Sample records for rayleigh diffraction limit

  1. Rayleigh-wave diffractions due to a void in the layered half space

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, Jonathan E.

    2006-01-01

    Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.

  2. Feasibility of detecting near-surface feature with Rayleigh-wave diffraction

    USGS Publications Warehouse

    Xia, J.; Nyquist, Jonathan E.; Xu, Y.; Roth, M.J.S.; Miller, R.D.

    2007-01-01

    Detection of near-surfaces features such as voids and faults is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Therefore, we studied the feasibility of directly detecting near-surfaces features with surface-wave diffractions. Based on the properties of surface waves, we have derived a Rayleigh-wave diffraction traveltime equation. We also have solved the equation for the depth to the top of a void and an average velocity of Rayleigh waves. Using these equations, the depth to the top of a void/fault can be determined based on traveltime data from a diffraction curve. In practice, only two diffraction times are necessary to define the depth to the top of a void/fault and the average Rayleigh-wave velocity that generates the diffraction curve. We used four two-dimensional square voids to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions: a 2??m by 2??m with a depth to the top of the void of 2??m, 4??m by 4??m with a depth to the top of the void of 7??m, and 6??m by 6??m with depths to the top of the void 12??m and 17??m. We also modeled surface waves due to a vertical fault. Rayleigh-wave diffractions were recognizable for all these models after FK filtering was applied to the synthetic data. The Rayleigh-wave diffraction traveltime equation was verified by the modeled data. Modeling results suggested that FK filtering is critical to enhance diffracted surface waves. A real-world example is presented to show how to utilize the derived equation of surface-wave diffractions. ?? 2006 Elsevier B.V. All rights reserved.

  3. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, De-Qin; School of Science, Tianjin University of Technology and Education, Tianjin 300222; Song, Xin-Bing

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical predictionmore » in the two-photon quantum imaging regime.« less

  4. Statistical Limits to Super Resolution

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    1992-08-01

    The limits imposed by photon statistics on the degree to which Rayleigh's resolution limit for diffraction-limited images can be surpassed by applying image restoration techniques are investigated. An approximate statistical theory is given for the number of detected photons required in the image of an unresolved pair of equal point sources in order that its information content allows in principle resolution by restoration. This theory is confirmed by numerical restoration experiments on synthetic images, and quantitative limits are presented for restoration of diffraction-limited images formed by slit and circular apertures.

  5. Development of attenuation and diffraction corrections for linear and nonlinear Rayleigh surface waves radiating from a uniform line source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr; Cho, Sungjong; Zhang, Shuzeng

    2016-04-15

    In recent studies with nonlinear Rayleigh surface waves, harmonic generation measurements have been successfully employed to characterize material damage and microstructural changes, and found to be sensitive to early stages of damage process. A nonlinearity parameter of Rayleigh surface waves was derived and frequently measured to quantify the level of damage. The accurate measurement of the nonlinearity parameter generally requires making corrections for beam diffraction and medium attenuation. These effects are not generally known for nonlinear Rayleigh waves, and therefore not properly considered in most of previous studies. In this paper, the nonlinearity parameter for a Rayleigh surface wave ismore » defined from the plane wave displacement solutions. We explicitly define the attenuation and diffraction corrections for fundamental and second harmonic Rayleigh wave beams radiated from a uniform line source. Attenuation corrections are obtained from the quasilinear theory of plane Rayleigh wave equations. To obtain closed-form expressions for diffraction corrections, multi-Gaussian beam (MGB) models are employed to represent the integral solutions derived from the quasilinear theory of the full two-dimensional wave equation without parabolic approximation. Diffraction corrections are presented for a couple of transmitter-receiver geometries, and the effects of making attenuation and diffraction corrections are examined through the simulation of nonlinearity parameter determination in a solid sample.« less

  6. Rayleigh and Wood anomalies in the diffraction of acoustic waves from the periodically corrugated surface of an elastic medium

    NASA Astrophysics Data System (ADS)

    Maradudin, A. A.; Simonsen, I.

    2016-05-01

    By the use of the Rayleigh method we have calculated the angular dependence of the reflectivity and the efficiencies of several other diffracted orders when the periodically corrugated surface of an isotropic elastic medium is illuminated by a volume acoustic wave of shear horizontal polarization. These dependencies display the signatures of Rayleigh and Wood anomalies, usually associated with the diffraction of light from a metallic grating. The Rayleigh anomalies occur at angles of incidence at which a diffracted order appears or disappears; the Wood anomalies here are caused by the excitation of the shear horizontal surface acoustic waves supported by the periodically corrugated surface of an isotropic elastic medium. The dispersion curves of these waves in both the nonradiative and radiative regions of the frequency-wavenumber plane are calculated, and used in predicting the angles of incidence at which the Wood anomalies are expected to occur.

  7. Probing Atom-Surface Interactions by Diffraction of Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Bender, Helmar; Stehle, Christian; Zimmermann, Claus; Slama, Sebastian; Fiedler, Johannes; Scheel, Stefan; Buhmann, Stefan Yoshi; Marachevsky, Valery N.

    2014-01-01

    In this article, we analyze the Casimir-Polder interaction of atoms with a solid grating and the repulsive interaction between the atoms and the grating in the presence of an external laser source. The Casimir-Polder potential is evaluated exactly in terms of Rayleigh reflection coefficients and via an approximate Hamaker approach. The laser-tuned repulsive interaction is given in terms of Rayleigh transmission coefficients. The combined potential landscape above the solid grating is probed locally by diffraction of Bose-Einstein condensates. Measured diffraction efficiencies reveal information about the shape of the potential landscape in agreement with the theory based on Rayleigh decompositions.

  8. Imaging photonic crystals using hemispherical digital condensers and phase-recovery techniques.

    PubMed

    Alotaibi, Maged; Skinner-Ramos, Sueli; Farooq, Hira; Alharbi, Nouf; Alghasham, Hawra; de Peralta, Luis Grave

    2018-05-10

    We describe experiments where Fourier ptychographic microscopy (FPM) and dual-space microscopy (DSM) are implemented for imaging photonic crystals using a hemispherical digital condenser (HDC). Phase-recovery imaging simulations show that both techniques should be able to image photonic crystals with a period below the Rayleigh resolution limit. However, after processing the experimental images using both phase-recovery algorithms, we found that DSM can, but FPM cannot, image periodic structures with a period below the diffraction limit. We studied the origin of this apparent contradiction between simulations and experiments, and we concluded that the occurrence of unwanted reflections in the HDC is the source of the apparent failure of FPM. We thereafter solved the problem of reflections by using a single-directional illumination source and showed that FPM can image photonic crystals with a period below the Rayleigh resolution limit.

  9. DUV or EUV: that is the question

    NASA Astrophysics Data System (ADS)

    Williamson, David M.

    2000-11-01

    Lord Rayleigh's well-known equations for resolution and depth of focus indicate that resolution is better improved by reducing the wavelength of light rather than by increasing the numerical aperture (NA) of the projection optics, particularly when NA is approaching its physical limit of 1.0 in air (or vacuum). Vector aerial image simulations of diffraction-limited Deep Ultraviolet (DUV) and Extreme Ultraviolet (EUV) lithographic systems verify this simple view, even though Rayleigh's constants in Microlithography are not constant because of a variety of image enhancement techniques that attempt to compensate for the shortcomings of the aerial image when it is pushed to the limit. The aerial image is not the whole story, however. The competition between DUV and EUV systems will be decided more by economic and technological factors such as risk, time and cost of development and cost of ownership. These in turn depend on cost, availability and quality of light sources, refracting materials, photoresists and reticles.

  10. Rayleigh and Wood anomalies in the diffraction of light from a perfectly conducting reflection grating

    NASA Astrophysics Data System (ADS)

    Maradudin, A. A.; Simonsen, I.; Polanco, J.; Fitzgerald, R. M.

    2016-02-01

    By means of a modal method we have calculated the angular dependence of the reflectivity and the efficiencies of several other diffracted orders of a perfectly conducting lamellar reflection grating illuminated by p-polarized light. These dependencies display the signatures of Rayleigh and Wood anomalies, usually associated with diffraction from a metallic grating. The Wood anomalies here are caused by the excitation of the surface electromagnetic waves supported by a periodically corrugated perfectly conducting surface, whose dispersion curves in both the nonradiative and radiative regions of the frequency-wavenumber plane are calculated.

  11. Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications.

    PubMed

    Huang, Kun; Qin, Fei; Liu, Hong; Ye, Huapeng; Qiu, Cheng-Wei; Hong, Minghui; Luk'yanchuk, Boris; Teng, Jinghua

    2018-06-01

    Traditional objective lenses in modern microscopy, based on the refraction of light, are restricted by the Rayleigh diffraction limit. The existing methods to overcome this limit can be categorized into near-field (e.g., scanning near-field optical microscopy, superlens, microsphere lens) and far-field (e.g., stimulated emission depletion microscopy, photoactivated localization microscopy, stochastic optical reconstruction microscopy) approaches. However, they either operate in the challenging near-field mode or there is the need to label samples in biology. Recently, through manipulation of the diffraction of light with binary masks or gradient metasurfaces, some miniaturized and planar lenses have been reported with intriguing functionalities such as ultrahigh numerical aperture, large depth of focus, and subdiffraction-limit focusing in far-field, which provides a viable solution for the label-free superresolution imaging. Here, the recent advances in planar diffractive lenses (PDLs) are reviewed from a united theoretical account on diffraction-based focusing optics, and the underlying physics of nanofocusing via constructive or destructive interference is revealed. Various approaches of realizing PDLs are introduced in terms of their unique performances and interpreted by using optical aberration theory. Furthermore, a detailed tutorial about applying these planar lenses in nanoimaging is provided, followed by an outlook regarding future development toward practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. MIPS - The Multiband Imaging Photometer for SIRTF. [Multiband Imaging Photometer for SIRTF

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Arens, J.; Beichman, C.; Gautier, T. N.; Werner, M.

    1986-01-01

    The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 micron spectral region. It will use high performance photoconductive detectors from 3 to 200 micron with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.

  13. MIPS - The Multiband Imaging Photometer for SIRTF

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Beichman, C.; Gautier, T. N.; Mould, J.; Werner, M.

    1986-01-01

    The Multiband Imaging Photometer System (MIPS) for SIRTF is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 microns spectral region. It will use high performance photoconductive detectors from 3 to 200 microns with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.

  14. A versatile diffractive maskless lithography for single-shot and serial microfabrication.

    PubMed

    Jenness, Nathan J; Hill, Ryan T; Hucknall, Angus; Chilkoti, Ashutosh; Clark, Robert L

    2010-05-24

    We demonstrate a diffractive maskless lithographic system that is capable of rapidly performing both serial and single-shot micropatterning. Utilizing the diffractive properties of phase holograms displayed on a spatial light modulator, arbitrary intensity distributions were produced to form two and three dimensional micropatterns/structures in a variety of substrates. A straightforward graphical user interface was implemented to allow users to load templates and change patterning modes within the span of a few minutes. A minimum resolution of approximately 700 nm is demonstrated for both patterning modes, which compares favorably to the 232 nm resolution limit predicted by the Rayleigh criterion. The presented method is rapid and adaptable, allowing for the parallel fabrication of microstructures in photoresist as well as the fabrication of protein microstructures that retain functional activity.

  15. Experimental investigation of material nonlinearity using the Rayleigh surface waves excited and detected by angle beam wedge transducers.

    PubMed

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo; Hu, Hongwei

    2018-05-12

    Angle beam wedge transducers are widely used in nonlinear Rayleigh wave experiments as they can generate Rayleigh wave easily and produce high intensity nonlinear waves for detection. When such a transducer is used, the spurious harmonics (source nonlinearity) and wave diffraction may occur and will affect the measurement results, so it is essential to fully understand its acoustic nature. This paper experimentally investigates the nonlinear Rayleigh wave beam fields generated and received by angle beam wedge transducers, in which the theoretical predictions are based on the acoustic model developed previously for angle beam wedge transducers [S. Zhang, et al., Wave Motion, 67, 141-159, (2016)]. The source of the spurious harmonics is fully characterized by scrutinizing the nonlinear Rayleigh wave behavior in various materials with different driving voltages. Furthermore, it is shown that the attenuation coefficients for both fundamental and second harmonic Rayleigh waves can be extracted by comparing the measurements with the predictions when the experiments are conducted at many locations along the propagation path. A technique is developed to evaluate the material nonlinearity by making appropriate corrections for source nonlinearity, diffraction and attenuation. The nonlinear parameters of three aluminum alloy specimens - Al 2024, Al 6061 and Al 7075 - are measured, and the results indicate that the measurement results can be significantly improved using the proposed method. Copyright © 2018. Published by Elsevier B.V.

  16. Absorption and scattering of light by nonspherical particles. [in atmosphere

    NASA Technical Reports Server (NTRS)

    Bohren, C. F.

    1986-01-01

    Using the example of the polarization of scattered light, it is shown that the scattering matrices for identical, randomly ordered particles and for spherical particles are unequal. The spherical assumptions of Mie theory are therefore inconsistent with the random shapes and sizes of atmospheric particulates. The implications for corrections made to extinction measurements of forward scattering light are discussed. Several analytical methods are examined as potential bases for developing more accurate models, including Rayleigh theory, Fraunhoffer Diffraction theory, anomalous diffraction theory, Rayleigh-Gans theory, the separation of variables technique, the Purcell-Pennypacker method, the T-matrix method, and finite difference calculations.

  17. Refractive index of colloidal dispersions of spheroidal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeten, G.H.

    1980-09-01

    The effect of particle shape on the refractive index of a colloidal dispersion of spheroidal particles is investigated theoretically, using the Rayleigh, Rayleigh- Gans-Debye, and the anomalous diffraction light-scattering approximations. It is shown that departure from particle sphericity modify the dispersion refractive index, both size and shape being of importance.

  18. Synthetic light-needle photoacoustic microscopy for extended depth of field (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Jiamiao; Gong, Lei; Xu, Xiao; Hai, Pengfei; Suzuki, Yuta; Wang, Lihong V.

    2017-03-01

    Photoacoustic microscopy (PAM) has been extensively applied in biomedical study because of its ability to visualize tissue morphology and physiology in vivo in three dimensions (3D). However, conventional PAM suffers from a rapidly decreasing resolution away from the focal plane because of the limited depth of focus of an objective lens, which deteriorates the volumetric imaging quality inevitably. Here, we propose a novel method to synthesize an ultra-long light needle to extend a microscope's depth of focus beyond its physical limitations with wavefront engineering method. Furthermore, it enables an improved lateral resolution that exceeds the diffraction limit of the objective lens. The virtual light needle can be flexibly synthesized anywhere throughout the imaging volume without mechanical scanning. Benefiting from these advantages, we developed a synthetic light needle photoacoustic microscopy (SLN-PAM) to achieve an extended depth of field (DOF), sub-diffraction and motionless volumetric imaging. The DOF of our SLN-PAM system is up to 1800 µm, more than 30-fold improvement over that gained by conventional PAM. Our system also achieves the lateral resolution of 1.8 µm (characterized at 532 nm and 0.1 NA objective), about 50% higher than the Rayleigh diffraction limit. Its superior imaging performance was demonstrated by 3D imaging of both non-biological and biological samples. This extended DOF, sub-diffraction and motionless 3D PAM will open up new opportunities for potential biomedical applications.

  19. Approximation for the Rayleigh Resolution of a Circular Aperture

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2009-01-01

    Rayleigh's criterion states that a pair of point sources are barely resolved by an optical instrument when the central maximum of the diffraction pattern due to one source coincides with the first minimum of the pattern of the other source. As derived in standard introductory physics textbooks, the first minimum for a rectangular slit of width "a"…

  20. Research of the aberrations of human eyes with accommodation based on eye model

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Wang, Feng-lin; Wang, Zhao-qi

    2011-06-01

    The variation of the wavefront aberration with accommodation was investigated based on the eye model of Gullstrand-Le Grand. The anterior lens radius was optimized at different accommodation to focus the image at the retina, and the RMS and PV wave-front error of human eye were compared at different accommodation. The PV value of wavefront aberration from 0.718 waves increases gradually to 0.904 waves and RMS value from 0.21 waves to 0.26 waves when accommodative stimuli varies from 0 to - 5 diopters. The change of PV value is 0.186 waves which is less than the Rayleigh diffraction limit λ/4, and the change of RMS is 0.05 which under Marechal diffraction limit λ/14. Therefore, the change of the wavefront aberration caused accommodation can be ignored when wavefront aberrations in the human eye are corrected with surgery or wearing glasses.

  1. The diffraction of Rayleigh waves by a fluid-saturated alluvial valley in a poroelastic half-space modeled by MFS

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxian; Liang, Jianwen; Wu, Chengqing

    2016-06-01

    Two dimensional diffraction of Rayleigh waves by a fluid-saturated poroelastic alluvial valley of arbitrary shape in a poroelastic half-space is investigated using the method of fundamental solutions (MFS). To satisfy the free surface boundary conditions exactly, Green's functions of compressional (PI and PII) and shear (SV) wave sources buried in a fluid-saturated poroelastic half-space are adopted. Next, the procedure for solving the scattering wave field is presented. It is verified that the MFS is of excellent accuracy and numerical stability. Numerical results illustrate that the dynamic response strongly depends on such factors as the incident frequency, the porosity of alluvium, the boundary drainage condition, and the valley shape. There is a significant difference between the diffraction of Rayleigh waves for the saturated soil case and for the corresponding dry soil case. The wave focusing effect both on the displacement and pore pressure can be observed inside the alluvial valley and the amplification effect seems most obvious in the case of higher porosity and lower frequency. Additionally, special attention should also be paid to the concentration of pore pressure, which is closely related to the site liquefaction in earthquakes.

  2. Diffraction Plates for Classroom Demonstrations

    ERIC Educational Resources Information Center

    Hoover, Richard B.

    1969-01-01

    Describes the computer generation of random and regular arrays of apertures on photographic film and their applications for classroom demonstrations of the Fraunhofer patterns produced by simple and complex apertures, Babinet's principle, resolution according to the Rayleigh criterion, and many other aspects of diffraction. (LC)

  3. Optical equivalence of isotropic ensembles of ellipsoidal particles in the Rayleigh-Gans-Debye and anomalous diffraction approximations and its consequences

    NASA Astrophysics Data System (ADS)

    Paramonov, L. E.

    2012-05-01

    Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.

  4. Rayleigh-Sommerfield Diffraction vs Fresnel-Kirchhoff, Fourier Propagation and Poisson's Spot

    NASA Technical Reports Server (NTRS)

    Lucke, Robert L.

    2004-01-01

    The boundary conditions imposed on the diffraction problem in order to obtain the Fresnel-Kirchhoff (FK) solution are well-known to be mathematically inconsistent and to be violated by the solution when the observation point is close to the diffracting screen 1-3. These problems are absent in the Rayleigh-Sommerfeld (RS) solution. The difference between RS and FK is in the inclination factor and is usually immaterial because the inclination factor is approximated by unity. But when this approximation is not valid, FK can lead to unacceptable answers. Calculating the on-axis intensity of Poisson s spot provides a critical test, a test passed by RS and failed by FK. FK fails because (a) convergence of the integral depends on how it is evaluated and (b) when the convergence problem is xed, the predicted amplitude at points near the obscuring disk is not consistent with the assumed boundary conditions.

  5. Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences.

    PubMed

    Voelz, David G; Roggemann, Michael C

    2009-11-10

    Accurate simulation of scalar optical diffraction requires consideration of the sampling requirement for the phase chirp function that appears in the Fresnel diffraction expression. We describe three sampling regimes for FFT-based propagation approaches: ideally sampled, oversampled, and undersampled. Ideal sampling, where the chirp and its FFT both have values that match analytic chirp expressions, usually provides the most accurate results but can be difficult to realize in practical simulations. Under- or oversampling leads to a reduction in the available source plane support size, the available source bandwidth, or the available observation support size, depending on the approach and simulation scenario. We discuss three Fresnel propagation approaches: the impulse response/transfer function (angular spectrum) method, the single FFT (direct) method, and the two-step method. With illustrations and simulation examples we show the form of the sampled chirp functions and their discrete transforms, common relationships between the three methods under ideal sampling conditions, and define conditions and consequences to be considered when using nonideal sampling. The analysis is extended to describe the sampling limitations for the more exact Rayleigh-Sommerfeld diffraction solution.

  6. Huygens-Fresnel principle: Analyzing consistency at the photon level

    NASA Astrophysics Data System (ADS)

    Santos, Elkin A.; Castro, Ferney; Torres, Rafael

    2018-04-01

    Typically the use of the Rayleigh-Sommerfeld diffraction formula as a photon propagator is widely accepted due to the abundant experimental evidence that suggests that it works. However, a direct link between the propagation of the electromagnetic field in classical optics and the propagation of photons where the square of the probability amplitude describes the transverse probability of the photon detection is still an issue to be clarified. We develop a mathematical formulation for the photon propagation using the formalism of electromagnetic field quantization and the path-integral method, whose main feature is its similarity with a fractional Fourier transform (FRFT). Here we show that because of the close relation existing between the FRFT and the Fresnel diffraction integral, this propagator can be written as a Fresnel diffraction, which brings forward a discussion of the fundamental character of it at the photon level compared to the Huygens-Fresnel principle. Finally, we carry out an experiment of photon counting by a rectangular slit supporting the result that the diffraction phenomenon in the Fresnel approximation behaves as the actual classical limit.

  7. Energy conservation - A test for scattering approximations

    NASA Technical Reports Server (NTRS)

    Acquista, C.; Holland, A. C.

    1980-01-01

    The roles of the extinction theorem and energy conservation in obtaining the scattering and absorption cross sections for several light scattering approximations are explored. It is shown that the Rayleigh, Rayleigh-Gans, anomalous diffraction, geometrical optics, and Shifrin approximations all lead to reasonable values of the cross sections, while the modified Mie approximation does not. Further examination of the modified Mie approximation for the ensembles of nonspherical particles reveals additional problems with that method.

  8. Diffracted wavefield by an arbitrary aperture from Maggi-Rubinowicz transformation

    NASA Astrophysics Data System (ADS)

    Ganci, S.

    2008-01-01

    Fraunhofer diffraction patterns through apertures in opaque screens are the cases of most interest in optics. The major purpose of this paper is to establish a general and explicit formula for calculating diffracted wavefield from Maggi-Rubinowicz transformation. The 2-D integration (Rayleigh-Sommerfeld or Helmholtz-Kirchhoff integral formulas) is reduced to a 1-D integration over the rim of the aperture. Some examples for elliptical and polygonal apertures are given.

  9. Modeling focusing characteristics of low Fnumber diffractive optical elements with continuous relief fabricated by laser direct writing.

    PubMed

    Shan, Mingguang; Tan, Jiubin

    2007-12-10

    A theoretical model is established using Rayleigh-Sommerfeld diffraction theory to describe the diffraction focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing, and continuous-relief diffractive optical elements with a design wavelength of 441.6nm and a F-number of F/4 are fabricated and measured to verify the validity of the diffraction focusing model. The measurements made indicate that the spot size is 1.75mum and the diffraction efficiency is 70.7% at the design wavelength, which coincide well with the theoretical results: a spot size of 1.66mum and a diffraction efficiency of 71.2%.

  10. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-10-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas.

  11. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.

    PubMed

    Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen

    2015-09-20

    Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.

  12. A Wigner-based ray-tracing method for imaging simulations

    NASA Astrophysics Data System (ADS)

    Mout, B. M.; Wick, M.; Bociort, F.; Urbach, H. P.

    2015-09-01

    The Wigner Distribution Function (WDF) forms an alternative representation of the optical field. It can be a valuable tool for understanding and classifying optical systems. Furthermore, it possesses properties that make it suitable for optical simulations: both the intensity and the angular spectrum can be easily obtained from the WDF and the WDF remains constant along the paths of paraxial geometrical rays. In this study we use these properties by implementing a numerical Wigner-Based Ray-Tracing method (WBRT) to simulate diffraction effects at apertures in free-space and in imaging systems. Both paraxial and non-paraxial systems are considered and the results are compared with numerical implementations of the Rayleigh-Sommerfeld and Fresnel diffraction integrals to investigate the limits of the applicability of this approach. The results of the different methods are in good agreement when simulating free-space diffraction or calculating point spread functions (PSFs) for aberration-free imaging systems, even at numerical apertures exceeding the paraxial regime. For imaging systems with aberrations, the PSFs of WBRT diverge from the results using diffraction integrals. For larger aberrations WBRT predicts negative intensities, suggesting that this model is unable to deal with aberrations.

  13. Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction

    NASA Astrophysics Data System (ADS)

    Krywonos, Andrey

    Scattering effects from rough surfaces are non-paraxial diffraction phenomena resulting from random phase variations in the reflected wavefront. The ability to predict these effects is important in a variety of applications including x-ray and EUV imaging, the design of stray light rejection systems, and reflection modeling for rendering realistic scenes and animations of physical objects in computer graphics. Rayleigh-Rice (small perturbation method) and Beckmann-Kirchoff (Kirchhoff approximation) theories are commonly used to predict surface scatter effects. In addition, Harvey and Shack developed a linear systems formulation of surface scatter phenomena in which the scattering behavior is characterized by a surface transfer function. This treatment provided insight and understanding not readily gleaned from the two previous theories, and has been incorporated into a variety of computer software packages (ASAP, Zemax, Tracepro). However, smooth surface and paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. In this dissertation, a linear systems formulation of non-paraxial scalar diffraction theory is first developed and then applied to sinusoidal phase gratings, resulting in diffraction efficiency predictions far more accurate than those provided by classical scalar theories. The application of the theory to these gratings was motivated by the fact that rough surfaces are frequently modeled as a superposition of sinusoidal surfaces of different amplitudes, periods, and orientations. The application of the non-paraxial scalar diffraction theory to surface scatter phenomena resulted first in a modified Beckmann-Kirchhoff surface scattering model, then a generalized Harvey-Shack theory, both of which produce accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattering angles than the classical Beckmann-Kirchhoff theory. These new developments enable the analysis and simplify the understanding of wide-angle scattering behavior from rough surfaces illuminated at large incident angles. In addition, they provide an improved BRDF (Bidirectional Reflectance Distribution Function) model, particularly for the smooth surface inverse scattering problem of determining surface power spectral density (PSD) curves from BRDF measurements.

  14. Role of Shape and Numbers of Ridges and Valleys in the Insulating Effects of Topography on the Rayleigh Wave Characteristics

    NASA Astrophysics Data System (ADS)

    Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu

    2018-03-01

    This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.

  15. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel M.; Kraus, Adam L.

    2017-01-01

    Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed my own faint companion detection pipeline which utilizes an Bayesian analysis of kernel-phases. I have used this pipeline to search for new companions in archival images from HST/NICMOS in order to constrain planet and binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.

  16. Status of ARGOS - The Laser Guide Star System for the LBT

    NASA Astrophysics Data System (ADS)

    Raab, Walfried; Rabien, Sebastian; Gaessler, Wolfgang; Esposito, Simone; Antichi, Jacopo; Lloyd-Hart, Michael; Barl, Lothar; Beckmann, Udo; Bonaglia, Marco; Borelli, Jose; Brynnel, Joar; Buschkamp, Peter; Busoni, Lorenzo; Carbonaro, Luca; Christou, Julian; Connot, Claus; Davies, Richard; Deysenroth, Matthias; Durney, Olivier; Green, Richard; Gemperlein, Hans; Gasho, Victor; Haug, Marcus; Hubbard, Pete; Ihle, Sebastian; Kulas, Martin; Loose, Christina; Lehmitz, Michael; Noenickx, Jamison; Nussbaum, Edmund; Orban De Xivry, Gilles; Quirrenbach, Andreas; Peter, Diethard; Rahmer, Gustavo; Rademacher, Matt; Storm, Jesper; Schwab, Christian; Vaitheeswaran, Vidhya; Ziegleder, Julian

    2013-12-01

    ARGOS is an innovative multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT), designed to perform effective GLAO correction over a very wide field of view. The system is using high powered pulsed green (532 nm) lasers to generate a set of three guide stars above each of the LBT mirrors. The laser beams are launched through a 40 cm telescope and focused at an altitude of 12 km, creating laser beacons by means of Rayleigh scattering. The returning scattered light, primarily sensitive to the turbulences close to the ground, is detected by a gated wavefront sensor system. The derived ground layer correction signals are directly driving the adaptive secondary mirror of the LBT. ARGOS is especially designed for operation with the multiple object spectrograph Luci, which will benefit from both, the improved spatial resolution, as well as the strongly enhanced flux. In addition to the GLAO Rayleigh beacon system, ARGOS was also designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system has undergone extensive tests during Summer 2012 and is scheduled for installation at the LBT in Spring 2013. The remaining sub-systems will be installed during the course of 2013. We report on the overall status of the ARGOS system and the results of the sub-system characterizations carried out so far.

  17. Rayleigh scattering in few-mode optical fibers

    PubMed Central

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-01-01

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation. PMID:27775003

  18. Rayleigh scattering in few-mode optical fibers.

    PubMed

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  19. ARGOS: the laser guide star system for the LBT

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Ageorges, N.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Hart, M. L.; Hubbard, P.; Kanneganti, S.; Masciadri, E.; Noenickx, J.; Orban de Xivry, G.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.

    2010-07-01

    ARGOS is the Laser Guide Star adaptive optics system for the Large Binocular Telescope. Aiming for a wide field adaptive optics correction, ARGOS will equip both sides of LBT with a multi laser beacon system and corresponding wavefront sensors, driving LBT's adaptive secondary mirrors. Utilizing high power pulsed green lasers the artificial beacons are generated via Rayleigh scattering in earth's atmosphere. ARGOS will project a set of three guide stars above each of LBT's mirrors in a wide constellation. The returning scattered light, sensitive particular to the turbulence close to ground, is detected in a gated wavefront sensor system. Measuring and correcting the ground layers of the optical distortions enables ARGOS to achieve a correction over a very wide field of view. Taking advantage of this wide field correction, the science that can be done with the multi object spectrographs LUCIFER will be boosted by higher spatial resolution and strongly enhanced flux for spectroscopy. Apart from the wide field correction ARGOS delivers in its ground layer mode, we foresee a diffraction limited operation with a hybrid Sodium laser Rayleigh beacon combination.

  20. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.

    PubMed

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-04-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La 3 Ga 5 SiO 14 ) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.

  1. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry1

    PubMed Central

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-01-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam. PMID:28381976

  2. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel M.; Kraus, Adam L.

    2017-06-01

    Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast near λ/D. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜ 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed a new, easy to use, faint companion detection pipeline which analyzes kernel-phases utilizing Bayesian model comparison. I demonstrate this pipeline on archival images from HST/NICMOS, searching for new companions in order to constrain binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time. As no mask is needed, this technique can easily be applied to archival data and even target acquisition images (e.g. from JWST), making the detection of close in companions cheap and simple as no additional observations are needed.

  3. Fast computation algorithms for speckle pattern simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nascov, Victor; Samoilă, Cornel; Ursuţiu, Doru

    2013-11-13

    We present our development of a series of efficient computation algorithms, generally usable to calculate light diffraction and particularly for speckle pattern simulation. We use mainly the scalar diffraction theory in the form of Rayleigh-Sommerfeld diffraction formula and its Fresnel approximation. Our algorithms are based on a special form of the convolution theorem and the Fast Fourier Transform. They are able to evaluate the diffraction formula much faster than by direct computation and we have circumvented the restrictions regarding the relative sizes of the input and output domains, met on commonly used procedures. Moreover, the input and output planes canmore » be tilted each to other and the output domain can be off-axis shifted.« less

  4. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  5. Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.

    PubMed

    Allodi, Marco A; Dahlberg, Peter D; Mazuski, Richard J; Davis, Hunter C; Otto, John P; Engel, Gregory S

    2016-12-21

    We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.

  6. Measurement and fitting techniques for the assessment of material nonlinearity using nonlinear Rayleigh waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torello, David; Kim, Jin-Yeon; Qu, Jianmin

    2015-03-31

    This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. Thesemore » experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.« less

  7. Status of the ARGOS project

    NASA Astrophysics Data System (ADS)

    Rabien, Sebastian; Barl, Lothar; Beckmann, Udo; Bonaglia, Marco; Borelli, José Luis; Brynnel, Joar; Buschkamp, Peter; Busoni, Lorenzo; Christou, Julian; Connot, Claus; Davies, Richard; Deysenroth, Matthias; Esposito, Simone; Gässler, Wolfgang; Gemperlein, Hans; Hart, Michael; Kulas, Martin; Lefebvre, Michael; Lehmitz, Michael; Mazzoni, Tommaso; Nussbaum, Edmund; Orban de Xivry, Gilles; Peter, Diethard; Quirrenbach, Andreas; Raab, Walfried; Rahmer, Gustavo; Storm, Jesper; Ziegleder, Julian

    2014-07-01

    ARGOS is the Laser Guide Star and Wavefront sensing facility for the Large Binocular Telescope. With first laser light on sky in 2013, the system is currently undergoing commissioning at the telescope. We present the overall status and design, as well as first results on sky. Aiming for a wide field ground layer correction, ARGOS is designed as a multi- Rayleigh beacon adaptive optics system. A total of six powerful pulsed lasers are creating the laser guide stars in constellations above each of the LBTs primary mirrors. With a range gated detection in the wavefront sensors, and the adaptive correction by the deformable secondary's, we expect ARGOS to enhance the image quality over a large range of seeing conditions. With the two wide field imaging and spectroscopic instruments LUCI1 and LUCI2 as receivers, a wide range of scientific programs will benefit from ARGOS. With an increased resolution, higher encircled energy, both imaging and MOS spectroscopy will be boosted in signal to noise by a large amount. Apart from the wide field correction ARGOS delivers in its ground layer mode, we already foresee the implementation of a hybrid Sodium with Rayleigh beacon combination for a diffraction limited AO performance.

  8. Superlensing effect for surface acoustic waves in a pillar-based phononic crystal with negative refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addouche, Mahmoud, E-mail: mamoud.addouche@femto-st.fr; Al-Lethawe, Mohammed A., E-mail: mohammed.abdulridha@femto-st.fr; Choujaa, Abdelkrim, E-mail: achoujaa@femto-st.fr

    2014-07-14

    We demonstrate super resolution imaging for surface acoustic waves using a phononic structure displaying negative refractive index. This phononic structure is made of a monolithic square lattice of cylindrical pillars standing on a semi-infinite medium. The pillars act as acoustic resonator and induce a surface propagating wave with unusual dispersion. We found, under specific geometrical parameters, one propagating mode that exhibits negative refraction effect with negative effective index close to −1. Furthermore, a flat lens with finite number of pillars is designed to allow the focusing of an acoustic point source into an image with a resolution of (λ)/3 ,more » overcoming the Rayleigh diffraction limit.« less

  9. High-speed laser anemometry based on spectrally resolved Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1991-01-01

    Laser anemometry in unseeded flows based on the measurement of the spectrum of Rayleigh scattered laser light is reviewed. The use of molecular scattering avoids the well known problems (particle lag, biasing effects, seed generation, seed injection) of seeded flows. The fundamental limits on velocity measurement accuracy are determined using maximum likelihood methods. Measurement of the Rayleigh spectrum with scanning Fabry-Perot interferometers is analyzed and accuracy limits are established for both single pass and multipass configurations. Multipass configurations have much higher selectivity and are needed for measurements where there is a large amount of excess noise caused by stray laser light. It is shown that Rayleigh scattering is particularly useful for supersonic and hypersonic flows. The results of the analysis are compared with measurements obtained with a Rayleigh scattering diagnostic developed for study of the exhaust plume of a small hydrogen-oxygen rocket, where the velocities are in the range of 1000 to 5000 m/sec.

  10. The ARGOS laser system: green light for ground layer adaptive optics at the LBT

    NASA Astrophysics Data System (ADS)

    Raab, Walfried; Rabien, Sebastian; Gässler, Wolfgang; Esposito, Simone; Barl, Lothar; Borelli, Jose; Daysenroth, Matthias; Gemperlein, Hans; Kulas, Martin; Ziegleder, Julian

    2014-07-01

    We report on the development of the laser system of ARGOS, the multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT). The system uses a total of six high powered, pulsed Nd:YAG lasers frequency-doubled to a wavelength of 532 nm to generate a set of three guide stars above each of the LBT telescopes. The position of each of the LGS constellations on sky as well as the relative position of the individual laser guide stars within this constellation is controlled by a set of steerable mirrors and a fast tip-tilt mirror within the laser system. The entire opto-mechanical system is housed in two hermetically sealed and thermally controlled enclosures on the SX and DX side of the LBT telescope. The laser beams are propagated through two refractive launch telescopes which focus the beams at an altitude of 12 km, creating a constellation of laser guide stars around a 4 arcminute diameter circle by means of Rayleigh scattering. In addition to the GLAO Rayleigh beacon system, ARGOS has also been designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system was successfully installed at the LBT in April 2013. Extensive functional tests have been carried out and have verified the operation of the systems according to specifications. The alignment of the laser system with respect to the launch telescope was carried out during two more runs in June and October 2013, followed by the first propagation of laser light on sky in November 2013.

  11. Resolution Quality and Atom Positions in Sub-Angstrom Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Keefe, Michael A.; Allard, Lawrence F.; Blom, Douglas A.

    2005-02-15

    Ability to determine whether an image peak represents one single atom or several depends on resolution of the HR-(S)TEM. Rayleigh's resolution criterion, an accepted standard in optics, was derived as a means for judging when two image intensity peaks from two sources of light (stars) are distinguishable from a single source. Atom spacings closer than the Rayleigh limit have been resolved in HR-TEM, suggesting that it may be useful to consider other limits, such as the Sparrow resolution criterion. From the viewpoint of the materials scientist, it is important to be able to use the image to determine whether anmore » image feature represents one or more atoms (resolution), and where the atoms (or atom columns) are positioned relative to one another (resolution quality). When atoms and the corresponding image peaks are separated by more than the Rayleigh limit of the HR-(S)TEM, it is possible to adjust imaging parameters so that relative peak positions in the image correspond to relative atom positions in the specimen. When atoms are closer than the Rayleigh limit, we must find the relationship of the peak position to the atom position by peak fitting or, if we have a suitable model, by image simulation. Our Rayleigh-Sparrow parameter QRS reveals the ''resolution quality'' of a microscope image. QRS values greater than 1 indicate a clearly resolved twin peak, while values between 1 and 0 mean a lower-quality resolution and an image with peaks displaced from the relative atom positions. The depth of the twin-peak minimum can be used to determine the value of QRS and the true separation of the atom peaks that sum to produce the twin peak in the image. The Rayleigh-Sparrow parameter can be used to refine relative atom positions in defect images where atoms are closer than the Rayleigh limit of the HR-(S)TEM, reducing the necessity for full image simulations from large defect models.« less

  12. Diffraction of dust acoustic waves by a circular cylinder

    NASA Astrophysics Data System (ADS)

    Kim, S.-H.; Heinrich, J. R.; Merlino, R. L.

    2008-09-01

    The diffraction of dust acoustic (DA) waves around a long dielectric rod is observed using video imaging methods. The DA waves are spontaneously excited in a dusty plasma produced in a direct current glow discharge plasma. The rod acquires a negative charge that produces a coaxial dust void around it. The diameter of the void is the effective size of the "obstacle" encountered by the waves. The wavelength of the DA waves is approximately the size of the void. The observations are considered in relation to the classical problem of the diffraction of sound waves from a circular cylinder, a problem first analyzed by Lord Rayleigh [Theory of Sound, 2nd ed. (MacMillan, London, 1896)].

  13. Radiatively driven Rayleigh-Taylor instability candidates around a forming massive star system. NACO adaptive optics and VISIR study of G333.6-0.2

    NASA Astrophysics Data System (ADS)

    Kumar, M. S. N.

    2013-10-01

    The formation of the highest mass stars are thought to be dominated by instabilities resulting from gravitation and radiation. Instabilities due to gravitation are commonly demonstrated by observations of fragmentation, but those due to effects of radiation have thus far not been found. Here I report on the NACO adaptive optics and mid-infrared diffraction-limited VISIR imaging data of an extemely luminous ultra-compact HII region G333.6-0.2. Two infrared sources, one bright in the near-infrared (appearing point-like) and another in the mid-infrared (resolved with an elliptical shape) are uncovered through this data, which are located at the heart of this region. These infrared sources appear to be embedded in the waist of a bipolar-shaped nebula and UCHII region, the lobes of which are separated by a dark patch. Dense filamentary features with finger/hook morphology are found; they appear to be connected to the two bright infrared sources and the sizes of these hook features are sharply limited to <5000 AU. The observed properties of this target and a large amount of previous data obtained from the literature are compared together with the results of various numerical simulations of high-mass star formation. This comparison favours the interpretation that the finger/hook-like structures likely represent radiatively driven Rayleigh-Taylor instabilities arising in the outflow cavity of a forming high-mass binary star system.

  14. Superoscillating electron wave functions with subdiffraction spots

    NASA Astrophysics Data System (ADS)

    Remez, Roei; Tsur, Yuval; Lu, Peng-Han; Tavabi, Amir H.; Dunin-Borkowski, Rafal E.; Arie, Ady

    2017-03-01

    Almost one and a half centuries ago, Abbe [Arch. Mikrosk. Anat. 9, 413 (1873), 10.1007/BF02956173] and shortly after Lord Rayleigh [Philos. Mag. Ser. 5 8, 261 (1879), 10.1080/14786447908639684] showed that, when an optical lens is illuminated by a plane wave, a diffraction-limited spot with radius 0.61 λ /sinα is obtained, where λ is the wavelength and α is the semiangle of the beam's convergence cone. However, spots with much smaller features can be obtained at the focal plane when the lens is illuminated by an appropriately structured beam. Whereas this concept is known for light beams, here, we show how to realize it for a massive-particle wave function, namely, a free electron. We experimentally demonstrate an electron central spot of radius 106 pm, which is more than two times smaller than the diffraction limit of the experimental setup used. In addition, we demonstrate that this central spot can be structured by adding orbital angular momentum to it. The resulting superoscillating vortex beam has a smaller dark core with respect to a regular vortex beam. This family of electron beams having hot spots with arbitrarily small features and tailored structures could be useful for studying electron-matter interactions with subatomic resolution.

  15. Enhanced THz extinction in arrays of resonant semiconductor particles.

    PubMed

    Schaafsma, Martijn C; Georgiou, Giorgos; Rivas, Jaime Gómez

    2015-09-21

    We demonstrate experimentally the enhanced THz extinction by periodic arrays of resonant semiconductor particles. This phenomenon is explained in terms of the radiative coupling of localized resonances with diffractive orders in the plane of the array (Rayleigh anomalies). The experimental results are described by numerical calculations using a coupled dipole model and by Finite-Difference in Time-Domain simulations. An optimum particle size for enhancing the extinction efficiency of the array is found. This optimum is determined by the frequency detuning between the localized resonances in the individual particles and the Rayleigh anomaly. The extinction calculations and measurements are also compared to near-field simulations illustrating the optimum particle size for the enhancement of the near-field.

  16. Numerical investigations of the potential for laser focus sensors in micrometrology

    NASA Astrophysics Data System (ADS)

    Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard

    2017-06-01

    Laser focus sensors (LFS)1 attached to a scanning nano-positioning and measuring machine (NPMM) enable near diffraction limit resolution with very large measuring areas up to 200 x 200 mm1. Further extensions are planned to address wafer sizes of 8 inch and beyond. Thus, they are preferably suited for micro-metrology on large wafers. On the other hand, the minimum lateral features in state-of-the-art semiconductor industry are as small as a few nanometer and therefore far beyond the resolution limits of classical optics. New techniques such as OCD or ODP3,4 a.k.a. as scatterometry have helped to overcome these constraints considerably. However, scatterometry relies on regular patterns and therefore, the measurements have to be performed on special reference gratings or boxes rather than in-die. Consequently, there is a gap between measurement and the actual structure of interest which becomes more and more an issues with shrinking feature sizes. On the other hand, near-field approaches would also allow to extent the resolution limit greatly5 but they require very challenging controls to keep the working distance small enough to stay within the near field zone. Therefore, the feasibility and the limits of a LFS scanner system have been investigated theoretically. Based on simulations of laser focus sensor scanning across simple topographies, it was found that there is potential to overcome the diffraction limitations to some extent by means of vicinity interference effects caused by the optical interaction of adjacent topography features. We think that it might be well possible to reconstruct the diffracting profile by means of rigorous diffraction simulation based on a thorough model of the laser focus sensor optics in combination with topography diffraction 6 in a similar way as applied in OCD. The difference lies in the kind of signal itself which has to be modeled. While standard OCD is based on spectra, LFS utilizes height scan signals. Simulation results are presented for different types of topographies (dense vs. sparse, regular vs. single) with lateral features near and beyond the classical resolution limit. Moreover, the influence of topography height on the detectability is investigated. To this end, several sensor principles and polarization setups are considered such as a dual color pin hole sensor and a Foucault knife sensor. It is shown that resolution beyond the Abbe or Rayleigh limit is possible even with "classical" optical setups when combining measurements with sophisticated profile retrieval techniques and some a-priori knowledge. Finally, measurement uncertainties are derived based on perturbation simulations according to the method presented in 7.

  17. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.

    PubMed

    Zhou, Xiang; Liu, Qian; Wurm, Michael; Zhang, Qingmin; Ding, Yayun; Zhang, Zhenyu; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-07-01

    Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector.

  18. Rayleigh-Benard Simulation using Gas-Kinetic BGK Scheme in the Incompressible Limit

    NASA Technical Reports Server (NTRS)

    Xu, Kun; Lui, Shiu-Hong

    1998-01-01

    In this paper, a gas-kinetic BGK model is constructed for the Rayleigh-Benard thermal convection in the incompressible flow limit, where the flow field and temperature field are described by two coupled BGK models. Since the collision times and pseudo-temperature in the corresponding BGK models can be different, the Prandtl number can be changed to any value instead of a fixed Pr=1 in the original BGK model. The 2D Rayleigh-Benard thermal convection is studied and numerical results are compared with theoretical ones as well as other simulation results.

  19. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn; Zhang, Zhenyu; Liu, Qian

    2015-07-15

    Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and therebymore » the energy resolution of the detector.« less

  20. Principles of Optics

    NASA Astrophysics Data System (ADS)

    Born, Max; Wolf, Emil

    1999-10-01

    Principles of Optics is one of the classic science books of the twentieth century, and probably the most influential book in optics published in the past forty years. This edition has been thoroughly revised and updated, with new material covering the CAT scan, interference with broad-band light and the so-called Rayleigh-Sommerfeld diffraction theory. This edition also details scattering from inhomogeneous media and presents an account of the principles of diffraction tomography to which Emil Wolf has made a basic contribution. Several new appendices are also included. This new edition will be invaluable to advanced undergraduates, graduate students and researchers working in most areas of optics.

  1. Target and Clutter Scattering and their Effects on Military Radar Performance: Electromagnetic Wave Propagation Panel Specialists Meeting Held in Ottawa, Canada on 6-9 May 1991 (Diffraction par les Cibles et le Fouillis et ses Effets sur les Performances des Radars Militaires)

    DTIC Science & Technology

    1991-09-01

    In subsequent discussions, we shall classify a clutter process to be 2-7 predominantly Rayleigh if the value of f is less than 0.8, and the Pfa ...classified as "others’, the Pfa vs threshold curve , is closer to the Ricean model than to the Rayleigh model, and the value of the parameter 0 was usually...better, and for precipitation clutter the lattice was 4 to approximation of "...equally likely". PD and PFA are 6 dB bettor, here specified a 0.5 and 0.01

  2. Rayleigh-scatter lidar measurements of the mesosphere and thermosphere and their connections to sudden stratospheric warmings

    NASA Astrophysics Data System (ADS)

    Sox, Leda

    The Earth's middle atmosphere (10-110 km) has long been a region in which measurement techniques are limited. Many ground-based and remote sensing satellite instruments have been developed over the past several decades, which strive to provide good coverage of this region. However, each of the different techniques has its own measurement limitations in the extent of its coverage in altitude, time, or global-scale. In order for researchers to trace geophysical dynamics and phenomena across the three regions in the middle atmosphere, measurements from many instruments often have to be spliced together. Rayleigh-scatter lidar is a ground-based remote sensing technique that has been used to acquire relative density and absolute temperature measurements throughout the 35-90 km region at several sites for the past four decades. Rayleigh lidars have a unique advantage over many other middle-atmosphere instruments in that their measurements do not have a theoretical limit to their altitude coverage. Their upper altitude limits are only constrained by technological advances in instrumentation and their lower limits are only constrained by the presence of aerosols (below about 35 km). However, Mie and Raman scatter detectors can be added to extend their measurements down to ground level. The Rayleigh lidar on the campus of Utah State University has recently been upgraded in such a way as to extend its upper altitude limit 25 km higher, into the lower thermosphere. The first year (2014-2015) of data acquired with this new system has been analyzed to obtain temperatures in the 70-115 km region. Numerical experiments were carried out that showed it was possible to compensate for changing atmospheric composition above 90 km with minimal effects on the derived Rayleigh temperatures. These new temperatures were in good agreement with temperatures from the previous version of the system and well-established results of the thermal structure in the mesosphere-lower thermosphere region. Subsequently, the first comparison between collocated Rayleigh and Na lidars, covering identical time periods and altitude ranges, was conducted. An example of the scientific results that can be mined from long-term Rayleigh lidar observations is also given. It establishes the behavior of the midlatitude mesosphere during sudden stratospheric warming events.

  3. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel

    2016-10-01

    Direct detection of close in companions (binary systems or exoplanets) is notoriously difficult. While chronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. While non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, the mask discards 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM though utilizing the full aperture. Instead of closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I propose to develop my own faint companion detection pipeline which utilizes an MCMC analysis of kernel-phases. I will search for new companions in archival images from NIC1 and ACS/HRC in order to constrain binary and planet formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical l/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.

  4. Nonparaxial propagation and focusing properties of azimuthal-variant vector fields diffracted by an annular aperture.

    PubMed

    Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping

    2014-07-01

    Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.

  5. Flow Visualization of Density in a Cryogenic Wind Tunnel Using Planar Rayleigh and Raman Scattering

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; Shirinzadeh, Behrooz

    2002-01-01

    Using a pulsed Nd:YAG laser (532 nm) and a gated, intensified charge-coupled device, planar Rayleigh and Raman scattering techniques have been used to visualize the unseeded Mach 0.2 flow density in a 0.3-meter transonic cryogenic wind tunnel. Detection limits are determined for density measurements by using both unseeded Rayleigh and Raman (N2 vibrational) methods. Seeding with CO2 improved the Rayleigh flow visualization at temperatures below 150 K. The seeded Rayleigh version was used to demonstrate the observation of transient flow features in a separated boundary layer region, which was excited with an oscillatory jet. Finally, a significant degradation of the laser light sheet, in this cryogenic facility, is discussed.

  6. Vectorial diffraction properties of THz vortex Bessel beams.

    PubMed

    Wu, Zhen; Wang, Xinke; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Yu, Yue; Zhang, Yan

    2018-01-22

    A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.

  7. Thin Fresnel zone plate lenses for focusing underwater sound

    NASA Astrophysics Data System (ADS)

    Calvo, David C.; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.

    2015-07-01

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.

  8. Thin Fresnel zone plate lenses for focusing underwater sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo, David C., E-mail: david.calvo@nrl.navy.mil; Thangawng, Abel L.; Nicholas, Michael

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ringmore » cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.« less

  9. Radiometry rocks

    NASA Astrophysics Data System (ADS)

    Harvey, James E.

    2012-10-01

    Professor Bill Wolfe was an exceptional mentor for his graduate students, and he made a major contribution to the field of optical engineering by teaching the (largely ignored) principles of radiometry for over forty years. This paper describes an extension of Bill's work on surface scatter behavior and the application of the BRDF to practical optical engineering problems. Most currently-available image analysis codes require the BRDF data as input in order to calculate the image degradation from residual optical fabrication errors. This BRDF data is difficult to measure and rarely available for short EUV wavelengths of interest. Due to a smooth-surface approximation, the classical Rayleigh-Rice surface scatter theory cannot be used to calculate BRDFs from surface metrology data for even slightly rough surfaces. The classical Beckmann-Kirchhoff theory has a paraxial limitation and only provides a closed-form solution for Gaussian surfaces. Recognizing that surface scatter is a diffraction process, and by utilizing sound radiometric principles, we first developed a linear systems theory of non-paraxial scalar diffraction in which diffracted radiance is shift-invariant in direction cosine space. Since random rough surfaces are merely a superposition of sinusoidal phase gratings, it was a straightforward extension of this non-paraxial scalar diffraction theory to develop a unified surface scatter theory that is valid for moderately rough surfaces at arbitrary incident and scattered angles. Finally, the above two steps are combined to yield a linear systems approach to modeling image quality for systems suffering from a variety of image degradation mechanisms. A comparison of image quality predictions with experimental results taken from on-orbit Solar X-ray Imager (SXI) data is presented.

  10. Beyond the Rayleigh instability limit for multicharged finite systems: From fission to Coulomb explosion

    PubMed Central

    Last, Isidore; Levy, Yaakov; Jortner, Joshua

    2002-01-01

    We address the stability of multicharged finite systems driven by Coulomb forces beyond the Rayleigh instability limit. Our exploration of the nuclear dynamics of heavily charged Morse clusters enabled us to vary the range of the pair potential and of the fissibility parameter, which results in distinct fragmentation patterns and in the angular distributions of the fragments. The Rayleigh instability limit separates between nearly binary (or tertiary) spatially unisotropic fission and spatially isotropic Coulomb explosion into a large number of small, ionic fragments. Implications are addressed for a broad spectrum of dynamics in chemical physics, radiation physics of ultracold gases, and biophysics, involving the fission of clusters and droplets, the realization of Coulomb explosion of molecular clusters, the isotropic expansion of optical molasses, and the Coulomb instability of “isolated” proteins. PMID:12093910

  11. Chemical oscillator as a generalized Rayleigh oscillator.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2013-10-28

    We derive the conditions under which a set of arbitrary two dimensional autonomous kinetic equations can be reduced to the form of a generalized Rayleigh oscillator which admits of limit cycle solution. This is based on a linear transformation of field variables which can be found by inspection of the kinetic equations. We illustrate the scheme with the help of several chemical and bio-chemical oscillator models to show how they can be cast as a generalized Rayleigh oscillator.

  12. Seismic Barrier Protection of Critical Infrastructure from Earthquakes

    DTIC Science & Technology

    2017-05-01

    structure composed of opposing boreholes or trenches to mitigate seismic waves from diffracting and traveling in the vertical plane. Computational...dams, etc., pose significant risk to civilians while adding tremendous cost and recovery time to regain their functionality. Lower energy earthquakes...the most destructive are surface waves (Rayleigh, Love, shear) which can travel great distances in the far field from the earthquake hypocenter and

  13. Gas temperature and density measurements based on spectrally resolved Rayleigh-Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Lock, James A.

