteins and small molecules. PMID:19160517

  3. Biological surface modification of titanium surfaces using glow discharge plasma.

    PubMed

    Huang, Haw-Ming; Hsieh, Sung-Chih; Teng, Nai-Chia; Feng, Sheng-Wei; Ou, Ken-Liang; Chang, Wei-Jen

    2011-06-01

    To improve the biological activity of titanium, by using of glow discharge plasma (GDP), albumin-grafted titanium disk have been implemented and carefully studied. Titanium disks were pre-treated with GDP in an environment filled with argon and allylamine gas. Glutaraldehyde was used as a cross-linking agent for albumin grafting. Then, the surface of the albumin-grafted titanium was examined using scanning electron microscopy and X-ray photoelectron spectroscopy. In addition, the static water contact angles of the albumin-grafted titanium disks were measured using goniometry. To observe the effects of albumin adsorption on cell behavior, MG-63 osteoblast-like cells were cultured on the surface-modified titanium disks. Blood coagulation resistance of the modified titanium was monitored and compared to the control titanium disks. The results demonstrated that MG-63 osteoblast-like cells cultured on the albumin-grafted titanium disks expressed better-differentiated morphology compare to cells grown on the control disks. Furthermore, albumin-grafting treatment significantly improved the surface wettability of the titanium disks and resulted in a significantly negative effect on thrombus formation. Based on these results, it was believed that the GDP can potentially improve the biofunctionality of titanium surfaces. PMID:21286829

  4. Encapsulation of Semiconducting Polymers in Vault Protein Cages

    SciTech Connect

    Ng, B.C.; Yu, M.; Gopal, A.; Rome, L.H.; Monbouquette, H.G.; Tolbert, S.H.

    2009-05-22

    We demonstrate that a semiconducting polymer [poly(2-methoxy-5-propyloxy sulfonate phenylene vinylene), MPS-PPV] can be encapsulated inside recombinant, self-assembling protein nanocapsules called 'vaults'. Polymer incorporation into these nanosized protein cages, found naturally at {approx}10,000 copies per human cell, was confirmed by fluorescence spectroscopy and small-angle X-ray scattering. Although vault cellular functions and gating mechanisms remain unknown, their large internal volume and natural prevalence within the human body suggests they could be used as carriers for therapeutics and medical imaging reagents. This study provides the groundwork for the use of vaults in encapsulation and delivery applications.

  5. Active cage model of glassy dynamics.

    PubMed

    Fodor, Étienne; Hayakawa, Hisao; Visco, Paolo; van Wijland, Frédéric

    2016-07-01

    We build up a phenomenological picture in terms of the effective dynamics of a tracer confined in a cage experiencing random hops to capture some characteristics of glassy systems. This minimal description exhibits scale invariance properties for the small-displacement distribution that echo experimental observations. We predict the existence of exponential tails as a crossover between two Gaussian regimes. Moreover, we demonstrate that the onset of glassy behavior is controlled only by two dimensionless numbers: the number of hops occurring during the relaxation of the particle within a local cage and the ratio of the hopping length to the cage size. PMID:27575182

  6. Active cage model of glassy dynamics

    NASA Astrophysics Data System (ADS)

    Fodor, Étienne; Hayakawa, Hisao; Visco, Paolo; van Wijland, Frédéric

    2016-07-01

    We build up a phenomenological picture in terms of the effective dynamics of a tracer confined in a cage experiencing random hops to capture some characteristics of glassy systems. This minimal description exhibits scale invariance properties for the small-displacement distribution that echo experimental observations. We predict the existence of exponential tails as a crossover between two Gaussian regimes. Moreover, we demonstrate that the onset of glassy behavior is controlled only by two dimensionless numbers: the number of hops occurring during the relaxation of the particle within a local cage and the ratio of the hopping length to the cage size.

  7. Testresults of digital caged strapdown DTGs

    NASA Astrophysics Data System (ADS)

    Handrich, E.

    Strapdown DTGs with digital cage loops, accuracy of 0.15-0.01 degree/hr, and high dynamic ranges were tested using loops of conventional pulse-width modulation type. The stability, repeatability, and linearity were determined in scale factor tests. Gyro bias, repeatability, and stability were degraded by the digital cage loops in comparison to test results with analog cage loops. Error sources were measured, including H-switch, current source, capacity load on wiring, and the influence of the torquer inductance and rotor amplitude.

  8. Titanium hermetic seals

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1995-07-04

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  9. Titanium hermetic seals

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1995-01-01

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  10. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    PubMed Central

    Saita, Makiko; Ikeda, Takayuki; Yamada, Masahiro; Kimoto, Katsuhiko; Lee, Masaichi Chang-Il; Ogawa, Takahiro

    2016-01-01

    Background Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability. Methods and results Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light) were immersed in simulated body fluid (SBF) for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition in the valleys and at the inclines of micro-roughened structures without affecting the existing micro-configuration. Micro-roughened titanium and apatite-deposited titanium surfaces had similar roughness values. The attachment, spreading, settling, proliferation, and alkaline phosphate activity of bone marrow-derived osteoblasts were promoted on apatite-coated titanium with photofunctionalization. Conclusion UV-photofunctionalization of titanium enabled faster deposition of nanoscale biomimetic apatite, resulting in the improved biological capability compared to the similarly prepared apatite-deposited titanium without photofunctionalization. Photofunctionalization-assisted biomimetic apatite

  11. Maintenance of a Drosophila melanogaster Population Cage

    PubMed Central

    Caravaca, Juan Manuel; Lei, Elissa P.

    2016-01-01

    Large quantities of DNA, RNA, proteins and other cellular components are often required for biochemistry and molecular biology experiments. The short life cycle of Drosophila enables collection of large quantities of material from embryos, larvae, pupae and adult flies, in a synchronized way, at a low economic cost. A major strategy for propagating large numbers of flies is the use of a fly population cage. This useful and common tool in the Drososphila community is an efficient way to regularly produce milligrams to tens of grams of embryos, depending on uniformity of developmental stage desired. While a population cage can be time consuming to set up, maintaining a cage over months takes much less time and enables rapid collection of biological material in a short period. This paper describes a detailed and flexible protocol for the maintenance of a Drosophila melanogaster population cage, starting with 1.5 g of harvested material from the previous cycle. PMID:27023790

  12. Dual-purpose laboratory cage/antenna

    NASA Technical Reports Server (NTRS)

    Lalande, B. H.

    1977-01-01

    Part of steel cage enclosing laboratory animals is used as an antenna to transmit biotelemetry over short distances. Receiving and signal processing equipment are located above ground potential to avoid transmission-path difficulties.

  13. 50 CFR 648.77 - Cage identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fishing year for which they are issued, or if rendered null and void in accordance with 15 CFR part 904... Atlantic Surf Clam and Ocean Quahog Fisheries § 648.77 Cage identification. Except as provided in §...

  14. 50 CFR 648.77 - Cage identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fishing year for which they are issued, or if rendered null and void in accordance with 15 CFR part 904... Atlantic Surf Clam and Ocean Quahog Fisheries § 648.77 Cage identification. Except as provided in §...

  15. 50 CFR 648.77 - Cage identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fishing year for which they are issued, or if rendered null and void in accordance with 15 CFR part 904... Atlantic Surf Clam and Ocean Quahog Fisheries § 648.77 Cage identification. Except as provided in §...

  16. Cytotoxicity of titanium and titanium alloying elements.

    PubMed

    Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C

    2010-05-01

    It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.

  17. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; Watkins, R.D.

    1988-01-21

    Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  18. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1992-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  19. Compositions containing borane or carborane cage compounds and related applications

    SciTech Connect

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-05-28

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  20. Compositions containing borane or carborane cage compounds and related applications

    SciTech Connect

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-11-11

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  1. Compositions containing borane or carborane cage compounds and related applications

    SciTech Connect

    Bowen, III, Daniel E.; Eastwood, Eric A.

    2015-09-15

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  2. Cage change intervals for opossums (Monodelphis domestica) in individually ventilated cages.

    PubMed

    Allison, Sarah O; Criley, Jennifer M; Kim, Ji Young; Goodly, Lyndon J

    2011-09-01

    The opossum Monodelphis domestica is the most commonly used marsupial in biomedical research. At our institution, these opossums are housed in polycarbonate (35.6 cm × 25.4 cm × 17.8 cm) individually ventilated cages. Previous studies of the cage microenvironment of rodents housed in individually ventilated cages have demonstrated that the cage-change frequency could be extended from 7 to 14 d, without detriment to the animals' wellbeing. We sought to determine whether the cage change frequency for opossums housed in individually ventilated cages could be extended to 14 d. Opossums were placed into 3 experimental groups: singly housed males, singly housed females, and females housed with litters. The 14-d testing period was repeated twice, with temperature, relative humidity, and ammonia levels tested on days 0, 7, and 14. Acceptable ranges for the cage microenvironment were based on standards followed by our institution for housing rodents: temperature between 22 to 26 °C, relative humidity between 30% to 70%, and ammonia less than 25 ppm. Throughout both 14-d testing periods, temperature, relative humidity, and ammonia levels for singly housed male and singly housed female opossums were within acceptable ranges. However, ammonia levels exceeded the recommended 25 ppm on day 7 of both testing periods for female opossums housed with litters. In summary, the cage-change frequency for a singly housed opossum in an individually ventilated cage can be extended to 14 d.

  3. Titanium Process Technologies

    SciTech Connect

    Steven J. Gerdemann

    2001-07-01

    Titanium has a unique set of properties: low density, high specific strength, high temperature strength, and exceptional resistance to corrosion. Titanium is the fourth most common structural metal in the earth's crust. Only iron, aluminum, and magnesium are more abundant. More titanium is available than nickel, copper, chromium, lead, tin, and zinc put together. However, the current titanium production system is extremely labor and capital intensive. Titanium is expensive only because the current process for refining the ore to metal is a multi-step, high temperature batch process. This article will first describe current titanium technology, and will then discuss four of the most promising approaches to reduce the cost of titanium. These include the Kroll, Hunter, Cambridge, and Armstrong processes.

  4. Microclimatic variation within sleeve cages used in ecological studies.

    PubMed

    Nelson, Lori A; Rieske, Lynne K

    2014-01-01

    Sleeve cages for enclosing or excluding arthropods are essential components of field studies evaluating trophic interactions. Microclimatic variation in sleeve cages was evaluated to characterize its potential effects on subsequent long-term experiments. Two sleeve cage materials, polyester and nylon, and two cage sizes, 400 and 6000 cm(2), were tested on eastern hemlock, Tsuga canadensis (L.) Carrière. Temperature and relative humidity inside and outside cages, and the cost and durability of the cage materials, were compared. Long-term effects of the sleeve cages were observed by measuring new growth on T. canadensis branches. The ultimate goal was to identify a material that minimizes bag-induced microclimatic variation. Bagged branches whose microclimates mimic those of surrounding unbagged branches should have minimal effects on plant growth and may prove ideal venues for assessing herbivore and predator behavior under natural conditions. No differences were found in temperature or humidity between caging materials. Small cages had higher average temperatures than large cages, especially in the winter, but this difference was confounded by the fact that small cages were positioned higher in trees than large cages. Differences in plant growth were detected. Eastern hemlock branches enclosed within polyester cages produced fewer new growth tips than uncaged controls. Both polyester and nylon cages reduced the length of new shoot growth relative to uncaged branches. In spite of higher costs, nylon cages were superior to polyester with respect to durability and ease of handling. PMID:25368083

  5. Stress enhanced diffusion of krypton ions in polycrystalline titanium

    SciTech Connect

    Nsengiyumva, S.; Raji, A. T.; Rivière, J. P.; Britton, D. T.; Härting, M.

    2014-07-14

    An experimental investigation on the mutual influence of pre-existing residual stress and point defect following ion implantation is presented. The study has been carried out using polycrystalline titanium samples energetically implanted with krypton ions at different fluences. Ion beam analysis was used to determine the concentration profile of the injected krypton ions, while synchrotron X-ray diffraction has been used for stress determination. Ion beam analysis and synchrotron X-ray diffraction stress profile measurements of the implanted titanium samples show a clear evidence of stress-enhanced diffusion of krypton ions in titanium. It is further observed that for the titanium samples implanted at low fluence, ion implantation modifies the pre-existing residual stress through the introduction of point and open volume defects. The stress fields resulting from the ion implantation act to drift the krypton inclusions towards the surface of titanium.

  6. Solid state and aqueous behavior of uranyl peroxide cage clusters

    NASA Astrophysics Data System (ADS)

    Pellegrini, Kristi Lynn

    Uranyl peroxide cage clusters include a large family of more than 50 published clusters of a variety of sizes, which can incorporate various ligands including pyrophosphate and oxalate. Previous studies have reported that uranyl clusters can be used as a method to separate uranium from a solid matrix, with potential applications in reprocessing of irradiated nuclear fuel. Because of the potential applications of these novel structures in an advanced nuclear fuel cycle and their likely presence in areas of contamination, it is important to understand their behavior in both solid state and aqueous systems, including complex environments where other ions are present. In this thesis, I examine the aqueous behavior of U24Pp 12, as well as aqueous cluster systems with added mono-, di-, and trivalent cations. The resulting solutions were analyzed using dynamic light scattering and ultra-small angle X-ray scattering to evaluate the species in solution. Precipitates of these systems were analyzed using powder X-ray diffraction, X-ray fluorescence spectrometry, and Raman spectroscopy. The results of these analyses demonstrate the importance of cation size, charge, and concentration of added cations on the aqueous behavior of uranium macroions. Specifically, aggregates of various sizes and shapes form rapidly upon addition of cations, and in some cases these aggregates appear to precipitate into an X-ray amorphous material that still contains U24Pp12 clusters. In addition, I probe aggregation of U24Pp12 and U60, another uranyl peroxide cage cluster, in mixed solvent water-alcohol systems. The aggregation of uranyl clusters in water-alcohol systems is a result of hydrogen bonding with polar organic molecules and the reduction of the dielectric constant of the system. Studies of aggregation of uranyl clusters also allow for comparison between the newer uranyl polyoxometalate family and century-old transition metal polyoxometalates. To complement the solution studies of uranyl

  7. Lactobacillus assisted synthesis of titanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Jha, Anal K.; Kulkarni, A. R.

    2007-05-01

    An eco-friendly lactobacillus sp. (microbe) assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40 60 nm are found.

  8. Tunneling Motion and Antiferroelectric Ordering of Lithium Cations Trapped inside Carbon Cages

    NASA Astrophysics Data System (ADS)

    Aoyagi, Shinobu; Tokumitu, Akio; Sugimoto, Kunihisa; Okada, Hiroshi; Hoshino, Norihisa; Akutagawa, Tomoyuki

    2016-09-01

    Dielectric and X-ray diffraction measurements of [Li@C60](PF6) single crystals reveal the motion of the Li+ cations inside the C60 cages at low temperature. An increase in the dielectric permittivity below 100 K is consistent with a combined tunneling and hopping motion of the Li+ cation between two positions inside the C60 cage. A phase transition accompanied by a decrease in the dielectric permittivity at TC = 24 K is explained by an antiferroelectric ordering of the Li+ cations. The Li+ ordering is caused by interactions among electric dipole moments formed between the Li+ cations inside and the PF6- anions outside the C60 cages. The electric dipole moments that are switched by the Li+ tunneling and interact with each other are potential qubits in a quantum computer using electric dipole moments.

  9. Development of net cage acoustic alarm system

    NASA Astrophysics Data System (ADS)

    Hong, Shih-Wei; Wei, Ruey-Chang

    2001-05-01

    In recent years, the fishery production has been drastically decreased in Taiwan, mainly due to overfishing and coast pollution; therefore, fishermen and corporations are encouraged by government to invest in ocean net cage aquaculture. However, the high-price fishes in the net cage are often coveted, so incidences of fish stealing and net cage breaking were found occasionally, which cause great economical loss. Security guards or a visual monitoring system has limited effect, especially in the night when these intrusions occur. This study is based on acoustic measure to build a net cage alarm system, which includes the sonobuoy and monitor station on land. The sonobuoy is a passive sonar that collects the sounds near the net cage and transmits the suspected signal to the monitor station. The signals are analyzed by the control program on the personal computer in the monitor station, and the alarms at different stages could be activated by the sound levels and durations of the analyzed data. To insure long hours of surveillance, a solar panel is applied to charge the battery, and a photodetector is used to activate the system.

  10. Usefulness of the "CAGE" in Malaysia.

    PubMed

    Indran, S K

    1995-04-01

    This study examines the usefulness of the "CAGE", (which is an acronym for "cut down", "annoyed", "guilty" and "eye-opener"), a 4-question screening test to identify excessive drinkers among Malaysian inpatients. The CAGE questionnaire after translation and back translation was administered to all inpatients in the General Hospital, Kuala Lumpur. The author interviewed 'blindly' all who score positive on the CAGE score and 10% of all negatives using the DSM III interview schedule for alcohol abuse dependence. The results show that the CAGE performs best at a cut-off point of 2 and above, with a sensitivity of 92%, specificity of 62%, positive predictive values of 38% and Kappa (K) of 0.37 with a DSM III R diagnosis for alcohol abuse/dependence. The poor agreement with a DSM III diagnosis indicates that the CAGE is not useful in the Malaysian population. Reasons suggested for this are: cultural factors in the Malaysian population resulting in the overrating of the question of 'guilt' by Muslims and translations into the local languages which are only the closest approximations.

  11. Temperature dependence of polyhedral cage volumes in clathrate hydrates

    USGS Publications Warehouse

    Chakoumakos, B.C.; Rawn, C.J.; Rondinone, A.J.; Stern, L.A.; Circone, S.; Kirby, S.H.; Ishii, Y.; Jones, C.Y.; Toby, B.H.

    2003-01-01

    The polyhedral cage volumes of structure I (sI) (carbon dioxide, methane, trimethylene oxide) and structure II (sII) (methane-ethane, propane, tetrahydrofuran, trimethylene oxide) hydrates are computed from atomic positions determined from neutron powder-diffraction data. The ideal structural formulas for sI and sII are, respectively, S2L6 ?? 46H2O and S16L???8 ?? 136H2O, where S denotes a polyhedral cage with 20 vertices, L a 24-cage, and L??? a 28-cage. The space-filling polyhedral cages are defined by the oxygen atoms of the hydrogen-bonded network of water molecules. Collectively, the mean cage volume ratio is 1.91 : 1.43 : 1 for the 28-cage : 24-cage : 20-cage, which correspond to equivalent sphere radii of 4.18, 3.79, and 3.37 A??, respectively. At 100 K, mean polyhedral volumes are 303.8, 227.8, and 158.8 A??3 for the 28-cage, 24-cage, and 20-cage, respectively. In general, the 20-cage volume for a sII is larger than that of a sI, although trimethylene oxide is an exception. The temperature dependence of the cage volumes reveals differences between apparently similar cages with similar occupants. In the case of trimethylene oxide hydrate, which forms both sI and sII, the 20-cages common to both structures contract quite differently. From 220 K, the sII 20-cage exhibits a smooth monotonic reduction in size, whereas the sI 20-cage initially expands upon cooling to 160 K, then contracts more rapidly to 10 K, and overall the sI 20-cage is larger than the sII 20-cage. The volumes of the large cages in both structures contract monotonically with decreasing temperature. These differences reflect reoriented motion of the trimethyelene oxide molecule in the 24-cage of sI, consistent with previous spectroscopic and calorimetric studies. For the 20-cages in methane hydrate (sI) and a mixed methane-ethane hydrate (sII), both containing methane as the guest molecule, the temperature dependence of the 20-cage volume in sII is much less than that in sI, but sII is overall

  12. Uranium pyrophosphate / methylenediphosphonate polyoxometalate cage clusters

    SciTech Connect

    Ling, Jie; Qiu, Jie; Sigmon, Ginger E.; Ward, Matt; Szymanowski, Jennifer E.S.; Burns, Peter C

    2010-09-29

    Despite potential applications in advanced nuclear energy systems, nanoscale control of uranium materials is in its infancy. In its hexavalent state, U occurs as (UO{sub 2}){sup 2+} uranyl ions that are coordinated by various ligands to give square, pentagonal, or hexagonal bipyramids. Creation and design of nanostructured uranyl materials requires interruption of the tendency of uranyl bipyramids to share equatorial edges to form infinite sheets that occur in extended structures. Where a bidentate peroxide group bridges uranyl bipyramids, the configuration is inherently bent, fostering formation of cage clusters. Here the bent configurations of four- and five-membered rings of uranyl peroxide hexagonal bipyramids are bridged by pyrophosphate or methylenediphosphonate, creating eight chemically complex cage clusters with specific topologies. Chemical complexity in such clusters provides opportunities for the tuning of cage sizes, pore sizes, and properties such as aqueous solubility. Several of these are topological derivatives of simpler clusters that contain only uranyl bipyramids, whereas others exhibit new topologies.

  13. Dichloromethane photodegradation using titanium catalysts

    SciTech Connect

    Tanguay, J.F.; Suib, S.L.; Coughlin, R.W. )

    1989-06-01

    The use of titanium dioxide and titanium aluminosilicates in the photocatalytic destruction of chlorinated hydrocarbons is investigated. Titanium-exchanged clays, titanium-pillared clays, and titanium dioxide in the amorphous, anatase, and rutile forms are used to photocatalytically degrade dichloromethane to hydrochloric acid and carbon dioxide. Bentonite clays pillared by titanium dioxide are observed to be more catalytically active than titanium-exchanged clays. Clays pillared by titanium aluminum polymeric cations display about the same catalytic activity as that of titanium-exchanged clays. The rutile form of titanium dioxide is the most active catalyst studied for the dichloromethane degradation reaction. The anatase form of titanium dioxide supported on carbon felt was also used as a catalyst. This material is about five times more active than titanium dioxide-pillared clays. Degradation of dichloromethane using any of these catalysts can be enhanced by oxygen enrichment of the reaction solution or by preirradiating the catalyst with light.

  14. Repassivation of titanium and surface oxide film regenerated in simulated bioliquid.

    PubMed

    Hanawa, T; Asami, K; Asaoka, K

    1998-06-15

    The change in potential during repassivation of titanium in artificial bioliquids was examined, and the regenerated surface oxide film on titanium was characterized using X-ray photoelectron spectroscopy and Auger electron spectroscopy to elucidate the repassivation reaction of titanium in a biological system. The repassivation rate in Hanks' solution was slower than that in saline and was not influenced by the pH of the solution. This indicates that more titanium ions dissolve in a biological system than hitherto was predicted when the surface film is destroyed. Phosphate ions are taken up preferentially in the surface film during regeneration, and the film consists of titanium oxide and titanium oxyhydroxide containing titanium phosphate. Calcium ions and phosphate ions are adsorbed by the film after regeneration, and calcium phosphate or calcium titanium phosphate is formed at the outermost surface. Ions constituting Hanks' solution other than calcium and phosphate were absent from the surface oxide.

  15. Transforaminal lumbar interbody fusion rates in patients using a novel titanium implant and demineralized cancellous allograft bone sponge

    PubMed Central

    Girasole, Gerard; Muro, Gerard; Mintz, Abraham; Chertoff, Jason

    2013-01-01

    Background Transforaminal lumbar interbody fusion (TLIF) with grafting and implant options like iliac crest bone graft (ICBG), recombinant bone morphogenetic protein (rhBMP), and polyetheretherketone (PEEK) cages have been reported to achieve extremely high fusion rates. Unfortunately, these options have also been frequently cited in the literature as causing postoperative morbidity and complications at a high cost. Knowing this, we sought to investigate TLIF using an acid-etched, roughened titanium cage that upregulates osteogenesis to see if similar fusion rates to those cited for ICBG, rhBMP, and PEEK cages could be safely achieved with minimal morbidity and complications. Materials and methods A radiographic fusion study of 82 patients who underwent TLIF using an acid-etched, roughened titanium cage with demineralized cancellous bone graft was conducted. Fusion was assessed and graded by an independent radiologist using computed tomography scan with sagittal and coronal reconstructions. Results Fusion rates at 6 months were 41 of 44 (93.2%) and at 12 months were 37 of 38 (97.4%). There were no radiographic device-related complications. Conclusions TLIF with an acid-etched, roughened titanium cage filled with a decalcified bone graft achieved similar fusion rates to historical controls using ICBG, rhBMP, and PEEK. PMID:25580378

  16. Phosphonate Based High Nuclearity Magnetic Cages.

    PubMed

    Sheikh, Javeed Ahmad; Jena, Himanshu Sekhar; Clearfield, Abraham; Konar, Sanjit

    2016-06-21

    Transition metal based high nuclearity molecular magnetic cages are a very important class of compounds owing to their potential applications in fabricating new generation molecular magnets such as single molecular magnets, magnetic refrigerants, etc. Most of the reported polynuclear cages contain carboxylates or alkoxides as ligands. However, the binding ability of phosphonates with transition metal ions is stronger than the carboxylates or alkoxides. The presence of three oxygen donor sites enables phosphonates to bridge up to nine metal centers simultaneously. But very few phosphonate based transition metal cages were reported in the literature until recently, mainly because of synthetic difficulties, propensity to result in layered compounds, and also their poor crystalline properties. Accordingly, various synthetic strategies have been followed by several groups in order to overcome such synthetic difficulties. These strategies mainly include use of small preformed metal precursors, proper choice of coligands along with the phosphonate ligands, and use of sterically hindered bulky phosphonate ligands. Currently, the phosphonate system offers a library of high nuclearity transition metal and mixed metal (3d-4f) cages with aesthetically pleasing structures and interesting magnetic properties. This Account is in the form of a research landscape on our efforts to synthesize and characterize new types of phosphonate based high nuclearity paramagnetic transition metal cages. We quite often experienced synthetic difficulties with such versatile systems in assembling high nuclearity metal cages. Few methods have been emphasized for the self-assembly of phosphonate systems with suitable transition metal ions in achieving high nuclearity. We highlighted our journey from 2005 until today for phosphonate based high nuclearity transition metal cages with V(IV/V), Mn(II/III), Fe(III), Co(II), Ni(II), and Cu(II) metal ions and their magnetic properties. We observed that

  17. Cloning simulation in the cage environment.

    PubMed Central

    Douthart, R J; Thomas, J J; Rosier, S D; Schmaltz, J E; West, J W

    1986-01-01

    The CAGE/GEM(TM) software toolkit for genetic engineering is briefly described. The system functionally uses color graphics and is menu driven. It integrates genetics and features information ("Overlays") with information based on sequence analysis ("Representations"). The system is structured around CAD (Computer Aided Design) principles. The CAGE (Computer Aided Genetic Engineering) aspects of the software are emphasized and illustrated by a simulated cloning of the hepatitis B core antigen gene into the BAMHI site of plasmid pBR322. Images PMID:3003674

  18. Bicontinuous Nanoporous Frameworks: Caged Longevity for Enzymes.

    PubMed

    Bae, Jae-Sung; Jeon, Eunkyung; Moon, Su-Young; Oh, Wangsuk; Han, Sun-Young; Lee, Jeong Hun; Yang, Sung Yun; Kim, Dong-Myung; Park, Ji-Woong

    2016-09-12

    The preparation of bicontinuous nanoporous covalent frameworks, which are promising for caging active enzymes, is demonstrated. The frameworks have three- dimensionally continuous, hydrophilic pores with widths varying between 5 and 30 nm. Enzymes were infiltrated into the bicontinuous pore by applying a pressured enzyme solution. The new materials and methods allowed the amount of caged proteins to be controlled precisely. The resulting enzyme-loaded framework films could be recycled many times with nearly no loss of catalytic activity. Entropic trapping of proteins by a bicontinuous pore with the right size distribution is an unprecedented strategy toward facile in vitro utilization of biocatalysts. PMID:27513827

  19. Cage RACK ventilation options for laboratory animal facilities.

    PubMed

    Stakutis, Richard E

    2003-09-01

    Individually ventilated cage systems have become the method of choice for housing rodents. The author describes the various options for cage ventilation, from using supply and exhaust fans to directly connecting the racks to the building ventilation system. PMID:12966448

  20. 48 CFR 204.7202-1 - CAGE codes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Additional information on obtaining NCAGE codes is available at http://www.dlis.dla.mil/Forms/Form_AC135.asp.../cage_welcome.asp. (ii) If no CAGE code is identified through use of the procedures in paragraph...

  1. CO chemisorption on the surfaces of the golden cages

    SciTech Connect

    Huang, Wei; Bulusu, Satya; Pal, R; Zeng, Xiao Cheng; Wang, Lai S

    2009-12-18

    We report a joint experimental and theoretical study of CO chemisorption on the golden cages. We find that the Au17- cage is highly robust and retains its cage structure in Au17-CO-. On the other hand, the Au16 - cage is transformed to a structure similar to Au17- upon the adsorption of CO. Au18 - is known to consist of two nearly degenerate structures, i.e., a cage and a pyramidal isomer, which coexist in the cluster beam. However, upon CO chemisorption only the cage isomer is observed while the pyramidal isomer no longer exists due to its less favorable interaction with CO, compared to the cage isomer. We find that inclusion of the spin-orbit effects is critical in yielding simulated spectra in quantitative agreement with the experimental data and providing unequivocal structural information and molecular insights into the chemical interactions between CO and the golden cages.

  2. High-temperature in situ crystallographic observation of reversible gas sorption in impermeable organic cages

    PubMed Central

    Baek, Seung Bin; Moon, Dohyun; Graf, Robert; Cho, Woo Jong; Park, Sung Woo; Yoon, Tae-Ung; Cho, Seung Joo; Hwang, In-Chul; Bae, Youn-Sang; Spiess, Hans W.; Lee, Hee Cheon; Kim, Kwang S.

    2015-01-01

    Crystallographic observation of adsorbed gas molecules is a highly difficult task due to their rapid motion. Here, we report the in situ single-crystal and synchrotron powder X-ray observations of reversible CO2 sorption processes in an apparently nonporous organic crystal under varying pressures at high temperatures. The host material is formed by hydrogen bond network between 1,3,5-tris-(4-carboxyphenyl)benzene (H3BTB) and N,N-dimethylformamide (DMF) and by π–π stacking between the H3BTB moieties. The material can be viewed as a well-ordered array of cages, which are tight packed with each other so that the cages are inaccessible from outside. Thus, the host is practically nonporous. Despite the absence of permanent pathways connecting the empty cages, they are permeable to CO2 at high temperatures due to thermally activated molecular gating, and the weakly confined CO2 molecules in the cages allow direct detection by in situ single-crystal X-ray diffraction at 323 K. Variable-temperature in situ synchrotron powder X-ray diffraction studies also show that the CO2 sorption is reversible and driven by temperature increase. Solid-state magic angle spinning NMR defines the interactions of CO2 with the organic framework and dynamic motion of CO2 in cages. The reversible sorption is attributed to the dynamic motion of the DMF molecules combined with the axial motions/angular fluctuations of CO2 (a series of transient opening/closing of compartments enabling CO2 molecule passage), as revealed from NMR and simulations. This temperature-driven transient molecular gating can store gaseous molecules in ordered arrays toward unique collective properties and release them for ready use. PMID:26578758

  3. Chemical contamination of animal feeding systems: evaluation of two caging systems and standard cage-washing equipment.

    PubMed

    Fox, J G; Helfrich-Smith, M E

    1980-12-01

    Sodium fluorescein was added as a tracer to an ager gel diet which was fed for 5 day to 90 of 180 rats housed in two different polycarbonate caging systems, shoe-box cages and suspension solid-bottom cages. Cage racks, supplementary equipment, and case washer surfaces were analysed for fluorescein both before and after a complete wash and rinse cycle. Efficacy of washing was greater than 99% for both the inside and outside of the suspended cages and greater than 99% for the inside, but only 93% for the outside, of the shoe-box cages. The shoe-box cages, which were larger than the suspended cages, were spaced closer together on the washer rack, which may account for this variation in cleaning effectiveness. The cage washer surfaces and the water, which was recirculated during each cycle, also became contaminated with fluorescein. Strict adherence to proper cage-washing procedures and careful selection of cage design are important factors in controlling the potential for residual contamination of caging and cage-washing equipment. PMID:7464031

  4. Stainless steel to titanium bimetallic transitions

    NASA Astrophysics Data System (ADS)

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-12-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented. Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

  5. Stainless Steel to Titanium Bimetallic Transitions

    SciTech Connect

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  6. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  7. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  8. An Easy Synthesis of Two Cage Hydrocarbons.

    ERIC Educational Resources Information Center

    Dong, Dao Cong

    1982-01-01

    Describes a simple, three-step synthesis of two cage molecules, birdcage hydrocarbon (VIII) and its homologue, the homobirdcage hydrocarbon IX. Indicates that all products are easily purified and formed in high yields in this activity suitable for advanced undergraduate laboratory courses. (Author/JN)

  9. A caged substrate peptide for matrix metalloproteinases.

    PubMed

    Decaneto, Elena; Abbruzzetti, Stefania; Heise, Inge; Lubitz, Wolfgang; Viappiani, Cristiano; Knipp, Markus

    2015-02-01

    Based on the widely applied fluorogenic peptide FS-6 (Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2; Mca = methoxycoumarin-4-acetyl; Dpa = N-3-(2,4-dinitrophenyl)l-α,β-diaminopropionyl) a caged substrate peptide Ac-Lys-Pro-Leu-Gly-Lys*-Lys-Ala-Arg-NH2 (*, position of the cage group) for matrix metalloproteinases was synthesized and characterized. The synthesis implies the modification of a carbamidated lysine side-chain amine with a photocleavable 2-nitrobenzyl group. Mass spectrometry upon UV irradiation demonstrated the complete photolytic cleavage of the protecting group. Time-resolved laser-flash photolysis at 355 nm in combination with transient absorption spectroscopy determined the biphasic decomposition with τa = 171 ± 3 ms (79%) and τb = 2.9 ± 0.2 ms (21%) at pH 6.0 of the photo induced release of the 2-nitrobenzyl group. The recombinantly expressed catalytic domain of human membrane type I matrix metalloproteinase (MT1-MMP or MMP-14) was used to determine the hydrolysis efficiency of the caged peptide before and after photolysis. It turned out that the cage group sufficiently shields the peptide from peptidase activity, which can be thus controlled by UV light.

  10. Busting out of the Teacher Cage

    ERIC Educational Resources Information Center

    Hess, Frederick M.

    2015-01-01

    The author lays out guidelines and suggestions for how teachers can actually become policy leaders, taken from his book, "The Cage-Busting Teacher" (Harvard Education Press, 2015). Teachers serious about leadership can get the ear of policy makers by leveraging their positional and moral authority--though they may need to be persistent…

  11. Caged oligonucleotides for studying biological systems

    PubMed Central

    Ruble, Brittani K.; Yeldell, Sean B.; Dmochowski, Ivan J.

    2015-01-01

    Light-activated (“caged”) compounds have been widely employed for studying biological processes with high spatial and temporal control. In the past decade, several new approaches for caging the structure and function of DNA and RNA oligonucleotides have been developed. This review focuses on caged oligonucleotides that incorporate site-specifically one or two photocleavable linkers, whose photolysis yields oligonucleotides with dramatic structural and functional changes. This technique has been employed by our laboratory and others to photoregulate gene expression in cells and living organisms, typically using near UV-activated organic chromophores. To improve capabilities for in vivo studies, we harnessed the rich inorganic photochemistry of ruthenium bipyridyl complexes to synthesize Ru-caged morpholino antisense oligonucleotides that remain inactive in zebrafish embryos until uncaged with visible light. Expanding into new caged oligonucleotide applications, our lab has developed Transcriptome In Vivo Analysis (TIVA) technology, which provides the first noninvasive, unbiased method for isolating mRNA from single neurons in brain tissues. TIVA-isolated mRNA can be amplified and then analyzed using next-generation sequencing (RNA-seq). PMID:25865001

  12. 50 CFR 648.75 - Cage identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... are issued, or if rendered null and void in accordance with 15 CFR part 904. (d) Return. Tags that..., DEPARTMENT OF COMMERCE FISHERIES OF THE NORTHEASTERN UNITED STATES Management Measures for the Atlantic Surf... following cage identification requirements apply to all vessels issued a Federal fishing permit for...

  13. 50 CFR 648.75 - Cage identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in accordance with 15 CFR part 904. (d) Return. Tags that have been rendered null and void must be... Atlantic Surf Clam and Ocean Quahog Fisheries § 648.75 Cage identification. Link to an amendment published... requirements apply to all vessels issued a Federal fishing permit for surf clams and ocean quahogs: (a)...

  14. The biomimetic apatite-cefalotin coatings on modified titanium.

    PubMed

    Kang, Min-Kyung; Lee, Sang-Bae; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2012-02-01

    Dental implant failure often occurs due to oral bacterial infection. The aim of this study was to demonstrate that antibiotic efficacy could be enhanced with modified titanium. First, the titanium was modified by anodization and heat-treatment. Then, a biomimetic coating process was completed in two steps. Surface characterization was performed with scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Release of antibiotic was evaluated by UV/VIS spectrometry, and the antibacterial effect was evaluated on Streptococcus mutans. After the second coating step, we observed a thick homogeneous apatite layer that contained the antibiotic, cefalotin. The titanium formed a rutile phase after the heat treatment, and a carbonated apatite phase appeared after biomimetic coating. We found that the modified titanium increased the loading of cefalotin onto the hydroxyapatite coated surface. The results suggested that modified titanium coated with a cefalotin using biomimetic coating method might be useful for preventing local post-surgical implant infections.

  15. Molecular geometries and relative stabilities of titanium oxide and gold-titanium oxide clusters

    NASA Astrophysics Data System (ADS)

    Hudson, Rohan J.; Falcinella, Alexander; Metha, Gregory F.

    2016-09-01

    Titanium oxide and gold-titanium oxide clusters of stoichiometry MxOy (Mx = Ti3, Ti4 & AuTi3; y = 0 - (2x + 2)) have been investigated using density functional theory. Geometries of determined global energy minimum structures are reported and other isomers predicted up to 0.5 eV higher in energy. The Ti3On geometries build upon a triangular Ti3 motif, while Ti4On stoichiometries template upon a pseudo-tetrahedral Ti4 structure. Addition of a gold atom to the Ti3On series does not significantly alter the cluster geometry, with the gold atom preferentially binding to titanium atoms over oxygen atoms. Adiabatic ionization energies, electron affinities and HOMO/LUMO energies increase in magnitude with increasing oxygenation. The HOMO-LUMO energy gaps reach the bulk anatase band gap energy at stoichiometry (Au)TimO2m-1, and increase above this upon further oxygen addition. The most stable structural moieties are found to be a cage-like, C3v symmetric Ti4O6/7 geometry and a Ti3O6 structure with an η3-bound oxygen atom.

  16. X-ray crystallographic characterization of new soluble endohedral fullerenes utilizing the popular C82 bucky cage. Isolation and structural characterization of Sm@C3v(7)-C82, Sm@C(s)(6)-C82, and Sm@C2(5)-C82.

    PubMed

    Yang, Hua; Jin, Hongxiao; Wang, Xinqing; Liu, Ziyang; Yu, Meilan; Zhao, Fukun; Mercado, Brandon Q; Olmstead, Marilyn M; Balch, Alan L

    2012-08-29

    Three isomers of Sm@C(82) that are soluble in organic solvents were obtained from the carbon soot produced by vaporization of hollow carbon rods doped with Sm(2)O(3)/graphite powder in an electric arc. These isomers were numbered as Sm@C(82)(I), Sm@C(82)(II), and Sm@C(82)(III) in order of their elution times from HPLC chromatography on a Buckyprep column with toluene as the eluent. The identities of isomers, Sm@C(82)(I) as Sm@C(s)(6)-C(82), Sm@C(82)(II) as Sm@C(3v)(7)-C(82), and Sm@C(82)(III) as Sm@C(2)(5)-C(82), were determined by single-crystal X-ray diffraction on cocrystals formed with Ni(octaethylporphyrin). For endohedral fullerenes like La@C(82), which have three electrons transferred to the cage to produce the M(3+)@(C(82))(3-) electronic distribution, generally only two soluble isomers (e.g., La@C(2v)(9)-C(82) (major) and La@C(s)(6)-C(82) (minor)) are observed. In contrast, with samarium, which generates the M(2+)@(C(82))(2-) electronic distribution, five soluble isomers of Sm@C(82) have been detected, three in this study, the other two in two related prior studies. The structures of the four Sm@C(82) isomers that are currently established are Sm@C(2)(5)-C(82), Sm@C(s)(6)-C(82), Sm@C(3v)(7)-C(82), and Sm@C(2v)(9)-C(82). All of these isomers obey the isolated pentagon rule (IPR) and are sequentially interconvertable through Stone-Wales transformations. PMID:22860880

  17. Sprayable titanium composition

    DOEpatents

    Tracy, Chester E.; Kern, Werner; Vibronek, Robert D.

    1980-01-01

    The addition of 2-ethyl-1-hexanol to an organometallic titanium compound dissolved in a diluent and optionally containing a lower aliphatic alcohol spreading modifier, produces a solution that can be sprayed onto a substrate and cured to form an antireflection titanium oxide coating having a refractive index of from about 2.0 to 2.2.

