Sample records for rb-sr isotopic composition

  1. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    NASA Technical Reports Server (NTRS)

    Hui. Hejiu; Neal, Clive, R.; Shih, Chi-Yu; Nyquist, Laurence E.

    2012-01-01

    Pristine Apollo 14 (A-14) high-Al basalts represent the oldest volcanic deposits returned from the Moon [1,2] and are relatively enriched in Al2O3 (>11 wt%) compared to other mare basalts (7-11 wt%). Literature Rb-Sr isotopic data suggest there are at least three different eruption episodes for the A-14 high-Al basalts spanning the age range approx.4.3 Ga to approx.3.95 Ga [1,3]. Therefore, the high-Al basalts may record lunar mantle evolution between the formation of lunar crust (approx.4.4 Ga) and the main basin-filling mare volcanism (<3.85 Ga) [4]. The high-Al basalts were originally classified into five compositional groups [5,6], and then regrouped into three with a possible fourth comprising 14072 based on the whole-rock incompatible trace element (ITE) ratios and Rb-Sr radiometric ages [7]. However, Rb-Sr ages of these basalts from different laboratories may not be consistent with each other because of the use of different 87Rb decay constants [8] and different isochron derivation methods over the last four decades. This study involved a literature search for Rb-Sr isotopic data previously reported for the high-Al basalts. With the re-calculated Rb-Sr radiometric ages, eruption episodes of A-14 high-Al basalts were determined, and their petrogenesis was investigated in light of the "new" Rb-Sr isotopic data and published trace element abundances of these basalts.

  2. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    NASA Astrophysics Data System (ADS)

    Hui, H.; Neal, C. R.; Shih, C.-Y.; Nyquist, L. E.

    2012-03-01

    Four eruption episodes were identified for A-14 high-Al basalts. Rb-Sr isotopic data and ITE ratios show that their parental melt compositions of are correlated through mixing of evolved components with a relatively primitive magma ocean cumulate.

  3. Sr isotopic composition of Afar volcanics and its implication for mantle evolution

    NASA Astrophysics Data System (ADS)

    Barberi, F.; Civetta, L.; Varet, J.

    1980-10-01

    Investigations of Rb-Sr systematics of basalts from the Afar depression (Ethiopia) indicate the presence of a heterogeneous mantle source region. The Sr isotopic compositions of the basalts from the Afar axial and transverse ranges identify source regions which are enriched in LIL elements and radiogenic Sr (axial ranges) and others which are relatively depleted (transverse ranges). Sr isotopic composition of basalts from the Red Sea, Gulf of Aden and Gulf of Tadjoura, which range from 0.70300 to 0.70340 are also reported and compared with the more radiogenic Afar region, which is characterized by 87Sr/ 86Sr ranging from 0.70328 to 0.70410. Available geochemical and isotopic data suggest that a relation exists between magma composition and the advancement of the rifting process through progressive lithosphere attenuation leading to continental break-up. However, the petrogenetic process is not simple and probably implies a vertically zoned mantle beneath the Afar region. Sr isotopic evidence suggests that the vertically zoned mantle is more radiogenic and enriched in LIL elements in its upper part.

  4. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes

    USGS Publications Warehouse

    Futa, K.; Stern, C.R.

    1988-01-01

    Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46??S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54??S) range for 87Sr 86Sr from 0.70280 to 0.70591 and for 143Nd 144Nd from 0.51314 to 0.51255. The ranges are significantly greater than previously reported from the southern Andes but are different from the isotopic compositions of volcanoes in the central and northern Andes. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have 87Sr 86Sr, 143Nd 144Nd, La Yb, Ba La, and Hf Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35??S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33?? and 34??S, basaltic andesites and andesites have higher 87Sr 86Sr, Rb Cs, and Hf Lu, and lower 143Nd 144Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54??S) has Sr and Nd isotopic compositions and K Rb and Ba La similar to MORB. The high La Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO2, K2O, Rb, Ba, Ba La, and 87Sr 86Sr and decrease in MgO, Sr, K Rb, Rb Cs, and 143Nd 144Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra

  5. Equilibrium-disequilibrium relations in the Monte Rosa Granite, Western Alps: Petrological, Rb-Sr and stable isotope data

    USGS Publications Warehouse

    Frey, M.; Hunziker, J.C.; O'Neil, J.R.; Schwander, H.W.