    1992-01-01

    The use of molecular Rayleigh scattering for measurements of gas density and temperature is evaluated. The technique used is based on the measurement of the spectrum of the scattered light, where both temperature and density are determined from the spectral shape. Planar imaging of Rayleigh scattering from air using a laser light sheet is evaluated for ambient conditions. The Cramer-Rao lower bounds for the shot-noise limited density and temperature measurement uncertainties are calculated for an ideal optical spectrum analyzer and for a planar mirror Fabry-Perot interferometer used in a static, imaging mode. With this technique, a single image of the Rayleigh scattered light can be analyzed to obtain density (or pressure) and temperature. Experimental results are presented for planar measurements taken in a heated air stream.

  14. Upper Crustal Structure of Taiwan Constrained by the Ellipticity of the Noise-derived Rayleigh Waves

    NASA Astrophysics Data System (ADS)

    Chien, C. C.; Chen, Y. N.; Gung, Y.; Liang, W. T.

    2016-12-01

    In the last decade, the noise interferometry has been a popular technique, and widely applied to constraint the crust and uppermost mantle structure, bringing in revolutionary resolution in area with dense seismic network, including Taiwan. However, limited by the available frequency band of the noise-derived surface waves, the near surface (<5km) structure is much less resolved as compared to the rest of the crust in Taiwan. Such limitation may be lifted by using the ZH ratio of Rayleigh waves, because, for the same period, the ZH ratio of Rayleigh waves is much more sensitive to the shallower structure than those provided by the corresponding phase or group velocities. In this study, aiming to better constraint the seismic structure of the shallow crust of Taiwan, we measure the ZH ratios of the Rayleigh waves derived by noise interferometry. Continuous records from two major seismic networks in Taiwan are used. In total, data from 63 short period stations and 48 broadband stations are used to derived the four combinations (ZZ, ZR, RZ, RR) of cross-correlation functions (CCF). We then measure the ZH ratios of the derived Rayleigh waves. We present the measured results, invert for the local 1-D structure for sites with stable measurements. We then compare the results with the published tomographic models and discuss their geological implications.

  15. A novel automotive headlight system based on digital micro-mirror devices and diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Su, Ping; Song, Yuming; Ma, Jianshe

    2018-01-01

    The DMD (Digital Micro-mirror Device) has the advantages of high refresh rate and high diffraction efficiency, and these make it become an ideal loader of multiple modes illumination. DOEs (Diffractive Optical Element) have the advantages of high degree of freedom, light weight, easy to copy, low cost etc., and can be used to reduce the weight, complexity, cost of optical system. A novel automotive headlamp system using DMD as the light distribution element and a DOE as the light field modulation device is proposed in this paper. The pure phase DOE is obtained by the GS algorithm using Rayleigh-Sommerfeld diffraction integral model. Based on the standard automotive headlamp light intensity distribution in the target plane, the amplitude distribution of DMD is obtained by numerical simulation, and the grayscale diagram loaded on the DMD can be obtained accordingly. Finally, according to simulation result, the light intensity distribution in the target plane is proportional to the national standard, hence verifies the validity of the novel system. The novel illumination system proposed in this paper provides a reliable hardware platform for the intelligent headlamps.

  16. Optical force and torque on a dielectric Rayleigh particle by a circular Airy vortex beam

    NASA Astrophysics Data System (ADS)

    Chen, Musheng; Huang, Sujuan; Shao, Wei; Liu, Xianpeng

    2018-03-01

    Optical force and torque exerted on the Rayleigh particles by tightly focused circularly polarized circular Airy vortex beams (CAVB) in the far field are studied in this paper. The relation between parameters of circularly polarized CAVB and the trapping properties is numerically analyzed based on Rayleigh models and the Debye diffraction theory. The results show that both the high refractive index and low refractive index particles can be fully stably trapped in three dimensions by circularly polarized CAVB. The parameters of circularly polarized CAVB greatly affect the optical force. The longitudinal and transverse gradient force increase with the increase of decay factor and scaling factor, and decrease with the increase of the radius of the first primary ring and topological charges. The positions of the longitudinal stable equilibrium move toward the high numerical aperture lens when the scaling factor and the radius of the primary ring increase. The trapping range is broadened with the decrease of scaling factor. The optical orbital torque (OOT) of circularly polarized CAVB has circular symmetry and remains positive or negative. With the increase of topological charges, the peak value of OOT first increases and then decreases after reaches a maximum. These results are useful for optical trapping, optical levitation and particle acceleration.

  17. Study report on laser storage and retrieval of image data

    NASA Technical Reports Server (NTRS)

    Becker, C. H.

    1976-01-01

    The theoretical foundation is presented for a system of real-time nonphotographic and nonmagnetic digital laser storage and retrieval of image data. The system utilizes diffraction-limited laser focusing upon thin metal films, melting elementary holes in the metal films in laser focus. The metal films are encapsulated in rotating flexible mylar discs which act as the permanent storage carries. Equal sized holes encompass two dimensional digital ensembles of information bits which are time-sequentially (bit by bit) stored and retrieved. The bits possess the smallest possible size, defined by the Rayleigh criterion of coherent physical optics. Space and time invariant reflective read-out of laser discs with a small laser, provides access to the stored digital information. By eliminating photographic and magnetic data processing, which characterize the previous state of the art, photographic grain, diffusion, and gamma-distortion do not exist. Similarly, magnetic domain structures, magnetic gaps, and magnetic read-out are absent with a digital laser disc system.

  18. Characteristics of Love and Rayleigh waves in ambient noise: wavetype ratio, source location and seasonal behavior

    NASA Astrophysics Data System (ADS)

    Juretzek, C.; Perleth, M.; Hadziioannou, C.

    2015-12-01

    Ambient seismic noise has become an important source of signal for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about the common and different origins of Love and Rayleigh waves in the microseism bands is still limited. This applies in particular to constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the differently polarized wave types present in the noise field recorded at several arrays across Europe. The focus lies on frequencies around the primary and secondary microseismic bands. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured at each array, and a dependence on direction is observed. We constrain the corresponding source regions of both wave types by backprojection. By using a full year of data in 2013, we are able to track the seasonal changes in our observations of Love-to-Rayleigh ratio and source locations.

  19. Convective stability in the Rayleigh-Benard and directional solidification problems - High-frequency gravity modulation

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Mcfadden, G. B.; Murray, B. T.; Coriell, S. R.

    1991-01-01

    The effect of vertical, sinusoidal, time-dependent gravitational acceleration on the onset of solutal convection during directional solidification is analyzed in the limit of large modulation frequency. When the unmodulated state is unstable, the modulation amplitude required to stabilize the system is determined by the method of averaging. When the unmodulated state is stable, resonant modes of instability occur at large modulation amplitude. These are analyzed using matched asymptotic expansions to elucidate the boundary-layer structure for both the Rayleigh-Benard and directional solidification configurations. Based on these analyses, a thorough examination of the dependence of the stability criteria on the unmodulated Rayleigh number, Schmidt number, and distribution coefficient, is carried out.

  20. Ultraviolet Molecular Rayleigh Scattering Used to Measure Velocity in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1997-01-01

    Molecular Rayleigh scattering offers a means to measure gas flow parameters including density, temperature, and velocity. No seeding of the flow is necessary. The Rayleigh scattered power is proportional to the gas density, the spectral width is related to the gas temperature, and the shift in the frequency of the spectral peak is proportional to one component of the fluid velocity. Velocity measurements based on Rayleigh scattering are more suitable for high-speed flow, where the bulk fluid velocity is on the order of, or larger than, the molecular thermal velocities. Use of ultraviolet wavelengths for Rayleigh scattering diagnostics is attractive for two reasons. First, the Rayleigh scattering cross section is proportional to the inverse 4th power of the wavelength. And second, the reflectivity of metallic surfaces is generally less than it is at longer wavelengths. This is of particular interest in confined flow situations, such as in small wind tunnels and aircraft engine components, where the stray laser light scattered from the windows and internal surfaces in the test facility limits the application of Rayleigh scattering diagnostics. In this work at the NASA Lewis Research Center, molecular Rayleigh scattering of the 266-nm fourth harmonic of a pulsed, injection seeded Nd:YAG (neodymium:yttriumaluminum- garnet) laser was used to measure velocity in a supersonic free air jet with a 9.3- mm exit diameter. The frequency of the Rayleigh scattered light was analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode, with the images recorded on a cooled, high-quantum-efficiency charge-coupled discharge (CCD) camera. In addition, some unshifted light from the same laser pulse was imaged through the interferometer to generate a reference. Data were obtained with single laser pulses at velocities up to Mach 1.3. The measured velocities were in good agreement with velocities calculated from isentropic flow relations. Our conclusion from this study was that ultraviolet Rayleigh scattering is preferable in confined flow situations because of the increase in the ratio of Rayleigh scattering signal to stray laser light. On the other hand, in open flows, such as free jets and larger wind tunnels where stray laser light can be controlled, visible Rayleigh scattering is preferable.

  1. Impedance of strip-traveling waves on an elastic half space - Asymptotic solution

    NASA Technical Reports Server (NTRS)

    Crandall, S. H.; Nigam, A. K.

    1973-01-01

    The dynamic normal-load distribution across a strip that is required to maintain a plane progressive wave along its length is studied for the case where the strip is of infinite length and lies on the surface of a homogeneous isotropic elastic half space. This configuration is proposed as a preliminary idealized model for analyzing the dynamic interaction between soils and flexible foundations. The surface load distribution across the strip and the motion of the strip are related by a pair of dual integral equations. An asymptotic solution is obtained for the limiting case of small wavelength. The nature of this solution depends importantly on the propagation velocity of the strip-traveling wave in comparison with the Rayleigh wave speed, the shear wave speed and the dilatational wave speed. When the strip-traveling wave propagates faster than the Rayleigh wave speed, a pattern of trailing Rayleigh waves is shed from the strip. The limiting amplitude of the trailing waves is provided by the asymptotic solution.

  2. Stabilization of a capillary bridge far beyond the Rayleigh--Plateau limit using active feedback and acoustic radiation pressure.

    NASA Astrophysics Data System (ADS)

    Marr-Lyon, Mark J.; Thiessen, David B.; Marston, Philip L.

    1997-11-01

    A liquid bridge between two solid surfaces is known as a capillary bridge. For a cylindrical bridge in low gravity of radius R and length L, the slenderness S=L/2R has a natural (Rayleigh--Plateau) limit of π beyond which the bridge breaks. Using the radiation pressure of an ultrasonic standing wave to control the shape of the bridge and an optical sensor to detect the shape of the bridge, an active feedback system was constructed that stabilized bridges significantly beyond the Rayleigh limit in simulated low gravity(Marr--Lyon, M. J., phet al., J. Fluid Mech.), accepted for publication.. The Plateau tank which contained the bridge was a dual frequency ultrasonic resonator and the spatial distribution of the radiation pressure was controlled by adjusting the ultrasonic frequency. Bridges have been extended with S as large as 4.3. To be useful in low gravity, modifications for liquid bridges in air are needed. Acoustic resonators in air having the required property that the sound amplitude can be spatially redistributed rapidly are being investigated using gas-filled soap-film bridges. Work supported by NASA.

  3. Saturn's Icy satellites: The Role of Sub-Micron Ice Particles and Nano-sized Contaminants (Invited)

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Cruikshank, D. P.; Dalle Ore, C. M.; Jaumann, R.; Brown, R. H.; Stephan, K.; Buratti, B. J.; Filacchione, G.; Baines, K. H.; Nicholson, P.

    2010-12-01

    The Visual and Infrared Mapping Spectrometer (VIMS) has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. The spectral trends on individual satellites and as compositional gradients within the Saturn system show systematic trends that indicate variable ice grain sizes and contaminants. Compositional mapping shows that the satellite surfaces are composed largely of H2O ice, with small amounts of CO2, trace organics, bound water or OH-bearing minerals, and possible signatures of ammonia, H2O or OH-bearing minerals, and dark, fine-grained materials. The E-ring coats the inner satellites with sub-micron ice particles. The Cassini Rev 49 Iapetus fly-by on September 10, 2007, provided imaging spectroscopy data on both the dark material and the transition zone between the dark material and the visually bright ice on the trailing side. The dark material has very low albedo with a linear increase in reflectance with wavelength, a 3-micron water absorption, and a CO2 absorption. The only reflectance models that can explain the trends include highly absorbing sub-micron materials that create Rayleigh absorption. Radiative transfer models that include diffraction from Rayleigh scattering and Rayleigh absorption are necessary to match observed data. The dark material is well matched by a high component of fine-grained metallic iron plus a small component of nano-phase hematite. Spatially resolved Iapetus data show mixing of dark material with ice and the mixtures display a blue scattering peak and a UV absorption. The blue scattering peak and UV-Visible absorption is observed in spectra of all satellites at some locations where dark material is mixed with the ice. Rayleigh scattering and Rayleigh absorption have also been observed in spectral properties of the Earth's moon. Rayleigh absorption requires high absorption coefficient nano-sized particles, which is also consistent with metallic iron. The UV absorber appears to have increased strength on satellite surfaces close to Saturn, with a corresponding decrease in metallic iron signature. Possible explanations are that the iron is oxidized closer to Saturn by oxygen in the extended atmosphere of Saturn's rings, or coverage by sub-micron E-ring ice particles, or a combination of both.

  4. Light scattering by cylindrical nanoparticles: Limits of applicability of the Rayleigh-Gans-Debye approximation

    NASA Astrophysics Data System (ADS)

    Kanevskii, V. I.; Rozenbaum, V. M.

    2014-08-01

    Applicability of the Rayleigh-Gans-Debye (RGD) approximation for describing light scattering by nanoparticles with large dielectric losses (such as carbon nanotubes) is analyzed. By a comparison of the approximate results with exact ones, it is shown that the presence of dielectric losses expands the range of applicability of the RGD approximation. This conclusion is illustrated by a differential cross-section diagram of scattering by a multiwall carbon nanotube.

  5. Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces.

    PubMed

    Colombi, Andrea; Ageeva, Victoria; Smith, Richard J; Clare, Adam; Patel, Rikesh; Clark, Matt; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V

    2017-07-28

    Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within metasurfaces is the tailored rainbow trapping and selective spatial frequency separation of electromagnetic and acoustic waves using graded metasurfaces. This frequency dependent trapping and spatial frequency segregation has implications for energy concentrators and associated energy harvesting, sensing and wave filtering techniques. Different demonstrations of acoustic and electromagnetic rainbow devices have been performed, however not for deep elastic substrates that support both shear and compressional waves, together with surface Rayleigh waves; these allow not only for Rayleigh wave rainbow effects to exist but also for mode conversion from surface into shear waves. Here we demonstrate experimentally not only elastic Rayleigh wave rainbow trapping, by taking advantage of a stop-band for surface waves, but also selective mode conversion of surface Rayleigh waves to shear waves. These experiments performed at ultrasonic frequencies, in the range of 400-600 kHz, are complemented by time domain numerical simulations. The metasurfaces we design are not limited to guided ultrasonic waves and are a general phenomenon in elastic waves that can be translated across scales.

  6. Observation of two-beam collective scattering phenomena in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Dimitrova, Ivana; Lunden, William; Amato-Grill, Jesse; Jepsen, Niklas; Yu, Yichao; Messer, Michael; Rigaldo, Thomas; Puentes, Graciana; Weld, David; Ketterle, Wolfgang

    2017-11-01

    Different regimes of collective light scattering are observed when an elongated Bose-Einstein condensate is pumped by two noninterfering beams counterpropagating along its long axis. In the limit of small Rayleigh scattering rates, the presence of a second pump beam suppresses superradiance, whereas at large Rayleigh scattering rates it lowers the effective threshold power for collective light scattering. In the latter regime, the quench dynamics of the two-beam system are oscillatory, compared to monotonic in the single-beam case. In addition, the dependence on power, detuning, and atom number is explored. The observed features of the two-beam system qualitatively agree with the recent theoretical prediction of a supersolid crystalline phase of light and matter at large Rayleigh scattering rates.

  7. Homogeneous purely buoyancy driven turbulent flow

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant; Cholemari, Murali; Pawar, Shashikant

    2010-11-01

    An unstable density difference across a long vertical tube open at both ends leads to convection that is axially homogeneous with a linear density gradient. We report results from such tube convection experiments, with driving density caused by salt concentration difference or temperature difference. At high enough Rayleigh numbers (Ra) the convection is turbulent with zero mean flow and zero mean Reynolds shear stresses; thus turbulent production is purely by buoyancy. We observe different regimes of turbulent convection. At very high Ra the Nusselt number scales as the square root of the Rayleigh number, giving the so-called "ultimate regime" of convection predicted for Rayleigh-Benard convection in limit of infinite Ra. Turbulent convection at intermediate Ra, the Nusselt number scales as Ra^0.3. In both regimes, the flux and the Taylor scale Reynolds number are more than order of magnitude larger than those obtained in Rayleigh-Benard convection. Absence of a mean flow makes this an ideal flow to study shear free turbulence near a wall.

  8. Analysis of fratricide effect observed with GeMS and its relevance for large aperture astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Otarola, Angel; Neichel, Benoit; Wang, Lianqi; Boyer, Corinne; Ellerbroek, Brent; Rigaut, François

    2013-12-01

    Large aperture ground-based telescopes require Adaptive Optics (AO) to correct for the distortions induced by atmospheric turbulence and achieve diffraction limited imaging quality. These AO systems rely on Natural and Laser Guide Stars (NGS and LGS) to provide the information required to measure the wavefront from the astronomical sources under observation. In particular one such LGS method consists in creating an artificial star by means of fluorescence of the sodium atoms at the altitude of the Earth's mesosphere. This is achieved by propagating one or more lasers, at the wavelength of the Na D2a resonance, from the telescope up to the mesosphere. Lasers can be launched from either behind the secondary mirror or from the perimeter of the main aperture. The so-called central- and side-launch systems, respectively. The central-launch system, while helpful to reduce the LGS spot elongation, introduces the so-called "fratricide" effect. This consists of an increase in the photon-noise in the AO Wave Front Sensors (WFS) sub-apertures, with photons that are the result of laser photons back-scattering from atmospheric molecules (Rayleigh scattering) and atmospheric aerosols (dust and/or cirrus clouds ice particles). This affects the performance of the algorithms intended to compute the LGS centroids and subsequently compute and correct the turbulence-induced wavefront distortions. In the frame of the Thirty Meter Telescope (TMT) project and using actual LGS WFS data obtained with the Gemini Multi-Conjugate Adaptive Optics System (Gemini MCAO a.k.a. GeMS), we show results from an analysis of the temporal variability of the observed fratricide effect, as well as comparison of the absolute magnitude of fratricide photon-flux level with simulations using models that account for molecular (Rayleigh) scattering and photons backscattered from cirrus clouds.

  9. Data-based diffraction kernels for surface waves from convolution and correlation processes through active seismic interferometry

    NASA Astrophysics Data System (ADS)

    Chmiel, Malgorzata; Roux, Philippe; Herrmann, Philippe; Rondeleux, Baptiste; Wathelet, Marc

    2018-05-01

    We investigated the construction of diffraction kernels for surface waves using two-point convolution and/or correlation from land active seismic data recorded in the context of exploration geophysics. The high density of controlled sources and receivers, combined with the application of the reciprocity principle, allows us to retrieve two-dimensional phase-oscillation diffraction kernels (DKs) of surface waves between any two source or receiver points in the medium at each frequency (up to 15 Hz, at least). These DKs are purely data-based as no model calculations and no synthetic data are needed. They naturally emerge from the interference patterns of the recorded wavefields projected on the dense array of sources and/or receivers. The DKs are used to obtain multi-mode dispersion relations of Rayleigh waves, from which near-surface shear velocity can be extracted. Using convolution versus correlation with a grid of active sources is an important step in understanding the physics of the retrieval of surface wave Green's functions. This provides the foundation for future studies based on noise sources or active sources with a sparse spatial distribution.

  10. Application of the graphics processor unit to simulate a near field diffraction

    NASA Astrophysics Data System (ADS)

    Zinchik, Alexander A.; Topalov, Oleg K.; Muzychenko, Yana B.

    2017-06-01

    For many years, computer modeling program used for lecture demonstrations. Most of the existing commercial software, such as Virtual Lab, LightTrans GmbH company are quite expensive and have a surplus capabilities for educational tasks. The complexity of the diffraction demonstrations in the near zone, due to the large amount of calculations required to obtain the two-dimensional distribution of the amplitude and phase. At this day, there are no demonstrations, allowing to show the resulting distribution of amplitude and phase without much time delay. Even when using Fast Fourier Transform (FFT) algorithms diffraction calculation speed in the near zone for the input complex amplitude distributions with size more than 2000 × 2000 pixels is tens of seconds. Our program selects the appropriate propagation operator from a prescribed set of operators including Spectrum of Plane Waves propagation and Rayleigh-Sommerfeld propagation (using convolution). After implementation, we make a comparison between the calculation time for the near field diffraction: calculations made on GPU and CPU, showing that using GPU for calculations diffraction pattern in near zone does increase the overall speed of algorithm for an image of size 2048×2048 sampling points and more. The modules are implemented as separate dynamic-link libraries and can be used for lecture demonstrations, workshops, selfstudy and students in solving various problems such as the phase retrieval task.

  11. Compressor discharge film riding face seals

    NASA Technical Reports Server (NTRS)

    Munson, John

    1994-01-01

    Seals examined were the eight-pad Rayleigh step, the tapered spiral groove, and two hydrostatic seals. The spiral groove configuration is the preferred choice because of superior stiffness. Second choice is Rayleigh step because of combined higher operating film thickness and good stiffness at low clearance. Recess hydrostatic has reasonable performance, but stiffness falls off at low clearance. Also, pneumatic hammer characteristics must be investigated. Experience at high pressure ratios is limited. An advantage is that it would have good low speed performance.

  12. Resolution Quality and Atom Positions in Sub-?ngstr?m Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Keefe, Michael A.; Allard Jr, Lawrence Frederick; Blom, Douglas Allen

    2005-01-01

    John Cowley pioneered use of transmission electron microscopy (TEM) for high-resolution imaging and helped spur improvements in resolution that enabled researchers to pinpoint the positions of all but the lightest atoms within a crystal structure. Sub-{angstrom} capabilities allow imaging of even the lightest atoms. Initially achieved with software aberration correction (focal-series reconstruction of the specimen exit-surface wave), sub-{angstrom} imaging will become commonplace for next-generation electron microscopes with hardware-corrected lenses and monochromated electron beams. Currently, advanced HR-TEMs can image columns of light atoms (carbon, oxygen, nitrogen) in complex structures, including the lithium atoms present in battery materials. The ability to determinemore » whether an image peak represents one single atom (or atom column) instead of several depends on the resolution of the HR-(S)TEM. Rayleigh's resolution criterion, an accepted standard in optics, was derived as a means for judging when two image intensity peaks from two sources of light (stars) are distinguishable from a single source. Atom spacings closer than the Rayleigh limit have been resolved in HR-TEM, suggesting that it may be useful to consider other limits, such as the Sparrow resolution criterion. From the viewpoint of the materials scientist, it is important to be able to use the image to determine whether an image feature represents one or more atoms (resolution), and where the atoms (or atom columns) are positioned relative to one another (resolution quality). When atoms and the corresponding image peaks are separated by more than the Rayleigh limit of the HR-(S)TEM, it is possible to adjust imaging parameters so that relative peak positions in the image correspond to relative atom positions in the specimen. When atoms are closer than the Rayleigh limit, we must find the relationship of the peak position to the atom position by peak fitting or, if we have a suitable model, by image simulation.« less

  13. Issues in Optical Diffraction Theory

    PubMed Central

    Mielenz, Klaus D.

    2009-01-01

    This paper focuses on unresolved or poorly documented issues pertaining to Fresnel’s scalar diffraction theory and its modifications. In Sec. 2 it is pointed out that all thermal sources used in practice are finite in size and errors can result from insufficient coherence of the optical field. A quarter-wave criterion is applied to show how such errors can be avoided by placing the source at a large distance from the aperture plane, and it is found that in many cases it may be necessary to use collimated light as on the source side of a Fraunhofer experiment. If these precautions are not taken the theory of partial coherence may have to be used for the computations. In Sec. 3 it is recalled that for near-zone computations the Kirchhoff or Rayleigh-Sommerfeld integrals are applicable, but fail to correctly describe the energy flux across the aperture plane because they are not continuously differentiable with respect to the assumed geometrical field on the source side. This is remedied by formulating an improved theory in which the field on either side of a semi-reflecting screen is expressed as the superposition of mutually incoherent components which propagate in the opposite directions of the incident and reflected light. These components are defined as linear combinations of the Rayleigh-Sommerfeld integrals, so that they are rigorous solutions of the wave equation as well as continuously differentiable in the aperture plane. Algorithms for using the new theory for computing the diffraction patterns of circular apertures and slits at arbitrary distances z from either side of the aperture (down to z = ± 0.0003 λ) are presented, and numerical examples of the results are given. These results show that the incident geometrical field is modulated by diffraction before it reaches the aperture plane while the reflected field is spilled into the dark space. At distances from the aperture which are large compared to the wavelength λ these field expressions are reduced to the usual ones specified by Fresnel’s theory. In the specific case of a diffracting half plane the numerical results obtained were practically the same as those given by Sommerfeld’s rigorous theory. The modified theory developed in this paper is based on the explicit assumption that the scalar theory of light cannot explain plolarization effects. This premise is justified in Sec. 4, where it is shown that previous attempts to do so have produced dubious results. PMID:27504215

  14. Ground motion hazard from supershear rupture

    USGS Publications Warehouse

    Andrews, D.J.

    2010-01-01

    An idealized rupture, propagating smoothly near a terminal rupture velocity, radiates energy that is focused into a beam. For rupture velocity less than the S-wave speed, radiated energy is concentrated in a beam of intense fault-normal velocity near the projection of the rupture trace. Although confined to a narrow range of azimuths, this beam diverges and attenuates. For rupture velocity greater than the S-wave speed, radiated energy is concentrated in Mach waves forming a pair of beams propagating obliquely away from the fault. These beams do not attenuate until diffraction becomes effective at large distance. Events with supershear and sub-Rayleigh rupture velocity are compared in 2D plane-strain calculations with equal stress drop, fracture energy, and rupture length; only static friction is changed to determine the rupture velocity. Peak velocity in the sub-Rayleigh case near the termination of rupture is larger than peak velocity in the Mach wave in the supershear case. The occurrence of supershear rupture propagation reduces the most intense peak ground velocity near the fault, but it increases peak velocity within a beam at greater distances.

  15. Gaussian Finite Element Method for Description of Underwater Sound Diffraction

    NASA Astrophysics Data System (ADS)

    Huang, Dehua

    A new method for solving diffraction problems is presented in this dissertation. It is based on the use of Gaussian diffraction theory. The Rayleigh integral is used to prove the core of Gaussian theory: the diffraction field of a Gaussian is described by a Gaussian function. The parabolic approximation used by previous authors is not necessary to this proof. Comparison of the Gaussian beam expansion and Fourier series expansion reveals that the Gaussian expansion is a more general and more powerful technique. The method combines the Gaussian beam superposition technique (Wen and Breazeale, J. Acoust. Soc. Am. 83, 1752-1756 (1988)) and the Finite element solution to the parabolic equation (Huang, J. Acoust. Soc. Am. 84, 1405-1413 (1988)). Computer modeling shows that the new method is capable of solving for the sound field even in an inhomogeneous medium, whether the source is a Gaussian source or a distributed source. It can be used for horizontally layered interfaces or irregular interfaces. Calculated results are compared with experimental results by use of a recently designed and improved Gaussian transducer in a laboratory water tank. In addition, the power of the Gaussian Finite element method is demonstrated by comparing numerical results with experimental results from use of a piston transducer in a water tank.

  16. Instrument Performance of GISMO, a 2 Millimeter TES Bolometer Camera used at the IRAM 30 m Telescope

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes

    2008-01-01

    In November of 2007 we demonstrated a monolithic Backshort-Under-Grid (BUG) 8x16 array in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda/D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here1 will we present early results from our observing run with the first fielded BUG bolometer array. We have developed key technologies to enable highly versatile, kilopixel, infrared through millimeter wavelength bolometer arrays. The Backshort-Under-Grid (BUG) array consists of three components: 1) a transition-edge-sensor (TES) based bolometer array with background-limited sensitivity and high filling factor, 2) a quarter-wave reflective backshort grid providing high optical efficiency, and 3) a superconducting bump-bonded large format Superconducting Quantum Interference Device (SQUID) multiplexer readout. The array is described in more detail elsewhere (Allen et al., this conference). In November of 2007 we demonstrated a monolithic 8x 16 array with 2 mm-pitch detectors in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda1D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here I will we present early results from our observing run with the first fielded BUG bolometer array.

  17. Direction dependent Love and Rayleigh wave noise characteristics using multiple arrays across Europe

    NASA Astrophysics Data System (ADS)

    Juretzek, Carina; Perleth, Magdalena; Hadziioannou, Celine

    2016-04-01

    Seismic noise has become an important signal source for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about common and different origins of Love and Rayleigh waves in the microseism band is still limited. This applies in particular for constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the different polarized wave types in the primary and secondary microseism noise field recorded at several arrays across Europe. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured and a dependence on direction is found, especially in the primary microseism band. Estimates of the kinetic energy density ratios propose a dominance of coherent Love waves in the primary, but not in the secondary microseism band. The seasonality of the noise field characteristics is examined by using a full year of data in 2013 and is found to be stable.

  18. Focal shift and the axial optical coordinate for high-aperture systems of finite Fresnel number.

    PubMed

    Sheppard, Colin J R; Török, Peter

    2003-11-01

    Analytic expressions are given for the on-axis intensity predicted by the Rayleigh-Sommerfeld and Kirchhoff diffraction integrals for a scalar optical system of high numerical aperture and finite value of Fresnel number. A definition of the axial optical coordinate is introduced that is valid for finite values of Fresnel number, for high-aperture systems, and for observation points distant from the focus. The focal shift effect is reexamined. For the case when the focal shift is small, explicit expressions are given for the focal shift and the axial peak in intensity.

  19. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    USGS Publications Warehouse

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  20. Rayleigh's hypothesis and the geometrical optics limit.

    PubMed

    Elfouhaily, Tanos; Hahn, Thomas

    2006-09-22

    The Rayleigh hypothesis (RH) is often invoked in the theoretical and numerical treatment of rough surface scattering in order to decouple the analytical form of the scattered field. The hypothesis stipulates that the scattered field away from the surface can be extended down onto the rough surface even though it is formed by solely up-going waves. Traditionally this hypothesis is systematically used to derive the Volterra series under the small perturbation method which is equivalent to the low-frequency limit. In this Letter we demonstrate that the RH also carries the high-frequency or the geometrical optics limit, at least to first order. This finding has never been explicitly derived in the literature. Our result comforts the idea that the RH might be an exact solution under some constraints in the general case of random rough surfaces and not only in the case of small-slope deterministic periodic gratings.

  1. Where do ocean microseisms come from? A study of Love-to-Rayleigh wave ratios

    NASA Astrophysics Data System (ADS)

    Juretzek, C.; Hadziioannou, C.

    2016-09-01

    Our knowledge of the origin of Love waves in the ambient seismic noise is extremely limited. This applies in particular to constraints on source locations and source mechanisms for Love waves in the secondary microseism. Here three-component beamforming is used to distinguish between the differently polarized wave types in the primary and secondary microseismic noise fields, recorded at several arrays across Europe. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content, measure Love to Rayleigh wave ratios for different back azimuths, and look at the seasonal behavior of our measurements by using a full year of data in 2013. The beamforming results confirm previous observations that back azimuths for Rayleigh and Love waves in both microseismic bands mainly coincide. However, we observe differences in relative directional noise strength between both wave types for the primary microseism. At those frequencies, Love waves dominate on average, with kinetic Love-to-Rayleigh energy ratios ranging from 0.6 to 2.0. In the secondary microseism, the ratios are lower, between 0.4 and 1.2. The wave type ratio is directionally homogeneous, except for locations far from the coast. In the primary microseism, our results support the existence of different generation mechanisms. The contribution of a shear traction-type source mechanism is likely.

  2. A sensitive and selective resonance Rayleigh scattering method for quick detection of avidin using affinity labeling Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Huang, Xi; Fu, Xuan; Deng, Huan; Ma, Meihu; Cai, Zhaoxia

    2016-06-01

    Avidin is a glycoprotein with antinutritional property, which should be limited in daily food. We developed an affinity biosensor system based on resonance Rayleigh scattering (RRS) and using affinity biotin labeling Au nanoparticles (AuNPs). This method was selective and sensitive for quick avidin detection due to the avidin-biotin affinitive interaction. Under optimal conditions, RRS intensity of biotin-AuNPs increase linearly with an increasing concentration of avidin from 5 to 160 ng/mL. The lower limit of detection was 0.59 ng/mL. This rapid and selective avidin detection method was used in synthetic samples and egg products with recoveries of between 102.97 and 107.92%, thereby demonstrating the feasible and practical application of this assay.

  3. 3-component beamforming analysis of ambient seismic noise field for Love and Rayleigh wave source directions

    NASA Astrophysics Data System (ADS)

    Juretzek, Carina; Hadziioannou, Céline

    2014-05-01

    Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.

  4. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem

    NASA Astrophysics Data System (ADS)

    Ramaprabhu, P.; Dimonte, Guy; Young, Yuan-Nan; Calder, A. C.; Fryxell, B.

    2006-12-01

    We report on the behavior of a single-wavelength Rayleigh-Taylor flow at late times. The calculations were performed in a long square duct (λ×λ×8λ) , using four different numerical simulations. In contradiction with potential flow theories that predict a constant terminal velocity, the single-wavelength Rayleigh-Taylor problem exhibits late-time acceleration. The onset of acceleration occurs as the bubble penetration depth exceeds the diameter of bubbles, and is observed for low and moderate density differences. Based on our simulations, we provide a phenomenological description of the observed acceleration, and ascribe this behavior to the formation of Kelvin-Helmholtz vortices on the bubble-spike interface that diminish the friction drag, while the associated induced flow propels the bubbles forward. For large density ratios, the formation of secondary instabilities is suppressed, and the bubbles remain terminal consistent with potential flow models.

  5. Evolution of the transfer function characterization of surface scatter phenomena

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  6. Centrifugally Driven Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Scase, Matthew; Hill, Richard

    2017-11-01

    The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.

  7. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.

    The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less

  8. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing

    DOE PAGES

    Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.

    2018-01-10

    The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less

  9. SU-E-I-77: X-Ray Coherent Scatter Diffraction Pattern Modeling in GEANT4.

    PubMed

    Kapadia, A; Samei, E; Harrawood, B; Sahbaee, P; Chawla, A; Tan, Z; Brady, D

    2012-06-01

    To model X-ray coherent scatter diffraction patterns in GEANT4 for simulating experiments involving material detection through diffraction pattern measurement. Although coherent scatter cross-sections are modeled accurately in GEANT4, diffraction patterns for crystalline materials are not yet included. Here we describe our modeling of crystalline diffraction patterns in GEANT4 for specific materials and the validation of the results against experimentally measured data. Coherent scatter in GEANT4 is currently based on Hubbell's non-relativistic form factor tabulations from EPDL97. We modified the form-factors by introducing an interference function that accounts for the angular dependence between the Rayleigh-scattered photons and the photon wavelength. The modified form factors were used to replace the inherent form-factors in GEANT4. The simulation was tested using monochromatic and polychromatic x-ray beams (separately) incident on objects containing one or more elements with modified form-factors. The simulation results were compared against the experimentally measured diffraction images of corresponding objects using an in-house x-ray diffraction imager for validation. The comparison was made using the following metrics: number of diffraction rings, radial distance, absolute intensity, and relative intensity. Sharp diffraction pattern rings were observed in the monochromatic simulations at locations consistent with the angular dependence of the photon wavelength. In the polychromatic simulations, the diffraction patterns exhibited a radial blur consistent with the energy spread of the polychromatic spectrum. The simulated and experimentally measured patterns showed identical numbers of rings with close agreement in radial distance, absolute and relative intensities (barring statistical fluctuations). No significant change was observed in the execution time of the simulations. This work demonstrates the ability to model coherent scatter diffraction in GEANT4 in an accurate and efficient manner without compromising the accuracy or runtime of the simulation. This work was supported by the Department of Homeland Security under grant DHS (BAA 10-01 F075), and by the Department of Defense under award W81XWH-09-1-0066. © 2012 American Association of Physicists in Medicine.

  10. Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.

    PubMed

    Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin

    2015-01-01

    The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.

  11. Nonparaxial Dark-Hollow Gaussian Beams

    NASA Astrophysics Data System (ADS)

    Gao, Zeng-Hui; Lü, Bai-Da

    2006-01-01

    The concept of nonparaxial dark-hollow Gaussian beams (DHGBs) is introduced. By using the Rayleigh-Sommerfeld diffraction integral, the analytical propagation equation of DHGBs in free space is derived. The on-axis intensity, far-field equation and, in particular, paraxial expressions are given and treated as special cases of our result. It is shown that the parameter f = 1/kw0 with k being the wave number and w0 being the waist width determines the nonparaxiality of DHGBs. However, the parameter range, within which the paraxial approach is valid, depends on the propagation distance. The beam order affects the beam profile and position of maximum on-axis intensity.

  12. Multistage coupling of independent laser-plasma accelerators

    DOE PAGES

    Steinke, S.; van Tilborg, J.; Benedetti, C.; ...

    2016-02-01

    Laser-plasma accelerators (LPAs) are capable of accelerating charged particles to very high energies in very compact structures. In theory, therefore, they offer advantages over conventional, large-scale particle accelerators. However, the energy gain in a single-stage LPA can be limited by laser diffraction, dephasing, electron-beam loading and laser-energy depletion. The problem of laser diffraction can be addressed by using laser-pulse guiding and preformed plasma waveguides to maintain the required laser intensity over distances of many Rayleigh lengths; dephasing can be mitigated by longitudinal tailoring of the plasma density; and beam loading can be controlled by proper shaping of the electron beam.more » To increase the beam energy further, it is necessary to tackle the problem of the depletion of laser energy, by sequencing the accelerator into stages, each powered by a separate laser pulse. In this work, we present results from an experiment that demonstrates such staging. Two LPA stages were coupled over a short distance (as is needed to preserve the average acceleration gradient) by a plasma mirror. Stable electron beams from a first LPA were focused to a twenty-micrometre radius-by a discharge capillary-based active plasma lens-into a second LPA, such that the beams interacted with the wakefield excited by a separate laser. Staged acceleration by the wakefield of the second stage is detected via an energy gain of 100 megaelectronvolts for a subset of the electron beam. Changing the arrival time of the electron beam with respect to the second-stage laser pulse allowed us to reconstruct the temporal wakefield structure and to determine the plasma density. Our results indicate that the fundamental limitation to energy gain presented by laser depletion can be overcome by using staged acceleration, suggesting a way of reaching the electron energies required for collider applications.« less

  13. Gravitational instability of thin gas layer between two thick liquid layers

    NASA Astrophysics Data System (ADS)

    Pimenova, A. V.; Goldobin, D. S.

    2016-12-01

    We consider the problem of gravitational instability (Rayleigh-Taylor instability) of a horizontal thin gas layer between two liquid half-spaces (or thick layers), where the light liquid overlies the heavy one. This study is motivated by the phenomenon of boiling at the surface of direct contact between two immiscible liquids, where the rate of the "break-away" of the vapor layer growing at the contact interface due to development of the Rayleigh-Taylor instability on the upper liquid-gas interface is of interest. The problem is solved analytically under the assumptions of inviscid liquids and viscous weightless vapor. These assumptions correspond well to the processes in real systems, e.g., they are relevant for the case of interfacial boiling in the system water- n-heptane. In order to verify the results, the limiting cases of infinitely thin and infinitely thick gas layers were considered, for which the results can be obviously deduced from the classical problem of the Rayleigh-Taylor instability. These limiting cases are completely identical to the well-studied cases of gravity waves at the liquidliquid and liquid-gas interfaces. When the horizontal extent of the system is long enough, the wavenumber of perturbations is not limited from below, and the system is always unstable. The wavelength of the most dangerous perturbations and the rate of their exponential growth are derived as a function of the layer thickness. The dependence of the exponential growth rate on the gas layer thickness is cubic.

  14. Rayleigh scattering of x-ray and γ-ray by 1s and 2s electrons in ions and neutral atoms

    NASA Astrophysics Data System (ADS)

    Costescu, A.; Karim, K.; Moldovan, M.; Spanulescu, S.; Stoica, C.

    2011-02-01

    Using the Coulomb-Green function method and considering the nonrelativistic limit for the two-photon S-matrix element, the right nonrelativistic 2s Rayleigh scattering amplitudes are obtained. Our result takes into account all multipoles, retardation and relativistic kinematics contributions, and the old dipole approximation result of Costescu [1] is retrieved as a limit case. The total photoeffect cross-section which is related to the imaginary part of the Rayleigh forward scattering amplitude through the optical theorem is also obtained. Our Coulombian formulae are used in the more realistic case of elastic scattering of photons by bound 1s and 2s electrons in ions and neutral atoms. Screening effects are considered in the independent particle approximation through the Hartree-Fock method. The effective charge Zeff is obtained by fitting the Hartree-Fock charge distribution by a Coulombian one. Good agreement (within 10%) is found when comparing the numerical predictions given by our nonrelativistic formulae with the full relativistic numerical results of Kissel [2] in the case of elastic scattering of photons by 1s and 2s electrons and Scofield [3] in the case of K-shell and 2s subshell photoionization for neutral atoms with 18 <= Z <= 92 and photon energies ω <= αZm.

  15. Achieving superresolution with illumination-enhanced sparsity.

    PubMed

    Yu, Jiun-Yann; Becker, Stephen R; Folberth, James; Wallin, Bruce F; Chen, Simeng; Cogswell, Carol J

    2018-04-16

    Recent advances in superresolution fluorescence microscopy have been limited by a belief that surpassing two-fold resolution enhancement of the Rayleigh resolution limit requires stimulated emission or the fluorophore to undergo state transitions. Here we demonstrate a new superresolution method that requires only image acquisitions with a focused illumination spot and computational post-processing. The proposed method utilizes the focused illumination spot to effectively reduce the object size and enhance the object sparsity and consequently increases the resolution and accuracy through nonlinear image post-processing. This method clearly resolves 70nm resolution test objects emitting ~530nm light with a 1.4 numerical aperture (NA) objective, and, when imaging through a 0.5NA objective, exhibits high spatial frequencies comparable to a 1.4NA widefield image, both demonstrating a resolution enhancement above two-fold of the Rayleigh resolution limit. More importantly, we examine how the resolution increases with photon numbers, and show that the more-than-two-fold enhancement is achievable with realistic photon budgets.

  16. Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range.

    PubMed

    Hyun, Jaeyub; Kim, Yong Tae; Doh, Il; Ahn, Bongyoung; Baik, Kyungmin; Kim, Se-Hwa

    2018-06-14

    In this study, we report the first experimental realization of an ultrathin (0.14λ, λ = 1.482 mm means wavelength at 1 MHz in the water medium) subwavelength focusing acoustic lens that can surpass the Rayleigh diffraction limit (0.61λ/NA, NA means numerical aperture). It is termed a Super-Oscillatory Acoustic Lens (SOAL), and it operates in the megasonic range. The SOAL represents an interesting feature allowing the achievement of subwavelength focusing without the need to operate in close proximity to the object to be imaged. The optimal layout of the SOAL is obtained by utilizing a systematic design approach, referred to here as topology optimization. To this end, the optimization formulation is newly defined. The optimized SOAL is fabricated using a photo-etching process and its subwavelength focusing performance is verified experimentally via an acoustic intensity measurement system. From these measurements, we found that the proposed optimized SOAL can achieve superior focusing features with a Full Width at Half Maximum (FWHM) of ~0.40λ/NA ≃ 0.84 mm (for our SOAL, NA = 0.707) with the transmission efficiency of 26.5%.

  17. High performance liquid chromatography coupled with resonance Rayleigh scattering for the detection of three fluoroquinolones and mechanism study

    NASA Astrophysics Data System (ADS)

    Zhou, Mingqiong; Peng, Jingdong; He, Rongxing; He, Yuting; Zhang, Jing; Li, Aiping

    2015-02-01

    A reliable and versatile high performance liquid chromatography coupled with resonance Rayleigh scattering method was established for the determination of three fluoroquinolones, including levofloxacin, norfloxacin and enrofloxacin in water sample and human urine sample. In pH 4.4-4.6 Britton-Robinson buffer medium, the fluoroquinolones separated by high performance liquid chromatography could react with erythrosine to form 1:1 ion-association complexes, which could make contributions to the great enhancement of RRS. The resonance Rayleigh scattering signal was recorded at λex = λem = 330 nm. The resonance Rayleigh scattering spectral characteristics of the drugs and the experimental conditions such as pH, detection wavelength, erythrosine concentration, flow rate, the length of reaction tube were studied. Quantum chemistry calculation, Fourier transform infrared spectroscopy and absorption spectroscopy were used to discuss the reaction mechanism. The recoveries of samples added standard ranged from 97.53% to 102.00%, and the relative standard deviation was below 4.64%. The limit of detection (S/N = 3) of 0.05-0.12 μg mL-1 was reached, and the linear regression coefficients were all above 0.999. The proposed method was proved as a simple, low cost and high sensitivity method.

  18. Turbulent thermal superstructures in Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Stevens, Richard J. A. M.; Blass, Alexander; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef

    2018-04-01

    We report the observation of superstructures, i.e., very large-scale and long living coherent structures in highly turbulent Rayleigh-Bénard convection up to Rayleigh Ra=109 . We perform direct numerical simulations in horizontally periodic domains with aspect ratios up to Γ =128 . In the considered Ra number regime the thermal superstructures have a horizontal extend of six to seven times the height of the domain and their size is independent of Ra. Many laboratory experiments and numerical simulations have focused on small aspect ratio cells in order to achieve the highest possible Ra. However, here we show that for very high Ra integral quantities such as the Nusselt number and volume averaged Reynolds number only converge to the large aspect ratio limit around Γ ≈4 , while horizontally averaged statistics such as standard deviation and kurtosis converge around Γ ≈8 , the integral scale converges around Γ ≈32 , and the peak position of the temperature variance and turbulent kinetic energy spectra only converge around Γ ≈64 .

  19. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    NASA Astrophysics Data System (ADS)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  20. Acoustic propagation operators for pressure waves on an arbitrarily curved surface in a homogeneous medium

    NASA Astrophysics Data System (ADS)

    Sun, Yimin; Verschuur, Eric; van Borselen, Roald

    2018-03-01

    The Rayleigh integral solution of the acoustic Helmholtz equation in a homogeneous medium can only be applied when the integral surface is a planar surface, while in reality almost all surfaces where pressure waves are measured exhibit some curvature. In this paper we derive a theoretically rigorous way of building propagation operators for pressure waves on an arbitrarily curved surface. Our theory is still based upon the Rayleigh integral, but it resorts to matrix inversion to overcome the limitations faced by the Rayleigh integral. Three examples are used to demonstrate the correctness of our theory - propagation of pressure waves acquired on an arbitrarily curved surface to a planar surface, on an arbitrarily curved surface to another arbitrarily curved surface, and on a spherical cap to a planar surface, and results agree well with the analytical solutions. The generalization of our method for particle velocities and the calculation cost of our method are also discussed.

  1. Estimation of elastic moduli in a compressible Gibson half-space by inverting Rayleigh-wave phase velocity

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Chen, C.

    2006-01-01

    A Gibson half-space model (a non-layered Earth model) has the shear modulus varying linearly with depth in an inhomogeneous elastic half-space. In a half-space of sedimentary granular soil under a geostatic state of initial stress, the density and the Poisson's ratio do not vary considerably with depth. In such an Earth body, the dynamic shear modulus is the parameter that mainly affects the dispersion of propagating waves. We have estimated shear-wave velocities in the compressible Gibson half-space by inverting Rayleigh-wave phase velocities. An analytical dispersion law of Rayleigh-type waves in a compressible Gibson half-space is given in an algebraic form, which makes our inversion process extremely simple and fast. The convergence of the weighted damping solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Calculation efficiency is achieved by reconstructing a weighted damping solution using singular value decomposition techniques. The main advantage of this algorithm is that only three parameters define the compressible Gibson half-space model. Theoretically, to determine the model by the inversion, only three Rayleigh-wave phase velocities at different frequencies are required. This is useful in practice where Rayleigh-wave energy is only developed in a limited frequency range or at certain frequencies as data acquired at manmade structures such as dams and levees. Two real examples are presented and verified by borehole S-wave velocity measurements. The results of these real examples are also compared with the results of the layered-Earth model. ?? Springer 2006.

  2. Vacuum ultraviolet spectra of the late twilight airglow.

    NASA Technical Reports Server (NTRS)

    Buckley, J. L.; Moos, H. W.

    1971-01-01

    Evaluation of sounding rocket spectra of the late twilight (solar-zenith angle of 120 deg) ultraviolet airglow between 1260 and 1900 A. The only observed features are O I 1304 and 1356. When the instrument looked at an elevation of 17 deg above the western horizon, the brightnesses were 70 and 33 rayleighs, respectively. The upper limits on the total intensity of the Lyman-Birge-Hopfield and Vegard-Kaplan systems of N2 were 26 plus or minus 26 and 55 plus or minus 55 rayleighs, respectively. An estimate shows that a large part of the O I emissions may be due to excitation by conjugate-point electrons.

  3. A modified Rayleigh-Gans-Debye formula for small angle X-ray scattering by interstellar dust grains

    NASA Astrophysics Data System (ADS)

    Sharma, Subodh K.

    2015-05-01

    A widely used approximation in studies relating to small angle differential scattering cross-section of X-rays scattered by interstellar dust grains is the well known Rayleigh-Gans-Debye approximation (RGDA). The validity of this approximation, however, is limited only to X-ray energies greater than about 1 keV. At lower energies, this approximation overestimates the exact results. In this paper a modification to the RGDA is suggested. It is shown that a combination of the RGDA with Ramsauer approximation retains the formal simplicity of the RGDA and also yields good agreement with Mie computations at all X-ray energies.

  4. Detection of single nano-defects in photonic crystals between crossed polarizers.

    PubMed

    Grepstad, Jon Olav; Kaspar, Peter; Johansen, Ib-Rune; Solgaard, Olav; Sudbø, Aasmund

    2013-12-16

    We investigate, by simulations and experiments, the light scattering of small particles trapped in photonic crystal membranes supporting guided resonance modes. Our results show that, due to amplified Rayleigh small particle scattering, such membranes can be utilized to make a sensor that can detect single nano-particles. We have designed a biomolecule sensor that uses cross-polarized excitation and detection for increased sensitivity. Estimated using Rayleigh scattering theory and simulation results, the current fabricated sensor has a detection limit of 26 nm, corresponding to the size of a single virus. The sensor can potentially be made both cheap and compact, to facilitate use at point-of-care.

  5. Optimization design of spectral discriminator for high-spectral-resolution lidar based on error analysis.

    PubMed

    Di, Huige; Zhang, Zhanfei; Hua, Hangbo; Zhang, Jiaqi; Hua, Dengxin; Wang, Yufeng; He, Tingyao

    2017-03-06

    Accurate aerosol optical properties could be obtained via the high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress the Rayleigh or Mie scattering in lidar return signals. The ability of the filter to suppress Rayleigh or Mie scattering is critical for HSRL. Meanwhile, it is impossible to increase the rejection of the filter without limitation. How to optimize the spectral discriminator and select the appropriate suppression rate of the signal is important to us. The HSRL technology was thoroughly studied based on error propagation. Error analyses and sensitivity studies were carried out on the transmittance characteristics of the spectral discriminator. Moreover, ratwo different spectroscopic methods for HSRL were described and compared: one is to suppress the Mie scattering; the other is to suppress the Rayleigh scattering. The corresponding HSRLs were simulated and analyzed. The results show that excessive suppression of Rayleigh scattering or Mie scattering in a high-spectral channel is not necessary if the transmittance of the spectral filter for molecular and aerosol scattering signals can be well characterized. When the ratio of transmittance of the spectral filter for aerosol scattering and molecular scattering is less than 0.1 or greater than 10, the detection error does not change much with its value. This conclusion implies that we have more choices for the high-spectral discriminator in HSRL. Moreover, the detection errors of HSRL regarding the two spectroscopic methods vary greatly with the atmospheric backscattering ratio. To reduce the detection error, it is necessary to choose a reasonable spectroscopic method. The detection method of suppressing the Rayleigh signal and extracting the Mie signal can achieve less error in a clear atmosphere, while the method of suppressing the Mie signal and extracting the Rayleigh signal can achieve less error in a polluted atmosphere.

  6. Q-space analysis of light scattering by ice crystals

    NASA Astrophysics Data System (ADS)

    Heinson, Yuli W.; Maughan, Justin B.; Ding, Jiachen; Chakrabarti, Amitabha; Yang, Ping; Sorensen, Christopher M.

    2016-12-01

    Q-space analysis is applied to extensive simulations of the single-scattering properties of ice crystals with various habits/shapes over a range of sizes. The analysis uncovers features common to all the shapes: a forward scattering regime with intensity quantitatively related to the Rayleigh scattering by the particle and the internal coupling parameter, followed by a Guinier regime dependent upon the particle size, a complex power law regime with incipient two dimensional diffraction effects, and, in some cases, an enhanced backscattering regime. The effects of significant absorption on the scattering profile are also studied. The overall features found for the ice crystals are similar to features in scattering from same sized spheres.

  7. Generation of continuously rotating polarization by combining cross-polarizations and its application in surface structuring.

    PubMed

    Lam, Billy; Zhang, Jihua; Guo, Chunlei

    2017-08-01

    In this study, we develop a simple but highly effective technique that generates a continuously varying polarization within a laser beam. This is achieved by having orthogonal linear polarizations on each side of the beam. By simply focusing such a laser beam, we can attain a gradually and continuously changing polarization within the entire Rayleigh range due to diffraction. To demonstrate this polarization distribution, we apply this laser beam onto a metal surface and create a continuously rotating laser induced periodic surface structure pattern. This technique provides a very effective way to produce complex surface structures that may potentially find applications, such as polarization modulators and metasurfaces.

  8. Coulomb Fission in Multiply-Charged Ammonia Clusters: Accurate Measurements of the Rayleigh Instability Limit from Fragmentation Patterns.