  18. 30 CFR 56.19070 - Closing cage doors or gates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Closing cage doors or gates. 56.19070 Section 56.19070 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 56.19070 Closing cage doors or gates. Cage doors or gates shall be...

  19. 30 CFR 57.19070 - Closing cage doors or gates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Closing cage doors or gates. 57.19070 Section 57.19070 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 57.19070 Closing cage doors or gates. Cage doors or gates shall be...

  20. 30 CFR 56.19070 - Closing cage doors or gates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Closing cage doors or gates. 56.19070 Section 56.19070 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 56.19070 Closing cage doors or gates. Cage doors or gates shall be...

  1. 30 CFR 56.19070 - Closing cage doors or gates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Closing cage doors or gates. 56.19070 Section 56.19070 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 56.19070 Closing cage doors or gates. Cage doors or gates shall be...

  2. 30 CFR 57.19070 - Closing cage doors or gates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Closing cage doors or gates. 57.19070 Section 57.19070 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 57.19070 Closing cage doors or gates. Cage doors or gates shall be...

  3. 30 CFR 57.19070 - Closing cage doors or gates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Closing cage doors or gates. 57.19070 Section 57.19070 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 57.19070 Closing cage doors or gates. Cage doors or gates shall be...

  4. 30 CFR 56.19070 - Closing cage doors or gates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Closing cage doors or gates. 56.19070 Section 56.19070 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 56.19070 Closing cage doors or gates. Cage doors or gates shall be...

  5. 30 CFR 57.19070 - Closing cage doors or gates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Closing cage doors or gates. 57.19070 Section 57.19070 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 57.19070 Closing cage doors or gates. Cage doors or gates shall be...

  6. 30 CFR 56.19070 - Closing cage doors or gates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Closing cage doors or gates. 56.19070 Section 56.19070 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 56.19070 Closing cage doors or gates. Cage doors or gates shall be...

  7. 30 CFR 57.19070 - Closing cage doors or gates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Closing cage doors or gates. 57.19070 Section 57.19070 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 57.19070 Closing cage doors or gates. Cage doors or gates shall be...

  8. Social organization in caged layers: the peck order revisited.

    PubMed

    O'Keefe, T R; Graves, H B; Siegel, H S

    1988-07-01

    The dominance hierarchy that exists among free ranging chickens is a peck order. Several researchers have attempted to correlate various production parameters of caged layers with dominance rank, with mixed results. Animal welfare groups have expressed increasing concern over the effects of battery cage housing on the behavior of layers, even though several researchers have shown that the incidence of aggressive pecks decreases in these cages. The studies presented here demonstrate that agonistic interactions occur among most pairs of hens housed in pens but do not occur among most pairs of hens housed in cages. Therefore, peck orders could be constructed for hens housed in pens but not for hens housed in cages. Incidence of agonistic interactions is highest in cage-housed hens immediately following housing of the hens; this peak is matched when group membership is mixed. These results suggest that a social system does form among caged hens even if a peck order does not. A single dominant hen in each cage was involved in and won a large majority of the agonistic encounters in the cages. The lack of evidence of dominance relationships between pairs of hens in cages, other than those between a single dominant hen and its cage mates, supports the hypothesis that despotism, not a peck order, was the prevailing social organization among hens housed in high-density cages.

  9. CAGEd-oPOSSUM: motif enrichment analysis from CAGE-derived TSSs

    PubMed Central

    Arenillas, David J.; Forrest, Alistair R. R.; Kawaji, Hideya; Lassmann, Timo; Wasserman, Wyeth W.; Mathelier, Anthony

    2016-01-01

    With the emergence of large-scale Cap Analysis of Gene Expression (CAGE) datasets from individual labs and the FANTOM consortium, one can now analyze the cis-regulatory regions associated with gene transcription at an unprecedented level of refinement. By coupling transcription factor binding site (TFBS) enrichment analysis with CAGE-derived genomic regions, CAGEd-oPOSSUM can identify TFs that act as key regulators of genes involved in specific mammalian cell and tissue types. The webtool allows for the analysis of CAGE-derived transcription start sites (TSSs) either provided by the user or selected from ∼1300 mammalian samples from the FANTOM5 project with pre-computed TFBS predicted with JASPAR TF binding profiles. The tool helps power insights into the regulation of genes through the study of the specific usage of TSSs within specific cell types and/or under specific conditions. Availability and Implementation: The CAGEd-oPOSUM web tool is implemented in Perl, MySQL and Apache and is available at http://cagedop.cmmt.ubc.ca/CAGEd_oPOSSUM. Contacts: anthony.mathelier@ncmm.uio.no or wyeth@cmmt.ubc.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27334471

  10. Encapsulation of Semiconducting Polymers in Vault Protein Cages

    PubMed Central

    Ng, Benny C.; Yu, Marcella; Gopal, Ajaykumar; Rome, Leonard H.; Monbouquette, Harold G.; Tolbert, Sarah H.

    2009-01-01

    We demonstrate that a semiconducting polymer [poly(2-methoxy-5-propyloxy sulfonate phenylene vinylene), MPS-PPV] can be encapsulated inside recombinant, self-assembling protein nanocapsules called “vaults”. Polymer incorporation into these nano-sized protein cages, found naturally at ~10,000 copies per human cell, was confirmed by fluorescent spectroscopy and small-angle X-ray scattering (SAXS). Although vault cellular functions and gating mechanism remain unknown, their large internal volume and natural prevalence within the human body suggests they could be used as carriers for therapeutics and medical imaging reagents. This study provides the groundwork for the use of vaults in encapsulation and delivery applications. PMID:18803422

  11. PEEK cages as a potential alternative in the treatment of cervical spondylodiscitis: a preliminary report on a patient series

    PubMed Central

    Walter, Jan; Kuhn, Susanne Antje; Reichart, Rupert; Kalff, Rolf

    2010-01-01

    The surgical management of cervical spondylodiscitis consists of the resection of the affected disc, the decompression of the cervical spinal cord, followed by the stabilization using an autologous bone graft or a titanium implant combined with a ventral plate fixation. Until now, there were no studies about the practicability and putative safety of PEEK cages in cervical spine infection. Now, we present the history of five patients suffering from neurological deficits and septicemia caused by mono- or bisegmental pyogenic cervical discitis and intraspinal abscess without severe bone destruction. Patients were treated surgically by discectomy, decompression, and ventral spondylodesis. The disc was replaced by a PEEK cage without additional fixation. Progressive bony fusion and complete regression of the inflammatory changes was demonstrated 7–8 months later by a computer assisted tomography and contrast enhanced magnetic resonance imaging, respectively. The vertebral alignment changed minimally; the cages developed only a slight average subsidence. The clinical symptoms improved in all patients significantly. Neck pain or instability was never observed. Nevertheless, prospective investigations of a larger patient series are mandatory. We suppose that the use of PEEK cages represents a potential and safe alternative in the treatment of cervical spondylodiscitis in selected patients. PMID:20069319

  12. Sm@C2v(19138)-C76: A Non-IPR Cage Stabilized by a Divalent Metal Ion.

    PubMed

    Hao, Yajuan; Feng, Lai; Xu, Wei; Gu, Zhenggen; Hu, Ziqi; Shi, Zujin; Slanina, Zdeněk; Uhlík, Filip

    2015-05-01

    Although a non-IPR fullerene cage is common for endohedral cluster fullerenes, it is very rare for conventional endofullerenes M@C2n, probably because of the minimum geometry fit effect of the endohedral single metal ion. In this work, we report on a new non-IPR endofullerene Sm@C2v(19138)-C76, including its structural and electrochemical features. A combined study of single-crystal X-ray diffraction and DFT calculations not only elucidates the non-IPR cage structure of C2v(19138)-C76 but also suggests that the endohedral Sm(2+) ion prefers to reside along the C2 cage axis and close to the fused pentagon unit in the cage framework, indicative of a significant metal-cage interaction, which alone can stabilize the non-IPR cage. Furthermore, electrochemical studies reveal the fully reversible redox behaviors and small electrochemical gap of Sm@C2v(19138)-C76, which are comparable to those of IPR species Sm@D3h-C74. PMID:25782103

  13. Sm@C2v(19138)-C76: A Non-IPR Cage Stabilized by a Divalent Metal Ion.

    PubMed

    Hao, Yajuan; Feng, Lai; Xu, Wei; Gu, Zhenggen; Hu, Ziqi; Shi, Zujin; Slanina, Zdeněk; Uhlík, Filip

    2015-05-01

    Although a non-IPR fullerene cage is common for endohedral cluster fullerenes, it is very rare for conventional endofullerenes M@C2n, probably because of the minimum geometry fit effect of the endohedral single metal ion. In this work, we report on a new non-IPR endofullerene Sm@C2v(19138)-C76, including its structural and electrochemical features. A combined study of single-crystal X-ray diffraction and DFT calculations not only elucidates the non-IPR cage structure of C2v(19138)-C76 but also suggests that the endohedral Sm(2+) ion prefers to reside along the C2 cage axis and close to the fused pentagon unit in the cage framework, indicative of a significant metal-cage interaction, which alone can stabilize the non-IPR cage. Furthermore, electrochemical studies reveal the fully reversible redox behaviors and small electrochemical gap of Sm@C2v(19138)-C76, which are comparable to those of IPR species Sm@D3h-C74.

  14. Cavity-hollow cathode-sputtering source for titanium films

    NASA Astrophysics Data System (ADS)

    Schrittwieser, R.; Ionita, C.; Murawski, A.; Maszl, C.; Asandulesa, M.; Nastuta, A.; Rusu, G.; Douat, C.; Olenici, S. B.; Vojvodic, I.; Dobromir, M.; Luca, D.; Jaksch, S.; Scheier, P.

    2010-08-01

    A cavity-hollow cathode was investigated as low-cost sputtering source for titanium. An argon discharge is produced inside a hollow cathode consisting of two specifically formed disks of titanium. An additional cavity further enhances the pendulum effect of the electrons. Measurements with small Langmuir probes yielded evidence for the formation of a space charge double layer above the cathode. The sputtered atoms form negatively charged clusters. After further acceleration by the double layer the clusters impinge on the substrates. Titanium thin films were produced on highly oriented pyrolytic graphite. The films were investigated by a scanning tunnel microscope and X-ray photoelectron spectroscopy.

  15. Sc2O@Td 19151)-C76 : hindered cluster motion inside a tetrahedral carbon cage probed by crystallographic and computational studies.

    PubMed

    Yang, Ting; Hao, Yajuan; Abella, Laura; Tang, Qiangqiang; Li, Xiaohong; Wan, Yingbo; Rodríguez-Fortea, Antonio; Poblet, Josep M; Feng, Lai; Chen, Ning

    2015-07-27

    A new cluster fullerene, Sc2 O@Td (19151)-C76 , has been isolated and characterized by mass spectrometry, UV/Vis/NIR absorption, (45) Sc NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction. The crystallographic analysis unambiguously assigned the cage structure as Td (19151)-C76 , which is the first tetrahedral fullerene cage characterized by single-crystal X-ray diffraction. This study also demonstrated that the Sc2 O cluster has a much smaller ScOSc angle than that of Sc2 O@Cs (6)-C82 and the Sc2 O unit is fully ordered inside the Td (19151)-C76 cage. Computational studies further revealed that the cluster motion of the Sc2 O is more restrained in the Td (19151)-C76 cage than that in the Cs (6)-C82 cage. These results suggest that cage size affects not only the shapes but also the cluster motion inside fullerene cages. PMID:26088830

  16. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    NASA Astrophysics Data System (ADS)

    Kado, T.; Hidaka, T.; Aita, H.; Endo, K.; Furuichi, Y.

    2012-12-01

    A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface with HPDLCs. The Col-immobilized titanium surface could be used for forming ligament-like tissues around titanium dental implants.

  17. Lewis acid fragmentation of a lithium aryloxide cage: generation of new heterometallic aluminium-lithium species.

    PubMed

    Muñoz, Ma Teresa; Urbaneja, Carmen; Temprado, Manuel; Mosquera, Marta E G; Cuenca, Tomás

    2011-11-14

    Heterometallic aluminium-lithium species were prepared by the fragmentation reaction of the hexametallic cage compound [Li{2,6-(MeO)(2)C(6)H(3)O}](6) (1) with alkyl aluminium derivatives. Depending on the aluminium precursor, the species formed present different nuclearities in the solid state as shown by single crystal X-ray analysis. Spectroscopic and computational studies have been performed to study the nuclearity of the synthesized compounds in solution.

  18. Rotational and constitutional dynamics of caged supramolecules

    PubMed Central

    Kühne, Dirk; Klappenberger, Florian; Krenner, Wolfgang; Klyatskaya, Svetlana; Ruben, Mario; Barth, Johannes V.

    2010-01-01

    The confinement of molecular species in nanoscale environments leads to intriguing dynamic phenomena. Notably, the organization and rotational motions of individual molecules were controlled by carefully designed, fully supramolecular host architectures. Here we use an open 2D coordination network on a smooth metal surface to steer the self-assembly of discrete trimeric guest units, identified as noncovalently bound dynamers. Each caged chiral supramolecule performs concerted, chirality-preserving rotary motions within the template honeycomb pore, which are visualized and quantitatively analyzed using temperature-controlled scanning tunneling microscopy. Furthermore, with higher thermal energies, a constitutional system dynamics appears, which is revealed by monitoring repetitive switching events of the confined supramolecules’ chirality signature, reflecting decay and reassembly of the caged units. PMID:21098303

  19. Screening Surface Contamination with BetaCage

    SciTech Connect

    Schnee, R. W.; Grant, D. R.; Poinar, K.; Ahmed, Z.; Golwala, S. R.

    2007-03-28

    Existing screening facilities are insufficiently sensitive to meet the needs of rare-event experiments for low-energy electron emitters and alpha-decaying isotopes. To provide such screening, the BetaCage will be a low-background, atmospheric-pressure neon drift chamber with unprecedented sensitivity to emitters of low-energy electrons and alpha particles. Minimization of the detector mass and use of radiopure materials reduce background events. The chamber design accepts nearly all alphas and low-energy electrons from the sample surface while allowing excellent rejection of residual backgrounds. A non-radiopure prototype is under construction to test the design. The BetaCage will provide new infrastructure for rare-event science as well as for a wider community that uses radioactive screening for areas including archaeology, biology, climatology, environmental science, geology, planetary science, and integrated-circuit quality control.

  20. Structure and properties of bimetallic titanium and vanadium oxide clusters.

    PubMed

    Helmich, Benjamin; Sierka, Marek; Döbler, Jens; Sauer, Joachim

    2014-05-14

    By employing a genetic algorithm together with density functional theory (B3LYP), we investigate the most stable minimum structures of several bimetallic titanium and vanadium oxide clusters that contain four metal atoms. The following compositions are studied: VnTin-4O10(-) (n = 1-4), (TiO2)VOn(-) (n = 1-4), and (TiO2)VOn(+) (n = 1-3). Apart from (TiO2)3VO(-), vanadium oxo groups are always part of the most stable minimum structures when vanadium is present. Anti-ferromagnetic coupling lowers the energy substantially if spin centers are located at neighbored metal atoms rather than at distant oxygen radical sites. Vanadium-rich or oxygen-poor compositions prefer symmetric adamantane-like cage structures, some of which have already been proposed in a previous study. In contrast, vanadium-poor and oxygen-rich compositions show versatile structural motifs that cannot be intuitively derived from the symmetric cage motif. Particularly, for Ti4O10(-) there are several non-symmetric and distorted cages that have an up to 68 kJ mol(-1) lower energy than the symmetric adamantane-like cage structure. Nevertheless, for the adamantane-like cage the simulated infra-red spectrum (within the harmonic approximation) agrees best with the experimental vibrational spectrum. The oxidative power of the (TiO2)3VO3(-) and (TiO2)3VO2(+) clusters as measured by the energy of removing 1/2 O2 (297 and 227 kJ mol(-1), respectively) is less than that of the pure vanadium oxide clusters (V2O5)VO3(-) and (V2O5)VO2(+) (283 and 165 kJ mol(-1), respectively).

  1. Laser-Modified Black Titanium Oxide Nanospheres and Their Photocatalytic Activities under Visible Light.

    PubMed

    Chen, Xing; Zhao, Dongxu; Liu, Kewei; Wang, Chunrui; Liu, Lei; Li, Binghui; Zhang, Zhenzhong; Shen, Dezhen

    2015-07-29

    A facile pulse laser ablation approach for preparing black titanium oxide nanospheres, which could be used as photocatalysts under visible light, is proposed. The black titanium oxide nanospheres are prepared by pulsed-laser irradiation of pure titanium oxide in suspended aqueous solution. The crystalline phases, morphology, and optical properties of the obtained nanospheres are characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and UV-vis-NIR diffuse reflectance spectroscopy. It is shown that high-energy laser ablation of titanium oxide suspended solution benefited the formation of Ti(3+) species and surface disorder on the surface of the titanium oxide nanospheres. The laser-modified black titanium oxide nanospheres could absorb the full spectrum of visible light, thus exhibiting good photocatalytic performance under visible light.

  2. Molecular structures of two tetrodotoxin analogs containing a monooxa-hydrocarbon cage: A computational study

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2016-02-01

    Using quantum chemical calculations we investigate the molecular structures of two tetrodotoxin (TTX) analogs recently isolated from the Japanese toxic newt Cynops ensicauda popei. These novel analogs are characterized by a monooxa-hydrocarbon cage with a direct C5-C10 bond that replaces one of the ether bridges in the canonical dioxa-adamantane cage of TTX. The computed change in the 13C NMR chemical shifts is in good agreement with the change in the corresponding experimental values that results from the above chemical modification. This confirms the chemical structure assigned to the TTX analogs. A topological analysis of the theoretical electronic charge density indicates that the removal of the oxygen bridge in TTX increases the magnitude of the charge density at the cage critical point. A database search indicates that the monooxa-hydrocarbon cage is also present in other natural products such as cinnzeylanine and platensimycin whose molecular structures have been characterized by single-crystal X-ray diffraction analyses.

  3. STM and STS Observation on Titanium-Carbide Metallofullerenes:. TI2C2@C78

    NASA Astrophysics Data System (ADS)

    Fukui, N.; Moribe, H.; Umemoto, H.; Shinohara, H.; Suwa, Y.; Heike, S.; Fujimori, M.; Hashizume, T.

    2009-06-01

    A metallofullerene Ti2C2@C78, in which two titanium atoms and C2 cluster are encapsulated, is studied by scanning tunneling microscopy and spectroscopy. Measurements of Ti2C2@C78 on Cu(111) surface reveal that their cage symmetry is C78-D3h. There is a preferential orientation of Ti2C2@C78 resulting from electrostatic interaction same as other metallofullerene.

  4. Titanium nanostructural surface processing for improved biocompatibility

    SciTech Connect

    Cheng, H.-C.; Lee, S.-Y.; Chen, C.-C.; Shyng, Y.-C.; Ou, K.-L.

    2006-10-23

    X-ray photoelectron spectroscopy, grazing incident x-ray diffraction, transmission electron microscopy, and scanning electron microscopy were conducted to evaluate the effect of titanium hydride on the formation of nanoporous TiO{sub 2} on Ti during anodization. Nano-titanium-hydride was formed cathodically before anodizing and served as a sacrificial nanoprecipitate during anodization. Surface oxidation occurred and a multinanoporous structure formed after cathodic pretreatments followed by anodization treatment. The sacrificial nanoprecipitate is directly dissolved and the Ti transformed to nanoporous TiO{sub 2} by anodization. The formation of sacrificial nanoprecipitates by cathodic pretreatment and of the multinanostructure by anodization is believed to improve biocompatibility, thereby promoting osseointegration.

  5. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  6. Titanium Allergy: A Literature Review

    PubMed Central

    Goutam, Manish; Giriyapura, Chandu; Mishra, Sunil Kumar; Gupta, Siddharth

    2014-01-01

    Titanium has gained immense popularity and has successfully established itself as the material of choice for dental implants. In both medical and dental fields, titanium and its alloys have demonstrated success as biomedical devices. Owing to its high resistance to corrosion in a physiological environment and the excellent biocompatibility that gives it a passive, stable oxide film, titanium is considered the material of choice for intraosseous use. There are certain studies which show titanium as an allergen but the resources to diagnose titanium sensivity are very limited. Attention is needed towards the development of new and precise method for early diagnosis of titanium allergy and also to find out the alternative biomaterial which can be used in place of titanium. A review of available articles from the Medline and PubMed database was done to find literature available regarding titanium allergy, its diagnosis and new alternative material for titanium. PMID:25484409

  7. Non-Gaussian nature of glassy dynamics by cage to cage motion

    SciTech Connect

    Vorselaars, Bart; Lyulin, Alexey V.; Michels, M. A. J.; Karatasos, K.

    2007-01-15

    A model based on a single Brownian particle moving in a periodic effective field is used to understand the non-Gaussian dynamics in glassy systems of cage escape and subsequent recaging, often thought to be caused by a heterogeneous glass structure. The results are compared to molecular-dynamics simulations of systems with varying complexity: quasi-two-dimensional colloidlike particles, atactic polystyrene, and a dendritic glass. The model nicely describes generic features of all three topologically different systems, in particular around the maximum of the non-Gaussian parameter. This maximum is a measure for the average distance between cages.

  8. Regenerating Titanium Ventricular Assist Device Surfaces after Gold/ Palladium Coating for Scanning Electron Microscopy

    PubMed Central

    Achneck, Hardean E.; Serpe, Michael J; Jamiolkowski, Ryan; Eibest, Leslie M.; Craig, Stephen L.; Lawson, Jeffrey H.

    2014-01-01

    Titanium is one of the most commonly used materials for implantable devices in human s. Scanning electron microscopy (SEM) serves as an important tool for imaging titanium surfaces and analyzing cells and other organic matter adhering to titanium implants. However, high-vacuum SEM imaging of a non-conductive sample requires a conductive coating on the surface. A gold/ palladium coating is commonly used and to date no method has been described to ‘clean’ such gold/ palladium covered surfaces for repeated experiments without etching the titanium itself. This constitutes a major problem with titanium based implantable devices which are very expensive and thus in short supply. Our objective was to devise a protocol to regenerate titanium surfaces after SEM analysis. In a series of experiments, titanium samples from implantable cardiac assist devices were coated with fibronectin, seeded with cells and then coated with gold/palladium for SEM analysis. X-ray photoelectron spectroscopy spectra were obtained before and after five different cleaning protocols. Treatment with aqua regia (a 1:3 solution of concentrated nitric and hydrochloric acid), with or without ozonolysis, followed by sonication in soap solution and sonication in deionized water, allowed regenerating titanium surfaces to their original state. Atomic force microscopy confirmed that the established protocol did not alter the titanium microstructure. The protocol described herein is applicable to almost all titanium surfaces used in biomedical sciences and because of its short exposure time to aqua regia, will likely work for many titanium alloys as well. PMID:19642216

  9. Influence of 5 Different Caging Types and the Use of Cage-Changing Stations on Mouse Allergen Exposure

    PubMed Central

    Feistenauer, Susan; Sander, Ingrid; Schmidt, Jörg; Zahradnik, Eva; Raulf, Monika; Brielmeier, Markus

    2014-01-01

    Animal allergens constitute a serious health risk in laboratory animal facilities. To assess possibilities for allergen reduction by technical and organizational measures, we studied personnel exposure to mouse urinary aeroallergens in an animal facility with a holding capacity of 30,000 cages. Short-term (2 h) and intermediate-term (12 h) stationary samples (n = 107) and short-term (2 h) personnel samples (n = 119) were collected on polytetrafluorethylene filters by using air pumps. Long-term (14 d) stationary dust samples containing airborne allergens (n = 165) were collected with electrostatic dust fall collectors (EDC). Mouse allergens were quantified by ELISA. Personnel samples were collected during bedding disposal and refilling of clean cages as well as during cage changing with and without use of cage-changing station. Animal rooms were equipped with either open cages, cages with a soft filter top, cages with a rigid filter top (static microisolation caging), or with individually ventilated cages (IVC) with either a sealed or nonsealed lid, each in positive- or negative-pressure mode. Highest personnel allergen exposure was detected during cage change and emptying of soiled cages. Allergen concentrations were lowest in rooms with sealed IVC under positive or negative pressure, with unsealed IVC under negative pressure, and with static microisolation caging. The use of cage-changing stations and a vacuum bedding-disposal system reduced median personnel exposures 14- to 25-fold, respectively. Using sealed IVC and changing stations minimized allergen exposure, indicating that state-of-the-art equipment reduces exposure to mouse allergens and decreases health risks among animal facility personnel. PMID:25199090

  10. Influence of 5 different caging types and the use of cage-changing stations on mouse allergen exposure.

    PubMed

    Feistenauer, Susan; Sander, Ingrid; Schmidt, Jörg; Zahradnik, Eva; Raulf, Monika; Brielmeier, Markus

    2014-07-01

    Animal allergens constitute a serious health risk in laboratory animal facilities. To assess possibilities for allergen reduction by technical and organizational measures, we studied personnel exposure to mouse urinary aeroallergens in an animal facility with a holding capacity of 30,000 cages. Short-term (2 h) and intermediate-term (12 h) stationary samples (n = 107) and short-term (2 h) personnel samples (n = 119) were collected on polytetrafluorethylene filters by using air pumps. Long-term (14 d) stationary dust samples containing airborne allergens (n = 165) were collected with electrostatic dust fall collectors (EDC). Mouse allergens were quantified by ELISA. Personnel samples were collected during bedding disposal and refilling of clean cages as well as during cage changing with and without use of cage-changing station. Animal rooms were equipped with either open cages, cages with a soft filter top, cages with a rigid filter top (static microisolation caging), or with individually ventilated cages (IVC) with either a sealed or nonsealed lid, each in positive- or negative-pressure mode. Highest personnel allergen exposure was detected during cage change and emptying of soiled cages. Allergen concentrations were lowest in rooms with sealed IVC under positive or negative pressure, with unsealed IVC under negative pressure, and with static microisolation caging. The use of cage-changing stations and a vacuum bedding-disposal system reduced median personnel exposures 14- to 25-fold, respectively. Using sealed IVC and changing stations minimized allergen exposure, indicating that state-of-the-art equipment reduces exposure to mouse allergens and decreases health risks among animal facility personnel. PMID:25199090

  11. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces.

    PubMed

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D3, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence.

  12. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-07-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  13. The effect of pesticide residue on caged mosquito bioassays.

    PubMed

    Barber, J A S; Greer, Mike; Coughlin, Jamie

    2006-09-01

    Wind tunnel experiments showed that secondary pickup of insecticide residue by mosquitoes in cage bioassays had a significant effect on mortality. Cage bioassays using adult Ochlerotatus taeniorhynchus (Wiedemann) investigated the effect of exposure time to a contaminated surface. Cages were dosed in a wind tunnel using the LC50 for naled (0.124 mg a.i./ml) and an LC25 (0.0772 mg a.i./ml) for naled. Half of the bioassay mosquitoes were moved directly into clean cages with the other half remaining in the sprayed, hence contaminated, cage. Treatment mortality was assessed at 8, 15, 30, 60, 120, 240, and 1,440 min postapplication. Cage contamination had a significant effect on mosquito mortality for both the LC25 and LC50 between 15 and 30 min postapplication. PMID:17067048

  14. Adherence of sputtered titanium carbides

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1979-01-01

    The study searches for interface treatment that would increase the adhesion of TiC coating to nickel- and titanium-base alloys. Rene 41 (19 wt percent Cr, 11 wt percent Mo, 3 wt percent Ti, balance Ni) and Ti-6Al-4V (6 wt percent Al, 4 wt percent V, balance Ti) are considered. Adhesion of the coatings is evaluated in pin-and disk friction tests. The coatings and interface regions are examined by X-ray photoelectron spectroscopy. Results suggest that sputtered refractory compound coatings adhere best when a mixed compound of coating and substrate metals is formed in the interfacial region. The most effective type of refractory compound interface appears to depend on both substrate and coating material. A combination of metallic interlayer deposition and mixed compound interface formation may be more effective for some substrate coating combinations than either alone.

  15. Biocorrosion study of titanium-cobalt alloys.

    PubMed

    Chern Lin, J H; Lo, S J; Ju, C P

    1995-05-01

    The present work provides experimental results of corrosion behaviour in Hank's physiological solution and some other properties of in-house fabricated titanium-cobalt alloys with cobalt ranging from 25-30% in weight. X-ray diffraction (XRD) shows that, in water-quenched (WQ) alloys, beta-titanium is largely retained, whereas in furnace-cooled (FC) alloys, little beta-titanium is found. Hardness of the alloys increases with increasing cobalt content, ranging from 455 VHN for WQ Ti-25 wt% Co to 525 VHN for WQ Ti-30 wt% Co. Differential thermal analysis (DTA) indicates that melting temperatures of the alloys are lower than that of pure titanium by about 600 degrees C. Potentiodynamic polarization results show that all measured break-down potentials in Hank's solution at 37 degrees C are higher than 800 mV. The breakdown potential for the FC Ti-25 Wt% Co alloy is even as high as nearly 1200 mV.

  16. Bioactive borate glass coatings for titanium alloys.

    PubMed

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  17. Extended cage adjustable speed electric motors and drive packages

    DOEpatents

    Hsu, John S.

    1999-01-01

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.

  18. Extended cage adjustable speed electric motors and drive packages

    DOEpatents

    Hsu, J.S.

    1999-03-23

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced. 12 figs.

  19. Multi-responsive metal-organic lantern cages in solution.

    PubMed

    Brega, Valentina; Zeller, Matthias; He, Yufan; Lu, H Peter; Klosterman, Jeremy K

    2015-03-25

    Soluble copper-based M4L4 lantern-type metal-organic cages bearing internal amines were synthesized. The solution state integrity of the paramagnetic metal-organic cages was demonstrated using NMR, DLS, MS, and AFM spectroscopy. 1D supramolecular pillars of pre-formed cages or covalent host-guest complexes selectively formed upon treatment with 4,4'-bipyridine and acetic anhydride, respectively.

  20. Urea-Functionalized M4L6 Cage Receptors: Self-Assembly, Dynamics, and Anion Recognition in Aqueous Solutions

    SciTech Connect

    Custelcean, Radu; Bonnesen, Peter V; Duncan, Nathan C; Van Berkel, Gary J; Hay, Benjamin

    2012-01-01

    We present an extensive study of a novel class of de novo designed tetrahedral M{sub 4}L{sub 6} (M = Ni, Zn) cage receptors, wherein internal decoration of the cage cavities with urea anion-binding groups, via functionalization of the organic components L, led to selective encapsulation of tetrahedral oxoanions EO{sub 4}{sup -} (E = S, Se, Cr, Mo, W, n = 2; E = P, n = 3) from aqueous solutions, based on shape, size, and charge recognition. External functionalization with tBu groups led to enhanced solubility of the cages in aqueous methanol solutions, thereby allowing for their thorough characterization by multinuclear ({sup 1}H, {sup 13}C, {sup 77}Se) and diffusion NMR spectroscopies. Additional experimental characterization by electrospray ionization mass spectrometry, UV-vis spectroscopy, and single-crystal X-ray diffraction, as well as theoretical calculations, led to a detailed understanding of the cage structures, self-assembly, and anion encapsulation. We found that the cage self-assembly is templated by EO{sub 4}{sup -} oxoanions (n {ge} 2), and upon removal of the templating anion the tetrahedral M{sub 4}L{sub 6} cages rearrange into different coordination assemblies. The exchange selectivity among EO{sub 4}{sup -} oxoanions has been investigated with {sup 77}Se NMR spectroscopy using {sup 77}SeO{sub 4}{sup 2-} as an anionic probe, which found the following selectivity trend: PO{sub 4}{sup 3-} CrO{sub 4}{sup 2-} > SO{sub 4}{sup 2-} > SeO{sub 4}{sup 2-} > MoO{sub 4}{sup 2-} > WO{sub 4}{sup 2-}. In addition to the complementarity and flexibility of the cage receptor, a combination of factors have been found to contribute to the observed anion selectivity, including the anions charge, size, hydration, basicity, and hydrogen-bond acceptor abilities.

  1. Flexible Structural Features of Pentafulvene Titanium Derivatives: Isolation and Characterization of NHC Complexes.

    PubMed

    Manßen, Manfred; Adler, Christian; Beckhaus, Rüdiger

    2016-03-18

    The reaction of η(5),η(1)-pentafulvene titanium complexes with the strong N-heterocyclic carbene (NHC) donor 1,3,4,5-tetramethylimidazole-2-ylidene, leads to the formation of isolable NHC titanium adducts, featuring a haptotropic shift of the pentafulvene ligand, proved by single crystal X-ray diffraction as well as NMR spectroscopy studies. PMID:26852891

  2. Application of bicyclic and cage compounds

    NASA Technical Reports Server (NTRS)

    Clark, R. D.; Archuleta, B. S.

    1976-01-01

    The results of a literature survey of the field of bicyclic and cage compounds were presented, with the objective of identifying those types of compounds with unusual physical and chemical stability, and determining what practical applications have been found for these compounds. Major applications have been as polymers, polymer additives, medicinals, and pesticides. Lesser applications have included fuels, fuel additives, lubricants, lubricant additives, and perfumes. Several areas where further work might be useful were also outlined; these are primarily in the areas of polymers, polymer additives, medicinals, and synthetic lubricants.

  3. Effects of cage density on behavior in young adult mice.

    PubMed

    Davidson, Lauren P; Chedester, Alan L; Cole, Marlene N

    2007-08-01

    Optimal housing conditions for mice can be achieved by minimizing environmental variables, such as those that may contribute to anxiety-like behavior. This study evaluated the effects of cage size on juvenile mice through assessment of differences in weaning weight, locomotor skills, and anxiety-like behavior. Eighteen pairs of male and pregnant female Swiss-Webster (Cr:SW) mice were housed in 3 different caging scenarios, providing 429, 505, or 729 cm2 of space. Litters were standardized to 10 pups per litter in each cage. Mice reared in each caging scenario were assessed with the open-field, light-dark exploration, and elevated plus-maze tests. No differences in weaning weight were noted. Mice reared in the 505- and 729-cm2 cages explored a significantly larger area of the open-field arena than did those in the 429-cm2 cages. Those reared in the 505-cm2 cages spent more time in the center of the open field than did those in the 729-cm2 cages, suggesting that anxiety-like behavior may be increased in the animals housed in the larger cages. This study did not establish a consistent link between decreased floor space and increased anxiety-like behavior; neither does there appear to be a consistent effect of available floor area on the development of locomotor skills on mouse pups.

  4. Caracterisation of Titanium Nitride Layers Deposited by Reactive Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Roşu, Radu Alexandru; Şerban, Viorel-Aurel; Bucur, Alexandra Ioana; Popescu, Mihaela; Uţu, Dragoş

    2011-01-01

    Forming and cutting tools are subjected to the intense wear solicitations. Usually, they are either subject to superficial heat treatments or are covered with various materials with high mechanical properties. In recent years, thermal spraying is used increasingly in engineering area because of the large range of materials that can be used for the coatings. Titanium nitride is a ceramic material with high hardness which is used to cover the cutting tools increasing their lifetime. The paper presents the results obtained after deposition of titanium nitride layers by reactive plasma spraying (RPS). As deposition material was used titanium powder and as substratum was used titanium alloy (Ti6Al4V). Macroscopic and microscopic (scanning electron microscopy) images of the deposited layers and the X ray diffraction of the coatings are presented. Demonstration program with layers deposited with thickness between 68,5 and 81,4 μm has been achieved and presented.

  5. Horizontal transmission of Salmonella and Campylobacter among caged and cage-free laying hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In each of five trials, laying hens (56-72 wk-of-age) were challenged orally, intracolonally, and intravaginally with Salmonella and Campylobacter. One wk post inoculation, challenged hens (n=3) were commingled with non-challenged hens (n=12) in conventional wire cages, on all wire slats, or on all...

  6. Genetic encoding of caged cysteine and caged homocysteine in bacterial and mammalian cells.

    PubMed

    Uprety, Rajendra; Luo, Ji; Liu, Jihe; Naro, Yuta; Samanta, Subhas; Deiters, Alexander

    2014-08-18

    We report the genetic incorporation of caged cysteine and caged homocysteine into proteins in bacterial and mammalian cells. The genetic code of these cells was expanded with an engineered pyrrolysine tRNA/tRNA synthetase pair that accepts both light-activatable amino acids as substrates. Incorporation was validated by reporter assays, western blots, and mass spectrometry, and differences in incorporation efficiency were explained by molecular modeling of synthetase-amino acid interactions. As a proof-of-principle application, the genetic replacement of an active-site cysteine residue with a caged cysteine residue in Renilla luciferase led to a complete loss of enzyme activity; however, upon brief exposure to UV light, a >150-fold increase in enzymatic activity was observed, thus showcasing the applicability of the caged cysteine in live human cells. A simultaneously conducted genetic replacement with homocysteine yielded an enzyme with greatly reduced activity, thereby demonstrating the precise probing of a protein active site. These discoveries provide a new tool for the optochemical control of protein function in mammalian cells and expand the set of genetically encoded unnatural amino acids.

  7. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    PubMed

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions.

  8. Titanium metal: extraction to application

    SciTech Connect

    Gambogi, Joseph; Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  9. Mineral of the month: titanium

    USGS Publications Warehouse

    Gambogi, Joseph

    2004-01-01

    From paint to airplanes, titanium is important in a number of applications. Commercial production comes from titanium-bearing ilmenite, rutile and leucoxene (altered ilmenite). These minerals are used to produce titanium dioxide pigment, as well as an assortment of metal and chemical products.

  10. 1/f Noise Inside a Faraday Cage

    SciTech Connect

    Handel, Peter H.; George, Thomas F.

    2009-04-23

    We show that quantum 1/f noise does not have a lower frequency limit given by the lowest free electromagnetic field mode in a Faraday cage, even in an ideal cage. Indeed, quantum 1/f noise comes from the infrared-divergent coupling of the field with the charges, in their joint nonlinear system, where the charges cause the field that reacts back on the charges, and so on. This low-frequency limitation is thus not applicable for the nonlinear system of matter and field in interaction. Indeed, this nonlinear system is governed by Newton's laws, Maxwell's equations, in general also by the diffusion equations for particles and heat, or reaction kinetics given by quantum matrix elements. Nevertheless, all the other quantities can be eliminated in principle, resulting in highly nonlinear integro-differential equations for the electromagnetic field only, which no longer yield a fundamental frequency. Alternatively, we may describe this through the presence of an infinite system of subharmonics. We show how this was proven early in the classical and quantum domains, adding new insight.

  11. Surface modification of titanium and titanium alloys by ion implantation.

    PubMed

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation.

  12. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  13. Titanium oxidation by rf inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Valencia-Alvarado, R.; de la Piedad-Beneitez, A.; López-Callejas, R.; Barocio, S. R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Muñoz-Castro, A. E.; Rodríguez-Méndez, B. G.; de la Rosa-Vázquez, J. M.

    2014-05-01

    The development of titanium dioxide (TiO2) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10-2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ~5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy.

  14. Titanium alkoxide compound

    SciTech Connect

    Boyle, Timothy J.

    2007-08-14

    A titanium alkoxide composition is provided, as represented by the chemical formula (OC.sub.6H.sub.5N).sub.2Ti(OC.sub.6H.sub.5NH.sub.2).sub.2. As prepared, the compound is a crystalline substance with a hexavalent titanium atom bonded to two OC.sub.6H.sub.5NH.sub.2 groups and two OC.sub.6H.sub.5N groups with a theoretical molecular weight of 480.38, comprising 60.01% C, 5.04% H and 11.66% N.

  15. PEM Anchorage on Titanium Using Catechol Grafting

    PubMed Central

    Marie, Hélène; Barrere, Amélie; Schoentstein, Frédérique; Chavanne, Marie-Hélène; Grosgogeat, Brigitte; Mora, Laurence

    2012-01-01

    Background This study deals with the anchorage of polyelectrolyte films onto titanium surfaces via a cathecol-based linker for biomedical applications. Methodology The following study uses a molecule functionalized with a catechol and a carboxylic acid: 3-(3,4-dihydroxyphenyl)propanoic acid. This molecule is anchored to the TiO2 substrate via the catechol while the carboxylic acid reacts with polymers bearing amine groups. By providing a film anchorage of chemisorption type, it makes possible to deposit polyelectrolytes on the surface of titanium. Principal Findings Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), contact angle and atomic force microscopy (AFM) measurements show that the different steps of grafting have been successfully performed. Conclusions This method based on catechol anchorage of polyelectrolytes open a window towards large possibilities of clinical applications. PMID:23226262

  16. Teaching in the Institutional Cage: Metaphor and Collateral Oppression

    ERIC Educational Resources Information Center

    Noël Smith, Becky L.