    1976-01-01

    Nine samples from the Monte Rosa Granite have been investigated by microscopic, X-ray, wet chemical, electron microprobe, stable isotope and Rb-Sr and K-Ar methods. Two mineral assemblages have been distinguished by optical methods and dated as Permian and mid-Tertiary by means of Rb-Sr age determinations. The Permian assemblage comprises quartz, orthoclase, oligoclase, biotite, and muscovite whereas the Alpine assemblage comprises quartz, microcline, albite+epidote or oligoclase, biotite, and phengite. Disequilibrium between the Permian and Alpine mineral assemblages is documented by the following facts: (i) Two texturally distinguishable generations of white K-mica are 2 M muscovite (Si=3.1-3.2) and 2 M or 3 T phengite (Si=3.3-3.4). Five muscovites show Permian Rb-Sr ages and oxygen isotope fractionations indicating temperatures between 520 and 560 ?? C; however, K-Ar ages are mixed or rejuvenated. Phengite always shows mid-Tertiary Rb-Sr ages, (ii) Two biotite generations can be recognized, although textural evidence is often ambiguous. Three out of four texturally old biotites show mid-Tertiary Rb-Sr cooling ages while the oxygen isotopic fractionations point to Permian, mixed or Alpine temperatures, (iii) Comparison of radiogenic and stable isotope relations indicates that the radiogenic isotopes in the interlayer positions of the micas were mobilized during Alpine time without recrystallization, that is, without breaking Al-O or Si-O bonds. High Ti contents in young muscovites and biotites also indicate that the octahedral (and tetrahedral) sites remained undisturbed during rejuvenation. (iv) 'Isotopic reversals' in the order of O18 enrichment between K-feldspar and albite exist. Arguments for equilibrium during Permian time are meagre because of Alpine overprinting effects. Texturally old muscovites show high temperatures and Permian Rb-Sr ages in concordancy with Rb-Sr whole rock ages. For the tectonically least affected samples, excellent concordance

  6. Rb-Sr and Sm-Nd Ages of Zagami DML and SR Isotopic Heterogeneity in Zagami

    NASA Technical Reports Server (NTRS)

    Nyquist, L.aurenceE.; Shih, C.-Y.; Reese, Y. D.

    2010-01-01

    Zagami contains lithologic heterogeneity suggesting that it did not form in a homogeneous, thick lava flow [1]. We have previously investigated the Sr and Nd isotopic systematics of Coarse-Grained (CG) and Fine-Grained (FG) lithologies described by [2]. Both appear to belong to Normal Zagami (NZ) [1,3], but their initial Sr-isotopic compositions differ [4,5]. Here we report new analyses of the Dark Mottled Lithology (DML, [3]) that show its age and initial Sr and Nd isotopic compositions to be identical within error limits with those of CG, but Sr initial isotopic compositions differ from those of FG.

  7. Effect of Wood Aging on Wine Mineral Composition and 87Sr/86Sr Isotopic Ratio.

    PubMed

    Kaya, Ayse D; Bruno de Sousa, Raúl; Curvelo-Garcia, António S; Ricardo-da-Silva, Jorge M; Catarino, Sofia

    2017-06-14

    The evolution of mineral composition and wine strontium isotopic ratio 87 Sr/ 86 Sr (Sr IR) during wood aging were investigated. A red wine was aged in stainless steel tanks with French oak staves (Quercus sessiliflora Salisb.), with three industrial scale replicates. Sampling was carried out after 30, 60, and 90 days of aging, and the wines were evaluated in terms of general analysis, phenolic composition, total polysaccharides, multielement composition, and Sr IR. Li, Be, Mg, Al, Sc, Ti, V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Mo, Sb, Cs, Ba, Pr, Nd, Sm, Eu, Dy, Ho, Er, Yb, Lu, Tl, and Pb elements and 87 Sr/ 86 Sr were determined by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and Na, K, Ca, and Fe by flame atomic absorption spectrometry (FAAS). Two-way ANOVA was applied to assess wood aging and time effect on Sr IR and mineral composition. Wood aging resulted in significantly higher concentrations of Mg, V, Co, Ni, and Sr. At the end of the aging period, wine exhibited statistically identical Sr IR compared to control. Study suggests that wood aging does not affect 87 Sr/ 86 Sr, not precluding the use of this parameter for wine traceability purposes.

  8. Sm-Nd and Rb-Sr Ages for MIL 05035: Implications for Surface and Mantle Sources

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y.; Reese, Y. D.