    PubMed

    Harris, Christopher; Stace, Anthony J

    2018-03-15

    A series of experiments have been undertaken on the fragmentation of multiply charged ammonia clusters, (NH 3 ) n z+ , where z ≤ 8 and n ≤ 850, to establish Rayleigh instability limits, whereby clusters at certain critical sizes become unstable due to Coulomb repulsion between the resident charges. Experimental results on size-selected clusters are found to be in excellent agreement with theoretical predictions of Rayleigh instability limits at all values of the charge. Electrostatic theory has been used to help identify fragmentation patterns on the assumption that the clusters separate into two dielectric spheres, and the predicted Coulomb repulsion energies used to establish pathways and the sizes of cluster fragments. The results show that fragmentation is very asymmetric in terms of both the numbers of molecules involved and the amount of charge each fragment accommodates. For clusters carrying a charge ≤+4, the results show that fragmentation proceeds via the loss of small, singly charged clusters. When clusters carry a charge of +5 or more, the experimental observations suggest a marked switch in behavior. Although the laboratory measurements equate to fragmentation via the loss of a large dication cluster, electrostatic theory supports an interpretation that involves the sequential loss of two smaller, singly charged clusters possibly accompanied by the extensive evaporation of neutral molecules. It is suggested that this change in fragmentation pattern is driven by the channelling of Coulomb repulsion energy into intermolecular modes within these larger clusters. Overall, the results appear to support the ion evaporation model that is frequently used to interpret electrospray experiments.

  9. P-Wave to Rayleigh-wave conversion coefficients for wedge corners; model experiments

    USGS Publications Warehouse

    Gangi, A.F.; Wesson, R.L.

    1978-01-01

    An analytic solution is not available for the diffraction of elastic waves by wedges; however, numerical solutions of finite-difference type are available for selected wedge angles. The P- to Rayleigh-wave conversion coefficients at wedge tips have been measured on two-dimensional seismic models for stress-free wedges with wedge angles, ??0, of 10, 30, 60, 90 and 120??. The conversion coefficients show two broad peaks and a minimum as a function of the angle between the wedge face and the direction of the incident P-wave. The minimum occurs for the P wave incident parallel to the wedge face and one maximum is near an incidence angle of 90?? to the wedge face. The amplitude of this maximum, relative to the other, decreases as the wedge angle increases. The asymmetry of the conversion coefficients, CPR(??; ??0), relative to parallel incidence (?? = 0) increases as the wedge angle increases. The locations of the maxima and the minimum as well as the asymmetry can be explained qualitatively. The conversion coefficients are measured with an accuracy of ??5% in those regions where there are no interfering waves. A comparison of the data for the 10?? wedge with the theoretical results for a half plane (0?? wedge) shows good correlation. ?? 1978.

  10. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.

    PubMed

    Wang, Menghua

    2016-05-30

    To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude lakes, and the same Rayleigh LUTs are applicable for all satellite sensors over the global ocean and inland waters. The new Rayleigh LUTs have been implemented in the VIIRS-SNPP ocean color data processing for routine production of global ocean color and inland water products.

  11. Continued observations of the H Ly alpha emission from Uranus

    NASA Technical Reports Server (NTRS)

    Clarke, J.; Durrance, S.; Moos, W.; Murthy, J.; Atreya, S.; Barnes, A.; Mihalov, J.; Belcher, J.; Festou, M.; Imhoff, C.

    1986-01-01

    Observations of Uranus obtained over four years with the IUE Observatory supports the initial identification of a bright H Ly alpha flux which varies independently of the solar H Ly alpha flux, implying a largely self-excited emission. An average brightness of 1400 Rayleighs is derived, and limits for the possible contribution by reflected solar H Ly alpha emission, estimated to be about 200 Rayleighs, suggest that the remaining self-excited emission is produced by an aurora. Based on comparison with solar wind measurements obtained in the vicinity of Uranus by Voyager 2 and Pioneer 11, no evidence for correlation between the solar wind density and the H Ly alpha brightness is found. The upper limit to H2 emission gives a lower limit to the ratio of H Ly alpha/H2 emissions of about 2.4, suggesting that the precipitating particles may be significantly less energetic on Uranus than those responsible for the aurora on Jupiter. The average power in precipitating particles is estimated to be of the order of 10 to the 12th W.

  12. Protanomaly-without-darkened-red is deuteranopia with rods

    PubMed Central

    Shevell, Steven K.; Sun, Yang; Neitz, Maureen

    2008-01-01

    The Rayleigh match, a color match between a mixture of 545+670 nm lights and 589 nm light in modern instruments, is the definitive measurement for the diagnosis of inherited red/green color defects. All trichromats, whether normal or anomalous, have a limited range of 545+670 nm mixtures they perceive to match 589 nm: a typical color-normal match-range is about 50–55% of 670 nm in the mixture (deutan mode), while deuteranomals have a range that includes mixtures with less 670 nm than normal and protanomals a range that includes mixtures with more 670 nm than normal. Further, the matching luminance of the 589 nm light for deuteranomals is the same as for normals but for protanomals is below normal. An example of an unexpected Rayleigh match, therefore, is a match range above normal (typical of protanomaly) and a normal luminance setting for 589 nm (typical of deuteranomaly), a match that Pickford (1950) called protanomaly “when the red end of the spectrum is not darkened”. In this case, Rayleigh matching does not yield a clear diagnosis. Aside from Pickford, we are aware of only one other report of a similar observer (Pokorny and Smith, 1981); this study predated modern genetic techniques that can reveal the cone photopigment(s) in the red/green range. We recently had the opportunity to conduct genetic and psychophysical tests on such an observer. Genetic results predict he is a deuteranope. His Rayleigh match is consistent with L cones and a contribution from rods. Further, with a rod-suppressing background, his Rayleigh match is characteristic of a single L-cone photopigment (deuteranopia). PMID:18423511

  13. Protanomaly without darkened red is deuteranopia with rods.

    PubMed

    Shevell, Steven K; Sun, Yang; Neitz, Maureen

    2008-11-01

    The Rayleigh match, a color match between a mixture of 545+670 nm lights and 589 nm light in modern instruments, is the definitive measurement for the diagnosis of inherited red-green color defects. All trichromats, whether normal or anomalous, have a limited range of 545+670 nm mixtures they perceive to match 589 nm: a typical color-normal match range is about 50-55% of 670 nm in the mixture (deutan mode), while deuteranomals have a range that includes mixtures with less 670 nm than normal and protanomals a range that includes mixtures with more 670 nm than normal. Further, the matching luminance of the 589 nm light for deuteranomals is the same as for normals but for protanomals is below normal. An example of an unexpected Rayleigh match, therefore, is a match range above normal (typical of protanomaly) and a normal luminance setting for 589 nm (typical of deuteranomaly), a match called protanomaly "when the red end of the spectrum is not darkened" [Pickford, R.W. (1950). Three pedigrees for color blindness. Nature, 165, 182.]. In this case, Rayleigh matching does not yield a clear diagnosis. Aside from Pickford, we are aware of only one other report of a similar observer [Pokorny, J., & Smith, V. C. (1981). A variant of red-green color defect. Vision Research, 21, 311-317]; this study predated modern genetic techniques that can reveal the cone photopigment(s) in the red-green range. We recently had the opportunity to conduct genetic and psychophysical tests on such an observer. Genetic results predict he is a deuteranope. His Rayleigh match is consistent with L cones and a contribution from rods. Further, with a rod-suppressing background, his Rayleigh match is characteristic of a single L-cone photopigment (deuteranopia).

  14. Nonuniform distribution of phase noise in distributed acoustic sensing based on phase-sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Yu, Zhijie; Lu, Yang; Meng, Zhou

    2017-10-01

    A phase-sensitive optical time-domain reflectometry (∅-OTDR) implements distributed acoustic sensing (DAS) due to its ability for high sensitivity vibration measurement. Phase information of acoustic vibration events can be acquired by interrogation of the vibration-induced phase change between coherent Rayleigh scattering light from two points of the sensing fiber. And DAS can be realized when applying phase generated carrier (PGC) algorithm to the whole sensing fiber while the sensing fiber is transformed into a series of virtual sensing channels. Minimum detectable vibration of a ∅-OTDR is limited by phase noise level. In this paper, nonuniform distribution of phase noise of virtual sensing channels in a ∅-OTDR is investigated theoretically and experimentally. Correspondence between the intensity of Rayleigh scattering light and interference fading as well as polarization fading is analyzed considering inner interference of coherent Rayleigh light scattered from a multitude of scatters within pulse duration, and intensity noise related to the intensity of Rayleigh scattering light can be converted to phase noise while measuring vibration-induced phase change. Experiments are performed and the results confirm the predictions of the theoretical analysis. This study is essential for acquiring insight into nonuniformity of phase noise in DAS based on a ∅-OTDR, and would put forward some feasible methods to eliminate the effect of interference fading and polarization fading and optimize the minimum detectable vibration of a ∅-OTDR.

  15. Particle drift model for Z-pinch-driven magneto-Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Xu, Qiang; Wang, Kun Lun; Ren, Xiao Dong; Huang, Xian Bin

    2016-09-01

    A theoretical model of Z-pinch driven magneto-Rayleigh-Taylor instability is proposed based on the particle drift point of view, which can explain the helical instability structure observed in premagnetized imploding liner experiments. It is demonstrated that all possible drift motions, including polarization drift, gradient drift, and curvature drift, which can lead to charge separations, each will attribute to an effective gravity acceleration. Theoretical predictions given by this model are dramatically different from those given by previous theories which have been readily recovered in the theory presented here as a limiting case. The theory shows qualitative agreement with available experimental data of the pitch angle and provides certain predictions to be verified.

  16. Detectability limit and uncertainty considerations for laser induced fluorescence spectroscopy in flames

    NASA Technical Reports Server (NTRS)

    Daily, J. W.

    1978-01-01

    Laser induced fluorescence spectroscopy of flames is discussed, and derived uncertainty relations are used to calculate detectability limits due to statistical errors. Interferences due to Rayleigh scattering from molecules as well as Mie scattering and incandescence from particles have been examined for their effect on detectability limits. Fluorescence trapping is studied, and some methods for reducing the effect are considered. Fluorescence trapping places an upper limit on the number density of the fluorescing species that can be measured without signal loss.

  17. Status report on the Large Binocular Telescope's ARGOS ground-layer AO system

    NASA Astrophysics Data System (ADS)

    Hart, M.; Rabien, S.; Busoni, L.; Barl, L.; Beckmann, U.; Bonaglia, M.; Boose, Y.; Borelli, J. L.; Bluemchen, T.; Carbonaro, L.; Connot, C.; Deysenroth, M.; Davies, R.; Durney, O.; Elberich, M.; Ertl, T.; Esposito, S.; Gaessler, W.; Gasho, V.; Gemperlein, H.; Hubbard, P.; Kanneganti, S.; Kulas, M.; Newman, K.; Noenickx, J.; Orban de Xivry, G.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Schwab, C.; Storm, J.; Vaitheeswaran, V.; Weigelt, G.; Ziegleder, J.

    2011-10-01

    ARGOS, the laser-guided adaptive optics system for the Large Binocular Telescope (LBT), is now under construction at the telescope. By correcting atmospheric turbulence close to the telescope, the system is designed to deliver high resolution near infrared images over a field of 4 arc minute diameter. Each side of the LBT is being equipped with three Rayleigh laser guide stars derived from six 18 W pulsed green lasers and projected into two triangular constellations matching the size of the corrected field. The returning light is to be detected by wavefront sensors that are range gated within the seeing-limited depth of focus of the telescope. Wavefront correction will be introduced by the telescope's deformable secondary mirrors driven on the basis of the average wavefront errors computed from the respective guide star constellation. Measured atmospheric turbulence profiles from the site lead us to expect that by compensating the ground-layer turbulence, ARGOS will deliver median image quality of about 0.2 arc sec across the JHK bands. This will be exploited by a pair of multi-object near-IR spectrographs, LUCIFER1 and LUCIFER2, with 4 arc minute field already operating on the telescope. In future, ARGOS will also feed two interferometric imaging instruments, the LBT Interferometer operating in the thermal infrared, and LINC-NIRVANA, operating at visible and near infrared wavelengths. Together, these instruments will offer very broad spectral coverage at the diffraction limit of the LBT's combined aperture, 23 m in size.

  18. Mechanical and physicochemical properties of AlN thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Cibert, C.; Tétard, F.; Djemia, P.; Champeaux, C.; Catherinot, A.; Tétard, D.

    2004-10-01

    AlN thin films have been deposited on Si(100) substrates by a pulsed laser deposition method. The deposition parameters (pressure, temperature, purity of target) play an important role in the mechanical and physicochemical properties. The films have been characterized using X-ray diffraction, atomic force microscopy, Brillouin light scattering, Fourier transform infrared spectroscopy and wettability testing. With a high purity target of AlN and a temperature deposition of 750 ∘C, the measured Rayleigh wave velocity is close to the one previously determined for AlN films grown at high temperature by metal-organic chemical vapour deposition. Growth of nanocrystalline AlN at low temperature and of AlN film with good crystallinity for samples deposited at higher temperature is confirmed by infrared spectroscopy, as it was by atomic force microscopy, in agreement with X-ray diffraction results. A high hydrophobicity has been measured with zero polar contribution for the surface energy. These results confirm that films made by pulsed laser deposition of pure AlN at relatively low temperature have good prospects for microelectromechanical systems applications.

  19. Stabilization of axisymmetric liquid bridges through vibration-induced pressure fields.

    PubMed

    Haynes, M; Vega, E J; Herrada, M A; Benilov, E S; Montanero, J M

    2018-03-01

    Previous theoretical studies have indicated that liquid bridges close to the Plateau-Rayleigh instability limit can be stabilized when the upper supporting disk vibrates at a very high frequency and with a very small amplitude. The major effect of the vibration-induced pressure field is to straighten the liquid bridge free surface to compensate for the deformation caused by gravity. As a consequence, the apparent Bond number decreases and the maximum liquid bridge length increases. In this paper, we show experimentally that this procedure can be used to stabilize millimeter liquid bridges in air under normal gravity conditions. The breakup of vibrated liquid bridges is examined experimentally and compared with that produced in absence of vibration. In addition, we analyze numerically the dynamics of axisymmetric liquid bridges far from the Plateau-Rayleigh instability limit by solving the Navier-Stokes equations. We calculate the eigenfrequencies characterizing the linear oscillation modes of vibrated liquid bridges, and determine their stability limits. The breakup process of a vibrated liquid bridge at that stability limit is simulated too. We find qualitative agreement between the numerical predictions for both the stability limits and the breakup process and their experimental counterparts. Finally, we show the applicability of our technique to control the amount of liquid transferred between two solid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Optical characterization of randomly microrough surfaces covered with very thin overlayers using effective medium approximation and Rayleigh-Rice theory

    NASA Astrophysics Data System (ADS)

    Ohlídal, Ivan; Vohánka, Jiří; Čermák, Martin; Franta, Daniel

    2017-10-01

    The modification of the effective medium approximation for randomly microrough surfaces covered by very thin overlayers based on inhomogeneous fictitious layers is formulated. The numerical analysis of this modification is performed using simulated ellipsometric data calculated using the Rayleigh-Rice theory. The system used to perform this numerical analysis consists of a randomly microrough silicon single crystal surface covered with a SiO2 overlayer. A comparison to the effective medium approximation based on homogeneous fictitious layers is carried out within this numerical analysis. For ellipsometry of the system mentioned above the possibilities and limitations of both the effective medium approximation approaches are discussed. The results obtained by means of the numerical analysis are confirmed by the ellipsometric characterization of two randomly microrough silicon single crystal substrates covered with native oxide overlayers. It is shown that the effective medium approximation approaches for this system exhibit strong deficiencies compared to the Rayleigh-Rice theory. The practical consequences implied by these results are presented. The results concerning the random microroughness are verified by means of measurements performed using atomic force microscopy.

  1. Simulation, Theory, and Observations of the Spectrum of the Rayleigh-Taylor Instability due to Laser Imprint of Planar Targets

    NASA Astrophysics Data System (ADS)

    Keskinen, M. J.; Karasik, Max; Bates, J. W.; Schmitt, A. J.

    2006-10-01

    A limitation on the efficiency of high gain direct drive inertial confinement fusion is the extent of pellet disruption caused by the Rayleigh-Taylor (RT) instability. The RT instability can be seeded by pellet surface irregularities and/or laser imprint nonuniformities. It is important to characterize the evolution of the RT instability, e.g., the k-spectrum of areal mass. In this paper we study the time-dependent evolution of the spectrum of the Rayleigh-Taylor instability due to laser imprint in planar targets. This is achieved using the NRL FAST hydrodynamic simulation code together with analytical models. It is found that the optically smoothed laser imprint-driven RT spectrum develops into an inverse power law in k-space after several linear growth times. FAST simulation code results are compared with recent NRL Nike KrF laser experimental data. An analytical model, which is a function of Froude and Atwood numbers, is derived for the RT spectrum and favorably compared with both FAST simulation and Nike observations.

  2. Diagnostics of Unseeded Air and Nitrogen Flows by Molecular Tagging

    DTIC Science & Technology

    2015-07-21

    the polarization components across the FLEET line and the computed molecular density and dissociation fraction. Rayleigh Scattering Polarimetry V...Pol H Pol BPF HP CCM FLEET Emission Imaging Planar Rayleigh Scattering Rayleigh Scattering Polarimetry Density of molecules (normalized...the flow transport properties. This has been studied using Rayleigh scattering and Rayleigh scattering polarimetry . Figure 8 shows the evolution of

  3. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading

    PubMed Central

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-01-01

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably. PMID:28632183

  4. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading.

    PubMed

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-06-20

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.

  5. Spectroscopie Raman et Rayleigh stimulée des mélasses optiques unidimensionnelles (partie I)

    NASA Astrophysics Data System (ADS)

    Courtois, Jean-Yves

    In this paper, we present a detailed theoretical investigation of the transmission spectra of a weak probe beam through one-dimensional optical molasses in the so-called linperp lin and σ^+-σ- laser configurations. We show that the resonant structures displayed by the spectra in both situations can be interpreted in terms of stimulated Raman or Rayleigh scattering and that they provide important information about the physical properties of the molasses. The paper is divided into two main parts. In order to emphasize the specificity of the stimulated scattering processes taking place in optical molasses, we present in a first part the main characteristics of the stimulated Raman and Rayleigh processes occurring in conventional atomic and molecular media. Section 2 is devoted to stimulated Raman scattering, which is associated with the presence of scattering particles having differently populated nondegenerate states. In the case of atomic vapours, which is traditionnally not discussed in textbooks, we demonstrate the occurrence of stimulated Raman transitions between differently populated and light shifted ground state Zeeman sublevels, which manifest themselves on pump-probe transmission spectra in the form of Lorentzian resonances having a width of the order of the optical pumping rate. Section 3 presents a more detailed study of stimulated Rayleigh scattering, which is associated with the modulation of nonpropagating observables (i.e., of observables whose dynamics does not contain any eigen evolution frequency) by the interference pattern between a probe and a pump field, and with the existence of a physical mechanism responsible for a phase shift between the time and spatial modulation of the observables and the pump-probe excitation. By considering the most generally encountered situation where the phase shift arises from a relaxation mechanism taking place in the material medium, and where stimulated Rayleigh scattering manifests itself in the form of a dispersive resonance having a width equal to twice the associated relaxation rate, we identify three classification criteria for the stimulated Rayleigh mechanisms, involving the characteristics of the scattering medium, of the relaxation process occurring in the medium, and of the excitation mechanism of the medium by the probe field, respectively. This classification scheme is then employed on the one hand in the case of dense molecular media, where stimulated Rayleigh-wing scattering (associated with the laser-induced orientation of anisotropic molecules) is discussed, together with the so-called electrostrictive and thermodiffusive Rayleigh scattering mechanisms (related to a spatial modulation of the molecular density); and on the other hand in the case of dilute atomic vapours, where one distinguishes between two-level atoms (for which the Rayleigh resonance is interpreted in terms of quantum interference between photon scattering processes), and multilevel atoms (where stimulated Rayleigh scattering involves optical pumping induced relaxation of internal observable modulations). The second part of the paper is devoted to the investigation of the stimulated Raman and Rayleigh processes taking place in one-dimensional optical molasses. These processes exhibit outstanding characteristics because of the entanglement between internal and external degrees of freedom of the atoms, which is an intrinsic feature of the cooling mechanisms. Section 4 discusses the case of linperp lin molasses. We restrict ourselves to the situation of a J_g=1/2→ J_e=3/2 atomic transition, and to the limit where the dissipative part of the atom-laser coupling is negligible compared to the Hamiltonian part (oscillating regime of Sisyphus cooling). We first consider stimulated Raman processes between quantized vibrational states of the atoms at the bottom of the optical potential wells associated with the light shifts of the ground state Zeeman sublevels, and we demonstrate the occurrence of a lengthening of the lifetime of the coherences between the vibrational levels due to the strong spatial atomic localization (Lamb-Dicke effect). Stimulated Rayleigh resonances sensitive to the probe polarization are also predicted in the center of the spectra. These structures are interpreted in terms of diffraction of the cooling beams onto time-modulated density or magnetization gratings induced by the probe beam, and we show that these resonances provide information about the dynamical properties of the medium and the anti-ferromagnetic spatial order of the atoms in the molasses. Indications about the treatment of atomic transition having larger angular momenta are given by considering more particularly the situation of the J_g=4→ J_e=5 transition of cesium, for which an inversion of the stimulated Rayleigh resonance is predicted, which is related to the resonant variation of the populations of the vibrational levels with the otpical potential depth. Section 5 is devoted to the case of the σ^+-σ- molasses. We consider the case of a J_g=1→ J_e=2 atomic transition, and we restrict ourselves to the limit where the steady-state momentum distribution lies within the linearity range of the cooling force. Under such conditions, it is possible to account for the external atomic dynamics through a Fokker-Planck equation derived by adiabatically eliminating the atomic internal degrees of freedom. One investigates on the one hand the stimulated Raman processes taking place between the ground state Zeeman sublevels, indicating the occurrence of differences in the populations and light shifts in the ground state, and on the other hand the stimulated Rayleigh processes providing information about the dynamics of the external degrees of freedom. One considers two polarization configurations for the probe beam, depending on the probe polarization's being identical or opposite to the circular polarization of the copropagating pump beam. In the former case, it is shown that the stimulated Raman lines are homogeneously broadened, and that a stimulated Rayleigh structure appears on the spectra because of the probe-induced time modulation of the cooling force, which induces a modulation of the atomic momentum distribution. In the latter situation, the Raman structures are inhomogeneously broadened, and a recoil-induced resonance is predicted in the center of the spectrum. Its shape corresponds to the derivative of a Gaussian curve and its width is directly proportional to the Doppler width of the molasses. Finally, Section 6 presents a short review about the recent developments in the field of nonlinear spectroscopy of optical molasses. Cet article s'inscrit dans le double contexte de la spectroscopie non linéaire des milieux atomiques et de la physique du refroidissement d'atomes neutres par laser. Il présente une étude détaillée des spectres de transmission d'une onde sonde interagissant avec une mélasse optique unidimensionnelle. Plus précisément, nous montrons que dans chacun des deux cas modèles des mélasses “linperp lin” et “σ^+-σ^-” (ainsi dénommées par référence à la configuration de polarisation des deux faisceaux lasers à l'origine du mécanisme de refroidissement), les spectres pompes-sonde présentent des structures résonnantes pouvant s'interpréter en termes de diffusion Raman ou Rayleigh stimulée, et apportant un grand nombre d'informations sur les propriétés physiques des mélasses optiques. Cet article s'articule autour de deux grandes parties. Destinée à faire ultérieurement ressortir la spécificité des processus de diffusion stimulée se produisant dans les mélasses optiques, la première est consacrée à une présentation générale des processus Raman et Rayleigh stimulés se produisant dans les milieux atomiques et moléculaires conventionnels. L'effet Raman stimulé, lié à l'existence de centres diffuseurs ayant des états d'énergies et de populations différentes, fait l'objet du paragraphe 2. Dans le cas des vapeurs atomiques, traditionnellement moins connu que celui des molécules, on met ainsi en évidence l'existence de transitions Raman stimulées entre sous-niveaux Zeeman ayant des populations et des déplacements lumineux différents, qui se manifestent sur le spectre de transmission d'une onde sonde sous la forme de résonances lorentziennes en absorption et en amplification ayant une largeur de l'ordre du taux de pompage optique. Le paragraphe 3 présente une étude plus détaillée de l'effet Rayleigh stimulé, associé à l'excitation d'observables non propagatives (c'est-à-dire dont la dynamique ne contient aucune fréquence propre d'évolution) dans le milieu diffuseur sous l'action de l'interférence entre un champ pompe et une onde sonde, et à l'existence d'un mécanisme conduisant à un déphasage de la modulation spatiale et temporelle des observables par rapport à l'excitation pompe-sonde. En considérant le cas le plus couramment répandu où le déphasage est lié à l'existence d'un mécanisme de relaxation dans le milieu diffuseur, et où la diffusion Rayleigh stimulée se manifeste généralement sous la forme de résonances dispersives ayant pour demi-largeur le taux de relaxation associé, nous dégageons trois critères de classification des mécanismes de diffusion Rayleigh stimulée portant sur les caractéristiques du milieu diffuseur, du processus de relaxation intervenant dans ce milieu, et du mécanisme d'excitation du milieu par l'onde sonde. Cette classification est alors utilisée d'une part dans le cas des milieux moléculaires denses, où l'on décrit successivement les effets “Rayleigh-wing” (lié à l'orientation de molécules anisotropes le long du champ électrique local), Rayleigh électrostrictif diffusif et Rayleigh thermodiffusif (dus à une modulation spatiale de la densité) ; et d'autre part dans le cas des vapeurs atomiques, où l'on distingue le cas des atomes à deux niveaux (pour lequel une interprétation de la résonance Rayleigh est donnée en termes d'interférence quantique entre processus de diffusion de photons), puis la situation des atomes possédant plusieurs sous-niveaux Zeeman dégénérés dans le niveau fondamental (où l'effet Rayleigh stimulé est lié au pompage optique et à la création d'observables atomiques). La seconde partie de cet article porte sur l'étude des processus Raman et Rayleigh stimulés dans les mélasses optiques unidimensionnelles, dont la grande originalité réside dans l'imbrication intime entre les degrés de liberté internes et externes des atomes, qui est à l'origine même des mécanismes de refroidissement. Le paragraphe 4 est consacré à l'étude des mélasses linperp lin. On considère le cas d'une transition J_g=1/2→ J_e=3/2, et l'on se restreint aux situations pour lesquelles la partie dissipative du couplage atome-laser est négligeable devant la partie hamiltonienne (régime oscillant du refroidissement Sisyphe). On étudie les processus Raman stimulés entre niveaux vibrationnels quantifiés des atomes au fond des puits du potentiel optique associé aux déplacements lumineux des sous-niveaux Zeeman, et l'on met en évidence un phénomène d'allongement de la durée de vie des cohérences entre niveaux de vibration lié à la forte localisation spatiale des atomes (effet Lamb-Dicke). Des résonances Rayleigh stimulées très sensibles à la polarisation de la sonde sont également prédites au centre des spectres. Une interprétation de ces structures est donnée en termes de diffraction des faisceaux de refroidissement sur des réseaux de densité ou de magnétisation modulés temporellement par la sonde, et l'on montre que ces résonances donnent des informations sur les propriétés dynamiques du milieu, ainsi que sur l'ordre spatial anti-ferromagnétique des atomes. Des indications sur le traitement de transitions atomiques de moment cinétique plus élevé sont données, et l'on discute plus particulièrement le cas de la transition J_g=4→ J_e=5 du césium, où l'on prédit un processus de renversement de la résonance Rayleigh lié à une dépendance résonnante des populations des niveaux vibrationnels en fonction de la profondeur des puits de potentiel. Le paragraphe 5 est consacré à l'étude des mélasses σ^+-σ^-. On considère le cas d'une transition J_g=1→ J_e=2, et l'on se restreint aux situations pour lesquelles la distribution stationnaire d'impulsion est contenue dans le domaine de linéarité de la force de refroidissement. Dans ces conditions, il est possible de décrire la dynamique des degrés de liberté externes de l'atome au moyen d'une équation de Fokker-Planck, après élimination adiabatique des variables atomiques internes. On étudie d'une part les processus Raman stimulés entre sous-niveaux Zeeman mettant en évidence l'existence de différences de populations et de déplacements lumineux dans l'état fondamental, et d'autre part les processus Rayleigh stimulés donnant accès aux temps de relaxation des variables externes. On envisage deux cas de polarisation pour l'onde sonde, selon que le faisceau pompe avec lequel elle se copropage a une polarisation circulaire identique ou opposée à celle de la sonde. Dans le premier cas, on montre que les résonances Raman ne subissent pas d'élargissement inhomogène. Il est également montré qu'une résonance Rayleigh apparaît sur les spectres, due à la modulation temporelle de la force de refroidissement par la sonde, qui induit une modulation de la distribution d'impulsion atomique. Cette résonance a une largeur proportionnelle au coefficient de friction de la force de refroidissement. Dans le second cas, on met en évidence un processus d'élargissement inhomogène des résonances Raman, ainsi qu'une résonance centrale de type Raman induite par le recul ayant la forme d'une dérivée de gaussienne de largeur proportionnelle à la largeur Doppler de la mélasse. Finalement, le paragraphe 6 conclut l'article par un résumé des principaux développements enregistrés au cours des dernières années dans le domaine de la spectroscopie non linéaire des mélasses optiques.

  6. Thorough small-angle X-ray scattering analysis of the instability of liquid micro-jets in air.

    PubMed

    Marmiroli, Benedetta; Cacho-Nerin, Fernando; Sartori, Barbara; Pérez, Javier; Amenitsch, Heinz

    2014-01-01

    Liquid jets are of interest, both for their industrial relevance and for scientific applications (more important, in particular for X-rays, after the advent of free-electron lasers that require liquid jets as sample carrier). Instability mechanisms have been described theoretically and by numerical simulation, but confirmed by few experimental techniques. In fact, these are mainly based on cameras, which is limited by the imaging resolution, and on light scattering, which is hindered by absorption, reflection, Mie scattering and multiple scattering due to complex air/liquid interfaces during jet break-up. In this communication it is demonstrated that synchrotron small-angle X-ray scattering (SAXS) can give quantitative information on liquid jet dynamics at the nanoscale, by detecting time-dependent morphology and break-up length. Jets ejected from circular tubes of different diameters (100-450 µm) and speeds (0.7-21 m s(-1)) have been explored to cover the Rayleigh and first wind-induced regimes. Various solvents (water, ethanol, 2-propanol) and their mixtures have been examined. The determination of the liquid jet behaviour becomes essential, as it provides background data in subsequent studies of chemical and biological reactions using SAXS or X-ray diffraction based on synchrotron radiation and free-electron lasers.

  7. Reactor design rules for GaN epitaxial layer growths on sapphire in metal-organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Kim, Keunjoo; Noh, Sam Kyu

    2000-08-01

    The thermal process of the growth of GaN-based semiconductors was analysed for two home-made horizontal reactors. The reactors were designed to make the ammonia gas flow in the opposite direction to the main gas flow. For two horizontal reactors different in dimension, the low Reynolds numbers of Re = 2.94 and 4.15 were chosen for stable laminar flow and the Rayleigh numbers governing the heat convection were optimized to the values of Ra = 6.0 and 76.2, respectively. The qualities of GaN and InGaN films were characterized by Hall effect measurement, x-ray diffraction and photoluminescence and compared with respect to the reactor dependency.

  8. Holographic investigation of silver electromigration in nano-sized As2S3 films

    NASA Astrophysics Data System (ADS)

    Sainov, S.; Todorov, R.; Bodurov, I.; Yovcheva, Temenuzhka

    2013-10-01

    Holographic gratings with a diffraction efficiency (DE) greater than 8% and a spatial resolution of 2237 mm-1 are recorded in very thin As2S3 films with a thickness of 100 nm. Silver photo-diffusion is observed during the holographic recording process while applying a corona discharge. We use the method of holographic grating relaxation spectroscopy (forced Rayleigh scattering) based on the evanescent waves to determine that the silver diffusion coefficient in the thin As2S3 film is in the range of (0.9-10.3) × 10-13 cm2 s-1 depending on the corona charge polarity. This work is dedicated to the 90th anniversary of the birth of Academician Jordan Malinowski.

  9. Influence of Thermocapillary Flow on Capillary Stability: Long Float-Zones in Low Gravity

    NASA Technical Reports Server (NTRS)

    Chen, Yi-Ju; Steen, Paul H.

    1996-01-01

    A model problem is posed to study the influence of flow on the interfacial stability of a nearly cylindrical liquid bridge for lengths near its circumference (the Plateau-Rayleigh limit). The flow is generated by a shear stress imposed on the deformable interface. The symmetry of the imposed shear stress mimics the thermocapillary stress induced on a float-zone by a ring heater (i.e. a full zone). Principal assumptions are (1) zero gravity, (2) creeping flow, and (3) that the imposed coupling at the free surface between flow and temperature fields is the only such coupling. A numerical solution, complemented by a bifurcation analysis, shows that bridges substantially longer than the Plateau-Rayleigh limit are possible. An interaction of the first two capillary instabilities through the stress-induced flow is responsible. Time-periodic standing waves are also predicted in certain parameter ranges. Motivation comes from extra-long float-zones observed in MEPHISTO space lab experiments (June 1994).

  10. Scaling laws for first and second generation electrospray droplets

    NASA Astrophysics Data System (ADS)

    Basaran, Osman; Sambath, Krishnaraj; Anthony, Christopher; Collins, Robert; Wagoner, Brayden; Harris, Michael

    2017-11-01

    When uncharged liquid interfaces of pendant and free drops (hereafter referred to as parent drops) or liquid films are subject to a sufficiently strong electric field, they can emit thin fluid jets from conical tip structures that form at their surfaces. The disintegration of such jets into a spray consisting of charged droplets (hereafter referred to as daughter droplets) is common to electrospray ionization mass spectrometry, printing and coating processes, and raindrops in thunderclouds. We use simulation to determine the sizes and charges of these first-generation daughter droplets which are shown to be Coulombically stable and charged below the Rayleigh limit of stability. Once these daughter droplets shrink in size due to evaporation, they in turn reach their respective Rayleigh limits and explode by emitting yet even smaller second-generation daughter droplets from their conical tips. Once again, we use simulation and theory to deduce scaling laws for the sizes and charges of these second-generation droplets. A comparison is also provided for scaling laws pertaining to different generations of daughter droplets.

  11. Combined Henyey-Greenstein and Rayleigh phase function.

    PubMed

    Liu, Quanhua; Weng, Fuzhong

    2006-10-01

    The phase function is an important parameter that affects the distribution of scattered radiation. In Rayleigh scattering, a scatterer is approximated by a dipole, and its phase function is analytically related to the scattering angle. For the Henyey-Greenstein (HG) approximation, the phase function preserves only the correct asymmetry factor (i.e., the first moment), which is essentially important for anisotropic scattering. When the HG function is applied to small particles, it produces a significant error in radiance. In addition, the HG function is applied only for an intensity radiative transfer. We develop a combined HG and Rayleigh (HG-Rayleigh) phase function. The HG phase function plays the role of modulator extending the application of the Rayleigh phase function for small asymmetry scattering. The HG-Rayleigh phase function guarantees the correct asymmetry factor and is valid for a polarization radiative transfer. It approaches the Rayleigh phase function for small particles. Thus the HG-Rayleigh phase function has wider applications for both intensity and polarimetric radiative transfers. For microwave radiative transfer modeling in this study, the largest errors in the brightness temperature calculations for weak asymmetry scattering are generally below 0.02 K by using the HG-Rayleigh phase function. The errors can be much larger, in the 1-3 K range, if the Rayleigh and HG functions are applied separately.

  12. A dual-wavelength overlapping resonance Rayleigh scattering method for the determination of chondroitin sulfate with nile blue sulfate

    NASA Astrophysics Data System (ADS)

    Cui, Zhiping; Hu, Xiaoli; Liu, Shaopu; Liu, Zhongfang

    2011-12-01

    A dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) method was developed to detect chondroitin sulfate (CS) with nile blue sulfate (NBS). At pH 3.0-4.0 Britton-Robinson (BR) buffer medium, CS interacted with NBS to form an ion-association complex. As a result, the new spectra of resonance Rayleigh scattering (RRS), second order scattering (SOS) and frequence doubling scattering (FDS) appeared and their intensities were enhanced greatly. Their maximum wavelengths were located at 303 nm (RRS), 362 nm (RRS), 588 nm (SOS) and 350 nm (FDS), respectively. The scattering intensities of the three methods were proportional to the concentration of CS in certain ranges. The methods had high sensitivity and the detection limits were between 1.5 and 7.1 ng mL -1. The DWO-RRS method had the highest sensitivity with the detection limit being 1.5 ng mL -1. The characteristics of the spectra and optimal reaction conditions of RRS method were investigated. The effects of coexistent substances on the determination of CS were evaluated. Owing to the high sensitivity, RRS method had been applied to the determination of CS in eye drops with satisfactory results. The recovery range was between 99.4% and 104.6% and the relative standard deviation (RSD) was between 0.4% and 0.8%. In addition, the reasons for RRS enhancement were discussed and the shape of ion-association complex was characterized by atomic force microscopy (AFM).

  13. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The azimuthal coverage of the respective two-station paths is proper to analyze the observed dispersion curves in terms of both azimuthal and radial anisotropy beneath the study region. This research is supported by Joint Research Project of the Scientific and Research Council of Turkey (TUBİTAK- Grant number 111Y190) and the Russian Federation for Basic Research (RFBR).

  14. Visualization of the evaporation of a diesel spray using combined Mie and Rayleigh scattering techniques

    NASA Astrophysics Data System (ADS)

    Adam, Anne; Leick, Philippe; Bittlinger, Gerd; Schulz, Christof

    2009-09-01

    Evaporating Diesel sprays are studied by laser Rayleigh scattering measurements in an optically accessible high-pressure/high-temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. n-Decane is injected into the vessel using a state-of-the-art near-production three-hole nozzle. Global images of the distributions of the liquid and vapor phases of the injected fuel are obtained using a combined Schlieren and Mie scattering setup. More details about the evaporation are revealed when the spray is illuminated by a laser light sheet: laser light can be scattered by molecules in the gas phase (Rayleigh scattering) or comparably large fuel droplets (Mie scattering). The former is seen in regions where the fuel has completely evaporated, and the latter is dominant in regions with high droplet concentrations. Studying the polarization of the signal light allows the distinction of three different regions in the spray that are characterized by a moderate, low or negligible concentration of liquid fuel droplets. The characteristics of fuel evaporation are investigated for different observation times after the start of injection, chamber conditions and injection pressures. For the quantification of the fuel concentration measurements based on Rayleigh scattering, a calibration method that uses propane as a reference gas is presented and tested. At high ambient temperatures, the accuracy of the concentration measurements is limited by pyrolysis of the fuel molecules.

  15. Microwave vector radiative transfer equation of a sea foam layer by the second-order Rayleigh approximation

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo

    2011-10-01

    The microwave vector radiative transfer (VRT) equation of a coated spherical bubble layer is derived by means of the second-order Rayleigh approximation field when the microwave wavelength is larger than the coated spherical particle diameter. Meanwhile, the perturbation method is developed to solve the second-order Rayleigh VRT equation for the small ratio of the volume scattering coefficient to the extinction coefficient. As an example, the emissive properties of a sea surface foam layer, which consists of seawater coated bubbles, are investigated. The extinction, absorption, and scattering coefficients of sea foam are obtained by the second-order Rayleigh approximation fields and discussed for the different microwave frequencies and the ratio of inner radius to outer radius of a coated bubble. Our results show that in the dilute limit, the volume scattering coefficient decreases with increasing the ratio of inner radius to outer radius and decreasing the frequencies. It is also found that the microwave emissivity and the extinction coefficient have a peak at very thin seawater coating and its peak value decreases with frequency decrease. Furthermore, with the VRT equation and effective medium approximation of densely coated bubbles, the mechanism of sea foam enhancing the emissivity of a sea surface is disclosed. In addition, excellent agreement is obtained by comparing our VRT results with the experimental data of microwave emissivities of sea surface covered by a sea foam layer at L-band (1.4 GHz) and the Camps' model.

  16. Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization.

    PubMed

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K

    2013-02-01

    Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy.

  17. Physics issues in diffraction limited storage ring design

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui

    2012-05-01

    Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.

  18. Acoustofluidic particle dynamics: Beyond the Rayleigh limit.

    PubMed

    Baasch, Thierry; Dual, Jürg

    2018-01-01

    In this work a numerical model to calculate the trajectories of multiple acoustically and hydrodynamically interacting spherical particles is presented. The acoustic forces are calculated by solving the fully coupled three-dimensional scattering problem using finite element software. The method is not restricted to single re-scattering events, mono- and dipole radiation, and long wavelengths with respect to the particle diameter, thus expanding current models. High frequency surface acoustic waves have been used in the one cell per well technology to focus individual cells in a two-dimensional wave-field. Sometimes the cells started forming clumps and it was not possible to focus on individual cells. Due to a lack of existing theory, this could not be fully investigated. Here, the authors use the full dynamic simulations to identify limiting factors of the one-cell-per-well technology. At first, the authors demonstrate good agreement of the numerical model with analytical results in the Rayleigh limiting case. A frequency dependent stability exchange between the pressure and velocity was then demonstrated. The numerical formulation presented in this work is relatively general and can be used for a multitude of different high frequency applications. It is a powerful tool in the analysis of microscale acoustofluidic devices and processes.

  19. Surface Waves and Flow-Induced Oscillations along an Underground Elliptic Cylinder Filled with a Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Sakuraba, A.

    2015-12-01

    I made a linear analysis of flow-induced oscillations along an underground cylindrical conduit with an elliptical cross section on the basis of the hypothesis that volcanic tremor is a result of magma movement through a conduit. As a first step to understand how the self oscillation occurs because of magma flow, I investigated surface wave propagation and attenuation along an infinitely long fluid-filled elliptic cylinder in an elastic medium. The boundary element method is used to obtain the two-dimensional wave field around the ellipse in the frequency-wavenumber domain. When the major axis is much greater than the minor axis of the ellipse, we obtain the analytic form of the dispersion relation of both the crack-wave mode (Korneev 2008, Lipovsky & Dunham 2015) and the Rayleigh-wave mode with flexural deformation. The crack-wave mode generally has a slower phase speed and a higher attenuation than the Rayleigh-wave mode. In the long-wavelength limit, the crack-wave mode disappears because of fluid viscosity, but the Rayleigh-wave mode exists with a constant Q-value that depends on viscosity. When the aspect ratio of the ellipse is finite, the surface waves can basically be understood as those propagating along a fluid pipe. The flexural mode does exist even when the wavelength is much longer than the major axis, but its phase speed coincides with that of the surrounding S-wave (Randall 1991). As its attenuation is zero in the long-wavelength limit, the flexural mode differs in nature from surface wave. I also obtain a result on linear stability of viscous flow through an elliptic cylinder. In this analysis, I made an assumption that the fluid inertia is so small that the Stokes equation can be used. As suggested by the author's previous study (Sakuraba & Yamauchi 2014), the flexural (Rayleigh-wave) mode is destabilized at a critical flow speed that decreases with the wavelength. However, when the wavelength is much greater than the major axis of the ellipse, the unstable solution does exist, but its linear growth rate in amplitude becomes almost zero. Therefore, the unstable solution effectively disappears in the long-wavelength limit, suggesting that the aspect ratio of the conduit is needed to be sufficiently large if the flow-induced oscillation caused by a moderate magma speed is an origin of volcanic tremor.

  20. Trapping two types of particles using a double-ring-shaped radially polarized beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yaoju; Ding Biaofeng; Suyama, Taikei

    An optical-trap method based on the illumination of a double-ring-shaped radially polarized beam (R-TEM{sub 11}*) is proposed. The numerical results based on the vector diffraction theory show that a highly focused R-TEM{sub 11}* beam not only can produce a bright spot but also can form an optical cage in the focal region by changing the truncation parameter {beta}, defined as the ratio of the radius of the aperture to the waist of the beam. The radiation forces acting on Rayleigh particles are calculated by using the Rayleigh scattering theory. The bright spot generated by the R-TEM{sub 11}* beam with amore » {beta} value close to 2 can three-dimensionally trap a particle with a refractive index larger than that of the ambient. An optical cage or three-dimensional dark spot generated by the R-TEM{sub 11}* beam with a {beta} value close to 1.3 can three-dimensionally trap a particle with refractive index smaller than that of the ambient. Because the adjustment of the truncation parameter can be actualized by simply changing the radius of a circular aperture inserted in the front of the lens, only one optical-trap system in the present method can be used to three-dimensionally trap two types of particles with different refractive indices.« less

  1. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.

    PubMed

    Mitri, Farid G

    2015-10-01

    Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation.

  2. Full spatial-field visualization of gas temperature in an air micro-glow discharge by calibrated Schlieren photography

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Xu, Le; Wang, Xia; Xiong, Lin; Huang, Qinghua; Chen, Qiang; Wang, Jingang; Peng, Wenxiong; Li, Jiarui

    2018-03-01

    Gas temperature is an important basic parameter for both fundamental research and applications of plasmas. In this work, efforts were made to visualize the full spatial field of gas temperature (T g) in a microdischarge with sharp T g gradients by a method of calibrated Schlieren (CS) photography. Compared to other two typical diagnostic approaches, optical emission spectroscopy (OES) and Rayleigh scattering, the proposed CS method exhibits the ability to capture the whole field of gas temperature using a single Schlieren image, even the discharge is of non-luminous zones like Faraday dark space (FDS). The image shows that the T g field in the studied micro-glow air discharge expands quickly with the increase of discharge currents, especially in the cathode region. The two-dimensional maps of gas temperature display a ‘W-shape’ with sharp gradients in both areas of negative and positive glows, slightly arched distributions in the positive column, and cooling zones in the FDS. The obtained T g fields show similar patterns to that of the discharge luminance. With an increase in discharge currents, more electric energy is dissipated by heating air gas and inducing constriction of the low-temperature FDS. Except in the vicinities of electrode boundaries, due to the interference from optical diffraction, the estimated gas temperature distributions are of acceptable accuracy, confirmed by the approaches of OES and UV Rayleigh scattering.

  3. Newborns' Discrimination among Mid- and Long-Wavelength Stimuli.

    ERIC Educational Resources Information Center

    Adams, Russell J.

    1989-01-01

    Data suggest that human newborns are capable of making a chromatic discrimination within the spectral region above 540 nm (the Rayleigh region), but their ability is limited to chromatic stimuli of very wide spectral separation and of very large size. Possible neurological bases underlying this immaturity are discussed. (RH)

  4. Laser-Generated Rayleigh Waves Propagating in Transparent Viscoelastic Adhesive Coating/Metal Substrate Systems

    NASA Astrophysics Data System (ADS)

    Guan, Yi-jun; Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi; Ge, Yong

    2016-10-01

    We have established numerical models for simulating laser-generated Rayleigh waves in coating/substrate systems by a finite element method and investigated the propagation characteristics of Rayleigh waves in systems concerning the viscoelasticity and transparency of adhesive coatings. In this way, we have studied the influence of the mechanical properties of the coating, such as the elastic moduli, viscoelastic moduli, coating thickness, transparency, and coating material, on the propagation characteristics of the Rayleigh waves. The results show that the propagation characteristics of the Rayleigh waves can be divided into low- and high-frequency parts. The high-frequency propagation characteristics of the Rayleigh wave are closely related to the properties of the adhesive coating.

  5. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder

    NASA Astrophysics Data System (ADS)

    Liang, Shen; Chaohui, Wang

    2018-03-01

    In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.

  6. Rayleigh imaging in spectral mammography

    NASA Astrophysics Data System (ADS)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  7. Penetrative convection at high Rayleigh numbers

    NASA Astrophysics Data System (ADS)

    Toppaladoddi, Srikanth; Wettlaufer, John S.

    2018-04-01

    We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.

  8. Higher-order harmonics of limited diffraction Bessel beams

    PubMed

    Ding; Lu

    2000-03-01

    We investigate theoretically the nonlinear propagation of the limited diffraction Bessel beam in nonlinear media, under the successive approximation of the KZK equation. The result shows that the nth-order harmonic of the Bessel beam, like its fundamental component, is radially limited diffracting, and that the main beamwidth of the nth-order harmonic is exactly 1/n times that of the fundamental.

  9. A simple and selective resonance Rayleigh scattering-energy transfer spectral method for determination of trace neomycin sulfate using Cu2O particle as probe

    NASA Astrophysics Data System (ADS)

    Ouyang, Huixiang; Liang, Aihui; Jiang, Zhiliang

    2018-02-01

    The stable Cu2O nanocubic (Cu2ONC) sol was prepared, based on graphene oxide (GO) catalysis of glucose-Fehling's reagent reaction, and its absorption and resonance Rayleigh scattering (RRS) spectra, transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were examined. Using the as-prepared Cu2ONC as RRS probe, and coupling with the neomycin sulfate (NEO) complex reaction, a new, simple, sensitive and selective RRS-energy transfer (RRS-ET) method was established for detection of neomycin sulfate, with a linear range of 1.4-112 μM and a detection limit of 0.4 μM. The method has been applied to the detection of neomycin sulfate in samples with satisfactory results.

  10. Blue Skies, Coffee Creamer, and Rayleigh Scattering

    ERIC Educational Resources Information Center

    Liebl, Michael

    2010-01-01

    The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available. Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of…

  11. Rayleigh wave effects in an elastic half-space.

    NASA Technical Reports Server (NTRS)

    Aggarwal, H. R.

    1972-01-01

    Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.

  12. Utilization of high-frequency Rayleigh waves in near-surface geophysics

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Ivanov, J.; Tian, G.; Chen, C.

    2004-01-01

    Shear-wave velocities can be derived from inverting the dispersive phase velocity of the surface. The multichannel analysis of surface waves (MASW) is one technique for inverting high-frequency Rayleigh waves. The process includes acquisition of high-frequency broad-band Rayleigh waves, efficient and accurate algorithms designed to extract Rayleigh-wave dispersion curves from Rayleigh waves, and stable and efficient inversion algorithms to obtain near-surface S-wave velocity profiles. MASW estimates S-wave velocity from multichannel vertical compoent data and consists of data acquisition, dispersion-curve picking, and inversion.

  13. Numerical simulation of two-dimensional Rayleigh-Benard convection

    NASA Astrophysics Data System (ADS)

    Grigoriev, Vasiliy V.; Zakharov, Petr E.

    2017-11-01

    This paper considered Rayleigh-Benard convection (natural convection). This is a flow, which is formed in a viscous medium when heated from below and cooled from above. As a result, are formed vortices (convective cells). This process is described by a system of nonlinear differential equations in Oberbeck-Boussinesq approximation. As the governing parameters characterizing convection states Rayleigh number, Prandtl number are picked. The problem is solved by using finite element method with computational package FEniCS. Numerical results for different Rayleigh numbers are obtained. Studied integral characteristic (Nusselt number) depending on the Rayleigh number.

  14. Self-channeling of high-power laser pulses through strong atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Peñano, J.; Palastro, J. P.; Hafizi, B.; Helle, M. H.; DiComo, G. P.

    2017-07-01

    We present an unusual example of truly long-range propagation of high-power laser pulses through strong atmospheric turbulence. A form of nonlinear self-channeling is achieved when the laser power is close to the self-focusing power of air and the transverse dimensions of the pulse are smaller than the coherence diameter of turbulence. In this mode, nonlinear self-focusing counteracts diffraction, and turbulence-induced spreading is greatly reduced. Furthermore, the laser intensity is below the ionization threshold so that multiphoton absorption and plasma defocusing are avoided. Simulations show that the pulse can propagate many Rayleigh lengths (several kilometers) while maintaining a high intensity. In the presence of aerosols, or other extinction mechanisms that deplete laser energy, the pulse can be chirped to maintain the channeling.

  15. Multi-image acquisition-based distance sensor using agile laser spot beam.

    PubMed

    Riza, Nabeel A; Amin, M Junaid

    2014-09-01

    We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.

  16. Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow.

    PubMed

    Priede, Jānis; Gerbeth, Gunter

    2009-04-01

    We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field [helical magnetorotational instability (HMRI)] using the inductionless approximation defined by a zero magnetic Prandtl number (Pr_{m}=0) . The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small-amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the threshold of absolute instability is just slightly above the convective one although the critical wavelength of the former is noticeably shorter than that of the latter. Beyond the Rayleigh line the lower threshold of absolute instability rises significantly above the corresponding convective one while the upper one descends significantly below its convective counterpart. As a result, the extension of the absolute HMRI beyond the Rayleigh line is considerably shorter than that of the convective instability. The absolute HMRI is supposed to be self-sustained and, thus, experimentally observable without any external excitation in a system of sufficiently large axial extension.

  17. Rayleigh Scattering.

    ERIC Educational Resources Information Center

    Young, Andrew T.

    1982-01-01

    The correct usage of such terminology as "Rayleigh scattering,""Rayleigh lines,""Raman lines," and "Tyndall scattering" is resolved during an historical excursion through the physics of light-scattering by gas molecules. (Author/JN)

  18. Estimate of Rayleigh-to-Love wave ratio in the secondary microseism by colocated ring laser and seismograph

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wasserman, Joachim; Schreiber, Ulrich; Gebauer, André

    2015-04-01

    Using a colocated ring laser and an STS-2 seismograph, we estimate the ratio of Rayleigh-to-Love waves in the secondary microseism at Wettzell, Germany, for frequencies between 0.13 and 0.30 Hz. Rayleigh wave surface acceleration was derived from the vertical component of STS-2, and Love wave surface acceleration was derived from the ring laser. Surface wave amplitudes are comparable; near the spectral peak about 0.22 Hz, Rayleigh wave amplitudes are about 20% higher than Love wave amplitudes, but outside this range, Love wave amplitudes become higher. In terms of the kinetic energy, Rayleigh wave energy is about 20-35% smaller on average than Love wave energy. The observed secondary microseism at Wettzell thus consists of comparable Rayleigh and Love waves but contributions from Love waves are larger. This is surprising as the only known excitation mechanism for the secondary microseism, described by Longuet-Higgins (1950), is equivalent to a vertical force and should mostly excite Rayleigh waves.

  19. Applicability of Rayleigh–Gans Scattering to Spherical Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerker, M.; Farone, W. A.; Matijevic, E.

    1963-01-01

    Exact computations of scattering functions for spheres are compared with those obtained from the Rayleigh-Gans theory of scattering of electromagnetic radiation. The range of validity for spheres as a guide for non-homogeneous particles and other geometries. This study is limited to non-absorbing particles with real indices of refraction. (C.E.S.)

  20. Stability of Shapes Held by Surface Tension and Subjected to Flow

    NASA Technical Reports Server (NTRS)

    Chen, Yi-Ju; Robinson, Nathaniel D.; Steen, Paul H.

    1999-01-01

    Results of three problems are summarized in this contribution. Each involves the fundamental capillary instability of an interfacial bridge and is an extension of previous work. The first two problems concern equilibrium shapes of liquid bridges near the stability boundary corresponding to maximum length (Plateau-Rayleigh limit). For the first problem, a previously formulated nonlinear theory to account for imposed gravity and interfacial shear disturbances in an isothermal environment is quantitatively tested in experiment. For the second problem, the liquid bridge is subjected to a shear that models the effect of a thermocapillary flow generated by a ring heater in a liquid encapsulated float-zone configuration. In the absence of gravity, this symmetric perturbation can stabilize the bridge to lengths on the order of 30 percent beyond the Plateau-Rayleigh limit, which is on the order of heretofore unexplained Shuttle observations. The third problem considers the dynamics of collapse and pinchoff of a film bridge (no gravity), which happens in the absence of stabilization. Here, we summarize experimental efforts to measure the self-similar cone-and-crater structure predicted by a previous theory.