    2014-01-01

    This analysis is a philosophical exploration of Marilyn Frye's metaphor of the cage and Patricia Hill Collins' theory of intersecting oppressions. It argues that social structures and forms of oppressive knowledge make up the individual wires on each person's cage and that these work to confine individuals, particularly those in the…

  17. 48 CFR 204.7202-1 - CAGE codes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... System for Award Management (SAM) database (see FAR subpart 4.11) and does not have a CAGE code, DLA... for registration in the SAM database. Foreign registrants must obtain a North Atlantic Treaty Organization CAGE (NCAGE) code in order to register in the SAM database. NCAGE codes may be obtained from...

  18. 48 CFR 204.7202-1 - CAGE codes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... available at http://www.dlis.dla.mil/Forms/Form_AC135.asp. (2) If registration in the CCR database is not... (D) The Internet to access the CAGE Lookup Server at http://www.dlis.dla.mil/cage_welcome.asp....

  19. 48 CFR 204.7202-1 - CAGE codes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... available at http://www.dlis.dla.mil/Forms/Form_AC135.asp. (2) If registration in the SAM database is not... (D) The Internet to access the CAGE Lookup Server at http://www.dlis.dla.mil/cage_welcome.asp....

  20. 48 CFR 204.7202-1 - CAGE codes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... available at http://www.dlis.dla.mil/Forms/Form_AC135.asp. (2) If registration in the CCR database is not... (D) The Internet to access the CAGE Lookup Server at http://www.dlis.dla.mil/cage_welcome.asp....

  1. Polymers containing borane or carborane cage compounds and related applications

    SciTech Connect

    Bowen, III, Daniel E.; Eastwood, Eric A.

    2012-06-05

    Polymers comprising residues of borane and/or carborane cage compound monomers having at least one polyalkoxy silyl substituent. Such polymers can further comprise one or more reactive matrices and/or co-monomers covalently bound with the cage compound monomer residues. Methods of making and applications for using such polymers are also disclosed.

  2. Caging Mechanism for a drag-free satellite position sensor

    NASA Technical Reports Server (NTRS)

    Hacker, R.; Mathiesen, J.; Debra, D. B.

    1976-01-01

    A disturbance compensation system for satellites based on the drag-free concept was mechanized and flown, using a spherical proof mass and a cam-guided caging mechanism. The caging mechanism controls the location of the proof mass for testing and constrains it during launch. Design requirements, design details, and hardware are described.

  3. Abnormal Behavior in Relation to Cage Size in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Paulk, H. H.; And Others

    1977-01-01

    Examines the effects of cage size on stereotyped and normal locomotion and on other abnormal behaviors in singly caged animals, whether observed abnormal behaviors tend to co-occur, and if the development of an abnormal behavior repertoire leads to reduction in the number of normal behavior categories. (Author/RK)

  4. Computational analyses of different intervertebral cages for lumbar spinal fusion.

    PubMed

    Bashkuev, Maxim; Checa, Sara; Postigo, Sergio; Duda, Georg; Schmidt, Hendrik

    2015-09-18

    Lumbar spinal fusion is the most common approach for treating spinal disorders such as degeneration or instability. Although this procedure has been performed for many years, there are still important challenges that must be overcome and questions that need to be addressed regarding the high rates of non-union. The present finite element model study aimed to investigate the influence of different cage designs on the fusion process. An axisymmetric finite element model of a spinal segment with an interbody fusion cage was used. The fusion process was based on an existing mechano-regulation algorithm for tissue formation. With this model, the following principal concepts of cage design were investigated: (1) different cage geometries with constant compressive stiffness and (2) cage designs optimized to provide the ideal mechanical stimulus for bone formation, first at the beginning of fusion and then throughout the entire fusion process. The cage geometry substantially influenced the fusion outcome. A cage that created an optimized initial mechanical stimulus did not necessarily lead to accelerated fusion, but rather resulted in delayed fusion or non-union. In contrast, a cage made of a degradable material produced a significantly higher amount of bone and resulted in higher segmental stiffness. However, different compressive loads (250, 500 and 1000 N) substantially affected the amount of newly formed bone tissue. The results of the present study suggest that aiming for an optimal initial mechanical stimulus may be misleading because the initial mechanical environment is not preserved throughout the bone modeling process.

  5. A Locust Cage and Hatchery from Plastic Aquarium Tanks

    ERIC Educational Resources Information Center

    Stoneman, C. F.; And Others

    1973-01-01

    Describes how to construct a locust cage from two plastic aquaria and four coffee jars with plastic lids. Its advantages over a conventional locust cage include the inexpensive cost, lack of breakable glass, ease of cleaning, and visibility from all angles. (JR)

  6. Structural analysis of aquaculture net cages in current

    NASA Astrophysics Data System (ADS)

    Moe, H.; Fredheim, A.; Hopperstad, O. S.

    2010-04-01

    A method for structural analysis of aquaculture net cages has been developed and verified for a netting solidity of 0.23, water current velocities from 0.1 to 0.5 m/s and relatively large deformations (volume reduction up to 70%) by comparing the numerical results to tests in a flume tank. Strength analysis was performed using commercial explicit finite element software to calculate distribution of loads in the net cage due to current, weights and gravity. The net cage was modelled using truss elements that represented several parallel twines. Sub-elements allowed the trusses to buckle in compression, and only negligible compressive forces were seen in the numerical results. Resulting drag loads and cage volume were shown to be dependent on the net cage size and weight system. Drag loads increased almost proportional to the current velocity for velocities in the range of 0.2-0.5 m/s, while the cage volume was reduced proportional to the current velocity. The calculated forces in ropes and netting of full-size net cages were well below the design capacity for current velocities up to 0.5 m/s. However, netting seams in the bottom panel of the net cage were identified as a potential problem area as the forces could reach the design capacity.

  7. Ammonia Levels and Urine-Spot Characteristics as Cage-Change Indicators for High-Density Individually Ventilated Mouse Cages.

    PubMed

    Washington, Ida M; Payton, Mark E

    2016-01-01

    Mouse cage and bedding changes are potentially stressful to mice and are also labor- and resource-intensive. These changes are often performed on a calendar-based schedule to maintain a clean microenvironment and limit the concentrations of ammonia to which mice and workers are exposed. The current study sought to establish a performance-based approach to mouse cage-changing that uses urine spot characteristics as visual indicators of intracage ammonia levels. Colorimetric ammonia indicators were used to measure ammonia levels in individually-ventilated cages (IVC) housing male or female mice (n =5 per cage) of various strains at 1 to 16 d after cage change. Urine spot characteristics were correlated with ammonia levels to create a visual indicator of the cage-change criterion of 25 ppm ammonia. Results demonstrated a consistent increase in ammonia levels with days since cage change, with cages reaching the cage-change criterion at approximately 10 d for IVC containing male mice and 16 d for those with female mice. Ammonia levels were higher for male than female mice but were not correlated with mouse age. However, urine spot diameter, color, and edge characteristics were strongly correlated with ammonia levels. Husbandry practices based on using urine spot characteristics as indicators of ammonia levels led to fewer weekly cage changes and concomitant savings in labor and resources. Therefore, urine spot characteristics can be used as visual indicators of intracage ammonia levels for use of a performance (urine spot)-based approach to cage-changing frequency that maintains animal health and wellbeing. PMID:27177558

  8. Treatment of Thoracolumbar Spinal Infections through Anterolateral Approaches Using Expandable Titanium Mesh Cage for Spine Reconstruction

    PubMed Central

    Roberto, Tarantino; Daniele, Marruzzo; Martina, Cappelletti; Tiziano, De Giacomo; Roberto, Delfini

    2012-01-01

    Pyogenic vertebral osteomyelitis (PVO) is still a rare pathology. However, its incidence is on the rise. This is due to an increasing population with predisposing factors. Also, the availability of more effective diagnostic tools has brought it increasingly to the surgeon's attention. In this study the patients were treated in the Neurosurgery Division of the Department of Neurological Sciences and Psychiatry of the Sapienza University of Rome, between 2001 and 2009. They had thoracolumbar pyogenic spondylitis. This study was undertaken in order to identify the correct diagnostic and therapeutic treatment needed in such cases. From the cases studied here, it is evident that spinal infections can be extremely insidious and that diagnosis tends to be reached late. Surgery, along with the antibiotic treatment, allows for eradication of the causes of the pathology by the reclamation of the affected region. Surgery is also fundamental in helping to recover vital functions and in restoring as much as possible the correct curvature of the rachises. The use of an anterolateral approach is dictated by the necessity of obtaining 360° stability as well as by the need to clear away extensive infections, which are not always reachable using a posterior approach. PMID:23193382

  9. Performance and welfare of rabbit does in various caging systems.

    PubMed

    Mikó, A; Matics, Zs; Gerencsér, Zs; Odermatt, M; Radnai, I; Nagy, I; Szendrő, K; Szendrő, Zs

    2014-07-01

    The objective of the study was to compare production and welfare of rabbit does and their kits housed in various types of cages. Female rabbits were randomly allocated to four groups with the following cage types: CN: common wire-mesh flat-deck cage, without footrest; CF: cage similar to the CN but with plastic footrest; ECWP: enlarged cage with wire-mesh platform; and ECPP: extra enlarged cage with plastic-mesh platform. All does were inseminated on the same day, 11 days after kindlings. Reproductive performance was evaluated during the first five consecutive kindlings. Severity of sore hocks was scored at each insemination. Location preference of the does and the platform usage of their kits were evaluated. Kindling rate, litter size (total born, born alive, alive at 21 and 35 days) and kit mortality were not significantly influenced by the cage types. The litter weight at 21 days was higher in ECWP and ECPP cages than in the CF group (3516, 3576 and 3291 g, respectively; P2.5 cm) and 3 to 4 (3=callus opened, cracks present; 4=wounds) were 58%, 60%, 78% and 48%, and 0%, 5%, 0% and 48% in groups ECPP, ECWP, CF and CN, respectively. Higher number of daily nest visits was observed for CF does than for ECWP does (12.5 v. 5.9; P2/day) was higher in the CF group than in the ECWP group (12.1 v. 3.2%; P<0.01). Within large cages, the does were observed on the platform more frequently in the ECPP cages compared with the ECWP cages (56.9% v. 31.7%; P<0.001). Similarly, 2.7% and 0.2% of kits at 21 days of age, and 33.2% and 5.2% of kits at 28 days of age, were found on the platforms of ECPP and ECWP cages, respectively. In conclusion, cages larger than the conventional ones improved kits' weaning weight, plastic footrests and plastic-mesh platforms in conventional and/or large cages reduced sore hocks' problems, plastic-mesh platforms were more used by both does and kits compared with the wire-mesh platforms. PMID:26263030

  10. Entropic cages for trapping DNA near a nanopore.

    PubMed

    Liu, Xu; Mihovilovic Skanata, Mirna; Stein, Derek

    2015-01-01

    Nanopores can probe the structure of biopolymers in solution; however, diffusion makes it difficult to study the same molecule for extended periods. Here we report devices that entropically trap single DNA molecules in a 6.2-femtolitre cage near a solid-state nanopore. We electrophoretically inject DNA molecules into the cage through the nanopore, pause for preset times and then drive the DNA back out through the nanopore. The saturating recapture time and high recapture probability after long pauses, their agreement with a convection-diffusion model and the observation of trapped DNA under fluorescence microscopy all confirm that the cage stably traps DNA. Meanwhile, the cages have 200 nm openings that make them permeable to small molecules, like the restriction endonuclease we use to sequence-specifically cut trapped DNA into fragments whose number and sizes are analysed upon exiting through the nanopore. Entropic cages thus serve as reactors for chemically modifying single DNA molecules. PMID:25648853

  11. Entropic cages for trapping DNA near a nanopore

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Skanata, Mirna Mihovilovic; Stein, Derek

    2015-02-01

    Nanopores can probe the structure of biopolymers in solution; however, diffusion makes it difficult to study the same molecule for extended periods. Here we report devices that entropically trap single DNA molecules in a 6.2-femtolitre cage near a solid-state nanopore. We electrophoretically inject DNA molecules into the cage through the nanopore, pause for preset times and then drive the DNA back out through the nanopore. The saturating recapture time and high recapture probability after long pauses, their agreement with a convection-diffusion model and the observation of trapped DNA under fluorescence microscopy all confirm that the cage stably traps DNA. Meanwhile, the cages have 200 nm openings that make them permeable to small molecules, like the restriction endonuclease we use to sequence-specifically cut trapped DNA into fragments whose number and sizes are analysed upon exiting through the nanopore. Entropic cages thus serve as reactors for chemically modifying single DNA molecules.

  12. Sintering titanium powders

    SciTech Connect

    Gerdemann, Stephen J.; Alman, David E.

    2005-09-01

    Recently, there has been renewed interest in low-cost titanium. Near-net-shape powder metallurgy offers the potential of manufacturing titanium articles without costly and difficult forming and machining operations; hence, processing methods such as conventional press-and-sinter, powder forging and powder injection molding are of interest. The sintering behavior of a variety of commercial and experimental titanium powders was studied. Commercial powders were acquired that were produced different routes: (i) sponge fines from the primary titanium processing; (ii) via the hydride-dehydride process; and (iii) gas atomization. The influence of vacuum sintering time (0.5 to 32 hrs) and temperature (1200, 1275 or 1350°C) on the microstructure (porosity present) of cold pressed powders was studied. The results are discussed in terms of the difference in powder characteristics, with the aim of identify the characteristics required for full density via press-and-sinter processing. Near-net-shape tensile bars were consolidated via cold pressed and sintered. After sintering, a sub-set of the tensile bars was hot-isostatic pressed (HIPed). The microstructure and properties of the bars were compared in the sintered and HIPed conditions.

  13. Electrofriction method of manufacturing squirrel cage rotors

    DOEpatents

    Hsu, John S.

    2005-04-12

    A method of making a squirrel cage rotor of copper material for use in AC or DC motors, includes forming a core with longitudinal slots, inserting bars of conductive material in the slots, with ends extending out of opposite ends of the core, and joining the end rings to the bars, wherein the conductive material of either the end rings or the bars is copper. Various methods of joining the end rings to the bars are disclosed including electrofriction welding, current pulse welding and brazing, transient liquid phase joining and casting. Pressure is also applied to the end rings to improve contact and reduce areas of small or uneven contact between the bar ends and the end rings. Rotors made with such methods are also disclosed.

  14. Protein Cages as Containers for Gold Nanoparticles.

    PubMed

    Liu, Aijie; Verwegen, Martijn; de Ruiter, Mark V; Maassen, Stan J; Traulsen, Christoph H-H; Cornelissen, Jeroen J L M

    2016-07-01

    Abundant and highly diverse, viruses offer new scaffolds in nanotechnology for the encapsulation, organization, or even synthesis of novel materials. In this work the coat protein of the cowpea chlorotic mottle virus (CCMV) is used to encapsulate gold nanoparticles with different sizes and stabilizing ligands yielding stable particles in buffered solutions at neutral pH. The sizes of the virus-like particles correspond to T = 1, 2, and 3 Caspar-Klug icosahedral triangulation numbers. We developed a simple one-step process enabling the encapsulation of commercially available gold nanoparticles without prior modification with up to 97% efficiency. The encapsulation efficiency is further increased using bis-p-(sufonatophenyl)phenyl phosphine surfactants up to 99%. Our work provides a simplified procedure for the preparation of metallic particles stabilized in CCMV protein cages. The presented results are expected to enable the preparation of a variety of similar virus-based colloids for current focus areas. PMID:27135176

  15. Photocatalyzed oxidation of hydrocarbons in zeolite cages

    SciTech Connect

    Frei, H.; Blatter, F.; Sun, H.

    1996-06-01

    Oxidation of hydrocarbons by molecular oxygen is a key process in chemical industry. But reactions that use O{sub 2} as the primary oxidant often produce large amounts of unwanted byproducts. One major reason that selectivities are low is that the desired products (such as alcohols or carbonyls) are more easily oxidized by O{sub 2} than the parent hydrocarbon. The authors recently discovered a simple method that gives partial oxidation of small alkenes, alkanes, and alkyl-substituted benzenes by O{sub 2} at unprecedented selectivity, even at high conversion of the hydrocarbon. The approach is based on visible light-induced chemistry of hydrocarbon-O{sub 2} collisional pairs in the cages of large-pore zeolites. Reactions are conducted at ambient temperature in the absence of solvent or photosensitizer. Here the authors describe the most interesting reactions established thus far and define issues that pertain to scale-up of the method.

  16. In-situ bioassays using caged bivalves

    SciTech Connect

    Salazar, M.H.; Salazar, S.M.

    1995-12-31

    It is important to make the distinction between chemical measurements to assess bioaccumulation potential versus biological measurements to assess potential bioeffects because bioaccumulation is not a bioeffect. Caging provides a unique opportunity to make synoptic measurements of each and facilitates making these measurements over space and time. Measuring bioaccumulation in resident and transplanted bivalves has probably been the most frequently used form of an in-situ bioassay because bivalves concentrate chemicals in their tissues. They are also easy to collect, cage, and measure. The authors have refined bivalve bioassay methods by minimizing the size range of test animals, making repetitive measurements of the same individuals, and standardizing test protocols for a variety of applications. They are now attempting to standardize criteria for accepting and interpreting data in the same way that laboratory bioassays have been standardized. Growth measurements can serve two purposes in this assessment strategy: (1) An integrated biological response endpoint that is easily quantifiable and with significance to the population, and (2) A means of calibrating bioaccumulation by assessing the relative health and physiological state of tissues that have accumulated the chemicals. In general, the authors have found the highest bioconcentration factors associated with the highest growth rates, the highest concentrations ({micro}g/g) of chemicals in juvenile mussels, and the highest chemical content ({micro}g/animal) in adult mussels. Without accounting for possible dilution of chemical concentrations by tissue growth or magnification through degrowth, contaminant concentrations can be misleading. Examples are provided for the Sudbury River in Massachusetts (Elliptio complanata), San Diego Bay (Mytilus galloprovincialis), and the Harbor Island Superfund Site in Puget Sound (Mytilus trossulus).

  17. Surface modification by alkali and heat treatments in titanium alloys.

    PubMed

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-01

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  18. Nanoscale bonding between human bone and titanium surfaces: osseohybridization.

    PubMed

    Kim, Jun-Sik; Kang, Seok-Man; Seo, Kyung-Won; Nahm, Kyung-Yen; Chung, Kyu-Rhim; Kim, Seong-Hun; Ahn, Jae-Pyeong

    2015-01-01

    Until now, the chemical bonding between titanium and bone has been examined only through a few mechanical detachment tests. Therefore, in this study, a sandblasted and acid-etched titanium mini-implant was removed from a human patient after 2 months of placement in order to identify the chemical integration mechanism for nanoscale osseointegration of titanium implants. To prepare a transmission electron microscopy (TEM) specimen, the natural state was preserved as much as possible by cryofixation and scanning electron microscope/focused ion beam (SEM-FIB) milling without any chemical treatment. High-resolution TEM (HRTEM), energy dispersive X-ray spectroscopy (EDS), and scanning TEM (STEM)/electron energy loss spectroscopic analysis (EELS) were used to investigate the chemical composition and structure at the interface between the titanium and bone tissue. HRTEM and EDS data showed evidence of crystalline hydroxyapatite and intermixing of bone with the oxide layer of the implant. The STEM/EELS experiment provided particularly interesting results: carbon existed in polysaccharides, calcium and phosphorus existed as tricalcium phosphate (TCP), and titanium existed as oxidized titanium. In addition, the oxygen energy loss near edge structures (ELNESs) showed a possibility of the presence of CaTiO3. These STEM/EELS results can be explained by structures either with or without a chemical reaction layer. The possible existence of the osseohybridization area and the form of the carbon suggest that reconsideration of the standard definition of osseointegration is necessary.

  19. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    NASA Astrophysics Data System (ADS)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  20. Coordinating subdomains of ferritin protein cages with catalysis and biomineralization viewed from the C4 cage axes.

    PubMed

    Theil, Elizabeth C; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina

    2014-06-01

    Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3·H2O minerals from Fe(2+) for metabolic iron concentrates and oxidant protection; biomineral order differs in different ferritin proteins. The conserved 432 geometric symmetry of ferritin protein cages parallels the subunit dimer, trimer, and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self-assembling ferritin nanocages have functional relationships to cage symmetry such as Fe(2+) transport though ion channels (threefold symmetry), biomineral nucleation/order (fourfold symmetry), and mineral dissolution (threefold symmetry) studied in ferritin variants. On the basis of the effects of natural or synthetic subunit dimer cross-links, cage subunit dimers (twofold symmetry) influence iron oxidation and mineral dissolution. 2Fe(2+)/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n = 3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of three subunits. Here, we study 2Fe(2+) + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3·H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein twofold and threefold cage axes to show function at ferritin fourfold cage axes. Here, conserved amino acids facilitate dissolution of ferritin-protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage fourfold symmetry and solid-state mineral properties remain largely unexplored.

  1. The effect of treatment with whole bee venom on cage activity and plasma cortisol levels in the arthritic dog.

    PubMed

    Vick, J A; Warren, G B; Brooks, R B

    1976-03-01

    A series of 24 mixed-breed dogs were used to study the physiological effects of whole bee venom on canine arthritic-like conditions. 16 were randomly selected normal dogs and 8 were suspect arthritic animals confirmed by X-ray examination and special physical examination. The control dogs were divided into groups I and II and the arthritic groups III and IV. Groups I and III received injections of sterile saline while groups II and IV were given 1 mg whole bee venom subcutaneously on days 30, 37, 50, and 60. Plasma cortisol levels were measured weekly and cage activity recorded daily using a K and R Pedometer. Following bee venom injection plasma cortisol levels increased in both groups II and IV from a control of 5Μg/100 ml to 15Μg/100 ml 15 days after therapy. During this period of time the 4 arthritic dogs in group IV increased daily cage activity from 4 mile/day to 10 mile/day. Groups I, II, and III showed no increase or decrease in cage activity. No injections were given between day 60 and day 90. At 90, 97, 110 and 120 days, groups I and III were given bee venom and groups II and IV sterile saline. As before, bee venom increased plasma cortisol levels in both venom-treated groups and the daily cage activity in group III. At 120 days all injections were discontinued. Plasma cortisol levels returned to normal within 30 days, yet daily cage activity in both groups III and IV remained significantly above control (8 to 11 mile/day). Results indicate that whole bee venom stimulates the production of cortisol and the daily cage activity in dogs exhibiting arthritic-like conditions. No significant side effects were noted in any of the dogs treated with bee venom. PMID:24194426

  2. Cage design and configuration for an arboreal species of primate.

    PubMed

    Williams, L E; Abee, C R; Barnes, S R; Ricker, R B

    1988-06-01

    The squirrel monkey (genus Saimiri) is an arboreal primate from equatorial South America. This species forms large social groups that consist of multiple females and males of varying ages, from infant to adult. As the use of squirrel monkeys in research continues to grow, an understanding of optimal cage design and environment is essential. The University of South Alabama Primate Research Laboratory houses a breeding colony of 350 squirrel monkeys. Each group cage, measuring 4.5 X 2.5 X 1.5 meters, can contain up to 20 animals. A breeding group consists of one adult male, eight to ten adult females, and varying numbers of infant and juvenile animals. In order to determine the most suitable cage environment for the squirrel monkey, a series of studies were carried out to compare various perch materials and cage configurations. Squirrel monkeys preferred a poly-vinyl-chloride pipe perch (rigid) over rope perches (non-rigid). When provided with multiple levels of perches, all levels were used. Males tended to distribute their activities randomly at different levels. In a two tiered perch arrangement, females concentrated 67% of their social activity on the top tier. In a triple tier configuration, females concentrated 66% of their travel on the top tier. These results indicate that by creating a cage environment with multiple tiers of horizontal perches the effective cage space can be doubled or tripled. This provides an effective means of reducing population density without enlarging the dimensions of the cage or reducing social group size.

  3. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  4. Fe2+ Substrate Transport through Ferritin Protein Cage Ion Channels Influences Enzyme Activity and Biomineralization

    PubMed Central

    Behera, Rabindra K.; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M.; Goulding, Celia W.; Theil, Elizabeth C.

    2015-01-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3.H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe2+/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one – CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650nm (DFP λmax). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: 1. narrower interior ion channel openings/pores, 2. increased numbers of ion channel protein-metal binding sites, and 3. a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  5. Discrete cage form of water hexamer in the hydrophilic channels assembled by heterocyclic azopyrrole

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwei; Yin, Zhenming

    2015-07-01

    A heterocyclic azopyrrole compound, meso-diethyl-5,5‧-bis(thiazolyldiazo)-dipyrromethane (1), has been synthesized and its two crystals have been characterized by X-ray crystallography. The molecules of compound 1 self-assembled into channel structure in the crystal of 1·3H2O, whereas interlocked type dimer in the crystal of 1·CHCl3. In the 1-D hydrophilic channels of 1·3H2O, six water molecules were held together by eight O-H…O hydrogen bonds and formed discrete cage hexameric clusters. The dehydration/rehydration processes of the compound 1 are also studied.

  6. Beam-induced graphitic carbon cage transformation from sumanene aggregates

    SciTech Connect

    Fujita, Jun-ichi Tachi, Masashi; Murakami, Katsuhisa; Sakurai, Hidehiro; Morita, Yuki; Higashibayashi, Shuhei; Takeguchi, Masaki

    2014-01-27

    We found that electron-beam irradiation of sumanene aggregates strongly enhanced their transformation into a graphitic carbon cage, having a diameter of about 20 nm. The threshold electron dose was about 32 mC/cm{sup 2} at 200 keV, but the transformation is still induced at 20 keV. The transformation sequence suggested that the cage was constructed accompanied by the dynamical movement of the transiently linked sumanene molecules in order to pile up inside the shell. Thus, bond excitation in the sumanene molecules rather than a knock-on of carbon atoms seems to be the main cause of the cage transformation.

  7. Metabolic Cage for a Space Flight Model in the Rat

    NASA Technical Reports Server (NTRS)

    Harper, Jennifer S.; Mulenburg, Gerald M.; Evans, Juli; Navidi, Meena; Wolinsky, Ira; Arnaud, Sara B.

    1994-01-01

    The new cage facilitates the collection of 24-h specimens of separated urine and feces apparently uncontaminated by food, as required for precise nutritional and metabolic studies, while maintaining the large floor area and suspension method of Holton's design (3). Although the cage was evaluated, using 6-month-old rats weighing 408 to 488 g, it can be easily adjusted for smaller rats. It also was successfully used to collect post-flight urine after the recent Spacelab Life Sciences-2 space shuttle flight. With its flexibility and ease of use, this new cage design adds a new tool to study the physiologic effects of simulated space flight and other disuse conditions.

  8. Jamming versus caging in three dimensional jamming percolation

    NASA Astrophysics Data System (ADS)

    Segall, Nimrod; Teomy, Eial; Shokef, Yair

    2016-05-01

    We investigate a three-dimensional kinetically-constrained model that exhibits two types of phase transitions at different densities. At the jamming density $ \\rho_J $ there is a mixed-order phase transition in which a finite fraction of the particles become frozen, but the other particles may still diffuse throughout the system. At the caging density $ \\rho_C > \\rho_J $, the mobile particles are trapped in finite cages and no longer diffuse. The caging transition occurs due to a percolation transition of the unfrozen sites, and we numerically find that it is a continuous transition with the same critical exponents as random percolation.

  9. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires.

    PubMed

    Kim, H; Johnson, J W

    1999-02-01

    Orthodontic wires containing nickel have been implicated in allergic reactions. The potential for orthodontic wires to cause allergic reactions is related to the pattern and mode of corrosion with subsequent release of metal ions, such as nickel, into the oral cavity. The purpose of this study was to determine if there is a significant difference in the corrosive potential of stainless steel, nickel titanium, nitride-coated nickel titanium, epoxy-coated nickel titanium, and titanium orthodontic wires. At least two specimens of each wire were subjected to potentiostatic anodic dissolution in 0.9% NaCl solution with neutral pH at room temperature. Using a Wenking MP 95 potentiostat and an electrochemical corrosion cell, the breakdown potential of each wire was determined. Photographs were taken of the wire speci mens using a scanning electron microscope, and surface changes were qualitatively evaluated. The breakdown potentials of stainless steel, two nickel titanium wires, nitride-coated nickel titanium, epoxy-coated nickel titanium, and titanium were 400 mV, 300 mV, 750 mV, 300 mV, 1800 mV, and >2000 mV, respectively. SEM photographs revealed that some nickel titanium and stainless steel wires were susceptible to pitting and localized corrosion. The results indicate that corrosion occurred readily in stainless steel. Variability in breakdown potential of nickel titanium alloy wires differed across vendors' wires. The nitride coating did not affect the corrosion of the alloy, but epoxy coating decreased corrosion. Titanium wires and epoxy-coated nickel titanium wires exhibited the least corrosive potential. For patients allergic to nickel, the use of titanium or epoxy-coated wires during orthodontic treatment is recommended.

  10. Titanium: light, strong, and white

    USGS Publications Warehouse

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  11. Titanium fasteners. [for aircraft industry

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  12. Stress corrosion in titanium alloys and other metallic materials

    NASA Technical Reports Server (NTRS)

    Harkins, C. G. (Editor); Brotzen, F. R.; Hightower, J. W.; Mclellan, R. B.; Roberts, J. M.; Rudee, M. L.; Leith, I. R.; Basu, P. K.; Salama, K.; Parris, D. P.

    1971-01-01

    Multiple physical and chemical techniques including mass spectroscopy, atomic absorption spectroscopy, gas chromatography, electron microscopy, optical microscopy, electronic spectroscopy for chemical analysis (ESCA), infrared spectroscopy, nuclear magnetic resonance (NMR), X-ray analysis, conductivity, and isotopic labeling were used in investigating the atomic interactions between organic environments and titanium and titanium oxide surfaces. Key anhydrous environments studied included alcohols, which contain hydrogen; carbon tetrachloride, which does not contain hydrogen; and mixtures of alcohols and halocarbons. Effects of dissolved salts in alcohols were also studied. This program emphasized experiments designed to delineate the conditions necessary rather than sufficient for initiation processes and for propagation processes in Ti SCC.

  13. A reduction boronation route to nanocrystalline titanium diboride

    NASA Astrophysics Data System (ADS)

    Chen, Luyang; Gu, Yunle; Shi, Liang; Yang, Zeheng; Ma, Jianhua; Qian, Yitai

    2004-04-01

    Nanocrystalline titanium diboride (TiB 2) has been prepared through a reduction-boronation route by using Ti powders and BBr 3 as titanium and boron sources, and metallic sodium as reductant at 400 °C. X-ray powder diffraction (XRD) pattern can be indexed as hexagonal TiB 2 with the lattice constants of a=3.028 and c=3.223 Å. Transmission electron microscopy images show particle morphology with average size of 15 nm. Selected area electron diffraction patterns confirm the preparation of the hexagonal TiB 2.

  14. Opportunity Studies Bait in Shark's Cage

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In its 49th sol on Mars, NASA's Opportunity had nearly concluded its scientific examination of the extreme southwestern end of the outcrop in Meridiani Planum. In the 'Shark's Cage' area of the neighborhood called 'Shoemaker's Patio,' featured in this image from the front hazard avoidance camera, Opportunity deployed its arm to study the features called 'Shark's Tooth,' 'Shark Pellets,' and 'Lamination.' 'Shark's Tooth' is a piece of the unusual red rind that appears to fill cracks in the outcrop. This rind may be some kind of chemical alteration of the rocks. 'Shark Pellets' is an area of soil that was under investigation as part of the crater soil survey. 'Lamination' is a target with very thin layers that resemble uniform pages in a book, an indication of how the sediments were deposited. A final experiment in this area will be attempted on sol 51. Opportunity's front left wheel will 'scuff' the rock called 'Carousel.' 'Scuffing' involves scraping the rock with one wheel while holding all the others still. This experiment essentially turns the rover wheels into tools, to try and determine the hardness of the target rock.

  15. Linear diffusion into a Faraday cage.

    SciTech Connect

    Warne, Larry Kevin; Lin, Yau Tang; Merewether, Kimball O.; Chen, Kenneth C.

    2011-11-01

    Linear lightning diffusion into a Faraday cage is studied. An early-time integral valid for large ratios of enclosure size to enclosure thickness and small relative permeability ({mu}/{mu}{sub 0} {le} 10) is used for this study. Existing solutions for nearby lightning impulse responses of electrically thick-wall enclosures are refined and extended to calculate the nearby lightning magnetic field (H) and time-derivative magnetic field (HDOT) inside enclosures of varying thickness caused by a decaying exponential excitation. For a direct strike scenario, the early-time integral for a worst-case line source outside the enclosure caused by an impulse is simplified and numerically integrated to give the interior H and HDOT at the location closest to the source as well as a function of distance from the source. H and HDOT enclosure response functions for decaying exponentials are considered for an enclosure wall of any thickness. Simple formulas are derived to provide a description of enclosure interior H and HDOT as well. Direct strike voltage and current bounds for a single-turn optimally-coupled loop for all three waveforms are also given.

  16. Multiexpandable cage for minimally invasive posterior lumbar interbody fusion

    PubMed Central

    Coe, Jeffrey D; Zucherman, James F; Kucharzyk, Donald W; Poelstra, Kornelis A; Miller, Larry E; Kunwar, Sandeep

    2016-01-01

    The increasing adoption of minimally invasive techniques for spine surgery in recent years has led to significant advancements in instrumentation for lumbar interbody fusion. Percutaneous pedicle screw fixation is now a mature technology, but the role of expandable cages is still evolving. The capability to deliver a multiexpandable interbody cage with a large footprint through a narrow surgical cannula represents a significant advancement in spinal surgery technology. The purpose of this report is to describe a multiexpandable lumbar interbody fusion cage, including implant characteristics, intended use, surgical technique, preclinical testing, and early clinical experience. Results to date suggest that the multiexpandable cage allows a less invasive approach to posterior/transforaminal lumbar interbody fusion surgery by minimizing iatrogenic risks associated with static or vertically expanding interbody prostheses while providing immediate vertebral height restoration, restoration of anatomic alignment, and excellent early-term clinical results. PMID:27729817

  17. In Silico Promoter Recognition from deepCAGE Data.

    PubMed

    Yang, Xinyi; Marsico, Annalisa

    2017-01-01

    The accurate identification of transcription start regions corresponding to the promoters of known genes, novel coding, and noncoding transcripts, as well as enhancer elements, is a crucial step towards a complete understanding of state-specific gene regulatory networks. Recent high-throughput techniques, such as deepCAGE or single-molecule CAGE, have made it possible to identify the genome-wide location, relative expression, and differential usage of transcription start regions across hundreds of different tissues and cell lines. Here, we describe in detail the necessary computational analysis of CAGE data, with focus on two recent in silico methodologies for CAGE peak/profile definition and promoter recognition, namely the Decomposition-based Peak Identification (DPI) and the PROmiRNA software. We apply both methodologies to the challenging task of identifying primary microRNAs transcript (pri-miRNA) start sites and compare the results. PMID:27662877

  18. Porous organic cages: soluble, modular and molecular pores

    NASA Astrophysics Data System (ADS)

    Hasell, Tom; Cooper, Andrew I.

    2016-09-01

    Porosity is a rare property for molecular materials but, surprisingly, porous solids built from discrete organic cage molecules have emerged as a versatile functional-materials platform. From modest beginnings less than a decade ago, there are now organic cage solids with surface areas that can rival extended metal-organic frameworks. In contrast to network polymers and frameworks, these organic cages are synthesized first and then assembled in the solid state in a separate step. This offers solution-processing options that are not available for insoluble organic and inorganic frameworks. In this Review, we highlight examples of porous organic cages and focus on the unique features that set them apart, such as their molecular solubility, their increased tendency to exhibit polymorphism and the scope for modular co-crystallization.

  19. 6. VIEW OF UTILITY TUNNEL, DRYDOCK NO., 4 (CAGE ENCLOSES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF UTILITY TUNNEL, DRYDOCK NO., 4 (CAGE ENCLOSES ACCESS TO SEWAGE PIT) - U.S. Naval Base, Pearl Harbor, Dry Dock No. 4, West of State Route 92, West of Nimitz Gate, Pearl City, Honolulu County, HI

  20. Porous organic cages: soluble, modular and molecular pores

    NASA Astrophysics Data System (ADS)

    Hasell, Tom; Cooper, Andrew I.

    2016-09-01

    Porosity is a rare property for molecular materials but, surprisingly, porous solids built from discrete organic cage molecules have emerged as a versatile functional-materials platform. From modest beginnings less than a decade ago, there are now organic cage solids with surface areas that can rival extended metal–organic frameworks. In contrast to network polymers and frameworks, these organic cages are synthesized first and then assembled in the solid state in a separate step. This offers solution-processing options that are not available for insoluble organic and inorganic frameworks. In this Review, we highlight examples of porous organic cages and focus on the unique features that set them apart, such as their molecular solubility, their increased tendency to exhibit polymorphism and the scope for modular co-crystallization.

  1. Improved adherence of sputtered titanium carbide coatings on nickel- and titanium-base alloys

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1979-01-01

    Rene 41 and Ti-6Al-4V alloys were radio frequency sputter coated with titanium carbide by several techniques in order to determine the most effective. Coatings were evaluated in pin-on-disk tests. Surface analysis by X-ray photoelectron spectroscopy was used to relate adherence to interfacial chemistry. For Rene 41, good coating adherence was obtained when a small amount of acetylene was added to the sputtering plasma. The acetylene carburized the alloy surface and resulted in better bonding to the TiC coating. For Ti-6Al-4V, the best adherence and wear protection was obtained when a pure titanium interlayer was used between the coating and the alloy. The interlayer is thought to prevent the formation of a brittle, fracture-prone, aluminum oxide layer.

  2. Titanium Optics for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.; Rawlin, Vincent K.

    1999-01-01

    Ion thruster total impulse capability is limited, in part, by accelerator grid sputter erosion. A development effort was initiated to identify a material with a lower accelerator grid volumetric sputter erosion rate than molybdenum, but that could utilize the present NSTAR thruster grid design and fabrication techniques to keep development costs low, and perform as well as molybdenum optics. After comparing the sputter erosion rates of several atomic materials to that of molybdenum at accelerator voltages, titanium was found to offer a 45% reduction in volumetric erosion rates. To ensure that screen grid sputter erosion rates are not higher at discharge chamber potentials, titanium and molybdenum sputter erosion rates were measured at these potentials. Preliminary results showed only a slightly higher volumetric erosion rate for titanium, so that screen grid erosion is insignificant. A number of material, thermal, and mechanical properties were also examined to identify any fabrication, launch environment, and thruster operation issues. Several titanium grid sets were successfully fabricated. A titanium grid set was mounted onto an NSTAR 30 cm engineering model ion thruster and tested to determine optics performance. The titanium optics operated successfully over the entire NSTAR power range of 0.5 to 2.3 kW. Differences in impingement-limited perveances and electron backstreaming limits were found to be due to a larger cold gap for the titanium optics. Discharge losses for titanium grids were lower than those for molybdenum, likely due to a slightly larger titanium screen grid open area fraction. Radial distributions of beam current density with titanium optics were very similar to those with molybdenum optics at all power levels. Temporal electron backstreaming limit measurements showed that titanium optics achieved thermal equilibrium faster than molybdenum optics.

  3. Theoretical study of Si20Li20 cage cluster

    NASA Astrophysics Data System (ADS)

    Zdetsis, Aristides D.; Koukaras, Emmanuel N.

    2012-12-01

    The stabilization effects of Li on Si20Li20 cage clusters, as a special example of SinLin clusters, are studied by high accuracy all electron density functional theory calculations. This allows to assess the capability of Li to play a role similar to hydrogen in stabilizing silicon cages similar to SinHn (and CnHn), in view of its capacity to stabilize planar Si6Li6 rings similar to benzene. It is shown that indeed Si20Li20 is a very stable cage of high D5d symmetry with large HOMO-LUMO gap and real frequencies. Based on the binding energy, its stability is the highest among all Si20Li20 clusters examined here, including almost all conceivable best and worst bonding and stability cases. This is highly suggestive that this highly symmetric "icosahedral" cage should be the global, or at least a very low-lying local minimum of the energy hyper-surface. It is therefore illustrated that the "rule of thumb" for building stable SinLin structures homologous to the corresponding aromatic CnHn molecules suggested earlier by Zdetsis [J. Chem. Phys. 127, 214306 (2007)], is also valid for "Fulleranes" and cages, including also the geometry and symmetry of the ideal structure(s). Preliminary results on Si60Li60 cages confirm this assertion.