    2007-01-01

    The Sm-Nd and Rb-Sr ages and also the initial Nd and Sr isotopic compositions of MIL 05035 are the same as those of A-881757. Comparing the radiometric ages of these meteorites to lunar surface ages as modeled from crater size-frequency distributions as well as the TiO2 abundances and initial Sr-isotopic compositions of other basalts places their likely place of origin as within the Australe or Humboldtianum basins. If so, a fundamental west-east lunar asymmetry in compositional and isotopic parameters that likely is due to the PKT is implied.

  9. Sr isotopic tracer study of the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.

    1981-01-01

    Rb and Sr concentrations and Sr-isotopic compositions were measured in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite, diabase dykes, and gabbro and websterite dykes within the metamorphic peridotite. Ten samples of cumulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have 87Sr/86Sr ratios of 0.70314 + or - 0.00030 and 0.70306 + or - 0.00034, respectively. The dispersion in Sr- isotopic composition may reflect real heterogeneities in the magma source region. The average Sr-isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern MORB. The 87Sr/86Sr ratios of noncumulate gabbro, plagiogranite, and diabase dykes range 0.7034-0.7047, 0.7038-0.7046 and 0.7037- 0.7061, respectively. These higher 87Sr/86Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with sea-water. Mineral separates from dykes that cut harzburgite tectonite have Sr-isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dykes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.-T.R.

  10. Rb-Sr systematics and REE abundances in Shalka and several other diogenites

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Yabuki, S.; Kagi, H.; Masuda, A.

    1994-07-01

    The diogenites have been regarded as igneous products in the early solar system and they have been considered to have genetically close relationship with eucrites. Depsite their simple mineralogical compositions and narrow range for major-element compositions, diogenites have been known to show wide Rare Earth Elements (REE) variations in absolute concentration and in mutual abundance ratios. Furthermore, some diogenites have peculiar Rb-Sr isotope systematics (ages younger than 4.5 b.y.). The Shalka meteorite belongs to the diogenites, and a unique REE abundance pattern has been reported. We performed Rb-Sr isotopic analyses and measured REE abundances in the Shalka diogenite with several other diogenites to discuss their genesis. Roughly speaking, REE patterns in diogenites are characterized by the negative Eu anomaly and the depletion of light REE. For Shalka, some heterogeneity in REE abundance patterns have been observed. While one sample chip shows the REE pattern with a large negative Eu anomaly and depleted light REE, particularly characterized by the concave curvature for the La-Nd span, other samples show the pattern nearly flat or the pattern enriched in light REE. These variations could not be explained easily by the simple mixing process of LREE-depleted components and LREE-enriched melt, but they imply some metamorphism process. The Rb-Sr isotopic data for Shalka are shown with the data for other several diogenites. These observations indicate that Shalka would undergo a significant extent of metamorphism followed by redistribution of REE and the disturbance of the Rb-Sr systematics. We are going to do further studies on Shalka to discuss the metamorphic process and compare it with other diogenites.

  11. Rb-Sr Isotopic Systematics of Alkali-Rich Fragments in the Yamato-74442 LL-Chondritic Breccia

    NASA Technical Reports Server (NTRS)

    Yokoyama, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simo, J. I.; Tappa, M. J.; Yoneda, S.

    2012-01-01

    Alkali-rich igneous fragments were identified in the brecciated LL-chondrites, Kr henberg (LL5)], Bhola (LL3-6) and Yamato (Y)-74442 (LL4), and show characteristic fractionation patterns of alkaline elements. The K-Rb-Cs-rich fragments in Kr henberg, Bhola, and Y-74442 are very similar in mineralogy and petrography (olivine + pyroxene + glass), suggesting that they could have come from related precursor materials. We have undertaken Rb-Sr isotopic studies on alkali-rich fragments in Y-74442 to precisely determine their crystallization ages and the isotopic signatures of their precursor material(s).

  12. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Shui-Jiong; Teng, Fang-Zhen; Li, Shu-Guang; Zhang, Li-Fei; Du, Jin-Xue; He, Yong-Sheng; Niu, Yaoling