  1. Onset of oscillatory Rayleigh-Bénard magnetoconvection with rigid horizontal boundaries

    NASA Astrophysics Data System (ADS)

    Mondal, Hiya; Das, Alaka; Kumar, Krishna

    2018-01-01

    We present the results of linear stability analysis of oscillatory Rayleigh-Bénard magnetoconvection with rigid and thermally conducting boundaries. We have investigated two types of horizontal surfaces: (i) electrically conducting and (ii) boundaries which do not allow any outward current normal to the surface (magnetic vacuum conditions). For the case of electrically conducting boundaries, the critical Rayleigh number R ao(Q ,P r ,P m ) , the critical wave number ko(Q ,P r ,P m ) , and the frequency at the instability onset ω(Q ,P r ,P m ) increase as the Chandrasekhar number Q is raised for fixed non-zero values of thermal Prandtl Pr and magnetic Prandtl number Pm. For small values of Pr, the frequency of oscillation ω at the primary instability shows a rapid increase with Pm for very small values of Pm followed by a decrease at relatively larger values of Pm. In the limit of P r →0 , Rao and ko are found to be independent of Q. However, the frequency ω increases with Q, but decreases with Pm in this limit. The oscillatory instability is possible at the onset of magnetoconvection if and only if Chandrasekhar's criterion is valid (i.e., Pm > Pr) and Q is raised above a critical value Qc(P r ,P m ) such that the product P m *Qc≈91 for large Pm. For the stellar interior of an astrophysical body ( P m ≈10-4 and P r ≈10-8 ), the value of this product P m *Qc≈230 . The boundary conditions for magnetic vacuum change the critical values of Rayleigh number, wave number, and frequency of oscillation at the onset. The oscillatory magnetoconvection occurs in this case, if Q >Qc , where P m *Qc≈42 for large Pm. For steller interior, this value is approximately 64. A low-dimensional model is also constructed to study various patterns near the onset of oscillatory convection for rigid, thermally and electrically conducting boundaries. The model shows standing and drifting fluid patterns in addition to flow reversal close to the onset of magnetoconvection.

  2. Improving the accurate assessment of a layered shear-wave velocity model using joint inversion of the effective Rayleigh wave and Love wave dispersion curves

    NASA Astrophysics Data System (ADS)

    Yin, X.; Xia, J.; Xu, H.

    2016-12-01

    Rayleigh and Love waves are two types of surface waves that travel along a free surface.Based on the assumption of horizontal layered homogenous media, Rayleigh-wave phase velocity can be defined as a function of frequency and four groups of earth parameters: P-wave velocity, SV-wave velocity, density and thickness of each layer. Unlike Rayleigh waves, Love-wave phase velocities of a layered homogenous earth model could be calculated using frequency and three groups of earth properties: SH-wave velocity, density, and thickness of each layer. Because the dispersion of Love waves is independent of P-wave velocities, Love-wave dispersion curves are much simpler than Rayleigh wave. The research of joint inversion methods of Rayleigh and Love dispersion curves is necessary. (1) This dissertation adopts the combinations of theoretical analysis and practical applications. In both lateral homogenous media and radial anisotropic media, joint inversion approaches of Rayleigh and Love waves are proposed to improve the accuracy of S-wave velocities.A 10% random white noise and a 20% random white noise are added to the synthetic dispersion curves to check out anti-noise ability of the proposed joint inversion method.Considering the influences of the anomalous layer, Rayleigh and Love waves are insensitive to those layers beneath the high-velocity layer or low-velocity layer and the high-velocity layer itself. Low sensitivities will give rise to high degree of uncertainties of the inverted S-wave velocities of these layers. Considering that sensitivity peaks of Rayleigh and Love waves separate at different frequency ranges, the theoretical analyses have demonstrated that joint inversion of these two types of waves would probably ameliorate the inverted model.The lack of surface-wave (Rayleigh or Love waves) dispersion data may lead to inaccuracy S-wave velocities through the single inversion of Rayleigh or Love waves, so this dissertation presents the joint inversion method of Rayleigh and Love waves which will improve the accuracy of S-wave velocities. Finally, a real-world example is applied to verify the accuracy and stability of the proposed joint inversion method. Keywords: Rayleigh wave; Love wave; Sensitivity analysis; Joint inversion method.

  3. Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization

    PubMed Central

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei

    2013-01-01

    Optical microangiography is an imaging technology that is capable of providing detailed functional blood flow maps within microcirculatory tissue beds in vivo. Some practical issues however exist when displaying and quantifying the microcirculation that perfuses the scanned tissue volume. These issues include: (I) Probing light is subject to specular reflection when it shines onto sample. The unevenness of the tissue surface makes the light energy entering the tissue not uniform over the entire scanned tissue volume. (II) The biological tissue is heterogeneous in nature, meaning the scattering and absorption properties of tissue would attenuate the probe beam. These physical limitations can result in local contrast degradation and non-uniform micro-angiogram images. In this paper, we propose a post-processing method that uses Rayleigh contrast-limited adaptive histogram equalization to increase the contrast and improve the overall appearance and uniformity of optical micro-angiograms without saturating the vessel intensity and changing the physical meaning of the micro-angiograms. The qualitative and quantitative performance of the proposed method is compared with those of common histogram equalization and contrast enhancement methods. We demonstrate that the proposed method outperforms other existing approaches. The proposed method is not limited to optical microangiography and can be used in other image modalities such as photo-acoustic tomography and scanning laser confocal microscopy. PMID:23482880

  4. Estimating ice particle scattering properties using a modified Rayleigh-Gans approximation

    NASA Astrophysics Data System (ADS)

    Lu, Yinghui; Clothiaux, Eugene E.; Aydin, Kültegin; Verlinde, Johannes

    2014-09-01

    A modification to the Rayleigh-Gans approximation is made that includes self-interactions between different parts of an ice crystal, which both improves the accuracy of the Rayleigh-Gans approximation and extends its applicability to polarization-dependent parameters. This modified Rayleigh-Gans approximation is both efficient and reasonably accurate for particles with at least one dimension much smaller than the wavelength (e.g., dendrites at millimeter or longer wavelengths) or particles with sparse structures (e.g., low-density aggregates). Relative to the Generalized Multiparticle Mie method, backscattering reflectivities at horizontal transmit and receive polarization (HH) (ZHH) computed with this modified Rayleigh-Gans approach are about 3 dB more accurate than with the traditional Rayleigh-Gans approximation. For realistic particle size distributions and pristine ice crystals the modified Rayleigh-Gans approach agrees with the Generalized Multiparticle Mie method to within 0.5 dB for ZHH whereas for the polarimetric radar observables differential reflectivity (ZDR) and specific differential phase (KDP) agreement is generally within 0.7 dB and 13%, respectively. Compared to the A-DDA code, the modified Rayleigh-Gans approximation is several to tens of times faster if scattering properties for different incident angles and particle orientations are calculated. These accuracies and computational efficiencies are sufficient to make this modified Rayleigh-Gans approach a viable alternative to the Rayleigh-Gans approximation in some applications such as millimeter to centimeter wavelength radars and to other methods that assume simpler, less accurate shapes for ice crystals. This method should not be used on materials with dielectric properties much different from ice and on compact particles much larger than the wavelength.

  5. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.

    PubMed

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.

  6. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    PubMed

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

  7. The analytical application and spectral investigation of DNA-CPB-emodin and sensitive determination of DNA by resonance Rayleigh light scattering technique

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Wang, Yu; Wang, Tianjiao; Pang, Bo; Zhao, Tingting

    2013-01-01

    A new sensitive DNA probe containing cetylpyridinium bromide (CPB) and emodin (an effective component of Chinese herbal medicine) was developed using the resonance Rayleigh light scattering (RLS) technique. A novel assay was first developed to detect DNA at nanogram level based on the ternary system of DNA-CPB-emodin. The RLS signal of DNA was enhanced remarkably in the presence of emodin-CPB, and the enhanced RLS intensity at 340.0 nm was in direct proportion to DNA concentration in the range of 0.01-2.72 μg mL-1 with a good linear relationship. The detection limit was 1.5 ng mL-1. Three synthetic DNA samples were measured obtaining satisfactory results, the recovery was 97.6-107.3%.

  8. Estimating the hydraulic parameters of a confined aquifer based on the response of groundwater levels to seismic Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Sun, Xiaolong; Xiang, Yang; Shi, Zheming

    2018-05-01

    Groundwater flow models implemented to manage regional water resources require aquifer hydraulic parameters. Traditional methods for obtaining these parameters include laboratory experiments, field tests and model inversions, and each are potentially hindered by their unique limitations. Here, we propose a methodology for estimating hydraulic conductivity and storage coefficients using the spectral characteristics of the coseismic groundwater-level oscillations and seismic Rayleigh waves. The results from Well X10 are consistent with the variations and spectral characteristics of the water-level oscillations and seismic waves and present an estimated hydraulic conductivity of approximately 1 × 10-3 m s-1 and storativity of 15 × 10-6. The proposed methodology for estimating hydraulic parameters in confined aquifers is a practical and novel approach for groundwater management and seismic precursor anomaly analyses.

  9. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2009-12-15

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  10. Improvement in Rayleigh Scattering Measurement Accuracy

    NASA Technical Reports Server (NTRS)

    Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2012-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous velocity, density, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of an acousto-optic frequency shifting device to improve measurement accuracy in Rayleigh scattering experiments at the NASA Glenn Research Center. The frequency shifting device is used as a means of shifting the incident or reference laser frequency by 1100 MHz to avoid overlap of the Rayleigh and reference signal peaks in the interference pattern used to obtain the velocity, density, and temperature measurements, and also to calibrate the free spectral range of the Fabry-Perot etalon. The measurement accuracy improvement is evaluated by comparison of Rayleigh scattering measurements acquired with and without shifting of the reference signal frequency in a 10 mm diameter subsonic nozzle flow.

  11. Near field Rayleigh wave on soft porous layers.

    PubMed

    Geebelen, N; Boeckx, L; Vermeir, G; Lauriks, W; Allard, J F; Dazel, O

    2008-03-01

    Simulations performed for a typical semi-infinite reticulated plastic foam saturated by air show that, at distances less than three Rayleigh wavelengths from the area of mechanical excitation by a circular source, the normal frame velocity is close to the Rayleigh pole contribution. Simulated measurements show that a good order of magnitude estimate of the phase speed and damping can be obtained at small distances from the source. Simulations are also performed for layers of finite thickness, where the phase velocity and damping depend on frequency. They indicate that the normal frame velocity at small distances from the source is always close to the Rayleigh pole contribution and that a good order of magnitude estimate of the phase speed of the Rayleigh wave can be obtained at small distances from the source. Furthermore, simulations show that precise measurements of the damping of the Rayleigh wave need larger distances. Measurements performed on a layer of finite thickness confirm these trends.

  12. Rayleigh-type waves in nonlocal micropolar solid half-space.

    PubMed

    Khurana, Aarti; Tomar, S K

    2017-01-01

    Propagation of Rayleigh type surface waves in nonlocal micropolar elastic solid half-space has been investigated. Two modes of Rayleigh-type waves are found to propagate under certain approximations. Frequency equations of these Rayleigh type modes and their conditions of existence have been derived. These frequency equations are found to be dispersive in character due to the presence of micropolarity and nonlocality parameters in the medium. One of the frequency equations is a counterpart of the classical Rayleigh waves and the other is new and has appeared due to micropolarity of the medium. Phase speeds of these waves are computed numerically for Magnesium crystal and their variation against wavenumber are presented graphically. Comparisons have been made between the phase speeds of Rayleigh type waves through nonlocal micropolar, local micropolar and elastic solid half-spaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Rayleigh Scattering Measurements Using a Tunable Liquid Crystal Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2010-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, velocity, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of a tunable liquid crystal (LC) Fabry-Perot etalon in Rayleigh scattering experiments at NASA Glenn Research Center. The LC etalon provides a robust interferometry system that can be tuned rapidly by adjusting the voltage applied to the liquid crystal interface. Tuning the interferometer is often necessary to control the physical locations of the concentric interference fringes when Rayleigh light is imaged through the LC etalon. The LC etalon diagnostic system was tested in a 1-cm diameter nozzle flow in two different scattering configurations to evaluate its usefulness for Rayleigh measurements compared to a traditional non-tunable fused silica Fabry-Perot etalon.

  14. Correction of Rayleigh Scattering Effects in Cloud Optical Thickness Retrievals

    NASA Technical Reports Server (NTRS)

    Wang, Meng-Hua; King, Michael D.

    1997-01-01

    We present results that demonstrate the effects of Rayleigh scattering on the 9 retrieval of cloud optical thickness at a visible wavelength (0.66 Am). The sensor-measured radiance at a visible wavelength (0.66 Am) is usually used to infer remotely the cloud optical thickness from aircraft or satellite instruments. For example, we find that without removing Rayleigh scattering effects, errors in the retrieved cloud optical thickness for a thin water cloud layer (T = 2.0) range from 15 to 60%, depending on solar zenith angle and viewing geometry. For an optically thick cloud (T = 10), on the other hand, errors can range from 10 to 60% for large solar zenith angles (0-60 deg) because of enhanced Rayleigh scattering. It is therefore particularly important to correct for Rayleigh scattering contributions to the reflected signal from a cloud layer both (1) for the case of thin clouds and (2) for large solar zenith angles and all clouds. On the basis of the single scattering approximation, we propose an iterative method for effectively removing Rayleigh scattering contributions from the measured radiance signal in cloud optical thickness retrievals. The proposed correction algorithm works very well and can easily be incorporated into any cloud retrieval algorithm. The Rayleigh correction method is applicable to cloud at any pressure, providing that the cloud top pressure is known to within +/- 100 bPa. With the Rayleigh correction the errors in retrieved cloud optical thickness are usually reduced to within 3%. In cases of both thin cloud layers and thick ,clouds with large solar zenith angles, the errors are usually reduced by a factor of about 2 to over 10. The Rayleigh correction algorithm has been tested with simulations for realistic cloud optical and microphysical properties with different solar and viewing geometries. We apply the Rayleigh correction algorithm to the cloud optical thickness retrievals from experimental data obtained during the Atlantic Stratocumulus Transition Experiment (ASTEX) conducted near the Azores in June 1992 and compare these results to corresponding retrievals obtained using 0.88 Am. These results provide an example of the Rayleigh scattering effects on thin clouds and further test the Rayleigh correction scheme. Using a nonabsorbing near-infrared wavelength lambda (0.88 Am) in retrieving cloud optical thickness is only applicable over oceans, however, since most land surfaces are highly reflective at 0.88 Am. Hence successful global retrievals of cloud optical thickness should remove Rayleigh scattering effects when using reflectance measurements at 0.66 Am.

  15. Study on the ternary mixed ligand complex of palladium(II)-aminophylline-fluorescein sodium by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum and its analytical application.

    PubMed

    Chen, Peili; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli

    2011-01-01

    The interaction between palladium(II)-aminophylline and fluorescein sodium was investigated by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum. In pH 4.4 Britton-Robinson (BR) buffer medium, aminophylline (Ami) reacted with palladium(II) to form chelate cation([Pd(Ami)]2+), which further reacted with fluorescein sodium (FS) to form ternary mixed ligand complex [Pd(Ami)(FS)2]. As a result, resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering spectrum (FDS) were enhanced. The maximum scattering wavelengths of [Pd(Ami)(FS)2] were located at 300 nm (RRS), 650 nm (SOS) and 304 nm (FDS). The scattering intensities were proportional to the Ami concentration in a certain range and the detection limits were 7.3 ng mL(-1) (RRS), 32.9 ng mL(-1) (SOS) and 79.1 ng mL(-1) (FDS), respectively. Based on it, the new simple, rapid, and sensitive scattering methods have been proposed to determine Ami in urine and serum samples. Moreover, the formation mechanism of [Pd(Ami)(FS)2] and the reasons for enhancement of RRS were fully discussed. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  16. Rayleigh Scattering Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard (Compiler)

    1996-01-01

    The Rayleigh Scattering Diagnostics Workshop was held July 25-26, 1995 at the NASA Lewis Research Center in Cleveland, Ohio. The purpose of the workshop was to foster timely exchange of information and expertise acquired by researchers and users of laser based Rayleigh scattering diagnostics for aerospace flow facilities and other applications. This Conference Publication includes the 12 technical presentations and transcriptions of the two panel discussions. The first panel was made up of 'users' of optical diagnostics, mainly in aerospace test facilities, and its purpose was to assess areas of potential applications of Rayleigh scattering diagnostics. The second panel was made up of active researchers in Rayleigh scattering diagnostics, and its purpose was to discuss the direction of future work.

  17. Toward Implementing Long-term Slip History and Paleoseismicity Into Active Fault Databases to Compute Effective Recurrence Models

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Jalobeanu, A.; Ferry, M. A.

    2011-12-01

    The first year of data from the Cascadia Initiative ocean-bottom seismograph deployment has provided a unique opportunity to image the structure of a plate from formation at the spreading center to subduction beneath the continental margin. However, traditional Rayleigh wave tomography of the Juan de Fuca plate using teleseismic sources is unusually difficult, because the region contains a large velocity heterogeneity at the ocean-continent margin; the azimuthal range of sources is limited, with most earthquakes lying in narrow azimuthal ranges to the northwest along the Aleutian and western Pacific trenches or to the southeast along the Middle and South American trenches; the orientation of many of the focal mechanisms leads to nodes in Rayleigh wave excitation towards the Juan de Fuca region; and the great circle paths from most sources to the receivers travel great distances close to ocean/continent boundaries or trenches and island arcs, producing complex waveforms. Nevertheless, we construct an initial tomographic image of the Juan de Fuca plate by subdividing the area into regions with relatively uniform wavefield composition when necessary; by using the two-plane-wave representation of the wavefield within the subregions; and by removing noise from the vertical component of the Rayleigh wave signals using information from the horizontal and pressure records. If the seismometer is slightly tilted, some of the often large horizontal noise contaminates the vertical component, and when water (gravity) waves penetrate to the seafloor, the associated pressure variations cause vertical displacements. By removing these two sources of noise, we are able to construct Rayleigh wave phase velocity maps in the period range 20 to 125 s, yielding excellent control on lithospheric mantle structure.

  18. Room-temperature phosphorescence chemosensor and Rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots.

    PubMed

    Zou, Wen-Sheng; Sheng, Dong; Ge, Xin; Qiao, Jun-Qin; Lian, Hong-Zhen

    2011-01-01

    Rayleigh scattering (RS) as an interference factor to detection sensitivity in ordinary fluorescence spectrometry is always avoided in spite of considerable efforts toward the development of RS-based resonance Rayleigh scattering (RRS) and hyper-Rayleigh scattering (HRS) techniques. Here, combining advantages of quantum dots (QDs) including chemical modification of functional groups and the installation of recognition receptors at their surfaces with those of phosphorescence such as the avoidance of autofluorescence and scattering light, l-cys-capped Mn-doped ZnS QDs have been synthesized and used for room-temperature phosphorescence (RTP) to sense and for RS chemodosimetry to image ultratrace 2,4,6-trinitrotoluene (TNT) in water. The l-cys-capped Mn-doped ZnS QDs interdots aggregate with TNT species induced by the formation of Meisenheimer complexes (MHCs) through acid-base pairing interaction between l-cys and TNT, hydrogen bonding, and electrostatic interaction between l-cys intermolecules. Although the resultant MHCs may quench the fluorescence at 430 nm, interdots aggregation can greatly influence the light scattering property of the aqueous QDs system, and therefore, dominant RS enhancement at defect-related emission wavelength was observed under the excitation of violet light of Mn-doped ZnS QDs, which was applied in chemodosimetry to image TNT in water. Meanwhile, Mn-doped ZnS QDs also exhibited a highly selective response to the quenching of the (4)T(1)-(6)A(1) transition emission (RTP) and showed a very good linearity in the range of 0.0025-0.45 μM TNT with detection limit down to 0.8 nM and RSD of 2.3% (n = 5). The proposed methods are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.

  19. Communication Channel Estimation and Waveform Design: Time Delay Estimation on Parallel, Flat Fading Channels

    DTIC Science & Technology

    2010-02-01

    channels, so the channel gain is known on each realization and used in a coherent matched filter; and (c) Rayleigh channels with noncoherent matched...gain is known on each realization and used in a coherent matched filter (channel model 1A); and (c) Rayleigh channels with noncoherent matched filters...filters, averaged over Rayleigh channel realizations (channel model 1A). (b) Noncoherent matched filters with Rayleigh fading (channel model 3). MSEs are

  20. The historical bases of the Rayleigh and Ritz methods

    NASA Astrophysics Data System (ADS)

    Leissa, A. W.

    2005-11-01

    Rayleigh's classical book Theory of Sound was first published in 1877. In it are many examples of calculating fundamental natural frequencies of free vibration of continuum systems (strings, bars, beams, membranes, plates) by assuming the mode shape, and setting the maximum values of potential and kinetic energy in a cycle of motion equal to each other. This procedure is well known as "Rayleigh's Method." In 1908, Ritz laid out his famous method for determining frequencies and mode shapes, choosing multiple admissible displacement functions, and minimizing a functional involving both potential and kinetic energies. He then demonstrated it in detail in 1909 for the completely free square plate. In 1911, Rayleigh wrote a paper congratulating Ritz on his work, but stating that he himself had used Ritz's method in many places in his book and in another publication. Subsequently, hundreds of research articles and many books have appeared which use the method, some calling it the "Ritz method" and others the "Rayleigh-Ritz method." The present article examines the method in detail, as Ritz presented it, and as Rayleigh claimed to have used it. It concludes that, although Rayleigh did solve a few problems which involved minimization of a frequency, these solutions were not by the straightforward, direct method presented by Ritz and used subsequently by others. Therefore, Rayleigh's name should not be attached to the method.

  1. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION

    PubMed Central

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    2016-01-01

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method—named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)—for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results. PMID:26778864

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Antony, E-mail: antony@cosmologist.info

    Rayleigh scattering from neutral hydrogen during and shortly after recombination causes the CMB anisotropies to be significantly frequency dependent at high frequencies. This may be detectable with Planck, and would be a strong signal in any future space-based CMB missions. The later peak of the Rayleigh visibility compared to Thomson scattering gives an increased large-scale CMB polarization signal that is a greater than 4% effect for observed frequencies ν ∼> 500GHz. There is a similar magnitude suppression on small scales from additional damping. Due to strong correlation between the Rayleigh and primary signal, measurement of the Rayleigh component is limitedmore » by noise and foregrounds, not cosmic variance of the primary CMB, and should observable over a wide range of angular scales at frequencies 200GHz ∼< ν ∼< 800GHz. I give new numerical calculations of the temperature and polarization power spectra, and show that future CMB missions could measure the temperature Rayleigh cross-spectrum at high precision, detect the polarization from Rayleigh scattering, and also accurately determine the cross-spectra between the Rayleigh temperature signal and primary polarization. The Rayleigh scattering signal may provide a powerful consistency check on recombination physics. In principle it can be used to measure additional horizon-scale primordial perturbation modes at recombination, and distinguish a significant tensor mode B-polarization signal from gravitational lensing at the power spectrum level.« less

  3. Electromagnetic beam diffraction by a finite lamellar structure: an aperiodic coupled-wave method.

    PubMed

    Guizal, Brahim; Barchiesi, Dominique; Felbacq, Didier

    2003-12-01

    We have developed a new formulation of the coupled-wave method (CWM) to handle aperiodic lamellar structures, and it will be referred to as the aperiodic coupled-wave method (ACWM). The space is still divided into three regions, but the fields are written by use of their Fourier integrals instead of the Fourier series. In the modulated region the relative permittivity is represented by its Fourier transform, and then a set of integro-differential equations is derived. Discretizing the last system leads to a set of ordinary differential equations that is reduced to an eigenvalue problem, as is usually done in the CWM. To assess the method, we compare our results with three independent formalisms: the Rayleigh perturbation method for small samples, the volume integral method, and the finite-element method.

  4. Eyeglass: A Very Large Aperture Diffractive Space Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, R; Dixit, S; Weisberg, A

    2002-07-29

    Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by correctivemore » optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.« less

  5. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    DOE PAGES

    MacDonald, M. J.; Vorberger, J.; Gamboa, E. J.; ...

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enablingmore » elastic anisotropy and sample texture effects to be modeled directly. Furthermore, the effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less

  6. Rayleigh-Taylor mixing in supernova experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swisher, N. C.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com; Kuranz, C. C.

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properlymore » accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.« less

  7. Quasi-Rayleigh waves in butt-welded thick steel plate

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin

    2015-03-01

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  8. Resolution enhancement by extrapolation of coherent diffraction images: a quantitative study on the limits and a numerical study of nonbinary and phase objects.

    PubMed

    Latychevskaia, T; Chushkin, Y; Fink, H-W

    2016-10-01

    In coherent diffractive imaging, the resolution of the reconstructed object is limited by the numerical aperture of the experimental setup. We present here a theoretical and numerical study for achieving super-resolution by postextrapolation of coherent diffraction images, such as diffraction patterns or holograms. We demonstrate that a diffraction pattern can unambiguously be extrapolated from only a fraction of the entire pattern and that the ratio of the extrapolated signal to the originally available signal is linearly proportional to the oversampling ratio. Although there could be in principle other methods to achieve extrapolation, we devote our discussion to employing iterative phase retrieval methods and demonstrate their limits. We present two numerical studies; namely, the extrapolation of diffraction patterns of nonbinary and that of phase objects together with a discussion of the optimal extrapolation procedure. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  9. Detonation Diffraction in a Multi-Step Channel

    DTIC Science & Technology

    2010-12-01

    openings. This allowed the detonation wave diffraction transmission limits to be determined for hydrogen/air mixtures and to better understand...imaging systems to provide shock wave detail and velocity information. The images were observed through a newly designed explosive proof optical section...stepped openings. This allowed the detonation wave diffraction transmission limits to be determined for hydrogen/air mixtures and to better

  10. Rayleigh scattering in an emitter-nanofiber-coupling system

    NASA Astrophysics Data System (ADS)

    Tang, Shui-Jing; Gao, Fei; Xu, Da; Li, Yan; Gong, Qihuang; Xiao, Yun-Feng

    2017-04-01

    Scattering is a general process in both fundamental and applied physics. In this paper, we investigate Rayleigh scattering of a solid-state-emitter coupled to a nanofiber, by S -matrix-like theory in k -space description. Under this model, both Rayleigh scattering and dipole interaction are studied between a two-level artificial atom embedded in a nanocrystal and fiber modes (guided and radiation modes). It is found that Rayleigh scattering plays a critical role in the transport properties and quantum statistics of photons. On the one hand, Rayleigh scattering produces the transparency in the optical transmitted field of the nanofiber, accompanied by the change of atomic phase, population, and frequency shift. On the other hand, the interference between two kinds of scattering fields by Rayleigh scattering and dipole transition modifies the photon statistics (second-order autocorrelation function) of output fields, showing a strong wavelength dependence. This study provides guidance for the solid-state emitter acting as a single-photon source and can be extended to explore the scattering effect in many-body physics.

  11. Two-photon x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stohr, J.

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  12. Two-photon x-ray diffraction

    DOE PAGES

    Stohr, J.

    2017-01-11

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  13. Temporal evolution of surface ripples on a finite plasma slab subject to the magneto-Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weis, M. R.; Zhang, P.; Lau, Y. Y., E-mail: yylau@umich.edu

    2014-12-15

    Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Thus, the instability may be driven by a combination of magnetic pressure and kinetic pressure. The general dispersion relation is derived, together with the feedthrough factor between the two interfaces. Themore » temporal evolution is constructed from the superposition of the eigenmodes. Previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab.« less

  14. Microwave properties of solid CO2. [for Mars surface study

    NASA Technical Reports Server (NTRS)

    Simpson, R. A.; Howard, H. T.; Fair, B. C.

    1980-01-01

    Measurements over the range of 2.2 to 12.0 GHz show that CO2 snow is a slightly lossy dielectric whose constant varies with density following the Rayleigh formula to 1.27 g/cu cm. It is independent of frequency and does not vary with temperature in the 113 to 183 K range; frequency independence and agreement with the Rayleigh fit are obtained from measurements on dry block ice. The dielectric constant of solid CO2 in block form is lower than that of solid water ice or solid rock; in powder form, the constant for CO2 is also lower than that of H2O (snow) or soils. These measurements may be useful in limiting the interpretations of the Viking radio reflection experiment; a radio value of 3.0 for the dielectric constant near the North Pole would be strong evidence against the presence of cm thicknesses of CO2 in that region.

  15. A Review of Spectral Methods for Variable Amplitude Fatigue Prediction and New Results

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.; Irvine, Tom

    2013-01-01

    A comprehensive review of the available methods for estimating fatigue damage from variable amplitude loading is presented. The dependence of fatigue damage accumulation on power spectral density (psd) is investigated for random processes relevant to real structures such as in offshore or aerospace applications. Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time histories simulated from psd functions representative of simple theoretical and real world applications. Spectral methods investigated include corrections by Wirsching and Light, Ortiz and Chen, the Dirlik formula, and the Single-Moment method, among other more recent proposed methods. Good agreement is obtained between the spectral methods and the time-domain rainflow identification for most cases, with some limitations. Guidelines are given for using the several spectral methods to increase confidence in the damage estimate.

  16. Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor

    NASA Astrophysics Data System (ADS)

    Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.

    2017-10-01

    The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.

  17. Setting up a Rayleigh Scattering Based Flow Measuring System in a Large Nozzle Testing Facility

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Gomez, Carlos R.

    2002-01-01

    A molecular Rayleigh scattering based air density measurement system has been built in a large nozzle testing facility at NASA Glenn Research Center. The technique depends on the light scattering by gas molecules present in air; no artificial seeding is required. Light from a single mode, continuous wave laser was transmitted to the nozzle facility by optical fiber, and light scattered by gas molecules, at various points along the laser beam, is collected and measured by photon-counting electronics. By placing the laser beam and collection optics on synchronized traversing units, the point measurement technique is made effective for surveying density variation over a cross-section of the nozzle plume. Various difficulties associated with dust particles, stray light, high noise level and vibration are discussed. Finally, a limited amount of data from an underexpanded jet are presented and compared with expected variations to validate the technique.

  18. Temporal evolution of surface ripples on a finite plasma slab subject to the magneto-Rayleigh-Taylor instability

    DOE PAGES

    Weis, Matthew Robert; Zhang, Peng; Lau, Yue Ying; ...

    2014-12-17

    Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor instability. The plasma slab consists of three regions. We assume that in each region the plasma density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary magnitude and an arbitrary direction parallel to the interfaces. Then, the instability may be driven by a combination of magnetic pressure and kinetic pressure. Thus the general dispersion relation is derived, together with the feedthrough factor between the two interfaces.more » The temporal evolution is constructed from the superposition of the eigenmodes. Those previously established results are recovered in the various limits. Numerical examples are given on the temporal evolution of ripples on the interfaces of the finite plasma slab.« less

  19. Convection in an ideal gas at high Rayleigh numbers.

    PubMed

    Tilgner, A

    2011-08-01

    Numerical simulations of convection in a layer filled with ideal gas are presented. The control parameters are chosen such that there is a significant variation of density of the gas in going from the bottom to the top of the layer. The relations between the Rayleigh, Peclet, and Nusselt numbers depend on the density stratification. It is proposed to use a data reduction which accounts for the variable density by introducing into the scaling laws an effective density. The relevant density is the geometric mean of the maximum and minimum densities in the layer. A good fit to the data is then obtained with power laws with the same exponent as for fluids in the Boussinesq limit. Two relations connect the top and bottom boundary layers: The kinetic energy densities computed from free fall velocities are equal at the top and bottom, and the products of free fall velocities and maximum horizontal velocities are equal for both boundaries.

  20. Study of Rayleigh-Love coupling from Spatial Gradient Observation

    NASA Astrophysics Data System (ADS)

    Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.

    2017-12-01

    We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.

  1. Turbulent Natural Convection in a Square Cavity with a Circular Cylinder

    DOE PAGES

    Aithal, S. M.

    2016-07-19

    In this paper, numerical simulations of high Rayleigh number flows (10 8-10 10) were conducted to investigate the turbulent fluid flow and thermal characteristics of natural convection induced by a centrally placed hot cylinder in a cold square enclosure. The effect of the aspect ratio (radius of the cylinder to the side of the cavity) was investigated for three values (0.1, 0.2, and 0.3) for each Rayleigh number. Effects of turbulence induced by the high Rayleigh number (>10 7) were computed by using the unsteady k-ω model. A spectral-element method with high polynomial order (high resolution) was used to solvemore » the system of unsteady time-averaged equations of continuity, momentum, and energy, along with the turbulence equations. Detailed comparison with other numerical work is presented. Contours of velocity, temperature, and turbulence quantities are presented for various high Rayleigh numbers. Also presented is the influence of the Rayleigh number on the local Nusselt number on the centrally placed hot cylinder and the cold enclosure walls. Time-marching results show that the steady-state solutions can be obtained even for high Rayleigh numbers considered in this study. The results also show that the average and peak Nusselt numbers roughly double for each order of magnitude increase of the Rayleigh number for all radii considered. Finally, a correlation for the average Nusselt number as a function of Rayleigh number and aspect ratio is also presented.« less

  2. Turbulent Natural Convection in a Square Cavity with a Circular Cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aithal, S. M.

    In this paper, numerical simulations of high Rayleigh number flows (10 8-10 10) were conducted to investigate the turbulent fluid flow and thermal characteristics of natural convection induced by a centrally placed hot cylinder in a cold square enclosure. The effect of the aspect ratio (radius of the cylinder to the side of the cavity) was investigated for three values (0.1, 0.2, and 0.3) for each Rayleigh number. Effects of turbulence induced by the high Rayleigh number (>10 7) were computed by using the unsteady k-ω model. A spectral-element method with high polynomial order (high resolution) was used to solvemore » the system of unsteady time-averaged equations of continuity, momentum, and energy, along with the turbulence equations. Detailed comparison with other numerical work is presented. Contours of velocity, temperature, and turbulence quantities are presented for various high Rayleigh numbers. Also presented is the influence of the Rayleigh number on the local Nusselt number on the centrally placed hot cylinder and the cold enclosure walls. Time-marching results show that the steady-state solutions can be obtained even for high Rayleigh numbers considered in this study. The results also show that the average and peak Nusselt numbers roughly double for each order of magnitude increase of the Rayleigh number for all radii considered. Finally, a correlation for the average Nusselt number as a function of Rayleigh number and aspect ratio is also presented.« less

  3. Experimental measurement of interparticle acoustic radiation force in the Rayleigh limit

    NASA Astrophysics Data System (ADS)

    Mohapatra, Abhishek Ray; Sepehrirahnama, Shahrokh; Lim, Kian-Meng

    2018-05-01

    Acoustophoresis is a form of contact-free particle manipulation in microfluidic devices. The precision of manipulation can be enhanced with better understanding of the acoustic radiation force. In this paper we present the measurements of interparticle radiation force between a pair of polystyrene beads in the Rayleigh limit. The study is conducted for three different sizes of beads and the experimental results are of the same order of magnitude when compared with theoretical predictions. However, the experimental values are larger than the theoretical values. The trend of a decrease in the magnitude of the interparticle radiation force with decreasing particle size and increasing center-to-center distance between the particles is also observed experimentally. The experiments are conducted in the specific scenario where the pair of beads are in close proximity, but not in contact with each other, and the beads are approaching the pressure nodal plane with the center-to-center line aligned perpendicular to the incident wave. This scenario minimizes the presence of the primary radiation force, allowing accurate measurement of the interparticle force. The attractive nature of the interparticle force is observed, consistent with theoretical predictions.

  4. Characterization of Dispersive Ultrasonic Rayleigh Surface Waves in Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    In, Chi-Won; Kim, Jin-Yeon; Jacobs, Laurence J.; Kurtis, Kimberly E.

    2008-02-01

    This research focuses on the application of ultrasonic Rayleigh surface waves to nondestructively characterize the mechanical properties and structural defects (non-uniformly distributed aggregate) in asphalt concrete. An efficient wedge technique is developed in this study to generate Rayleigh surface waves that is shown to be effective in characterizing Rayleigh waves in this highly viscoelastic (attenuating) and heterogeneous medium. Experiments are performed on an asphalt-concrete beam produced with uniformly distributed aggregate. Ultrasonic techniques using both contact and non-contact sensors are examined and their results are compared. Experimental results show that the wedge technique along with an air-coupled sensor appears to be effective in characterizing Rayleigh waves in asphalt concrete. Hence, measurement of theses material properties needs to be investigated in non-uniformly distributed aggregate material using these techniques.

  5. Nd:YAG Laser-Based Dual-Line Detection Rayleigh Scattering and Current Efforts on UV, Filtered Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Otugen, M. Volkan; Popovic, Svetozar

    1996-01-01

    Ongoing research in Rayleigh scattering diagnostics for variable density low speed flow applications and for supersonic flow measurements are described. During the past several years, the focus has been on the development and use of a Nd:YAG-based Rayleigh scattering system with improved signal-to-noise characteristics and with applicability to complex, confined flows. This activity serves other research projects in the Aerodynamics Laboratory which require the non-contact, accurate, time-frozen measurement of gas density, pressure, and temperature (each separately), in a fairly wide dynamic range of each parameter. Recently, with the acquisition of a new seed-injected Nd:YAG laser, effort also has been directed to the development of a high-speed velocity probe based on a spectrally resolved Rayleigh scattering technique.

  6. A study of angular spectrum and limited diffraction beams for calculation of field of array transducers

    NASA Astrophysics Data System (ADS)

    Cheng, Jiqi; Lu, Jian-Yu

    2002-05-01

    Angular spectrum is one of the most powerful tools for field calculation. It is based on linear system theory and the Fourier transform and is used for the calculation of propagating sound fields at different distances. In this report, the generalization and interpretation of the angular spectrum and its intrinsic relationship with limited diffraction beams are studied. With an angular spectrum, the field at the surface of a transducer is decomposed into limited diffractions beams. For an array transducer, a linear relationship between the quantized fields at the surface of elements of the array and the propagating field at any point in space can be established. For an annular array, the field is decomposed into limited diffraction Bessel beams [P. D. Fox and S. Holm, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 85-93 (2002)], while for a two-dimensional (2-D) array the field is decomposed into limited diffraction array beams [J-y. Lu and J. Cheng, J. Acoust. Soc. Am. 109, 2397-2398 (2001)]. The angular spectrum reveals the intrinsic link between these decompositions. [Work supported in part by Grant 5RO1 HL60301 from NIH.

  7. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J., E-mail: macdonm@umich.edu; SLAC National Accelerator Laboratory, Menlo Park, California 94025; Vorberger, J.

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit [Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate latticemore » strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less

  8. Scalar limitations of diffractive optical elements

    NASA Technical Reports Server (NTRS)

    Johnson, Eric G.; Hochmuth, Diane; Moharam, M. G.; Pommet, Drew

    1993-01-01

    In this paper, scalar limitations of diffractive optic components are investigated using coupled wave analyses. Results are presented for linear phase gratings and fanout devices. In addition, a parametric curve is given which correlates feature size with scalar performance.

  9. Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device.

    PubMed

    Heath, Daniel J; Grant-Jacob, James A; Feinaeugle, Matthias; Mills, Ben; Eason, Robert W

    2017-08-01

    We present the use of digital micromirror devices as variable illumination masks for pitch-splitting multiple exposures to laser machine the surfaces of materials. Ultrafast laser pulses of length 150 fs and 800 nm central wavelength were used for the sequential machining of contiguous patterns on the surface of samples in order to build up complex structures with sub-diffraction limit features. Machined patterns of tens to hundreds of micrometers in lateral dimensions with feature separations as low as 270 nm were produced in electroless nickel on an optical setup diffraction limited to 727 nm, showing a reduction factor below the Abbe diffraction limit of ∼2.7×. This was compared to similar patterns in a photoresist optimized for two-photon absorption, which showed a reduction factor of only 2×, demonstrating that multiple exposures via ablation can produce a greater resolution enhancement than via two-photon polymerization.

  10. Fundamental Limits:. Developing New Tools for a Better Understanding of Second-Order Molecular Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, Javier; Clays, Koen

    The generalized Thomas-Kuhn sum rules are used to characterize the nonlinear optical response of organic chromophores in terms of fundamental parameters that can be measured experimentally. The nonlinear optical performance of organic molecules is evaluated from the combination of hyper-Rayleigh scattering measurements and the analysis in terms of the fundamental limits. Different strategies for the enhancement of nonlinear optical behavior at the molecular and supramolecular level are evaluated and new paradigms for the design of more efficient nonlinear optical molecules are proposed and investigated.

  11. Comment on Rayleigh-Scattering Calculations for the Terrestrial Atmosphere

    NASA Astrophysics Data System (ADS)

    On, Ois-Marie

    1998-01-01

    It is shown that, for a given surface pressure, the atmospheric vertical temperature profile has a negligible influence on the Rayleigh optical depth. This contradicts the Bucholtz recommendation for the use of values that vary with air mass type. The influence of atmospheric water vapor amount on the Rayleigh optical depth is also investigated.

  12. Multiple scattered radiation emerging from Rayleigh and continental haze layers. I - Radiance, polarization, and neutral points

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.; Hitzfelder, S. J.

    1976-01-01

    The matrix operator method was used to calculate the polarization of radiation scattered on layers of various optical thicknesses, with results compared for Rayleigh scattering and for scattering from a continental haze. In both cases, there are neutral points arising from the zeros of the polarization of single scattered photons at scattering angles of zero and 180 degrees. The angular position of these Rayleigh-like neutral points (RNP) in the sky shows appreciable variation with the optical thickness of the scattering layer for a Rayleigh phase matrix, but only a small variation for haze L phase matrix. Another type of neutral point exists for non-Rayleigh phase functions that is associated with the zeros of the polarization for single scattering which occurs between the end points of the curve. A comparison of radiances calculated from the complete theory of radiative transfer using Stokes vectors with those obtained from the scalar theory shows that differences of the order of 23% may be obtained for Rayleigh scattering, while the largest difference found for a haze L phase function was of the order of 0.1%.

  13. Demonstration of Imaging Flow Diagnostics Using Rayleigh Scattering in Langley 0.3-Meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Herring, G. C.; Barros, Toya

    1999-01-01

    The feasibility of using the Rayleigh scattering technique for molecular density imaging of the free-stream flow field in the Langley 0.3-Meter Transonic Cryogenic Tunnel has been experimentally demonstrated. The Rayleigh scattering was viewed with a near-backward geometry with a frequency-doubled output from a diode-pumped CW Nd:YAG laser and an intensified charge-coupled device camera. Measurements performed in the range of free-stream densities from 3 x 10(exp 25) to 24 x 10(exp 25) molecules/cu m indicate that the observed relative Rayleigh signal levels are approximately linear with flow field density. The absolute signal levels agree (within approx. 30 percent) with the expected signal levels computed based on the well-known quantities of flow field density, Rayleigh scattering cross section for N2, solid angle of collection, transmission of the optics, and the independently calibrated camera sensitivity. These results show that the flow field in this facility is primarily molecular (i.e., not contaminated by clusters) and that Rayleigh scattering is a viable technique for quantitative nonintrusive diagnostics in this facility.

  14. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations.

    PubMed

    Yan, Aidong; Huang, Sheng; Li, Shuo; Chen, Rongzhang; Ohodnicki, Paul; Buric, Michael; Lee, Shiwoo; Li, Ming-Jun; Chen, Kevin P

    2017-08-24

    This paper reports a technique to enhance the magnitude and high-temperature stability of Rayleigh back-scattering signals in silica fibers for distributed sensing applications. With femtosecond laser radiation, more than 40-dB enhancement of Rayleigh backscattering signal was generated in silica fibers using 300-nJ laser pulses at 250 kHz repetition rate. The laser-induced Rayleigh scattering defects were found to be stable from the room temperature to 800 °C in hydrogen gas. The Rayleigh scatter at high temperatures was correlated to the formation and modification of nanogratings in the fiber core. Using optical fibers with enhanced Rayleigh backscattering profiles as distributed temperature sensors, we demonstrated real-time monitoring of solid oxide fuel cell (SOFC) operations with 5-mm spatial resolution at 800 °C. Information gathered by these fiber sensor tools can be used to verify simulation results or operated in a process-control system to improve the operational efficiency and longevity of SOFC-based energy generation systems.

  15. Coating thickness affects surface stress measurement of brush electro-plating nickel coating using Rayleigh wave approach.

    PubMed

    Liu, Bin; Dong, Shiyun; Xu, Binshi; He, Peng

    2012-09-01

    A surface ultrasonic wave approach was presented for measuring surface stress of brush electro-plating nickel coating specimen, and the influence of coating thickness on surface stress measurement was discussed. In this research, two Rayleigh wave transducers with 5MHz frequency were employed to collect Rayleigh wave signals of coating specimen with different static tensile stresses and different coating thickness. The difference in time of flight between two Rayleigh wave signals was determined based on normalized cross correlation function. The influence of stress on propagation velocity of Rayleigh wave and the relationship between the difference in time of flight and tensile stress that corresponded to different coating thickness were discussed. Results indicate that inhomogeneous deformation of coating affects the relationship between the difference in time of flight and tensile stress, velocity of Rayleigh wave propagating in coating specimen increases with coating thickness increasing, and the variation rate reduces of difference in time of flight with tensile stress increasing as coating thickness increases. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Fully decoupled monolithic projection method for natural convection problems

    NASA Astrophysics Data System (ADS)

    Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il

    2017-04-01

    To solve time-dependent natural convection problems, we propose a fully decoupled monolithic projection method. The proposed method applies the Crank-Nicolson scheme in time and the second-order central finite difference in space. To obtain a non-iterative monolithic method from the fully discretized nonlinear system, we first adopt linearizations of the nonlinear convection terms and the general buoyancy term with incurring second-order errors in time. Approximate block lower-upper decompositions, along with an approximate factorization technique, are additionally employed to a global linearly coupled system, which leads to several decoupled subsystems, i.e., a fully decoupled monolithic procedure. We establish global error estimates to verify the second-order temporal accuracy of the proposed method for velocity, pressure, and temperature in terms of a discrete l2-norm. Moreover, according to the energy evolution, the proposed method is proved to be stable if the time step is less than or equal to a constant. In addition, we provide numerical simulations of two-dimensional Rayleigh-Bénard convection and periodic forced flow. The results demonstrate that the proposed method significantly mitigates the time step limitation, reduces the computational cost because only one Poisson equation is required to be solved, and preserves the second-order temporal accuracy for velocity, pressure, and temperature. Finally, the proposed method reasonably predicts a three-dimensional Rayleigh-Bénard convection for different Rayleigh numbers.

  17. Nondestructive testing of thin films using surface acoustic waves and laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Jenot, Frédéric; Fourez, Sabrina; Ouaftouh, Mohammadi; Duquennoy, Marc

    2018-04-01

    Thin films are widely used in many fields such as electronics, optics or materials science. For example, they find applications in thermal or mechanical sensors design. They are also very useful as protective or reinforcement layers for many structures. However, some coating defects such as thickness variations, microfissuring or poor adhesion are common problems. Therefore, nondestructive testing of these structures using acoustic waves generated and detected by lasers represents a major interest. Indeed, in comparison with conventional methods based on the use of piezoelectric transducers, laser ultrasonics leads to non-contact investigations with a large bandwidth. Usually, bulk acoustic waves are used and a pulse-echo technique is considered that needs high frequencies and implies local measurements. In order to avoid this limitation, we propose to use surface acoustic waves in a frequency range up to 45 MHz. The samples consist of a micrometric gold layer deposited on silicon substrates. In a first part, using dispersion analysis, theoretical and experimental results clearly reveal that the first Rayleigh mode allows the detection of film thickness variations and open cracks. In a second part, a localized adhesion defect is introduced in a similar sample. The effects of such a flaw on the Rayleigh modes dispersion curves are theoretically described. Finally, we experimentally show that the first Rayleigh mode allows the defect detection only under specific conditions.

  18. Crack Detection in Plates Using Coupled Rayleigh-Like Waves

    NASA Astrophysics Data System (ADS)

    Masserey, B.; Fromme, P.

    2008-02-01

    The use of coupled Rayleigh-like waves in aluminum plates with a view towards the non-destructive inspection of aircraft structures has been investigated experimentally and theoretically. Rayleigh-like waves transfer energy between both plate surfaces with a characteristic distance called the beatlength. A simple, analytical model and finite difference calculations are used to describe the reflection of Rayleigh-like waves at surface defects. Good agreement has been achieved with experimental results using either standard pulse-echo or laser interferometer measurements. The sensitivity for the detection and localization of small defects on both plate surfaces has been found to be very good. Selecting appropriate excitation frequency and position, a significant part of the energy of the Rayleigh-like wave can be transmitted past surface features, allowing the remote detection of defects in areas where access is restricted.

  19. The Effect of Sintering Temperature on Linear and Nonlinear Optical Properties of YAG Nanoceramics

    NASA Astrophysics Data System (ADS)

    Gayvoronsky, V. Ya.; Popov, A. S.; Brodyn, M. S.; Uklein, A. V.; Multian, V. V.; Shul'zhenko, O. O.

    Recent improvements in powder synthesis and ceramics sintering made it possible to fabricate high-quality optical materials. The work is devoted to the structural and optical characterization of the ({Y_3}{Al_5}{O_{12}}, YAG) ceramics prepared by high-pressure low-temperature technique. The structural properties of the studied ceramic samples was obtained by X-ray diffraction. The studies of the total and in-line transmittance as well as optical scattering indicatrices were performed in visible and NIR ranges. The scatterer size ˜200 nm was estimated by Rayleigh-Gans-Debye model. It was shown that the studied samples demonstrate high transparency at 1064 nm. The nonlinear optical characterization of the samples was done by the self-action of the picosecond laser pulses at 1064 nm. The measured nonlinear optical response (χ^(3)) ˜ 10^{-11} esu) showed significant dependence on the sintering temperature variation.

  20. Li diffusion in epitaxial (11 $bar 2$ 0) ZnO thin films

    NASA Astrophysics Data System (ADS)

    Wu, P.; Zhong, J.; Emanetoglu, N. W.; Chen, Y.; Muthukumar, S.; Lu, Y.

    2004-06-01

    Zinc oxide (ZnO) possesses many interesting properties, such as a wide energy bandgap, large photoconductivity, and high excitonic binding energy. Chemical-vapor-deposition-grown ZnO films generally show n-type conductivity. A compensation doping process is needed to achieve piezoelectric ZnO, which is needed for surface acoustic wave (SAW), bulk acoustic wave, and micro-electromechanical system devices. In this work, a gas-phase diffusion process is developed to achieve piezoelectric (11bar 20) ZnO films. Comparative x-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements confirmed that high crystal quality and good surface morphology were preserved after diffusion. Photoluminescence (PL) measurements show a broad band emission with a peak wavelength at ˜580 nm, which is associated with Li doping. The SAW, including both Rayleigh-wave and Love-wave modes, is achieved along different directions in piezoelectric (11bar 20) ZnO films grown on an r-plane sapphire substrate.

  1. Quasi-Rayleigh waves in butt-welded thick steel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamas, Tuncay, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Giurgiutiu, Victor, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Lin, Bin, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu

    2015-03-31

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as wellmore » as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.« less

  2. Rayleigh, the unit for light radiance.

    PubMed

    Baker, D J

    1974-09-01

    A 0.7% accurate formula is derived for the easy conversion of power spectral radiance L(lambda) in W cm(-2) sr(-1) microm(-1)to rayleigh spectral radiance R(lambda) in rayleigh/microm, R(lambda) = 2pilambdaL(lambda) x 10(13), where the wavelength lambda is in microm. The rationale for the rayleigh unit is discussed in terms of a photon rate factor and a solid angle factor. The latter is developed in terms of an equivalence theorem about optical receivers and extended sources, and the concept is extended to the computation of photon volume emission rates from altitude profiles of zenith radiance.

  3. Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement.

    PubMed

    Li, Haiyan; Wu, Jun; Miao, Aimin; Yu, Pengfei; Chen, Jianhua; Zhang, Yufeng

    2017-04-17

    Ultrasound imaging plays an important role in computer diagnosis since it is non-invasive and cost-effective. However, ultrasound images are inevitably contaminated by noise and speckle during acquisition. Noise and speckle directly impact the physician to interpret the images and decrease the accuracy in clinical diagnosis. Denoising method is an important component to enhance the quality of ultrasound images; however, several limitations discourage the results because current denoising methods can remove noise while ignoring the statistical characteristics of speckle and thus undermining the effectiveness of despeckling, or vice versa. In addition, most existing algorithms do not identify noise, speckle or edge before removing noise or speckle, and thus they reduce noise and speckle while blurring edge details. Therefore, it is a challenging issue for the traditional methods to effectively remove noise and speckle in ultrasound images while preserving edge details. To overcome the above-mentioned limitations, a novel method, called Rayleigh-maximum-likelihood switching bilateral filter (RSBF) is proposed to enhance ultrasound images by two steps: noise, speckle and edge detection followed by filtering. Firstly, a sorted quadrant median vector scheme is utilized to calculate the reference median in a filtering window in comparison with the central pixel to classify the target pixel as noise, speckle or noise-free. Subsequently, the noise is removed by a bilateral filter and the speckle is suppressed by a Rayleigh-maximum-likelihood filter while the noise-free pixels are kept unchanged. To quantitatively evaluate the performance of the proposed method, synthetic ultrasound images contaminated by speckle are simulated by using the speckle model that is subjected to Rayleigh distribution. Thereafter, the corrupted synthetic images are generated by the original image multiplied with the Rayleigh distributed speckle of various signal to noise ratio (SNR) levels and added with Gaussian distributed noise. Meanwhile clinical breast ultrasound images are used to visually evaluate the effectiveness of the method. To examine the performance, comparison tests between the proposed RSBF and six state-of-the-art methods for ultrasound speckle removal are performed on simulated ultrasound images with various noise and speckle levels. The results of the proposed RSBF are satisfying since the Gaussian noise and the Rayleigh speckle are greatly suppressed. The proposed method can improve the SNRs of the enhanced images to nearly 15 and 13 dB compared with images corrupted by speckle as well as images contaminated by speckle and noise under various SNR levels, respectively. The RSBF is effective in enhancing edge while smoothing the speckle and noise in clinical ultrasound images. In the comparison experiments, the proposed method demonstrates its superiority in accuracy and robustness for denoising and edge preserving under various levels of noise and speckle in terms of visual quality as well as numeric metrics, such as peak signal to noise ratio, SNR and root mean squared error. The experimental results show that the proposed method is effective for removing the speckle and the background noise in ultrasound images. The main reason is that it performs a "detect and replace" two-step mechanism. The advantages of the proposed RBSF lie in two aspects. Firstly, each central pixel is classified as noise, speckle or noise-free texture according to the absolute difference between the target pixel and the reference median. Subsequently, the Rayleigh-maximum-likelihood filter and the bilateral filter are switched to eliminate speckle and noise, respectively, while the noise-free pixels are unaltered. Therefore, it is implemented with better accuracy and robustness than the traditional methods. Generally, these traits declare that the proposed RSBF would have significant clinical application.