  4. Folding Dynamics and Pathways of the Trp-Cage Miniproteins

    PubMed Central

    2015-01-01

    Using alternate measures of fold stability for a wide variety of Trp-cage mutants has raised the possibility that prior dynamics T-jump measures may not be reporting on complete cage formation for some species. NMR relaxation studies using probes that only achieve large chemical shift difference from unfolded values on complete cage formation indicate slower folding in some but not all cases. Fourteen species have been examined, with cage formation time constants (1/kF) ranging from 0.9–7.5 μs at 300 K. The present study does not change the status of the Trp-cage as a fast folding, essentially two-state system, although it does alter the stage at which this description applies. A diversity of prestructuring events, depending on the specific analogue examined, may appear in the folding scenario, but in all cases, formation of the N-terminal helix is complete either at or before the cage-formation transition state. In contrast, the fold-stabilizing H-bonding interactions of the buried Ser14 side chain and the Arg/Asp salt bridge are post-transition state features on the folding pathway. The study has also found instances in which a [P12W] mutation is fold destabilizing but still serves to accelerate the folding process. PMID:25184759

  5. Rat Breeding Parameters According to Floor Space Available in Cage.

    PubMed

    Allen, Kenneth P; Dwinell, Melinda R; Zappa, Allison M; Michaels, Andrea M; Murray, Kathleen M; Thulin, Joseph D

    2016-01-01

    The cage floor space recommended for a female rat with a litter is greater in the 8th edition of the Guide for the Care and Use of Laboratory Animals than in previous editions. As a result, research institutions using commonly available cages to house rats may not offer the recommended amount of space for a breeding pair and litter housed in the same cage. We evaluated breeding parameters in rats housed in cages with 143 in(2) (922.6 cm(2)) compared with 210 in(2) (1355 cm(2)) of floor space. Given the strains of rats typically used at our institution, a monogamous breeding pair and litter requires 164 in(2) (1058.1 cm(2)) of floor space according to the Guide. Pairs of breeding animals were housed in each type of cage; and average time between litters, number of litters born, percentage of litter weaned, numbers of pups born and weaned, and average weaning weights were evaluated. None of the breeding parameters evaluated differed according to the floor space of the cage in which the rats were housed.

  6. Homogenized boundary conditions and resonance effects in Faraday cages

    PubMed Central

    Hewitt, I. J.

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775

  7. Rat Breeding Parameters According to Floor Space Available in Cage

    PubMed Central

    Allen, Kenneth P; Dwinell, Melinda R; Zappa, Allison M; Michaels, Andrea M; Murray, Kathleen M; Thulin, Joseph D

    2016-01-01

    The cage floor space recommended for a female rat with a litter is greater in the 8th edition of the Guide for the Care and Use of Laboratory Animals than in previous editions. As a result, research institutions using commonly available cages to house rats may not offer the recommended amount of space for a breeding pair and litter housed in the same cage. We evaluated breeding parameters in rats housed in cages with 143 in2 (922.6 cm2) compared with 210 in2 (1355 cm2) of floor space. Given the strains of rats typically used at our institution, a monogamous breeding pair and litter requires 164 in2 (1058.1 cm2) of floor space according to the Guide. Pairs of breeding animals were housed in each type of cage; and average time between litters, number of litters born, percentage of litter weaned, numbers of pups born and weaned, and average weaning weights were evaluated. None of the breeding parameters evaluated differed according to the floor space of the cage in which the rats were housed. PMID:26817975

  8. Electrostatic assembly of binary nanoparticle superlattices using protein cages

    NASA Astrophysics Data System (ADS)

    Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo

    2013-01-01

    Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

  9. Preparation and properties of biomedical porous titanium alloys by gelcasting.

    PubMed

    Yang, Donghua; Shao, Huiping; Guo, Zhimeng; Lin, Tao; Fan, Lianpeng

    2011-08-01

    Porous titanium alloys have been prepared by gelcasting in this study. The elastic solid green body was first polymerized and then vacuum sintered to porous titanium alloys with low contamination by controlling sintering conditions. The microstructure and the total porosity of the vacuum sintered porous Ti-Co and Ti-Mo alloys were analyzed by using scanning electron microscopy and x-ray diffraction. Moreover, compression and bending tests were conducted to investigate their mechanical properties. The results show that open and closed three-dimensional pore morphologies and total porosity ranging from 38.34% to 58.32% can be achieved. In contrast to porous Ti by gelcasting, the compression and bending strengths of porous titanium alloys were significantly increased by adding Mo and Co with Young's modulus ranging between 7-25 GPa, which is close to that of human cortical bone, therefore being suited for potential application in load-bearing implants.

  10. Microstructure and corrosion behavior of binary titanium alloys with beta-stabilizing elements.

    PubMed

    Takada, Y; Nakajima, H; Okuno, O; Okabe, T

    2001-03-01

    Binary titanium alloys with the beta-stabilizing elements of Co, Cr, Cu, Fe, Mn and Pd (up to 30%) and Ag (up to 45%) were examined through metallographic observation and X-ray diffractometry to determine whether beta phases that are advantageous for dental use could be retained. Corrosion behavior was also investigated electrochemically and discussed thermodynamically. Some cast alloys with Co, Cr, Fe, Mn, and Pd retained the beta phase, whereas those with Ag and Cu had no beta phase. In some alloys, an intermetallic compound formed, based on information from the phase diagram. The corrosion resistance deteriorated in the TiAg alloys because Ti2Ag and/or TiAg intermetallic compounds preferentially dissolved in 0.9% NaCl solution. On the other hand, the remaining titanium alloys became easily passive and revealed good corrosion resistance similar to pure titanium since their matrices seemed to thermodynamically form titanium oxides as did pure titanium.

  11. A new route for the synthesis of titanium silicalite-1

    SciTech Connect

    Vasile, Aurelia; Busuioc-Tomoiaga, Alina Maria

    2012-01-15

    Graphical abstract: Well-prepared TS-1 was synthesized by an innovative procedure using inexpensive reagents such as fumed silica and TPABr as structure-directing agent. This is the first time when highly crystalline TS-1 is obtained in basic medium, using sodium hydroxide as HO{sup -} ion source required for the crystallization process. Hydrolysis of titanium source has been prevented by titanium complexation with acetylacetone before structuring gel. Highlights: Black-Right-Pointing-Pointer TS-1 was obtained using cheap reagents as fumed silica and tetrapropylammonium bromide. Black-Right-Pointing-Pointer First time NaOH was used as source of OH{sup -} ions required for crystallization process. Black-Right-Pointing-Pointer The hydrolysis Ti alkoxides was controlled by Ti complexation with 2,4-pentanedione. -- Abstract: A new and efficient route using inexpensive reagents such as fumed silica and tetrapropylammonium bromide is proposed for the synthesis of titanium silicalite-1. High crystalline titanium silicalite-1 was obtained in alkaline medium, using sodium hydroxide as HO{sup -} ion source required for the crystallization process. Hydrolysis of titanium source with formation of insoluble oxide species was prevented by titanium complexation with before structuring gel. The final solids were fully characterized by powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance, Raman and atomic absorption spectroscopies, as well as nitrogen sorption analysis. It was found that a molar ratio Ti:Si of about 0.04 in the initial reaction mixture is the upper limit to which well formed titanium silicalite-1 with channels free of crystalline or amorphous material can be obtained. Above this value, solids with MFI type structure containing both Ti isomorphously substituted in the network and extralattice anatase nanoparticles inside of channels is formed.

  12. Evaluation of individually ventilated cage systems for laboratory rodents: cage environment and animal health aspects.

    PubMed

    Höglund, A U; Renström, A

    2001-01-01

    The use of individually ventilated cage (IVC) systems has become an attractive housing regime of laboratory rodents. The benefits of IVC systems are, reportedly, a high degree of containment combined with relative ease of handling, and a high degree of protection from allergenes. In the present study we tested whether two IVC systems (BioZone VentiRack, IVC1 and Techniplast SealSafe, IVC2S), in which we held mature male NMRI mice, were constructed to maintain a constant differential pressure, positive or negative, during a prolonged period of time. We also measured ammonia (NH3) concentrations after about 2 weeks of use, and CO2 build-up during a 60 min simulated power failure situation. In addition, animal weight development and bite-wound frequency were recorded (Renström et al. 2000). From the present study it is concluded that the IVC1 air handling system provides a more uniform and balanced differential pressure than the IVC2S. Both systems effectively scavenge NH3 when bedding material is not soaked by urine. Although the IVCs are dependent on the continual function of the fans to work properly, it seems unlikely that CO2 concentrations increase to hazardous levels, as a result of a one hour power failure, with the type of cages used in this study. Differences in weight development and bite-wound occurrence were noted between the two IVC systems. Causes for these differences could not be established and need more investigation. PMID:11201288

  13. Convenient synthesis of aluminum and gallium phosphonate cages.

    PubMed

    Samanamu, Christian R; Olmstead, Marilyn M; Montchamp, Jean-Luc; Richards, Anne F

    2008-05-01

    The reactions of AlCl 3.6H 2O and GaCl 3 with 2-pyridylphosphonic acid (2PypoH 2) and 4-pyridylphosphonic acid (4PypoH 2) afford cyclic aluminum and gallium phosphonate structures of [(2PypoH) 4Al 4(OH 2) 12]Cl 8.6H 2O ( 1), [(4PypoH) 4Al 4(OH 2) 12]Cl 8.11H 2O ( 2), [(2PypoH) 4Al 4(OH 2) 12](NO 3) 8.7H 2O ( 3), [(2PypoH) 2(2Pypo) 4Ga 8Cl 12(OH 2) 4(thf) 2](GaCl 4) 2..8thf ( 4), and [(2PypoH) 2(2Pypo) 4Ga 8Cl 12(OH 2) 4(thf) 2](NO 3) 2.9thf ( 5). Structures 1- 3 feature four aluminum atoms bridged by oxygen atoms from the phosphonate moiety and show structural resemblance to the secondary building units found in zeolites and aluminum phosphates. The gallium complexes, 4 and 5, have eight gallium atoms bridged by phosphonate moieties with two GaCl 4 (-) counterions present in 4 and nitrate ions in 5. The cage structures 1- 3 are interlinked by strong hydrogen bonds, forming polymeric chains that, for aluminum, are thermally robust. Exchange of the phosphonic acid for the more flexible 4PyCH 2PO 3H 2 afforded a coordination polymer with a 1:1 Ga:P ratio, {[(4PyCH 2PO 3H)Ga(OH 2) 3](NO 3) 2.0.5H 2O} x ( 6). Complexes 1- 6 were characterized by single-crystal X-ray diffraction, NMR, and mass spectrometry and studied by TGA. PMID:18366160

  14. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion.

    PubMed

    de Visser, Leonie; van den Bos, Ruud; Spruijt, Berry M

    2005-05-28

    This paper introduces automated observations in a modular home cage system as a tool to measure the effects of wheel running on the time distribution and daily organization of cage floor locomotor activity in female C57BL/6 mice. Mice (n = 16) were placed in the home cage system for 6 consecutive days. Fifty percent of the subjects had free access to a running wheel that was integrated in the home cage. Overall activity levels in terms of duration of movement were increased by wheel running, while time spent inside a sheltering box was decreased. Wheel running affected the hourly pattern of movement during the animals' active period of the day. Mice without a running wheel, in contrast to mice with a running wheel, showed a clear differentiation between novelty-induced and baseline levels of locomotion as reflected by a decrease after the first day of introduction to the home cage. The results are discussed in the light of the use of running wheels as a tool to measure general activity and as an object for environmental enrichment. Furthermore, the possibilities of using automated home cage observations for e.g. behavioural phenotyping are discussed.

  15. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2015-07-01

    The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere-ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional

  16. Ferromagnetism in cobalt-doped titanium dioxide

    NASA Astrophysics Data System (ADS)

    Lussier, Alexandre Francois

    Semiconductor spintronics is a promising new field of study in the ongoing quest to make electronic devices faster, cheaper, and more efficient. While current spintronics utilizes the spin property of electrons to achieve greater functionality, the integration of spintronics into conventional semiconductor electronics will lead to advances in opto-electronics, quantum computing, and other emerging fields of technology. This integration relies on effective generation, injection, transport, and detection of spin polarized electron currents. To these ends, the successful synthesis of room temperature ferromagnetic semiconductors is mandatory. In this work, we study the properties of cobalt-doped titanium dioxide, a room temperature dilute ferromagnetic semiconductor discovered in 2001. We characterize the Pulsed Laser Deposition (PLD) of Co-doped TiO2 thin films, including the substrate-induced stabilization of the anatase structure of TiO2. We also confirm the substitutional nature of cobalt on titanium sites by X-ray Absorption Spectroscopy (XAS) techniques. The ferromagnetic interaction mechanism remains controversial. Yet, we provide experimental evidence for the polaron mediated ferromagnetic coupling mechanism recently suggested to mediate ferromagnetic interactions in this, and other magnetically doped oxides, in the dilute regime (approximately 0 to 3%). Our evidence is related to a previously unobserved and unreported XAS spectral feature. Finally, we demonstrate the surprising absence of an X-ray Magnetic Circular Dichroism (XMCD) signature at the cobalt L edge.

  17. Polyisocyanides of titanium.

    PubMed

    Rayón, Víctor M; Redondo, Pilar; Valdés, Haydee; Barrientos, Carmen; Largo, Antonio

    2009-02-26

    Neutral Ti[CN](n) complexes have been investigated with quantum chemistry techniques. According to our theoretical predictions, these complexes are shown to prefer isocyanide arrangements. Therefore, these compounds are good candidates to be the first polyisocyanides to be characterized. The theoretical calculations predict Ti(NC)(4), a methane-like tetrahedral structure with four isocyanide ligands, as the most stable neutral complex. The fact that the isocyanide ligand is a better pi-donor than the cyanide one seems to be the key factor for the preference for isocyanides in neutral titanium complexes.

  18. Structural effects of titanium citrate on the human erythrocyte membrane.

    PubMed

    Suwalsky, M; Villena, F; Norris, B; Soto, M A; Sotomayor, C P; Messori, L; Zatta, P

    2005-03-01

    The structural effects of titanium citrate on the human erythrocyte membrane were studied through its interaction with intact erythrocytes and isolated unsealed human erythrocyte membranes (IUM). The studies were carried out by scanning electron microscopy and fluorescence spectroscopy, respectively. Titanium citrate induced shape changes in erythrocytes, which were damaged and ruptured leaving empty and retracted membranes. Fluorescence spectroscopy measurements in IUM indicated a disordering effect at both the polar head group and the acyl chain packing arrangements of the membrane phospholipid bilayer. Titanium citrate also interacted with molecular models of the erythrocyte membrane consisting in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representing classes of phospholipids located in the outer and inner monolayers of the erythrocyte membrane, respectively. X-ray diffraction indicated that titanium citrate induced structural perturbation of the polar head group and of the hydrophobic acyl regions of DMPC, while the effects on DMPE bilayers were negligible. This conclusion is supported by fluorescence spectroscopy measurements on DMPC large unilamellar vesicles. All these findings indicate that the structural perturbations induced by titanium to human erythrocytes can be extended to other cells, thereby affecting their functions. PMID:15708797

  19. Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc (IVD) degeneration treatment.

    PubMed

    Serra, T; Capelli, C; Toumpaniari, R; Orriss, I R; Leong, J J H; Dalgarno, K; Kalaskar, D M

    2016-01-01

    Spinal fusion is the gold standard surgical procedure for degenerative spinal conditions when conservative therapies have been unsuccessful in rehabilitation of patients. Novel strategies are required to improve biocompatibility and osseointegration of traditionally used materials for lumbar cages. Furthermore, new design and technologies are needed to bridge the gap due to the shortage of optimal implant sizes to fill the intervertebral disc defect. Within this context, additive manufacturing technology presents an excellent opportunity to fabricate ergonomic shape medical implants. The goal of this study is to design and manufacture a 3D-printed lumbar cage for lumbar interbody fusion. Optimisations of the proposed implant design and its printing parameters were achieved via in silico analysis. The final construct was characterised via scanning electron microscopy, contact angle, x-ray micro computed tomography (μCT), atomic force microscopy, and compressive test. Preliminary in vitro cell culture tests such as morphological assessment and metabolic activities were performed to access biocompatibility of 3D-printed constructs. Results of in silico analysis provided a useful platform to test preliminary cage design and to find an optimal value of filling density for 3D printing process. Surface characterisation confirmed a uniform coating of nHAp with nanoscale topography. Mechanical evaluation showed mechanical properties of final cage design similar to that of trabecular bone. Preliminary cell culture results showed promising results in terms of cell growth and activity confirming biocompatibility of constructs. Thus for the first time, design optimisation based on computational and experimental analysis combined with the 3D-printing technique for intervertebral fusion cage has been reported in a single study. 3D-printing is a promising technique for medical applications and this study paves the way for future development of customised implants in spinal

  20. Hypersensitivity reactions to titanium: diagnosis and management.

    PubMed

    Wood, Megan M; Warshaw, Erin M

    2015-01-01

    Titanium is notable for its biocompatibility and is used as biologic implant material across surgical specialties, especially in metal-sensitive individuals. However, rare cases of titanium hypersensitivity reactions are reported in the literature. This article discusses the properties and biological behavior of titanium and provides a thorough review of the literature on reported cases, diagnostic techniques, and approach to management of titanium hypersensitivity.

  1. Initial stages of microbiologically influenced tarnishing on titanium after 20 months of immersion in freshwater.

    PubMed

    Moreno, D A; Cano, E; Ibars, J R; Polo, J L; Montero, F; Bastidas, J M

    2004-05-01

    This paper studies the initial stages of iridescent tarnishes on titanium heat exchanger tubes in contact with running freshwater on the river Tagus in Spain for up to 20 months. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy [(SEM with energy dispersive X-ray (EDX)] and X-ray photoelectron spectroscopy (XPS) in conjunction with argon-ion sputtering were the techniques used. The EIS data indicated a capacitive behavior, showing a semicircle that was better defined as the experimental time increased, indicating a decreasing tarnishing resistance of titanium. XPS and EDX results indicated that the main elements identified were calcium, phosphorus, nitrogen, and iron. The amount of these elements was higher on the tarnished titanium specimens than on the untarnished specimens. SEM analysis showed the presence of diatoms in the iridescent tarnishes on titanium tubes.

  2. Initial stages of microbiologically influenced tarnishing on titanium after 20 months of immersion in freshwater.

    PubMed

    Moreno, D A; Cano, E; Ibars, J R; Polo, J L; Montero, F; Bastidas, J M

    2004-05-01

    This paper studies the initial stages of iridescent tarnishes on titanium heat exchanger tubes in contact with running freshwater on the river Tagus in Spain for up to 20 months. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy [(SEM with energy dispersive X-ray (EDX)] and X-ray photoelectron spectroscopy (XPS) in conjunction with argon-ion sputtering were the techniques used. The EIS data indicated a capacitive behavior, showing a semicircle that was better defined as the experimental time increased, indicating a decreasing tarnishing resistance of titanium. XPS and EDX results indicated that the main elements identified were calcium, phosphorus, nitrogen, and iron. The amount of these elements was higher on the tarnished titanium specimens than on the untarnished specimens. SEM analysis showed the presence of diatoms in the iridescent tarnishes on titanium tubes. PMID:14586580

  3. Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide particles

    SciTech Connect

    Zhao Difang . E-mail: zdf6910@163.com; Zhou Jie; Liu Ning

    2007-03-15

    This paper presents the results of a study in which nanosized titanium dioxide (TiO{sub 2}) crystal particles were coated onto the surface of palygorskite fibrous clay which had been modified by silver ions using titanium tetrachloride as a precursor. Coated TiO{sub 2} particles with the anatase structure were formed after calcining at 400 deg. C for 2 h in air. Various analytical techniques were used to characterize the surface properties of titanium dioxide particles on the palygorskite. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that TiO{sub 2} particles were supported on the surface of the palygorskite clays and their size was in the range of 3-6 nm. The titanium oxide coatings were found to be very active for the photocatalytic decomposition of methylene blue.

  4. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  5. Electrorotation of titanium microspheres.

    PubMed

    Arcenegui, Juan J; Ramos, Antonio; García-Sánchez, Pablo; Morgan, Hywel

    2013-04-01

    Electrorotation (ROT) data for solid titanium micrometer-sized spheres in an electrolyte are presented for three different ionic conductivities, over the frequency range of 10 Hz to 100 kHz. The direction of rotation was found to be opposite to the direction of rotation of the electric field vector (counterfield electrorotation), with a single rotation peak. The maximum rotation rate occurs at a frequency of the order of the reciprocal RC time constant for charging the particle double layer capacitance through the resistor of the electrolyte bulk. A model for the electrical torque acting on a metallic sphere is presented, using a constant phase element impedance to describe the metal/electrolyte interface. The titanium spheres are much denser than the electrolyte and rest on the bottom substrate. Therefore, the electrical and viscous torques near a wall are considered in the analysis. Good agreement is found between the predicted and measured rotational speed as a function of frequency. Theory shows that there is no effect of induced charge electroosmotic flow on the ROT, as observed experimentally.

  6. Compaction of Titanium Powders

    NASA Astrophysics Data System (ADS)

    Gerdemann, Stephen J.; Jablonski, Paul D.

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  7. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration

    NASA Astrophysics Data System (ADS)

    Wang, Guifang; Li, Jinhua; Lv, Kaige; Zhang, Wenjie; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan

    2016-08-01

    Thermal oxidation, which serves as a low-cost, effective and relatively simple/facile method, was used to modify a micro-structured titanium surface in ambient atmosphere at 450 °C for different time periods to improve in vitro and in vivo bioactivity. The surface morphology, crystallinity of the surface layers, chemical composition and chemical states were evaluated by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Cell behaviours including cell adhesion, attachment, proliferation, and osteogenic differentiation were observed in vitro study. The ability of the titanium surface to promote osseointegration was evaluated in an in vivo animal model. Surface thermal oxidation on titanium implants maintained the microstructure and, thus, both slightly changed the nanoscale structure of titanium and enhanced the crystallinity of the titanium surface layer. Cells cultured on the three oxidized titanium surfaces grew well and exhibited better osteogenic activity than did the control samples. The in vivo bone-implant contact also showed enhanced osseointegration after several hours of oxidization. This heat-treated titanium enhanced the osteogenic differentiation activity of rBMMSCs and improved osseointegration in vivo, suggesting that surface thermal oxidation could potentially be used in clinical applications to improve bone-implant integration.

  8. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration.

    PubMed

    Wang, Guifang; Li, Jinhua; Lv, Kaige; Zhang, Wenjie; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan

    2016-01-01

    Thermal oxidation, which serves as a low-cost, effective and relatively simple/facile method, was used to modify a micro-structured titanium surface in ambient atmosphere at 450 °C for different time periods to improve in vitro and in vivo bioactivity. The surface morphology, crystallinity of the surface layers, chemical composition and chemical states were evaluated by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Cell behaviours including cell adhesion, attachment, proliferation, and osteogenic differentiation were observed in vitro study. The ability of the titanium surface to promote osseointegration was evaluated in an in vivo animal model. Surface thermal oxidation on titanium implants maintained the microstructure and, thus, both slightly changed the nanoscale structure of titanium and enhanced the crystallinity of the titanium surface layer. Cells cultured on the three oxidized titanium surfaces grew well and exhibited better osteogenic activity than did the control samples. The in vivo bone-implant contact also showed enhanced osseointegration after several hours of oxidization. This heat-treated titanium enhanced the osteogenic differentiation activity of rBMMSCs and improved osseointegration in vivo, suggesting that surface thermal oxidation could potentially be used in clinical applications to improve bone-implant integration. PMID:27546196

  9. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration

    PubMed Central

    Wang, Guifang; Li, Jinhua; Lv, Kaige; Zhang, Wenjie; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan

    2016-01-01

    Thermal oxidation, which serves as a low-cost, effective and relatively simple/facile method, was used to modify a micro-structured titanium surface in ambient atmosphere at 450 °C for different time periods to improve in vitro and in vivo bioactivity. The surface morphology, crystallinity of the surface layers, chemical composition and chemical states were evaluated by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Cell behaviours including cell adhesion, attachment, proliferation, and osteogenic differentiation were observed in vitro study. The ability of the titanium surface to promote osseointegration was evaluated in an in vivo animal model. Surface thermal oxidation on titanium implants maintained the microstructure and, thus, both slightly changed the nanoscale structure of titanium and enhanced the crystallinity of the titanium surface layer. Cells cultured on the three oxidized titanium surfaces grew well and exhibited better osteogenic activity than did the control samples. The in vivo bone-implant contact also showed enhanced osseointegration after several hours of oxidization. This heat-treated titanium enhanced the osteogenic differentiation activity of rBMMSCs and improved osseointegration in vivo, suggesting that surface thermal oxidation could potentially be used in clinical applications to improve bone-implant integration. PMID:27546196

  10. Metabolic Cages for a Space Flight Model in the Rat

    NASA Technical Reports Server (NTRS)

    Harper, Jennifer S.; Mulenburg, Gerald M.; Evans, Juli; Navidi, Meena; Wolinsky, Ira; Arnaud, Sara B.

    1994-01-01

    A variety of space flight models are available to mimic the physiologic changes seen in the rat during weightlessness. The model reported by Wronski and Morey-Holton has been widely used by many investigators, in musculoskeletal physiologic studies especially, resulting in accumulation of an extensive database that enables scientists to mimic space flight effects in the 1-g environment of Earth. However, information on nutrition or gastrointestinal and renal function in this space flight model is limited by the difficulty in acquiring uncontaminated metabolic specimens for analysis. In the Holton system, a traction tape harness is applied to the tail, and the rat's hindquarters are elevated by attaching the harness to a pulley system. Weight-bearing hind limbs are unloaded, and there is a headward fluid shift. The tail-suspended rats are able to move freely about their cages on their forelimbs and tolerate this procedure with minimal signs of stress. The cage used in Holton's model is basically a clear acrylic box set on a plastic grid floor with the pulley and tail harness system attached to the open top of the cage. Food is available from a square food cup recessed into a corner of the floor. In this system, urine, feces, and spilled food fall through the grid floor onto absorbent paper beneath the cage and cannot be separated and recovered quantitatively for analysis in metabolic balance studies. Commercially available metabolic cages are generally cylindrical and have been used with a centrally located suspension apparatus in other space flight models. The large living area, three times as large as most metabolic cages, and the free range of motion unique to Holton's model, essential for musculoskeletal investigations, were sacrificed. Holton's cages can accommodate animals ranging in weight from 70 to 600 g. Although an alternative construction of Holton's cage has been reported, it does not permit collection of separate urine and fecal samples. We describe

  11. Endohedral metal atoms in pristine and functionalized fullerene cages.

    PubMed

    Yamada, Michio; Akasaka, Takeshi; Nagase, Shigeru

    2010-01-19

    Fullerene, an allotropic form of carbon made up of spherical molecules formed from pentagonal and hexagonal rings, was first discovered in 1985. Because fullerenes have spacious inner cavities, atoms and clusters can be encapsulated inside the fullerene cages to form endohedral fullerenes. In particular, the unique structural and electronic properties of endohedral metallofullerenes (EMFs), where metal atoms are encapsulated within the fullerene, have attracted wide interest from physicists and chemists as well as materials scientists and biologists. The remarkable characteristics of these molecules originate in the electron transfer from the encapsulated metal atoms to the carbon cage. The positions and movements of the encapsulated metal atoms are important determinants of the chemical and physical properties of EMFs. In this Account, we specifically describe the positions and dynamic behavior of the metal atoms encapsulated in pristine and functionalized fullerene cages. First, we examined whether the metal atoms are attached rigidly to cage carbons or move around. Our systematic investigations of EMFs, including M@C(2v)-C(82), M(2)@D(2)(10611)-C(72), M(2)@D(3h)(5)-C(78), M(2)@I(h)-C(80), and M(2)@D(5h)-C(80), revealed that the metal positions and movements vary widely with different cage structures and numbers of metal atoms. Second, we wanted to understand whether we could control the positions and movements of the untouchable metal atoms in EMFs. One possible way to modulate this behavior was through attachment of a molecule to the outer surface of the cage. We developed synthetic methods to modify EMFs and have examined the metal positions and movements in the functionalized carbon cages. Remarkably, we could alter the dynamic behavior of the encaged metal atoms in M(2)@I(h)-C(80) drastically through chemical modification of the outer cage. We anticipate that the control of metal atom structures and dynamics within a cage could be valuable for designing

  12. Determination of hydrogen in titanium alloys by cold neutron prompt gamma activation analysis

    SciTech Connect

    Paul, R.L.; Lindstrom, R.M.; Greenberg, R.R.; Privett, H.M. III; Richards, W.J.

    1996-11-01

    Cold neutron prompt gamma-ray activation analysis (CNPGAA) has proven useful for the analysis of hydrogen in titanium alloys. The analysis is nondestructive, measures the entire sample, and the results are independent of the chemical form of hydrogen present. The authors have used the technique to measure H mass fractions as low as 50 mg/kg in titanium-alloy jet-engine compressor blades and to measure hydrogen in standards for neutron tomography.

  13. Pyrolytic deposition of nanostructured titanium carbide coatings on the surface of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kremlev, K. V.; Ob"edkov, A. M.; Ketkov, S. Yu.; Kaverin, B. S.; Semenov, N. M.; Gusev, S. A.; Tatarskii, D. A.; Yunin, P. A.

    2016-05-01

    Nanostructured titanium carbide coatings have been deposited on the surface of multiwalled carbon nanotubes (MWCNTs) by the MOCVD method with bis(cyclopentadienyl)titanium dichloride precursor. The obtained TiC/MWCNT hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is established that a TiC coating deposits onto the MWCNT surface with the formation of a core-shell (MWSNT-TiC) type structure.

  14. A metabolic cage for the hindlimb suspended rat

    NASA Technical Reports Server (NTRS)

    Evans, J.; Mulenburg, G. M.; Harper, J. S.; Skundberg, T. L.; Navidi, M.; Arnaud, S. B.

    1994-01-01

    Hindlimb suspension has been successfully used to simulate the effects of microgravity in rats. The cage and suspension system developed by E. R. Holton is designed to produce a headward shift of fluid and unload the hindlimbs in rodents, causing changes in bone and muscle similar to those in animals and humans exposed to spaceflight. While the Holton suspension system simulates many of the conditions observed in the spaceflight animal, it does not provide for the collection of urine and feces needed to monitor some metabolic activities. As a result, only limited information has been gathered on the nutritional status, and the gastrointestinal and renal function of animals using that model. Although commercial metabolic cages are available, they are usually cylindrical and require a centrally located suspension system and thus, do not readily permit movement of the rats. The limited floor space of commercial cages may affect comparisons with studies using the Holton model which has more than twice the living space of most commercially available cages. To take advantage of the extra living space and extensive data base that has been developed with the Holton model, Holton's cage was modified to make urine and fecal collections possible.

  15. Regioselective cage opening of La2 @D2 (10611)-C72 with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine.

    PubMed

    Yamada, Michio; Muto, Yasuhiro; Kurihara, Hiroki; Slanina, Zdenek; Suzuki, Mitsuaki; Maeda, Yutaka; Rubin, Yves; Olmstead, Marilyn M; Balch, Alan L; Nagase, Shigeru; Lu, Xing; Akasaka, Takeshi

    2015-02-01

    The thermal reaction of the endohedral metallofullerene La2 @D2 (10611)-C72 , which contains two pentalene units at opposite ends of the cage, with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine proceeded selectively to afford only two bisfulleroid isomers. The molecular structure of one isomer was determined using single-crystal X-ray crystallography. The results suggest that the [4+2] cycloaddition was initiated in a highly regioselective manner at the C-C bond connecting two pentagon rings of C72 . Subsequent intramolecular electrocyclization followed by cycloreversion resulted in the formation of an open-cage derivative having three seven-membered ring orifices on the cage and a significantly elongated cage geometry. The reduction potentials of the open-cage derivatives were similar to those of La2 @D2 -C72 whereas the oxidation potentials were shifted more negative than those of La2 @D2 -C72 . These results point out that further oxidation could occur easily in the derivatives. PMID:25536953

  16. Beta titanium alloys and their role in the titanium industry

    NASA Astrophysics Data System (ADS)

    Bania, Paul J.

    1994-07-01

    The class of titanium alloys generically referred to as the beta alloys is arguably the most versatile in the titanium family. Since these alloys offer the highest strength-to-weight ratios and deepest hardenability of all titanium alloys, one might expect them to compete favorably for a variety of aerospace applications. To the contrary, however, except for one very successful application (Ti-13V-11Cr-3Al on the SR-71), the beta alloys have remained a very small segment of the industry. As a perspective on this situation, this article reviews some past and present applications of titanium alloys. It also descibes some unique new alloys and applications that promise to reverse historical trends.

  17. Diffusion bonding of titanium-titanium aluminide-alumina sandwich

    SciTech Connect

    Wickman, H.A.; Chin, E.S.C.; Biederman, R.R.

    1995-12-31

    Diffusion bonding of a metallic-intermetallic-ceramic sandwich is of interest for potential armor applications. Low cost titanium, titanium diboride reinforced titanium aluminide (Ti-48at.%Al), and aluminum oxide are diffusion bonded in a vacuum furnace between 1,000 C and 1,400 C. Metallographic examination of the prior bonding interface showed excellent metallurgical coupling between the Ti-48at.%Al composite and the low cost Ti. A series of microstructures representative of phases consistent with a hypothetical Ti-Al-B phase diagram is visible. The alumina-Ti-48at.%Al interfacial bond is achieved through penetration of titanium-aluminum phases into the existing alumina porosity. A detailed microstructural analysis identifying mechanisms of interfacial bonding will be presented for each interfacial zone.

  18. Waterless TiO{sub 2} atomic layer deposition using titanium tetrachloride and titanium tetraisopropoxide

    SciTech Connect

    Anderson, Virginia R.; Cavanagh, Andrew S.; Abdulagatov, Aziz I.; Gibbs, Zachary M.; George, Steven M.

    2014-01-15

    The surface chemistry for TiO{sub 2} atomic layer deposition (ALD) typically utilizes water or other oxidants that can oxidize underlying substrates such as magnetic disks or semiconductors. To avoid this oxidation, waterless or oxidant-free surface chemistry can be used that involves titanium halides and titanium alkoxides. In this study, waterless TiO{sub 2} ALD was accomplished using titanium tetrachloride (TiCl{sub 4}) and titanium tetraisopropoxide (TTIP). In situ transmission Fourier transform infrared (FTIR) studies were employed to study the surface species and the reactions during waterless TiO{sub 2} ALD. At low temperatures between 125 and 225  °C, the FTIR absorbance spectra revealed that the isopropoxide species remained on the surface after TTIP exposures. The TiCl{sub 4} exposures then removed the isopropoxide species and deposited additional titanium species. At high temperatures between 250 and 300  °C, the isopropoxide species were converted to hydroxyl species by β-hydride elimination. The observation of propene gaseous reaction product by quadrupole mass spectrometry (QMS) confirmed the β-hydride elimination reaction pathway. The TiCl{sub 4} exposures then easily reacted with the hydroxyl species. QMS studies also observed the 2-chloropropane and HCl gaseous reaction products and monitored the self-limiting nature of the TTIP reaction. Additional studies examined the waterless TiO{sub 2} ALD growth at low and high temperature. Quartz crystal microbalance measurements observed growth rates of ∼3 ng/cm{sup 2} at a low temperature of 150  °C. Much higher growth rates of ∼15 ng/cm{sup 2} were measured at a higher temperature of 250  °C under similar reaction conditions. X-ray reflectivity analysis measured a growth rate of 0.55 ± 0.05 Å/cycle at 250  °C. X-ray photoelectron depth-profile studies showed that the TiO{sub 2} films contained low Cl concentrations <1 at. %. This waterless TiO{sub 2} ALD process

  19. Hollow Li20B60 Cage: Stability and Hydrogen Storage

    PubMed Central

    Wang, Jing; Wei, Zhi-Jing; Zhao, Hui-Yan; Liu, Ying

    2016-01-01

    A stable hollow Li20B60 cage with D2 symmetry has been identified using first-principles density functional theory studies. The results of vibrational frequency analysis and molecular dynamics simulations demonstrate that this Li20B60 cage is exceptionally stable. The feasibility of functionalizing Li20B60 cage for hydrogen storage was explored theoretically. Our calculated results show that the Li20B60 molecule can adsorb a maximum of 28 hydrogen molecules. With a hydrogen uptake of 8.190 wt% and an average binding energy of 0.336 eV/H2, Li20B60 is a remarkable high-capacity storage medium. PMID:27076264

  20. Hollow Li20B60 Cage: Stability and Hydrogen Storage.

    PubMed

    Wang, Jing; Wei, Zhi-Jing; Zhao, Hui-Yan; Liu, Ying

    2016-04-14

    A stable hollow Li20B60 cage with D2 symmetry has been identified using first-principles density functional theory studies. The results of vibrational frequency analysis and molecular dynamics simulations demonstrate that this Li20B60 cage is exceptionally stable. The feasibility of functionalizing Li20B60 cage for hydrogen storage was explored theoretically. Our calculated results show that the Li20B60 molecule can adsorb a maximum of 28 hydrogen molecules. With a hydrogen uptake of 8.190 wt% and an average binding energy of 0.336 eV/H2, Li20B60 is a remarkable high-capacity storage medium.

  1. Cage the firefly luciferin! - a strategy for developing bioluminescent probes.

    PubMed

    Li, Jing; Chen, Laizhong; Du, Lupei; Li, Minyong

    2013-01-21

    Bioluminescent imaging (BLI) has been widely applicable in the imaging of process envisioned in life sciences. As the most conventional technique for BLI, the firefly luciferin-luciferase system is exceptionally functional in vitro and in vivo. The state-of-the-art strategy in such a system is to cage the luciferin, in which free luciferin is conjugated with distinctive functional groups, thus accommodating an impressive toolkit for exploring various biological processes, such as monitoring enzymes activity, detecting bioactive small molecules, evaluating the properties of molecular transporters, etc. This review article summarizes the rational design of caged luciferins towards diverse biotargets, as well as their applications in bioluminescent imaging. It should be emphasized that these caged luciferins can stretch out the applications of bioluminescence imaging and shed light upon understanding the pathogenesis of various diseases.

  2. Advanced titanium processing

    SciTech Connect

    Hartman, Alan D.; Gerdemann, Stephen J.; Schrems, Karol K.; Holcomb, Gordon R.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; Turner, Paul C.

    2001-01-01

    The Albany Research Center of the U.S. Department of Energy has been investigating a means to form useful wrought products by direct and continuous casting of titanium bars using cold-wall induction melting rather than current batch practices such as vacuum arc remelting. Continuous ingots produced by cold-wall induction melting, utilizing a bottomless water-cooled copper crucible, without slag (CaF2) additions had minor defects in the surface such as ''hot tears''. Slag additions as low as 0.5 weight percent were used to improve the surface finish. Therefore, a slag melted experimental Ti-6Al-4V alloy ingot was compared to a commercial Ti-6Al-4V alloy ingot in the areas of physical, chemical, mechanical, and corrosion attributes to address the question, ''Are any detrimental effects caused by slag addition''?

  3. Synthesis of titanium dioxide nanotubes from electrospun fiber templates

    NASA Astrophysics Data System (ADS)

    Qiu, Yejun; Yu, Jie

    2008-12-01

    Titanium dioxide (TiO 2) nanotubes were synthesized by impregnating stabilized electrospun polyacrylonitrile (PAN) fibers with titanium tetrachloride (TiCl 4) solution and subsequent calcination. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and energy dispersive X-ray spectroscopy (EDX) were used to characterize the structure and composition of the products. The resulting TiO 2 nanotubes are of high purity with anatase structure. The average diameter of the nanotubes is 220 nm with very thin walls about 20 nm. The tube walls are composed of many nanoparticles of about 10 nm. Due to the increased surface area and small crystal size, the present TiO 2 nanotubes may possess high catalytic properties.

  4. Caged compounds for multichromic optical interrogation of neural systems.

    PubMed

    Amatrudo, Joseph M; Olson, Jeremy P; Agarwal, Hitesh K; Ellis-Davies, Graham C R

    2015-01-01

    Caged compounds are widely used by neurophysiologists to study many aspects of cellular signaling in glia and neurons. Biologically inert before irradiation, they can be loaded into cells via patch pipette or topically applied in situ to a defined concentration; photolysis releases the caged compound in a very rapid and spatially defined way. As caged compounds are exogenous optical probes, they include not only natural products such neurotransmitters, calcium and IP3 but non-natural products such as fluorophores, drugs and antibodies. In this Technical Spotlight we provide a short introduction to the uncaging technique by discussing the nitroaromatic caging chromophores most widely used in such experiments [e.g. α-carboxy-ortho-nitrobenyl (CNB), dimethoxynitrobenzyl (DMNB), 4-methoxy-7-nitroindolinyl (MNI) and 4-carboxymethoxy-7-nitroindolinyl (CDNI)]. We show that recently developed caging chromophores [rutheniumbipyridial (RuBi) and 7-diethylaminocoumarin (DEAC)450] that are photolyzed with blue light (~ 430-480 nm range) can be combined with traditional nitroaromatic caged compounds to enable two-color optical probing of neuronal function. For example, one-photon uncaging of either RuBi-GABA or DEAC450-GABA with a 473-nm laser is facile, and can block nonlinear currents (dendritic spikes or action potentials) evoked by two-photon uncaging of CDNI-Glu at 720 nm. We also show that two-photon uncaging of DEAC450-Glu and CDNI-GABA at 900 and 720 nm, respectively, can be used to fire and block action potentials. Our experiments illustrate that recently developed chromophores have taken uncaging out of the 'monochrome era', in which it has existed since 1978, so as to enable multichromic interrogation of neuronal function with single-synapse precision.