    2017-10-01

    Slab-derived fluids play a key role in mass transfer and elemental/isotopic exchanges in subduction zones. The exhumation of deeply subducted crust is achieved via a subduction channel where fluids from various sources are abundant, and thus the chemical/isotopic compositions of these rocks could have been modified by subduction-zone fluid-rock interactions. Here, we investigate the Mg isotopic systematics of eclogites from southwestern Tianshan, in conjunction with major/trace element and Sr-Nd isotopes, to characterize the source and nature of fluids and to decipher how fluid-rock interactions in subduction channel might influence the Mg isotopic systematics of exhumed eclogites. The eclogites have high LILEs (especially Ba) and Pb, high initial 87Sr/86Sr (up to 0.7117; higher than that of coeval seawater), and varying Ni and Co (mostly lower than those of oceanic basalts), suggesting that these eclogites have interacted with metamorphic fluids mainly released from subducted sediments, with minor contributions from altered oceanic crust or altered abyssal peridotites. The positive correlation between 87Sr/86Sr and Pb* (an index of Pb enrichment; Pb* = 2*PbN/[CeN + PrN]), and the decoupling relationships and bidirectional patterns in 87Sr/86Sr-Rb/Sr, Pb*-Rb/Sr and Pb*-Ba/Pb spaces imply the presence of two compositionally different components for the fluids: one enriched in LILEs, and the other enriched in Pb and 87Sr/86Sr. The systematically heavier Mg isotopic compositions (δ26Mg = - 0.37 to + 0.26) relative to oceanic basalts (- 0.25 ± 0.07) and the roughly negative correlation of δ26Mg with MgO for the southwestern Tianshan eclogites, cannot be explained by inheritance of Mg isotopic signatures from ancient seafloor alteration or prograde metamorphism. Instead, the signatures are most likely produced by fluid-rock interactions during the exhumation of eclogites. The high Rb/Sr and Ba/Pb but low Pb* eclogites generally have high bulk-rock δ26Mg values

  13. Rb-Sr and Sm-Nd Isotopic Studies of Lunar Green and Orange Glasses

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.

    2012-01-01

    Lunar volcanic glassy beads have been considered as quenched basaltic magmas derived directly from deep lunar mantle during fire-fountaining eruptions [1]. Since these sub-mm size glassy melt droplets were cooled in a hot gaseous medium during free flight [2], they have not been subject to mineral fractionations. Thus, they represent primary magmas and are the best samples for the investigation of the lunar mantle. Previously, we presented preliminary Rb- Sr and Sm-Nd isotopic results for green and orange glassy samples from green glass clod 15426,63 and orange soil 74220,44, respectively [3]. Using these isotopic data, initial Sr-87/Sr-86 and Nd ratios for these pristine mare glass sources can be calculated from their respective crystallization ages previously determined by other age-dating techniques. These isotopic data were used to evaluate the mineralogy of the mantle sources. In this report, we analyzed additional glassy samples in order to further characterize isotopic signatures of their source regions. Also, we'll postulate a relationship between these two major mare basalt source mineralogies in the context of lunar magma ocean dynamics.

  14. Potential of Sr isotopic analysis in ceramic provenance studies: Characterisation of Chinese stonewares

    NASA Astrophysics Data System (ADS)

    Li, Bao-Ping; Zhao, Jian-Xin; Greig, Alan; Collerson, Kenneth D.; Zhuo, Zhen-Xi; Feng, Yue-Xin

    2005-11-01

    We compare the trace element and Sr isotopic compositions of stoneware bodies made in Yaozhou and Jizhou to characterise these Chinese archaeological ceramics and examine the potential of Sr isotopes in provenance studies. Element concentrations determined by ICP-MS achieve distinct characterisation for Jizhou samples due to their restricted variation, yet had limited success with Yaozhou wares because of their large variability. In contrast, 87Sr/86Sr ratios in Yaozhou samples have a very small variation and are all significantly lower than those of Jizhou samples, which show a large variation and cannot be well characterised with Sr isotopes. Geochemical interpretation reveals that 87Sr/86Sr ratios will have greater potential to characterise ceramics made of low Rb/Sr materials such as kaolin clay, yet will show larger variations in ceramics made of high Rb/Sr materials such as porcelain stone.

  15. Rb, Sr, Nd, and Sm concentrations in quartz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossman, G.R.; Weis, D.; Wasserburg, G.J.

    1987-09-01

    The concentrations of Rb, Sr, Nd and Sm in quartz crystals from Crystal Peak, Colorado; Steward Mine, California; Tomas Gonzaga, Minas Gerais, Brazil; and Coleman Mines, Arkansas, were determined by isotope dilution mass spectrometry. Concentrations ranged from: 1.17 to 177 ppb Rb; 3.26 to 1027 ppm Sr; 0.0159 to 0.48 ppm Sm; 0.127 to 2.81 ppb Nd. In the Brazilian crystal, concentrations of these elements were correlated with the amount of fluid inclusion water measured visually by turbidity and quantitatively with infrared adsorption spectroscopy. The highest Rb content was found for a crystal free of visible inclusions, indicating that smallmore » amounts of Rb can also occur in quartz itself. Rb and Sr contents are much lower in synthetic quartz grown commercially from the Arkansas quartz.« less

  16. Textural and Rb-Sr isotopic evidence for late Paleozoic mylonitization within the Honey Hill fault zone southeastern Connecticut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, K.D.; Gromet, L.P.