  4. The LBT experience of adaptive secondary mirror operations for routine seeing- and diffraction-limited science operations

    NASA Astrophysics Data System (ADS)

    Guerra, J. C.; Brusa, G.; Christou, J.; Miller, D.; Ricardi, A.; Xompero, M.; Briguglio, R.; Wagner, M.; Lefebvre, M.; Sosa, R.

    2013-09-01

    The Large Binocular Telescope (LBT) is unique in that it is currently the only large telescope (2 x 8.4m primary mirrors) with permanently mounted adaptive secondary mirrors (ASMs). These ASMs have been used for regular observing since early 2010 on the right side and since late 2011 on the left side. They are currently regularly used for seeing-limited observing as well as for selective diffraction-limited observing and are required to be fully operational every observing night. By comparison the other telescopes using ASMs, the Multi Mirrot Telescope (MMT) and more recently Magellan, use fixed secondaries of seeing-limited observing and switch in the ASMs for diffraction-limited observing. We will discuss the night-to-night operational requirements for ASMs specifically for seeing-limited but also for diffraction-limited observations based on the LBT experience. These will include preparation procedures for observing (mirror flattening and resting as examples); hardware failure statistics and how to deal with them such as for the actuators; observing protocols for; and current limitations of use due to the ASM technology such as the minimum elevation limit (25 degrees) and the hysteresis of the gravity-vector induced astigmatism. We will also discuss the impact of ASM maintenance and preparation

  5. Rayleigh Scattering for Measuring Flow in a Nozzle Testing Facility

    NASA Technical Reports Server (NTRS)

    Gomez, Carlos R.; Panda, Jayanta

    2006-01-01

    A molecular Rayleigh-scattering-based air-density measurement system was built in a large nozzle-and-engine-component test facility for surveying supersonic plumes from jet-engine exhaust. A molecular Rayleigh-scattering-based air-density measurement system was built in a large nozzle-and-enginecomponent test facility for surveying supersonic plumes from jet-engine exhaust

  6. The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction

    NASA Astrophysics Data System (ADS)

    Reed, Benjamin E.; Peters, Daniel M.; McPheat, Robert; Grainger, R. G.

    2018-01-01

    The complex refractive indices of eight volcanic ash samples, chosen to have a representative range of SiO2 contents, were retrieved from simultaneous measurements of their spectral mass extinction coefficient and size distribution. The mass extinction coefficients, at 0.33-19 μm, were measured using two optical systems: a Fourier transform spectrometer in the infrared and two diffraction grating spectrometers covering visible and ultraviolet wavelengths. The particle size distribution was measured using a scanning mobility particle sizer and an optical particle counter; values for the effective radius of ash particles measured in this study varied from 0.574 to 1.16 μm. Verification retrievals on high-purity silica aerosol demonstrated that the Rayleigh continuous distribution of ellipsoids (CDEs) scattering model significantly outperformed Mie theory in retrieving the complex refractive index, when compared to literature values. Assuming the silica particles provided a good analogue of volcanic ash, the CDE scattering model was applied to retrieve the complex refractive index of the eight ash samples. The Lorentz formulation of the complex refractive index was used within the retrievals as a convenient way to ensure consistency with the Kramers-Kronig relation. The short-wavelength limit of the electric susceptibility was constrained by using independently measured reference values of the complex refractive index of the ash samples at a visible wavelength. The retrieved values of the complex refractive indices of the ash samples showed considerable variation, highlighting the importance of using accurate refractive index data in ash cloud radiative transfer models.

  7. Dynamic Transmit-Receive Beamforming by Spatial Matched Filtering for Ultrasound Imaging with Plane Wave Transmission.

    PubMed

    Chen, Yuling; Lou, Yang; Yen, Jesse

    2017-07-01

    During conventional ultrasound imaging, the need for multiple transmissions for one image and the time of flight for a desired imaging depth limit the frame rate of the system. Using a single plane wave pulse during each transmission followed by parallel receive processing allows for high frame rate imaging. However, image quality is degraded because of the lack of transmit focusing. Beamforming by spatial matched filtering (SMF) is a promising method which focuses ultrasonic energy using spatial filters constructed from the transmit-receive impulse response of the system. Studies by other researchers have shown that SMF beamforming can provide dynamic transmit-receive focusing throughout the field of view. In this paper, we apply SMF beamforming to plane wave transmissions (PWTs) to achieve both dynamic transmit-receive focusing at all imaging depths and high imaging frame rate (>5000 frames per second). We demonstrated the capability of the combined method (PWT + SMF) of achieving two-way focusing mathematically through analysis based on the narrowband Rayleigh-Sommerfeld diffraction theory. Moreover, the broadband performance of PWT + SMF was quantified in terms of lateral resolution and contrast from both computer simulations and experimental data. Results were compared between SMF beamforming and conventional delay-and-sum (DAS) beamforming in both simulations and experiments. At an imaging depth of 40 mm, simulation results showed a 29% lateral resolution improvement and a 160% contrast improvement with PWT + SMF. These improvements were 17% and 48% for experimental data with noise.

  8. Isospectrals of non-uniform Rayleigh beams with respect to their uniform counterparts

    PubMed Central

    Ganguli, Ranjan

    2018-01-01

    In this paper, we look for non-uniform Rayleigh beams isospectral to a given uniform Rayleigh beam. Isospectral systems are those that have the same spectral properties, i.e. the same free vibration natural frequencies for a given boundary condition. A transformation is proposed that converts the fourth-order governing differential equation of non-uniform Rayleigh beam into a uniform Rayleigh beam. If the coefficients of the transformed equation match with those of the uniform beam equation, then the non-uniform beam is isospectral to the given uniform beam. The boundary-condition configuration should be preserved under this transformation. We present the constraints under which the boundary configurations will remain unchanged. Frequency equivalence of the non-uniform beams and the uniform beam is confirmed by the finite-element method. For the considered cases, examples of beams having a rectangular cross section are presented to show the application of our analysis. PMID:29515879

  9. Laser Velocimeter for Studies of Microgravity Combustion Flowfields

    NASA Technical Reports Server (NTRS)

    Varghese, P. L.; Jagodzinski, J.

    2001-01-01

    We are currently developing a velocimeter based on modulated filtered Rayleigh scattering (MFRS), utilizing diode lasers to make measurements in an unseeded gas or flame. MFRS is a novel variation of filtered Rayleigh scattering, utilizing modulation absorption spectroscopy to detect a strong absorption of a weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption and semiconductor diode lasers generate the relatively weak Rayleigh scattered signal. Alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry; the compact, rugged construction of diode lasers makes them ideally suited for microgravity experimentation. Molecular Rayleigh scattering of laser light simplifies flow measurements as it obviates the complications of flow-seeding. The MFRS velocimeter should offer an attractive alternative to comparable systems, providing a relatively inexpensive means of measuring velocity in unseeded flows and flames.

  10. Comment on Sub-15 nm Hard X-Ray Focusing with a New Total-Reflection Zone Plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Eliot D

    2011-01-01

    Takano et al. report the focusing of 10-keV X-rays to a size of 14.4 nm using a total-reflection zone plate (TRZP). This focal size is at the diffraction limit for the optic's aperture. This would be a noteworthy result, since the TRZP was fabricated using conventional lithography techniques. Alternative nanofocusing optics require more demanding fabrication methods. However, as I will discuss in this Comment, the intensity distribution presented by Takano et al. (Fig. 4 of ref. 1) is more consistent with the random speckle pattern produced by the scattering of a coherent incident beam by a distorted optic than withmore » a diffraction-limited focus. When interpreted in this manner, the true focal spot size is {approx}70 nm: 5 times the diffraction limit. When a coherent photon beam illuminates an optic containing randomly distributed regions which introduce different phase shifts, the scattered diffraction pattern consists of a speckle pattern. Each speckle will be diffraction-limited: the peak width of a single speckle depends entirely on the source coherence and gives no information about the optic. The envelope of the speckle distribution corresponds to the focal spot which would be observed using incoherent illumination. The width of this envelope is due to the finite size of the coherently-diffracting domains produced by slope and position errors in the optic. The focal intensity distribution in Fig. 4 of ref. 1 indeed contains a diffraction-limited peak, but this peak contains only a fraction of the power in the focused, and forms part of a distribution of sharp peaks with an envelope {approx}70 nm in width, just as expected for a speckle pattern. At the 4mm focal distance, the 70 nm width corresponds to a slope error of 18 {micro}rad. To reach the 14 nm diffraction limit, the slope error must be reduced to 3 {micro}rad. Takano et al. have identified a likely source of this error: warping due to stress as a result of zone deposition. It will be interesting to see whether the use of a more rigid substrate gives improved results.« less

  11. Effect of polarization fatigue on the Rayleigh coefficients of ferroelectric lead zirconate titanate thin films: Experimental evidence and implications

    NASA Astrophysics Data System (ADS)

    Lou, X. J.; Zhang, H. J.; Luo, Z. D.; Zhang, F. P.; Liu, Y.; Liu, Q. D.; Fang, A. P.; Dkhil, B.; Zhang, M.; Ren, X. B.; He, H. L.

    2014-09-01

    The effect of polarization fatigue on the Rayleigh coefficients of ferroelectric lead zirconate titanate (PZT) thin film was systematically investigated. It was found that electrical fatigue strongly affects the Rayleigh behaviour of the PZT film. Both the reversible and irreversible Rayleigh coefficients decrease with increasing the number of switching cycles. This phenomenon is attributed to the growth of an interfacial degraded layer between the electrode and the film during electrical cycling. The methodology used in this work could serve as an alternative way for evaluating the fatigue endurance and degradation in dielectric properties of ferroelectric thin-film devices during applications.

  12. Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell

    NASA Astrophysics Data System (ADS)

    Vial, M.; Hernández, R. H.

    2017-07-01

    We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (R a <1 04). Flow visualizations show a steady cellular convection pattern formed by 6 transverse rolls throughout the range of Rayleigh numbers.

  13. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.

    PubMed

    Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio

    2016-05-30

    The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.

  14. An exact solution for effects of topography on free Rayleigh waves

    USGS Publications Warehouse

    Savage, W.Z.

    2004-01-01

    An exact solution for the effects of topography on Rayleigh wave amplification is presented. The solution is obtained by incorporating conformal mapping into complex-variable stress functions developed for free Rayleigh wave propagation in an elastic half-space with a flat upper surface. Results are presented for free Rayleigh wave propagation across isolated symmetric ridges and valleys. It is found for wavelengths that are comparable to ridge widths that horizontal Rayleigh wave amplitudes are amplified at ridge crests and that vertical amplitudes are strongly reduced near ridge crests relative to horizontal and vertical amplitudes of free Rayleigh waves in the flat case. Horizontal amplitudes are strongly deamplified at valley bottoms relative to those for the flat case for Rayleigh wavelengths comparable to valley widths. Wave amplitudes in the symmetric ridges and valleys asymptotically approach those for the flat case with increased wavelengths, increased ridge and valley widths, and with horizontal distance from and depth below the isolated ridges and valleys. Also, prograde particle motion is predicted near crests of narrow ridges and near the bottoms of narrow valleys. Finally, application of the theory at two sites known for topographic wave amplification gives a predicted surface wave amplification ratio of 3.80 at the ridge center for a frequency of 1.0 Hz at Robinwood Ridge in northern California and a predicted surface wave amplification ratio of 1.67 at the ridge center for the same frequency at the Cedar Hill Nursery site at Tarzana in southern California.

  15. Rayleigh-wave mode separation by high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  16. Studies on design of 351  nm focal plane diagnostic system prototype and focusing characteristic of SGII-upgraded facility at half achievable energy performance.

    PubMed

    Liu, Chong; Ji, Lailin; Yang, Lin; Zhao, Dongfeng; Zhang, Yanfeng; Liu, Dong; Zhu, Baoqiang; Lin, Zunqi

    2016-04-01

    In order to obtain the intensity distribution of a 351 nm focal spot and smoothing by spectral dispersion (SSD) focal plane profile of a SGII-upgraded facility, a type of off-axis imaging system with three spherical mirrors, suitable for a finite distance source point to be imaged near the diffraction limit has been designed. The quality factor of the image system is 1.6 times of the diffraction limit tested by a 1053 nm point source. Because of the absence of a 351 nm point source, we can use a Collins diffraction imaging integral with respect to λ=351  nm, corresponding to a quality factor that is 3.8 times the diffraction limit at 351 nm. The calibration results show that at least the range of ±10  mrad of view field angle and ±50  mm along the axial direction around the optimum object distance can be satisfied with near diffraction limited image that is consistent with the design value. Using this image system, the No. 2 beam of the SGII-upgraded facility has been tested. The test result of the focal spot of final optics assembly (FOA) at 351 nm indicates that about 80% of energy is encompassed in 14.1 times the diffraction limit, while the output energy of the No. 2 beam is 908 J at 1053 nm. According to convolution theorem, the true value of a 351 nm focal spot of FOA is about 12 times the diffraction limit because of the influence of the quality factor. Further experimental studies indicate that the RMS value along the smoothing direction is less than 15.98% in the SSD spot test experiment. Computer simulations show that the quality factor of the image system used in the experiment has almost no effect on the SSD focal spot test. The image system can remarkably distort the SSD focal spot distribution under the circumstance of the quality factor 15 times worse than the diffraction limit. The distorted image shows a steep slope in the contour of the SSD focal spot along the smoothing direction that otherwise has a relatively flat top region around the focal spot center.

  17. Pluto's Polygonal Terrain Places Lower Limit on Planetary Heat Flow

    NASA Astrophysics Data System (ADS)

    Trowbridge, A.; Steckloff, J. K.; Melosh, H., IV; Freed, A. M.

    2015-12-01

    During its recent flyby of Pluto, New Horizons imaged an icy plains region (Sputnik Planum) whose surface is divided into polygonal blocks, ca. 20-30 km across, bordered by what appear to be shallow troughs. The lack of craters within these plains suggests they are relatively young, implying that the underlying material is recently active. The scale of these features argues against an origin by cooling and contraction. Here we investigate the alternative scenario that they are the surface manifestation of shallow convection in a thick layer of nitrogen ice. Typical Rayleigh-Bernard convective cells are approximately three times wider than the depth of the convecting layer, implying a layer depth of ca. 7-10 km. Our convection hypothesis requires that the Rayleigh number exceed a minimum of about 1000 in the nitrogen ice layer. We coupled a parameterized convection model with a temperature dependent rheology of nitrogen ice (Yamashita, 2008), finding a Rayleigh number 1500 to 7500 times critical for a plausible range of heat flows for Pluto's interior. The computed range of heat flow (3.5-5.2 mW/m2) is consistent with the radiogenic heat generated by a carbonaceous chondrite (CC) core implied by Pluto's bulk density. The minimum heat flow at the critical Rayleigh number is 0.13 mW/m2. Our model implies a core temperature of 44 K in the interior of the convecting layer. This is very close to the exothermic β-α phase transition in nitrogen ice at 35.6 K (for pure N2 ice; dissolved CO can increase this, depending on its concentration), suggesting that the warm cores of the rising convective cells may be β phase, whereas the cooler sinking limbs may be α phase. This transition may thus be observable due to the large difference in their spectral signature. Further applying our model to Pluto's putative water ice mantle, the heat flow from CC is consistent with convection in Pluto's mantle and the activity observed on its surface.

  18. On mantle heterogeneity and anisotropy as mapped by inversion of global surface wave data

    NASA Astrophysics Data System (ADS)

    Khan, A.; Boschi, L.; Connolly, J.; Deschamps, F.

    2008-12-01

    We jointly invert Love and Rayleigh wave dispersion curves for the Earth's mantle composition, thermal state, P and S wave anisotropy at different locations on the Earth, based on self-consistent thermodynamic calculations. The method consists of four parts: 1. The composition of the Earth is modeled by the chemical system CaO-FeO-MgO- Al2O3-SiO2. Given these parameters and a geotherm (also an unknown), we calculate stable mineral modes, elastic properties, bulk density at the prevailing physical conditions using Gibbs free energy minimisation. Voigt-Reuss-Hill averaging is subsequently emplouyed to compute radial isotropic P and S wave velocity profiles in the elastic limit. 2. Anisotropic P and S wave velocities are determined from the isotropic ones by employing the relations ξ=(Vsh/Vsv)2, φ = (Vpv/Vph)2, η=F/(2A-L), Vs=(2Vsv2+Vsh2)/3 and Vp=(Vpv2+4Vph2)/5. The former three parameters are the standard anisotropy parameters, that we also invert for. 4. From these radial profiles, i.e. of Vsv, Vsh, Vph, Vpv and ρ, sunthetic Love and Rayleigh wave dispersion curves are calculated. The dispersion curves, which comprise fundamental and overtones up to 5th (Love) and 6th (Rayleigh) order have been extracted from global surface wave velocity maps. Given the above scheme, the data are at each location are jointly inverted using a Markov Chain Monte Carlo algorithm, from which a range of compositions, temperatures and radial profiles of anisotropy parameters, fitting data within uncertainties, are obtained. Our method has several advantages over standard approaches, in that no scaling relationships between Vs and Vp and ρ and Vs have to be introduced, implying that the full sensitivity of Rayleigh and Love waves to the parameters Vs, Vp and ρ is accounted for. In this particular study we investigate 5 locations distributed across the globe and reveal mantle chemical and thermal differences at these locations.

  19. Rayleigh-wave Tomography Study of Northwestern Canada

    NASA Astrophysics Data System (ADS)

    McLellan, M. E.; Audet, P.; Schaeffer, A. J.

    2015-12-01

    Due to the ongoing collision of the Yakutat block with the North American plate in southeastern Alaska, a significant amount of deformation is occurring in the northern Canadian Cordillera. The stress transfer associated with the accretion of this terrane is believed to be responsible for the seismicity across this widespread region. Estimates of crustal thickness within the Mackenzie and Richardson Mountains provide constraints on models describing the evolution of crustal roots responsible for supporting such belts that transmit tectonic stresses over long distances (>1000 km); unfortunately, current seismic velocity models used to map crustal thickness have limited resolution due to sparse coverage by seismograph networks. Here we use data from a new regional seismograph network (Yukon-Northwest Seismograph Network - YNSN) as well as permanent stations to map out crustal structure. Crustal thickness variations can be obtained from 3-D seismic velocity models determined from the inversion of surface-wave dispersion data. In this work we present preliminary results of a regional tomography study of northwestern Canada, encompassing the northern Canadian Cordillera, using dispersion curves derived from ambient noise cross-correlations in addition to teleseismic two-station interferometry. We collected all available vertical component seismic data from stations located in the Yukon and surrounding regions from the period between June 2012 and June 2015. Using this data set, we first cross-correlated hour-long segments of the ambient seismic noise between all available stations pairs that share common data availability and obtained virtual Rayleigh waves with energy over periods 10-50 s that are predominantly sensitive to crust and uppermost mantle structure. This data set is complemented by Rayleigh-wave dispersion measurements, spanning the period range 25—175 s, derived by cross-correlating vertical component data from teleseismic earthquakes (M>5) lying along the great circle path between individual station pairs. We then measured group and phase velocities from these Rayleigh wave data sets and produced the first regional, high-resolution, azimuthally anisotropic phase and group velocity maps of northwestern Canada.

  20. Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods.

    PubMed

    Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G

    2014-01-27

    Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.

  1. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Gene

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb 3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber opticmore » sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh backscattered laser signals that are shifted by the changes in the fiber that are induced by a local change in the YBCO temperature or strain. One goal of this project was to show that modern technology can be used to interrogate the signals from a (very expensive) YBCO magnet to detect an impending quench in time to protect it from self-destruction. The results show that Rayleigh-backscattering interrogated optical fibers (RIOF) have significant advantages over traditional techniques, including very high spatial resolution and the ability to detect a hot-spot well before the peak local temperature becomes so high that the conductor can be damaged. RIOF quench detection is intrinsically faster than voltage taps, and this intrinsic advantage is greater as the coil size and/or current margin increases. We describe the development and testing program performed under the grant.« less

  2. Observation of a Rayleigh Wave Induced by Infrasonic Elephant Vocalizations: a Possible Communication Mode?

    NASA Astrophysics Data System (ADS)

    Gunther, R.; O'Connell-Rodwell, C. E.; Klemperer, S.; Rodwell, T. C.; Haines, S.; Goldman, M.; Evans, J. R.

    2003-12-01

    A variety of animals such as arthropods, amphibians, reptiles, fish and rodents communicate by creating and sensing ground vibrations rather than, or in addition to, sound waves. There is evidence that this may be the case for elephants as well. We set out to characterize the Rayleigh wave generated by near-source coupling during elephant low frequency rumble vocalizations (25 Hz lasting 3-7 seconds), using standard engineering-scale seismology equipment. We used a 60-channel GeometricsT seismograph to record data from vertical and horizontal geophones and from microphones, placed along a 168-m cable near Salinas, CA. Seismic wave-speed for body waves (1400 m/s) and surface waves (440 m/s) and the air-wave velocity (340 m/s) were established using a sledgehammer source. Trained elephants vocalized on command at one end of our seismic recording spread. The vocalization was strongest at 25 to 28 Hz (with strong higher harmonics), with a duration of 3 to 4 seconds, and repeated multiple times with separations of 2 to 5 seconds. Unlike an explosive seismic source, the duration of the elephant vocalization is tens of times longer than the characteristic period of the source, lasting far longer than the total propagation time along our seismic recording spread (less than 500 ms), so that different propagating modes cannot be separated by different arrival times. Unlike a VibroseisTM sweep, the elephant rumble is relatively monotonic with no characteristic onset, ruling out the use of deconvolution techniques to recognize the signals. Using a semblance technique applied to linear moveouts on narrow-bandpass-filtered data, coupled with forward modeling, we demonstrate that the complex waves observed are the interference of an air wave and a Rayleigh wave traveling at the appropriate velocities. The Rayleigh wave appears to be generated at or close to the elephant, either by coupling through the elephant's body or through the air near the body to the ground. In our experiments, the amplitudes of both the elephant-coupled Rayleigh wave and the elephant-driven airwave had decayed to almost ambient noise levels at the end of our 168-m-long recording spread. This was most likely due to the high ambient-noise levels during our experiment. Free-ranging African elephants have been shown to respond to low-frequency calls of other elephants at ranges of 2 km with an ideal outer limit of 10 km. Because a surface wave decays at only 1/r, we speculate that wild elephants may detect the Rayleigh waves of other elephants via bone conduction or somatosensory reception or both, and hence may communicate at greater distances than possible using infrasonic calls transmitted through the atmosphere.

  3. A progress report on the ARRA-funded geotechnical site characterization project

    NASA Astrophysics Data System (ADS)

    Martin, A. J.; Yong, A.; Stokoe, K.; Di Matteo, A.; Diehl, J.; Jack, S.

    2011-12-01

    For the past 18 months, the 2009 American Recovery and Reinvestment Act (ARRA) has funded geotechnical site characterizations at 189 seismographic station sites in California and the central U.S. This ongoing effort applies methods involving surface-wave techniques, which include the horizontal-to-vertical spectral ratio (HVSR) technique and one or more of the following: spectral analysis of surface wave (SASW), active and passive multi-channel analysis of surface wave (MASW) and passive array microtremor techniques. From this multi-method approach, shear-wave velocity profiles (VS) and the time-averaged shear-wave velocity of the upper 30 meters (VS30) are estimated for each site. To accommodate the variability in local conditions (e.g., rural and urban soil locales, as well as weathered and competent rock sites), conventional field procedures are often modified ad-hoc to fit the unanticipated complexity at each location. For the majority of sites (>80%), fundamental-mode Rayleigh wave dispersion-based techniques are deployed and where complex geology is encountered, multiple test locations are made. Due to the presence of high velocity layers, about five percent of the locations require multi-mode inversion of Rayleigh wave (MASW-based) data or 3-D array-based inversion of SASW dispersion data, in combination with shallow P-wave seismic refraction and/or HVSR results. Where a strong impedance contrast (i.e. soil over rock) exists at shallow depth (about 10% of sites), dominant higher modes limit the use of Rayleigh wave dispersion techniques. Here, use of the Love wave dispersion technique, along with seismic refraction and/or HVSR data, is required to model the presence of shallow bedrock. At a small percentage of the sites, surface wave techniques are found not suitable for stand-alone deployment and site characterization is limited to the use of the seismic refraction technique. A USGS Open File Report-describing the surface geology, VS profile and the calculated VS30 for each site-will be prepared after the completion of the project in November 2011.

  4. Search for methane isotope fractionation due to Rayleigh distillation on Titan

    NASA Astrophysics Data System (ADS)

    Ádámkovics, Máté; Mitchell, Jonathan L.

    2016-09-01

    We search for meridional variation in the abundance of CH3D relative to CH4 on Titan using near-IR spectra obtained with NIRSPAO at Keck, which have a photon-limited signal-to-noise ratio of ∼50. Our observations can rule out a larger than 10% variation in the column of CH3D below 50 km. The preferential condensation of the heavy isotopologues will fractionate methane by reducing CH3D in the remaining vapor, and therefore these observations place limits on the amount of condensation that occurs in the troposphere. While previous estimates of CH3D fractionation on Titan have estimated an upper limit of -6‰, assuming a solid condensate, we consider more recent laboratory data for the equilibrium fractionation over liquid methane, and use a Rayleigh distillation model to calculate fractionation in an ascending parcel of air that is following a moist adiabat. We find that deep, precipitating convection can enhance the fractionation of the remaining methane vapor by -10 to -40‰, depending on the final temperature of the rising parcel. By relating fractionation of our reference parcel model to the pressure level where the moist adiabat achieves the required temperature, we argue that the measured methane fractionation constrains the outflow level for a deep convective event. Observations with a factor of at least 4-6 times larger signal-to-noise are required to detect this amount of fractionation, depending on the altitude range over which the outflow from deep convection occurs.

  5. Modeling of direct detection Doppler wind lidar. I. The edge technique.

    PubMed

    McKay, J A

    1998-09-20

    Analytic models, based on a convolution of a Fabry-Perot etalon transfer function with a Gaussian spectral source, are developed for the shot-noise-limited measurement precision of Doppler wind lidars based on the edge filter technique by use of either molecular or aerosol atmospheric backscatter. The Rayleigh backscatter formulation yields a map of theoretical sensitivity versus etalon parameters, permitting design optimization and showing that the optimal system will have a Doppler measurement uncertainty no better than approximately 2.4 times that of a perfect, lossless receiver. An extension of the models to include the effect of limited etalon aperture leads to a condition for the minimum aperture required to match light collection optics. It is shown that, depending on the choice of operating point, the etalon aperture finesse must be 4-15 to avoid degradation of measurement precision. A convenient, closed-form expression for the measurement precision is obtained for spectrally narrow backscatter and is shown to be useful for backscatter that is spectrally broad as well. The models are extended to include extrinsic noise, such as solar background or the Rayleigh background on an aerosol Doppler lidar. A comparison of the model predictions with experiment has not yet been possible, but a comparison with detailed instrument modeling by McGill and Spinhirne shows satisfactory agreement. The models derived here will be more conveniently implemented than McGill and Spinhirne's and more readily permit physical insights to the optimization and limitations of the double-edge technique.

  6. Diffraction limited 1064nm monolithic DBR-master oscillator power amplifier with more than 7W output power

    NASA Astrophysics Data System (ADS)

    Zink, Christof; Maaβdorf, André; Fricke, Jörg; Ressel, Peter; Maiwald, Martin; Sumpf, Bernd; Erbert, Götz; Tränkle, Günther

    2018-02-01

    High brightness diode lasers with a spectrally narrowband emission, several watts of output power with an almost diffraction limited beam quality are requested light sources for several applications. In this work, a monolithic master oscillator power amplifier will be presented. The resonator of the master oscillator is formed by a high-reflection DBR grating on the rear side and an internal DBR mirror. Its power is amplified in a ridge waveguide followed by a tapered section. The monolithic MOPA provides over 7 W at 1064 nm with a narrow spectral emission width below 20 pm and an almost diffraction limited beam.

  7. Resonance Rayleigh scattering method for highly sensitive detection of chitosan using aniline blue as probe

    NASA Astrophysics Data System (ADS)

    Zhang, Weiai; Ma, Caijuan; Su, Zhengquan; Bai, Yan

    2016-11-01

    This paper describes a highly sensitive and accurate approach using aniline blue (AB) (water soluble) as a probe to determine chitosan (CTS) through Resonance Rayleigh scattering (RRS). Under optimum experimental conditions, the intensities of RRS were linearly proportional to the concentration of CTS in the range from 0.01 to 3.5 μg/mL, and the limit of detection (LOD) was 6.94 ng/mL. Therefore, a new and highly sensitive method based on RRS for the determination of CTS has been developed. Furthermore, the effect of molecular weight of CTS and the effect of the degree of deacetylation of CTS on the accurate quantification of CTS was studied. The experimental data was analyzed by linear regression analysis, which indicated that the molecular weight and the degree of deacetylation of CTS had no statistical significance and this method could be used to determine CTS accurately. Meanwhile, this assay was applied for CTS determination in health products with satisfactory results.

  8. Concentric layered Hermite scatterers

    NASA Astrophysics Data System (ADS)

    Astheimer, Jeffrey P.; Parker, Kevin J.

    2018-05-01

    The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.

  9. Highly sensitive and selective determination of fluorine ion by graphene oxide/nanogold resonance Rayleigh scattering-energy transfer analytical platform.

    PubMed

    Liang, Aihui; Peng, Jing; Liu, Qingye; Wen, Guiqing; Lu, Zhujun; Jiang, Zhiliang

    2015-08-15

    In pH 4.0 acetate buffer solution, fluorine ions react with fluorine reagent (FR) and La(III) to generate blue ternary complex that exhibited strong absorption at about 370 nm. Upon addition of graphene oxide/nanogold (GO/NG) as resonance Rayleigh scattering (RRS) spectral probe with strong RRS peak at 370 nm, the color changed to gray, and the RRS intensity decreased with the increase of fluorine ion concentration due to the RRS energy transfer (RRSET) from GO/NG to the complex. Under the selected condition, the decreased RRS peak ΔI370 nm was linear to fluorine ion concentration in the range of 6.0 × 10(-8)-1.3 × 10(-5)mol/L, with a detection limit of 3.0 × 10(-8)mol/L F(-). This RRSET method was applied to the analysis of fluorine in toothpaste and water samples, with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cellulosic nanowhiskers. Theory and application of light scattering from polydisperse spheroids in the Rayleigh-Gans-Debye regime.

    PubMed

    Braun, Birgit; Dorgan, John R; Chandler, John P

    2008-04-01

    Mathematical treatment of light scattering within the Rayleigh-Gans-Debye limit for spheroids with polydispersity in both length and diameter is developed and experimentally tested using cellulosic nanowhiskers (CNW). Polydispersity indices are obtained by fitting the theoretical formfactor to experimental data. Good agreement is achieved using a polydispersity of 2.3 for the length, independent of the type of acid used. Diameter polydispersities are 2.1 and 3.0 for sulfuric and hydrochloric acids, respectively. These polydispersities allow the determination of average dimensions from the z-average mean-square radius (z) and the weight-average molecular weight (M w) easily obtained from Berry plots. For cotton linter hydrolyzed by hydrochloric acid, the average length and diameter are 244 and 22 nm. This compares to average length and diameter of 272 and 13 nm for sulfuric acid. This study establishes a new light-scattering methodology as a quick and robust tool for size characterization of polydisperse spheroidal nanoparticles.

  11. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, M. L.; Liu, B.; Hu, R. H.

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with highermore » energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.« less

  12. An investigation on the interaction of DNA with hesperetin/apigenin in the presence of CTAB by resonance Rayleigh light scattering technique and its analytical application

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Wang, Yu; Pang, Bo; Yan, Lili; Wang, Tianjiao

    2012-05-01

    Two new systems for measuring DNA at nanogram levels by a resonance Rayleigh light scattering (RLS) technique with a common spectrofluorometer were proposed. In the presence of cetyltrimethylammonium bromide (CTAB), the interaction of DNA with hesperetin and apigenin (two effective components of Chinese herbal medicine) could enhance RLS signals with the maximum peak at 363 and 433 nm respectively. The enhanced intensity of RLS was directly proportional to the concentration of DNA in the range of 0.022-4.4 μg mL-1 for DNA-CTAB-hesperetin system and 0.013-4.4 μg mL-1 for DNA-CTAB-apigenin system. The detection limit was 2.34 ng mL-1 and 2.97 ng mL-1 respectively. Synthetic samples were measured satisfactorily. The recovery of DNA-CTAB-hesperetin system was 97.3-101.9% and that of DNA-CTAB-apigenin system was 101.2-109.5%.

  13. Incorporation of flow injection analysis with dual-wavelength overlapping resonance Rayleigh scattering for rapid determination of malachite green and its metabolite in fish.

    PubMed

    Zhu, Jinghui; Qin, Mingyou; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2014-09-15

    A flow injection analysis (FIA) system combined with dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) has been established and validated for rapid determination of malachite green (MG) and its metabolite in fish samples. Under experimental condition, MG would react with Erythrosin (Ery) to form ion-association complexes, resulting in the occurrence of two RRS peaks and a dramatic enhancement of RRS intensity. The maximum RRS peaks were located at 286 nm and 337 nm. It is noted that the increments of both of these two peaks were proportional to the concentration of MG. The detection limit of DWO-RRS was 1.5 ng/mL, which was comparable to several reported methods. Moreover, the results of real sample analysis exhibited an acceptable recovery between 97.5% and 103.6%, indicating that the method had good reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Performance Enhancement of Bidirectional TWDM-PON by Rayleigh Backscattering Mitigation

    NASA Astrophysics Data System (ADS)

    Elewah, Ibrahim A.; Wadie, Martina N.; Aly, Moustafa H.

    2018-01-01

    A bidirectional time wavelength division multiplexing-passive optical network (TWDM-PON) with a centralized light source (CLS) is designed and evaluated. TWDM-PON is the promising solution for PON future expansion and migration. The most important issue that limits optical fiber transmission length is the interferometric noise caused by Rayleigh backscattering (RB). In this study, we demonstrate a TWDM-PON architecture with subcarrier at the remote node (RN) to mitigate the RB effect. A successful transmission with 8 optical channels is achieved using wavelength division multiplexing (WDM). Each optical channel is splitted into 8 time slots to achieve TWDM. The proposed scheme is operated over 20 km bidirectional single mode fiber (SMF). The proposed system has the advantage of expanding the downstream (DS) capacity to be 160 Gb/s (8 channels×20 Gb/s) and 20 Gb/s (8 channels×2.5 Gb/s) for the upstream (US) transmission capacity. This is accomplished by a remarkable bit error rate (BER) and low complexity.

  15. Resonance Rayleigh scattering technique for simple and sensitive analysis of tannic acid with carbon dots

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Yang, Liu; Zhu, Jinghui; Yang, Jidong; Liu, Shaopu; Qiao, Man; Duan, Ruilin; Hu, Xiaoli

    2017-02-01

    Carbon dots (CDs) are raising a substantial amount of attention owing to their many unique and novel physicochemical properties. Herein one-pot synthesized CDs, to the best of our knowledge, were first served as the robust nanoprobe for detection tannic acid (TA) based on resonance Rayleigh scattering technique. The as-prepared CDs can combine with TA via hydrogen bond, resulting in remarkable enhancement of scattering signal with no changes in the fluorescence of CDs. Therefore, a novel protocol for TA determination was established and this strategy allowed quantitative detection of TA in the linear range of 0.2-10.0 μmol L- 1 with an excellent detection limit of 9.0 nmol L- 1. Moreover, the CDs based nanoprobe can be applied to the determination of TA in water sample with satisfactory results. Our study can potentially influence our current views on CDs and particularly impressive and offers new insights into application of CDs beyond the traditional understanding of CDs.

  16. Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance

    NASA Technical Reports Server (NTRS)

    Shackleford, W. L.

    1980-01-01

    A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.

  17. Small High-Speed Self-Acting Shaft Seals for Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Burcham, R. E.; Boynton, J. L.

    1977-01-01

    Design analysis, fabrication, and experimental evaluation were performed on three self-acting facetype LOX seal designs and one circumferential-type helium deal design. The LOX seals featured Rayleigh step lift pad and spiral groove geometry for lift augmentation. Machined metal bellows and piston ring secondary seal designs were tested. The helium purge seal featured floating rings with Rayleigh step lift pads. The Rayleigh step pad piston ring and the spiral groove LOX seals were successfully tested for approximately 10 hours in liquid oxygen. The helium seal was successfully tested for 24 hours. The shrouded Rayleigh step hydrodynamic lift pad LOX seal is feasible for advanced, small, high-speed oxygen turbopumps.

  18. Convection in the Rayleigh-Bénard flow with all fluid properties variable

    NASA Astrophysics Data System (ADS)

    Sassos, Athanasios; Pantokratoras, Asterios

    2011-10-01

    In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Bénard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.

  19. Numerical analysis of interface debonding detection in bonded repair with Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Li, BingCheng; Lu, Miaomiao

    2017-01-01

    This paper studied how to use the variation of the dispersion curves of Rayleigh wave group velocity to detect interfacial debonding damage between FRP plate and steel beam. Since FRP strengthened steel beam is two layers medium, Rayleigh wave velocity dispersion phenomenon will happen. The interface debonding damage of FRP strengthened steel beam have an obvious effect on the Rayleigh wave velocity dispersion curve. The paper first put forward average Euclidean distance and Angle separation degree to describe the relationship between the different dispersion curves. Numerical results indicate that there is a approximate linear mapping relationship between the average Euclidean distance of dispersion curves and the length of interfacial debonding damage.

  20. Rayleigh wave nonlinear inversion based on the Firefly algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Teng-Fei; Peng, Geng-Xin; Hu, Tian-Yue; Duan, Wen-Sheng; Yao, Feng-Chang; Liu, Yi-Mou

    2014-06-01

    Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.

  1. Single-Shot Spectrally Resolved UV Rayleigh Scattering Measurements in High Speed Flow

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1996-01-01

    A single-shot UV molecular Rayleigh scattering technique to measure velocity in high speed flow is described. The beam from an injection-seeded, frequency quadrupled Nd:YAG laser (266 nm) is focused to a line in a free air jet with velocities up to Mach 1.3. Rayleigh scattered light is imaged through a planar mirror Fabry-Perot interferometer onto a Charged Coupled Device (CCD) array detector. Some laser light is also simultaneously imaged through the Fabry-Perot to provide a frequency reference. Two velocity measurements are obtained from each image. Multiple-pulse data are also given. The Rayleigh scattering velocity data show good agreement with velocities calculated from isentropic flow relations.

  2. The effect of pressure on spontaneous Rayleigh-Brillouin scattering spectrum in nitrogen

    NASA Astrophysics Data System (ADS)

    Yang, Chuanyin; Wu, Tao; Shang, Jingcheng; Zhang, Xinyi; Hu, Rongjing; He, XingDao

    2018-05-01

    In order to study the effect of gas pressure on spontaneous Rayleigh-Brillouin scattering spectrum and verify the validity of Tenti S6 model at pressures up to 8 atm, the spontaneous Rayleigh-Brillouin scattering experiment in nitrogen was performed for a wavelength of 532 nm at the constant room temperature of 296 K and a 90° scattering angle. By comparing the experimental spectrum with the theoretical spectrum, the normalized root mean square deviation was calculated and found less than 2.2%. It is verified that Tenti S6 model can be applied to the spontaneous Rayleigh-Brillion scattering of nitrogen under higher pressures. The results of the experimental data analysis demonstrate that pressure has more effect on Brillouin peak intensity and has negligible effect on Brillouin frequency shift, and pressure retrieval based on spontaneous Rayleigh-Brillouin scattering profile is a promising method for remote of pressure, such as harsh environment applications. Some factors that caused experiment deviations are also discussed.

  3. A hybrid Rayleigh-Taylor-current-driven coupled instability in a magnetohydrodynamically collimated cylindrical plasma with lateral gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Xiang, E-mail: xzhai@caltech.edu; Bellan, Paul M., E-mail: pbellan@caltech.edu

    We present an MHD theory of Rayleigh-Taylor instability on the surface of a magnetically confined cylindrical plasma flux rope in a lateral external gravity field. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability that cannot be described by either of the two instabilities alone. The lateral gravity breaks the axisymmetry of the system and couples all azimuthal modes together. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring atmore » a two-dimensional planar interface. The theory successfully explains the lateral Rayleigh-Taylor instability observed in the Caltech plasma jet experiment [Moser and Bellan, Nature 482, 379 (2012)]. Potential applications of the theory include magnetic controlled fusion, solar emerging flux, solar prominences, coronal mass ejections, and other space and astrophysical plasma processes.« less

  4. Pattern formation of Rayleigh-Bénard convection of cold water near its density maximum in a vertical cylindrical container.

    PubMed

    Li, You-Rong; Ouyang, Yu-Qing; Hu, Yu-Peng

    2012-10-01

    In order to understand the onset of convective instability and multiple stable convection patterns of buoyancy-driven convection of cold water near its density maximum in a vertical cylindrical container heated from below, a series of three-dimensional numerical simulations were performed. The aspect ratio of the container was 2 and Prandtl number of cold water was 11.57. The sidewall was considered to be perfectly adiabatic, and the density inversion parameter was fixed at 0.3. The result shows that the density inversion phenomenon in cold water has an important effect on the critical Rayleigh number for the onset of convection and the pattern formation at higher Rayleigh numbers. When the Rayleigh number varies from 3×10(3) to 1.2×10(5), eight stable, steady convection patterns are obtained under different initial conditions. The coexistence of multiple stable steady flow patterns is also observed within some specific ranges of the Rayleigh number.

  5. Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Li Long; Ma Ruiqiong

    2005-07-15

    Based on color-locking noisy field correlation, a time-delayed method is proposed to suppress the thermal effect, and the ultrafast longitudinal relaxation time can be measured even in an absorbing medium. One interesting feature in field-correlation effects is that Rayleigh-enhanced four-wave mixing (RFWM) with color-locking noisy light exhibits spectral symmetry and temporal asymmetry with no coherence spike at {tau}=0. Due to the interference between the Rayleigh-resonant signal and the nonresonant background, RFWM exhibits hybrid radiation-matter detuning with terahertz damping oscillations. The subtle Markovian high-order correlation effects have been investigated in the homodyne- or heterodyne-detected Rayleigh-enhanced attosecond sum-frequency polarization beats (RASPBs). Analyticmore » closed forms of fourth-order Markovian stochastic correlations are characterized for homodyne (quadratic) and heterodyne (linear) detection, respectively. Based on the polarization interference between two four-wave mixing processes, the phase-sensitive detection of RASPBs has also been used to obtain the real and imaginary parts of the Rayleigh resonance.« less

  6. Perturbational and nonperturbational inversion of Rayleigh-wave velocities

    USGS Publications Warehouse

    Haney, Matt; Tsai, Victor C.

    2017-01-01

    The inversion of Rayleigh-wave dispersion curves is a classic geophysical inverse problem. We have developed a set of MATLAB codes that performs forward modeling and inversion of Rayleigh-wave phase or group velocity measurements. We describe two different methods of inversion: a perturbational method based on finite elements and a nonperturbational method based on the recently developed Dix-type relation for Rayleigh waves. In practice, the nonperturbational method can be used to provide a good starting model that can be iteratively improved with the perturbational method. Although the perturbational method is well-known, we solve the forward problem using an eigenvalue/eigenvector solver instead of the conventional approach of root finding. Features of the codes include the ability to handle any mix of phase or group velocity measurements, combinations of modes of any order, the presence of a surface water layer, computation of partial derivatives due to changes in material properties and layer boundaries, and the implementation of an automatic grid of layers that is optimally suited for the depth sensitivity of Rayleigh waves.

  7. Limitations of the background field method applied to Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Nobili, Camilla; Otto, Felix

    2017-09-01

    We consider Rayleigh-Bénard convection as modeled by the Boussinesq equations, in the case of infinite Prandtl numbers and with no-slip boundary condition. There is a broad interest in bounds of the upwards heat flux, as given by the Nusselt number Nu, in terms of the forcing via the imposed temperature difference, as given by the Rayleigh number in the turbulent regime Ra ≫ 1 . In several studies, the background field method applied to the temperature field has been used to provide upper bounds on Nu in terms of Ra. In these applications, the background field method comes in the form of a variational problem where one optimizes a stratified temperature profile subject to a certain stability condition; the method is believed to capture the marginal stability of the boundary layer. The best available upper bound via this method is Nu ≲Ra/1 3 ( ln R a )/1 15 ; it proceeds via the construction of a stable temperature background profile that increases logarithmically in the bulk. In this paper, we show that the background temperature field method cannot provide a tighter upper bound in terms of the power of the logarithm. However, by another method, one does obtain the tighter upper bound Nu ≲ Ra /1 3 ( ln ln Ra ) /1 3 so that the result of this paper implies that the background temperature field method is unphysical in the sense that it cannot provide the optimal bound.

  8. A study on Rayleigh wave dispersion in bone according to Mindlin's Form II gradient elasticity.

    PubMed

    Vavva, Maria G; Gergidis, Leonidas N; Protopappas, Vasilios C; Charalambopoulos, Antonios; Polyzos, Demosthenes; Fotiadis, Dimitrios I

    2014-05-01

    The classical elasticity cannot effectively describe bone's mechanical behavior since only homogeneous media and local stresses are assumed. Additionally, it cannot predict the dispersive nature of the Rayleigh wave which has been reported in experimental studies and was also demonstrated in a previous computational study by adopting Mindlin's Form II gradient elasticity. In this work Mindlin's theory is employed to analytically determine the dispersion of Rayleigh waves in a strain gradient elastic half-space. An isotropic semi-infinite space is considered with properties equal to those of bone and dynamic behavior suffering from microstructural effects. Microstructural effects are considered by incorporating four intrinsic parameters in the stress analysis. The results are presented in the form of group and phase velocity dispersion curves and compared with existing computational results and semi-analytical curves calculated for a simpler case of Rayleigh waves in dipolar gradient elastic half-spaces. Comparisons are also performed with the velocity of the first-order antisymmetric mode propagating in a dipolar plate so as to observe the Rayleigh asymptotic behavior. It is shown that Mindlin's Form II gradient elasticity can effectively describe the dispersive nature of Rayleigh waves. This study could be regarded as a step toward the ultrasonic characterization of bone.

  9. Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air

    NASA Astrophysics Data System (ADS)

    Thalman, Ryan; Zarzana, Kyle J.; Tolbert, Margaret A.; Volkamer, Rainer

    2014-11-01

    Knowledge about Rayleigh scattering cross sections is relevant to predictions about radiative transfer in the atmosphere, and needed to calibrate the reflectivity of mirrors that are used in high-finesse optical cavities to measure atmospheric trace gases and aerosols. In this work we have measured the absolute Rayleigh scattering cross-section of nitrogen at 405.8 and 532.2 nm using cavity ring-down spectroscopy (CRDS). Further, multi-spectral measurements of the scattering cross-sections of argon, oxygen and air are presented relative to that of nitrogen from 350 to 660 nm using Broadband Cavity Enhanced Spectroscopy (BBCES). The reported measurements agree with refractive index based theory within 0.2±0.4%, and have an absolute accuracy of better than 1.3%. Our measurements expand the spectral range over which Rayleigh scattering cross section measurements of argon, oxygen and air are available at near-ultraviolet wavelengths. The expressions used to represent the Rayleigh scattering cross-section in the literature are evaluated to assess how uncertainties affect quantities measured by cavity enhanced absorption spectroscopic (CEAS) techniques. We conclude that Rayleigh scattering cross sections calculated from theory provide accurate data within very low error bounds, and are suited well to calibrate CEAS measurements of atmospheric trace gases and aerosols.

  10. Hard X-Ray Burst Detected From Caltech Plasma Jet Experiment Magnetic Reconnection Event

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan S.; Bellan, Paul M.

    2016-10-01

    In the Caltech plasma jet experiment a 100 kA MHD driven jet becomes kink unstable leading to a Rayleigh-Taylor instability that quickly causes a magnetic reconnection event. Movies show that the Rayleigh-Taylor instability is simultaneous with voltage spikes across the electrodes that provide the current that drives the jet. Hard x-rays between 4 keV and 9 keV have now been observed using an x-ray scintillator detector mounted just outside of a kapton window on the vacuum chamber. Preliminary results indicate that the timing of the x-ray burst coincides with a voltage spike on the electrodes occurring in association with the Rayleigh-Taylor event. The x-ray signal accompanies the voltage spike and Rayleigh-Taylor event in approximately 50% of the shots. A possible explanation for why the x-ray signal is sometimes missing is that the magnetic reconnection event may be localized to a specific region of the plasma outside the line of sight of the scintillator. The x-ray signal has also been seen accompanying the voltage spike when no Rayleigh-Taylor is observed. This may be due to the interframe timing on the camera being longer than the very short duration of the Rayleigh-Taylor instability.

  11. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets

    NASA Astrophysics Data System (ADS)

    Castillo-Orozco, Eduardo; Davanlou, Ashkan; Choudhury, Pretam K.; Kumar, Ranganathan

    2015-11-01

    The impact of droplets on a deep pool has applications in cleaning up oil spills, spray cooling, painting, inkjet printing, and forensic analysis, relying on the changes in properties such as viscosity, interfacial tension, and density. Despite the exhaustive research on different aspects of droplet impact, it is not clear how liquid properties can affect the instabilities leading to Rayleigh jet breakup and number of daughter drops formed after its pinch-off. In this article, through systematic experiments we investigate the droplet impact phenomena by varying viscosity and surface tension of liquids as well as impact speeds. Further, using numerical simulations, we show that Rayleigh-Plateau instability is influenced by these parameters, and capillary time scale is the appropriate scale to normalize the breakup time. Based on Ohnesorge number (Oh) and impact Weber number (We), a regime map for no breakup, Rayleigh jet breakup, and crown splash is suggested. Interestingly, crown splash is observed to occur at all Ohnesorge numbers; however, at high Oh, a large portion of kinetic energy is dissipated, and thus the Rayleigh jet is suppressed regardless of high impact velocity. The normalized required time for the Rayleigh jet to reach its peak varies linearly with the critical height of the jet.

  12. Circuit bounds on stochastic transport in the Lorenz equations

    NASA Astrophysics Data System (ADS)

    Weady, Scott; Agarwal, Sahil; Wilen, Larry; Wettlaufer, J. S.

    2018-07-01

    In turbulent Rayleigh-Bénard convection one seeks the relationship between the heat transport, captured by the Nusselt number, and the temperature drop across the convecting layer, captured by the Rayleigh number. In experiments, one measures the Nusselt number for a given Rayleigh number, and the question of how close that value is to the maximal transport is a key prediction of variational fluid mechanics in the form of an upper bound. The Lorenz equations have traditionally been studied as a simplified model of turbulent Rayleigh-Bénard convection, and hence it is natural to investigate their upper bounds, which has previously been done numerically and analytically, but they are not as easily accessible in an experimental context. Here we describe a specially built circuit that is the experimental analogue of the Lorenz equations and compare its output to the recently determined upper bounds of the stochastic Lorenz equations [1]. The circuit is substantially more efficient than computational solutions, and hence we can more easily examine the system. Because of offsets that appear naturally in the circuit, we are motivated to study unique bifurcation phenomena that arise as a result. Namely, for a given Rayleigh number, we find a reentrant behavior of the transport on noise amplitude and this varies with Rayleigh number passing from the homoclinic to the Hopf bifurcation.

  13. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    PubMed

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  14. Epicenter Location of Regional Seismic Events Using Love Wave and Rayleigh Wave Ambient Seismic Noise Green's Functions

    NASA Astrophysics Data System (ADS)

    Levshin, A. L.; Barmin, M. P.; Moschetti, M. P.; Mendoza, C.; Ritzwoller, M. H.

    2011-12-01

    We describe a novel method to locate regional seismic events based on exploiting Empirical Green's Functions (EGF) that are produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long time-series of ambient noise recorded at the two stations. The EGFs principally contain Rayleigh waves on the vertical-vertical cross-correlations and Love waves on the transverse-transverse cross-correlations. Earlier work (Barmin et al., "Epicentral location based on Rayleigh wave empirical Green's functions from ambient seismic noise", Geophys. J. Int., 2011) showed that group time delays observed on Rayleigh wave EGFs can be exploited to locate to within about 1 km moderate sized earthquakes using USArray Transportable Array (TA) stations. The principal advantage of the method is that the ambient noise EGFs are affected by lateral variations in structure similarly to the earthquake signals, so the location is largely unbiased by 3-D structure. However, locations based on Rayleigh waves alone may be biased by more than 1 km if the earthquake depth is unknown but lies between 2 km and 7 km. This presentation is motivated by the fact that group time delays for Love waves are much less affected by earthquake depth than Rayleigh waves; thus exploitation of Love wave EGFs may reduce location bias caused by uncertainty in event depth. The advantage of Love waves to locate seismic events, however, is mitigated by the fact that Love wave EGFs have a smaller SNR than Rayleigh waves. Here, we test the use of Love and Rayleigh wave EGFs between 5- and 15-sec period to locate seismic events based on the USArray TA in the western US. We focus on locating aftershocks of the 2008 M 6.0 Wells earthquake, mining blasts in Wyoming and Montana, and small earthquakes near Norman, OK and Dallas, TX, some of which may be triggered by hydrofracking or injection wells.

  15. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT

    PubMed Central

    Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.; Hufnagel, Lars

    2016-01-01

    We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5–12-fold compared with their conventional diffraction-limited LS analogs. PMID:26984498

  16. Robust reconstruction of time-resolved diffraction from ultrafast streak cameras

    PubMed Central

    Badali, Daniel S.; Dwayne Miller, R. J.

    2017-01-01

    In conjunction with ultrafast diffraction, streak cameras offer an unprecedented opportunity for recording an entire molecular movie with a single probe pulse. This is an attractive alternative to conventional pump-probe experiments and opens the door to studying irreversible dynamics. However, due to the “smearing” of the diffraction pattern across the detector, the streaking technique has thus far been limited to simple mono-crystalline samples and extreme care has been taken to avoid overlapping diffraction spots. In this article, this limitation is addressed by developing a general theory of streaking of time-dependent diffraction patterns. Understanding the underlying physics of this process leads to the development of an algorithm based on Bayesian analysis to reconstruct the time evolution of the two-dimensional diffraction pattern from a single streaked image. It is demonstrated that this approach works on diffraction peaks that overlap when streaked, which not only removes the necessity of carefully choosing the streaking direction but also extends the streaking technique to be able to study polycrystalline samples and materials with complex crystalline structures. Furthermore, it is shown that the conventional analysis of streaked diffraction can lead to erroneous interpretations of the data. PMID:28653022

  17. Macromolecular diffractive imaging using imperfect crystals

    PubMed Central

    Ayyer, Kartik; Yefanov, Oleksandr; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Lourdu Xavier, Paulraj; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.