  5. Caged compounds for multichromic optical interrogation of neural systems

    PubMed Central

    Amatrudo, Joseph M.; Olson, Jeremy P.; Agarwal, Hitesh K.; Ellis-Davies, Graham C.R.

    2014-01-01

    Caged compounds have widely used by neurophysiologists to study many aspects of cellular signaling in glia and neurons. Biologically inert before irradiation, they can be loaded into cells via patch pipette or topically applied in situ to a defined concentration, photolysis releases the caged compound in a very rapid and spatially defined way. Since caged compounds are exogenous optical probes, they include not only natural products such neurotransmitters, calcium and IP3, but non-natural products such as fluorophores, drugs and antibodies. In this Technical Spotlight we provide a short introduction to the uncaging technique by discussing the nitroaromatic caging chromophores most widely used in such experiments (e.g. CNB1, DMNB, MNI and CDNI). We show that recently developed caging chromophores (RuBi and DEAC450) that are photolyzed with blue light (ca. 430–480 nm range) can be combined with traditional nitroaromatic caged compounds to enable two-color optical probing of neuronal function. For example, one-photon uncaging of either RuBi-GABA or DEAC450-GABA with a 473-nm laser is facile, and can block non-linear currents (dendritic spikes or action potentials) evoked by two-photon uncaging of CDNI-Glu at 720 nm. We also show that two-photon uncaging of DEAC450-Glu and CDNI-GABA at 900 and 720 nm, respectively, can be used to fire and block action potentials. Our experiments illustrate that recently developed chromophores have taken uncaging out of the “monochrome era”, in which it has existed since 1978, so as to enable multichromic interrogation of neuronal function with single synapse precision. PMID:25471355

  6. Surface characteristics of thermally treated titanium surfaces

    PubMed Central

    Lee, Yang-Jin; Cui, De-Zhe; Jeon, Ha-Ra; Chung, Hyun-Ju; Park, Yeong-Joon; Kim, Ok-Su

    2012-01-01

    Purpose The characteristics of oxidized titanium (Ti) surfaces varied according to treatment conditions such as duration time and temperature. Thermal oxidation can change Ti surface characteristics, which affect many cellular responses such as cell adhesion, proliferation, and differentiation. Thus, this study was conducted to evaluate the surface characteristics and cell response of thermally treated Ti surfaces. Methods The samples were divided into 4 groups. Control: machined smooth titanium (Ti-S) was untreated. Group I: Ti-S was treated in a furnace at 300℃ for 30 minutes. Group II: Ti-S was treated at 500℃ for 30 minutes. Group III: Ti-S was treated at 750℃ for 30 minutes. A scanning electron microscope, atomic force microscope, and X-ray diffraction were used to assess surface characteristics and chemical composition. The water contact angle and surface energy were measured to assess physical properties. Results The titanium dioxide (TiO2) thickness increased as the treatment temperature increased. Additional peaks belonging to rutile TiO2 were only found in group III. The contact angle in group III was significantly lower than any of the other groups. The surface energy significantly increased as the treatment temperature increased, especially in group III. In the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, after 24 hours of incubation, the assessment of cell viability showed that the optical density of the control had a higher tendency than any other group, but there was no significant difference. However, the alkaline phosphatase activity increased as the temperature increased, especially in group III. Conclusions Consequently, the surface characteristics and biocompatibility increased as the temperature increased. This indicates that surface modification by thermal treatment could be another useful method for medical and dental implants. PMID:22803009

  7. Brazing titanium to stainless steel

    NASA Technical Reports Server (NTRS)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  8. Laboratory animal welfare: cage enrichment and mouse behaviour.

    PubMed

    Wolfer, David P; Litvin, Oxana; Morf, Samuel; Nitsch, Roger M; Lipp, Hans-Peter; Würbel, Hanno

    2004-12-16

    Mice housed in standard cages show impaired brain development, abnormal repetitive behaviours (stereotypies) and an anxious behavioural profile, all of which can be lessened by making the cage environment more stimulating. But concerns have been raised that enriched housing might disrupt standardization and so affect the precision and reproducibility of behavioural-test results (for example, see ref. 4). Here we show that environmental enrichment increases neither individual variability in behavioural tests nor the risk of obtaining conflicting data in replicate studies. Our findings indicate that the housing conditions of laboratory mice can be markedly improved without affecting the standardization of results. PMID:15602544

  9. Study for elevator cage position during the braking period

    NASA Astrophysics Data System (ADS)

    Ungureanu, M.; Crăciun, I.; Bănică, M.; Dăscălescu, A.

    2016-08-01

    An important problem in order to study an elevator cage position for its braking period is to establish a correlation between the studies in the fields of mechanics and electric. The classical approaches to establish the elevator kinematic parameters are position, velocity and acceleration, but the last studies performed in order to determine the positioning performed by introducing supplementary another parameter - the jerk- which is derived with respect to time of acceleration. Thus we get a precise method for cage motion control for third-order trajectory planning.

  10. Caged DNA does not aggregate in high ionic strength solutions.

    PubMed

    Trubetskoy, V S; Loomis, A; Slattum, P M; Hagstrom, J E; Budker, V G; Wolff, J A

    1999-01-01

    The assembly of DNA into compact particles that do not aggregate in physiologic salt solution occurs naturally in chromatin and viral particles but has been challenging to duplicate using artificial constructs. Cross-linking amino-containing polycations in the presence of DNA with bisimidoester cross-linker leads to the formation of caged DNA particles that are stable in salt solutions. This first demonstration of caged DNA provides insight into how natural condensation processes avoid aggregation and a promising avenue for developing nonviral gene therapy vectors.

  11. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2014-10-01

    The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2), related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose that considering

  12. Synthesis and characterization of polyhedral oligomeric titanized silsesquioxane: A new biocompatible cage like molecule for biomedical application.

    PubMed

    Yahyaei, Hossein; Mohseni, Mohsen; Ghanbari, Hossein; Messori, Massimo

    2016-04-01

    Organic-inorganic hybrid materials have shown improved properties to be used as biocompatible coating in biomedical applications. Polyhedral oligomeric silsesquioxane (POSS) containing coatings are among hybrid materials showing promising properties for these applications. In this work an open cage POSS has been reacted with a titanium alkoxide to end cap the POSS molecule with titanium atom to obtain a so called polyhedral oligomeric metalized silsesquioxane (POMS). The synthesized POMS was characterized by FTIR, RAMAN and UV-visible spectroscopy as well as (29)Si NMR and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) techniques. Appearance of peaks at 920 cm(-1) in FTIR and 491 cm(-1) and 1083 cm(-1) in Raman spectra confirmed Si-O-Ti linkage formation. It was also demonstrated that POMS was in a monomeric form. To evaluate the biocompatibility of hybrids films, pristine POSS and synthesized POMS were used in synthesis of a polycarbonate urethane polymer. Results revealed that POMS containing hybrid, not only had notable thermal and mechanical stability compared to POSS containing one, as demonstrated by DSC and DMTA analysis, they also showed controlled surface properties in such a manner that hydrophobicity and biocompatibility were both reachable to give rise to improved cell viability in presence of human umbilical vein endothelial cells (HUVEC) and MRC-5 cells. PMID:26838853

  13. Grafting titanium nitride surfaces with sodium styrene sulfonate thin films.

    PubMed

    Zorn, Gilad; Migonney, Véronique; Castner, David G

    2014-09-01

    The importance of titanium nitride lies in its high hardness and its remarkable resistance to wear and corrosion, which has led to its use as a coating for the heads of hip prostheses, dental implants and dental surgery tools. However, the usefulness of titanium nitride coatings for biomedical applications could be significantly enhanced by modifying their surface with a bioactive polymer film. The main focus of the present work was to graft a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film from titanium nitride surfaces via a two-step procedure: first modifying the surface with 3-methacryloxypropyltrimethoxysilane (MPS) and then grafting the pNaSS film from the MPS modified titanium through free radical polymerization. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used after each step to characterize success and completeness of each reaction. The surface region of the titanium nitride prior to MPS functionalization and NaSS grafting contained a mixture of titanium nitride, oxy-nitride, oxide species as well as adventitious surface contaminants. After MPS functionalization, Si was detected by XPS, and characteristic MPS fragments were detected by ToF-SIMS. After NaSS grafting, Na and S were detected by XPS and characteristic NaSS fragments were detected by ToF-SIMS. The XPS determined thicknesses of the MPS and NaSS overlayers were ∼1.5 and ∼1.7 nm, respectively. The pNaSS film density was estimated by the toluidine blue colorimetric assay to be 260 ± 70 ng/cm(2).

  14. Characterization of poly(sodium styrene sulfonate) thin films grafted from functionalized titanium surfaces.

    PubMed

    Zorn, Gilad; Baio, Joe E; Weidner, Tobias; Migonney, Veronique; Castner, David G

    2011-11-01

    Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multitechnique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (∼50 nm thick with an average surface roughness of 0.9 ± 0.2 nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO(2) layer that was at least 10 nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross-linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules was successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS-modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated that an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings.

  15. Carbon dioxide and oxygen levels in disposable individually ventilated cages after removal from mechanical ventilation.

    PubMed

    Nagamine, Claude M; Long, C Tyler; McKeon, Gabriel P; Felt, Stephen A

    2012-03-01

    Disposable individually ventilated cages have lids that restrict air exchange when the cage is not mechanically ventilated. This design feature may cause intracage CO2 to increase and O2 to decrease (hypercapnic and hypoxic conditions, respectively) when the electrical supply to the ventilated rack fails, the ventilated rack malfunctions, cages are docked in the rack incorrectly, or cages are removed from the ventilated rack for extended periods of time. We investigated how quickly hypercapnic and hypoxic conditions developed within disposable individually ventilated cages after removal from mechanical ventilation and compared the data with nondisposable static cages, disposable static cages, and unventilated nondisposable individually ventilated cages. When disposable individually ventilated cages with 5 adult mice per cage were removed from mechanical ventilation, CO2 concentrations increased from less than 1% at 0 h to approximately 5% at 3 h and O2 levels dropped from more than 20% at 0 h to 11.7% at 6 h. The breathing pattern of the mice showed a prominent abdominal component (hyperventilation). Changes were similar for 4 adult mice per cage, reaching at least 5% CO2 at 4 h and 13.0% O2 at 6 h. For 3 or 2 mice per cage, values were 4.6% CO2 and 14.7% O2 and 3.04% CO2 and 17.1% O2, respectively, at 6 h. These results document that within disposable individually ventilated cages, a hypercapnic and hypoxic microenvironment develops within hours in the absence of mechanical ventilation.

  16. Low cost titanium--myth or reality

    SciTech Connect

    Turner, Paul C.; Hartman, Alan D.; Hansen, Jeffrey S.; Gerdemann, Stephen J.

    2001-01-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium, and titanium cost has prevented its use in non-aerospace applications including the automotive and heavy vehicle industries.

  17. Does titanium in ionic form display a tissue-specific distribution?

    PubMed

    Golasik, Magdalena; Wrobel, Pawel; Olbert, Magdalena; Nowak, Barbara; Czyzycki, Mateusz; Librowski, Tadeusz; Lankosz, Marek; Piekoszewski, Wojciech

    2016-06-01

    Most studies have focused on the biodistribution of titanium(IV) oxide as nanoparticles or crystals in organism. But several reports suggested that titanium is released from implant in ionic form. Therefore, gaining insight into toxicokinetics of Ti ions will give valuable information, which may be useful when assessing the health risks of long-term exposure to titanium alloy implants in patients. A micro synchrotron radiation-induced X-ray fluorescence (µ-SRXRF) was utilized to investigate the titanium distribution in the liver, spleen and kidneys of rats following single intravenous or 30-days oral administration of metal (6 mg Ti/b.w.) in ionic form. Titanium was mainly retained in kidneys after both intravenous and oral dosing, and also its compartmentalization in this organ was observed. Titanium in the liver was non-uniformly distributed-metal accumulated in single aggregates, and some of them were also enriched in calcium. Correlation analysis showed that metal did not displace essential elements, and in liver titanium strongly correlated with calcium. Two-dimensional maps of Ti distribution show that the location of the element is characteristic for the route of administration and time of exposure. We demonstrated that µ-SRXRF can provide information on the distribution of titanium in internal structures of whole organs, which helps in enhancing our understanding of the mechanism of ionic titanium accumulation in the body. This is significant due to the popularity of titanium implants and the potential release of metal ions from them to the organism. PMID:27041114

  18. XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface.

    PubMed

    Martin, Holly J; Schulz, Kirk H; Bumgardner, Joel D; Walters, Keisha B

    2007-06-01

    Chitosan, a biopolymer found in the exoskeletons of shellfish, has been shown to be antibacterial, biodegradable, osteoconductive, and has the ability to promote organized bone formation. These properties make chitosan an ideal material for use as a bioactive coating on medical implant materials. In this study, coatings made from 86.4% de-acetylated chitosan were bound to implant-quality titanium. The chitosan films were bound through a three-step process that involved the deposition of 3-aminopropyltriethoxysilane (APTES) in toluene, followed by a reaction between the amine end of APTES with gluteraldehyde, and finally, a reaction between the aldehyde end of gluteraldehyde and chitosan. Two different metal treatments were examined to determine if major differences in the ability to bind chitosan could be seen. X-ray photoelectron spectroscopy (XPS) was used to examine the surface of the titanium metal and to study the individual reaction steps. The changes to the titanium surface were consistent with the anticipated reaction steps, with significant changes in the amounts of nitrogen, silicon, and titanium that were present. It was demonstrated that more APTES was bound to the piranha-treated titanium surface as compared to the passivated titanium surface, based on the amounts of titanium, carbon, nitrogen, and silicon that were present. The metal treatments did not affect the chemistry of the chitosan films. Using toluene to bond APTES on titanium surfaces, rather than aqueous solutions, prevented the formation of unwanted polysiloxanes and increased the amount of silane on the surface for forming bonds to the chitosan films. Qualitatively, the films were more strongly attached to the titanium surfaces after using toluene, which could withstand the ultrahigh vacuum environment of XPS, as compared to the aqueous solutions, which were removed from the titanium surface when exposed to the ultrahigh vacuum environment of XPS.

  19. Effect of cryogenic treatment on nickel-titanium endodontic instruments

    PubMed Central

    Kim, J. W.; Griggs, J. A.; Regan, J. D.; Ellis, R. A.; Cai, Z.

    2005-01-01

    Aim To investigate the effects of cryogenic treatment on nickel-titanium endodontic instruments. The null hypothesis was that cryogenic treatment would result in no changes in composition, microhardness or cutting efficiency of nickel-titanium instruments. Methodology Microhardness was measured on 30 nickel-titanium K-files (ISO size 25) using a Vicker’s indenter. Elemental composition was measured on two instruments using X-ray spectroscopy. A nickel-titanium bulk specimen was analysed for crystalline phase composition using X-ray diffraction. Half of the specimens to be used for each analysis were subjected to a cryogenic treatment in liquid nitrogen (−196 °C) for either 3 s (microhardness specimens) or 10 min (other specimens). Cutting efficiency was assessed by recording operator choice using 80 nickel-titanium rotary instruments (ProFile® 20, .06) half of which had been cryogenically treated and had been distributed amongst 14 clinicians. After conditioning by preparing four corresponding canals, each pair of instruments were evaluated for cutting efficiency by a clinician during preparation of one canal system in vitro. A Student’s t-test was used to analyse the microhardness data, and a binomial test was used to analyse the observer choice data. Composition data were analysed qualitatively. Results Cryogenically treated specimens had a significantly higher microhardness than the controls (P < 0.001; β > 0.999). Observers showed a preference for cryogenically treated instruments (61%), but this was not significant (P = 0.21). Both treated and control specimens were composed of 56% Ni, 44% Ti, 0% N (by weight) with a majority in the austenite phase. Conclusions Cryogenic treatment resulted in increased microhardness, but this increase was not detected clinically. There was no measurable change in elemental or crystalline phase composition. PMID:15910471

  20. Structure of a designed protein cage that self-assembles into a highly porous cube

    NASA Astrophysics Data System (ADS)

    Lai, Yen-Ting; Reading, Eamonn; Hura, Greg L.; Tsai, Kuang-Lei; Laganowsky, Arthur; Asturias, Francisco J.; Tainer, John A.; Robinson, Carol V.; Yeates, Todd O.

    2014-12-01

    Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, creating protein-based assemblies with specific geometries and chemical properties remains challenging. Highly porous materials represent particularly interesting targets for designed assembly. Here, we utilize a strategy of fusing two natural protein oligomers using a continuous alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Å diameter, cube-shaped cage with large openings into a 130 Å diameter inner cavity. A crystal structure of the cage showed atomic-level agreement with the designed model, while electron microscopy, native mass spectrometry and small angle X-ray scattering revealed alternative assembly forms in solution. These studies show that accurate design of large porous assemblies with specific shapes is feasible, while further specificity improvements will probably require limiting flexibility to select against alternative forms. These results provide a foundation for the design of advanced materials with applications in bionanotechnology, nanomedicine and material sciences.

  1. An Improbable Monometallic Cluster Entrapped in a Popular Fullerene Cage: YCN@Cs(6)-C82

    PubMed Central

    Yang, Shangfeng; Chen, Chuanbao; Liu, Fupin; Xie, Yunpeng; Li, Fengyu; Jiao, Mingzhi; Suzuki, Mitsuaki; Wei, Tao; Wang, Song; Chen, Zhongfang; Lu, Xing; Akasaka, Takeshi

    2013-01-01

    Since the first proposal that fullerenes are capable of hosting atoms, ions, or clusters by the late Smalley in 1985, tremendous examples of endohedral metallofullerenes (EMFs) have been reported. Breaking the dogma that monometallofullerenes (mono-EMFs) always exist in the form of M@C2n while clusterfullerenes always require multiple (two to four) metal cations to stabilize a cluster that is unstable as a single moiety, here we show an unprecedented monometallic endohedral clusterfullerene entrapping an yttrium cyanide cluster inside a popular C82 cage—YCN@Cs(6)-C82. X-ray crystallography and 13C NMR characterization unambiguously determine the cage symmetry and the endohedal cyanide structure, unexpectedly revealing that the entrapped YCN cluster is triangular. The unprecedented monometallic clusterfullerene structure unveiled by YCN@Cs(6)-C82 opens up a new avenue for stabilizing a cluster by a single metal cation within a carbon cage, and will surely stimulate further studies on the stability and formation mechanism of EMFs. PMID:23512079

  2. Structure of a Designed Protein Cage that Self-Assembles into a Highly Porous Cube

    PubMed Central

    Lai, Yen-Ting; Reading, Eamonn; Hura, Greg L.; Tsai, Kuang-Lei; Laganowsky, Arthur; Asturias, Francisco J.; Tainer, John A.; Robinson, Carol V.

    2014-01-01

    Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, creating protein-based assemblies with specific geometries and chemical properties remains challenging. Highly porous materials represent particularly interesting targets for designed assembly. Here we utilize a strategy of fusing two natural protein oligomers using a continuous alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Å diameter, cube-shaped cage with large openings into a 130 Å diameter inner cavity. A crystal structure of the cage showed atomic level agreement with the designed model, while electron microscopy, native mass spectrometry, and small angle x-ray scattering revealed alternate assembly forms in solution. These studies show that accurate design of large porous assemblies with specific shapes is feasible, while further specificity improvements will likely require limiting flexibility to select against alternative forms. These results provide a foundation for the design of advanced materials with applications in bionanotechnology, nanomedicine and material sciences. PMID:25411884

  3. Structure of a designed protein cage that self-assembles into a highly porous cube

    SciTech Connect

    Lai, Yen-Ting; Reading, Eamonn; Hura, Greg L.; Tsai, Kuang-Lei; Laganowsky, Arthur; Asturias, Francisco J.; Tainer, John A.; Robinson, Carol V.; Yeates, Todd O.

    2014-11-10

    Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, creating protein-based assemblies with specific geometries and chemical properties remains challenging. Highly porous materials represent particularly interesting targets for designed assembly. Here we utilize a strategy of fusing two natural protein oligomers using a continuous alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Å diameter, cube-shaped cage with large openings into a 130 Å diameter inner cavity. A crystal structure of the cage showed atomic level agreement with the designed model, while electron microscopy, native mass spectrometry, and small angle x-ray scattering revealed alternate assembly forms in solution. These studies show that accurate design of large porous assemblies with specific shapes is feasible, while further specificity improvements will likely require limiting flexibility to select against alternative forms. Finally, these results provide a foundation for the design of advanced materials with applications in bionanotechnology, nanomedicine and material sciences.

  4. Posterior interbody fusion using a diagonal cage with unilateral transpedicular screw fixation for lumbar stenosis.

    PubMed

    Zhao, Jian; Zhang, Feng; Chen, Xiaoqing; Yao, Yu

    2011-03-01

    Few reports have described the combined use of unilateral pedicle screw fixation and interbody fusion for lumbar stenosis. We retrospectively reviewed 79 patients with lumbar stenosis. The rationale and effectiveness of unilateral pedicle screw fixation were studied from biomechanical and clinical perspectives, aiming to reduce stiffness of the implant. All patients were operated with posterior interbody fusion using a diagonal cage in combination with unilateral transpedicular screw fixation and had reached the 3-year follow-up interval after operation. The mean operating time was 115 minutes (range=95-150 min) and the mean estimated blood loss was 150 mL (range=100-200 mL). The mean duration of hospital stay was 10 days (range=7-15 days). Clinical outcomes were assessed prior to surgery and reassessed at intervals using Denis' pain and work scales. Fusion status was determined from X-rays and CT scans. At the final follow-up, the clinical results were satisfactory and patients showed significantly improved scores (p<0.01) either on the pain or the work scale. Successful fusion was achieved in all patients. There were no new postoperative radiculopathies, or instances of malpositioned or fractured hardware. Posterior interbody fusion using a diagonal cage with unilateral transpedicular fixation is an effective treatment for decompressive surgery for lumbar stenosis.

  5. A novel test cage with an air ventilation system as an alternative to conventional cages for the efficacy testing of mosquito repellents.

    PubMed

    Obermayr, U; Rose, A; Geier, M

    2010-11-01

    We have developed a novel test cage and improved method for the evaluation of mosquito repellents. The method is compatible with the United States Environmental Protection Agency, 2000 draft OPPTS 810.3700 Product Performance Test Guidelines for Testing of Insect Repellents. The Biogents cages (BG-cages) require fewer test mosquitoes than conventional cages and are more comfortable for the human volunteers. The novel cage allows a section of treated forearm from a volunteer to be exposed to mosquito probing through a window. This design minimizes residual contamination of cage surfaces with repellent. In addition, an air ventilation system supplies conditioned air to the cages after each single test, to flush out and prevent any accumulation of test substances. During biting activity tests, the untreated skin surface does not receive bites because of a screen placed 150 mm above the skin. Compared with the OPPTS 810.3700 method, the BG-cage is smaller (27 liters, compared with 56 liters) and contains 30 rather than hundreds of blood-hungry female mosquitoes. We compared the performance of a proprietary repellent formulation containing 20% KBR3023 with four volunteers on Aedes aegypti (L.) (Diptera: Culicidae) in BG- and conventional cages. Repellent protection time was shorter in tests conducted with conventional cages. The average 95% protection time was 4.5 +/- 0.4 h in conventional cages and 7.5 +/- 0.6 h in the novel BG-cages. The protection times measured in BG-cages were more similar to the protection times determined with these repellents in field tests. PMID:21175061

  6. Three-dimensional protonic conductivity in porous organic cage solids.

    PubMed

    Liu, Ming; Chen, Linjiang; Lewis, Scott; Chong, Samantha Y; Little, Marc A; Hasell, Tom; Aldous, Iain M; Brown, Craig M; Smith, Martin W; Morrison, Carole A; Hardwick, Laurence J; Cooper, Andrew I

    2016-01-01

    Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10(-3) S cm(-1) at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores. PMID:27619230

  7. 3. SHOP AREA. Looking west into storage cage from near ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SHOP AREA. Looking west into storage cage from near northeast corner of room. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  8. Flexible, symmetry-directed approach to assembling protein cages.

    PubMed

    Sciore, Aaron; Su, Min; Koldewey, Philipp; Eschweiler, Joseph D; Diffley, Kelsey A; Linhares, Brian M; Ruotolo, Brandon T; Bardwell, James C A; Skiniotis, Georgios; Marsh, E Neil G

    2016-08-01

    The assembly of individual protein subunits into large-scale symmetrical structures is widespread in nature and confers new biological properties. Engineered protein assemblies have potential applications in nanotechnology and medicine; however, a major challenge in engineering assemblies de novo has been to design interactions between the protein subunits so that they specifically assemble into the desired structure. Here we demonstrate a simple, generalizable approach to assemble proteins into cage-like structures that uses short de novo designed coiled-coil domains to mediate assembly. We assembled eight copies of a C3-symmetric trimeric esterase into a well-defined octahedral protein cage by appending a C4-symmetric coiled-coil domain to the protein through a short, flexible linker sequence, with the approximate length of the linker sequence determined by computational modeling. The structure of the cage was verified using a combination of analytical ultracentrifugation, native electrospray mass spectrometry, and negative stain and cryoelectron microscopy. For the protein cage to assemble correctly, it was necessary to optimize the length of the linker sequence. This observation suggests that flexibility between the two protein domains is important to allow the protein subunits sufficient freedom to assemble into the geometry specified by the combination of C4 and C3 symmetry elements. Because this approach is inherently modular and places minimal requirements on the structural features of the protein building blocks, it could be extended to assemble a wide variety of proteins into structures with different symmetries. PMID:27432965

  9. Genotoxicity monitoring of freshwater environments using caged crayfish (Astacus leptodactylus).

    PubMed

    Klobučar, Göran I V; Malev, Olga; Šrut, Maja; Štambuk, Anamaria; Lorenzon, Simonetta; Cvetković, Želimira; Ferrero, Enrico A; Maguire, Ivana

    2012-03-01

    Genotoxicity of freshwater pollution was assessed by measuring DNA damage in haemocytes of caged freshwater crayfish Astacus leptodactylus by the means of Comet assay and micronucleus test, integrated with the measurements of physiological (total protein concentration) and immunological (total haemocyte count) haemolymph parameters as biomarkers of undergone stress. Crayfish were collected at the reference site (River Mrežnica) and exposed in cages for 1 week at three polluted sites along the Sava River (Zagreb, Sisak, Krapje). The long term pollution status of these locations was confirmed by chemical analyses of sediments. Statistically significant increase in DNA damage measured by the Comet assay was observed at all three polluted sites comparing to the crayfish from reference site. In addition, native crayfish from the mildly polluted site (Krapje) cage-exposed on another polluted site (Zagreb) showed lower DNA damage than crayfish from the reference site exposed at the same location indicating adaptation and acclimatisation of crayfish to lower levels of pollution. Micronuclei induction showed similar gradient of DNA damage as Comet assay, but did not reach the statistical significance. Observed increase in total haemocyte count and total protein content in crayfish from polluted environments in the Sava River also confirmed stress caused by exposure to pollution. The results of this study have proved the applicability of caging exposure of freshwater crayfish A. leptodactylus in environmental genotoxicity monitoring using Comet assay and micronucleus test.

  10. EFFECTS OF CAGING DENSITY ON PITUITARY AND TESTICLE RELATED RESPONSES

    EPA Science Inventory

    Effects of caging density on pituitary and testicle related responses

    A significant negative correlation between the incidence of testicular interstitial cell tumors (ICT) and of pituitary tumors (PT) in control male F344 rats is reported associated with the number of ani...

  11. 48 CFR 204.7204 - Maintenance of the CAGE file.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electronic equivalent, to— DLA Logistics Information Service, DLIS-SBB, Federal Center, 74 Washington Avenue... a change-of-name agreement (see FAR subpart 42.12) must submit the agreement to DLIS-SBB. If there... CAGE code to DLIS-SBB unless the change notice indicates that DLIS-SBB already has been notified....

  12. 48 CFR 204.7204 - Maintenance of the CAGE file.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electronic equivalent, to— DLA Logistics Information Service, DLIS-SBB, Federal Center, 74 Washington Avenue... a change-of-name agreement (see FAR subpart 42.12) must submit the agreement to DLIS-SBB. If there... CAGE code to DLIS-SBB unless the change notice indicates that DLIS-SBB already has been notified....

  13. 48 CFR 204.7204 - Maintenance of the CAGE file.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... electronic equivalent, to— DLA Logistics Information Service, DLIS-SBB, Federal Center, 74 Washington Avenue... a change-of-name agreement (see FAR subpart 42.12) must submit the agreement to DLIS-SBB. If there... CAGE code to DLIS-SBB unless the change notice indicates that DLIS-SBB already has been notified....

  14. 48 CFR 204.7204 - Maintenance of the CAGE file.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electronic equivalent, to— DLA Logistics Information Service, DLIS-SBB, Federal Center, 74 Washington Avenue... a change-of-name agreement (see FAR subpart 42.12) must submit the agreement to DLIS-SBB. If there... CAGE code to DLIS-SBB unless the change notice indicates that DLIS-SBB already has been notified....

  15. 48 CFR 204.7204 - Maintenance of the CAGE file.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Information Service, DLIS-SBB, Federal Center, 74 Washington Avenue, North, Battle Creek, MI 49017-3084... FAR subpart 42.12) must submit the agreement to DLIS-SBB. If there are no current contracts, each... must forward a copy of the change notice annotated with the CAGE code to DLIS-SBB unless the...

  16. Pathogen Prevalence From Traditional Cage and Free Range Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Overview: A study was conducted to determine if differences in pathogen prevalence occurred between a sister flock of conventional cage and free range laying hens. Both environmental and egg microbiology was monitored throughout 20 – 79 weeks of age. Salmonella, Campylobacter, and Listeria preval...

  17. Normal and abnormal spine and thoracic cage development

    PubMed Central

    Canavese, Federico; Dimeglio, Alain

    2013-01-01

    Development of the spine and thoracic cage consists of a complex series of events involving multiple metabolic processes, genes and signaling pathways. During growth, complex phenomena occur in rapid succession. This succession of events, this establishment of elements, is programmed according to a hierarchy. These events are well synchronized to maintain harmonious limb, spine and thoracic cage relationships, as growth in the various body segments does not occur simultaneously at the same magnitude or rate. In most severe cases of untreated progressive early-onset spinal deformities, respiratory insufficiency and pulmonary and cardiac hypertension (cor pulmonale), which characterize thoracic insufficiency syndrome (TIS), can develop, sometimes leading to death. TIS is the inability of the thorax to ensure normal breathing. This clinical condition can be linked to costo-vertebral malformations (e.g., fused ribs, hemivertebrae, congenital bars), neuromuscular diseases (e.g., expiratory congenital hypotonia), Jeune or Jarcho-Levin syndromes or to 50% to 75% fusion of the thoracic spine before seven years of age. Complex spinal deformities alter normal growth plate development, and vertebral bodies become progressively distorted, perpetuating the disorder. Therefore, many scoliotic deformities can become growth plate disorders over time. This review aims to provide a comprehensive review of how spinal deformities can affect normal spine and thoracic cage growth. Previous conceptualizations are integrated with more recent scientific data to provide a better understanding of both normal and abnormal spine and thoracic cage growth. PMID:24147251

  18. Dynamics of caged ions in glassy ionic conductors.

    PubMed

    Habasaki, J; Ngai, K L; Hiwatari, Y

    2004-05-01

    At sufficiently high frequency and low temperature, the dielectric responses of glassy, crystalline, and molten ionic conductors all invariably exhibit nearly constant loss. This ubiquitous characteristic occurs in the short-time regime when the ions are still caged, indicating that it could be a determining factor of the mobility of the ions in conduction at longer times. An improved understanding of its origin should benefit the research of ion conducting materials for portable energy source as well as the resolution of the fundamental problem of the dynamics of ions. We perform molecular dynamics simulations of glassy lithium metasilicate (Li2SiO3) and find that the length scales of the caged Li+ ions motions are distributed according to a Levy distribution that has a long tail. These results suggest that the nearly constant loss originates from "dynamic anharmonicity" experienced by the moving but caged Li+ ions and provided by the surrounding matrix atoms executing correlated movements. The results pave the way for rigorous treatments of caged ion dynamics by nonlinear Hamiltonian dynamics.

  19. Structure and Organization of Coat Proteins in the COPll Cage

    SciTech Connect

    Fath,S.; Mancias, J.; Bi, X.; Goldberg, J.

    2007-01-01

    COPII-coated vesicles export newly synthesized proteins from the endoplasmic reticulum. The COPII coat consists of the Sec23/24-Sar1 complex that selects cargo and the Sec13/31 assembly unit that can polymerize into an octahedral cage and deform the membrane into a bud. Crystallographic analysis of the assembly unit reveals a 28 nm long rod comprising a central {alpha}-solenoid dimer capped by two {beta}-propeller domains at each end. We construct a molecular model of the COPII cage by fitting Sec13/31 crystal structures into a recently determined electron microscopy density map. The vertex geometry involves four copies of the Sec31 {beta}-propeller that converge through their axial ends; there is no interdigitation of assembly units of the kind seen in clathrin cages. We also propose that the assembly unit has a central hinge -- an arrangement of interlocked {alpha}-solenoids -- about which it can bend to adapt to cages of variable curvature.

  20. Three-dimensional protonic conductivity in porous organic cage solids

    PubMed Central

    Liu, Ming; Chen, Linjiang; Lewis, Scott; Chong, Samantha Y.; Little, Marc A.; Hasell, Tom; Aldous, Iain M.; Brown, Craig M.; Smith, Martin W.; Morrison, Carole A.; Hardwick, Laurence J.; Cooper, Andrew I.

    2016-01-01

    Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10−3 S cm−1 at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores. PMID:27619230

  1. Three-dimensional protonic conductivity in porous organic cage solids

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Chen, Linjiang; Lewis, Scott; Chong, Samantha Y.; Little, Marc A.; Hasell, Tom; Aldous, Iain M.; Brown, Craig M.; Smith, Martin W.; Morrison, Carole A.; Hardwick, Laurence J.; Cooper, Andrew I.

    2016-09-01

    Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10-3 S cm-1 at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores.

  2. Clinical outcomes of two types of cages used in transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases: n-HA/PA66 cages versus PEEK cages.

    PubMed

    Deng, Qian-xing; Ou, Yun-sheng; Zhu, Yong; Zhao, Zeng-hui; Liu, Bo; Huang, Qiu; Du, Xing; Jiang, Dian-ming

    2016-06-01

    This study reports the clinical effects of nano-hydroxyapatite/polyamide66 cages (n-HA/PA66 cages) and compares the clinical outcomes between n-HA/PA66 and polyetheretherketone cages (PEEK cages) for application in transforaminal lumbar interbody fusion (TLIF). A retrospective and case-control study involving 124 patients using n-HA/PA66 cages and 142 patients using PEEK cages was conducted. All patients underwent TLIF and had an average of 2-years of follow-up. The Oswestry Disability Index and Visual Analog Scale were selected to assess the pain of low back and leg, as well as neurological status. The intervertebral space height and segmental angle were also measured to estimate the radiological changes. At the 1-year and final follow-ups, the fusion and subsidence rates were evaluated. There was no significant difference between the two groups regarding clinical and radiological results. At the final follow-up, the bony fusion rate was 92.45 and 91.57 % for the n-HA/PA66 and PEEK groups, respectively, and the subsidence rate was 7.55 and 8.99 %, respectively. The study indicated that both n-HA/PA66 and PEEK cages could promote effective clinical and radiographic outcomes when used to treat degenerative lumbar diseases. The high fusion and low subsidence rates revealed that n-HA/PA66 cages could be an alternative ideal choice as the same to PEEK cages for lumbar reconstruction after TLIF. PMID:27091044

  3. Interfacial oxidations of pure titanium and titanium alloys with investments.

    PubMed

    Ban, S; Watanabe, T; Mizutani, N; Fukui, H; Hasegawa, J; Nakamura, H

    2000-12-01

    External oxides of a commercially pure titanium (cpTi), Ti6Al4V alloy, and an experimental beta-type titanium alloy (Ti 53.4 wt%, Nb 29 wt%, Ta 13 wt%, and Zr 4.6 wt%) were characterized after heating to 600, 900, 1150, and 1400 degrees C in contact with three types of investments (alumina cement, magnesia cement, and phosphate-bonded) in air. XRD studies demonstrated that MgO, Li2TiO3 and/or Li2Ti3O7 were formed through reactions with the metal and the constituents in the magnesia cement-investment after heating to 900, 1150, and 1400 degrees C. Except for these conditions, TiO2 (rutile) was only formed on cpTi. For titanium alloys, the other components apart from Ti also formed simple and complex oxides such as Al2O3 and Al2TiO5 on Ti6Al4V, and Zr0.25Ti0.75Nb2O7 on the beta-type titanium alloy. However, no oxides containing V or Ta were formed. These results suggest that the constituents of titanium alloys reacted with the investment oxides and atmospheric oxygen to form external oxides due to the free energy of oxide formation and the concentration of each element on the metal surface.

  4. Cell response of anodized nanotubes on titanium and titanium alloys.

    PubMed

    Minagar, Sepideh; Wang, James; Berndt, Christopher C; Ivanova, Elena P; Wen, Cuie

    2013-09-01

    Titanium and titanium alloy implants that have been demonstrated to be more biocompatible than other metallic implant materials, such as Co-Cr alloys and stainless steels, must also be accepted by bone cells, bonding with and growing on them to prevent loosening. Highly ordered nanoporous arrays of titanium dioxide that form on titanium surface by anodic oxidation are receiving increasing research interest due to their effectiveness in promoting osseointegration. The response of bone cells to implant materials depends on the topography, physicochemistry, mechanics, and electronics of the implant surface and this influences cell behavior, such as adhesion, proliferation, shape, migration, survival, and differentiation; for example the existing anions on the surface of a titanium implant make it negative and this affects the interaction with negative fibronectin (FN). Although optimal nanosize of reproducible titania nanotubes has not been reported due to different protocols used in studies, cell response was more sensitive to titania nanotubes with nanometer diameter and interspace. By annealing, amorphous TiO2 nanotubes change to a crystalline form and become more hydrophilic, resulting in an encouraging effect on cell behavior. The crystalline size and thickness of the bone-like apatite that forms on the titania nanotubes after implantation are also affected by the diameter and shape. This review describes how changes in nanotube morphologies, such as the tube diameter, the thickness of the nanotube layer, and the crystalline structure, influence the response of cells.

  5. Cleaning graphene with a titanium sacrificial layer

    SciTech Connect

    Joiner, C. A. Roy, T.; Hesabi, Z. R.; Vogel, E. M.; Chakrabarti, B.

    2014-06-02

    Graphene is a promising material for future electronic applications and chemical vapor deposition of graphene on copper is a promising method for synthesizing graphene on the wafer scale. The processing of such graphene films into electronic devices introduces a variety of contaminants which can be difficult to remove. An approach to cleaning residues from the graphene channel is presented in which a thin layer of titanium is deposited via thermal e-beam evaporation and immediately removed. This procedure does not damage the graphene as evidenced by Raman spectroscopy, greatly enhances the electrical performance of the fabricated graphene field effect transistors, and completely removes the chemical residues from the surface of the graphene channel as evidenced by x-ray photoelectron spectroscopy.

  6. Satellite spectra for helium-like titanium

    SciTech Connect

    Bely-Dubac, F.; Faucher, P.; Steeman-Clark, L.; Dubau, J.; Cammy-Val, C.; Bitter, M.; Hill, K.W.; von Goeler, S.

    1982-06-01

    Wavelengths and atomic parameters for both dielectronic and inner-shell satellite lines of the type ls/sup 2/ nl - 1s2l' nl, with n = 2, 3, and 4, have been calculated for Ti XX. The atomic data were calculated in a multiconfiguration intermediate coupling scheme and are compared with previous results for n = 2. The intensities of the higher n satellites are derived from these data, and thus an estimate of the contribution of the unresolved dielectronic satellites to the resonance line is obtained. Direct excitation rates are also given for the resonance, intercombination and forbidden lines for He-like titanium. Cascades and the effect of resonances for these lines are not considered in this paper. These results are used to fit an experimental soft x-ray spectrum from the PDX (Poloidal Divertor Experiment) tokamak discharge. Good agreement is obtained between computed and observed spectra.

  7. Combustion of bulk titanium in oxygen

    NASA Technical Reports Server (NTRS)

    Clark, A. F.; Moulder, J. C.; Runyan, C. C.

    1975-01-01

    The combustion of bulk titanium in one atmosphere oxygen is studied using laser ignition and several analytical techniques. These were high-speed color cinematography, time and space resolved spectra in the visible region, metallography (including SEM) of specimens quenched in argon gas, X-ray and chemical product analyses, and a new optical technique, the Hilbert transform method. The cinematographic application of this technique for visualizing phase objects in the combustion zone is described. The results indicate an initial vapor phase reaction immediately adjacent to the molten surface but as the oxygen uptake progresses the evaporation approaches the point of congruency and a much reduced evaporation rate. This and the accumulation of the various soluble oxides soon drive the reaction zone below the surface where gas formation causes boiling and ejection of particles. The buildup of rutile cuts off the oxygen supply and the reaction ceases.