    A petrographic and Rb-Sr isotopic study of rocks within and near the Honey Hill fault zone places important constraints on its history of movement. Rb-Sr apparent ages for micas and plagioclase from these rocks have been reset and range from Permian to Triassic, considerably younger than the minimum stratigraphic age (Ordovician) of the rocks studied or of Acadian (Devonian) regional metamorphism. Permian Rb-Sr ages of dynamically recrystallized muscovite date the development of mylonite fabric. An older age is precluded by the excellent preservation of unrecovered quartz, which indicates that these rocks did not experience temperatures high enough to anneal quartzmore » or thermally reset Rb-Sr isotopic systems in muscovite since the time of mylonitization. Metamorphic mineral assemblages and mineral apparent ages in rocks north of the fault zone indicate recrystallization under similar upper greenschist-lower amphibolite grade conditions during Permian to Triassic time. Collectively these results indicate that the Honey Hill fault zone was active during the Late Paleozoic and that ductile deformation and metamorphism associated with the Alleghanian orogeny extend well into southern Connecticut. An Alleghanian age for mylonitization within the Honey Hill fault zone suggests it should be considered as a possible site for the major Late Paleozoic strike-slip displacements inferred from paleomagnetic studies for parts of coastal New England and maritime Canada.« less

  17. Strontium isotope measurement of basaltic glasses by laser ablation multiple collector inductively coupled plasma mass spectrometry based on a linear relationship between analytical bias and Rb/Sr ratios.

    PubMed

    Zhang, Le; Ren, Zhong-Yuan; Wu, Ya-Dong; Li, Nan

    2018-01-30

    In situ strontium (Sr) isotope analysis of geological samples by laser ablation multiple collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) provides useful information about magma mixing, crustal contamination and crystal residence time. Without chemical separation, during Sr isotope analysis with laser ablation, many kinds of interference ions (such as Rb + and Kr + ) are on the Sr isotope spectrum. Most previous in situ Sr isotope studies only focused on Sr-enriched minerals (e.g. plagioclase, calcite). Here we established a simple method for in situ Sr isotope analysis of basaltic glass with Rb/Sr ratio less than 0.14 by LA-MC-ICP-MS. Seven Faraday cups, on a Neptune Plus MC-ICP-MS instrument, were used to receive the signals on m/z 82, 83, 84, 85, 86, 87 and 88 simultaneously for the Sr isotope analysis of basaltic glass. The isobaric interference of 87 Rb was corrected by the peak stripping method. The instrumental mass fractionation of 87 Sr/ 86 Sr was corrected to 86 Sr/ 88 Sr = 0.1194 with an exponential law. Finally, the residual analytical biases of 87 Sr/ 86 Sr were corrected with a relationship between the deviation of 87 Sr/ 86 Sr from the reference values and the measured 87 Rb/ 86 Sr. The validity of the protocol present here was demonstrated by measuring the Sr isotopes of four basaltic glasses, a plagioclase crystal and a piece of modern coral. The measured 87 Sr/ 86 Sr ratios of all these samples agree within 100 ppm with the reference values. In addition, the Sr isotopes of olivine-hosted melt inclusions from the Emeishan large igneous province (LIP) were measured to show the application of our method to real geological samples. A simple but accurate approach for in situ Sr isotope measurement by LA-MC-ICP-MS has been established, which should greatly facilitate the wider application of in situ Sr isotope geochemistry, especially to volcanic rock studies. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Depaolo, D. J.; Wasserburg, G. J.

    1977-01-01

    Rb-Sr and Sm-Nd ages of two Apollo 11 mare basalts, high-K basalt 10072 and low-K basalt 10062, are reported. Rb-Sr, Sm-Nd, and Ar-40-Ar-39 ages are in good agreement and indicate an extensive time interval for filling of the Sea of Tranquility, presumably by thin lava flows, in agreement with similar observations for the Ocean of Storms. Initial Sr and Nd isotopic compositions on Apollo 11 basalts reveal at least two parent sources producing basalts. The Sm-Nd isotopic data demonstrate that low-K and high-Ti basalts from Apollo 11 and 17 derived from distinct reservoirs, while low-Ti Apollo 15 mare basalt sources have Sm/Nd similar to the sources of Apollo 11 basalts. Groupings of mare basalt based on Ti content and on isotopic data do not coincide.