    2016-01-01

    The three-dimensional structures of macromolecules and their complexes are predominantly elucidated by X-ray protein crystallography. A major limitation is access to high-quality crystals, to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields sufficiently high-resolution information that the crystal structure can be solved. The observation that crystals with shrunken unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks1,2 hints that crystallographic resolution for some macromolecules may be limited not by their heterogeneity but rather by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern, equal to the incoherent sum of diffraction from rigid single molecular complexes aligned along several discrete crystallographic orientations and hence with an increased information content3. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins4 —they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5 Å limit of measurable Bragg peaks, which allows us to directly phase5 the pattern. With the molecular envelope conventionally determined at 4.5 Å as a constraint, we then obtain a static image of the photosystem II dimer at 3.5 Å resolution. This result shows that continuous diffraction can be used to overcome long-supposed resolution limits of macromolecular crystallography, with a method that puts great value in commonly encountered imperfect crystals and opens up the possibility for model-free phasing6,7. PMID:26863980

  18. Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars.

    PubMed

    She, C Y

    2001-09-20

    It is well known that scattering lidars, i.e., Mie, aerosol-wind, Rayleigh, high-spectral-resolution, molecular-wind, rotational Raman, and vibrational Raman lidars, are workhorses for probing atmospheric properties, including the backscatter ratio, aerosol extinction coefficient, temperature, pressure, density, and winds. The spectral structure of molecular scattering (strength and bandwidth) and its constituent spectra associated with Rayleigh and vibrational Raman scattering are reviewed. Revisiting the correct name by distinguishing Cabannes scattering from Rayleigh scattering, and sharpening the definition of each scattering component in the Rayleigh scattering spectrum, the review allows a systematic, logical, and useful comparison in strength and bandwidth between each scattering component and in receiver bandwidths (for both nighttime and daytime operation) between the various scattering lidars for atmospheric sensing.

  19. Planform structure of turbulent Rayleigh-Benard convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theerthan, S.A.; Arakeri, J.H.

    The planform structure of turbulent Rayleigh-Benard convection is obtained from visualizing a liquid crystal sheet stuck to the bottom hot surface. The bottom plate of the convection cell is Plexiglas and the top plate is glass. Water is the test liquid and the Rayleigh number is 4 [times] 10[sup 7]. The planform pattern reveals randomly moving hot streaks surrounded by cold regions suggesting that turbulent Rayleigh-Benard convection is dominated by quasi-two-dimensional randomly moving plumes. Simultaneous temperature traces from two vertically separated thermocouples indicate that these plumes may be inclined forward in the direction of horizontal motion. The periodic eruption ofmore » thermals observed by Sparrow et al and which forms the basis of Howard's model is not observed.« less

  20. Instantaneous flow measurements in a supersonic wind tunnel using spectrally resolved Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E.; Reeder, Mark F.

    1995-01-01

    Results of a feasibility study to apply laser Rayleigh scattering to non-intrusively measure flow properties in a small supersonic wind tunnel are presented. The technique uses an injection seeded, frequency doubled Nd:YAG laser tuned to an absorption band of iodine. The molecular Rayleigh scattered light is filtered with an iodine cell to block light at the laser frequency. The Doppler-shifted Rayleigh scattered light that passes through the iodine cell is analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode. An intensified CCD camera is used to record the images. The images are analyzed at several subregions, where the flow velocity is determined. Each image is obtained with a single laser pulse, giving instantaneous measurements.

  1. Microscale optical cryptography using a subdiffraction-limit optical key

    NASA Astrophysics Data System (ADS)

    Ogura, Yusuke; Aino, Masahiko; Tanida, Jun

    2018-04-01

    We present microscale optical cryptography using a subdiffraction-limit optical pattern, which is finer than the diffraction-limit size of the decrypting optical system, as a key and a substrate with a reflectance distribution as an encrypted image. Because of the subdiffraction-limit spatial coding, this method enables us to construct a secret image with the diffraction-limit resolution. Simulation and experimental results demonstrate, both qualitatively and quantitatively, that the secret image becomes recognizable when and only when the substrate is illuminated with the designed key pattern.

  2. How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? A full-sky polarimetric study.

    PubMed

    Suhai, Bence; Horváth, Gábor

    2004-09-01

    We present the first high-resolution maps of Rayleigh behavior in clear and cloudy sky conditions measured by full-sky imaging polarimetry at the wavelengths of 650 nm (red), 550 nm (green), and 450 nm (blue) versus the solar elevation angle thetas. Our maps display those celestial areas at which the deviation deltaalpha = /alphameas - alphaRyleigh/ is below the threshold alphathres = 5 degrees, where alphameas is the angle of polarization of skylight measured by full-sky imaging polarimetry, and alphaRayleigh is the celestial angle of polarization calculated on the basis of the single-scattering Rayleigh model. From these maps we derived the proportion r of the full sky for which the single-scattering Rayleigh model describes well (with an accuracy of deltaalpha = 5 degrees) the E-vector alignment of skylight. Depending on thetas, r is high for clear skies, especially for low solar elevations (40% < r < 70% for thetas < or = 13 degrees). Depending on the cloud cover and the solar illumination, r decreases more or less under cloudy conditions, but sometimes its value remains remarkably high, especially at low solar elevations (rmax = 69% for thetas = 0 degrees). The proportion r of the sky that follows the Rayleigh model is usually higher for shorter wavelengths under clear as well as cloudy sky conditions. This partly explains why the shorter wavelengths are generally preferred by animals navigating by means of the celestial polarization. We found that the celestial E-vector pattern generally follows the Rayleigh pattern well, which is a fundamental hypothesis in the studies of animal orientation and human navigation (e.g., in aircraft flying near the geomagnetic poles and using a polarization sky compass) with the use of the celestial alpha pattern.

  3. Development of a noninvasive diabetes screening device using the ratio of fluorescence to Rayleigh scattered light

    NASA Astrophysics Data System (ADS)

    Yu, Nai-Teng; Krantz, Brian S.; Eppstein, Jonathan A.; Ignotz, Keith D.; Samuels, Mark A.; Long, James R.; Price, John

    1996-07-01

    We have developed a new lens measurement system that simultaneously measures the intensities of fluorescence and Rayleigh components at various distances into the lens along the optical axis. The noninvasive measurement is performed through an undilated pupil, and with the assistance of a pupil tracking system that facilitates maintaining the x and y positions of the sample volume to within +/- 100 micrometers of any programmed 'lock' position. The intensity of the Rayleigh component that is used to normalize the measured fluorescent signal serves to correct the attenuation effects due to absorption and lens light scatter. This report, resulting from a SpectRx Site L clinical study using a refined instrumentation, presents analysis of fluorescence and Rayleigh data from the lenses of 923 controls and 239 diabetic subjects ranging from 23 to 75 years old. Fluorescence and Rayleigh data have been obtained via confocal mode from various locations nominally along the lens optical axis for controls and diabetics, at different ages, using three pairs of excitation and collection wavelengths: 364/495 nm, 434/495 nm, and 485/515 nm. For control subjects, there exists a strong, almost linear relationship between age and fluorescence, while diabetic subjects tend to deviate from this age-fluorescence relationship. Our data show that the lenses of diabetic patients are subject to an accelerated aging process, presumably due to an elevated level of brown and fluorescence protein adducts and crosslinks from nonenzymatic glycosylation. We have also shown that by using the measured Rayleigh profiles to normalize the measured fluorescence, most of the absorption effects are removed and therefore the separation between the fluorescence of diabetics and controls is greatly improved. Thus, the device for measuring fluorescence/Rayleigh ratios can be used to noninvasively screen populations for possible undiagnosed diabetes.

  4. Dynamic diffraction artefacts in Bragg coherent diffractive imaging

    DOE PAGES

    Hu, Wen; Huang, Xiaojing; Yan, Hanfei

    2018-02-01

    This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditionsmore » under which they are negligible.« less

  5. Dynamic diffraction artefacts in Bragg coherent diffractive imaging.

    PubMed

    Hu, Wen; Huang, Xiaojing; Yan, Hanfei

    2018-02-01

    This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditions under which they are negligible.

  6. Dynamic diffraction artefacts in Bragg coherent diffractive imaging

    PubMed Central

    Yan, Hanfei

    2018-01-01

    This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditions under which they are negligible. PMID:29507549

  7. Boundary layer analysis in turbulent Rayleigh-Bénard convection in air: experiment versus simulation.

    PubMed

    Li, Ling; Shi, Nan; du Puits, Ronald; Resagk, Christian; Schumacher, Jörg; Thess, André

    2012-08-01

    We report measurements and numerical simulations of the three-dimensional velocity and temperature fields in turbulent Rayleigh-Bénard convection in air. Highly resolved velocity and temperature measurements inside and outside the boundary layers have been directly compared with equivalent data obtained in direct numerical simulations (DNSs). This comparison comprises a set of two Rayleigh numbers at Ra=3×10(9) and 3×10(10) and a fixed aspect ratio; this is the ratio between the diameter and the height of the Rayleigh-Bénard cell of Γ=1. We find that the measured velocity data are in excellent agreement with the DNS results while the temperature data slightly differ. In particular, the measured mean temperature profile does not show the linear trend as seen in the DNS data, and the measured gradients at the wall are significantly higher than those obtained from the DNS. Both viscous and thermal boundary layer thickness scale with respect to the Rayleigh number as δ(v)~Ra(-0.24) and δ(θ)~Ra(-0.24), respectively.

  8. Two-photon absorption induced stimulated Rayleigh-Bragg scattering

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Prasad, Paras N.

    2005-01-01

    A frequency-unshifted and backward stimulated scattering can be efficiently generated in one-photon-absorption free but two-photon absorbing materials. Using a number of novel two-photon absorbing dye solutions as the scattering media and nanosecond pulsed laser as the pump beams, a highly directional backward stimulated scattering at the exact pump wavelength can be readily observed once the pump intensity is higher than a certain threshold level. The spectral and spatial structures as well as the temporal behavior and optical phase-conjugation property of this new type of backward stimulated scattering have been experimentally studied. This stimulated scattering phenomenon can be explained by using a model of two-photon-excitation enhanced standing-wave Bragg grating initially formed by the strong forward pump beam and much weaker backward Rayleigh scattering beam; the partial reflection of the pump beam from this grating provides an positive feedback to the initial backward Rayleigh scattering beam without suffering linear attenuation influence. Comparing to other known stimulated (Raman, Brillouin, Rayleigh-wing, and Kerr) scattering effects, the stimulated Rayleigh-Bragg scattering exhibits the advantages of no frequency-shift, low pump threshold, and low spectral linewidth requirement.

  9. Application of high-resolution linear Radon transform for Rayleigh-wave dispersive energy imaging and mode separating

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.

  10. Coherent x-ray diffraction imaging with nanofocused illumination.

    PubMed

    Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C

    2008-08-29

    Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.

  11. Stimulated Rayleigh-Bragg scattering in two-photon absorbing media

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Lu, Changgui; Zheng, Qingdong; Prasad, Paras N.; Zerom, Petros; Boyd, Robert W.; Samoc, Marek

    2005-06-01

    The origin and mechanism of backward stimulated Rayleigh scattering in two-photon absorbing media are studied theoretically and experimentally. This type of stimulated scattering has the unusual features of no frequency shift and low pump threshold requirement compared to all other known stimulated scattering effects. This frequency-unshifted stimulated Rayleigh scattering effect can be well explained by a two-photon-excitation-enhanced Bragg grating reflection model. The reflection of the forward pump beam from this stationary Bragg grating may substantially enhance the backward Rayleigh scattering beam, providing a positive feedback mechanism without causing any frequency shift. A two-counterpropagating-beam-formed grating experiment in a two-photon absorbing dye solution is conducted. The measured dynamic behavior of Bragg grating formation and reflectivity properties are basically consistent with the predictions from the proposed model.

  12. Multiple-Point Mass Flux Measurement System Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Clem, Michelle M.

    2009-01-01

    A multiple-point Rayleigh scattering diagnostic is being developed to provide mass flux measurements in gas flows. Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, temperature, and velocity measurements. Rayleigh scattered light from a focused 18 Watt continuous-wave laser beam is directly imaged through a solid Fabry-Perot etalon onto a CCD detector which permits spectral analysis of the light. The spatial resolution of the measurements is governed by the locations of interference fringes, which can be changed by altering the etalon characteristics. A prototype system has been used to acquire data in a Mach 0.56 flow to demonstrate feasibility of using this system to provide mass flux measurements. Estimates of measurement uncertainty and recommendations for system improvements are presented

  13. Expressions to Rayleigh circumferential phase velocity and dispersion relation for a cylindrical surface under mechanical pressure

    NASA Astrophysics Data System (ADS)

    Sebold, Jean Eduardo; de Lacerda, Luiz Alkimin

    2018-04-01

    This paper describes a substantiated mathematical theory for Rayleigh waves propagated on some types of metal cylinders. More specifically, it presents not only a new way to express the dispersion relation of Rayleigh waves propagated on the cylindrical surface, but also how it can be used to construct a mathematical equation showing that the applied static mechanical pressure affects the shear modulus of the metal cylinder. All steps, required to conclude the process, consider the equation of motion as a function of radial and circumferential coordinates only, while the axial component can be overlooked without causing any problems. Some numerical experiments are done to illustrate the changes in the Rayleigh circumferential phase velocity in a metal cylindrical section due to static mechanical pressure around its external surface.

  14. Spectral diffraction efficiency characterization of broadband diffractive optical elements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Junoh; Cruz-Cabrera, Alvaro Augusto; Tanbakuchi, Anthony

    Diffractive optical elements, with their thin profile and unique dispersion properties, have been studied and utilized in a number of optical systems, often yielding smaller and lighter systems. Despite the interest in and study of diffractive elements, the application has been limited to narrow spectral bands. This is due to the etch depths, which are optimized for optical path differences of only a single wavelength, consequently leading to rapid decline in efficiency as the working wavelength shifts away from the design wavelength. Various broadband diffractive design methodologies have recently been developed that improve spectral diffraction efficiency and expand the workingmore » bandwidth of diffractive elements. We have developed diffraction efficiency models and utilized the models to design, fabricate, and test two such extended bandwidth diffractive designs.« less

  15. Dynamic stabilization of classical Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Piriz, S. A.; Tahir, N. A.

    2011-09-15

    Dynamic stabilization of classical Rayleigh-Taylor instability is studied by modeling the interface vibration with the simplest possible wave form, namely, a sequence of Dirac deltas. As expected, stabilization results to be impossible. However, in contradiction to previously reported results obtained with a sinusoidal driving, it is found that in general the perturbation amplitude is larger than in the classical case. Therefore, no beneficial effect can be obtained from the vertical vibration of a Rayleigh-Taylor unstable interface between two ideal fluids.

  16. A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O2 airglow temperatures measurements

    NASA Astrophysics Data System (ADS)

    Taori, A.; Jayaraman, A.; Raghunath, K.; Kamalakar, V.

    2012-01-01

    The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O2 temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation.

  17. Rayleigh rejection filters for 193-nm ArF laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1993-01-01

    Selected organic absorbers and their solvents are evaluated as spectral filters for the rejection of 193-nm Rayleigh light associated with the use of an ArF excimer laser for Raman spectroscopy. A simply constructed filter cell filled with 0.5 percent acetone in water and an optical path of 7 mm is shown effectively to eliminate stray Rayleigh light underlying the Raman spectrum from air while transmitting 60 percent of the Raman light scattered by O2.

  18. Deviations from Rayleigh statistics in ultrasonic speckle.

    PubMed

    Tuthill, T A; Sperry, R H; Parker, K J

    1988-04-01

    The statistics of speckle patterns in ultrasound images have potential for tissue characterization. In "fully developed speckle" from many random scatterers, the amplitude is widely recognized as possessing a Rayleigh distribution. This study examines how scattering populations and signal processing can produce non-Rayleigh distributions. The first order speckle statistics are shown to depend on random scatterer density and the amplitude and spacing of added periodic scatterers. Envelope detection, amplifier compression, and signal bandwidth are also shown to cause distinct changes in the signal distribution.

  19. Control of experimental uncertainties in filtered Rayleigh scattering measurements

    NASA Technical Reports Server (NTRS)

    Forkey, Joseph N.; Finkelstein, N. D.; Lempert, Walter R.; Miles, Richard B.

    1995-01-01

    Filtered Rayleigh Scattering is a technique which allows for measurement of velocity, temperature, and pressure in unseeded flows, spatially resolved in 2-dimensions. We present an overview of the major components of a Filtered Rayleigh Scattering system. In particular, we develop and discuss a detailed theoretical model along with associated model parameters and related uncertainties. Based on this model, we then present experimental results for ambient room air and for a Mach 2 free jet, including spatially resolved measurements of velocity, temperature, and pressure.

  20. Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror.

    PubMed

    Ojima, Yasukuni; Nawata, Kouji; Omatsu, Takashige

    2005-10-31

    We have produced a high beam quality pico-second laser based on a continuous-wave diode pumped Nd:YVO4 slab amplifier with a photorefractive phase conjugate mirror. 12.8W diffraction-limited output with a pulse width of 8.7ps was obtained.

  1. Coherent Beam Combining of Fiber Amplifiers via LOCSET (Postprint)

    DTIC Science & Technology

    2012-07-10

    load on final optics , and atmospheric turbulence compensation [20]. More importantly, tiled array systems are being investigated for extension to...compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies. Despite...including: compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies

  2. Optimal lens design and use in laser-scanning microscopy

    PubMed Central

    Negrean, Adrian; Mansvelder, Huibert D.

    2014-01-01

    In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm. PMID:24877017

  3. The effect of optically active turbulence on Gaussian laser beams in the ocean

    NASA Astrophysics Data System (ADS)

    Nootz, G.; Matt, S.; Jarosz, E.; Hou, W.

    2016-02-01

    Motivated by the high resolution and data transfer potential, optical imaging and communication methods are intensely investigated for marine applications. The majority of research focuses on overcoming the strong scattering of light by particles present in the ocean. However when operating in very clear water the limiting factor for such applications can be the strongly forward biased scattering from optically active turbulent layers. For this presentation the effect of optically active turbulence on focused Gaussian beams has been studied in the field, in a controlled laboratory test tank, and by numerical simulations. For the field experiments a telescoping rigid underwater sensor structure (TRUSS) was deployed in the Bahamas equipped with a diffractive optics element projecting a matrix of beams towards a fast beam profiler. Image processing techniques are used to extract the beam wander and beam breathing. The results are compared to theoretical values for the optical turbulence strength derived from the measured temperature microstructure at the test side. Laboratory and simulated experiments are carried out in a physical and numerical Rayleigh-Benard convection turbulence tank of the same geometry. A focused Gaussian laser beam is propagated through the test tank and recorded with a camera from the back side of a diffuser. Similarly, a focused Gaussian beam is propagated numerically by means of split-step Fourier method through the simulated turbulence environment. Results will be presented for weak to moderate turbulence as they are most typical for oceanic conditions. Conclusions about the effect on optical imaging and communication applications will be discussed.

  4. Predicting propagation limits of laser-supported detonation by Hugoniot analysis

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Ofosu, Joseph A.; Komurasaki, Kimiya; Koizumi, Hiroyuki

    2015-01-01

    Termination conditions of a laser-supported detonation (LSD) wave were investigated using control volume analysis with a Shimada-Hugoniot curve and a Rayleigh line. Because the geometric configurations strongly affect the termination condition, a rectangular tube was used to create the quasi-one-dimensional configuration. The LSD wave propagation velocity and the pressure behind LSD were measured. Results reveal that the detonation states during detonation and at the propagation limit are overdriven detonation and Chapman-Jouguet detonation, respectively. The termination condition is the minimum velocity criterion for the possible detonation solution. Results were verified using pressure measurements of the stagnation pressure behind the LSD wave.

  5. Breaking the acoustic diffraction barrier with localization optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Razansky, Daniel

    2018-02-01

    Diffraction causes blurring of high-resolution features in images and has been traditionally associated to the resolution limit in light microscopy and other imaging modalities. The resolution of an imaging system can be generally assessed via its point spread function, corresponding to the image acquired from a point source. However, the precision in determining the position of an isolated source can greatly exceed the diffraction limit. By combining the estimated positions of multiple sources, localization-based imaging has resulted in groundbreaking methods such as super-resolution fluorescence optical microscopy and has also enabled ultrasound imaging of microvascular structures with unprecedented spatial resolution in deep tissues. Herein, we introduce localization optoacoustic tomography (LOT) and discuss on the prospects of using localization imaging principles in optoacoustic imaging. LOT was experimentally implemented by real-time imaging of flowing particles in 3D with a recently-developed volumetric optoacoustic tomography system. Provided the particles were separated by a distance larger than the diffraction-limited resolution, their individual locations could be accurately determined in each frame of the acquired image sequence and the localization image was formed by superimposing a set of points corresponding to the localized positions of the absorbers. The presented results demonstrate that LOT can significantly enhance the well-established advantages of optoacoustic imaging by breaking the acoustic diffraction barrier in deep tissues and mitigating artifacts due to limited-view tomographic acquisitions.

  6. Resonance Rayleigh scattering method for determination of 2-mercaptobenzothiazole using gold nanoparticles probe.

    PubMed

    Parham, Hooshang; Pourreza, Nahid; Marahel, Farzaneh

    2015-01-01

    A sensitive, simple and novel method was developed to determine 2-mercaptobenzothiazole (2MBT) in water samples. This method was based on the interaction between gold nanoparticles (AuNPs) and 2MBT followed by increasing of the resonance Rayleigh scattering (RRS) intensity of nanoparticles. The change in RRS intensity (ΔIRRS) was linearly correlated to the concentration of 2MBT over the ranges of 5.0-100.0 and 100.0-300.0 μg L(-1). 2MBT can be measured in a short time (5 min) without any complicated or time-consuming sample pretreatment process. Parameters that affect the RRS intensities such as pH, concentration of AuNPs, standing time, electrolyte concentration, and coexisting substances were systematically investigated and optimized. Interference tests showed that the developed method has a very good selectivity and could be used conveniently for determination of 2MBT. The limit of detection (LOD) and limit of quantification (LOQ) were 1.0 and 3.0 μg L(-1), respectively. Relative standard deviations (RSD) for 20.0 and 80.0 μg L(-1) of 2MBT were 1.1 and 2.3, respectively. Possible mechanisms for the RRS changes of AuNPs in the presence of 2MBT were discussed and the method was successfully applied for the analysis of real water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Vector spherical quasi-Gaussian vortex beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2014-02-01

    Model equations for describing and efficiently computing the radiation profiles of tightly spherically focused higher-order electromagnetic beams of vortex nature are derived stemming from a vectorial analysis with the complex-source-point method. This solution, termed as a high-order quasi-Gaussian (qG) vortex beam, exactly satisfies the vector Helmholtz and Maxwell's equations. It is characterized by a nonzero integer degree and order (n,m), respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and an azimuthal phase dependency in the form of a complex exponential corresponding to a vortex beam. An attractive feature of the high-order solution is the rigorous description of strongly focused (or strongly divergent) vortex wave fields without the need of either the higher-order corrections or the numerically intensive methods. Closed-form expressions and computational results illustrate the analysis and some properties of the high-order qG vortex beams based on the axial and transverse polarization schemes of the vector potentials with emphasis on the beam waist.

  8. Room temperature exciton-polariton resonant reflection and suppressed absorption in periodic systems of InGaN quantum wells

    NASA Astrophysics Data System (ADS)

    Bolshakov, A. S.; Chaldyshev, V. V.; Zavarin, E. E.; Sakharov, A. V.; Lundin, W. V.; Tsatsulnikov, A. F.; Yagovkina, M. A.

    2017-04-01

    We studied the optical properties of periodic InGaN/GaN multiple quantum well systems with different numbers of periods. A resonant increase in the optical reflection and simultaneous suppression of the optical absorption have been revealed experimentally at room temperature when the Bragg and exciton resonances were tuned to each other. Numerical modeling with a single set of parameters gave a quantitatively accurate fit of the experimental reflection and transmission spectra in a wide wavelength range and various angles of the light incidence. The model included both exciton resonance and non-resonant band-to-band transitions in the InGaN quantum wells, as well as Rayleigh light scattering in the GaN buffer layer. The analysis also involved x-ray diffraction and photoluminescence data. It allowed us to determine the key parameters of the structure. In particular, the radiative broadening of the InGaN QW excitons was evaluated as 0.20 ± 0.02 meV.

  9. Forwardscattering corrections for optical extinction measurements in aerosol media. II - Polydispersions

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Box, M. A.

    1978-01-01

    The paper presents a parametric study of the forwardscattering corrections for experimentally measured optical extinction coefficients in polydisperse particulate media, since some forward scattered light invariably enters, along with the direct beam, into the finite aperture of the detector. Forwardscattering corrections are computed by two methods: (1) using the exact Mie theory, and (2) the approximate Rayleigh diffraction formula for spherical particles. A parametric study of the dependence of the corrections on mode radii, real and imaginary parts of the complex refractive index, and half-angle of the detector's view cone has been carried out for three different size distribution functions of the modified gamma type. In addition, a study has been carried out to investigate the range of these parameters in which the approximate formulation is valid. The agreement is especially good for small-view cone angles and large particles, which improves significantly for slightly absorbing aerosol particles. Also discussed is the dependence of these corrections on the experimental design of the transmissometer systems.

  10. Short-Period Surface Wave Based Seismic Event Relocation

    NASA Astrophysics Data System (ADS)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  11. Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar.

    PubMed

    Hauchecorne, Alain; Cot, Charles; Dalaudier, Francis; Porteneuve, Jacques; Gaudo, Thierry; Wilson, Richard; Cénac, Claire; Laqui, Christian; Keckhut, Philippe; Perrin, Jean-Marie; Dolfi, Agnès; Cézard, Nicolas; Lombard, Laurent; Besson, Claudine

    2016-05-01

    Atmospheric gravity waves and turbulence generate small-scale fluctuations of wind, pressure, density, and temperature in the atmosphere. These fluctuations represent a real hazard for commercial aircraft and are known by the generic name of clear-air turbulence (CAT). Numerical weather prediction models do not resolve CAT and therefore provide only a probability of occurrence. A ground-based Rayleigh lidar was designed and implemented to remotely detect and characterize the atmospheric variability induced by turbulence in vertical scales between 40 m and a few hundred meters. Field measurements were performed at Observatoire de Haute-Provence (OHP, France) on 8 December 2008 and 23 June 2009. The estimate of the mean squared amplitude of bidimensional fluctuations of lidar signal showed excess compared to the estimated contribution of the instrumental noise. This excess can be attributed to atmospheric turbulence with a 95% confidence level. During the first night, data from collocated stratosphere-troposphere (ST) radar were available. Altitudes of the turbulent layers detected by the lidar were roughly consistent with those of layers with enhanced radar echo. The derived values of turbulence parameters Cn2 or CT2 were in the range of those published in the literature using ST radar data. However, the detection was at the limit of the instrumental noise and additional measurement campaigns are highly desirable to confirm these initial results. This is to our knowledge the first successful attempt to detect CAT in the free troposphere using an incoherent Rayleigh lidar system. The built lidar device may serve as a test bed for the definition of embarked CAT detection lidar systems aboard airliners.

  12. Multiparameter Flowfield Measurements in High-Pressure, Cryogenic Environments Using Femtosecond Lasers

    NASA Technical Reports Server (NTRS)

    Burns, Ross A.; Danehy, Paul M.; Peters, Christopher J.

    2016-01-01

    Femtosecond laser electronic excitation tagging (FLEET) and Rayleigh scattering (RS) from a femtosecond laser are demonstrated in the NASA Langley 0.3-m Transonic Cryogenic Tunnel (TCT). The measured signals from these techniques are examined for their thermodynamic dependencies in pure nitrogen. The FLEET signal intensity and signal lifetimes are found to scale primarily with the gas density, as does the RS signal. Several models are developed, which capture these physical behaviors. Notably, the FLEET and Rayleigh scattering intensities scale linearly with the flow density, while the FLEET signal decay rates are a more complex function of the thermodynamic state of the gas. The measurement of various flow properties are demonstrated using these techniques. While density was directly measured from the signal intensities and FLEET signal lifetime, temperature and pressure were measured using the simultaneous FLEET velocity measurements while assuming the flow had a constant total enthalpy. Measurements of density, temperature, and pressure from the FLEET signal are made with accuracies as high as 5.3 percent, 0.62 percent, and 6.2 percent, respectively, while precisions were approximately 10 percent, 0.26 percent, and 11 percent for these same quantities. Similar measurements of density from Rayleigh scattering showed an overall accuracy of 3.5 percent and a precision of 10.2 percent over a limited temperature range (T greater than 195 K). These measurements suggest a high degree of utility at using the femtosecond-laser based diagnostics for making multiparameter measurements in high-pressure, cryogenic environments such as large-scale TCT facilities.

  13. Enantioselective reductive transformation of climbazole: A concept towards quantitative biodegradation assessment in anaerobic biological treatment processes.

    PubMed

    Brienza, Monica; Chiron, Serge

    2017-06-01

    An efficient chiral method-based using liquid chromatography-high resolution-mass spectrometry analytical method has been validated for the determination of climbazole (CBZ) enantiomers in wastewater and sludge with quantification limits below the 1 ng/L and 2 ng/g range, respectively. On the basis of this newly developed analytical method, the stereochemistry of CBZ was investigated over time in sludge biotic and sterile batch experiments under anoxic dark and light conditions and during wastewater biological treatment by subsurface flow constructed wetlands. CBZ stereoselective degradation was exclusively observed under biotic conditions, confirming the specificity of enantiomeric fraction variations to biodegradation processes. Abiotic CBZ enantiomerization was insignificant at circumneutral pH and CBZ was always biotransformed into CBZ-alcohol due to the specific and enantioselective reduction of the ketone function of CBZ into a secondary alcohol function. This transformation was almost quantitative and biodegradation gave good first order kinetic fit for both enantiomers. The possibility to apply the Rayleigh equation to enantioselective CBZ biodegradation processes was investigated. The results of enantiomeric enrichment allowed for a quantitative assessment of in situ biodegradation processes due to a good fit (R 2  > 0.96) of the anoxic/anaerobic CBZ biodegradation to the Rayleigh dependency in all the biotic microcosms and was also applied in subsurface flow constructed wetlands. This work extended the concept of applying the Rayleigh equation towards quantitative biodegradation assessment of organic contaminants to enantioselective processes operating under anoxic/anaerobic conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Thermal convection in a magnetized conducting fluid with the Cattaneo–Christov heat-flow model

    PubMed Central

    2016-01-01

    By substituting the Cattaneo–Christov heat-flow model for the more usual parabolic Fourier law, we consider the impact of hyperbolic heat-flow effects on thermal convection in the classic problem of a magnetized conducting fluid layer heated from below. For stationary convection, the system is equivalent to that studied by Chandrasekhar (Hydrodynamic and Hydromagnetic Stability, 1961), and with free boundary conditions we recover the classical critical Rayleigh number Rc(c)(Q) which exhibits inhibition of convection by the field according to Rc(c)→π2Q as Q→∞, where Q is the Chandrasekhar number. However, for oscillatory convection we find that the critical Rayleigh number Rc(o)(Q,P1,P2,C) is given by a more complicated function of the thermal Prandtl number P1, magnetic Prandtl number P2 and Cattaneo number C. To elucidate features of this dependence, we neglect P2 (in which case overstability would be classically forbidden), and thereby obtain an expression for the Rayleigh number that is far less strongly inhibited by the field, with limiting behaviour Rc(o)→πQ/C, as Q→∞. One consequence of this weaker dependence is that onset of instability occurs as overstability provided C exceeds a threshold value CT(Q); indeed, crucially we show that when Q is large, CT∝1/Q, meaning that oscillatory modes are preferred even when C itself is small. Similar behaviour is demonstrated in the case of fixed boundaries by means of a novel numerical solution. PMID:27956886

  15. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons

    USGS Publications Warehouse

    Burruss, R.C.; Laughrey, C.D.

    2010-01-01

    During studies of unconventional natural gas reservoirs of Silurian and Ordovician age in the northern Appalachian basin we observed complete reversal of the normal trend of carbon isotopic composition, such that ??13C methane (C1) >??13C ethane (C2) >??13C propane (C3). In addition, we have observed isotopic reversals in the ??2H in the deepest samples. Isotopic reversals cannot be explained by current models of hydrocarbon gas generation. Previous observations of partial isotopic reversals have been explained by mixing between gases from different sources and thermal maturities. We have constructed a model which, in addition to mixing, requires Rayleigh fractionation of C2 and C3 to cause enrichment in 13C and create reversals. In the deepest samples, the normal trend of increasing enrichment of 13C and 2H in methane with increasing depth reverses and 2H becomes depleted as 13C becomes enriched. We propose that the reactions that drive Rayleigh fractionation of C2 and C3 involve redox reactions with transition metals and water at late stages of catagenesis at temperatures on the order of 250-300??C. Published ab initio calculated fractionation factors for C-C bond breaking in ethane at these temperatures are consistent with our observations. The reversed trend in ??2H in methane appears to be caused by isotopic exchange with formation water at the same temperatures. Our interpretation that Rayleigh fractionation during redox reactions is causing isotopic reversals has important implications for natural gas resources in deeply buried sedimentary basins. ?? 2010.

  16. Thermal convection in a magnetized conducting fluid with the Cattaneo-Christov heat-flow model

    NASA Astrophysics Data System (ADS)

    Bissell, J. J.

    2016-11-01

    By substituting the Cattaneo-Christov heat-flow model for the more usual parabolic Fourier law, we consider the impact of hyperbolic heat-flow effects on thermal convection in the classic problem of a magnetized conducting fluid layer heated from below. For stationary convection, the system is equivalent to that studied by Chandrasekhar (Hydrodynamic and Hydromagnetic Stability, 1961), and with free boundary conditions we recover the classical critical Rayleigh number Rc(c )(Q ) which exhibits inhibition of convection by the field according to Rc(c )→π2Q as Q →∞ , where Q is the Chandrasekhar number. However, for oscillatory convection we find that the critical Rayleigh number Rc(o )(Q ,P1,P2,C ) is given by a more complicated function of the thermal Prandtl number P1, magnetic Prandtl number P2 and Cattaneo number C. To elucidate features of this dependence, we neglect P2 (in which case overstability would be classically forbidden), and thereby obtain an expression for the Rayleigh number that is far less strongly inhibited by the field, with limiting behaviour Rc(o )→π √{Q }/ C , as Q →∞ . One consequence of this weaker dependence is that onset of instability occurs as overstability provided C exceeds a threshold value CT(Q); indeed, crucially we show that when Q is large, CT∝1 / √{Q }, meaning that oscillatory modes are preferred even when C itself is small. Similar behaviour is demonstrated in the case of fixed boundaries by means of a novel numerical solution.

  17. Refraction effects in soft x-ray multilayer blazed gratings.

    PubMed

    Voronov, D L; Salmassi, F; Meyer-Ilse, J; Gullikson, E M; Warwick, T; Padmore, H A

    2016-05-30

    A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics.

  18. Scaling of Convective Mixing in Porous Media

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan J.; Fe, Jaime; Cueto-Felgueroso, Luis; Juanes, Ruben

    2012-12-01

    Convective mixing in porous media is triggered by a Rayleigh-Bénard-type hydrodynamic instability as a result of an unstable density stratification of fluids. While convective mixing has been studied extensively, the fundamental behavior of the dissolution flux and its dependence on the system parameters are not yet well understood. Here, we show that the dissolution flux and the rate of fluid mixing are determined by the mean scalar dissipation rate. We use this theoretical result to provide computational evidence that the classical model of convective mixing in porous media exhibits, in the regime of high Rayleigh number, a dissolution flux that is constant and independent of the Rayleigh number. Our findings support the universal character of convective mixing and point to the need for alternative explanations for nonlinear scalings of the dissolution flux with the Rayleigh number, recently observed experimentally.

  19. Progress on a Rayleigh Scattering Mass Flux Measurement Technique

    NASA Technical Reports Server (NTRS)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.; Hirt, Stefanie M.

    2010-01-01

    A Rayleigh scattering diagnostic has been developed to provide mass flux measurements in wind tunnel flows. Spectroscopic molecular Rayleigh scattering is an established flow diagnostic tool that has the ability to provide simultaneous density and velocity measurements in gaseous flows. Rayleigh scattered light from a focused 10 Watt continuous-wave laser beam is collected and fiber-optically transmitted to a solid Fabry-Perot etalon for spectral analysis. The circular interference pattern that contains the spectral information that is needed to determine the flow properties is imaged onto a CCD detector. Baseline measurements of density and velocity in the test section of the 15 cm x 15 cm Supersonic Wind Tunnel at NASA Glenn Research Center are presented as well as velocity measurements within a supersonic combustion ramjet engine isolator model installed in the tunnel test section.

  20. Lyman-alpha observations in the vicinity of Saturn with Copernicus

    NASA Technical Reports Server (NTRS)

    Barker, E.; Cazes, S.; Emerich, C.; Vidal-Madjar, A.; Owen, T.

    1980-01-01

    For the first time, high-resolution Ly-alpha observations of the Saturn vicinity were completed with the Princeton spectrometer on board the Copernicus satellite. They showed that near a minimum solar activity the emissions related to several sources are 250 + or - 50 rayleighs for the interplanetary medium in a near-downwind direction, less than 100 rayleighs for the rings, 200 + or - 100 rayleighs for a torus linked to the Titan orbit, and 1400 + or - 450 rayleighs for the disk of Saturn. These results induce some constraints through the corresponding theoretical evaluations: the B ring as the primary source of the atoms for the ring emissions; an efficient production mechanism for hydrogen atoms in the Titan torus; and a slightly larger eddy diffusion coefficient in the Saturn atmosphere than in the Jupiter atmosphere near solar minimum.

  1. Dynamic growth of mixed-mode shear cracks

    USGS Publications Warehouse

    Andrews, D.J.

    1994-01-01

    A pure mode II (in-plane) shear crack cannot propagate spontaneously at a speed between the Rayleigh and S-wave speeds, but a three-dimensional (3D) or two-dimensional (2D) mixed-mode shear crack can propagate in this range, being driven by the mode III (antiplane) component. Two different analytic solutions have been proposed for the mode II component in this case. The first is the solution valid for crack speed less than the Rayleigh speed. When applied above the Rayleigh speed, it predicts a negative stress intensity factor, which implies that energy is generated at the crack tip. Burridge proposed a second solution, which is continuous at the crack tip, but has a singularity in slip velocity at the Rayleigh wave. Spontaneous propagation of a mixed-mode rupture has been calculated with a slip-weakening friction law, in which the slip velocity vector is colinear with the total traction vector. Spontaneous trans-Rayleigh rupture speed has been found. The solution depends on the absolute stress level. The solution for the in-plane component appears to be a superposition of smeared-out versions of the two analytic solutions. The proportion of the first solution increases with increasing absolute stress. The amplitude of the negative in-plane traction pulse is less than the absolute final sliding traction, so that total in-plane traction does not reverse. The azimuth of the slip velocity vector varies rapidly between the onset of slip and the arrival of the Rayleigh wave. The variation is larger at smaller absolute stress.

  2. Shallow velocity structure of Stromboli Volcano, Italy, derived from small-aperture array measurements of Strombolian tremor

    USGS Publications Warehouse

    Chouet, B.; De Luca, G.; Milana, G.; Dawson, P.; Martini, M.; Scarpa, R.

    1998-01-01

    The properties of the tremor wave field at Stromboli are analyzed using data from small-aperture arrays of short-period seismometers deployed on the north flank of the volcano. The seismometers are configued in two semi-circular arrays with radii of 60 and 150 m and a linear array with length of 600 m. The data are analyzed using a spatiotemporal correlation technique specifically designed for the study of the stationary stochastic wave field of Rayleigh and Love waves generated by volcanic activity and by scattering sources distributed within the island. The correlation coefficients derived as a function of frequency for the three components of motion clearly define the dispersion characteristics for both Rayleigh and Love waves. Love and Rayleigh waves contribute 70% and 30%, respectively, of the surface-wave power. The phase velocities of Rayleigh waves range from 1000 m/sec at 2 Hz to 350 m/sec at 9 Hz, and those for Love waves range from 700 to 400 m/sec over the same frequency band. These velocities are similar to those measured near Puu Oo on the east rift of Kilauea Volcano, Hawaii, although the dispersion characteristics of Rayleigh waves at Stromboli show a stronger dependence on frequency. Such low velocities are consistent with values expected for densely cracked solidified basalt. The dispersion curves are inverted for a velocity model beneath the arrays, assuming those dispersions represent the fundamental modes of Rayleigh and Love waves.

  3. A new MesosphEO dataset of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations

    NASA Astrophysics Data System (ADS)

    Hauchecorne, A.; Blanot, L.; Wing, R., Jr.; Keckhut, P.; Khaykin, S. M.

    2017-12-01

    The scattering of sunlight by the Earth atmosphere above the top of the stratospheric layer, about 30-35 km altitude, is only due to Rayleigh scattering by atmospheric molecules. Its intensity is then directly proportional to the atmospheric density. It is then possible to retrieve a temperature profile in absolute value using the hydrostatic equation and the perfect gas law, assuming that the temperature is known from a climatological model at the top of the density profile. This technique is applied to Rayleigh lidar observations since more than 35 years (Hauchecorne and Chanin, 1980). The GOMOS star occultation spectrometer observed the sunlight scattering at limb during daytime to remove it from the star spectrum. In the frame of the ESA funded MesosphEO project, GOMOS Rayleigh scattering profiles in the spectral range 400-460 nm have been used to retrieve temperature profiles from 35 to 85 km with a 2-km vertical resolution. A dataset of more than 310 thousands profiles from 2002 to 2012 is available for climatology and atmospheric dynamics studies. The validation of this dataset using NDACC Rayleigh lidars and MLS-AURA and SABER-TIMED will be presented. Preliminary results on the variability of the upper stratosphere and the mesosphere will be shown. We propose to apply this technique in the future to ALTIUS observations. The Rayleigh scattering technique can be applied to any sounder observing the day-time limb on the near-UV and visible spectrum.

  4. Ice shelf structure from dispersion curve analysis of passive-source seismic data, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D.

    2015-12-01

    An L-shaped array of three-component short period seismic stations was deployed at the Ross Ice Shelf, Antarctica approximately 100 km south of the ice edge, near 180° longitude, from November 18 through 28, 2014. Polarization analysis of data from these stations clearly shows propagating waves from below the ice shelf for frequencies below 2 Hz. Energy above 2 Hz is dominated by Rayleigh and Love waves propagating from the north. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile, from which we derive a density profile. The derived shear wave velocity profiles differ within the firn for the inversions using Rayleigh and Love wave dispersion curves. This difference is attributed to an effective anisotropy due to fine layering. The layered structure of firn, ice, water, and ocean floor results in a characteristic dispersion curve pattern below 7 Hz. We investigate the observed structures in more detail by forward modeling of Rayleigh wave dispersion curves for representative firn, ice, water, sediment structures. Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. Our results show that the analysis of high frequency Rayleigh waves on an ice shelf has the ability to resolve ice shelf thickness, water column thickness, and the physical properties of the underlying ocean floor using passive-source seismic data.

  5. Limit characteristics of digital optoelectronic processor

    NASA Astrophysics Data System (ADS)

    Kolobrodov, V. G.; Tymchik, G. S.; Kolobrodov, M. S.

    2018-01-01

    In this article, the limiting characteristics of a digital optoelectronic processor are explored. The limits are defined by diffraction effects and a matrix structure of the devices for input and output of optical signals. The purpose of a present research is to optimize the parameters of the processor's components. The developed physical and mathematical model of DOEP allowed to establish the limit characteristics of the processor, restricted by diffraction effects and an array structure of the equipment for input and output of optical signals, as well as to optimize the parameters of the processor's components. The diameter of the entrance pupil of the Fourier lens is determined by the size of SLM and the pixel size of the modulator. To determine the spectral resolution, it is offered to use a concept of an optimum phase when the resolved diffraction maxima coincide with the pixel centers of the radiation detector.

  6. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    PubMed Central

    de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.

    2014-01-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992

  7. Evanescent Properties of Optical Diffraction from 2-Dimensional Hexagonal Photonic Crystals and Their Sensor Applications.

    PubMed

    Liao, Yu-Yang; Chen, Yung-Tsan; Chen, Chien-Chun; Huang, Jian-Jang

    2018-04-03

    The sensitivity of traditional diffraction grating sensors is limited by the spatial resolution of the measurement setup. Thus, a large space is required to improve sensor performance. Here, we demonstrate a compact hexagonal photonic crystal (PhC) optical sensor with high sensitivity. PhCs are able to diffract optical beams to various angles in azimuthal space. The critical wavelength that satisfies the phase matching or becomes evanescent was used to benchmark the refractive index of a target analyte applied on a PhC sensor. Using a glucose solution as an example, our sensor demonstrated very high sensitivity and a low limit of detection. This shows that the diffraction mechanism of hexagonal photonic crystals can be used for sensors when compact size is a concern.

  8. Spectromicroscopy and coherent diffraction imaging: focus on energy materials applications.

    PubMed

    Hitchcock, Adam P; Toney, Michael F

    2014-09-01

    Current and future capabilities of X-ray spectromicroscopy are discussed based on coherence-limited imaging methods which will benefit from the dramatic increase in brightness expected from a diffraction-limited storage ring (DLSR). The methods discussed include advanced coherent diffraction techniques and nanoprobe-based real-space imaging using Fresnel zone plates or other diffractive optics whose performance is affected by the degree of coherence. The capabilities of current systems, improvements which can be expected, and some of the important scientific themes which will be impacted are described, with focus on energy materials applications. Potential performance improvements of these techniques based on anticipated DLSR performance are estimated. Several examples of energy sciences research problems which are out of reach of current instrumentation, but which might be solved with the enhanced DLSR performance, are discussed.

  9. Printing colour at the optical diffraction limit.

    PubMed

    Kumar, Karthik; Duan, Huigao; Hegde, Ravi S; Koh, Samuel C W; Wei, Jennifer N; Yang, Joel K W

    2012-09-01

    The highest possible resolution for printed colour images is determined by the diffraction limit of visible light. To achieve this limit, individual colour elements (or pixels) with a pitch of 250 nm are required, translating into printed images at a resolution of ∼100,000 dots per inch (d.p.i.). However, methods for dispensing multiple colourants or fabricating structural colour through plasmonic structures have insufficient resolution and limited scalability. Here, we present a non-colourant method that achieves bright-field colour prints with resolutions up to the optical diffraction limit. Colour information is encoded in the dimensional parameters of metal nanostructures, so that tuning their plasmon resonance determines the colours of the individual pixels. Our colour-mapping strategy produces images with both sharp colour changes and fine tonal variations, is amenable to large-volume colour printing via nanoimprint lithography, and could be useful in making microimages for security, steganography, nanoscale optical filters and high-density spectrally encoded optical data storage.

  10. Diffraction-Limited Plenoptic Imaging with Correlated Light

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-12-01

    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.

  11. Diffraction-Limited Plenoptic Imaging with Correlated Light.

    PubMed

    Pepe, Francesco V; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-12-15

    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.

  12. Diffraction-limited, 300-kW peak-power pulses from a coiled multimode fiber amplifier

    NASA Astrophysics Data System (ADS)

    di Teodoro, Fabio; Koplow, Jeffrey P.; Moore, Sean W.; Kliner, Dahv A. V.

    2002-04-01

    We report a multimode, double-clad, Yb-doped fiber amplifier that produces diffraction-limited, 0.8-ns pulses with energies of 255 μJ and peak powers in excess of 300 kW at a repetition rate of ~8 kHz. Single-transverse-mode operation was obtained by bend-loss-induced mode filtering of the gain fiber.

  13. Generalized Rayleigh scattering. I. Basic theory.

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.

    1995-11-01

    The classsical problem of multiple molecular (in particular, Rayleigh) scattering in plane-parallel atmospheres is considered from a somewhat broader viewpoint than usual. The general approach and ideology are borrowed from non-LTE line formation theory. The main emphasis is on the depth dependence of the corresponding source matrix rather than on the emergent radiation. We study the azimuth-averaged radiation field of polarized radiation in a semi-infinite atmosphere with embedded primary sources. The corresponding 2x2 phase matrix of molecular scattering is P=(1-W) P_I_+W P_R_, where P_I_ and P_R_ are the phase matrices of the scalar isotropic scattering and of the Rayleigh scattering, respectively, and W is the depolarization parameter. Contrary to the usual assumption that W{in}[0,1], we assume W{in} [0,{infinity}) and call this generalized Rayleigh scattering (GRS). Using the factorization of P which is intimately related to its diadic expansion, we reduce the problem to an integral equation for the source matrix S(τ) with a matrix displacement kernel. In operator form this equation is S={LAMBDA}S+S^*^, where {LAMBDA} is the matrix {LAMBDA}-operator and S^*^ is the primary source term. This leads to a new concept, the matrix albedo of single scattering λ =diag(λ_I_,λ_Q_), where λ_I_ is the usual (scalar) single scattering albedo and λ_Q_=0.7Wλ_I_. Its use enables one to formulate matrix equivalents of many of the results of the scalar theory in exactly the same form as in the scalar case. Of crucial importance is the matrix equivalent of the sqrt(ɛ) law of the scalar theory. Another useful new concept is the λ-plane, i.e., the plane with the axes (λ_I_,λ_Q_). Systematic use of the matrix sqrt(ɛ) law and of the λ-plane proved to be a useful instrument in classifying various limiting and particular cases of GRS and in discussing numerical data on the matrix source functions (to be given in Paper II of the series).

  14. On the stability of radiation-pressure-dominated cavities

    NASA Astrophysics Data System (ADS)

    Kuiper, R.; Klahr, H.; Beuther, H.; Henning, Th.

    2012-01-01

    Context. When massive stars exert a radiation pressure onto their environment that is higher than their gravitational attraction (super-Eddington condition), they launch a radiation-pressure-driven outflow, which creates cleared cavities. These cavities should prevent any further accretion onto the star from the direction of the bubble, although it has been claimed that a radiative Rayleigh-Taylor instability should lead to the collapse of the outflow cavity and foster the growth of massive stars. Aims: We investigate the stability of idealized radiation-pressure-dominated cavities, focusing on its dependence on the radiation transport approach used in numerical simulations for the stellar radiation feedback. Methods: We compare two different methods for stellar radiation feedback: gray flux-limited diffusion (FLD) and ray-tracing (RT). Both methods are implemented in our self-gravity radiation hydrodynamics simulations for various initial density structures of the collapsing clouds, eventually forming massive stars. We also derive simple analytical models to support our findings. Results: Both methods lead to the launch of a radiation-pressure-dominated outflow cavity. However, only the FLD cases lead to prominent instability in the cavity shell. The RT cases do not show such instability; once the outflow has started, it precedes continuously. The FLD cases display extended epochs of marginal Eddington equilibrium in the cavity shell, making them prone to the radiative Rayleigh-Taylor instability. In the RT cases, the radiation pressure exceeds gravity by 1-2 orders of magnitude. The radiative Rayleigh-Taylor instability is then consequently suppressed. It is a fundamental property of the gray FLD method to neglect the stellar radiation temperature at the location of absorption and thus to underestimate the opacity at the location of the cavity shell. Conclusions: Treating the stellar irradiation in the gray FLD approximation underestimates the radiative forces acting on the cavity shell. This can lead artificially to situations that are affected by the radiative Rayleigh-Taylor instability. The proper treatment of direct stellar irradiation by massive stars is crucial for the stability of radiation-pressure-dominated cavities. Movies are available in electronic form at http://www.aanda.org

  15. Infrasonic induced ground motions

    NASA Astrophysics Data System (ADS)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body wave refraction and Rayleigh wave dispersion data. Theoretical standard high-frequency and air-coupled Rayleigh wave dispersion calculated by the inferred site structure match the observed dispersion curves. Our study suggests that natural or controlled air-borne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.

  16. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance.

    PubMed

    Song, Maowen; Wang, Changtao; Zhao, Zeyu; Pu, Mingbo; Liu, Ling; Zhang, Wei; Yu, Honglin; Luo, Xiangang

    2016-01-21

    The past decade has witnessed a great deal of optical systems designed for exceeding the Abbe's diffraction limit. Unfortunately, a deep subwavelength spot is obtained at the price of extremely short focal length, which is indeed a near-field diffraction limit that could rarely go beyond in the nanofocusing device. One method to mitigate such a problem is to set up a rapid oscillatory electromagnetic field that converges at the prescribed focus. However, abrupt modulation of phase and amplitude within a small fraction of a wavelength seems to be the main obstacle in the visible regime, aggravated by loss and plasmonic features that come into function. In this paper, we propose a periodically repeated ring-disk complementary structure to break the near-field diffraction limit via plasmonic Fano resonance, originating from the interference between the complex hybrid plasmon resonance and the continuum of propagating waves through the silver film. This plasmonic Fano resonance introduces a π phase jump in the adjacent channels and amplitude modulation to achieve radiationless electromagnetic interference. As a result, deep subwavelength spots as small as 0.0045λ(2) at 36 nm above the silver film have been numerically demonstrated. This plate holds promise for nanolithography, subdiffraction imaging and microscopy.

  17. Discrimination thresholds of normal and anomalous trichromats: Model of senescent changes in ocular media density on the Cambridge Colour Test

    PubMed Central

    Shinomori, Keizo; Panorgias, Athanasios; Werner, John S.

    2017-01-01

    Age-related changes in chromatic discrimination along dichromatic confusion lines were measured with the Cambridge Colour Test (CCT). One hundred and sixty-two individuals (16 to 88 years old) with normal Rayleigh matches were the major focus of this paper. An additional 32 anomalous trichromats classified by their Rayleigh matches were also tested. All subjects were screened to rule out abnormalities of the anterior and posterior segments. Thresholds on all three chromatic vectors measured with the CCT showed age-related increases. Protan and deutan vector thresholds increased linearly with age while the tritan vector threshold was described with a bilinear model. Analysis and modeling demonstrated that the nominal vectors of the CCT are shifted by senescent changes in ocular media density, and a method for correcting the CCT vectors is demonstrated. A correction for these shifts indicates that classification among individuals of different ages is unaffected. New vector thresholds for elderly observers and for all age groups are suggested based on calculated tolerance limits. PMID:26974943

  18. A simple resonance Rayleigh scattering method for determination of trace CA125 using immuno-AuRu nanoalloy as probe via ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Tang, Meiling; Wen, Guiqing; Luo, Yanghe; Liang, Aihui; Jiang, Zhiliang

    2015-01-01

    AuRu nanoalloy (GR) with Au/Ru molar ratio of 32/1 was prepared by the sodium borohydride reduction method. It was used to label the CA125 antibody (Ab) to obtain an immunonanoprobe (GRAb) for cancer antigen 125 (CA125). In pH 7.0 citric acid-Na2HPO4 buffer solution and irradiation of ultrasound, the probes were aggregated nonspecifically to big clusters that showed a strong resonance Rayleigh scattering (RRS) peak at 278 nm. Upon addition of CA125, GRAb reacted specifically with CA125 to form dispersive immunocomplexes of CA125-GRAb in the solution and this process enhanced by the ultrasonic cavitation effect, which led to the RRS intensity decreased greatly. The decreased RRS intensity was linear to the concentration of CA125 in the range of 1.3-80 U/mL, with a detection limit of 0.6 U/mL. The proposed method was applied to detect CA125 in real sample, with satisfactory results.