  8. Titanium nanostructures for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  9. Titanium nanostructures for biomedical applications.

    PubMed

    Kulkarni, M; Mazare, A; Gongadze, E; Perutkova, Š; Kralj-Iglič, V; Milošev, I; Schmuki, P; A Iglič; Mozetič, M

    2015-02-13

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. PMID:25611515

  10. Titanium nanostructures for biomedical applications.

    PubMed

    Kulkarni, M; Mazare, A; Gongadze, E; Perutkova, Š; Kralj-Iglič, V; Milošev, I; Schmuki, P; A Iglič; Mozetič, M

    2015-02-13

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  11. Evidence of antibacterial activity on titanium surfaces through nanotextures

    NASA Astrophysics Data System (ADS)

    Seddiki, O.; Harnagea, C.; Levesque, L.; Mantovani, D.; Rosei, F.

    2014-07-01

    Nosocomial infections (Nis) are a major concern for public health. As more and more of the pathogens responsible for these infections are antibiotic resistant, finding new ways to overcome them is a major challenge for biomedical research. We present a method to reduce Nis spreading by hindering bacterial adhesion in its very early stage. This is achieved by reducing the contact interface area between the bacterium and the surface by nanoengineering the surface topography. In particular, we studied the Escheria Coli adhesion on titanium surfaces exhibiting different morphologies, that were obtained by a combination of mechanical polishing and chemical etching. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) characterization revealed that the titanium surface is modified at both micro- and nano-scale. X-ray Photoelectron Spectroscopy (XPS) revealed that the surfaces have the same composition before and after piranha treatment, consisting mainly of TiO2. Adhesion tests showed a significant reduction in bacterial accumulation on nanostructured surfaces that had the lowest roughness over large areas. SEM images acquired after bacterial culture on different titanium substrates confirmed that the polished titanium surface treated one hour in a piranha solution at a temperature of 25 °C has the lowest bacterial accumulation among all the surfaces tested. This suggests that the difference observed in bacterial adhesion between the different surfaces is due primarily to surface topography.

  12. Chemical and structural analyses of titanium plates retrieved from patients.

    PubMed

    Pinto, C M S A; Asprino, L; de Moraes, M

    2015-08-01

    The aim of this study was to evaluate the microscopic structure and chemical composition of titanium bone plates and screws retrieved from patients with a clinical indication and to relate the results to the clinical conditions associated with the removal of these devices. Osteosynthesis plates and screws retrieved from 30 patients between January 2010 and September 2013 were studied by metallographic, gas, and energy dispersive X-ray (EDX) analyses and the medical records of these patients were reviewed. Forty-eight plates and 238 screws were retrieved. The time elapsed between plate and screw insertion and removal ranged between 11 days and 10 years. Metallographic analysis revealed that all the plates were manufactured from commercially pure titanium (CP-Ti). The screw samples analyzed consisted of Ti-6Al-4V alloy, except four samples, which consisted of CP-Ti. Titanium plates studied by EDX analysis presented greater than 99.7% titanium by mass. On gas analysis of Ti-6Al-4V screws, three samples were outside the standard values. One CP-Ti screw sample and one plate sample also presented an oxygen analysis value above the standard. The results indicated that the physical properties and chemical compositions of the plates and screws did not correspond with the need to remove these devices or the time of retention.

  13. Osteoblastic response to pectin nanocoating on titanium surfaces.

    PubMed

    Gurzawska, Katarzyna; Svava, Rikke; Yihua, Yu; Haugshøj, Kenneth Brian; Dirscherl, Kai; Levery, Steven B; Byg, Inge; Damager, Iben; Nielsen, Martin W; Jørgensen, Bodil; Jørgensen, Niklas Rye; Gotfredsen, Klaus

    2014-10-01

    Osseointegration of titanium implants can be improved by organic and inorganic nanocoating of the surface. The aim of our study was to evaluate the effect of organic nanocoating of titanium surface with unmodified and modified pectin Rhamnogalacturonan-Is (RG-Is) isolated from potato and apple with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. The effect of coated RG-Is on cell adhesion, cell viability, bone matrix formation and mineralization was tested using SaOS-2 cells. Nanocoating with pectin RG-Is affected surface properties and in consequence changed the environment for cellular response. The cells cultured on surfaces coated with RG-Is from potato with high content of linear 1.4-linked galactose produced higher level of mineralized matrix compared with control surfaces and surfaces coated with RG-I with low content of linear 1.4-linked galactose. The study showed that the pectin RG-Is nanocoating not only changed chemical and physical titanium surface properties, but also specific coating with RG-Is containing high amount of galactan increased mineralized matrix formation of osteoblastic cells in vitro. PMID:25175196

  14. Analysis of Experimental Production of Dense Titanium Plasma

    NASA Astrophysics Data System (ADS)

    Wysocki, Frederick J.; Benage, John F.; Newton, Robert R.; Wood, Blake P.

    2001-10-01

    As part of the stockpile stewardship program, we are developing the capability to produce strongly coupled plasmas at very high density and modest temperature. In this experiment, we desire a cylindrical shell of titanium plasma with ion density ≈ 0.1 times solid density and ion temperature of a few eV. The shell has a radius of 1 cm, a length of 4 cm, and a shell thickness of 0.2 cm. The plasma is produced by using ≈ 1 MA of current (2.5 μs risetime) from the LANL Colt capacitor bank to ohmically heat a 100 μm thick titanium cylindrical foil to the desired conditions. Plasma pressure causes the titanium to expand to the desired thickness, with nylon tamps preventing further expansion. Magnetic force at the foil is reduced by splitting the return current between the axis and outside the foil. The primary diagnostic was two radial x-ray radiographic systems. Analysis of these data indicate the Titanium foil turns to plasma from the outside surfaces inward, rather than a bulk transition to plasma. The data indicate that after 4.8 μs, roughly one half of the foil mass has been turned into plasma, which has expanded to fill the gap between the nylon tamps.

  15. Self-Assembled Antimicrobial and biocompatible copolymer films on Titanium

    PubMed Central

    Pfaffenroth, Cornelia; Winkel, Andreas; Dempwolf, Wibke; Gamble, Lara J.; Castner, David G.; Stiesch, Meike; Menzel, Henning

    2013-01-01

    Biofilm formation on biomedical devices such as dental implants can result in serious infections and finally in device failure. Polymer coatings which provide antimicrobial action to surfaces without compromising the compatibility with human tissue are of great interest. Copolymers of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate are interesting candidates in this respect. These copolymers form ultrathin polycationic layers on titanium surfaces. As the copolymerization reaction is almost ideal statistical, copolymers with varying compositions can be synthesized and immobilized onto titanium surfaces for comprehensive screening concerning antimicrobial activity and biocompatibility. Copolymer films on titanium were characterized by contact angle measurements, ellipsometry and X-ray photoelectron spectroscopy. Antibacterial properties were assessed by investigation of adherence of S. mutans which represents a strain found in the human oral cavity. Biocompatibility was rated based on human gingival fibroblast adhesion, proliferation and cell morphology. Depending on polymer composition the coatings displayed a behavior ranging from biocompatibility equal to titanium but no antibacterial action to highly antimicrobial activity but poor biocompatibility. By balancing these two opposing effects by tailoring chemical composition, copolymer coatings were fabricated, which were able to inhibit the growth of S. mutans on the surface significantly but still show a sufficient attachment of gingival fibroblasts. PMID:21818855

  16. Analysis of nitrogen species in titanium oxynitride ALD films

    NASA Astrophysics Data System (ADS)

    Sowińska, Małgorzata; Brizzi, Simone; Das, Chittaranjan; Kärkkänen, Irina; Schneidewind, Jessica; Naumann, Franziska; Gargouri, Hassan; Henkel, Karsten; Schmeißer, Dieter

    2016-09-01

    Titanium oxynitride films are prepared by plasma enhanced atomic layer deposition method using two different precursors and nitrogen sources. Synchrotron radiation-based X-ray photoelectron spectroscopy and X-ray absorption spectroscopy are used to characterize the nitrogen species incorporated within these films depending on the deposition parameters. It is found that nitrogen atoms in these films are differently bonded. In particular, it can be distinguished between Tisbnd ON and Tisbnd N bonding configurations and molecular nitrogen species caused by precursor fragments.

  17. Cage Versus Noncage Laying-Hen Housings: Worker Respiratory Health.

    PubMed

    Mitchell, Diane; Arteaga, Veronica; Armitage, Tracey; Mitloehner, Frank; Tancredi, Daniel; Kenyon, Nicholas; Schenker, Marc

    2015-01-01

    The objective of this study was to compare respiratory health of poultry workers in conventional cage, enriched cage and aviary layer housing on a single commercial facility, motivated by changing requirements for humane housing of hens. Three workers were randomly assigned daily, one to each of conventional cage, enriched cage, and aviary housing in a crossover repeated-measures design for three observation periods (for a total of 123 worker-days, eight different workers). Workers' exposure to particles were assessed (Arteaga et al. J Agromedicine. 2015;20:this issue) and spirometry, exhaled nitric oxide, respiratory symptoms, and questionnaires were conducted pre- and post-shift. Personal exposures to particles and endotoxin were significantly higher in the aviary than the other housings (Arteaga et al., 2015). The use of respiratory protection was high; the median usage was 70% of the shift. Mixed-effects multivariate regression models of respiratory cross-shift changes were marginally significant, but the aviary system consistently posted the highest decrements for forced expiratory volume in 1 and 6 seconds (FEV1 and FEV6) compared with the enriched or conventional housing. The adjusted mean difference in FEV1 aviary - enriched cage housing was -47 mL/s, 95% confidence interval (CI): (-99 to 4.9), P = .07. Similarly, for FEV6, aviary - conventional housing adjusted mean difference was -52.9 mL/6 s, 95% CI: (-108 to 2.4), P = .06. Workers adopting greater than median use of respiratory protection were less likely to exhibit negative cross-shift pulmonary function changes. Although aviary housing exposed workers to significantly higher respiratory exposures, cross-shift pulmonary function changes did not differ significantly between houses. Higher levels of mask use were protective; poultry workers should wear respiratory protection as appropriate to avoid health decrements. PMID:26237715

  18. Corpectomy cage subsidence with rectangular versus round endcaps.

    PubMed

    Deukmedjian, Armen R; Manwaring, Jotham; Le, Tien V; Turner, Alexander W L; Uribe, Juan S

    2014-09-01

    Corpectomy cages with rectangular endcaps utilize the stronger peripheral part of the endplate, potentially decreasing subsidence risk. The authors evaluated cage subsidence during cyclic biomechanical testing, comparing rectangular versus round endcaps. Fourteen cadaveric spinal segments (T12-L2) were dissected and potted at T12 and L2, then assigned to a rectangular (n=7) or round (n=7) endcap group. An L1 corpectomy was performed and under uniform conditions a cage/plate construct was cyclically tested in a servo-hydraulic frame with increasing load magnitude. Testing was terminated if the test machine actuator displacement exceeded 6mm, or the specimen completed cyclic loading at 2400 N. Number of cycles, compressive force and force-cycles product at test completion were all greater in the rectangular endcap group compared with the round endcap group (cycles: 3027 versus 2092 cycles; force: 1943 N versus 1533 N; force-cycles product: 6162kN·cycles versus 3973 kN·cycles), however these differences were not statistically significant (p ⩾ 0.076). After normalizing for individual specimen bone mineral density, the same measures increased to a greater extent with the rectangular endcaps (cycles: 3014 versus 1855 cycles; force: 1944 N versus 1444 N; force-cycles product: 6040 kN·cycles versus 2980 kN·cycles), and all differences were significant (p⩽0.030). The rectangular endcap expandable corpectomy cage displayed increased resistance to subsidence over the round endcap cage under cyclic loading as demonstrated by the larger number of cycles, maximum load and force-cycles product at test completion. This suggests rectangular endcaps will be less susceptible to subsidence than the round endcap design.

  19. Corpectomy cage subsidence with rectangular versus round endcaps.

    PubMed

    Deukmedjian, Armen R; Manwaring, Jotham; Le, Tien V; Turner, Alexander W L; Uribe, Juan S

    2014-09-01

    Corpectomy cages with rectangular endcaps utilize the stronger peripheral part of the endplate, potentially decreasing subsidence risk. The authors evaluated cage subsidence during cyclic biomechanical testing, comparing rectangular versus round endcaps. Fourteen cadaveric spinal segments (T12-L2) were dissected and potted at T12 and L2, then assigned to a rectangular (n=7) or round (n=7) endcap group. An L1 corpectomy was performed and under uniform conditions a cage/plate construct was cyclically tested in a servo-hydraulic frame with increasing load magnitude. Testing was terminated if the test machine actuator displacement exceeded 6mm, or the specimen completed cyclic loading at 2400 N. Number of cycles, compressive force and force-cycles product at test completion were all greater in the rectangular endcap group compared with the round endcap group (cycles: 3027 versus 2092 cycles; force: 1943 N versus 1533 N; force-cycles product: 6162kN·cycles versus 3973 kN·cycles), however these differences were not statistically significant (p ⩾ 0.076). After normalizing for individual specimen bone mineral density, the same measures increased to a greater extent with the rectangular endcaps (cycles: 3014 versus 1855 cycles; force: 1944 N versus 1444 N; force-cycles product: 6040 kN·cycles versus 2980 kN·cycles), and all differences were significant (p⩽0.030). The rectangular endcap expandable corpectomy cage displayed increased resistance to subsidence over the round endcap cage under cyclic loading as demonstrated by the larger number of cycles, maximum load and force-cycles product at test completion. This suggests rectangular endcaps will be less susceptible to subsidence than the round endcap design. PMID:24831343

  20. Flash photolysis of caged compounds in Limulus ventral photoreceptors

    PubMed Central

    1992-01-01

    Rapid concentration jumps of Ins(1,4,5)P3 or ATP were made inside Limulus ventral photoreceptors by flash photolysis of the parent caged compounds. In intact ventral photoreceptors, the photolysis flash evokes a maximum amplitude light-activated current; therefore, a procedure was developed for uncoupling phototransduction by blocking two of the initial reactions in the cascade, rhodopsin excitation and G protein activation. Rhodopsin was inactivated by exposure to hydroxylamine and bright light. This procedure abolished the early receptor potential and reduced the quantum efficiency by 325 +/- 90- fold (mean +/- SD). G protein activation was blocked by injection of guanosine-5'-O-(2-thiodiphosphate) (GDP beta S). GDP beta S injection reduced the quantum efficiency by 1,881 +/- 1,153-fold (mean +/- SD). Together hydroxylamine exposure and GDP beta S injection reduced the quantum efficiency by 870,000 +/- 650,000-fold (mean +/- SD). After the combined treatment, photoreceptors produced quantum bumps to light that was approximately 10(6) times brighter than the intensity that produced quantum bumps before treatment. Experiments were performed with caged compounds injected into photoreceptors in which phototransduction was largely uncoupled. Photolysis of one compound, myo-inositol 1,4,5- triphosphate P4(5)-1-(2-nitrophenyl)ethyl ester (caged IP3), increased the voltage clamp current in response to the flashlamp by more than twofold without changing the latency of the response. The effect was not seen with photolysis of either adenosine-5'-triphosphate P3-1-(2- nitrophenyl)ethyl ester (caged ATP) or caged IP3 in cells preloaded with either heparin or (1,2-bis-(o-amino-phenoxy)ethane-N-N-N'-N' tetraacetic acid tetrapotassium salt (BAPTA). The results suggest that photoreleased IP3 releases calcium ions from intracellular stores and the resulting increase in [Ca2+]i enhances the amplification of the phototransduction cascade. PMID:1431805

  1. Application of Taguchi method in optimization of cervical ring cage.

    PubMed

    Yang, Kai; Teo, Ee-Chon; Fuss, Franz Konstantin

    2007-01-01

    The Taguchi method is a statistical approach to overcome the limitation of the factorial and fractional factorial experiments by simplifying and standardizing the fractional factorial design. The objective of the current study is to illustrate the procedures and strengths of the Taguchi method in biomechanical analysis by using a case study of a cervical ring cage optimization. A three-dimensional finite element (FE) model of C(5)-C(6) with a generic cervical ring cage inserted was modelled. Taguchi method was applied in the optimization of the cervical ring cage in material property and dimensions for producing the lowest stress on the endplate to reduce the risk of cage subsidence, as in the following steps: (1) establishment of objective function; (2) determination of controllable factors and their levels; (3) identification of uncontrollable factors and test conditions; (4) design of Taguchi crossed array layout; (5) execution of experiments according to trial conditions; (6) analysis of results; (7) determination of optimal run; (8) confirmation of optimum run. The results showed that a cage with larger width, depth and wall thickness can produce the lower von Mises stress under various conditions. The contribution of implant materials is found trivial. The current case study illustrates that the strengths of the Taguchi method lie in (1) consistency in experimental design and analysis; (2) reduction of time and cost of experiments; (3) robustness of performance with removing the noise factors. The Taguchi method will have a great potential application in biomechanical field when factors of the issues are at discrete level. PMID:17822708

  2. Cage Versus Noncage Laying-Hen Housings: Worker Respiratory Health.

    PubMed

    Mitchell, Diane; Arteaga, Veronica; Armitage, Tracey; Mitloehner, Frank; Tancredi, Daniel; Kenyon, Nicholas; Schenker, Marc

    2015-01-01

    The objective of this study was to compare respiratory health of poultry workers in conventional cage, enriched cage and aviary layer housing on a single commercial facility, motivated by changing requirements for humane housing of hens. Three workers were randomly assigned daily, one to each of conventional cage, enriched cage, and aviary housing in a crossover repeated-measures design for three observation periods (for a total of 123 worker-days, eight different workers). Workers' exposure to particles were assessed (Arteaga et al. J Agromedicine. 2015;20:this issue) and spirometry, exhaled nitric oxide, respiratory symptoms, and questionnaires were conducted pre- and post-shift. Personal exposures to particles and endotoxin were significantly higher in the aviary than the other housings (Arteaga et al., 2015). The use of respiratory protection was high; the median usage was 70% of the shift. Mixed-effects multivariate regression models of respiratory cross-shift changes were marginally significant, but the aviary system consistently posted the highest decrements for forced expiratory volume in 1 and 6 seconds (FEV1 and FEV6) compared with the enriched or conventional housing. The adjusted mean difference in FEV1 aviary - enriched cage housing was -47 mL/s, 95% confidence interval (CI): (-99 to 4.9), P = .07. Similarly, for FEV6, aviary - conventional housing adjusted mean difference was -52.9 mL/6 s, 95% CI: (-108 to 2.4), P = .06. Workers adopting greater than median use of respiratory protection were less likely to exhibit negative cross-shift pulmonary function changes. Although aviary housing exposed workers to significantly higher respiratory exposures, cross-shift pulmonary function changes did not differ significantly between houses. Higher levels of mask use were protective; poultry workers should wear respiratory protection as appropriate to avoid health decrements.

  3. Effect of preoxidation on the bond strength of titanium and porcelain.

    PubMed

    Mahale, K M; Nagda, S J

    2014-06-01

    The purpose of this study was to investigate the effect of preoxidation on porcelain titanium- bond strength and the effect of paste bonder (adhesive) on the titanium porcelain bond strength. 11 specimens of commercially pure titanium (26 x 7 x 3 mm) were prepared by different heat treatments in programmable dental furnace. Identification of the oxides formed on the metal surface was conducted with an X-Ray diffractometer with CuKalpha radiation. Vickers hardness numbers were determine. Additional 50 specimens of commercially pure titanium were used to bond with low fusing porcelain. The bond strength was measured in a universal testing machine. X-ray diffraction analysis of the surface of pure titanium revealed that the relative peak intensity of alpha -Ti decreased and that of TiO2 increased with increasing firing temperature. The Vickers hardness number decreased initially as the temperature increased but it increased remarkably above 900 degrees C & was harder in air than vacuum. The tensile shear bond strength was highest in the green stage i.e. without preoxidation of metal, and decreased above 900 degrees C, and was the lowest in the group without paste bonder application. The difference in bond strengths was statistically highly significant for all groups. Preoxidation under vacuum before porcelain firing can effectively improve bonding. The adhesive provided with the low fusing porcelain helps in the bond between titanium & porcelain.

  4. On the importance of crystallographic texture in the biocompatibility of titanium based substrate.

    PubMed

    Hoseini, Majid; Bocher, Philippe; Shahryari, Arash; Azari, Fereshteh; Szpunar, Jerzy A; Vali, Hojatollah

    2014-10-01

    The role of grain size and crystallographic orientation on the biocompatibility of commercially pure titanium was investigated. Samples, with significant differences in crystallographic texture and average grain size (from 0.4 to 40 µm) were produced by equal channel angular pressing (ECAP) and post deformation annealing. X-ray diffraction and electron back scattered diffraction (EBSD) were used to evaluate differences in texture and microstructural characteristics. The titanium oxide film present on the surface of the samples was analyzed to determine the oxidation state of titanium and the chemical bonds between oxygen and titanium using X-ray photoelectron spectroscopy (XPS). Biocompatibility experiments were conducted using MC3T3 preosteoblast cells. Cell attachment was found to be texture-sensitive, where the number of attached cells was higher on the samples with higher number of (0002) planes exposed to the surface, regardless of the grain size. A relationship was also found between the titanium oxide species formed on the surface and the crystallographic texture underneath. The surface texture consisting of more densely packed basal planes promote the formation of Ti-OH on the surface, which in turn, enhances the cell-substrate interactions. These surface characteristics are deemed responsible for the observed difference in cell attachment behaviour of surfaces with different textures. Finally, it is inferred that texture, rather than the grain size, plays the major role in controlling the surface biocompatibility of biomedical devices fabricated from pure metallic titanium.

  5. Effect of preoxidation on the bond strength of titanium and porcelain.

    PubMed

    Mahale, K M; Nagda, S J

    2014-06-01

    The purpose of this study was to investigate the effect of preoxidation on porcelain titanium- bond strength and the effect of paste bonder (adhesive) on the titanium porcelain bond strength. 11 specimens of commercially pure titanium (26 x 7 x 3 mm) were prepared by different heat treatments in programmable dental furnace. Identification of the oxides formed on the metal surface was conducted with an X-Ray diffractometer with CuKalpha radiation. Vickers hardness numbers were determine. Additional 50 specimens of commercially pure titanium were used to bond with low fusing porcelain. The bond strength was measured in a universal testing machine. X-ray diffraction analysis of the surface of pure titanium revealed that the relative peak intensity of alpha -Ti decreased and that of TiO2 increased with increasing firing temperature. The Vickers hardness number decreased initially as the temperature increased but it increased remarkably above 900 degrees C & was harder in air than vacuum. The tensile shear bond strength was highest in the green stage i.e. without preoxidation of metal, and decreased above 900 degrees C, and was the lowest in the group without paste bonder application. The difference in bond strengths was statistically highly significant for all groups. Preoxidation under vacuum before porcelain firing can effectively improve bonding. The adhesive provided with the low fusing porcelain helps in the bond between titanium & porcelain. PMID:25134366

  6. Titanium minerals of placer deposits as a source for new materials

    NASA Astrophysics Data System (ADS)

    Kotova, Olga; Ponaryadov, Alexey

    2015-04-01

    Heavy mineral deposits are a source of the economic important element titanium, which is contained in ilmenite and leucoxene. The mineral composition of placer titanium ore and localization pattern of ore minerals determine their processing and enriching technologies. New data on the mineralogy of titanium ores from modern coastal-marine placer in Stradbroke Island, Eastern Australia, and Pizhma paleoplacer in Middle Timan, Russia, and materials on their basis are presented. The samples were studied by the following methods: optical-mineralogical (stereomicroscope MBS-10, polarizing microscope POLAM L-311), semiquantitative x-ray phase analysis (x-ray difractometer X'Pert PRO MPD). Besides microprobe (VEGA 3 TESCAN) and x-ray fluorescent analysis (XRF-1800 Shimadzu) were used. By the mineralogical composition ores of the both deposits are complex: enriched by valuable minerals. Apart from main ore concentrates it is possible to obtain accompanying nonmetallic products. This will increase the efficiency of deposit exploitation. Ilmenite dominates in ore sands of Stradbroke Island, and leucoxene dominates in the ores of the Pizhma titanium deposit. Australian ilmenite and its altered varieties are mainly characterized by a very high MnO content (from 5.24 to 11.08 %). The irregular distribution of iron oxides, titanium and manganese in the altered ilmenite was shown in the paper. E.g., in the areas of substitution of ilmenite by pseudorutile the concentrations of the given elements are greatly various due to various ratios of basic components in each grain. Their ratios are equal in the area of rutile evolution. Moreover, the high content of gold, diamonds and also rare earth elements (REE) and rare metals (their forms are not determined) were studied. We found native copper on the surface of minerals composing titanium-bearing sandstones of the Pizhma placer. According to the technological features of rocks (density and magnetic) studied placers are close. The

  7. Impaired Fear Extinction as Displayed by Serotonin Transporter Knockout Rats Housed in Open Cages Is Disrupted by IVC Cage Housing

    PubMed Central

    Shan, Ling; Schipper, Pieter; Nonkes, Lourens J. P.; Homberg, Judith R.

    2014-01-01

    Anxiety disorders are influenced by both environmental and genetic factors. A well-known example for gene x environment interactions in psychiatry is the low activity (s) allelic variant of the serotonin transporter (5-HTT) promoter polymorphism (5-HTTLPR) that in the context of stress increases risk for depression and post-traumatic stress disorder (PTSD). Previously, we observed robust anxiety-related phenotypes, such as an impairment in fear extinction, in 5-HTT knockout (5-HTT−/−) versus wild-type (5-HTT+/+) rats housed in open cages. Recently, housing conditions were changed from open cages to individually ventilated cages (IVC), which are associated with a high ventilation fold and noise. This switch in housing conditions prompted an unplanned 5-HTT gene x environment interaction study in our rats. The current study shows that lifetime stress by means of IVC cage housing abolished genotype differences in fear extinction between 5-HTT−/− and 5-HTT+/+ rats. Although this effect was not attributed specifically to either the 5-HTT+/+ or the 5-HTT−/− genotype, the findings are in agreement with the modulatory role of serotonin in the processing of environmental stimuli. Our findings also underline the possibility that housing conditions confound the interpretation of anxiety-related behaviours in rodents. PMID:24658187

  8. Intra-cage dynamics of molecular hydrogen confined in cages of two different dimensions of clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Russina, Margarita; Kemner, Ewout; Mezei, Ferenc

    2016-06-01

    In porous materials the molecular confinement is often realized by means of weak Van der Waals interactions between the molecule and the pore surface. The understanding of the mechanism of such interactions is important for a number of applications. In order to establish the role of the confinement size we have studied the microscopic dynamics of molecular hydrogen stored in the nanocages of clathrate hydrates of two different dimensions. We have found that by varying the size of the pore the diffusive mobility of confined hydrogen can be modified in both directions, i.e. reduced or enhanced compared to that in the bulk solid at the same temperatures. In the small cages with a mean crystallographic radius of 3.95 Å the confinement reduces diffusive mobility by orders of magnitude. In contrast, in large cages with a mean radius of 4.75 Å hydrogen molecules displays diffusive jump motion between different equilibrium sites inside the cages, visible at temperatures where bulk H2 is solid. The localization of H2 molecules observed in small cages can promote improved functional properties valuable for hydrogen storage applications.

  9. Intra-cage dynamics of molecular hydrogen confined in cages of two different dimensions of clathrate hydrates

    PubMed Central

    Russina, Margarita; Kemner, Ewout; Mezei, Ferenc

    2016-01-01

    In porous materials the molecular confinement is often realized by means of weak Van der Waals interactions between the molecule and the pore surface. The understanding of the mechanism of such interactions is important for a number of applications. In order to establish the role of the confinement size we have studied the microscopic dynamics of molecular hydrogen stored in the nanocages of clathrate hydrates of two different dimensions. We have found that by varying the size of the pore the diffusive mobility of confined hydrogen can be modified in both directions, i.e. reduced or enhanced compared to that in the bulk solid at the same temperatures. In the small cages with a mean crystallographic radius of 3.95 Å the confinement reduces diffusive mobility by orders of magnitude. In contrast, in large cages with a mean radius of 4.75 Å hydrogen molecules displays diffusive jump motion between different equilibrium sites inside the cages, visible at temperatures where bulk H2 is solid. The localization of H2 molecules observed in small cages can promote improved functional properties valuable for hydrogen storage applications. PMID:27270444

  10. Intra-cage dynamics of molecular hydrogen confined in cages of two different dimensions of clathrate hydrates.

    PubMed

    Russina, Margarita; Kemner, Ewout; Mezei, Ferenc

    2016-01-01

    In porous materials the molecular confinement is often realized by means of weak Van der Waals interactions between the molecule and the pore surface. The understanding of the mechanism of such interactions is important for a number of applications. In order to establish the role of the confinement size we have studied the microscopic dynamics of molecular hydrogen stored in the nanocages of clathrate hydrates of two different dimensions. We have found that by varying the size of the pore the diffusive mobility of confined hydrogen can be modified in both directions, i.e. reduced or enhanced compared to that in the bulk solid at the same temperatures. In the small cages with a mean crystallographic radius of 3.95 Å the confinement reduces diffusive mobility by orders of magnitude. In contrast, in large cages with a mean radius of 4.75 Å hydrogen molecules displays diffusive jump motion between different equilibrium sites inside the cages, visible at temperatures where bulk H2 is solid. The localization of H2 molecules observed in small cages can promote improved functional properties valuable for hydrogen storage applications. PMID:27270444

  11. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory.

    PubMed

    Amann, Christian P; Denisov, Dmitry; Dang, Minh Triet; Struth, Bernd; Schall, Peter; Fuchs, Matthias

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses. PMID:26203034

  12. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory

    SciTech Connect

    Amann, Christian P. Fuchs, Matthias; Denisov, Dmitry; Dang, Minh Triet; Schall, Peter; Struth, Bernd

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

  13. Validity of "sputtering and re-condensation" model in active screen cage plasma nitriding process

    NASA Astrophysics Data System (ADS)

    Saeed, A.; Khan, A. W.; Jan, F.; Abrar, M.; Khalid, M.; Zakaullah, M.

    2013-05-01

    The validity of "sputtering and re-condensation" model in active screen plasma nitriding for nitrogen mass transfer mechanism is investigated. The dominant species including NH, Fe-I, N2+, N-I and N2 along with Hα and Hβ lines are observed in the optical emission spectroscopy (OES) analysis. Active screen cage and dc plasma nitriding of AISI 316 stainless steel as function of treatment time is also investigated. The structure and phases composition of the nitrided layer is studied by X-ray diffraction (XRD). Surface morphology is studied by scanning electron microscopy (SEM) and hardness profile is obtained by Vicker's microhardness tester. Increasing trend in microhardness is observed in both cases but the increase in active screen plasma nitriding is about 3 times greater than that achieved by dc plasma nitriding. On the basis of metallurgical and OES observations the use of "sputtering and re-condensation" model in active screen plasma nitriding is tested.

  14. Popular C82 fullerene cage encapsulating a divalent metal ion Sm(2+): structure and electrochemistry.

    PubMed

    Hu, Ziqi; Hao, Yajuan; Slanina, Zdeněk; Gu, Zhenggen; Shi, Zujin; Uhlík, Filip; Zhao, Yunfeng; Feng, Lai

    2015-03-01

    Two Sm@C82 isomers have been well characterized for the first time by means of (13)C NMR spectroscopy, and their structures were unambiguously determined as Sm@C2v(9)-C82 and Sm@C3v(7)-C82, respectively. A combined study of single crystal X-ray diffraction and theoretical calculations suggest that in Sm@C2v(9)-C82 the preferred Sm(2+) ion position shall be located in a region slightly off the C2 axis of C2v(9)-C82. Moreover, the electrochemical surveys on these Sm@C82 isomers reveal that their redox activities are mainly determined by the properties of their carbon cages.

  15. Plasma quench production of titanium from titanium tetrachloride

    SciTech Connect

    Sears, J.W.

    1994-10-01

    This project, Plasma Quench Production of Titanium from Titanium Tetrachloride, centers on developing a technique for rapidly quenching the high temperature metal species and preventing back reactions with the halide. The quenching technique chosen uses the temperature drop produced in a converging/diverging supersonic nozzle. The rapid quench provided by this nozzle prevents the back reaction of the halide and metal. The nature of the process produces nanosized particles (10 to 100 nm). The powders are collected by cyclone separators, the hydrogen flared, and the acid scrubbed. Aluminum and titanium powders have been produced in the laboratory-scale device at 1 gram per hour. Efforts to date to scale up this process have not been successful.

  16. Titanium diaphragm makes excellent amplitron cathode support

    NASA Technical Reports Server (NTRS)

    Teich, W. W.

    1965-01-01

    Cathode support structure designed around a titanium diaphragm prevents radial misalignment between the cathode and anode in amplitrons. The titanium exhibits low thermal conductivity, tolerates lateral thermal expansion of the cathode, and is a poor primary and secondary emission medium.

  17. Titanium pigmentation. An electron probe microanalysis study

    SciTech Connect

    Dupre, A.; Touron, P.; Daste, J.; Lassere, J.; Bonafe, J.L.; Viraben, R.

    1985-05-01

    A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis.

  18. Method for Surface Texturing Titanium Products

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1998-01-01

    The present invention teaches a method of producing a textured surface upon an arbitrarily configured titanium or titanium alloy object for the purpose of improving bonding between the object and other materials such as polymer matrix composites and/or human bone for the direct in-growth of orthopaedic implants. The titanium or titanium alloy object is placed in an electrolytic cell having an ultrasonically agitated solution of sodium chloride therein whereby a pattern of uniform "pock mark" like pores or cavities are produced upon the object's surface. The process is very cost effective compared to other methods of producing rough surfaces on titanium and titanium alloy components. The surface textures produced by the present invention are etched directly into the parent metal at discrete sites separated by areas unaffected by the etching process. Bonding materials to such surface textures on titanium or titanium alloy can thus support a shear load even if adhesion of the bonding material is poor.

  19. Optical characteristics of particles produced using electroerosion dispersion of titanium in hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Pyachin, S. A.; Burkov, A. A.; Makarevich, K. S.; Zaitsev, A. V.; Karpovich, N. F.; Ermakov, M. A.

    2016-07-01

    Titanium oxide particles are produced using electric-discharge dispersion of titanium in aqueous solution of hydrogen peroxide. Electron vacuum microscopy, X-ray diffraction, and diffuse reflection spectroscopy are used to study the morphology, composition, and optical characteristics of the erosion particles. It has been demonstrated that the particles consist of titanium and titanium oxides with different valences. The edge of the optical absorption is located in the UV spectral range. The band gap is 3.35 eV for indirect transitions and 3.87 eV for direct allowed transitions. The band gap decreases due to the relatively long heating in air at a temperature of 480-550°C, so that powder oxide compositions can be obtained, the optical characteristics of which are similar to optical characteristics of anatase. The erosion products are completely oxidized to rutile after annealing in air at a temperature of 1000°C.

  20. Dense and porous titanium substrates with a biomimetic calcium phosphate coating

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. A.; Balestra, R. M.; Rocha, M. N.; Peripolli, S. B.; Andrade, M. C.; Pereira, L. C.; Oliveira, M. V.

    2013-01-01

    The present work studied a biomimetic method using a simplified solution (SS) with calcium and phosphorus ions for coating titanium substrates, in order to improve their bioactivity. Commercially pure titanium dense sheet, microporous and macroporous titanium samples, both produced by powder metallurgy, were treated in NaOH solution followed by heat-treating and immersed in SS for 7, 14 or 21 days. The samples characterization was performed by quantitative metallographic analysis, confocal scanning optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and low angle X-ray diffraction. The results showed coatings with calcium phosphate precipitation in all samples, with globular or plate-like morphology, typical of hydroxyapatite and octacalcium phosphate, respectively, indicating that the solution (SS) has potential for coating titanium substrates. In addition, the different surfaces of substrates had an effect on the formed calcium phosphate phase and thickness of coatings, depending on the substrate type and imersion time in the simplified solution.

  1. Effects of cage density, sanitation frequency, and bedding type on animal wellbeing and health and cage environment in mice and rats.

    PubMed

    Horn, Mandy J; Hudson, Shanice V; Bostrom, Linda A; Cooper, Dale M

    2012-11-01

    The objective of the current study was to evaluate the effects of cage density, sanitation frequency, and bedding type on animal growth and welfare. At weaning, Sprague-Dawley rats and C57BL/6 mice were allocated to treatment groups according to sex, bedding type (shredded aspen, cellulose, or a 50:50 mixture), and cage density and sanitation frequency (inhouse cage density standards and sanitation procedures measured against Guide recommendations) for an 8-wk period. Body weight, feed disappearance, cage ammonia, ATP concentrations, behavior, morbidity, and mortality were assessed weekly; fecal corticosterone, microbiology, and lung histopathology (rats only) were evaluated at the culmination of the trial. In both rats and mice, parameters indicative of animal health and welfare were not significantly affected by cage density and sanitation frequency or bedding type. Occasional effects of feed disappearance and cage ammonia concentrations due to density and sanitation guidelines were noted in rat cages, and bedding type affected cage ammonia and ATP concentrations. Periodic spikes of cage ammonia and ATP concentrations were recorded in mouse cages maintained according to inhouse compared with Guide standards and in cages containing aspen compared with cellulose or aspen-cellulose mixed bedding. Ongoing studies and historical data support the finding that deviations or exceptions from the cage density and sanitation frequency standards set forth in the Guide do not negatively affect animal health, welfare, or production parameters at our institution. These parameters appear to be credible measures of animal health and wellbeing and may be useful for evaluating performance standards for animal husbandry. PMID:23294884

  2. Effects of Cage Density, Sanitation Frequency, and Bedding Type on Animal Wellbeing and Health and Cage Environment in Mice and Rats

    PubMed Central

    Horn, Mandy J; Hudson, Shanice V; Bostrom, Linda A; Cooper, Dale M

    2012-01-01

    The objective of the current study was to evaluate the effects of cage density, sanitation frequency, and bedding type on animal growth and welfare. At weaning, Sprague–Dawley rats and C57BL/6 mice were allocated to treatment groups according to sex, bedding type (shredded aspen, cellulose, or a 50:50 mixture), and cage density and sanitation frequency (inhouse cage density standards and sanitation procedures measured against Guide recommendations) for an 8-wk period. Body weight, feed disappearance, cage ammonia, ATP concentrations, behavior, morbidity, and mortality were assessed weekly; fecal corticosterone, microbiology, and lung histopathology (rats only) were evaluated at the culmination of the trial. In both rats and mice, parameters indicative of animal health and welfare were not significantly affected by cage density and sanitation frequency or bedding type. Occasional effects of feed disappearance and cage ammonia concentrations due to density and sanitation guidelines were noted in rat cages, and bedding type affected cage ammonia and ATP concentrations. Periodic spikes of cage ammonia and ATP concentrations were recorded in mouse cages maintained according to inhouse compared with Guide standards and in cages containing aspen compared with cellulose or aspen–cellulose mixed bedding. Ongoing studies and historical data support the finding that deviations or exceptions from the cage density and sanitation frequency standards set forth in the Guide do not negatively affect animal health, welfare, or production parameters at our institution. These parameters appear to be credible measures of animal health and wellbeing and may be useful for evaluating performance standards for animal husbandry. PMID:23294884

  3. Lightweight Protective Coatings For Titanium Alloys

    NASA Technical Reports Server (NTRS)

    Wiedemann, Karl E.; Taylor, Patrick J.; Clark, Ronald K.

    1992-01-01

    Lightweight coating developed to protect titanium and titanium aluminide alloys and titanium-matrix composite materials from attack by environment when used at high temperatures. Applied by sol-gel methods, and thickness less than 5 micrometers. Reaction-barrier and self-healing diffusion-barrier layers combine to protect titanium alloy against chemical attack by oxygen and nitrogen at high temperatures with very promising results. Can be extended to protection of other environmentally sensitive materials.

  4. Process for reproducibly preparing titanium subhydride

    DOEpatents

    Carlson, Richard S.

    1982-01-01

    Titanium subhydride is produced in a reactor by heating a selected amount of finely divided titanium compound at a selected temperature for a selected period of time under dynamic vacuum conditions. Hydrogen is removed substantially uniformly from each powder grain and there is produced a subhydride of substantially uniform titanium-hydrogen composition. Selection of the amount, temperature and time produces a subhydride of selected titanium-hydrogen composition.

  5. Effects of single caging and cage size on behavior and stress level of domestic neutered cats housed in an animal shelter.