  19. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain: evidence for an oceanic impact site

    USGS Publications Warehouse

    DePaolo, D.J.; Kyte, F.T.; Marshall, B.D.; O'Neil, J.R.; Smit, J.

    1983-01-01

    Isotopic ratios and trace element abundances were measured on samples of Ir-enriched clay at the Cretaceous-Tertiary boundary, and in carbonate and marl from 5 cm below and 3 cm above the boundary. Samples were leached with acetic acid to remove carbonate, and with hydrochloric acid. Leachates and residues were measured. The Sr, Nd, O and H isotopic compositions of the boundary clay residues are distinct from those of the stratigraphically neighboring materials. The data indicate that most of the clay material was derived from a terrestrial source with relatively low 87Sr/86Sr and high 143Nd/144Nd ratios. The ??18O data suggest that the detritus has been modified by submarine weathering. K-Ca and Rb-Sr systematics, as well as O isotope ratios of K-feldspar spherules within the boundary clay, suggest that they are predominantly authigenic and may have formed after the time of deposition. However, Sm-Nd and Rb-Sr isotopic data indicate that the spherules contain relict material that provides information on the nature of the original detritus. The isotopic evidence for foreign terrestrial detritus in the boundary clay, the low rare earth element concentrations and high Ni concentration, support the hypothesis of a terminal Cretaceous asteroidal impact that produced a global layer of fallout. The data are most easily explained if the impact site was on oceanic crust rather than continental crust, and if a substantial fraction of the fallout was derived from relatively deep within the lithosphere (>3 km). This would probably require a single large impactor. ?? 1983.

  20. A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunson, J; E.Borg, L; Nyquist, L E

    2008-11-17

    Lunar Mg-suite norite 78238 was dated using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems in order to constrain the age of lunar magma ocean solidification and the beginning of Mg-suite magmatism, as well as to provide a direct comparison between the three isotopic systems. The Sm-Nd isotopic system yields a crystallization age for 78238 of 4334 {+-} 37 Ma and an initial {var_epsilon}{sub Nd}{sup 143} value of -0.27 {+-} 0.74. The age-initial {var_epsilon}{sub Nd}{sup 143} (T-I) systematics of a variety of KREEP-rich samples, including 78238 and other Mg-suite rocks, KREEP basalts, and olivine cumulate NWA 773, suggest that lunar differentiationmore » was completed by 4492 {+-} 61 Ma assuming a Chondritic Uniform Reservoir bulk composition for the Moon. The Rb-Sr isotopic systematics of 78238 were disturbed by post-crystallization processes. Nevertheless, selected data points yield two Rb-Sr isochrons. One is concordant with the Sm-Nd crystallization age, 4366 {+-} 53 Ma. The other is 4003 {+-} 95 Ma and is concordant with an Ar-Ar age for 78236. The {sup 207}Pb-{sup 206}Pb age of 4333 {+-} 59 Ma is concordant with the Sm-Nd age. The U-Pb isotopic systematics of 78238 yield linear arrays equivalent to younger ages than the Pb-Pb system, and may reflect fractionation of U and Pb during sample handling. Despite the disturbed nature of the U-Pb systems, a time-averaged {mu} ({sup 238}U/{sup 204}Pb) value of the source can be estimated at 27 {+-} 30 from the Pb-Pb isotopic systematics. Because KREEP-rich samples are likely to be derived from source regions with the highest U/Pb ratios, the relatively low {mu} value calculated for the 78238 source suggests the bulk Moon does not have an exceedingly high {mu} value.« less

  1. Constraints on Martian Differentiation Processes from Rb-Sr and Sm-Nd Isotopic Analyses of the Basaltic Shergottite QUE 94201

    NASA Technical Reports Server (NTRS)

    Borg, Lars E.; Nyquist, Larry E.; Taylor, Larry A.; Wiesmann, Henry; Shih, Chi-Y.