  19. Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows.

    PubMed

    Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Luo, Kai Hong; Li, Yingjun

    2017-11-01

    A discrete Boltzmann model (DBM) is proposed to probe the Rayleigh-Taylor instability (RTI) in two-component compressible flows. Each species has a flexible specific-heat ratio and is described by one discrete Boltzmann equation (DBE). Independent discrete velocities are adopted for the two DBEs. The collision and force terms in the DBE account for the molecular collision and external force, respectively. Two types of force terms are exploited. In addition to recovering the modified Navier-Stokes equations in the hydrodynamic limit, the DBM has the capability of capturing detailed nonequilibrium effects. Furthermore, we use the DBM to investigate the dynamic process of the RTI. The invariants of tensors for nonequilibrium effects are presented and studied. For low Reynolds numbers, both global nonequilibrium manifestations and the growth rate of the entropy of mixing show three stages (i.e., the reducing, increasing, and then decreasing trends) in the evolution of the RTI. On the other hand, the early reducing tendency is suppressed and even eliminated for high Reynolds numbers. Relevant physical mechanisms are analyzed and discussed.

  20. Study on the interaction between albendazole and eosin Y by fluorescence, resonance Rayleigh scattering and frequency doubling scattering spectra and their analytical applications

    NASA Astrophysics Data System (ADS)

    Tian, Fengling; Huang, Wei; Yang, Jidong; Li, Qin

    In pH 3.25-3.35 Britton-Robinson (BR) buffer solution, albendazole (ABZ) could react with eosin Y (EY) to form a 1:1 ion-association complex, which not only results in the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS) and frequency doubling scattering (FDS). Furthermore, a new RRS spectrum will appear, and the maximum RRS wavelength was located at about 356 nm. The detection limit for ABZ were 21.51 ng mL-1 for the fluorophotometry, 6.93 ng mL-1 for the RRS method and 12.89 ng mL-1 for the FDS method. Among them, the RRS method had the highest sensitivity. The experimental conditions were optimized and effects of coexisting substances were evaluated. Meanwhile, the influences of coexisting substances were tested. The methods have been successfully applied to the determination of ABZ in capsules and human urine samples. The composition and structure of the ion-association complex and the reaction mechanism were discussed.

  1. Groundbased Observations of [C I] 9850A Emission from Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Doane, N. E.; Oliversen, R. J.; Scherb, F.; Morgenthaler, J. P.; Roesler, F. L.; Woodward, R. C.; Harris, W. M.; Hilton, G. M.

    1999-05-01

    High spectral resolution observations of Comet Hale-Bopp [C I] 9850A emission were obtained at the NSO McMath-Pierce main telescope on 13 nights during 1997 March 9 to 10 and April 7 to 19. Spectra with good signal-to-noise were obtained using a dual- etalon 50mm Fabry-Perot spectrometer (R 40,000) with a 6 arcmin field of view. The comet was observed over a 0.92-1.00 AU range of heliocentric distances. Most observations were centered on the comet nucleus where the surface brightness ranged from about 70 to 170 Rayleighs. Several observations were also centered approximately 5 arcmin sunward and tailward of the comet nucleus. The sunward [C I] emission was fainter than the tailward emission. Assuming that CO photodissociation is the source of cometary C(1D) (and neglecting quenching), for a surface brightness of 120 Rayleighs, we estimate a (lower limit) CO production rate of about 2x10(30) per sec. These [C I] observationsare the first extensive set reported for this cometary emission line.

  2. Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography

    NASA Astrophysics Data System (ADS)

    Pan, Yudi; Gao, Lingli; Bohlen, Thomas

    2018-05-01

    Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.

  3. Imaging of underground karst water channels using an improved multichannel transient Rayleigh wave detecting method

    PubMed Central

    Zheng, Xuhui; Liu, Lei; Li, Gao; Zhou, Fubiao; Xu, Jiemin

    2018-01-01

    Geological and hydrogeological conditions in karst areas are complicated from the viewpoint of engineering. The construction of underground structures in these areas is often disturbed by the gushing of karst water, which may delay the construction schedule, result in economic losses, and even cause heavy casualties. In this paper, an innovative method of multichannel transient Rayleigh wave detecting is proposed by introducing the concept of arrival time difference phase between channels (TDP). Overcoming the restriction of the space-sampling law, the proposed method can extract the phase velocities of different frequency components from only two channels of transient Rayleigh wave recorded on two adjacent detecting points. This feature greatly improves the work efficiency and lateral resolution of transient Rayleigh wave detecting. The improved multichannel transient Rayleigh wave detecting method is applied to the detection of karst caves and fractures in rock mass of the foundation pit of Yan’an Road Station of Guiyang Metro. The imaging of the detecting results clearly reveals the distribution of karst water inflow channels, which provided significant guidance for water plugging and enabled good control over karst water gushing in the foundation pit. PMID:29883492

  4. The preliminary results: Seismic ambient noise Rayleigh wave tomography around Merapi volcano, central Java, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trichandi, Rahmantara, E-mail: rachmantara.tri@gmail.com; Yudistira, Tedi; Nugraha, Andri Dian

    Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possiblemore » station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.« less

  5. Imaging of underground karst water channels using an improved multichannel transient Rayleigh wave detecting method.

    PubMed

    Zheng, Xuhui; Liu, Lei; Sun, Jinzhong; Li, Gao; Zhou, Fubiao; Xu, Jiemin

    2018-01-01

    Geological and hydrogeological conditions in karst areas are complicated from the viewpoint of engineering. The construction of underground structures in these areas is often disturbed by the gushing of karst water, which may delay the construction schedule, result in economic losses, and even cause heavy casualties. In this paper, an innovative method of multichannel transient Rayleigh wave detecting is proposed by introducing the concept of arrival time difference phase between channels (TDP). Overcoming the restriction of the space-sampling law, the proposed method can extract the phase velocities of different frequency components from only two channels of transient Rayleigh wave recorded on two adjacent detecting points. This feature greatly improves the work efficiency and lateral resolution of transient Rayleigh wave detecting. The improved multichannel transient Rayleigh wave detecting method is applied to the detection of karst caves and fractures in rock mass of the foundation pit of Yan'an Road Station of Guiyang Metro. The imaging of the detecting results clearly reveals the distribution of karst water inflow channels, which provided significant guidance for water plugging and enabled good control over karst water gushing in the foundation pit.

  6. Isosbestics in Infrared Aerosol Spectra: Proposed Applications for Remote Sensing.

    DTIC Science & Technology

    1989-04-01

    droplet solutions and chemical reactions if the complex indices of refraction are known. The technique seems most applicable in the Rayleigh regime. Remote ... sensing , Isosbestics, Infrared, Infrared spectra, Atmosphere, Water, Aerosols, Rayleigh regime.

  7. Covariance of lucky images for increasing objects contrast: diffraction-limited images in ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Colodro-Conde, Carlos; Villó-Pérez, Isidro; Pérez-Garrido, Antonio

    2016-01-01

    Images of stars adopt shapes far from the ideal Airy pattern due to atmospheric density fluctuations. Hence, diffraction-limited images can only be achieved by telescopes without atmospheric influence, e.g. spatial telescopes, or by using techniques like adaptive optics or lucky imaging. In this paper, we propose a new computational technique based on the evaluation of the COvariancE of Lucky Images (COELI). This technique allows us to discover companions to main stars by taking advantage of the atmospheric fluctuations. We describe the algorithm and we carry out a theoretical analysis of the improvement in contrast. We have used images taken with 2.2-m Calar Alto telescope as a test bed for the technique resulting that, under certain conditions, telescope diffraction limit is clearly reached.

  8. Microsphere-aided optical microscopy and its applications for super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2017-12-01

    The spatial resolution of a standard optical microscope (SOM) is limited by diffraction. In visible spectrum, SOM can provide ∼ 200 nm resolution. To break the diffraction limit several approaches were developed including scanning near field microscopy, metamaterial super-lenses, nanoscale solid immersion lenses, super-oscillatory lenses, confocal fluorescence microscopy, techniques that exploit non-linear response of fluorophores like stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, etc. Recently, photonic nanojet generated by a dielectric microsphere was used to break the diffraction limit. The microsphere-approach is simple, cost-effective and can be implemented under a standard microscope, hence it has gained enormous attention for super-resolution imaging. In this article, we briefly review the microsphere approach and its applications for super-resolution imaging in various optical imaging modalities.

  9. On the measurement of Rayleigh scattering by gases at 6328A

    NASA Technical Reports Server (NTRS)

    SHARDANAND; Gupta, S. K.

    1973-01-01

    The problem of laboratory measurements of Rayleigh scattering and depolarization ratio for atoms and molecules in the gaseous state is described. It is shown that, if the scattered radiation measurements are made at two angles, the normal depolarization ratio cannot be determined meaningfully. However, from scattering measurements, the Rayleigh scattering cross sections can be determined accurately. The measurements of Raleigh scattering from He, H2, Ar, O2, and N2 for unpolarized radiation at 6328A are reported and compared with similar measurements at 6943 and 1215.7A.

  10. Near Real-Time Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Denker, C.; Yang, G.; Wang, H.

    2001-08-01

    In recent years, post-facto image-processing algorithms have been developed to achieve diffraction-limited observations of the solar surface. We present a combination of frame selection, speckle-masking imaging, and parallel computing which provides real-time, diffraction-limited, 256×256 pixel images at a 1-minute cadence. Our approach to achieve diffraction limited observations is complementary to adaptive optics (AO). At the moment, AO is limited by the fact that it corrects wavefront abberations only for a field of view comparable to the isoplanatic patch. This limitation does not apply to speckle-masking imaging. However, speckle-masking imaging relies on short-exposure images which limits its spectroscopic applications. The parallel processing of the data is performed on a Beowulf-class computer which utilizes off-the-shelf, mass-market technologies to provide high computational performance for scientific calculations and applications at low cost. Beowulf computers have a great potential, not only for image reconstruction, but for any kind of complex data reduction. Immediate access to high-level data products and direct visualization of dynamic processes on the Sun are two of the advantages to be gained.

  11. Comments on the paper "Bragg's law diffraction simulations for electron backscatter diffraction analysis" by Josh Kacher, Colin Landon, Brent L. Adams & David Fullwood.

    PubMed

    Maurice, Claire; Fortunier, Roland; Driver, Julian; Day, Austin; Mingard, Ken; Meaden, Graham

    2010-06-01

    This comment on the paper "Bragg's Law diffraction simulations for electron backscatter diffraction analysis" by Kacher et al. explains the limitations in determining elastic strains using synthetic EBSD patterns. Of particular importance are those due to the accuracy of determination of the EBSD geometry projection parameters. Additional references and supporting information are provided. Copyright 2010 Elsevier B.V. All rights reserved.

  12. The strong ground motion in Mexico City: array and borehole data analysis.

    NASA Astrophysics Data System (ADS)

    Roullé, A.; Chávez-García, F. J.

    2003-04-01

    Site response at Mexico City has been intensively studied for the last 15 years, since the disastrous 1985 earthquakes. After those events, more than 100 accelerographs were installed, and their data have been extremely useful in quantifying amplification and in the subsequent upgrading of the building code. However, detailed analysis of the wavefield has been hampered by the lack of absolute time in the records and the large spacing between stations in terms of dominant wavelengths. In 2001, thanks to the support of CONACYT, Mexico, a new dense accelerographic network was installed in the lake bed zone of Mexico City. The entire network, including an existing network of 3 surface and 2 borehole stations operated by CENAPRED, consists in 12 surface and 4 borehole stations (at 30, 102 and 50 meters). Each station has a 18 bits recorder and a GPS receiver so that the complete network is a 3D array with absolute time. The main objective of this array is to provide data that can help us to better understand the wavefield that propagates in Mexico City during large earthquakes. Last year, a small event of magnitude 6.0 was partially recorded by 6 of the 12 surface stations and all the borehole stations. We analysed the surface data using different array processing techniques such as f-k methods and MUSIC algorithm and the borehole ones using a cross-correlation method. For periods inferior to the site resonance period, the soft clay layer with very low propagation velocities (less than 500 m/s) and a possible multipathing rule the wavefield pattern. For the large period range, the dominant surface wave comes from the epicentral direction and propagates with a quicker velocity (more than 1500 m/s) that corresponds to the velocity of deep layers. The analysis of borehole data shows the presence of different quick wavetrains in the short period range that could correspond to the first harmonic modes of Rayleigh waves. To complete this study, four others events recorded in 1994 by a temporal dense network installed in the firm rock zone of Mexico City were analysed using the same techniques. The results confirm the presence of a diffracting zone south of the valley. These results confirm the hypothesis of a possible interaction between the soft clay layers resonance and diffracted wavetrains of Rayleigh waves to explain both the amplification and the long duration of strong ground motion in Mexico City.

  13. Rayleigh-based, multi-element coral thermometry: A biomineralization approach to developing climate proxies

    USGS Publications Warehouse

    Gaetani, G.A.; Cohen, A.L.; Wang, Z.; Crusius, John

    2011-01-01

    This study presents a new approach to coral thermometry that deconvolves the influence of water temperature on skeleton composition from that of “vital effects”, and has the potential to provide estimates of growth temperatures that are accurate to within a few tenths of a degree Celsius from both tropical and cold-water corals. Our results provide support for a physico-chemical model of coral biomineralization, and imply that Mg2+ substitutes directly for Ca2+ in biogenic aragonite. Recent studies have identified Rayleigh fractionation as an important influence on the elemental composition of coral skeletons. Daily, seasonal and interannual variations in the amount of aragonite precipitated by corals from each “batch” of calcifying fluid can explain why the temperature dependencies of elemental ratios in coral skeleton differ from those of abiogenic aragonites, and are highly variable among individual corals. On the basis of this new insight into the origin of “vital effects” in coral skeleton, we developed a Rayleigh-based, multi-element approach to coral thermometry. Temperature is resolved from the Rayleigh fractionation signal by combining information from multiple element ratios (e.g., Mg/Ca, Sr/Ca, Ba/Ca) to produce a mathematically over-constrained system of Rayleigh equations. Unlike conventional coral thermometers, this approach does not rely on an initial calibration of coral skeletal composition to an instrumental temperature record. Rather, considering coral skeletogenesis as a biologically mediated, physico-chemical process provides a means to extract temperature information from the skeleton composition using the Rayleigh equation and a set of experimentally determined partition coefficients. Because this approach is based on a quantitative understanding of the mechanism that produces the “vital effect” it should be possible to apply it both across scleractinian species and to corals growing in vastly different environments. Where instrumental temperature records are available, a Rayleigh-based framework allows the effects of stress on coral calcification to be identified on the basis of anomalies in the skeletal composition.

  14. Rayleigh wave ellipticity across the Iberian Peninsula and Morocco

    NASA Astrophysics Data System (ADS)

    Gómez García, Clara; Villaseñor, Antonio

    2015-04-01

    Spectral amplitude ratios between horizontal and vertical components (H/V ratios) from seismic records are useful to evaluate site effects, predict ground motion and invert for S velocity in the top several hundred meters. These spectral ratios can be obtained from both ambient noise and earthquakes. H/V ratios from ambient noise depend on the content and predominant wave types: body waves, Rayleigh waves, a mixture of different waves, etc. The H/V ratio computed in this way is assumed to measure Rayleigh wave ellipticity since ambient vibrations are dominated by Rayleigh waves. H/V ratios from earthquakes are able to determine the local crustal structure at the vicinity of the recording station. These ratios obtained from earthquakes are based on surface wave ellipticity measurements. Although long period (>20 seconds) Rayleigh H/V ratio is not currently used because of large scatter has been reported and uncertainly about whether these measurements are compatible with traditional phase and group velocity measurements, we will investigate whether it is possible to obtain stable estimates after collecting statistics for many earthquakes. We will use teleseismic events from shallow earthquakes (depth ≤ 40 km) between 2007 January 1 and 2012 December 31 with M ≥ 6 and we will compute H/V ratios for more than 400 stations from several seismic networks across the Iberian Peninsula and Morocco for periods between 20 and 100 seconds. Also H/V ratios from cross-correlations of ambient noise in different components for each station pair will be computed. Shorter period H/V ratio measurements based on ambient noise cross-correlations are strongly sensitive to near-surface structure, rather than longer period earthquake Rayleigh waves. The combination of ellipticity measurements based on earthquakes and ambient noise will allow us to perform a joint inversion with Rayleigh wave phase velocity. Upper crustal structure is better constrained by the joint inversion compared to inversions based on phase velocities alone.

  15. Determination of Rayleigh wave ellipticity using single-station and array-based processing of ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Workman, Eli Joseph

    We present a single-station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 sec the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 sec, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher ( 2%) and significantly higher (>20%), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e., Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves.

  16. Determination of Rayleigh wave ellipticity across the Earthscope Transportable Array using single-station and array-based processing of ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Workman, Eli; Lin, Fan-Chi; Koper, Keith D.

    2017-01-01

    We present a single station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 s the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 s, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher (˜2 per cent) and significantly higher (>20 per cent), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e. Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves and tilt noise.

  17. Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.

    ERIC Educational Resources Information Center

    Leung, W. P.

    1980-01-01

    Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)

  18. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    PubMed

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  19. Measurement of cylindrical Rayleigh surface waves using line-focused PVDF transducers and defocusing measurement method.

    PubMed

    Lin, Chun-I; Lee, Yung-Chun

    2014-08-01

    Line-focused PVDF transducers and defocusing measurement method are applied in this work to determine the dispersion curve of the Rayleigh-like surface waves propagating along the circumferential direction of a solid cylinder. Conventional waveform processing method has been modified to cope with the non-linear relationship between phase angle of wave interference and defocusing distance induced by a cylindrically curved surface. A cross correlation method is proposed to accurately extract the cylindrical Rayleigh wave velocity from measured data. Experiments have been carried out on one stainless steel and one glass cylinders. The experimentally obtained dispersion curves are in very good agreement with their theoretical counterparts. Variation of cylindrical Rayleigh wave velocity due to the cylindrical curvature is quantitatively verified using this new method. Other potential applications of this measurement method for cylindrical samples will be addressed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. In situ characterization of nanoparticles using Rayleigh scattering

    DOE PAGES

    Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto

    2017-01-10

    Here, we report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C 60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle populationmore » from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.« less

  1. Rayleigh Scattering Diagnostic for Dynamic Measurement of Velocity and Temperature

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, J.

    2001-01-01

    A new technique for measuring dynamic gas velocity and temperature is described. The technique is based on molecular Rayleigh scattering of laser light, so no seeding of the flow is necessary. The Rayleigh scattered light is filtered with a fixed cavity, planar mirror Fabry-Perot interferometer. A minimum number of photodetectors were used in order to allow the high data acquisition rate needed for dynamic measurements. One photomultiplier tube (PMT) was used to measure the total Rayleigh scattering, which is proportional to the gas density. Two additional PMTs were used to detect light that passes through two apertures in a mask located in the interferometer fringe plane. An uncertainty analysis was used to select the optimum aperture parameters and to predict the measurement uncertainty due to photon shot-noise. Results of an experiment to measure the velocity of a subsonic free jet are presented.

  2. Multi-Point Interferometric Rayleigh Scattering using Dual-Pass Light Recirculation

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Cutler, Andrew D.

    2008-01-01

    This paper describes for the first time an interferometric Rayleigh scattering system using dual-pass light recirculation (IRS-LR) capable of simultaneously measuring at multiple points two orthogonal components of flow velocity in combustion flows using single shot laser probing. An additional optical path containing the interferometer input mirror, a quarter-wave plate, a polarization dependent beam combiner, and a high reflectivity mirror partially recirculates the light that is rejected by the interferometer. Temporally- and spatially-resolved acquisitions of Rayleigh spectra in a large-scale combustion-heated supersonic axi-symmetric jet were performed to demonstrate the technique. Recirculating of Rayleigh scattered light increases the number of photons analyzed by the system up to a factor of 1.8 compared with previous configurations. This is equivalent to performing measurements with less laser energy or performing measurements with the previous system in gas flows at higher temperatures.

  3. Multiple scattered radiation emerging from continental haze layers. 1: Radiance, polarization, and neutral points

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.; Hitzfelder, S. J.

    1975-01-01

    The complete radiation field is calculated for scattering layers of various optical thicknesses. Results obtained for Rayleigh and haze scattering are compared. Calculated radiances show differences as large as 23% compared to the approximate scalar theory of radiative transfer, while the same differences are approximately 0.1% for a continental haze phase function. The polarization of reflected and transmitted radiation is given for various optical thicknesses, solar zenith angles, and surface albedos. Two types of neutral points occur for aerosol phase functions. Rayleigh-like neutral points arise from zero polarization that occurs at scattering angles of 0 deg and 180 deg. For Rayleigh phase functions, the position of these points varies with the optical thickness of the scattering layer. Non-Rayleigh neutral points are associated with the zeros of polarization which occur between the end points of the single scattering curve, and are found over a wide range of azimuthal angles.

  4. In situ Characterization of Nanoparticles Using Rayleigh Scattering

    PubMed Central

    Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto

    2017-01-01

    We report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle population from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols. PMID:28071715

  5. Rayleigh Scattering Diagnostic for Measurement of Temperature and Velocity in Harsh Environments

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Greer, Lawrence C., III

    1998-01-01

    A molecular Rayleigh scattering system for temperature and velocity measurements in unseeded flows is described. The system is capable of making measurements in the harsh environments commonly found in aerospace test facilities, which may have high acoustic sound levels, varying temperatures, and high vibration levels. Light from an argon-ion laser is transmitted via an optical fiber to a remote location where two flow experiments were located. One was a subsonic free air jet; the second was a low-speed heated airjet. Rayleigh scattered light from the probe volume was transmitted through another optical fiber from the remote location to a controlled environment where a Fabry-Perot interferometer and cooled CCD camera were used to analyze the Rayleigh scattered light. Good agreement between the measured velocity and the velocity calculated from isentropic flow relations was demonstrated (less than 5 m/sec). The temperature measurements, however, exhibited systematic errors on the order of 10-15%.

  6. In situ characterization of nanoparticles using Rayleigh scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto

    Here, we report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C 60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle populationmore » from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.« less

  7. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P.W.

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less

  8. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    DOE PAGES

    García-Chocano, Victor M.; López-Rios, Tomás; Krokhin, Arkadii; ...

    2011-12-23

    Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in amore » channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.« less

  9. Variational description of the positive column with two-stem ionization

    NASA Technical Reports Server (NTRS)

    Crawford, F. W.

    1979-01-01

    The ionization balance in diffusion dominated discharges which depends on both one and two step ionization processes is considered. The Spenke diffusion equation (D sq delta n + neutrino n + sq kn =0) describing such conditions is solved by the Rayleigh-Ritz variational method. Simple analytic approximations to the density profile, and the similarity relation between neutrino,k,D and the discharge dimensions, are derived for planar and cylindrical geometry, and compared with exact computations for certain limiting cases.

  10. Numerical realization of the variational method for generating self-trapped beams

    NASA Astrophysics Data System (ADS)

    Duque, Erick I.; Lopez-Aguayo, Servando; Malomed, Boris A.

    2018-03-01

    We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schr\\"odinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.

  11. High spectral resolution lidar using spherical Fabry-Perot to measure aerosol and atmospheric molecular density

    NASA Astrophysics Data System (ADS)

    Yann, Caraty; Alain, Hauchecorne; Philippe, Keckhut; Jean-François, Mariscal; Eric, Dalmeida

    2018-04-01

    In theory, the HSRL method should expand the validity range of the atmospheric molecular density and temperature profiles of the Rayleigh LIDAR in the UTLS below 30 km, with an accuracy of 1 K, while suppressing the particle contribution. We tested a Spherical Fabry-Perot which achieves these performances while keeping a big flexibility in optical alignment. However, this device has some limitations (thermal drift and a possible partial depolarisation of the backscattered signal).

  12. Theoretical and experimental characterization of the first hyperpolarizability

    NASA Astrophysics Data System (ADS)

    Perez-Moreno, Javier

    We present a theoretical and experimental study of the molecular susceptibilities. The generalized Thomas-Kuhn sum rules are used to characterize the nonlinear response of organic chromophores in terms of fundamental parameters. The nonlinear optical performance of real molecules is evaluated from the calculation of the quantum limits and Hyper-Rayleigh scattering measurements. Different strategies for the enhancement of nonlinear behavior at the molecular and supramolecular level are evaluated and new paradigms for de design of more efficient nonlinear molecules are proposed.

  13. Improved Holistic Analysis of Rayleigh Waves for Single- and Multi-Offset Data: Joint Inversion of Rayleigh-Wave Particle Motion and Vertical- and Radial-Component Velocity Spectra

    NASA Astrophysics Data System (ADS)

    Dal Moro, Giancarlo; Moustafa, Sayed S. R.; Al-Arifi, Nassir S.

    2018-01-01

    Rayleigh waves often propagate according to complex mode excitation so that the proper identification and separation of specific modes can be quite difficult or, in some cases, just impossible. Furthermore, the analysis of a single component (i.e., an inversion procedure based on just one objective function) necessarily prevents solving the problems related to the non-uniqueness of the solution. To overcome these issues and define a holistic analysis of Rayleigh waves, we implemented a procedure to acquire data that are useful to define and efficiently invert the three objective functions defined from the three following "objects": the velocity spectra of the vertical- and radial-components and the Rayleigh-wave particle motion (RPM) frequency-offset data. Two possible implementations are presented. In the first case we consider classical multi-offset (and multi-component) data, while in a second possible approach we exploit the data recorded by a single three-component geophone at a fixed offset from the source. Given the simple field procedures, the method could be particularly useful for the unambiguous geotechnical exploration of large areas, where more complex acquisition procedures, based on the joint acquisition of Rayleigh and Love waves, would not be economically viable. After illustrating the different kinds of data acquisition and the data processing, the results of the proposed methodology are illustrated in a case study. Finally, a series of theoretical and practical aspects are discussed to clarify some issues involved in the overall procedure (data acquisition and processing).

  14. Quantitative analysis of thoria phase in Th-U alloys using diffraction studies

    NASA Astrophysics Data System (ADS)

    Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.

    2017-05-01

    In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.

  15. The diffractionator

    NASA Astrophysics Data System (ADS)

    Gaskill, Jack D.; Curtis, Craig H.

    1995-10-01

    Physical demonstrations of diffraction and image formation for educational purposes have long been hampered by limitations of equipment and viewing facilities: it has usually been possible to demonstrate diffraction and image formation for only a few simple apertures or objects; it has often been time consuming to set up the optical bench used for the demonstration and difficult to keep it aligned; a darkened demonstration room has normally been required; and, it has usually been possible for only small groups of people to view the diffraction patterns and images. In 1990, the Optical Sciences Center was awarded an AT&T Special Purpose Grant to construct a device that would allow diffraction and image formation demonstrations to be conducted while avoiding the limitations noted above. This device, which was completed in the fall of 1992 and is affectionately called 'The Defractionator', makes use of video technology to permit demonstrations of diffraction, image formation and spatial filtering for large audiences in regular classrooms or auditoria. In addition, video tapes of the demonstrations can be recorded for viewing at sites where use of the actual demonstrator is inconvenient. A description of the system will be given, and video tapes will be used to display previously recorded diffraction phenomena and spatial filtering demonstrations.

  16. Diffraction Effects in the SOFIA Telescope and Cavity Door

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.; Haas, M. R.; Davis, P. K.

    2005-12-01

    Calculations of diffraction phenomena for SOFIA (the Stratospheric Observatory for Infrared Astronomy) are described. The analyses establish the diffraction-limited point-spread function for the planned central obscuration of the telescope, confirm the specification for the oversized primary mirror diameter, evaluate spider diffraction effects, and determine the variation in focal-plane flux with position of the telescope relative to the cavity door. The latter is a concern because motion between the door aperture and the telescope can vary the flux from a point source and the sky background by diffraction (even when the door aperture does not physically obstruct the geometrical beam). We find all these effects to be acceptable in terms of observatory performance, with the possible exception of fractional background variations 3E-3 at wavelengths 1mm. Fractional background variations larger than 1E-6 can exceed photon shot noise in one second for broad-band, background-limited infrared detectors systems. However, we expect that synchronous signal demodulation using the telescope's chopping secondary mirror will obviate this effect, assuming modulation of the diffracted sky radiation by the relative motion of the door and telescope occurs at frequencies well below the chopoper frequency. This work is supported by the National Aeronautics and Space Administration.

  17. Compatibility of a Diffractive Pupil and Coronagraphic Imaging

    NASA Technical Reports Server (NTRS)

    Bendek, Eduardo; Belikov, Rusian; Pluzhnyk, Yevgeniy; Guyon, Olivier

    2013-01-01

    Detection and characterization of exo-earths require direct-imaging techniques that can deliver contrast ratios of 10(exp 10) at 100 milliarc-seconds or smaller angular separation. At the same time, astrometric data is required to measure planet masses and can help detect planets and constrain their orbital parameters. To minimize costs, a single space mission can be designed using a high efficiency coronograph to perform direct imaging and a diffractive pupil to calibrate wide-field distortions to enable high precision astrometric measurements. This paper reports the testing of a diffractive pupil on the high-contrast test bed at the NASA Ames Research Center to assess the compatibility of using a diffractive pupil with coronographic imaging systems. No diffractive contamination was found within our detectability limit of 2x10(exp -7) contrast outside a region of 12lambda/D and 2.5x10(exp -6) within a region spanning from 2 to 12lambda/D. Morphology of the image features suggests that no contamination exists even beyond the detectability limit specified or at smaller working angles. In the case that diffractive contamination is found beyond these stated levels, active wavefront control would be able to mitigate its intensity to 10(exp -7) or better contrast.

  18. Chapman Enskog-maximum entropy method on time-dependent neutron transport equation

    NASA Astrophysics Data System (ADS)

    Abdou, M. A.

    2006-09-01

    The time-dependent neutron transport equation in semi and infinite medium with linear anisotropic and Rayleigh scattering is proposed. The problem is solved by means of the flux-limited, Chapman Enskog-maximum entropy for obtaining the solution of the time-dependent neutron transport. The solution gives the neutron distribution density function which is used to compute numerically the radiant energy density E(x,t), net flux F(x,t) and reflectivity Rf. The behaviour of the approximate flux-limited maximum entropy neutron density function are compared with those found by other theories. Numerical calculations for the radiant energy, net flux and reflectivity of the proposed medium are calculated at different time and space.

  19. Positional stability as the light emission limit in sonoluminescence with sulfuric acid.

    PubMed

    Urteaga, Raúl; Dellavale, Damián H; Puente, Gabriela F; Bonetto, Fabián J

    2007-11-01

    We studied a single bubble sonoluminescence system consisting of an argon bubble in a sulfuric acid aq. solution. We experimentally determined the relevant variables of the system. We also measured the bubble position, extent of the bubble orbits, and light intensity as a function of acoustic pressure for different argon concentrations. We find that the Bjerknes force is responsible for the bubble mean position and this imposes a limitation in the maximum acoustic pressure that can be applied to the bubble. The Rayleigh-Taylor instability does not play a role in this system and, at a given gas concentration, the SL intensity depends more on the bubble time of collapse than any other investigated parameter.

  20. Modified Linnik microscopic interferometry for quantitative depth evaluation of diffraction-limited microgroove

    NASA Astrophysics Data System (ADS)

    Ye, Shiwei; Takahashi, Satoru; Michihata, Masaki; Takamasu, Kiyoshi

    2018-05-01

    The quality control of microgrooves is extremely crucial to ensure the performance and stability of microstructures and improve their fabrication efficiency. This paper introduces a novel optical inspection method and a modified Linnik microscopic interferometer measurement system to detect the depth of microgrooves with a width less than the diffraction limit. Using this optical method, the depth of diffraction-limited microgrooves can be related to the near-field optical phase difference, which cannot be practically observed but can be computed from practical far-field observations. Thus, a modified Linnik microscopic interferometer system based on three identical objective lenses and an optical path reversibility principle were developed. In addition, experiments for standard grating microgrooves on the silicon surface were carried out to demonstrate the feasibility and repeatability of the proposed method and developed measurement system.

  1. Linear and nonlinear pattern selection in Rayleigh-Benard stability problems

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    1993-01-01

    A new algorithm is introduced to compute finite-amplitude states using primitive variables for Rayleigh-Benard convection on relatively coarse meshes. The algorithm is based on a finite-difference matrix-splitting approach that separates all physical and dimensional effects into one-dimensional subsets. The nonlinear pattern selection process for steady convection in an air-filled square cavity with insulated side walls is investigated for Rayleigh numbers up to 20,000. The internalization of disturbances that evolve into coherent patterns is investigated and transient solutions from linear perturbation theory are compared with and contrasted to the full numerical simulations.

  2. Spline-based Rayleigh-Ritz methods for the approximation of the natural modes of vibration for flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1985-01-01

    Rayleigh-Ritz methods for the approximation of the natural modes for a class of vibration problems involving flexible beams with tip bodies using subspaces of piecewise polynomial spline functions are developed. An abstract operator theoretic formulation of the eigenvalue problem is derived and spectral properties investigated. The existing theory for spline-based Rayleigh-Ritz methods applied to elliptic differential operators and the approximation properties of interpolatory splines are useed to argue convergence and establish rates of convergence. An example and numerical results are discussed.

  3. Supershear Rayleigh Waves at a Soft Interface

    NASA Astrophysics Data System (ADS)

    Le Goff, Anne; Cobelli, Pablo; Lagubeau, Guillaume

    2013-06-01

    We report on the experimental observation of waves at a liquid foam surface propagating faster than the bulk shear waves. The existence of such waves has long been debated, but the recent observation of supershear events in a geophysical context has inspired us to search for their existence in a model viscoelastic system. An optimized fast profilometry technique allows us to observe on a liquid foam surface the waves triggered by the impact of a projectile. At high impact velocity, we show that the expected subshear Rayleigh waves are accompanied by faster surface waves that can be identified as supershear Rayleigh waves.

  4. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  5. Rayleigh scattering measurements of several fluorocarbon gases.

    PubMed

    Zadoo, Serena; Thompson, Jonathan E

    2011-11-01

    Integrating nephelometers are commonly used to monitor airborne particulate matter. However, they must be calibrated prior to use. The Rayleigh scattering coefficients (b(RS), Mm(-1)), scattering cross sections (σ(RS), cm(2)), and Rayleigh multipliers for tetrafluoromethane (R-14), sulfur hexafluoride, pentafluoroethane (HFC-125), hexafluoropropene (HFC-216), 1,1,1,2,3,3,3,-heptafluoropropane (HFC-227ea), and octafluorocyclobutane (C-318) are reported from measurements made using a Radiance Research M903 integrating nephelometer operating at λ = 530 nm and calibration with gases of known scattering constants. Rayleigh multipliers (±90% conf. int.) were found to be 2.6 ± 0.5, 6.60 ± 0.07, 7.5 ± 1, 14.8 ± 0.9, 15.6 ± 0.5, and 22.3 ± 0.8 times that of air, respectively. To the best of our knowledge, these are the first reported values for R-14, HFC-216, HFC-125, and C-318. Experimental accuracy is supported through measurements of values for SF(6) and HFC-227ea which agree to within 3% of previous literature reports. In addition to documenting fundamental Rayleigh scattering data for the first time, the information presented within will find use for calibration of optical scattering sensors such as integrating nephelometers.

  6. What is the contribution of scattering to the Love-to-Rayleigh ratio in ambient microseismic noise?

    NASA Astrophysics Data System (ADS)

    Ziane, D.; Hadziioannou, C.

    2015-12-01

    Several observations show the existence of both Rayleigh and Love waves in the secondary microseism. While the Rayleigh wave excitation is well described by Longuet-Higgins, the process responsible for Love wave generation still needs further investigation. Several different mechanisms could excite Love waves in this frequency band: broadly speaking, we can differentiate between source effects, like pressure variations on the oblique sea floor, or internal effects in the medium along the propagation path, such as scattering and conversions. Here we will focus on the internal effects. We perform single scattering tests in 2D and 3D to gain a better understanding of the scattering radiation pattern and the conversion between P, S, Rayleigh and Love waves. Furthermore, we use random media with continuous variations of the elastic parameters to create a scattering regime similar to the Earths interior, e.g. Gaussian or von Karmann correlation functions. The aim is to explore the contribution of scattering along the propagation path to the observed Love to Rayleigh wave energy ratios, assuming a purely vertical force source mechanism. We use finite different solvers to calculate the synthetic seismograms, and to separate the different wave types we measure the rotational and divergent components of the wave field.

  7. Three-dimensional Rayleigh-Taylor convection of miscible fluids in a porous medium

    NASA Astrophysics Data System (ADS)

    Suekane, Tetsuya; Nakanishi, Yuji; Wang, Lei

    2017-11-01

    Natural convection of miscible fluids in a porous medium is relevant for fields, such as geoscience and geoengineering, and for the geological storage of CO2. In this study, we use X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appears at the interface. As the wavelength and amplitude increase, descending fingers form on the interface and extend vertically downward; moreover, ascending and highly symmetric fingers form. The adjacent fingers are cylindrical in shape and coalesce to form large fingers. Fingers appearing on the interface tend to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. If the Péclet number exceeds 10, the transverse dispersion increases the finger diameter and enhances finger coalescence, strongly impacting the decay in finger number density. When mechanical dispersion is negligible, the finger-extension velocity, the mass-transfer rate, and the onset time scale with Rayleigh number. Mechanical dispersion not only reduces the onset time but also enhances mass transport, which indicates that mechanical dispersion influences the long-term dissolution process of CO2 injected into aquifers.

  8. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerashchenko, Sergiy; Livescu, Daniel

    Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  9. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE PAGES

    Gerashchenko, Sergiy; Livescu, Daniel

    2016-07-28

    Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  10. Comparison of Oceanic and Continental Lithosphere, Asthenosphere, and the LAB Through Shear Velocity Inversion of Rayleigh Wave Data from the ALBACORE Amphibious Array in Southern California

    NASA Astrophysics Data System (ADS)

    Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.

  11. Velocity Structure of the Iran Region Using Seismic and Gravity Observations

    NASA Astrophysics Data System (ADS)

    Syracuse, E. M.; Maceira, M.; Phillips, W. S.; Begnaud, M. L.; Nippress, S. E. J.; Bergman, E.; Zhang, H.

    2015-12-01

    We present a 3D Vp and Vs model of Iran generated using a joint inversion of body wave travel times, Rayleigh wave dispersion curves, and high-wavenumber filtered Bouguer gravity observations. Our work has two main goals: 1) To better understand the tectonics of a prominent example of continental collision, and 2) To assess the improvements in earthquake location possible as a result of joint inversion. The body wave dataset is mainly derived from previous work on location calibration and includes the first-arrival P and S phases of 2500 earthquakes whose initial locations qualify as GT25 or better. The surface wave dataset consists of Rayleigh wave group velocity measurements for regional earthquakes, which are inverted for a suite of period-dependent Rayleigh wave velocity maps prior to inclusion in the joint inversion for body wave velocities. We use gravity anomalies derived from the global gravity model EGM2008. To avoid mapping broad, possibly dynamic features in the gravity field intovariations in density and body wave velocity, we apply a high-pass wavenumber filter to the gravity measurements. We use a simple, approximate relationship between density and velocity so that the three datasets may be combined in a single inversion. The final optimized 3D Vp and Vs model allows us to explore how multi-parameter tomography addresses crustal heterogeneities in areas of limited coverage and improves travel time predictions. We compare earthquake locations from our models to independent locations obtained from InSAR analysis to assess the improvement in locations derived in a joint-inversion model in comparison to those derived in a more traditional body-wave-only velocity model.

  12. High-Efficiency, Near-Diffraction Limited, Dielectric Metasurface Lenses Based on Crystalline Titanium Dioxide at Visible Wavelengths.

    PubMed

    Liang, Yaoyao; Liu, Hongzhan; Wang, Faqiang; Meng, Hongyun; Guo, Jianping; Li, Jinfeng; Wei, Zhongchao

    2018-04-28

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Previous metasurfaces have been limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Here we report a polarization-insensitive, high-contrast transmissive metasurface composed of crystalline titanium dioxide pillars in the form of metalens at the wavelength of 633 nm. The focal spots are as small as 0.54 λ d , which is very close to the optical diffraction limit of 0.5 λ d . The simulation focusing efficiency is up to 88.5%. A rigorous method for metalens design, the phase realization mechanism and the trade-off between high efficiency and small spot size (or large numerical aperture) are discussed. Besides, the metalenses can work well with an imaging point source up to ±15° off axis. The proposed design is relatively systematic and can be applied to various applications such as visible imaging, ranging and sensing systems.

  13. Shear-wave velocity structure of the Tongariro Volcanic Centre, New Zealand: Fast Rayleigh and slow Love waves indicate strong shallow anisotropy

    NASA Astrophysics Data System (ADS)

    Godfrey, Holly J.; Fry, Bill; Savage, Martha K.

    2017-04-01

    Models of the velocity structure of volcanoes can help define possible magma pathways and contribute to calculating more accurate earthquake locations, which can help with monitoring volcanic activity. However, shear-wave velocity of volcanoes is difficult to determine from traditional seismic techniques, such as local earthquake tomography (LET) or refraction/reflection surveys. Here we use the recently developed technique of noise cross correlation of continuous seismic data to investigate the subsurface shear-wave velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, focusing on the active Ruapehu and Tongariro Volcanoes. We observe both the fundamental and first higher-order modes of Rayleigh and Love waves within our noise dataset, made from stacks of 15 min cross-correlation functions. We manually pick group velocity dispersion curves from over 1900 correlation functions, of which we consider 1373 to be high quality. We subsequently invert a subset of the fundamental mode Rayleigh- and Love-wave dispersion curves both independently and jointly for one dimensional shear-wave velocity (Vs) profiles at Ruapehu and Tongariro Volcanoes. Vs increases very slowly at a rate of approximately 0.2 km/s per km depth beneath Ruapehu, suggesting that progressive hydrothermal alteration mitigates the effects of compaction driven velocity increases. At Tongariro, we observe larger Vs increases with depth, which we interpret as different layers within Tongariro's volcanic system above altered basement greywacke. Slow Vs, on the order of 1-2 km/s, are compatible with P-wave velocities (using a Vp/Vs ratio of 1.7) from existing velocity profiles of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation methods. Most of the measured group velocities of fundamental mode Love-waves across the TgVC are 0.1-0.4 km/s slower than those of fundamental mode Rayleigh-waves in the frequency range of 0.25-1 Hz. First-higher mode Love-waves are similarly slower than first-higher mode Rayleigh waves. This is incompatible with synthetic dispersion curves we calculate using isotropic, layered velocity models appropriate for Ruapehu and Tongariro, in which Love waves travel more quickly than Rayleigh waves of the same period. The Love-Rayleigh discrepancy is likely due to structures such as dykes or cracks in the vertical plane having increased influence on surface-wave propagation. However, several measurements at Ruapehu have Love-wave group velocities that are faster than Rayleigh-wave group velocities. The differences between the Love- and Rayleigh-wave dispersion curves also vary with the azimuth of the interstation path across Ruapehu and Tongariro Volcanoes. Significant azimuthal dependence of both Love and Rayleigh-wave velocities are also observed. This suggests azimuthal anisotropy within the volcanic structures, which coupled with radial anisotropy, makes the Vs structures of Ruapehu and Tongariro Volcanoes anisotropic with orthorhombic or lower order symmetry. We suggest that further work to determine three-dimensional volcanic structures should include provisions for such anisotropy.

  14. Views from EPOXI: Colors in Our Solar System as an Analog for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Meadows, V. S.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Lisse, C. M.; Wellnitz, Dennis

    2011-01-01

    The first visible-light studies of Earth-sized extrasolar planets will employ photometry or low-resolution spectroscopy. This work uses EPOCh medium-hand filter photometry between 150 and 950 nm obtained with the Deep Impact (DI) High Resolution Instrument (HRI) of Earth, the Moon, and Mars in addition to previous full-disk observations of the other six solar system planets and Titan to analyze the limitations of using photometric colors to characterize extrasolar planets. We determined that the HRI 350, 550, and 850 nm filters are optimal for distinguishing Earth from the other planets and separating planets to first order based on their atmospheric and surface properties. Detailed conclusions that can be drawn about exoplanet atmospheres simply from a color-color plot are limited due to potentially competing physical processes in the atmosphere. The presence of a Rayleigh scattering atmosphere can be detected by an increase in the 350-550 nm brightness ratio, but the absence of Rayleigh scattering cannot be confirmed due to the existence of atmospheric and surface absorbing species in the UV. Methane and ammonia are the only species responsible for strong absorption in the 850 nm filter in our solar system. The combination of physical processes present on extrasolar planets may differ from those we see locally. Nevertheless, a generation of telescopes capable of collecting such photometric observations can serve a critical role in first-order characterization and constraining the population of Earth-like extrasolar planets.

  15. Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone

    PubMed Central

    Im, Hyungsoon; Castro, Cesar M.; Shao, Huilin; Liong, Monty; Song, Jun; Pathania, Divya; Fexon, Lioubov; Min, Changwook; Avila-Wallace, Maria; Zurkiya, Omar; Rho, Junsung; Magaoay, Brady; Tambouret, Rosemary H.; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2015-01-01

    The widespread distribution of smartphones, with their integrated sensors and communication capabilities, makes them an ideal platform for point-of-care (POC) diagnosis, especially in resource-limited settings. Molecular diagnostics, however, have been difficult to implement in smartphones. We herein report a diffraction-based approach that enables molecular and cellular diagnostics. The D3 (digital diffraction diagnosis) system uses microbeads to generate unique diffraction patterns which can be acquired by smartphones and processed by a remote server. We applied the D3 platform to screen for precancerous or cancerous cells in cervical specimens and to detect human papillomavirus (HPV) DNA. The D3 assay generated readouts within 45 min and showed excellent agreement with gold-standard pathology or HPV testing, respectively. This approach could have favorable global health applications where medical access is limited or when pathology bottlenecks challenge prompt diagnostic readouts. PMID:25870273

  16. High-resolution scanning precession electron diffraction: Alignment and spatial resolution.

    PubMed

    Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A

    2017-03-01

    Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.

    2018-06-01

    Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.

  18. Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone.

    PubMed

    Im, Hyungsoon; Castro, Cesar M; Shao, Huilin; Liong, Monty; Song, Jun; Pathania, Divya; Fexon, Lioubov; Min, Changwook; Avila-Wallace, Maria; Zurkiya, Omar; Rho, Junsung; Magaoay, Brady; Tambouret, Rosemary H; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2015-05-05

    The widespread distribution of smartphones, with their integrated sensors and communication capabilities, makes them an ideal platform for point-of-care (POC) diagnosis, especially in resource-limited settings. Molecular diagnostics, however, have been difficult to implement in smartphones. We herein report a diffraction-based approach that enables molecular and cellular diagnostics. The D3 (digital diffraction diagnosis) system uses microbeads to generate unique diffraction patterns which can be acquired by smartphones and processed by a remote server. We applied the D3 platform to screen for precancerous or cancerous cells in cervical specimens and to detect human papillomavirus (HPV) DNA. The D3 assay generated readouts within 45 min and showed excellent agreement with gold-standard pathology or HPV testing, respectively. This approach could have favorable global health applications where medical access is limited or when pathology bottlenecks challenge prompt diagnostic readouts.

  19. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  20. Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  1. 2008 Wen-Chuan Mw 8.3 Earthquake: Dynamic Deformation Analysis for Seismic Surface Waveforms with 1-Hz GPS PPP Results

    NASA Astrophysics Data System (ADS)

    Shi, C.; Lou, Y.; Zhang, H.; Zhao, Q.; Liu, J.

    2008-12-01

    Some 1-Hz GPS data in China during Sichuan Wen-Chuan Mw8.3 Earthquake are processed with instantaneous Precise Point Positioning (PPP) technique using software PANDA developed in Wuhan University. Near-field GPS stations are located 30km away but lost data after 10s while several far-field sites are 300km~1200km away from epicenter. Results indicate that plane displacements exceed 40cm within 10seconds in near field while the post-seismic deformation is northwestward at the magnitude of around 30cm. Seismic surface waveforms as LOVE and Rayleigh waves can be seen clearly in the dynamic deformation process of station XANY and CHGO (in KunMing city, Yunnan Province). Love wave's first vibration is in northwestward and then southeastward, after about one cycle, Rayleigh wave comes. Love wave is at the speed of about 4km/s, Rayleigh's is about 2.85km/s. There are two deformation pulses in Rayleigh waveforms during the period of about 120 seconds monitored at station XANY, which is about 600km from epicenter. One pulse is in counter-clockwise movement and the other is clock-wise, which seems to reveal the fact that there are two kinds of rupture process in totally opposite direction. Spectral analysis shows that there are mainly two kinds of periods in the surface waves reflected by the 1-Hz horizontal deformations, one is about 5~10s (6s and 8s) and another is about 20s, corresponding to Rayleigh and Love wave respectively. Rayleigh's wavelength is about 20km, which indicates that the hypocenter is about in the depth of 10km.

  2. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths

    PubMed Central

    Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.

    2014-01-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation ‘needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology. PMID:25208611

  3. Optimum Code Rates for Noncoherent MFSK with Errors and Erasures Decoding over Rayleigh Fading Channels

    NASA Technical Reports Server (NTRS)

    Ritcey, Adina Matache James A.

    1997-01-01

    In this paper, we analyze the performance of a communication system employing M-ary frequency shift keying (FSK) modulation with errors-and-erasures decoding using Viterbi ratio threshold technique for erasure insertion, in Rayleigh fading and AWGN channels.

  4. On the Benefits of Exposing Mathematics Majors to the Rayleigh-Ritz Procedure

    ERIC Educational Resources Information Center

    Savoye, Philippe

    2011-01-01

    In this article, I summarize how I present the Rayleigh-Ritz procedure, in a second-semester differential equations course that I teach, and describe some benefits that I believe my students have derived from exposure to this topic. (Contains 3 figures.)

  5. Local patches of turbulent boundary layer behaviour in classical-state vertical natural convection

    NASA Astrophysics Data System (ADS)

    Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel

    2016-11-01

    We present evidence of local patches in vertical natural convection that are reminiscent of Prandtl-von Kármán turbulent boundary layers, for Rayleigh numbers 105-109 and Prandtl number 0.709. These local patches exist in the classical state, where boundary layers exhibit a laminar-like Prandtl-Blasius-Polhausen scaling at the global level, and are distinguished by regions dominated by high shear and low buoyancy flux. Within these patches, the locally averaged mean temperature profiles appear to obey a log-law with the universal constants of Yaglom (1979). We find that the local Nusselt number versus Rayleigh number scaling relation agrees with the logarithmically corrected power-law scaling predicted in the ultimate state of thermal convection, with an exponent consistent with Rayleigh-Bénard convection and Taylor-Couette flows. The local patches grow in size with increasing Rayleigh number, suggesting that the transition from the classical state to the ultimate state is characterised by increasingly larger patches of the turbulent boundary layers.

  6. Time-Average Molecular Rayleigh Scattering Technique for Measurement of Velocity, Denisty, Temperature, and Turbulence Intensity in High Speed Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2004-01-01

    A molecular Rayleigh scattering based flow diagnostic is developed to measure time average velocity, density, temperature, and turbulence intensity in a 25.4-mm diameter nozzle free jet facility. The spectrum of the Rayleigh scattered light is analyzed using a Fabry-Perot interferometer operated in the static imaging mode. The resulting fringe pattern containing spectral information of the scattered light is recorded using a low noise CCD camera. Nonlinear least squares analysis of the fringe pattern using a kinetic theory model of the Rayleigh scattered light provides estimates of density, velocity, temperature, and turbulence intensity of the gas flow. Resulting flow parameter estimates are presented for an axial scan of subsonic flow at Mach 0.95 for comparison with previously acquired pitot tube data, and axial scans of supersonic flow in an underexpanded screeching jet. The issues related to obtaining accurate turbulence intensity measurements using this technique are discussed.

  7. Turbulent boundary layer in high Rayleigh number convection in air.

    PubMed

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  8. Temperature fluctuation in Rayleigh-Bénard convection: Logarithmic vs power-law

    NASA Astrophysics Data System (ADS)

    He, Yu-Hao; Xia, Ke-Qing

    2016-11-01

    We present an experimental measurement of the rms temperature (σT) profile in two regions inside a large aspect ratio (Γ = 4 . 2) rectangular Rayleigh-Bénard convection cell. The Rayleigh number (Ra) is from 3 . 2 ×107 to 1 . 9 ×108 at fixed Prandtl number (Pr = 4 . 34). It is found that, in one region, where the boundary layer is sheared by a large-scale wind, σT versus the distance (z) above the bottom plate, obeys power law over one decade, whereas in another region, where plumes concentrate and move upward (plume-ejection region), the profile of σT has a logarithmic dependence on z. When normalized by a typical temperature scale θ*, the profiles of σT at different Rayleigh numbers collapse onto a single curve, indicating a university of σT profile with respect to Ra . This work is supported by the Hong Kong Research Grant Council under Grant Number N_CUHK437/15.

  9. Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium.

    PubMed

    Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Tasaka, Yuji; Yoshida, Masataka; Yano, Kanako; Takeda, Yasushi

    2010-07-01

    This investigation observed large-scale flows in liquid gallium and the oscillation with Rayleigh-Bénard convection. An ultrasonic velocity profiling method was used to visualize the spatiotemporal flow pattern of the liquid gallium in a horizontally long rectangular vessel. Measuring the horizontal component of the flow velocity at several lines, an organized roll-like structure with four cells was observed in the 1×10(4)-2×10(5) range of Rayleigh numbers, and the rolls show clear oscillatory behavior. The long-term fluctuations in temperature observed in point measurements correspond to the oscillations of the organized roll structure. This flow structure can be interpreted as the continuous development of the oscillatory instability of two-dimensional roll convection that is theoretically investigated around the critical Rayleigh number. Both the velocity of the large-scale flows and the frequency of the oscillation increase proportional to the square root of the Rayleigh number. This indicates that the oscillation is closely related to the circulation of large-scale flow.

  10. Investigation of Condensation/Clustering Effects on Rayleigh Scattering Measurements in a Hypersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Tyler, Charles

    1996-01-01

    Rayleigh scattering, a nonintrusive measurement technique for the measurement of density in a hypersonic wind tunnel, is under investigation at Wright Laboratory's Mach 6 wind tunnel. Several adverse effects, i.e., extraneous scatter off walls and windows, hinder Rayleigh scattering measurements. Condensation and clustering of flow constituents also present formidable obstacles. Overcoming some of these difficulties, measurements have been achieved while the Mach 6 test section was pumped down to a vacuum, as well as for actual tunnel operation for various stagnation pressures at fixed stagnation temperatures. Stagnation pressures ranged from 0.69 MPa to 6.9 MPa at fixed stagnation temperatures of 511, 556, and 611 K. Rayleigh scatter results show signal levels much higher than expected for molecular scattering in the wind tunnel. Even with higher than expected signals, scattering measurements have been made in the flowfield of an 8-degree half-angle blunt nose cone with a nose radius of 1.5 cm.