    PubMed

    Uetake, Katsuji; Goto, Akihiro; Koyama, Rumi; Kikuchi, Rieko; Tanaka, Toshio

    2013-03-01

    Cats need a minimum amount of space even in animal shelters. In this study the effects of single caging and cage size on the behavior and stress level of domestic cats were investigated. Six neutered cats (2-15 years old) that had been housed in a group for at least 7 months were moved to three kinds of single cages (small, medium and large) by rotation on a Latin square design. They experienced each cage size for 6 days. Cats could use vertical dimensions when housed in a group room and the large cage. Behavioral observation was conducted for 3 h in the evening, and stress levels were assessed by urine cortisol-to-creatinine ratios. The amounts (estimated proportions) of time spent in locomotion and social/solitary play were lower even in large cages than in group housing (both P < 0.05). Conversely, the amount of time spent resting tended to increase when housed singly (P = 0.104). The urine cortisol-to-creatinine ratios of singly housed cats tended to be higher than that of group-housed cats (P = 0.086). The results indicate that cats become less active when they are housed singly in cages regardless of the cage size. Cats seem to feel no undue stress even in small cages if the stay is short. PMID:23480709

  6. 21 CFR 73.575 - Titanium dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2)...

  7. 21 CFR 73.575 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2)...

  8. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891,...

  9. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or...

  10. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide (CAS Reg. No. 13463-67-7) is exempted from the requirement of...

  11. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or...

  12. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891,...

  13. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or...

  14. 21 CFR 73.3126 - Titanium dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891,...

  15. 21 CFR 73.575 - Titanium dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2)...

  16. 40 CFR 180.1195 - Titanium dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide (CAS Reg. No. 13463-67-7) is exempted from the requirement of...

  17. Complete cage migration/subsidence into the adjacent vertebral body after posterior lumbar interbody fusion.

    PubMed

    Corniola, Marco V; Jägersberg, Max; Stienen, Martin N; Gautschi, Oliver P

    2015-03-01

    A variety of implant-related short and long-term complications after lumbar fusion surgery are recognized. Mid to long-term complications due to cage migration and/or cage subsidence are less frequently reported. Here, we report a patient with a complete cage migration into the superior adjacent vertebral body almost 20 years after the initial posterior lumbar interbody fusion procedure. In this patient, the cage migration/subsidence was clinically silent, but a selective decompression for adjacent segment degenerative lumbar spinal stenosis was performed. We discuss the risk factors for cage migration/subsidence in view of the current literature.

  18. Photonuclear reactions on titanium isotopes

    SciTech Connect

    Belyshev, S. S.; Dzhilavyan, L. Z.; Ishkhanov, B. S.; Kapitonov, I. M.; Kuznetsov, A. A. Orlin, V. N.; Stopani, K. A.

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  19. Adaptive mesh refinement in titanium

    SciTech Connect

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  20. Structure of molten titanium dioxide

    NASA Astrophysics Data System (ADS)

    Alderman, O. L. G.; Skinner, L. B.; Benmore, C. J.; Tamalonis, A.; Weber, J. K. R.

    2014-09-01

    The x-ray structure factor of molten TiO2 has been measured, enabled by the use of aerodynamic levitation and laser beam heating, to a temperature of T=2250(30)K. The Ti-O coordination number in the melt is close to nTiO=5.0(2), with modal Ti-O bond length rTiO=1.881(5)Å, both values being significantly smaller than for the high temperature stable rutile crystal structure (nTiO=6.0,rTiO=1.959Å). The structural differences between melt and crystal are qualitatively similar to those for alumina, which is rationalized in terms of the similar field strengths of Ti4+ and Al3+. The diffraction data are used to generate physically and chemically reasonable structural models, which are then compared to the predictions based on various classical molecular dynamics (MD) potentials. Interatomic potentials, suitable for modeling molten TiO2, are introduced, given the inability of existing MD models to reproduce the diffraction data. These potentials have the additional advantage of being able to predict the density and thermal expansion of the melt, as well as solid amorphous TiO2, in agreement with published results. This is of critical importance given the strong correlation between density and structural parameters such as nTiO. The large thermal expansion of the melt is associated with weakly temperature dependent structural changes, whereby simulations show that nTiO=5.85(2)-[3.0(1)×10-4]T(K ,2.75Åcutoff). The TiO2 liquid is structurally analogous to the geophysically relevant high pressure liquid silica system at around 27 GPa. We argue that the predominance of fivefold polyhedra in the melt implies the existence of as-yet-undiscovered TiO2 polymorphs, based on lower-than-octahedral coordination numbers, which are likely to be metastable under ambient conditions. Given the industrial importance of titanium oxides, experimental and computational searches for such polymorphs are well warranted.

  1. Structure of molten titanium dioxide

    SciTech Connect

    Alderman, O. L. G.; Skinner, L. B.; Benmore, C. J.; Tamalonis, A.; Weber, J. K. R.

    2014-09-18

    The x-ray structure factor of molten TiO2 has been measured for the first time, enabled by the use of aerodynamic levitation and laser beam heating, to a temperature of T = 2250(30) K. Ti-O coordination number in the melt is close to nTiO = 5.0(2), with modal Ti-O bond length rTiO = 1.881(5) Å, both values being significantly smaller than for the high temperature stable Rutile crystal structure (nTiO = 6.0, rTiO = 1.959 Å). The structural differences between melt and crystal are qualitatively similar to those for alumina, which is rationalized in terms of the similar field strengths of Ti4+ and Al3+. The diffraction data are used to generate physically and chemically reasonable structural models, which are then compared to the predictions based on various classical molecular dynamics (MD) potentials. New interatomic potentials, suitable for modelling molten TiO2, are introduced, given the inability of existing MD models to reproduce the diffraction data. These new potentials have the additional great advantage of being able to predict the density and thermal expansion of the melt, as well as solid amorphous TiO2, in agreement with published results. This is of critical importance given the strong correlation between density and structural parameters such as nTiO. The large thermal expansion of the melt is associated with weakly temperature dependent structural changes, whereby simulations show that nTiO = 5.85(2) – (3.0(1) x 10-4 )T (K, 2.75 Å cut-off). The TiO2 liquid is structurally analogous to the geophysically relevant high pressure liquid silica system at around 27 GPa. We argue that the predominance of 5-fold polyhedra in the melt implies the existence of as yet undiscovered TiO2 polymorphs, based on lowerthan-octahedral coordination numbers, which are likely to be metastable under ambient conditions. Given the industrial importance of titanium oxides, experimental and computational searches for such polymorphs are well warranted.

  2. Laser bioengineering of glass-titanium implants surface

    NASA Astrophysics Data System (ADS)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  3. Hypervelocity-impact studies on titanium, titanium alloys, and beryllium

    SciTech Connect

    Lundberg, L.B.; Bless, S.J.; Girrens, S.P.; Green, J.E.

    1982-08-01

    The hypervelocity-impact behavior of commercial-pure, Grade 2 Ti, Ti-5Al-2.5Sn, Ti-6Al-2Sn-4Zr-2Mo-0.25Si, and pure beryllium was studied by impacting targets of these materials with millimeter-sized spheres of glass, copper, aluminum, and cadmium propelled from a light-gas gun at velocities ranging from 4.5 to 7.6 km/s. Target temperatures ranged from 295 to 775/sup 0/K when impacted. Semi-infinite targets were impacted to determine cratering behavior, and some correlations were made to thin-target perforation. Thin titanium targets with a variety of surface coatings and finishes were also impacted. Titanium and the titanium alloys were found to behave in a ductile manner when impacted, but beryllium was found to be brittle even at 775/sup 0/K. An extrapolation equation was used to optimize a titanium heat pipe radiator mass for a space nuclear power application.

  4. Animal Welfare and Food Safety Aspects of Confining Broiler Chickens to Cages

    PubMed Central

    Shields, Sara; Greger, Michael

    2013-01-01

    Simple Summary In commercial chicken meat production, broiler chickens are usually kept on the floor in ware-house like buildings, but the use of cages is becoming more common. Confining chickens to cages is a welfare problem, as has been thoroughly demonstrated for laying hens used for egg production. Caged broiler chickens may suffer from poor bone strength due to lack of exercise, feather loss, and restriction of natural behavior. There are also potential food safety concerns associated with the use of cages. While cages may provide an economic advantage in some geographical regions of the world, the severe, inherent disadvantages should also be considered before cages are more widely adopted in the global broiler chicken industry. Abstract In most areas of the world, broiler chickens are raised in floor systems, but cage confinement is becoming more common. The welfare of broiler chickens in cages is affected by movement restriction, poor bone strength due to lack of exercise, and prevention of key behavioral patterns such as dustbathing and ground scratching. Cages for broiler chickens also have a long history of causing skin and leg conditions that could further compromise welfare, but a lack of controlled studies makes it difficult to draw conclusions about newer cage designs. Cage environments are usually stocked at a higher density than open floor systems, and the limited studies available suggest that caging may lead to increased levels of fear and stress in the birds. Further, birds reared on the floor appear less likely to harbor and shed Salmonella, as litter may serve as a seeding agent for competitive exclusion by other microorganisms. Cages for laying hens used in egg production have met with substantial opposition due to welfare concerns and caging broiler chickens will likely be subject to the same kinds of social disapproval. PMID:26487409

  5. Hydrogen trapped in Ben cluster cages: The atomic encapsulation option

    NASA Astrophysics Data System (ADS)

    Naumkin, Fedor Y.; Wales, David J.

    2012-08-01

    Core-shell (kH)@Ben (k = 1-3, n = 6-11) systems are studied computationally. The smallest system with endohedral hydrogen is H@Be6 with a central H anion, thermodynamically stable to dissociation into H + Be6. Larger structures are constructed by merging a few such units and have reduced stability. Potential energy barriers to hydrogen exit from the cage assemblies are estimated. Face- and edge-sharing combinations of the structural units are considered. The extrapolated upper bound for the potential 'nanofoam' material storage capacity is 10 weight-% of hydrogen. The changes in shape and electronic properties of the Ben cages upon insertion of hydrogen are also analyzed.

  6. Mutual Inductance in the Bird-Cage Resonator

    PubMed

    Tropp

    1997-05-01

    Formulas are derived to account for the effect of the mutual inductances, between all meshes, upon the electrical resonance spectra bird-cage resonators, and similar structures such as the TEM resonator of P. K. H. Roschmann (United States Patent 4,746,866) and J. T. Vaughan et al. (Magn. Reson. Med. 32, 206, 1994). The equations are parameterized in terms of isolated mesh frequencies and coupling coefficients, and ought therefore apply not only to simple magnetic couplings used in the derivation, but to electromagnetic couplings as well. A method for measuring the coupling coefficients-applicable to shielded as well as unshielded resonators-is described, based upon the splitting of frequencies in pairs of coupled resonators; and detailed comparisons are given between calculated and measured resonance spectra: for bird-cage resonators, with and without shields, and for the TEM resonator.

  7. Optical triggered seizures using a caged 4-Aminopyridine.

    PubMed

    Zhao, Mingrui; McGarry, Laura M; Ma, Hongtao; Harris, Samuel; Berwick, Jason; Yuste, Rafael; Schwartz, Theodore H

    2015-01-01

    Animal models of epilepsy are critical not only for understanding the fundamental mechanism of epilepsy but also for testing the efficacy of new antiepileptic drugs and novel therapeutic interventions. Photorelease of caged molecules is widely used in biological research to control pharmacologic events with high spatio-temporal resolution. We developed a technique for in vivo optical triggering of neocortical seizures using a novel caged compound based on ruthenium photochemistry (RuBi-4AP). Epileptiform events in mouse cortex were induced with blue light in both whole brain and focal illumination. Multi-electrode array recording and optical techniques were used to characterize the propagation of these epileptic events, including interictal spikes, polyspikes, and ictal discharges. These results demonstrate a novel optically-triggered seizure model, with high spatio-temporal control, that could have widespread application in the investigation of ictal onset, propagation and to develop novel light-based therapeutic interventions. PMID:25698919

  8. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.; Turk, Thomas R.

    1988-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  9. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.

    1987-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  10. Rotational Brownian Dynamics simulations of clathrin cage formation

    SciTech Connect

    Ilie, Ioana M.; Briels, Wim J.; Otter, Wouter K. den

    2014-08-14

    The self-assembly of nearly rigid proteins into ordered aggregates is well suited for modeling by the patchy particle approach. Patchy particles are traditionally simulated using Monte Carlo methods, to study the phase diagram, while Brownian Dynamics simulations would reveal insights into the assembly dynamics. However, Brownian Dynamics of rotating anisotropic particles gives rise to a number of complications not encountered in translational Brownian Dynamics. We thoroughly test the Rotational Brownian Dynamics scheme proposed by Naess and Elsgaeter [Macromol. Theory Simul. 13, 419 (2004); Naess and Elsgaeter Macromol. Theory Simul. 14, 300 (2005)], confirming its validity. We then apply the algorithm to simulate a patchy particle model of clathrin, a three-legged protein involved in vesicle production from lipid membranes during endocytosis. Using this algorithm we recover time scales for cage assembly comparable to those from experiments. We also briefly discuss the undulatory dynamics of the polyhedral cage.

  11. Lanthanides caged by the organic chelates; structural properties.

    PubMed

    Smentek, Lidia

    2011-04-13

    The structure, in particular symmetry, geometry and morphology of organic chelates coordinated with the lanthanide ions are analyzed in the present review. This is the first part of a complete presentation of a theoretical description of the properties of systems, which are widely used in technology, but most of all, in molecular biology and medicine. The discussion is focused on the symmetry and geometry of the cages, since these features play a dominant role in the spectroscopic activity of the lanthanides caged by organic chelates. At the same time, the spectroscopic properties require more formal presentation in the language of Racah algebra, and deserve a separate analysis. In addition to the parent systems of DOTA, DOTP, EDTMP and CDTMP presented here, their modifications by various antennas are analyzed. The conclusions that have a strong impact upon the theory of the energy transfer and the sensitized luminescence of these systems are based on the results of numerical density functional theory calculations.

  12. Modelling of current loads on aquaculture net cages

    NASA Astrophysics Data System (ADS)

    Kristiansen, Trygve; Faltinsen, Odd M.

    2012-10-01

    In this paper we propose and discuss a screen type of force model for the viscous hydrodynamic load on nets. The screen model assumes that the net is divided into a number of flat net panels, or screens. It may thus be applied to any kind of net geometry. In this paper we focus on circular net cages for fish farms. The net structure itself is modelled by an existing truss model. The net shape is solved for in a time-stepping procedure that involves solving a linear system of equations for the unknown tensions at each time step. We present comparisons to experiments with circular net cages in steady current, and discuss the sensitivity of the numerical results to a set of chosen parameters. Satisfactory agreement between experimental and numerical prediction of drag and lift as function of the solidity ratio of the net and the current velocity is documented.

  13. Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance.

    PubMed

    Zhu, Guanghui; Hoffman, Christopher D; Liu, Yang; Bhattacharyya, Souryadeep; Tumuluri, Uma; Jue, Melinda L; Wu, Zili; Sholl, David S; Nair, Sankar; Jones, Christopher W; Lively, Ryan P

    2016-07-25

    Both known and new CC3-based porous organic cages are prepared and exposed to acidic SO2 in vapor and liquid conditions. Distinct differences in the stability of the CC3 cages exist depending on the chirality of the diamine linkers used. The acid catalyzed CC3 degradation mechanism is probed via in situ IR and a degradation pathway is proposed and supported with computational results. CC3 crystals synthesized with racemic mixtures of diaminocyclohexane exhibited enhanced stability compared to CC3-R and CC3-S. Confocal fluorescent microscope images reveal that the stability difference in CC3 species originates from an abundance of mesoporous grain boundaries in CC3-R and CC3-S, allowing facile access of aqueous SO2 throughout the crystal, promoting decomposition. These grain boundaries are absent from CC3 crystals made with racemic linkers. PMID:27253350

  14. Lanthanides caged by the organic chelates; structural properties

    NASA Astrophysics Data System (ADS)

    Smentek, Lidia

    2011-04-01

    The structure, in particular symmetry, geometry and morphology of organic chelates coordinated with the lanthanide ions are analyzed in the present review. This is the first part of a complete presentation of a theoretical description of the properties of systems, which are widely used in technology, but most of all, in molecular biology and medicine. The discussion is focused on the symmetry and geometry of the cages, since these features play a dominant role in the spectroscopic activity of the lanthanides caged by organic chelates. At the same time, the spectroscopic properties require more formal presentation in the language of Racah algebra, and deserve a separate analysis. In addition to the parent systems of DOTA, DOTP, EDTMP and CDTMP presented here, their modifications by various antennas are analyzed. The conclusions that have a strong impact upon the theory of the energy transfer and the sensitized luminescence of these systems are based on the results of numerical density functional theory calculations.

  15. Supramolecular Archimedean Cages Assembled with 72 Hydrogen Bonds

    SciTech Connect

    Liu, Yuzhou; Hu, Chunhua; Comotti, Angiolina; Ward, Michael D.

    2011-12-09

    Self-assembly of multiple components into well-defined and predictable structures remains one of the foremost challenges in chemistry. Here, we report on the rational design of a supramolecular cage assembled from 20 ions of three distinct species through 72 hydrogen bonds. The cage is constructed from two kinds of hexagonal molecular tiles, a tris(guanidinium)nitrate cluster and a hexa(4-sulfonatophenyl)benzene, joined at their edges through complementary and metrically matched N-H {hor_ellipsis} O-S hydrogen bonds to form a truncated octahedron, one of the Archimedean polyhedra. The truncated octahedron, with an interior volume of 2200 cubic angstroms, serves as the composite building unit of a body-centered cubic zeolite-like framework, which exhibits an ability to encapsulate a wide range of differently charged species, including organic molecules, transition metal complexes, and 'ship-in-a-bottle' nanoclusters not observed otherwise.

  16. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  17. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.

  18. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.

    1998-01-01

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  19. Determination of ruthenium in ruthenium-titanium oxide anodes

    SciTech Connect

    Zhitenko, L.P.; Alekseeva, A.M.; Gimel'farb, F.A.

    1987-07-01

    Ruthenium-titanium oxide anodes (RTOA) are being widely used in electrochemical technology. The uniformity of distribution, the form in which it is present, and the total ruthenium content have a significant influence on the catalytical properties of RTOA; the development of suitable analytical methods represents therefore an important task. However, the use of nondestructive methods is difficult in the present case, due to the above-mentioned peculiar structure of the RTOA coating and due to the fact that standard specimens of such coatings are not available. Evidently, the analysis of the coating after dissolution of the individual phases or of the whole coating represents a promising approach. In this work they have proposed procedures for the dissolution of RTOA with the aim to determine their ruthenium content. X-ray microprobe analysis (XRMA) and secondary-ion mass spectrometry (SIMS) were used to check the uniformity of distribution of ruthenium and titanium in the oxide layer of RTOA.

  20. Differential regulation of protein subdomain activity with caged bivalent ligands.

    PubMed

    Mayer, Günter; Müller, Jens; Mack, Timo; Freitag, Daniel F; Höver, Thomas; Pötzsch, Bernd; Heckel, Alexander

    2009-03-01

    Subtle change: Spatiotemporal modulation of individual protein subdomains with light as the trigger signal becomes possible by using bivalent aptamers and introducing photolabile "caging groups" to switch individual aptamer modules ON or OFF differentially. To the best of our knowledge, this is the first study to show that it is possible to modulate individual domain activity in aptamers, and thus also domain activity in proteins, with light.

  1. Chemical control of Ornithonyssus sylviarum on caged layer hens.

    PubMed

    Levot, G W

    1992-04-01

    Manual application of aqueous solutions of malathion, carbaryl and permethrin controlled northern fowl mite, Ornithonyssus sylviarum Canestrini and Fanzago, on caged layer hens for at least 118 days. Azamethiphos sprayed manually provided acceptable control for a shorter period. Machine application, particularly of azamethiphos, but also malathion, provided lesser control. The addition of surfactant increased the wetting ability of the sprays but interfered with the efficacy of azamethiphos. PMID:1421482

  2. Characterization of anodized titanium for hydrometallurgical applications—Evidence for the reduction of cupric on titanium dioxide

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Alfantazi, Akram; Asselin, Edouard

    2013-10-01

    Anodic oxide films (AOFs) were potentiostatically formed on commercially pure titanium in 0.5 M sulfuric acid solutions at various anodizing voltages (up to 80 V) at room temperature. The subject of this study was the corrosion resistance of the AOFs in synthetic copper sulfide leaching solutions containing 30 g L-1 sulfuric acid as well as 12 g L-1 Cl-, 15 g L-1 Cu2+ and 1 g L-1 Fe3+. Open circuit potential (OCP) measurement, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) were used to study the corrosion response of the AOFs in copper sulfide leaching solutions up to 85 °C. Scanning electron microscopy (SEM) was used to investigate the morphology of the AOFs before and after 12 h of immersion at 85 °C. X-ray photoelectron spectroscopy (XPS) was used to examine the surface chemistry of the AOFs after immersion. OCP measurements showed that the final failure of the AOFs occurred in 2 h in de-aerated 30 g L-1 H2SO4 and 12 g L-1 Cl- solutions at 85 °C. Both LPR and EIS results showed a significant increase in the corrosion resistance of the anodized titanium versus that of freshly polished titanium. Electrochemical results were confirmed by SEM analysis, where the AOF formed at 80 V lead to the best improvement in corrosion resistance. XPS measurements revealed that Cu2+ was reduced to Cu or Cu+ within the titanium oxide film. It was further confirmed that the presence of leaching oxidants would inhibit the reduction of Cu2+ on titanium dioxide in chloride containing copper sulfide leaching solutions.

  3. Shadow-casted ultrathin surface coatings of titanium and titanium/silicon oxide sol particles via ultrasound-assisted deposition.

    PubMed

    Karahan, H Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu

    2016-07-01

    Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD.

  4. Shadow-casted ultrathin surface coatings of titanium and titanium/silicon oxide sol particles via ultrasound-assisted deposition.

    PubMed

    Karahan, H Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu

    2016-07-01

    Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD. PMID:26964975

  5. Tumor Bed Delineation for Partial Breast and Breast Boost Radiotherapy Planned in the Prone Position: What Does MRI Add to X-ray CT Localization of Titanium Clips Placed in the Excision Cavity Wall?

    SciTech Connect

    Kirby, Anna M. Yarnold, John R.; Evans, Philip M.; Morgan, Veronica A.; Schmidt, Maria A.; Scurr, Erica D.; Souza, Nandita de

    2009-07-15

    Purpose: To compare tumor bed (TB) volumes delineated using magnetic resonance imaging plus computed tomography and clips (MRCT) with those delineated using CT and clips (CT/clips) alone in postlumpectomy breast cancer patients positioned prone and to determine the value of MRCT for planning partial breast irradiation (PBI). Methods and Materials: Thirty women with breast cancer each had 6 to 12 titanium clips secured in the excision cavity walls at lumpectomy. Patients underwent CT imaging in the prone position, followed by MRI (T{sub 1}-weighted [standard and fat-suppressed] and T{sub 2}-weighted sequences) in the prone position. TB volumes were delineated separately on CT and on fused MRCT datasets. Clinical target volumes (CTV) (where CTV = TB + 15 mm) and planning target volumes (PTV) (where PTV = CTV + 10 mm) were generated. Conformity indices between CT- and MRCT-defined target volumes were calculated (ratio of the volume of agreement to total delineated volume). Discordance was expressed as a geographical miss index (GMI) (where the GMI = the fraction of total delineated volume not defined by CT) and a normal tissue index (the fraction of total delineated volume designated as normal tissue on MRCT). PBI dose distributions were generated to cover CT-defined CTV (CTV{sub CT}) with {>=}95% of the reference dose. The percentage of MRCT-defined CTV (CTV{sub MRCT}) receiving {>=}95% of the reference dose was measured. Results: Mean conformity indices were 0.54 (TB), 0.84 (CTV), and 0.89 (PTV). For TB volumes, the GMI was 0.37, and the NTI was 0.09. Median percentage volume coverage of CTV{sub CT} was 97.1% (range, 95.3%-100.0%) and of CTV{sub MRCT} was 96.5% (range, 89.0%-100.0%). Conclusions: Addition of MR to CT/clip data generated TB volumes that were discordant with those based on CT/clips alone. However, clinically satisfactory coverage of CTV{sub MRCT} by CTV{sub CT}-based tangential PBI fields provides support for CT/clip-based TB delineation remaining the

  6. Encapsulation of Halocarbons in a Tetrahedral Anion Cage.

    PubMed

    Yang, Dong; Zhao, Jie; Zhao, Yanxia; Lei, Yibo; Cao, Liping; Yang, Xiao-Juan; Davi, Martin; Amadeu, Nader de Sousa; Janiak, Christoph; Zhang, Zhibin; Wang, Yao-Yu; Wu, Biao

    2015-07-20

    Caged supramolecular systems are promising hosts for guest inclusion, separation, and stabilization. Well-studied examples are mainly metal-coordination-based or covalent architectures. An anion-coordination-based cage that is capable of encapsulating halocarbon guests is reported for the first time. This A4L4-type (A=anion) tetrahedral cage, [(PO4)4L4](12-), assembled from a C3-symmetric tris(bisurea) ligand (L) and phosphate ion (PO4(3-)), readily accommodates a series of quasi-tetrahedral halocarbons, such as the Freon components CFCl3, CF2Cl2, CHFCl2, and C(CH3)F3, and chlorocarbons CH2Cl2, CHCl3, CCl4, C(CH3)Cl3, C(CH3)2Cl2, and C(CH3)3Cl. The guest encapsulation in the solid state is confirmed by crystal structures, while the host-guest interactions in solution were demonstrated by NMR techniques. PMID:26053734

  7. Genotoxicity monitoring of freshwater environments using caged carp (Cyprinus carpio).

    PubMed

    Klobucar, Göran I V; Stambuk, Anamaria; Pavlica, Mirjana; Sertić Perić, Mirela; Kutuzović Hackenberger, Branimir; Hylland, Ketil

    2010-01-01

    The present study deals with genotoxicity assessment of freshwaters using caged carp (Cyprinus carpio). Carps were transplanted from a fish-farm to three differently polluted sites in eastern Croatia. Two polluted sites were situated in the river Drava, downstream from the cities of Belisće and Osijek, while the reference site was in the Nature Park Kopacki rit, a preserved wetland area with limited anthropogenic influence. Exposure lasted for 3 weeks and was repeated for 3 years (2002-2004). DNA damage was assessed in erythrocytes of the exposed animals by the Comet assay and micronucleus test (MNT). In order to evaluate possible differences in stress responses to polluted water in situ and in aquaria a laboratory exposure was performed with water from the studied location in the second year of the study. Carp from the sites with high anthropogenic influence (Belisće and Osijek) had higher average DNA damage as expressed in both the MNT and Comet assay. Of the two, the Comet assay appeared to be more sensitive following both caging and aquaria exposures. The results from this study suggest that 3 weeks caging exposure of C. carpio may be a useful strategy to monitor for genotoxic agents in freshwater ecosystems. PMID:19626438

  8. A comparison of rodent caging systems based on microenvironmental parameters

    SciTech Connect

    Corning, B.F.; Lipman, N.S. )

    1991-10-01

    Four different mouse caging systems were evaluated for microenvironmental temperature, carbon dioxide, relative humidity (RH) and ammonia levels during a 7-day testing period. All caging systems evaluated had polycarbonate bases and consisted of either a molded polyester (MP) filter lid, one of two different polycarbonate filter lids, or no filter lid which served as a control. At 50% macroenvironmental RH (study I), all systems maintained an intracage temperature of 75.5 degrees F +/- 0.5 degrees. Both polycarbonate systems averaged greater than 2200 ppm of carbon dioxide more than the MP system and the controls. When compared with RH in the control cages, RH levels averaged over 20% and 5 to 8% RH greater in the polycarbonate filter lid systems and the MP system, respectively. There were no appreciable ammonia levels in either the MP or control systems. In the polycarbonate filter lid systems, ammonia levels were detectable on day 4 and were greater than 200 ppm by day 6. At 20% macroenvironmental RH (study II), there was a proportional 15 to 30% RH decrease from study I levels. Ammonia levels were undetectable in any system until day 7 and averaged only 17 ppm in one of the polycarbonate systems. Minimal differences were observed in studies III, IV and V when pine shavings were used instead of hardwood chips, a CD-1 stock instead of a DBA/2J strain, and different grades of filter inserts in the polycarbonate systems, respectively.

  9. Synthesis and properties of nanoscale titanium boride

    NASA Astrophysics Data System (ADS)

    Efimova, K. A.; Galevskiy, G. V.; Rudneva, V. V.

    2015-09-01

    This work reports the scientific and technological grounds for plasma synthesis of titanium diboride, including thermodynamic and kinetic conditions of boride formation when titanium and titanium dioxide are interacting with products resulting from boron gasification in the nitrogen - hydrogen plasma flow, and two variations of its behavior using the powder mixtures: titanium - boron and titanium dioxide - boron. To study these technology variations, the mathematical models were derived, describing the relation between element contents in the synthesized products of titanium and free boron and basic parameters. The probable mechanism proposed for forming titanium diboride according to a "vapour - melt - crystal" pattern was examined, covering condensation of titanium vapour in the form of aerosol, boriding of nanoscale melt droplets by boron hydrides and crystallization of titanium - boron melt. The comprehensive physical - chemical certification of titanium diboride was carried out, including the study of its crystal structure, phase and chemical composition, dispersion, morphology and particle oxidation. Technological application prospects for use of titanium diboride nanoscale powder as constituent element in the wettable coating for carbon cathodes having excellent physical and mechanical performance and protective properties.

  10. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  11. Direct observation of titanium-centered octahedra in titanium-antimony-tellurium phase-change material.

    PubMed

    Rao, Feng; Song, Zhitang; Cheng, Yan; Liu, Xiaosong; Xia, Mengjiao; Li, Wei; Ding, Keyuan; Feng, Xuefei; Zhu, Min; Feng, Songlin

    2015-11-27

    Phase-change memory based on Ti0.4Sb2Te3 material has one order of magnitude faster Set speed and as low as one-fifth of the Reset energy compared with the conventional Ge2Sb2Te5 based device. However, the phase-transition mechanism of the Ti0.4Sb2Te3 material remains inconclusive due to the lack of direct experimental evidence. Here we report a direct atom-by-atom chemical identification of titanium-centered octahedra in crystalline Ti0.4Sb2Te3 material with a state-of-the-art atomic mapping technology. Further, by using soft X-ray absorption spectroscopy and density function theory simulations, we identify in amorphous Ti0.4Sb2Te3 the titanium atoms preferably maintain the octahedral configuration. Our work may pave the way to more thorough understanding and tailoring of the nature of the Ti-Sb-Te material, for promoting the development of dynamic random access memory-like phase-change memory as an emerging storage-class memory to reform current memory hierarchy.

  12. Improved synthesis of the two-photon caging group 3-nitro-2-ethyldibenzofuran and its application to a caged thymidine phosphoramidite

    PubMed Central

    Lusic, Hrvoje; Uprety, Rajendra; Deiters, Alexander

    2010-01-01

    A new and efficient route to the recently reported 3-nitro-2-ethyldibenzofuran caging group was developed. Furthermore, its installation on a thymidine phosphoramidite is described. This caging group is efficiently removed through light-irradiation at 365 nm. PMID:20112966

  13. Furnished Cage System and Hen Well-Being: Comparative Effects of Furnished and Battery Cages on Egg Production and Physiological Parameters of White Leghorn Hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory animal well-being can be improved by housing the animals in a species-special “natural” or “near to natural” environment. This study was to examine if housing environment, furnished cages vs. battery cages, causes a similar impact on well-being in laying hens. One hundred seventy-two, on...

  14. Development of 4-methoxy-7-nitroindolinyl (MNI)-caged auxins which are extremely stable in planta

    PubMed Central

    Hayashi, Ken-ichiro; Kusaka, Naoyuki; Yamasaki, Soma; Zhao, Yunde; Nozaki, Hiroshi

    2015-01-01

    Phytohormone auxin is a master regulator in plant growth and development. Regulation of cellular auxin level plays a central role in plant development. Auxin polar transport system modulates an auxin gradient that determines plant developmental process in response to environmental conditions and developmental programs. Photolabile caged auxins allow optical control of artificial auxin gradients at cellular resolution. Especially, two-photon uncaging system achieves high spatiotemporal control of photolysis reaction at two-photon cross-section. However, the development of caged versions of auxin has been limited by the instability of the caged auxins to higher plant metabolic activities. Here, we describe the synthesis and application of highly stable caged auxins, 4-methoxy-7-nitroindolinyl (MNI)-caged auxins. Natural auxin, indole 3-acetic acid, and two synthetic auxins, 1-NAA and 2,4-D were caged by MNI caging group. MNI-caged auxins showed a high stability in planta and a rapid release the original auxin when photolyzed. We demonstrated that optical control of auxin-responsive gene expression and auxin-related physiological responses by using MNI-caged auxins. We anticipate that MNI-caged auxins will be an effective tool for high-resolution control of endogenous auxin level. PMID:26364943

  15. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants

    NASA Astrophysics Data System (ADS)

    Al-Arfaj, E. A.

    2013-10-01

    Semiconductor titanium oxide showed a wonderful performance as a photocatalysis for environmental remediation. Owing to high stability and promising physicochemical properties, titanium oxide nanostructures are used in various applications such as wastewater treatment, antimicrobial and air purification. In the present study, titanium oxide nanotubes and silver doped titanium oxide nanotubes were synthesized via anodic oxidation method. The morphology and composition structure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results depicted that nanotubes possess anatase phase with average tube diameter of 65 nm and 230 ± 12 nm in length. The band gap of the un-doped and silver doped titanium dioxide nanotubes was determined using UV-Vis. spectrophotometer. The results showed that the band gap of titanium dioxide nanotubes is decreased when doped with silver ions. The photocatalysis activity of un-doped and silver doped TiO2 nanotubes were evaluated in terms of degradation of phenol in the presence of ultra violet irradiation. It was found that silver doped TiO2 nanotubes exhibited much higher photocatalysis activity than un-doped TiO2 nanotubes.

  16. An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating.

    PubMed

    Dong, Ying; Yang, Jingxin; Wang, Liqiang; Ma, Xiao; Huang, Yifei; Qiu, Zhiye; Cui, Fuzhai

    2014-03-01

    Titanium framework keratoprosthesis has been commonly used in the severe corneal blindness, but the tissue melting occurred frequently around titanium. Since hydroxyapatite has been approved to possess a good tissue integration characteristic, nanostructured hydroxyapatite was coated on the surface of titanium through the aerosol deposition method. In this study, nanostructured hydroxyapatite coating was characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and auger electronic spectrometer. Biological evaluations were performed with rabbit cornea fibroblast in vitro and an animal model in vivo. The outcomes showed the coating had a grain-like surface topography and a good atomic mixed area with substrate. The rabbit cornea fibroblasts appeared a good adhesion on the surface of nanostructured hydroxyapatite in vitro. In the animal model, nanostructured hydroxyapatite-titanium implants were stably retained in the rabbit cornea, and by contrast, the corneal stroma became thinner anterior to the implants in the control. Therefore, our findings proved that nanostructured hydroxyapatite-titanium could not only provide an improved bond for substrate but also enhance the tissue integration with implants in host. As a promising material, nanostructured hydroxyapatite-titanium-based keratoprosthesis prepared by the aerosol deposition method could be utilized for the corneal blindness treatment.

  17. Surface characterization of radio-frequency glow discharged and autoclaved titanium surfaces.

    PubMed

    Kawahara, D; Ong, J L; Raikar, G N; Lucas, L C; Lemons, J E; Nakamura, M

    1996-01-01

    To characterize titanium surfaces treated with radio-frequency glow discharge (RFGD) after media exposure, surface chemical analyses were performed using x-ray photoelectron spectroscopy. Auger electron spectroscopy, and Fourier transform infrared-reflection absorption spectroscopy (FTIR-RAS). The RFGD treatments resulted in a cleaner surface as compared to as-sputtered or as-autoclaved titanium specimens. The oxide thickness of RFGD-treated titanium specimens was not statistically different from the as-autoclaved and as-sputter cleaned titanium specimens. Exposure to a phosphate-buffered saline solution revealed a greater deposition of calcium and phosphorous on the RFGD-treated surfaces. Auger electron spectroscopy depth profiles showed that calcium and phosphorous ions diffused into the titanium oxide layer. The calcium and phosphorous deposits were identified as amorphous calcium phosphate compounds using FTIR-RAS. These results suggest that RFGD treatments of titanium enhance calcium and/or phosphate affinity because of an increase in elemental interactions at the surface, thereby resulting in the formation of amorphous calcium phosphate compounds.

  18. Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys.

    PubMed

    Rahman, Zia Ur; Shabib, Ishraq; Haider, Waseem

    2016-10-01

    In the realm of biomaterials, metallic materials are widely used for load bearing joints due to their superior mechanical properties. Despite the necessity for long term metallic implants, there are limitations to their prolonged use. Naturally, oxides of titanium have low solubilities and form passive oxide film spontaneously. However, some inclusion and discontinuity spots in oxide film make implant to adopt the decisive nature. These defects heighten the dissolution of metal ions from the implant surface, which results in diminishing bio-integration of titanium implant. To increase the long-term metallic implant stability, surface modifications of titanium alloys are being carried out. In the present study, biomimetic coatings of plasma sprayed hydroxyapatite and titanium were applied to the surface of commercially pure titanium and Ti6Al4V. Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy were carried out in order to study their electrochemical behavior. Moreover, cytotoxicity analysis was conducted for osteoblast cells by performing MTS assay. It is concluded that both hydroxyapatite and titanium coatings enhance corrosion resistance and improve cytocompatibility.

  19. Biofilm formation on titanium implants counteracted by grafting gallium and silver ions.

    PubMed

    Cochis, Andrea; Azzimonti, Barbara; Della Valle, Cinzia; Chiesa, Roberto; Arciola, Carla Renata; Rimondini, Lia

    2015-03-01

    Biofilm-associated infections remain the leading cause of implant failure. Thanks to its established biocompatibility and biomechanical properties, titanium has become one of the most widely used materials for bone implants. Engineered surface modifications of titanium able to thwart biofilm formation while endowing a safe anchorage to eukaryotic cells are being progressively developed. Here surfaces of disks of commercial grade 2 titanium for bone implant were grafted with gallium and silver ions by anodic spark deposition. Scanning electron microscopy of the surface morphology and energy dispersive X-ray spectroscopy were used for characterization. Gallium-grafted titanium was evaluated in comparison with silver-grafted titanium for both in vivo and in vitro antibiofilm properties and for in vitro compatibility with human primary gingival fibroblasts. Surface-modified materials showed: (i) homogeneous porous morphology, with pores of micrometric size; (ii) absence of cytotoxic effects; (iii) ability to support in vitro the adhesion and spreading of gingival fibroblasts; and (iv) antibiofilm properties. Although both silver and gallium exhibited in vitro strong antibacterial properties, in vivo gallium was significantly more effective than silver in reducing number and viability of biofilm bacteria colonies. Gallium-based treatments represent promising titanium antibiofilm coatings to develop new bone implantable devices for oral, maxillofacial, and orthopedic applications.

  20. Biocompatibility of pure titanium modified by human endothelial cell-derived extracellular matrix

    NASA Astrophysics Data System (ADS)

    Xue, Xiaoqing; Wang, Jin; Zhu, Ying; Tu, Qiufen; Huang, Nan

    2010-04-01

    Extracellular matrix (ECM) used to modify biomaterial surface is a promising method for improving cardiovascular material hemocompatibility. In the present work, human umbilical vein endothelial cells (HUVECs) are cultured and native ECM is obtained on pure titanium surface. Fourier infrared spectrum (FTIR) test proves the existence of amide I and amide II band on the modified titanium surface. X-ray photoelectron spectroscopy (XPS) further confirms the chemical composition and binding types of the ECM proteins on the titanium substrate. The results of light microscopy and atomic force microscopy (AFM) exhibit the morphology of HUVEC derived ECM. There are higher water contact angles on the ECM modified samples. Furthermore, some ECM components, including fibronectin (FN), laminin (LN) and type IV collagen (IV-COL) are presented on ECM-covered titanium surface by immunofluorescence staining. The biological behavior of cultured HUVECs and adherent platelets on different samples are investigated by in vitro HUVECs culture and platelet adhesion. Cells exhibit better morphology and their proliferation ability greatly improve on the ECM-covered titanium. At the same time, the platelet adhesion and spreading are inhibited on ECM-covered titanium surface. These investigations demonstrate that ECM produced by HUVECs cannot only improve adhesion and proliferation ability of endothelial cell but also inhibit adhesion and activation of platelets. Thus, the approach described here may provide a basis for preparation of modified surface in cardiovascular implants application.