    1997-01-01

    Isotopic analyses of mineral, leachate, and whole rock fractions from the Martian shergottite meteorite QUE 94201 yield Rb-Sr and Sm-Nd crystallization ages of 327 +/- 12 and 327 +/- 19 Ma, respectively. These ages are concordant, although the isochrons are defined by different fractions within the meteorite. Comparison of isotope dilution Sm and Nd data for the various QUE 94201 fractions with in situ ion microprobe data for QUE 94201 minerals from the literature demonstrate the presence of a leachable crustal component in the meteorite. This component is likely to have been added to QUE 94201 by secondary alteration processes on Mars, and can affect the isochrons by selectively altering the isotopic systematics of the leachates and some of the mineral fractions. The absence of crustal recycling processes on Mars may preserve the geochemical evidence for early differentiation and the decoupling of the Rb-Sr and Sm-Nd isotopic systems, underscoring one of the fundamental differences between geologic processes on Mars and the Earth.

  2. Rb-Sr Isotopic Studies Of Antarctic Lherzolitic Shergottite Yamato 984028

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Misawa, K.

    2009-01-01

    Yamato 984028 is a Martian meteorite found in the Yamato Mountains of Antarctica. It is classified as a lherzolitic shergottite and petrographically resembles several other lherzolitic shergottites, i.e. ALHA 77005, LEW 88516, Y-793605 and Y-000027/47/97 [e.g. 2-5]. These meteorites have similarly young crystallization ages (152-185 Ma) as enriched basaltic shergottites (157-203 Ma), but have very different ejection ages (approximately 4 Ma vs. approximately 2.5 Ma), thus they came from different martian target crater areas. Lherzolitic shergottites have mg-values approximately 0.70 and represent the most mafic olivine-pyroxene cumulates. Their parental magmas were melts derived probably from the primitive Martian mantle. Here we present Rb-Sr isotopic data for Y-984028 and compare these data with those obtained from other lherzolitic and olivine-phyric basaltic shergottites to better understand the isotopic characteristics of their primitive mantle source regions. Corresponding Sm-Nd analyses for Y-984028 are in progress.

  3. Micaschist and Impure Marble - two Examples for Lithology Related Constraints to Rb-Sr Microsampling Analysis

    NASA Astrophysics Data System (ADS)

    Wegmann, M. I.; Hammerschmidt, K.

    2003-12-01

    Retrograde overprinted calcite-bearing micaschists and mica-containing marbles from the northern part of the Cycladic blueschist belt on South-Evia, Greece, have been investigated to understand the interplay between bulk rock chemistry, mineral assemblage and resetting of the Rb-Sr isotope system during deformation. White mica represents two optical distinguishable microstructures, isoclinal folds (S1) and axial plain cleavage (S2) induced by flattening and elongation episode of isothermal exhumation. The varying Si content of phengites is not related to microstructures. Due to microstructural complexity and grain size variation the application of Rb-Sr microsampling method was expected effective investigation of Rb and Sr rich mineral phases to elucidate constraints for geochronological and isotope geochemical imprint in microstructures. Drilling out calcite, albite and mica samples with weights down to 200æg each out of 30æm thick sections realized textural controlled separation. Calculated Rb-Sr mica ages show lithology-related scattering but totally not microstructural induced variation. Particulary, S1 and S2 phengites in micaschist yield similar age values around 31 Ma. In contrast, impure marble mica within similar S1 and S2 have Rb-Sr mica ages widely scattering between 34 and 50 Ma. Therefore, structural elements formed by these phengites are not distinguishable in terms of geochronolgy. Explaining the scatter of age values, principally, two possibilities were taken into account, (i) the fluid flux neccessary to homogenize Sr isotope composition in mica and calcite (albite) might have been less effective in impure marble than in micaschist due to the generation of CO2. In constrast to this possibility, calcite 87Sr/86Sr in both specimen are quite homogeneous at least on cm-scale, e.g. values of 0.712125 ñ 66 (2s) for impure marble and of 0.721419 ñ 42 for micaschist were meassured. Albite 87Sr/86Sr corroborate Sr homogenisation on scale this study was

  4. Rb-Sr and Sm-Nd Isotopic Studies of Antarctic Nakhlite MIL 03346

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.

    2006-01-01

    Nakhlites are olivine-bearing clinopyroxenites with cumulate textures, and probably came from Mars [e.g., 1]. A total of seven nakhlites have been identified so far. Unlike other martian meteorites (e.g., shergottites), nakhlites have been only moderately shocked and their original igneous textures are still well-preserved. Also, these meteorites have similarly older crystallization ages of approx.1.3 Ga compared to shergottites with ages of approx.0.18-0.57 Ga [e.g., 2]. MIL 03346 is characterized by abundant (approx.20 vol %) glassy mesostasis, indicating that it cooled rapidly and probably formed near the top [3] or at the bottom [4] of the chilled margin of a thick intrusive body. The mesostasis quenched from the trapped intercumulus liquid may provide information on the parent magma compositions of the nakhlites. In this report, we present Rb-Sr and Sm-Nd isotopic data for MIL 03346, discuss correlation of its age with those of other nakhlites and the nature of their source regions in the Martian mantle.