  11. Rayleigh analysis of domain dynamics across temperature induced polymorphic phase transitions in lead-free piezoceramics (1‑x)(BaTi0.88Sn0.12)–x(Ba0.7Ca0.3)TiO3

    NASA Astrophysics Data System (ADS)

    Abebe, Mulualem; Brajesh, Kumar; Singh Malhotra, Jaskaran; Ranjan, Rajeev

    2018-05-01

    We carried out a Rayleigh analysis of the dielectric permittivity of a lead-free piezoceramic system (1‑x)(BaTi0.88Sn0.12)–x(Ba0.7Ca0.3)TiO3 across the composition and temperature induced polymorphic phase transformations to determine the trend in the reversible and irreversible domain wall motion across the composition and temperature induced structural changes. Experiments were carried out on three representative compositions x  =  0.10, 0.2, and 0.25 exhibiting rhombohedral, orthorhombic, and tetragonal phases at room temperature. While confirming that the irreversible Rayleigh parameter is large in the orthorhombic phase, we discuss a correspondence between the reduction in the coercive field and the corresponding increase in the irreversible Rayleigh parameter. We also show how the proximity of the Curie point to the polymorphic phase boundary greatly undermines this correspondence.

  12. Insight into large-scale topography on analysis of high-frequency Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Ping, Ping; Chu, Risheng; Chong, Jiajun; Ni, Sidao; Zhang, Yu

    2018-03-01

    The dispersion of surface waves could be biased in regions where topography is comparable to the wavelength. We investigate the effects on high-frequency Rayleigh waves propagating in a typical massif model through numerical simulations. High-frequency Rayleigh waves have relatively higher signal-to-noise ratios (SNR) using the Q component in the LQT coordinate system, perpendicular to the local free surface in these topographic models. When sources and stations are located at different sides of the massif, the conventional dispersion image overestimates phase velocities of Rayleigh waves, as much as 25% with topographic height/width ratio (H/r) > 0.5. The dispersion perturbation is more distinctive for fundamental modes. Using a two-layer model, the thickness deviation (ΔD/D) may be significant in surface-wave inversion due to the variation of H/r and the thickness of the first layer. These phenomena cannot be ignored in surface-wave interpretations, nevertheless they are trivial for the source and stations located at the same side of the massif.

  13. Completing the mechanical energy pathways in turbulent Rayleigh-Bénard convection.

    PubMed

    Gayen, Bishakhdatta; Hughes, Graham O; Griffiths, Ross W

    2013-09-20

    A new, more complete view of the mechanical energy budget for Rayleigh-Bénard convection is developed and examined using three-dimensional numerical simulations at large Rayleigh numbers and Prandtl number of 1. The driving role of available potential energy is highlighted. The relative magnitudes of different energy conversions or pathways change significantly over the range of Rayleigh numbers Ra ~ 10(7)-10(13). At Ra < 10(7) small-scale turbulent motions are energized directly from available potential energy via turbulent buoyancy flux and kinetic energy is dissipated at comparable rates by both the large- and small-scale motions. In contrast, at Ra ≥ 10(10) most of the available potential energy goes into kinetic energy of the large-scale flow, which undergoes shear instabilities that sustain small-scale turbulence. The irreversible mixing is largely confined to the unstable boundary layer, its rate exactly equal to the generation of available potential energy by the boundary fluxes, and mixing efficiency is 50%.

  14. Propagation and attenuation of Rayleigh waves in generalized thermoelastic media

    NASA Astrophysics Data System (ADS)

    Sharma, M. D.

    2014-01-01

    This study considers the propagation of Rayleigh waves in a generalized thermoelastic half-space with stress-free plane boundary. The boundary has the option of being either isothermal or thermally insulated. In either case, the dispersion equation is obtained in the form of a complex irrational expression due to the presence of radicals. This dispersion equation is rationalized into a polynomial equation, which is solvable, numerically, for exact complex roots. The roots of the dispersion equation are obtained after removing the extraneous zeros of this polynomial equation. Then, these roots are filtered out for the inhomogeneous propagation of waves decaying with depth. Numerical examples are solved to analyze the effects of thermal properties of elastic materials on the dispersion of existing surface waves. For these thermoelastic Rayleigh waves, the behavior of elliptical particle motion is studied inside and at the surface of the medium. Insulation of boundary does play a significant role in changing the speed, amplitude, and polarization of Rayleigh waves in thermoelastic media.

  15. 50 Mb/s, 220-mW Laser-Array Transmitter

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.

    1992-01-01

    Laser transmitter based on injection locking produces single-wavelength, diffraction-limited, single-lobe beam. Output stage is array of laser diodes producing non-diffraction-limited, multi-mode beam in absence of injection locking. Suitable for both free-space and optical-fiber communication systems. Because beam from transmitter focused to spot as small as 5 micrometers, devices usable for reading and writing optical disks at increased information densities. Application also in remote sensing and ranging.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latychevskaia, Tatiana, E-mail: tatiana@physik.uzh.ch; Fink, Hans-Werner; Chushkin, Yuriy

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.

  17. History and Solution of the Phase Problem in theTheory of Structure Determination of Crystals from X-ray Diffraction Experiments

    ScienceCinema

    Wolf, Emil [University of Rochester, Rochester, New York, United States

    2017-12-09

    Since the pioneering work of Max von Laue on interference and diffraction of x-rays, carried out almost 100 years ago, numerous attempts have been made to determine structures of crystalline media from x-ray diffraction experiments. The usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk, the most important research carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented.

  18. Dynamics of single-bubble sonoluminescence. An alternative approach to the Rayleigh-Plesset equation

    NASA Astrophysics Data System (ADS)

    de Barros, Ana L. F.; Nogueira, Álvaro L. M. A.; Paschoal, Ricardo C.; Portes, Dirceu, Jr.; Rodrigues, Hilario

    2018-03-01

    Sonoluminescence is the phenomenon in which acoustic energy is (partially) transformed into light as a bubble of gas collapses inside a liquid medium. One particular model used to explain the motion of the bubble’s wall forced by acoustic pressure is expressed by the Rayleigh-Plesset equation, which can be obtained from the Navier-Stokes equation. In this article, we describe an alternative approach to derive the Rayleigh-Plesset equation based on Lagrangian mechanics. This work is addressed mainly to undergraduate students and teachers. It requires knowledge of calculus and of many concepts from various fields of physics at the intermediate level.

  19. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  20. Performance of DBS-Radio using concatenated coding and equalization

    NASA Technical Reports Server (NTRS)

    Gevargiz, J.; Bell, D.; Truong, L.; Vaisnys, A.; Suwitra, K.; Henson, P.

    1995-01-01

    The Direct Broadcast Satellite-Radio (DBS-R) receiver is being developed for operation in a multipath Rayleigh channel. This receiver uses equalization and concatenated coding, in addition to open loop and closed loop architectures for carrier demodulation and symbol synchronization. Performance test results of this receiver are presented in both AWGN and multipath Rayleigh channels. Simulation results show that the performance of the receiver operating in a multipath Rayleigh channel is significantly improved by using equalization. These results show that fractional-symbol equalization offers a performance advantage over full symbol equalization. Also presented is the base-line performance of the DBS-R receiver using concatenated coding and interleaving.

  1. Study of Injection of Helium into Supersonic Air Flow Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seaholtz, Richard G.; Buggele, Alvin E.

    1997-01-01

    A study of the transverse injection of helium into a Mach 3 crossflow is presented. Filtered Rayleigh scattering is used to measure penetration and helium mole fraction in the mixing region. The method is based on planar molecular Rayleigh scattering using an injection-seeded, frequency-doubled ND:YAG pulsed laser and a cooled CCD camera. The scattered light is filtered with an iodine absorption cell to suppress stray laser light. Preliminary data are presented for helium mole fraction and penetration. Flow visualization images obtained with a shadowgraph and wall static pressure data in the vicinity of the injection are also presented.

  2. Study on evaluation methods for Rayleigh wave dispersion characteristic

    USGS Publications Warehouse

    Shi, L.; Tao, X.; Kayen, R.; Shi, H.; Yan, S.

    2005-01-01

    The evaluation of Rayleigh wave dispersion characteristic is the key step for detecting S-wave velocity structure. By comparing the dispersion curves directly with the spectra analysis of surface waves (SASW) method, rather than comparing the S-wave velocity structure, the validity and precision of microtremor-array method (MAM) can be evaluated more objectively. The results from the China - US joint surface wave investigation in 26 sites in Tangshan, China, show that the MAM has the same precision with SASW method in 83% of the 26 sites. The MAM is valid for Rayleigh wave dispersion characteristic testing and has great application potentiality for site S-wave velocity structure detection.

  3. Bursting dynamics in Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Dan, Surajit; Ghosh, Manojit; Nandukumar, Yada; Dana, Syamal K.; Pal, Pinaki

    2017-06-01

    We report bursting dynamics in a parametrically driven Rayleigh-Bénard convection (RBC) model of low Prandtl-number fluids with free-slip boundary conditions. A four dimensional RBC model [P. Pal, K. Kumar, P. Maity, S.K. Dana, Phys. Rev. E 87, 023001 (2013)] is used for this study. The dynamical system shows pitchfork, Hopf and gluing bifurcations near the onset of RBC of low Prandtl-number fluids. Around the bifurcation points, when the Rayleigh number of the system is slowly modulated periodically, two unknown kinds of bursting appears, namely, Hopf/Hopf via pitchfork bifurcation and Hopf/Hopf via gluing bifurcation besides the conventional Hopf/Hopf (elliptical) and pitchfork/pitchfork bursting.

  4. Effect of Non-speckle Echo Signals on Tissue Characteristics for Liver Fibrosis using Probability Density Function of Ultrasonic B-mode image

    NASA Astrophysics Data System (ADS)

    Mori, Shohei; Hirata, Shinnosuke; Yamaguchi, Tadashi; Hachiya, Hiroyuki

    To develop a quantitative diagnostic method for liver fibrosis using an ultrasound B-mode image, a probability imaging method of tissue characteristics based on a multi-Rayleigh model, which expresses a probability density function of echo signals from liver fibrosis, has been proposed. In this paper, an effect of non-speckle echo signals on tissue characteristics estimated from the multi-Rayleigh model was evaluated. Non-speckle signals were determined and removed using the modeling error of the multi-Rayleigh model. The correct tissue characteristics of fibrotic tissue could be estimated with the removal of non-speckle signals.

  5. On-sky validation of an optimal LQG control with vibration mitigation: from the CANARY Multi-Object Adaptive Optics demonstrator to the Gemini Multi-Conjugated Adaptive Optics facility.

    NASA Astrophysics Data System (ADS)

    Sivo, Gaetano; Kulcsár, Caroline; Conan, Jean-Marc; Raynaud, Henri-François; Gendron, Éric; Basden, Alastair; Gratadour, Damien; Morris, Tim; Petit, Cyril; Meimon, Serge; Rousset, Gérard; Garrel, Vincent; Neichel, Benoit; van Dam, Marcos; Marin, Eduardo; Carrasco, Rodrigo; Schirmer, Mischa; Rambold, William; Moreno, Cristian; Montes, Vanessa; Hardie, Kayla; Trujillo, Chad

    2015-01-01

    Adaptive optics provides real time correction of wavefront perturbations on ground-based telescopes and allow to reach the diffraction limit performances. Optimizing control and performance is a key issue for ever more demanding instruments on ever larger telescopes affected not only by atmospheric turbulence, but also by vibrations, windshake and tracking errors. Linear Quadratic Gaussian control achieves optimal correction when provided with a temporal model of the disturbance. We present in this paper the first on-sky results of a Kalman filter based LQG control with vibration mitigation on the CANARY instrument at the Nasmyth platform of the 4.2-m William Herschel Telescope (La Palma, Spain). The results demonstrate a clear improvement of performance for full LQG compared with standard integrator control, and assess the additional improvement brought by vibration filtering with a tip-tilt model identified from on-sky data (by 10 points of Strehl ratio), thus validating the strategy retained on the instrument SPHERE (eXtreme-AO system for extra-solar planets detection and characterization) at the VLT. The MOAO on-sky pathfinder CANARY features two AO configurations that have both been tested: single- conjugated AO and multi-object AO with NGS and NGS+ Rayleigh LGS, together with vibration mitigation on tip and tilt modes. We finally present the ongoing development done to commission such a control law on a regular Sodium laser Multi-Conjuagated Adaptive Optics (MCAO) system GeMS at the 8-m Gemini South Telescope. This implementation does not require new hardware and is already available in the real-time computer.

  6. The Large Binocular Telescope's ARGOS ground-layer AO system

    NASA Astrophysics Data System (ADS)

    Hart, M.; Rabien, S.; Busoni, L.; Barl, L.; Bechmann, U.; Bonaglia, M.; Boose, Y.; Borelli, J.; Bluemchen, T.; Carbonaro, L.; Connot, C.; Deysenroth, M.; Davies, R.; Durney, O.; Elberich, M.; Ertl, T.; Esposito, S.; Gaessler, W.; Gasho, V.; Gemperlein, H.; Hubbard, P.; Kanneganti, S.; Kulas, M.; Newman, K.; Noenickx, J.; Orban de Xivry, G.; Qirrenback, A.; Rademacher, M.; Schwab, C.; Storm, J.; Vaitheeswaran, V.; Weigelt, G.; Ziegleder, J.

    2011-09-01

    ARGOS, the laser-guided adaptive optics system for the Large Binocular Telescope (LBT), is now under construction at the telescope. By correcting atmospheric turbulence close to the telescope, the system is designed to deliver high resolution near infrared images over a field of 4 arc minute diameter. ARGOS is motivated by a successful prototype multi-laser guide star system on the 6.5 m MMT telescope, results from which are presented in this paper. At the LBT, each side of the twin 8.4 m aperture is being equipped with three Rayleigh laser guide stars derived from six 18 W pulsed green lasers and projected into two triangular constellations matching the size of the corrected field. The returning light is to be detected by wavefront sensors that are range gated within the seeinglimited depth of focus of the telescope. Wavefront correction will be introduced by the telescope’s deformable secondary mirrors driven on the basis of the average wavefront errors computed from the respective guide star constellation. Measured atmospheric turbulence profiles from the site lead us to expect that by compensating the ground-layer turbulence, ARGOS will deliver median image quality of about 0.2 arc sec in the near infrared bands. This will be exploited by a pair of multi-object near-IR spectrographs, LUCI1 and LUCI2, each with 4 arc minute field already operating on the telescope. In future, ARGOS will also feed two interferometric imaging instruments, the LBT Interferometer operating in the thermal infrared, and LINC-NIRVANA, operating at visible and near infrared wavelengths. Together, these instruments will offer very broad spectral coverage at the diffraction limit of the LBT’s combined aperture, 23 m in size.

  7. Stratified Diffractive Optic Approach for Creating High Efficiency Gratings

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.; Nordin, Gregory P.

    1998-01-01

    Gratings with high efficiency in a single diffracted order can be realized with both volume holographic and diffractive optical elements. However, each method has limitations that restrict the applications in which they can be used. For example, high efficiency volume holographic gratings require an appropriate combination of thickness and permittivity modulation throughout the bulk of the material. Possible combinations of those two characteristics are limited by properties of currently available materials, thus restricting the range of applications for volume holographic gratings. Efficiency of a diffractive optic grating is dependent on its approximation of an ideal analog profile using discrete features. The size of constituent features and, consequently, the number that can be used within a required grating period restricts the applications in which diffractive optic gratings can be used. These limitations imply that there are applications which cannot be addressed by either technology. In this paper we propose to address a number of applications in this category with a new method of creating high efficiency gratings which we call stratified diffractive optic gratings. In this approach diffractive optic techniques are used to create an optical structure that emulates volume grating behavior. To illustrate the stratified diffractive optic grating concept we consider a specific application, a scanner for a space-based coherent wind lidar, with requirements that would be difficult to meet by either volume holographic or diffractive optic methods. The lidar instrument design specifies a transmissive scanner element with the input beam normally incident and the exiting beam deflected at a fixed angle from the optical axis. The element will be rotated about the optical axis to produce a conical scan pattern. The wavelength of the incident beam is 2.06 microns and the required deflection angle is 30 degrees, implying a grating period of approximately 4 microns. Creating a high efficiency volume grating with these parameters would require a grating thickness that cannot be attained with current photosensitive materials. For a diffractive optic grating, the number of binary steps necessary to produce high efficiency combined with the grating period requires feature sizes and alignment tolerances that are also unattainable with current techniques. Rotation of the grating and integration into a space-based lidar system impose the additional requirements that it be insensitive to polarization orientation, that its mass be minimized and that it be able to withstand launch and space environments.

  8. Positive periodic solution for p-Laplacian neutral Rayleigh equation with singularity of attractive type.

    PubMed

    Xin, Yun; Liu, Hongmin; Cheng, Zhibo

    2018-01-01

    In this paper, we consider a kind of p -Laplacian neutral Rayleigh equation with singularity of attractive type, [Formula: see text] By applications of an extension of Mawhin's continuation theorem, sufficient conditions for the existence of periodic solution are established.

  9. Rayleigh-Taylor instability-fascinating gateway to the study of fluid dynamics

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert F.

    1999-09-01

    A series of low-cost simple, "kitchen-physics" experiments demonstrates Rayleigh-Taylor Instability (RTI), the growth of ripples at an interface between fluids when the higher-density fluid is on top. We also describe the importance of RTI in ocean dynamics and commercial products.

  10. GPS detection of ionospheric Rayleigh wave and its source following the 2012 Haida Gwaii earthquake

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Jin, Rui; Li, D.

    2017-01-01

    The processes and sources of seismo-ionospheric disturbances are still not clear. In this paper, coseismic ionospheric disturbances (CIDs) are investigated by dual-frequency GPS observations following the Mw = 7.8 earthquake as results of the oblique-thrust fault in the Haida Gwaii region, Canada, on 28 October 2012. Results show that the CIDs with an amplitude of up to 0.15 total electron content units (TECU) are found with spreading out at 2.20 km/s, which agree well with the Rayleigh wave propagation speed at 2.22 km/s detected by the bottom pressure records at about 10 min after the onset. The CIDs are a result of the upward propagation acoustic waves trigged by the Rayleigh wave in sequence from near field to far field. The strong correlation is found between the CIDs and the vertical ground motion recorded by seismometers nearby the epicenter. The total electron content (TEC) series from lower-elevation angle GPS observations have higher perturbation amplitudes. Furthermore, the simulated ionospheric disturbance following a vertical Gauss pulse on the ground based on the finite difference time domain method confirms the ionospheric Rayleigh wave signature in the near field and the vertical ground motion dependence theoretically. The vertical ground motion is the dominant source of the ionospheric Rayleigh wave and affects the CID waveform directly.

  11. Propagation path effects for rayleigh and love waves. Semi-annual technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrin, E.; Goforth, T.

    Seismic surface waves are usually composed of overlapping wave trains representing multi-path propagation. A first task in the analysis of such waves is to identify and separate the various component wave trains so that each can be analyzed separately. Phase-matched filters are a class of linear filters in which the Fourier phase of the filter is made equal to that of a given signal. The authors previously described an iterative technique which can be used to find a phase-matched filter for a particular component of a seismic signal. Application of the filters to digital records of Rayleigh waves allowed multiplemore » arrivals to be identified and removed, and allowed recovery of the complex spectrum of the primary wave train along with its apparent group velocity dispersion curve. A comparable analysis of Love waves presents additional complications. Love waves are contaminated by both Love and Rayleigh multipathing and by primary off-axis Rayleigh energy. In the case of explosions, there is much less energy generated as Love waves than as Rayleigh waves. The applicability of phase-matched filtering to Love waves is demonstrated by its use on earthquakes occurring in the Norwegian Sea and near Iceland and on a nuclear explosion in Novaya Zemlya. Despite severe multipathing in two of the three events, the amplitude and phase of each of the primary Love waves were recovered without significant distortion.« less

  12. Near-field limitations of Fresnel-regime coherent diffraction imaging

    DOE PAGES

    Pound, Benjamin A.; Barber, John L.; Nguyen, Kimberly; ...

    2017-08-04

    Coherent diffraction imaging (CDI) is a rapidly developing form of imaging that offers the potential of wavelength-limited resolution without image-forming lenses. In CDI, the intensity of the diffraction pattern is measured directly by the detector, and various iterative phase retrieval algorithms are used to “invert” the diffraction pattern and reconstruct a high-resolution image of the sample. But, there are certain requirements in CDI that must be met to reconstruct the object. Although most experiments are conducted in the “far-field”—or Fraunhofer—regime where the requirements are not as stringent, some experiments must be conducted in the “near field” where Fresnel diffraction mustmore » be considered. According to the derivation of Fresnel diffraction, successful reconstructions can only be obtained when the small-angle number, a derived quantity, is much less than one. We show, however, that it is not actually necessary to fulfill the small-angle condition. The Fresnel kernel well approximates the exact kernel in regions where the phase oscillates slowly, and in regions of fast oscillations, indicated by large A n , the error between kernels should be negligible due to stationary-phase arguments. Finally we verify, by experiment, this conclusion with a helium neon laser setup and show that it should hold at x-ray wavelengths as well.« less

  13. Diffraction Gratings for High-Intensity Laser Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britten, J

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy havemore » further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.« less

  14. Near-field limitations of Fresnel-regime coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Pound, Benjamin A.; Barber, John L.; Nguyen, Kimberly; Tyson, Matthew C.; Sandberg, Richard L.

    2017-08-01

    Coherent diffraction imaging (CDI) is a rapidly developing form of imaging that offers the potential of wavelength-limited resolution without image-forming lenses. In CDI, the intensity of the diffraction pattern is measured directly by the detector, and various iterative phase retrieval algorithms are used to "invert" the diffraction pattern and reconstruct a high-resolution image of the sample. However, there are certain requirements in CDI that must be met to reconstruct the object. Although most experiments are conducted in the "far-field"—or Fraunhofer—regime where the requirements are not as stringent, some experiments must be conducted in the "near field" where Fresnel diffraction must be considered. According to the derivation of Fresnel diffraction, successful reconstructions can only be obtained when the small-angle number, a derived quantity, is much less than one. We show, however, that it is not actually necessary to fulfill the small-angle condition. The Fresnel kernel well approximates the exact kernel in regions where the phase oscillates slowly, and in regions of fast oscillations, indicated by large A n , the error between kernels should be negligible due to stationary-phase arguments. We experimentally verify this conclusion with a helium neon laser setup and show that it should hold at x-ray wavelengths as well.

  15. Shadow imaging of geosynchronous satellites

    NASA Astrophysics Data System (ADS)

    Douglas, Dennis Michael

    Geosynchronous (GEO) satellites are essential for modern communication networks. If communication to a GEO satellite is lost and a malfunction occurs upon orbit insertion such as a solar panel not deploying there is no direct way to observe it from Earth. Due to the GEO orbit distance of ~36,000 km from Earth's surface, the Rayleigh criteria dictates that a 14 m telescope is required to conventionally image a satellite with spatial resolution down to 1 m using visible light. Furthermore, a telescope larger than 30 m is required under ideal conditions to obtain spatial resolution down to 0.4 m. This dissertation evaluates a method for obtaining high spatial resolution images of GEO satellites from an Earth based system by measuring the irradiance distribution on the ground resulting from the occultation of the satellite passing in front of a star. The representative size of a GEO satellite combined with the orbital distance results in the ground shadow being consistent with a Fresnel diffraction pattern when observed at visible wavelengths. A measurement of the ground shadow irradiance is used as an amplitude constraint in a Gerchberg-Saxton phase retrieval algorithm that produces a reconstruction of the satellite's 2D transmission function which is analogous to a reverse contrast image of the satellite. The advantage of shadow imaging is that a terrestrial based redundant set of linearly distributed inexpensive small telescopes, each coupled to high speed detectors, is a more effective resolved imaging system for GEO satellites than a very large telescope under ideal conditions. Modeling and simulation efforts indicate sub-meter spatial resolution can be readily achieved using collection apertures of less than 1 meter in diameter. A mathematical basis is established for the treatment of the physical phenomena involved in the shadow imaging process. This includes the source star brightness and angular extent, and the diffraction of starlight from the satellite. Atmospheric effects including signal attenuation, refraction/dispersion, and turbulence are also applied to the model. The light collection and physical measurement process using highly sensitive geiger-mode avalanche photo-diode (GM-APD) detectors is described in detail. A simulation of the end-to-end shadow imaging process is constructed and then utilized to quantify the spatial resolution limits based on source star, environmental, observational, collection, measurement, and image reconstruction parameters.

  16. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy

    PubMed Central

    Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.

    2017-01-01

    Sub-diffraction resolution imaging has played a pivotal role in biological research by visualizing key, but previously unresolvable, sub-cellular structures. Unfortunately, applications of far-field sub-diffraction resolution are currently divided between fluorescent and coherent-diffraction regimes, and a multimodal sub-diffraction technique that bridges this gap has not yet been demonstrated. Here we report that structured illumination (SI) allows multimodal sub-diffraction imaging of both coherent quantitative-phase (QP) and fluorescence. Due to SI’s conventionally fluorescent applications, we first demonstrate the principle of SI-enabled three-dimensional (3D) QP sub-diffraction imaging with calibration microspheres. Image analysis confirmed enhanced lateral and axial resolutions over diffraction-limited QP imaging, and established striking parallels between coherent SI and conventional optical diffraction tomography. We next introduce an optical system utilizing SI to achieve 3D sub-diffraction, multimodal QP/fluorescent visualization of A549 biological cells fluorescently tagged for F-actin. Our results suggest that SI has a unique utility in studying biological phenomena with significant molecular, biophysical, and biochemical components. PMID:28663887

  17. Estimates of Rayleigh-to-Love wave ratio in microseisms by co-located Ring Laser and STS-2

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wassermann, Joachim; Schreiber, Ulrich; Gebauer, André

    2015-04-01

    In older studies of microseisms (seismic noise), it was often assumed that microseisms, especially the secondary microseisms (0.1-0.3 Hz), mainly consist of Rayleigh waves. However, it has become clear that there exists a large amount of Love-wave energy mixed in it (e.g., Nishida et al., 2008). However, its confirmation is not necessarily straightforward and often required an array of seismographs. In this study, we take advantage of two co-located instruments, a Ring Laser and an STS-2 type seismograph, at Wettzell (WET), Germany (Schreiber et al., 2009). The Ring Laser records rotation (its vertical component) and is thus only sensitive to Love waves. The vertical component of STS-2 seismograph is only sensitive to Rayleigh waves. Therefore, a combination of the two instruments provides a unique opportunity to separate Rayleigh waves and Love waves in microseisms. The question we address in this paper is the ratio of Rayleigh waves to Love waves in microseisms. For both instruments, we analyze data from 2009 to 2014. Our basic approach is to create stacked vertical acceleration spectra for Rayleigh waves from STS-2 and stacked transverse acceleration spectra for Love waves from Ring Laser. The two spectra at Earth's surface can then be compared directly by their amplitudes. The first step in our analysis is a selection of time portions (each six-hour long) that are least affected by earthquakes. We do this by examining the GCMT (Global Centroid Moment Tensor) catalogue and also checking the PSDs for various frequency ranges. The second step is to create stacked (averaged) Fourier spectra from those selected time portions. The key is to use the same time portions for the STS-2 and the Ring Laser data so that the two can be directly compared. The vertical spectra from STS-2 are converted to acceleration spectra. The Ring Laser rotation spectra are first obtained in the unit of radians/sec (rotation rate). But as the Ring Laser spectra are dominated by fundamental-mode Love waves, the rotation spectra can be converted to transverse (SH) acceleration by multiplying them by the factor 2xCp where Cp is the Love-wave phase velocity. We used a seismic model by Fichtner et al. (2013) at WET to estimate Love-wave phase velocity. This conversion from rotation to transverse acceleration was first extensively used by Igel et al. (2005) for the analysis of lower frequency Love waves and the same relation holds for our spectral data. The two spectra provide the ratio of surface amplitudes. In the frequency range of secondary microseisms (0.10-0.35 Hz), they are comparable; near the spectral peak (~0.20 Hz), Rayleigh waves are about 20 percent larger in amplitudes but outside this peak region, Love waves have comparable or slightly larger amplitudes than Rayleigh waves. Therefore, the secondary microseisms at WET consist of similar contributions from Rayleigh waves and Love waves.

  18. A diode laser-based velocimeter providing point measurements in unseeded flows using modulated filtered Rayleigh scattering (MFRS)

    NASA Astrophysics Data System (ADS)

    Jagodzinski, Jeremy James

    2007-12-01

    The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.

  19. Transition to chaos of natural convection between two infinite differentially heated vertical plates

    NASA Astrophysics Data System (ADS)

    Gao, Zhenlan; Sergent, Anne; Podvin, Berengere; Xin, Shihe; Le Quéré, Patrick; Tuckerman, Laurette S.

    2013-08-01

    Natural convection of air between two infinite vertical differentially heated plates is studied analytically in two dimensions (2D) and numerically in two and three dimensions (3D) for Rayleigh numbers Ra up to 3 times the critical value Rac=5708. The first instability is a supercritical circle pitchfork bifurcation leading to steady 2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation and compared with results from direct numerical simulation (DNS). In two dimensions, DNS shows that the rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasiperiodic, and then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady state through a spatial modulation instability. In three dimensions, the rolls instead undergo another pitchfork bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids. The flow then becomes time dependent through a Hopf bifurcation, as exchanges of energy occur between the rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of period-doubling bifurcations leading to intermittency or a spatial pattern modulation reminiscent of the Eckhaus instability.

  20. High-performance liquid chromatography study of gatifloxacin and sparfloxacin using erythrosine as post-column resonance Rayleigh scattering reagent and mechanism study.

    PubMed

    Pan, Ziyu; Peng, Jingdong; Zang, Xu; Peng, Huanjun; Xiao, Huan; Bu, Lingli; Chen, Fang; He, Yan; Chen, Yu; Wang, Xiang; Li, Shiyu; Chen, Yi

    2018-03-01

    Herein, a highly selective high-performance liquid chromatography (HPLC) coupled with resonance Rayleigh scattering (RRS) method was developed to detect gatifloxacin (GFLX) and sparfloxacin (SPLX). GFLX and SPLX were first separated by HPLC, then, in pH 4.4 Britton-Robinson (BR) buffer medium, protonic quaternary ammonia cation of GFLX and SPLX reacted with erythrosine (ERY) to form 1:1 ion-association complexes, which resulted in a significant enhancement of RRS signal. The experimental conditions of HPLC and post-column RRS have been investigated, including detection wavelength, flow rate, pH, reacting tube length and reaction temperature. Reaction mechanism were studied in detail by calculating the distribution fraction. The maximum RRS signals for GFLX and SPLX were recorded at λ ex  = λ em  = 330 nm. The detection limits were 3.8 ng ml -1 for GFLX and 17.5 ng ml -1 for SPLX at a signal-to-noise ratio of 3. The developed method was successfully applied to the determination of GFLX and SPLX in water samples. Recoveries from spiked water samples were 97.56-98.85%. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Schmit, P. F.

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  2. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Schmit, P. F.

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  3. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE PAGES

    Velikovich, A. L.; Schmit, P. F.

    2015-12-28

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  4. Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond

    NASA Astrophysics Data System (ADS)

    Ventosa, Sergi; Schimmel, Martin; Stutzmann, Eleonore

    2017-10-01

    Stacks of ambient noise correlations are routinely used to extract empirical Green's functions (EGFs) between station pairs. The time-frequency phase-weighted stack (tf-PWS) is a physically intuitive nonlinear denoising method that uses the phase coherence to improve EGF convergence when the performance of conventional linear averaging methods is not sufficient. The high computational cost of a continuous approach to the time-frequency transformation is currently a main limitation in ambient noise studies. We introduce the time-scale phase-weighted stack (ts-PWS) as an alternative extension of the phase-weighted stack that uses complex frames of wavelets to build a time-frequency representation that is much more efficient and fast to compute and that preserve the performance and flexibility of the tf-PWS. In addition, we propose two strategies: the unbiased phase coherence and the two-stage ts-PWS methods to further improve noise attenuation, quality of the extracted signals and convergence speed. We demonstrate that these approaches enable to extract minor- and major-arc Rayleigh waves (up to the sixth Rayleigh wave train) from many years of data from the GEOSCOPE global network. Finally we also show that fundamental spheroidal modes can be extracted from these EGF.

  5. Elastic scattering of X-rays and gamma rays by 2S electrons in ions and neutral atoms

    NASA Astrophysics Data System (ADS)

    Costescu, A.; Spânulescu, S.; Stoica, C.

    2012-08-01

    The nonrelativistic limit of Rayleigh scattering amplitude on 2s electrons of neutral and partially ionized atoms is obtained by making use of the Green Function method. The result takes into consideration the retardation, relativistic kinematics and screening effects. The spurious singularities introduced by the retardation in a nonrelativistic approach are cancelled by the relativistic kinematics. For neutral and partially ionized atoms, a screening model is considered with an effective charge obtained by fitting the Hartree-Fock charge distribution with pure Coulombian wave functions corresponding to a central potential of a nucleus with Zeff as the atomic number. The total cross section of the photoeffect on the 2s electrons is also calculated from the imaginary part of the forward scattering amplitude by means of the optical theorem. The numerical results obtained are in a good agreement (10%) with the ones obtained by Kissell for the Rayleigh amplitude and by Scofield for the Photoeffect total cross section on the 2s electrons, for atoms with atomic number 18 ≤ Z ≤ 92 and photon energies ω≤αZm. (α=1/137,... is the fine structure constant, m is the electron mass).

  6. Rayleigh Scattering in Spectral Series with L-term Interference

    NASA Astrophysics Data System (ADS)

    Casini, R.; Manso Sainz, R.; del Pino Alemán, T.

    2017-12-01

    We derive a formalism to describe the scattering of polarized radiation over the full spectral range encompassed by atomic transitions belonging to the same spectral series (e.g., the H I Lyman and Balmer series, the UV multiplets of Fe I and Fe II). This allows us to study the role of radiation-induced coherence among the upper terms of the spectral series, and its contribution to Rayleigh scattering and the polarization of the solar continuum. We rely on previous theoretical results for the emissivity of a three-term atom of the Λ-type, taking into account partially coherent scattering, and generalize its expression in order to describe a “multiple Λ” atomic system underlying the formation of a spectral series. Our study shows that important polarization effects must be expected because of the combined action of partial frequency redistribution and radiation-induced coherence among the terms of the series. In particular, our model predicts the correct asymptotic limit of 100% polarization in the far wings of a complete (i.e., {{Δ }}L=0,+/- 1) group of transitions, which must be expected on the basis of the principle of spectroscopic stability.

  7. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmit, P. F.

    2015-12-01

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining the "instantaneous growth rate" are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].

  8. Estimating material viscoelastic properties based on surface wave measurements: A comparison of techniques and modeling assumptions

    PubMed Central

    Royston, Thomas J.; Dai, Zoujun; Chaunsali, Rajesh; Liu, Yifei; Peng, Ying; Magin, Richard L.

    2011-01-01

    Previous studies of the first author and others have focused on low audible frequency (<1 kHz) shear and surface wave motion in and on a viscoelastic material comprised of or representative of soft biological tissue. A specific case considered has been surface (Rayleigh) wave motion caused by a circular disk located on the surface and oscillating normal to it. Different approaches to identifying the type and coefficients of a viscoelastic model of the material based on these measurements have been proposed. One approach has been to optimize coefficients in an assumed viscoelastic model type to match measurements of the frequency-dependent Rayleigh wave speed. Another approach has been to optimize coefficients in an assumed viscoelastic model type to match the complex-valued frequency response function (FRF) between the excitation location and points at known radial distances from it. In the present article, the relative merits of these approaches are explored theoretically, computationally, and experimentally. It is concluded that matching the complex-valued FRF may provide a better estimate of the viscoelastic model type and parameter values; though, as the studies herein show, there are inherent limitations to identifying viscoelastic properties based on surface wave measurements. PMID:22225067

  9. A simple and rapid method for direct determination of Al(III) based on the enhanced resonance Rayleigh scattering of hemin-functionalized graphene-Al(III) system

    NASA Astrophysics Data System (ADS)

    Ling, Yu; Chen, Ling Xiao; Dong, Jiang Xue; Li, Nian Bing; Luo, Hong Qun

    2016-03-01

    A novel method for direct determination of Al(III) by using hemin-functionalized graphene (H-GO) has been established based on the enhancement of resonance Rayleigh scattering (RRS) intensity. The characteristics of RRS spectra, the optimum reaction conditions, and the reaction mechanism have been investigated. In this experiment, the Al(III) would exist in sol-gel Al(OH)3 species under the condition of pH 5.9 in aqueous solutions. When H-GO existed in the solution, the sol-gel Al(OH)3 would react with H-GO and result in enhancement of RRS intensity, owing to the enhanced hydrophobicity of H-GO surface. Therefore, a simple and rapid sensor for Al(III) was developed. The increased intensity of RRS is directly proportional to the concentration of Al(III) in the range of 10 nM-6 μM, along with a detection limit of 0.87 nM. Moreover, the sensor has been applied to determination of Al(III) concentration in real water and aspirin tablet samples with satisfactory results. Therefore, the proposed method is promising as an effective means for selective and sensitive determination of Al(III).

  10. Speckle imaging for planetary research

    NASA Technical Reports Server (NTRS)

    Nisenson, P.; Goody, R.; Apt, J.; Papaliolios, C.

    1983-01-01

    The present study of speckle imaging technique effectiveness encompasses image reconstruction by means of a division algorithm for Fourier amplitudes, and the Knox-Thompson (1974) algorithm for Fourier phases. Results which have been obtained for Io, Titan, Pallas, Jupiter and Uranus indicate that spatial resolutions lower than the seeing limit by a factor of four are obtainable for objects brighter than Uranus. The resolutions obtained are well above the diffraction limit, due to inadequacies of the video camera employed. A photon-counting camera has been developed to overcome these difficulties, making possible the diffraction-limited resolution of objects as faint as Charon.

  11. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  12. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Beach, Raymond J [Livermore, CA; Dawson, Jay W [Livermore, CA; Krupke, William F [Pleasanton, CA

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  13. Numerical simulation of nonstationary dissipative structures in 3D double-diffusive convection at large Rayleigh numbers

    NASA Astrophysics Data System (ADS)

    Kozitskiy, Sergey

    2018-06-01

    Numerical simulation of nonstationary dissipative structures in 3D double-diffusive convection has been performed by using the previously derived system of complex Ginzburg-Landau type amplitude equations, valid in a neighborhood of Hopf bifurcation points. Simulation has shown that the state of spatiotemporal chaos develops in the system. It has the form of nonstationary structures that depend on the parameters of the system. The shape of structures does not depend on the initial conditions, and a limited number of spectral components participate in their formation.

  14. Two-dimensional imaging of molecular hydrogen in H2-air diffusion flames using two-photon laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Lempert, W.; Kumar, V.; Glesk, I.; Miles, R.; Diskin, G.

    1991-01-01

    The use of a tunable ArF laser at 193.26 nm to record simultaneous single-laser-shot, planar images of molecular hydrogen and hot oxygen in a turbulent H2-air diffusion flame. Excitation spectra of fuel and oxidant-rich flame zones confirm a partial overlap of the two-photon H2 and single-photon O2 Schumann-Runge absorption bands. UV Rayleigh scattering images of flame structure and estimated detection limits for the H2 two-photon imaging are also presented.

  15. Numerical simulation of nonstationary dissipative structures in 3D double-diffusive convection at large Rayleigh numbers

    NASA Astrophysics Data System (ADS)

    Kozitskiy, Sergey

    2018-05-01

    Numerical simulation of nonstationary dissipative structures in 3D double-diffusive convection has been performed by using the previously derived system of complex Ginzburg-Landau type amplitude equations, valid in a neighborhood of Hopf bifurcation points. Simulation has shown that the state of spatiotemporal chaos develops in the system. It has the form of nonstationary structures that depend on the parameters of the system. The shape of structures does not depend on the initial conditions, and a limited number of spectral components participate in their formation.

  16. Numerical realization of the variational method for generating self-trapped beams.

    PubMed

    Duque, Erick I; Lopez-Aguayo, Servando; Malomed, Boris A

    2018-03-19

    We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schrödinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.

  17. Ablative Rayleigh Taylor instability in the limit of an infinitely large density ratio

    NASA Astrophysics Data System (ADS)

    Clavin, Paul; Almarcha, Christophe

    2005-05-01

    The instability of ablation fronts strongly accelerated toward the dense medium under the conditions of inertial confinement fusion (ICF) is addressed in the limit of an infinitely large density ratio. The analysis serves to demonstrate that the flow is irrotational to first order, reducing the nonlinear analysis to solve a two-potential flows problem. Vorticity appears at the following orders in the perturbation analysis. This result simplifies greatly the analysis. The possibility for using boundary integral methods opens new perspectives in the nonlinear theory of the ablative RT instability in ICF. A few examples are given at the end of the Note. To cite this article: P. Clavin, C. Almarcha, C. R. Mecanique 333 (2005).

  18. Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal.

    PubMed

    Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Takida, Yuma; Matsukawa, Takeshi; Minamide, Hiroaki

    2015-03-23

    Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.

  19. Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes

    NASA Technical Reports Server (NTRS)

    Hochen, R.; Justie, B.

    1976-01-01

    The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.

  20. A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, Apratim; Helms, Phillip L.; Menon, Rajesh, E-mail: rmenon@eng.utah.edu

    2016-03-15

    Optical lithography is the most prevalent method of fabricating micro-and nano-scale structures in the semiconductor industry due to the fact that patterning using photons is fast, accurate and provides high throughput. However, the resolution of this technique is inherently limited by the physical phenomenon of diffraction. Absorbance-Modulation-Optical Lithography (AMOL), a recently developed technique has been successfully demonstrated to be able to circumvent this diffraction limit. AMOL employs a dual-wavelength exposure system in conjunction with spectrally selective reversible photo-transitions in thin films of photochromic molecules to achieve patterning of features with sizes beyond the far-field diffraction limit. We have developed amore » finite-element-method based full-electromagnetic-wave solution model that simulates the photo-chemical processes that occur within the thin film of the photochromic molecules under illumination by the exposure and confining wavelengths in AMOL. This model allows us to understand how the material characteristics influence the confinement to sub-diffraction dimensions, of the transmitted point spread function (PSF) of the exposure wavelength inside the recording medium. The model reported here provides the most comprehensive analysis of the AMOL process to-date, and the results show that the most important factors that govern the process, are the polarization of the two beams, the ratio of the intensities of the two wavelengths, the relative absorption coefficients and the concentration of the photochromic species, the thickness of the photochromic layer and the quantum yields of the photoreactions at the two wavelengths. The aim of this work is to elucidate the requirements of AMOL in successfully circumventing the far-field diffraction limit.« less

  1. Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing

    NASA Astrophysics Data System (ADS)

    Fu, Dong; Zhang, Zuyin; Li, Jian; Wu, Haoyue; Wang, Wenbo; Wei, Xin

    2017-05-01

    By exploiting the radiative coupling between the electromagnetic field scattered by individual Si dimer and the collective wave diffracted (Rayleigh Anomalies) in the plane of Si dimers array, optical resonance with extremely narrow linewidth is achieved, accompanied with dramatic enhancement of electric field in the gap of the dimer. We analyze the optical properties of Si dimers array by decomposing it into three fundamental sub-systems. Theoretical investigation employing the coupled dipole approximation is complemented with numerical simulations. The result shows that polarization angle has significant influence on the orientation of the field scattered by individual Si dimer, which determines the efficiency of radiative coupling and further impacts on the electric field enhancement. Moreover, we explore the feasibility of application in refractive sensing. It is shown that the figure of merit value for the proposed system of Si dimers array is as high as 306. The Si dimers array that takes advantage of multiple coupling creates new possibility to implement field-enhanced spectroscopy and refractive sensing with ultra-high sensitivity.

  2. Seeing the LITE

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    2000-12-01

    We are developing a number of eyes-on experiments, lecture demonstrations and Web based JAVA applets about light, optics, color and visual perception as part of `Project LITE - Light Inquiry Through Experiments'. These are intended for incorporation into introductory level university science courses in astronomy, physics and other disciplines. In this presentation, several of the new LITE demonstrations applicable to large astronomy and physics classes will be shown. One demonstration involves novel materials to display Rayleigh scattering (blue skies, red sunsets and interstellar reddening - NOT redshift!) - including polarization effects. Others employ incandescent bulbs, LED's and laser pointers to illustrate fluorescence, diffraction and other physical and quantum optics phenomena. Still other demonstrations utilize transparent plastic moire overlays as well as computer animated moire patterns to show a variety of astronomical and physical phenomena. We will also display some of our applets posted at the Project LITE Web site (http://www.bu.edu/smec/lite) as well as the associated kit of optical materials we have developed for use by individual students in their own homes or dormitory rooms. This work was supported in part by NSF grant # DUE-9950551.

  3. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave

    PubMed Central

    Chen, Gang; Wu, Zhi-xiang; Yu, An-ping; Zhang, Zhi-hai; Wen, Zhong-quan; Zhang, Kun; Dai, Lu-ru; Jiang, Sen-lin; Li, Yu-yan; Chen, Li; Wang, Chang-tao; Luo, Xian-gang

    2016-01-01

    The generation of a sub-diffraction optical hollow ring is of great interest in various applications, such as optical microscopy, optical tweezers, and nanolithography. Azimuthally polarized light is a good candidate for creating an optical hollow ring structure. Various of methods have been proposed theoretically for generation of sub-wavelength hollow ring by focusing azimuthally polarized light, but without experimental demonstrations, especially for sub-diffraction focusing. Super-oscillation is a promising approach for shaping sub-diffraction optical focusing. In this paper, a planar sub-diffraction diffractive lens is proposed, which has an ultra-long focal length of 600 λ and small numerical aperture of 0.64. A sub-diffraction hollow ring is experimentally created by shaping an azimuthally polarized wave. The full-width-at-half-maximum of the hollow ring is 0.61 λ, which is smaller than the lens diffraction limit 0.78 λ, and the observed largest sidelobe intensity is only 10% of the peak intensity. PMID:27876885

  4. A novel scheme to aid coherent detection of GMSK signals in fast Rayleigh fading channels

    NASA Technical Reports Server (NTRS)

    Leung, Patrick S. K.; Feher, Kamilo

    1990-01-01

    A novel scheme to insert carrier pilot to Gaussian Minimum Shift Keying (GMSK) signal using Binary Block Code (BBC) and a highpass filter in baseband is proposed. This allows the signal to be coherently demodulated even in a fast Rayleigh fading environment. As an illustrative example, the scheme is applied to a 16 kb/s GMSK signal, and its performance over a fast Rayleigh fading channel is investigated using computer simulation. This modem's 'irreducible error rate' is found to be Pe = 5.5 x 10(exp -5) which is more than that of differential detection. The modem's performance in Rician fading channel is currently under investigation.

  5. Rayleigh Scattering Diagnostic for Simultaneous Measurements of Dynamic Density and Velocity

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, J.

    2000-01-01

    A flow diagnostic technique based on the molecular Rayleigh scattering of laser light is used to obtain dynamic density and velocity data in turbulent flows. The technique is based on analyzing the Rayleigh scattered light with a Fabry-Perot interferometer and recording information about the interference pattern with a multiple anode photomultiplier tube (PMT). An artificial neural network is used to process the signals from the PMT to recover the velocity time history, which is then used to calculate the velocity power spectrum. The technique is illustrated using simulated data. The results of an experiment to measure the velocity power spectrum in a low speed (100 rn/sec) flow are also presented.

  6. Instantaneous 2D Velocity and Temperature Measurements in High Speed Flows Based on Spectrally Resolved Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1995-01-01

    A Rayleigh scattering diagnostic for high speed flows is described for the simultaneous, instantaneous measurement of gas temperature and velocity at a number (up to about one hundred) of locations in a plane illuminated by an injection-seeded, frequency doubled Nd:YAG laser. Molecular Rayleigh scattered light is collected and passed through a planar mirror Fabry-Perot interferometer. The resulting image is analyzed to determine the gas temperature and bulk velocity at each of the regions. The Cramer Rao lower bound for measurement uncertainty is calculated. Experimental data is presented for a free jet and for preliminary measurements in the Lewis 4 inch by 10 inch supersonic wind tunnel.

  7. The high-frequency dispersion coefficient for the Rayleigh velocity in a vertically inhomogeneous anisotropic half-space.

    PubMed

    Shuvalov, A L

    2008-05-01

    For an arbitrary anisotropic half-space with continuous vertical variation of material properties, an explicit closed-form expression for the coefficient B of high-frequency dispersion of the Rayleigh velocity v(R)(omega) approximately v(R)(0)(1+B/omega) is derived. The result involves two matrices, one consisting of the surface-traction derivatives in velocity and the other of its Wentzel-Kramers-Brillouin coefficients, which are contracted with an amplitude vector of the Rayleigh wave in the reference homogeneous half-space. The "ingredients" are routinely defined through the fundamental elasticity matrix and its first derivative, both taken at v=v(R)(0) and referred to the surface.

  8. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Betti, R.; Sanz, J.

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  9. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    PubMed

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  10. Conjugate Heat Transfer in Rayleigh-Bénard Convection in a Square Enclosure

    PubMed Central

    Hashim, Ishak

    2014-01-01

    Conjugate natural convection-conduction heat transfer in a square enclosure with a finite wall thickness is studied numerically in the present paper. The governing parameters considered are the Rayleigh number (5 × 103 ≤ Ra ≤ 106), the wall-to-fluid thermal conductivity ratio (0.5 ≤ Kr ≤ 10), and the ratio of wall thickness to its height (0.2 ≤ D ≤ 0.4). The staggered grid arrangement together with MAC method was employed to solve the governing equations. It is found that the fluid flow and the heat transfer can be controlled by the thickness of the bottom wall, the thermal conductivity ratio, and the Rayleigh number. PMID:24971390

  11. Numerical simulation of small-scale thermal convection in the atmosphere

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.

    1973-01-01

    A Boussinesq system is integrated numerically in three dimensions and time in a study of nonhydrostatic convection in the atmosphere. Simulation of cloud convection is achieved by the inclusion of parametrized effects of latent heat and small-scale turbulence. The results are compared with the cell structure observed in Rayleigh-Benard laboratory conversion experiments in air. At a Rayleigh number of 4000, the numerical model adequately simulates the experimentally observed evolution, including some prominent transients of a flow from a randomly perturbed initial conductive state into the final state of steady large-amplitude two-dimensional rolls. At Rayleigh number 9000, the model reproduces the experimentally observed unsteady equilibrium of vertically coherent oscillatory waves superimposed on rolls.

  12. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

  13. Coherent X-ray diffraction from collagenous soft tissues

    PubMed Central

    Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-01-01

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395

  14. Coherent X-ray diffraction from collagenous soft tissues.

    PubMed

    Berenguer de la Cuesta, Felisa; Wenger, Marco P E; Bean, Richard J; Bozec, Laurent; Horton, Michael A; Robinson, Ian K

    2009-09-08

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  15. Diffraction, chopping, and background subtraction for LDR

    NASA Technical Reports Server (NTRS)

    Wright, Edward L.

    1988-01-01

    The Large Deployable Reflector (LDR) will be an extremely sensitive infrared telescope if the noise due to the photons in the large thermal background is the only limiting factor. For observations with a 3 arcsec aperture in a broadband at 100 micrometers, a 20-meter LDR will emit 10(exp 12) per second, while the photon noise limited sensitivity in a deep survey observation will be 3,000 photons per second. Thus the background subtraction has to work at the 1 part per billion level. Very small amounts of scattered or diffracted energy can be significant if they are modulated by the chopper. The results are presented for 1-D and 2-D diffraction calculations for the lightweight, low-cost LDR concept that uses an active chopping quaternary to correct the wavefront errors introduced by the primary. Fourier transforms were used to evaluate the diffraction of 1 mm waves through this system. Unbalanced signals due to dust and thermal gradients were also studied.

  16. Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.

    PubMed

    Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D

    2017-01-01

    Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M 2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.

  17. Solution of the radiative transfer equation for Rayleigh scattering using the infinite medium Green's function

    NASA Astrophysics Data System (ADS)

    Biçer, M.; Kaşkaş, A.

    2018-03-01

    The infinite medium Green's function is used to solve the half-space albedo, slab albedo and Milne problems for the unpolarized Rayleigh scattering case; these problems are the most classical problems of radiative transfer theory. The numerical results are obtained and are compared with previous ones.

  18. Time Resolved Filtered Rayleigh Scattering Measurement of a Centrifugally Loaded Buoyant Jet

    DTIC Science & Technology

    2011-03-01

    61 Figure 51. Sample CO2 Process Data: (a) Percent Concentration, ( b ) Concentration Profile, (c) Jet’s Trajectory...Standard Deviation and ( b ) Mean ................................. 64 Figure 54. Rayleigh-Scattering Signal Due to Air Associated with the First and...Second Laser Beams: (a) Raw Images and ( b ) Intensity Counts ........................................................................ 65 Figure 55

  19. Surface roughness considerations for atmospheric correction of ocean color sensors. I - The Rayleigh-scattering component. II - Error in the retrieved water-leaving radiance

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Wang, Menghua

    1992-01-01

    The first step in the Coastal Zone Color Scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering (RS) contribution, L sub r, to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm, L sub r is computed by assuming that the ocean surface is flat. Calculations of the radiance leaving an RS atmosphere overlying a rough Fresnel-reflecting ocean are presented to evaluate the radiance error caused by the flat-ocean assumption. Simulations are carried out to evaluate the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct sun glitter, it is concluded that the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness. This suggests that, in refining algorithms for future sensors, more effort should be focused on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.

  20. Inversion of high frequency surface waves with fundamental and higher modes

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Tian, G.

    2003-01-01

    The phase velocity of Rayleigh-waves of a layered earth model is a function of frequency and four groups of earth parameters: compressional (P)-wave velocity, shear (S)-wave velocity, density, and thickness of layers. For the fundamental mode of Rayleigh waves, analysis of the Jacobian matrix for high frequencies (2-40 Hz) provides a measure of dispersion curve sensitivity to earth model parameters. S-wave velocities are the dominant influence of the four earth model parameters. This thesis is true for higher modes of high frequency Rayleigh waves as well. Our numerical modeling by analysis of the Jacobian matrix supports at least two quite exciting higher mode properties. First, for fundamental and higher mode Rayleigh wave data with the same wavelength, higher modes can "see" deeper than the fundamental mode. Second, higher mode data can increase the resolution of the inverted S-wave velocities. Real world examples show that the inversion process can be stabilized and resolution of the S-wave velocity model can be improved when simultaneously inverting the fundamental and higher mode data. ?? 2002 Elsevier Science B.V. All rights reserved.

Top