  1. Surface characterization of radio-frequency glow discharged and autoclaved titanium surfaces.

    PubMed

    Kawahara, D; Ong, J L; Raikar, G N; Lucas, L C; Lemons, J E; Nakamura, M

    1996-01-01

    To characterize titanium surfaces treated with radio-frequency glow discharge (RFGD) after media exposure, surface chemical analyses were performed using x-ray photoelectron spectroscopy. Auger electron spectroscopy, and Fourier transform infrared-reflection absorption spectroscopy (FTIR-RAS). The RFGD treatments resulted in a cleaner surface as compared to as-sputtered or as-autoclaved titanium specimens. The oxide thickness of RFGD-treated titanium specimens was not statistically different from the as-autoclaved and as-sputter cleaned titanium specimens. Exposure to a phosphate-buffered saline solution revealed a greater deposition of calcium and phosphorous on the RFGD-treated surfaces. Auger electron spectroscopy depth profiles showed that calcium and phosphorous ions diffused into the titanium oxide layer. The calcium and phosphorous deposits were identified as amorphous calcium phosphate compounds using FTIR-RAS. These results suggest that RFGD treatments of titanium enhance calcium and/or phosphate affinity because of an increase in elemental interactions at the surface, thereby resulting in the formation of amorphous calcium phosphate compounds. PMID:8803338

  2. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    NASA Astrophysics Data System (ADS)

    Lee, Young-Hee; Bhattarai, Govinda; Aryal, Santosh; Lee, Nan-Hee; Lee, Min-Ho; Kim, Tae-Gun; Jhee, Eun-Chung; Kim, Hak-Yong; Yi, Ho-Keun

    2010-08-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH 4). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  3. Cage-like copper(II) silsesquioxanes: transmetalation reactions and structural, quantum chemical, and catalytic studies.

    PubMed

    Bilyachenko, Alexey N; Dronova, Marina S; Yalymov, Alexey I; Lamaty, Frédéric; Bantreil, Xavier; Martinez, Jean; Bizet, Christelle; Shul'pina, Lidia S; Korlyukov, Alexander A; Arkhipov, Dmitry E; Levitsky, Mikhail M; Shubina, Elena S; Kirillov, Alexander M; Shul'pin, Georgiy B

    2015-06-01

    The transmetalation of bimetallic copper-sodium silsesquioxane cages, namely, [(PhSiO1.5 )10 (CuO)2 (NaO0.5 )2 ] ("Cooling Tower"; 1), [(PhSiO1.5 )12 (CuO)4 (NaO0.5 )4 ] ("Globule"; 2), and [(PhSiO1.5 )6 (CuO)4 (NaO0.5 )4 (PhSiO1.5 )6 ] ("Sandwich"; 3), resulted in the generation of three types of hexanuclear cylinder-like copper silsesqui- oxanes, [(PhSiO1.5 )12 (CuO)6 (C4 H9 OH)2 (C2 H5 OH)6 ] (4), [(PhSiO1.5 )12 (CuO)6 (C4 H8 O2 )4 (PhCN)2 (MeOH)4 ] (5), and [(PhSiO1.5 )12 (CuO)6 (NaCl)(C4 H8 O2 )12 (H2 O)2 ] (6). The products show a prominent "solvating system-structure" dependency, as determined by X-ray diffraction. Topological analysis of cages 1-6 was also performed. In addition, DFT theory was used to examine the structures of the Cooling Tower and Cylinder compounds, as well as the spin density distributions. Compounds 1, 2, and 5 were applied as catalysts for the direct oxidation of alcohols and amines into the corresponding amides. Compound 6 is an excellent catalyst in the oxidation reactions of benzene and alcohols. PMID:25950426

  4. Raman scattering in transition metal compounds: Titanium and compounds of titanium

    SciTech Connect

    Jimenez, J.; Ederer, D.L.; Shu, T.

    1997-04-01

    The transition metal compounds form a very interesting and important set of materials. The diversity arises from the many states of ionization the transition elements may take when forming compounds. This variety provides ample opportunity for a large class of materials to have a vast range of electronic and magnetic properties. The x-ray spectroscopy of the transition elements is especially interesting because they have unfilled d bands that are at the bottom of the conduction band with atomic like structure. This group embarked on the systematic study of transition metal sulfides and oxides. As an example of the type of spectra observed in some of these compounds they have chosen to showcase the L{sub II, III} emission and Raman scattering in some titanium compounds obtained by photon excitation.

  5. Titanium-Oxygen Reactivity Study

    NASA Technical Reports Server (NTRS)

    Chafey, J. E.; Scheck, W. G.; Witzell, W. E.

    1962-01-01

    A program has been conducted at Astronautics to investigate the likelihood of occurrence of the catastrophic oxidation of titanium alloy sheet under conditions which simulate certain cases of accidental failure of the metal while it is in contact with liquid or gaseous oxygen. Three methods of fracturing the metal were used; they consisted of mechanical puncture, tensile fracture of welded joints, and perforation by very high velocity particles. The results of the tests which have been conducted provide further evidence of the reactivity of titanium with liquid and gaseous oxygen. The evidence indicates that the rapid fracturing of titanium sheet while it is in contact with oxygen initiates the catastrophic oxidation reaction. Initiation occurred when the speed of the fracture was some few feet per second, as in both the drop-weight puncture tests and the static tensile fracture tests of welded joints, as well as when the speed was several thousand feet per second, as in the simulated micrometeoroid penetration tests. The slow propagation of a crack, however, did not initiate the reaction. It may logically be concluded that the localized frictional heat of rapid fracture and/or spontaneous oxidation (exothermic) of minute particles emanating from the fracture cause initiation of the reaction. Under conditions of slow fracture, however, the small heat generated may be adequately dissipated and the reaction is not initiated. A portion of the study conducted consisted of investigating various means by which the reaction might be retarded or prevented. Providing a "barrier" at the titanium-oxygen interface consisting of either aluminum metal or a coating of a petroleum base corrosion inhibitor appeared to be only partially effective in retarding the reaction. The accidental puncturing or similar rupturing of thin-walled pressurized oxygen tanks on missiles and space vehicle will usually constitute loss of function, and may sometimes cause their catastrophic destruction

  6. Synthesis and photochemical properties of PEGylated coumarin-caged ceramides for cell studies.

    PubMed

    Kim, Young Ah; Day, Jenna; Lirette, Carol Ann; Costain, Willard J; Johnston, Linda J; Bittman, Robert

    2016-01-01

    Caged ceramide analogues (C6-, C16-, C18-, C22- and C24-Cer) have been prepared by introducing a hydrophilic coumarin-based cage bearing a short polyethylene glycol (PEG) chain. (6-Bromo-7-mTEGylated-coumarin-4-yl)methyl (Btc) caged ceramide showed efficient photo-uncaging to release the parent ceramide upon direct exposure to 350 nm UV light; in contrast (7-mTEGylated-coumarin-4-yl)methyl (Tc) caged ceramide was photolysed more slowly. In preliminary experiments, Btc-caged ceramides were taken up by cells and their photolysis led to decreases in cell viability, but not to activation of caspase enzymes, suggesting that either reactive oxygen species or an alternate caspase-independent pathway may be responsible for the decreases in cell viability caused by photolysis of caged ceramides.

  7. Anterior cervical fusion with a bio-resorbable composite cage (beta TCP-PLLA): clinical and radiological results from a prospective study on 20 patients.

    PubMed

    Debusscher, F; Aunoble, S; Alsawad, Y; Clement, D; Le Huec, Jean-Charles

    2009-09-01

    A resorbable composite material (40% PLLA and 60% beta TCP) with a high breaking strength and capacity to withstand plastic and elastic strain has been developed for cervical interbody fusion. This is a prospective study to evaluate clinical and radiological results of 20 patients implanted with 27 cages (mean follow-up, 27 months). Clinical (neck disability index, VAS, neurological evaluation) and radiological (anteroposterior, lateral, bending X-rays) data were assessed before and after surgery. At the end of the study, CT scan was performed to evaluate fusion, resorption of the cage and density of the new tissue substituting the cage. The mean patient age was 50.3 years (range, 18-79 years). The average improvement was 55% for neck pain, 83% for arm pain and 65% for NDI, with 85% good or excellent results at final outcomes. Radiologically, lordosis was significantly improved (mean gain of 5.4 degrees and 3.7 degrees for overall and segmental lordosis, respectively). This correction was conserved in 95% of cases. Fusion was obtained in 96% (CT evaluation). Resorption was started in all cases and completed in an average of 36 months after surgery. The mean density of tissue substituting the cage was 659 UH with a range, of 455-911 UH (compatible with bone nature). Over time, the amount of bony tissue increased and the graft remodelled with an increase in density value. This demonstrates a biological activity and changing bone mineral content of this tissue. The new composite cage under investigation provides long-term fusion without loss of correction or inflammatory reaction. The ceramic block guarantees the maintenance of the disc height and its slow resorption allows long-term fusion and stability with good and reliable clinical and radiological outcomes. PMID:19533180

  8. Anterior cervical fusion with a bio-resorbable composite cage (beta TCP–PLLA): clinical and radiological results from a prospective study on 20 patients

    PubMed Central

    Debusscher, F.; Aunoble, S.; Alsawad, Y.; Clement, D.

    2009-01-01

    A resorbable composite material (40% PLLA and 60% beta TCP) with a high breaking strength and capacity to withstand plastic and elastic strain has been developed for cervical interbody fusion. This is a prospective study to evaluate clinical and radiological results of 20 patients implanted with 27 cages (mean follow-up, 27 months). Clinical (neck disability index, VAS, neurological evaluation) and radiological (anteroposterior, lateral, bending X-rays) data were assessed before and after surgery. At the end of the study, CT scan was performed to evaluate fusion, resorption of the cage and density of the new tissue substituting the cage. The mean patient age was 50.3 years (range, 18–79 years). The average improvement was 55% for neck pain, 83% for arm pain and 65% for NDI, with 85% good or excellent results at final outcomes. Radiologically, lordosis was significantly improved (mean gain of 5.4° and 3.7° for overall and segmental lordosis, respectively). This correction was conserved in 95% of cases. Fusion was obtained in 96% (CT evaluation). Resorption was started in all cases and completed in an average of 36 months after surgery. The mean density of tissue substituting the cage was 659 UH with a range, of 455–911 UH (compatible with bone nature). Over time, the amount of bony tissue increased and the graft remodelled with an increase in density value. This demonstrates a biological activity and changing bone mineral content of this tissue. The new composite cage under investigation provides long-term fusion without loss of correction or inflammatory reaction. The ceramic block guarantees the maintenance of the disc height and its slow resorption allows long-term fusion and stability with good and reliable clinical and radiological outcomes. PMID:19533180

  9. Effects of hydrothermal treatment with CaCl(2) solution on surface property and cell response of titanium implants.

    PubMed

    Nakagawa, M; Zhang, L; Udoh, K; Matsuya, S; Ishikawa, K

    2005-11-01

    In order to obtain early and good osteointegration after implantation of a titanium implant in the human body, the surface modified treatments using NaOH or H(2)O(2) etc. were reported. In this study, titanium was hydrothermally treated with CaCl(2) solutions at 200 degrees C for 24hr (CaCl(2)-HT). Scanning electron microscope (SEM) observation clearly showed apatite deposition on the surface of CaCl(2) HT treated titanium faster than other chemical treated titanium immersion in simulated body fluid. X-ray photoelectron spectroscopy (XPS) analysis demonstrated that Ti--O--Ca bonding was formed on titanium surface by hydrothermal treatment with CaCl(2) solution. And it was revealed that thickness of TiO(2), which was known to play important roles for the formation of bone-like apatite, became approximately three times thicker than as-polished titanium. The amount of initial attached MC3T3-E1 cells on as-polished and NaOH, H(2)O(2) and this CaCl(2) HT treated titanium were almost the same values. After 5 days incubation, the growth rate of MC3T3-E1 cells on CaCl(2)-HT treated titanium was significantly higher than that on other chemical treated titanium. The hydrothermal treatment with 10-20 mmol/L CaCl(2) solution at 200 degrees C was an effective method for the fabrication of titanium implant with good bioactivity and osteoconductivity.

  10. Smallest fullerene-like silicon cage stabilized by a V{sub 2} unit

    SciTech Connect

    Xu, Hong-Guang E-mail: zhengwj@iccas.ac.cn; Kong, Xiang-Yu; Deng, Xiao-Jiao; Zhang, Zeng-Guang; Zheng, Wei-Jun E-mail: zhengwj@iccas.ac.cn

    2014-01-14

    We conducted a combined anion photoelectron spectroscopy and density functional theory study on V{sub 2}Si{sub 20} cluster. Our results show that the V{sub 2}Si{sub 20} cluster has an elongated dodecahedron cage structure with a V{sub 2} unit encapsulated inside the cage. It is the smallest fullerene-like silicon cage and can be used as building block to make cluster-assembled materials, such as pearl-chain style nanowires.

  11. Shape assisted fabrication of fluorescent cages of squarate based metal-organic coordination frameworks.

    PubMed

    Jayaramulu, Kolleboyina; Krishna, Katla Sai; George, Subi J; Eswaramoorthy, Muthuswamy; Maji, Tapas Kumar

    2013-05-11

    Micronic cage structures of squarate based metal-organic coordination frameworks (MOCFs) have been fabricated for the first time by specific anion selective etching of metal squarate cubes. Time and stoichiometry dependent synthesis and the corresponding microscopic studies have provided mechanistic insight into the cage formation. Furthermore, a non-covalent post-synthetic strategy has been adopted to functionalize the micronic cubes or cages with chromophores rendering the resulting hybrids green fluorescent.

  12. Surface-Induced Hybridization between Graphene and Titanium

    SciTech Connect

    Hsu, Allen L.; Koch, Roland J.; Ong, Mitchell T.; Fang, Wenjing; Hofmann, Mario; Kim, Ki Kang; Seyller, Thomas; Dresselhaus, Mildred S.; Reed, Evan J.; Kong, Jing; Palacios, Tomás

    2014-08-26

    Carbon-based materials such as graphene sheets and carbon nanotubes have inspired a broad range of applications ranging from high-speed flexible electronics all the way to ultrastrong membranes. However, many of these applications are limited by the complex interactions between carbon-based materials and metals. In this work, we experimentally investigate the structural interactions between graphene and transition metals such as palladium (Pd) and titanium (Ti), which have been confirmed by density functional simulations. We find that the adsorption of titanium on graphene is more energetically favorable than in the case of most metals, and density functional theory shows that a surface induced p-d hybridization occurs between atomic carbon and titanium orbitals. This strong affinity between the two materials results in a short-range ordered crystalline deposition on top of graphene as well as chemical modifications to graphene as seen by Raman and X-ray photoemission spectroscopy (XPS). This induced hybridization is interface-specific and has major consequences for contacting graphene nanoelectronic devices as well as applications toward metal-induced chemical functionalization of graphene.

  13. Impact of trace elements on biocompatibility of titanium scaffolds.

    PubMed

    Sabetrasekh, R; Tiainen, H; Reseland, J E; Will, J; Ellingsen, J E; Lyngstadaas, S P; Haugen, H J

    2010-02-01

    A titanium oxide scaffold has recently been reported with high compressive strength (>2 MPa) which may allow its use in bone. However, would it be possible to enhance the scaffolds' performance by selecting a titanium oxide raw material without elemental contamination? Elements in implant surfaces have been reported to provoke implant failure. Thus, this study aims to compare different commercial titanium dioxide powders in order to choose the appropriate powder for scaffold making. The x-ray photoelectron spectroscopy (XPS) analysis identified the trace elements, mainly Al, Si, C, Ca and P. Cellular response was measured by cytotoxic effect, cell growth and cytokine secretion from murine preosteoblasts (MC3T3-E1) in vitro. The XPS data showed that traces of carbon-based molecules, silicon, nitrogen and aluminium in the powder were greatly reduced after cleaning in 1 M NaOH. As a result, reduction in cytotoxicity and inflammatory response was observed. Carbon contamination seemed to have a minor effect on the cellular response. Strong correlations were found between Al and Si contamination levels and the inflammatory response and cytotoxic effect. Thus, it is suggested that the concentration of these elements should be reduced in order to enhance the scaffolds' biocompatibility.

  14. Electropolymerization of pyrrole on silanized polycrystalline titanium substrates

    NASA Astrophysics Data System (ADS)

    Mekhalif, Z.; Cossement, D.; Hevesi, L.; Delhalle, J.

    2008-04-01

    In this work is reported the silanization of titanium substrates and subsequent polymerization of pyrrole on the resulting substrates. First, titanium substrates were modified by n-hexyltrichlorosilane (HTCS) and 6-(1'-pyrrolyl)- n-hexyltrichlorosilane (PyHTCS). The corresponding self-assembled monolayers were characterized by X-ray photoelectron spectroscopy and contact angle measurements. They were found to be densely packed. Second, pyrrole was electrochemically polymerized on silanized titanium substrates. Chronoamperometry was used to study the growth of polypyrrole films. The polymer films were characterized by qualitative peel tests, cyclic voltametry and scanning electron spectroscopy. Polypyrrole grown from PyHTCS was found to adherent as compared to HTCS modified and bare substrates. Cyclic voltametry indicated that polymer films formed from PyHTCS have an oxidation peak potential located at higher values than HTCS-modified and bare substrates. Moreover, the films grown on the three types of substrates were found to be equally uniform. Finally, we improved the electrochemical properties of the polypyrrole films using a two-step process, electroreticulation of the PyHTCS monolayers followed by a pyrrole polymerization.

  15. Cleaning of titanium substrates after application in a bioreactor.

    PubMed

    Fingerle, Mathias; Köhler, Oliver; Rösch, Christina; Kratz, Fabian; Scheibe, Christian; Davoudi, Neda; Müller-Renno, Christine; Ziegler, Christiane; Huster, Manuel; Schlegel, Christin; Ulber, Roland; Bohley, Martin; Aurich, Jan C

    2015-01-01

    Plain and microstructured cp-titanium samples were studied as possible biofilm reactor substrates. The biofilms were grown by exposition of the titanium samples to bacteria in a flow cell. As bacteria the rod shaped gram negative Pseudomonas fluorescens and the spherical gram negative Paracoccus seriniphilus were chosen. Afterward, the samples were cleaned in subsequent steps: First, with a standard solvent based cleaning procedure with acetone, isopropanol, and ultrapure water and second by oxygen plasma sputtering. It will be demonstrated by means of x-ray photoelectron spectroscopy, fluorescence microscopy, and confocal laser scanning microscopy that oxygen plasma cleaning is a necessary and reliant tool to fully clean and restore titanium surfaces contaminated with a biofilm. The microstructured surfaces act beneficial to biofilm growth, while still being fully restorable after biofilm contamination. Scanning electron microscopy images additionally show, that the plasma process does not affect the microstructures. The presented data show the importance of the cleaning procedure. Just using solvents does not remove the biofilm and all its components reliably while a cleaning process by oxygen plasma regenerates the surfaces. PMID:25708637

  16. Production of Uniform Dense Titanium Plasmas for Experiments on Atlas

    NASA Astrophysics Data System (ADS)

    Wysocki, Frederick J.; Benage, John F.; Newton, Robert R.; Wood, Blake P.

    2000-10-01

    Atlas is a large pulsed power machine being built at Los Alamos for the purpose of doing basic physics and hydrodynamic experiments for the stockpile stewardship program. One class of the basic physics experiments involves studying the properties and behavior of plasmas at very high density. These experiments will typically involve the production of a high density plasma to be imploded by the solid liners driven by the Atlas machine. The requirements for these high density ``target" plasmas are that they be uniform in density and temperature, have ion densities ≈ 0.1 x solid density, and temperatures of a few eV. The production of such plasmas has not been demonstrated; therefore, we have initiated an experimental program to learn to do this. We are conducting a series of experiments on the Colt capacitor bank at Los Alamos. These experiments use a novel configuration to heat a titanium foil to plasma conditions using the current from Colt, but without imploding the plasma. We will present preliminary density profiles of the titanium plasma using x-ray radiography along with magnetic probe data showing the current distribution in the machine. Measurements of the electrical resistivity of titanium under these conditions will also be presented.

  17. Synthesis and characterization of anodized titanium-oxide nanotube arrays

    SciTech Connect

    Hu, Michael Z.; Lai, Peng; Bhuiyan, Md S; Tsouris, Costas; Gu, Baohua; Paranthaman, Mariappan Parans; Gabitto, Jorge; Harrison, L. D.

    2009-01-01

    Anodized titanium-oxide containing highly ordered, vertically oriented TiO2 nanotube arrays is a nanomaterial architecture that shows promise for diverse applications. In this paper, an anodization synthesis using HF-free aqueous solution is described. The anodized TiO2 film samples (amorphous, anatase, and rutile) on titanium foils were characterized with scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Additional characterization in terms of photocurrent generated by an anode consisting of a titanium foil coated by TiO2 nanotubes was performed using an electrochemical cell. A platinum cathode was used in the electrochemical cell. Results were analyzed in terms of the efficiency of the current generated, defined as the ratio of the difference between the electrical energy output and the electrical energy input divided by the input radiation energy, with the goal of determining which phase of TiO2 nanotubes leads to more efficient hydrogen production. It was determined that the anatase crystalline structure converts light into current more efficiently and is therefore a better photocatalytic material for hydrogen production via photoelectrochemical splitting of water.

  18. Microstructural characterization of titanium alloys with fretting damage

    NASA Astrophysics Data System (ADS)

    Swalla, Dana Ray

    The primary focus of this work is to understand the role of microstructure in the fretting damage process and develop quantifying measures in fretting damage accumulation in a dual phase Ti-6Al-4V as well as two single phase materials: commercially pure titanium (CP-Ti), which consists of pure alpha-phase titanium, and a near alpha Ti-5Al-2.5Sn. The size and distribution of crystallographic orientation of the alpha-phase, which has an HCP crystalline structure, is significant in fretting crack formation. In particular, the effect of slip displacement amplitude and number of fretting cycles on the evolution of grain morphology, grain orientation, misorientation distribution, composition, and microhardness is investigated. The fretting behavior is also related to the macroscopic monotonic and cyclic deformation response. The research goals are accomplished using state-of-the-art surface characterization tools such as orientation image microscopy (OIM) using electron backscatter diffraction (EBSD), energy dispersive X-ray analysis (EDX) and nanoindentation. This study is the first of its kind to use OIM to characterize fretting damage and also makes contributions to the body of knowledge about deformation mechanisms in titanium alloys. The results provide a foundation for developing and validating computational crystal plasticity models and their application to fretting and sliding contact problems. New fretting assessment measures have also been identified and have application for components that suffer from fretting wear and/or fatigue related failures.

  19. Greenhouse Gas Emissions from Three Cage Layer Housing Systems.

    PubMed

    Fournel, Sébastien; Pelletier, Frédéric; Godbout, Stéphane; Lagacé, Robert; Feddes, John

    2011-12-27

    Agriculture accounts for 10 to 12% of the World's total greenhouse gas (GHG) emissions. Manure management alone is responsible for 13% of GHG emissions from the agricultural sector. During the last decade, Québec's egg production systems have shifted from deep-pit housing systems to manure belt housing systems. The objective of this study was to measure and compare carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) emissions from three different cage layer housing systems: a deep liquid manure pit and a manure belt with natural or forced air drying. Deep liquid manure pit housing systems consist of "A" frame layer cages located over a closed pit containing the hens' droppings to which water is added to facilitate removal by pumping. Manure belt techniques imply that manure drops on a belt beneath each row of battery cages where it is either dried naturally or by forced air until it is removed. The experiment was replicated with 360 hens reared into twelve independent bench-scale rooms during eight weeks (19-27 weeks of age). The natural and forced air manure belt systems reduced CO₂ (28.2 and 28.7 kg yr(-1) hen(-1), respectively), CH₄ (25.3 and 27.7 g yr(-1) hen(-1), respectively) and N₂O (2.60 and 2.48 g yr(-1) hen(-1), respectively) emissions by about 21, 16 and 9% in comparison with the deep-pit technique (36.0 kg CO₂ yr(-1) hen(-1), 31.6 g CH₄ yr(-1) hen(-1) and 2.78 g N₂O yr(-1) hen(-1)). The shift to manure belt systems needs to be encouraged since this housing system significantly decreases the production of GHG.

  20. A calibration model for screen-caged Peltier thermocouple psychrometers

    NASA Astrophysics Data System (ADS)

    Brown, R. W.; Bartos, D. L.

    1982-07-01

    A calibration model for screen-caged Peltier thermocouple psychrometers was developed that applies to a water potential range of 0 to 80 bars, over a temperature range of 0 to 40 C, and for cooling times of 15 to 60 seconds. In addition, the model corrects for the effects of temperature gradients over zero-offsets from -60 to +60 microvolts. Complete details of model development are discussed, together with the theory of thermocouple psychrometers, and techniques of calibration and cleaning. Also, information for computer programing and tabular summaries of model characteristics are provided.

  1. Greenhouse Gas Emissions from Three Cage Layer Housing Systems

    PubMed Central

    Fournel, Sébastien; Pelletier, Frédéric; Godbout, Stéphane; Lagacé, Robert; Feddes, John

    2011-01-01

    Simple Summary Greenhouse gas (GHG) emissions were measured from three different cage layer housing systems. A comparative study was conducted to identify the housing system with the least impact on the environment. The results showed that liquid manure from deep-pit housing systems produces greater emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) than natural and forced dried manure from belt housing systems. The influencing factors appeared to be the manure removal frequency and the dry matter content of the manure. Abstract Agriculture accounts for 10 to 12% of the World’s total greenhouse gas (GHG) emissions. Manure management alone is responsible for 13% of GHG emissions from the agricultural sector. During the last decade, Québec’s egg production systems have shifted from deep-pit housing systems to manure belt housing systems. The objective of this study was to measure and compare carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from three different cage layer housing systems: a deep liquid manure pit and a manure belt with natural or forced air drying. Deep liquid manure pit housing systems consist of “A” frame layer cages located over a closed pit containing the hens’ droppings to which water is added to facilitate removal by pumping. Manure belt techniques imply that manure drops on a belt beneath each row of battery cages where it is either dried naturally or by forced air until it is removed. The experiment was replicated with 360 hens reared into twelve independent bench-scale rooms during eight weeks (19–27 weeks of age). The natural and forced air manure belt systems reduced CO2 (28.2 and 28.7 kg yr−1 hen−1, respectively), CH4 (25.3 and 27.7 g yr−1 hen−1, respectively) and N2O (2.60 and 2.48 g yr−1 hen−1, respectively) emissions by about 21, 16 and 9% in comparison with the deep-pit technique (36.0 kg CO2 yr−1 hen−1, 31.6 g CH4 yr−1 hen−1 and 2.78 g N2O yr−1 hen−1). The

  2. An expandable prosthesis with dual cage-and-plate function in a single device for vertebral body replacement: clinical experience on 14 cases with vertebral tumors.

    PubMed

    Ramírez, Juan J; Chiquete, Erwin; Ramírez, Juan J; Gómez-Limón, Ernesto; Ramírez, Juan M

    2010-08-01

    An expandable vertebral body prosthesis with dual cage-and-plate function in a single device (JR prosthesis) was designed to test the hypothesis that this modular system can provide the biomechanical requirements for immediate and durable spine stabilization after corpectomy. Cadaver assays were performed with a stainless steal device to test fixation and adequacy to the human spine anatomy. Then, 14 patients with vertebral tumors (eight metastatic) underwent corpectomy and vertebral body replacement with a titanium-made JR prosthesis. All patients had neurological deficit, severe pain and spine instability prior to surgery. Mean pain score before surgery on a visual analog scale decreased from 7.6-3.0 points after operation (p = 0.002). All patients achieved at least one grade of improvement in the Frankel score (p = 0.003), excepting the three patients with Frankel grade A before surgery. Two patients with renal cell carcinoma died during the following 4 days after surgery. The remaining patients attained a painless and stable spine immediately, which was maintained for long periods (mean follow-up: 25.4 months). No significant infections or implant failures were registered. A nonfatal case of inferior vena cava surgical injury was observed (repaired during surgery without further complications). In conclusion, the JR prosthesis stabilizes the spine immediately after surgery and for the rest of the patients' life. To our knowledge, this is the first report on the clinical experience of any expandable vertebral body prosthesis with dual cage-and-plate function in a single device.

  3. Biocentrifuge system capable of exchanging specimen cages while in operational mode

    NASA Technical Reports Server (NTRS)

    Belew, R. R. (Inventor)

    1981-01-01

    The centrifuge comprises a generally circular, rotatably mounted frame carrying a plurality of removable and replaceable cages for the animal specimens. Pairs of opposing cages may be removed from the frame while it is rotating by means of a cage exchanger which rotates concentrically within the centrifuge and the speed of which is controlled independently of the frame speed. An image rotator is provided for selective observation of the rotating animals. The system further includes a waste conveyor system, a food supply system, and a water supply system for each cage for creating a life sustaining environment so that the animals can live in the rotating centrifuge for extended periods.

  4. Temporal variation of the static electric field inside an animal cage.

    PubMed

    Shigemitsu, T; Tsuchida, Y; Nishiyama, F; Matsumoto, G; Nakamura, H; Shimizu, K

    1981-01-01

    The temporal variation of a static electric field inside an animal cage was investigated with a newly developed small, simple field meter. The field inside the cage was found to be highly dependent on the surface conductivity of the dielectric material. As the surface of the cage became dirty because of animal occupancy, the static electric field inside it became considerably smaller from the moment the field was turned on. Clean cages also modified the static electric field inside them, the field decaying from an initial to a much lower value over several hours. The mechanism of field attenuation for both cases is surface leakage. Surface leakage for a clean cage takes place much more slowly than for a dirty cage. This was confirmed by measuring DC insulation resistance. To examine this phenomenon further, the field in a metal cage width high electrical conductivity was measured. The static electric field inside the metal cage was also found to be reduced. An improved cage design that avoids these problems, is suggested for the study of the biologic effects of static electric fields. PMID:7326060

  5. Biomechanical investigation into the structural design of porous additive manufactured cages using numerical and experimental approaches.

    PubMed

    Tsai, Pei-I; Hsu, Ching-Chi; Chen, San-Yuan; Wu, Tsung-Han; Huang, Chih-Chieh

    2016-09-01

    Traditional solid cages have been widely used in posterior lumbar interbody fusion (PLIF) surgery. However, solid cages significantly affect the loading mechanism of the human spine due to their extremely high structural stiffness. Previous studies proposed and investigated porous additive manufactured (AM) cages; however, their biomechanical performances were analyzed using oversimplified bone-implant numerical models. Thus, the aim of this study was to investigate the outer shape and inner porous structure of the AM cages. The outer shape of the AM cages was discovered using a simulation-based genetic algorithm; their inner porous structure was subsequently analyzed parametrically using T10-S1 multilevel spine models. Finally, six types of the AM cages, which were manufactured using selective laser melting, were tested to validate the numerical outcomes. The subsidence resistance of the optimum design was superior to the conventional cage designs. A porous AM cage with a pillar diameter of 0.4mm, a pillar angle of 40°, and a porosity of between 69% and 80% revealed better biomechanical performances. Both the numerical and experimental outcomes can help surgeons to understand the biomechanics of PLIF surgery combined with the use of AM cages. PMID:27392226

  6. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Chen, H.; Yu, T.; Li, B.

    2016-08-01

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.

  7. Sensitivity of BN nano-cages to caffeine and nicotine molecules

    NASA Astrophysics Data System (ADS)

    Soltani, Alireza; Baei, Mohammad T.; Tazikeh Lemeski, E.; Shahini, Malihe

    2014-12-01

    Adsorption of caffeine and nicotine molecules over B12N12 and B16N16 nano-cages were investigated by using first-principles calculations to define whether BN nano-cages are applicable for filtering or sensing caffeine and nicotine molecules. The chemisorption energy of nicotine molecule on BN nano-cages is very stronger than caffeine molecule. Upon the adsorption of caffeine and nicotine molecules, the electronic properties of the BN nano-cages can be significantly changed, being too much sensitized on the caffeine and nicotine adsorptions.

  8. A stochastic frontier analysis of technical efficiency of fish cage culture in Peninsular Malaysia.

    PubMed

    Islam, Gazi Md Nurul; Tai, Shzee Yew; Kusairi, Mohd Noh

    2016-01-01

    Cage culture plays an important role in achieving higher output and generating more export earnings in Malaysia. However, the cost of fingerlings, feed and labour have increased substantially for cage culture in the coastal areas in Peninsular Malaysia. This paper uses farm level data gathered from Manjung, Perak and Kota Tinggi, Johor to investigate the technical efficiency of brackish water fish cage culture using the stochastic frontier approach. The technical efficiency was estimated and specifically the factors affecting technical inefficiencies of fish cage culture system in Malaysia was investigated. On average, 37 percent of the sampled fish cage farms are technically efficient. The results suggest very high degrees of technical inefficiency exist among the cage culturists. This implies that great potential exists to increase fish production through improved efficiency in cage culture management in Peninsular Malaysia. The results indicate that farmers obtained grouper fingerlings from other neighboring countries due to scarcity of fingerlings from wild sources. The cost of feeding for grouper (Epinephelus fuscoguttatus) requires relatively higher costs compared to seabass (Lates calcarifer) production in cage farms in the study areas. Initiatives to undertake extension programmes at the farm level are needed to help cage culturists in utilizing their resources more efficiently in order to substantially enhance their fish production. PMID:27478744

  9. High pressure oxygen turbopump bearing cage stability analyses. [space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Merriman, T. L.; Kannel, J. W.

    1984-01-01

    The low service life of the high pressure oxygen turbopump (HPOTP) bearings used in the space shuttle main engine was examined by use of the Battelle "BASDAP' bearing computer stability model. The dynamic instability of the bearing cage resulted in excessive wear and eventual failure of the unit. By maintaining a cage/race clearance of no more than 0.25 millimeters (0.010 inches), ball/pocket clearance of no less than 0.54 millimeters (0.025 inches), dynamic balancing of the cages, and maintaining adequate lubricant films between the balls and races, cage instability and subsequent bearing degradation can be reduced.

  10. Rearing Laying Hens in Aviaries Reduces Fearfulness following Transfer to Furnished Cages

    PubMed Central

    Brantsæter, Margrethe; Tahamtani, Fernanda M.; Moe, Randi O.; Hansen, Tone B.; Orritt, Rachel; Nicol, Christine; Janczak, Andrew M.

    2016-01-01

    Appropriate rearing is essential for ensuring the welfare and productivity of laying hens. Early experience has the potential to affect the development of fearfulness. This study tested whether rearing in aviaries, as opposed to cages, reduces the fearfulness of laying hens after transfer to furnished cages. Fear responses were recorded as avoidance of a novel object in the home cage. Lohmann Selected Leghorns were reared in an aviary system or conventional rearing cages and then transported to furnished cages at 16 weeks, before the onset of lay. Observations of a selection of birds were conducted at 19 (N = 50 independent cages) and 21 (N = 48 independent cages) weeks of age. At 19 and 21 weeks, cage-reared birds showed higher levels of fearfulness indicated by spending more time away from the novel object compared to aviary-reared birds. These results suggest that rearing in an enriched aviary environment reduces fearfulness up to the fifth week after transfer to a new housing system, compared to rearing in cages. PMID:26955634

  11. Effects of Nominal Differences in Cage Height and Floor Space on the Wellbeing of Rabbits.

    PubMed

    Stewart, Kay L; Suckow, Mark A

    2016-03-01

    The 8th edition of the Guide for the Care and Use of Laboratory Animals recommends a cage height of 16 in. for rabbits, compared with 14 in. in the previous edition. In contrast, the Animal Welfare Act Regulations prescribes a cage height of 14 in. for rabbits. A review of the literature failed to identify published data that support an advantage to rabbits having 16 in. of cage height compared with 14 or 15 in. The study described here evaluated the effect of a 3-in. difference in cage height on the health, growth, behavior, and overall wellbeing of rabbits. Groups of 10 New Zealand white rabbits were housed in cages that provided either 15 in. of interior cage height (720 in(2) of floor space) or 18 in. of interior height (784 in(2) of floor space). The rabbits were observed during 25 periods (1 h each) over 7 wk, and various behavioral parameters were scored. In addition, rabbits were weighed weekly, and general clinical health was assessed. After 4 wk, the groups were switched to the alternate housing. No significant differences in body weight gain or behavioral parameters were detected between groups housed in cages with different heights and amounts of floor space, nor were significant behavioral differences noted in individual rabbits when moved from one cage type to the other. In addition, all rabbits remained clinically healthy throughout the study. These results demonstrate that these differences in interior cage height neither benefit nor harm rabbits. PMID:27025808

  12. Effects of Nominal Differences in Cage Height and Floor Space on the Wellbeing of Rabbits

    PubMed Central

    Stewart, Kay L; Suckow, Mark A

    2016-01-01

    The 8th edition of the Guide for the Care and Use of Laboratory Animals recommends a cage height of 16 in. for rabbits, compared with 14 in. in the previous edition. In contrast, the Animal Welfare Act Regulations prescribes a cage height of 14 in. for rabbits. A review of the literature failed to identify published data that support an advantage to rabbits having 16 in. of cage height compared with 14 or 15 in. The study described here evaluated the effect of a 3-in. difference in cage height on the health, growth, behavior, and overall wellbeing of rabbits. Groups of 10 New Zealand white rabbits were housed in cages that provided either 15 in. of interior cage height (720 in2 of floor space) or 18 in. of interior height (784 in2 of floor space). The rabbits were observed during 25 periods (1 h each) over 7 wk, and various behavioral parameters were scored. In addition, rabbits were weighed weekly, and general clinical health was assessed. After 4 wk, the groups were switched to the alternate housing. No significant differences in body weight gain or behavioral parameters were detected between groups housed in cages with different heights and amounts of floor space, nor were significant behavioral differences noted in individual rabbits when moved from one cage type to the other. In addition, all rabbits remained clinically healthy throughout the study. These results demonstrate that these differences in interior cage height neither benefit nor harm rabbits. PMID:27025808

  13. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage.

    PubMed

    Yang, Z; Chen, H; Yu, T; Li, B

    2016-08-01

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software tema Motion is used to track the spot which marked the cage surface. Finally, by developing the matlab program, a Lissajous' figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage. PMID:27587158

  14. Evaluation of cage micro-environment of mice housed on various types of bedding materials

    USGS Publications Warehouse

    Smith, E.; Stockwell, J.D.; Schweitzer, I.; Langley, S.H.; Smith, A.L.

    2004-01-01

    A variety of environmental factors can affect the outcomes of studies using laboratory rodents. One such factor is bedding. Several new bedding materials and processing methods have been introduced to the market in recent years, but there are few reports of their performance. In the studies reported here, we have assessed the cage micro-environment (in-cage ammonia levels, temperature, and humidity) of mice housed on various kinds of bedding and their combinations. We also compared results for bedding supplied as Nestpaks versus loose bedding. We studied C57BL/6J mice (commonly used) and NOD/LtJ mice (heavy soilers) that were maintained, except in one study, in static duplex cages. In general, we observed little effect of bedding type on in-cage temperature or humidity; however, there was considerable variation in ammonia concentrations. The lowest ammonia concentrations occurred in cages housing mice on hardwood bedding or a mixture of corncob and alpha cellulose. In one experiment comparing the micro-environments of NOD/LtJ male mice housed on woodpulp fiber bedding in static versus ventilated caging, we showed a statistically significant decrease in ammonia concentrations in ventilated cages. Therefore, our data show that bedding type affects the micro-environment in static cages and that effects may differ for ventilated cages, which are being used in vivaria with increasing frequency.

  15. Development and application of fluorescent, green light-activatable caged compound

    NASA Astrophysics Data System (ADS)

    Umeda, Nobuhiro; Urano, Yasuteru; Nagano, Tetsuo

    2011-03-01

    Caged compound is one of the most powerful tools for spatiotemporal control of biomolecules in cells, which can be activated by irradiation of light. However, ultra violet light, which is required for activation of caged compounds, can damage cells and has poor permeability into tissues. In addition, invisibility of caged compounds makes it difficult to tell distribution of released small molecules. At the conference, we will describe the development of novel caging group and new caged compounds which are fluorescently visible and efficiently activatable with green light. We have found that boron dipyrromethene (BODIPY), known as a widely used fluorophore, is a potential caging group for phenol, carboxyl acid and amine, which can be photolized with irradiation of green light at around 500 nm wavelength. Based on the novel photo-reaction of 4-phenoxy BODIPY derivatives, we have developed caged histamine and applied it to HeLa cells. Photo-irradiation to cells in the presence of caged histamine induced transient increase of calcium ion in cytosol, which was specifically inhibited with pyrilamine, a H1 blocker. Also, we showed that BODIPY-caged compound can be utilized in vivo with tissue-permeable 500 nm green light.

  16. Ultrafine-grained titanium for medical implants

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.

    2002-01-01

    We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.

  17. Production of titanium from ilmenite: a review

    SciTech Connect

    Kohli, R.

    1981-12-01

    The general principles for beneficiation of titanium ores are reviewed and the specific processes used in individual units in various countries are discussed. This is followed by a critical evaluation of various current and potential reduction methods for the production of titanium metal from the processed concentrates. Finally, the report outlines a research program for the development of a commercially viable alternative method for the production of titanium metal.

  18. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, Stephen J.; White, Jack C.

    1999-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  19. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, Stephen J.; White, Jack C.

    1998-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  20. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    SciTech Connect

    Gerdemann, S.J.; White, J.C.

    1999-10-19

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.