  5. New high performing scintillators: RbSr2Br5:Eu and RbSr2I5:Eu

    NASA Astrophysics Data System (ADS)

    Stand, L.; Zhuravleva, M.; Johnson, J.; Koschan, M.; Lukosi, E.; Melcher, C. L.

    2017-11-01

    We report the crystal growth and scintillation properties of two new ternary metal halide scintillators, RbSr2Br5 and RbSr2I5, activated with divalent europium. Transparent 7 mm diameter single crystals with 2.5% Eu2+ were grown in evacuated quartz ampoules via the Bridgman technique. RbSr2Br5 and RbSr2I5 have monoclinic crystal structures with densities of 4.18 g/cm3 and 4.55 g/cm3 respectively. These materials are hygroscopic and have some intrinsic radioactivity due to the presence of 87Rb. Luminescence properties typical of the 5d-4f radiative transition in Eu2+ were observed. The X-ray excited emissions consisted of singular peaks centered at 429 nm for RbSr2Br5:Eu 2.5% and 445 nm for RbSr2I4:Eu 2.5%. RbSr2Br5:Eu 2.5% had a light yield of 64,700 photons/MeV, with an energy resolution of 4.0%, and RbSr2I5:Eu 2.5% had a light yield of 90,400 ph/MeV with an energy resolution of 3.0% at 662 keV. Both crystals have an excellent proportional response over a wide range of gamma-ray energies.

  6. Anomalous isotopic compositions of Sr, Ar and O in the Mesozoic diabase dikes of Liberia, West Africa

    NASA Astrophysics Data System (ADS)

    Mauche, Renée; Faure, Gunter; Jones, Lois M.; Hoefs, Jochen

    1989-01-01

    The Mesozoic diabase dikes of Liberia are tholeiites whose 87Sr/86Sr and 87Rb/86Sr ratios scatter widely on the Rb-Sr isochron diagram. The problem is attributed to differences in the initial 87Sr/86Sr ratios of these rocks which range from 0.70311 to 0.70792, assuming a uniform age of 186 Ma for the dikes and using λ(87Rb)=1.42 × 10-11y-1. The range of values is similar to that observed in the Mesozoic basalt flows and dikes of other Gondwana continents. New whole-rock K-Ar dates confirm previous conclusions that the diabase dikes in the Liberian and Pan-African age provinces of Liberia absorbed extraneous 40Ar after intrusion. Only the dikes in the Paynesville Sandstone have K-Ar dates that range from 117 Ma to 201 Ma and may not contain extraneous 40Ar. However, dikes from all three age provinces of Liberia have elevated initial 87Sr/86Sr ratios. These results indicate that contamination with radiogenic 87Sr occurred primarily before intrusion of the magma whereas the addition of extraneous 40Ar occurred after emplacement and reflects the age and mineral composition of the country rock. The δ 18O values of the Liberian diabase range from +5.6/% to +9.10/% and correlate positively with initial 87Sr/86Sr ratios. The data can be modeled by fractional crystallization and simultaneous assimilation of crustal rocks by the magma. However, samples containing amphibole and biotite replacing pyroxene deviate from the Sr-O isotope trajectories of the model and appear to have been depleted in 18O and enriched in 87Sr by interactions with groundwater at high temperature.

  7. Modelling the petrogenesis of high Rb/Sr silicic magmas

    USGS Publications Warehouse

    Halliday, A.N.; Davidson, J.P.; Hildreth, W.; Holden, P.

    1991-01-01

    Rhyolites can be highly evolved with Sr contents as low as 0.1 ppm and Rb Sr > 2,000. In contrast, granite batholiths are commonly comprised of rocks with Rb Sr 100. Mass-balance modelling of source compositions, differentiation and contamination using the trace-element geochemistry of granites are therefore commonly in error because of the failure to account for evolved differentiates that may have been erupted from the system. Rhyolitic magmas with very low Sr concentrations (???1 ppm) cannot be explained by any partial melting models involving typical crustal source compositions. The only plausible mechanism for the production of such rhyolites is Rayleigh fractional crystallization involving substantial volumes of cumulates. A variety of methods for modelling the differentiation of magmas with extremely high Rb/Sr is discussed. In each case it is concluded that the bulk partition coefficients for Sr have to be large. In the simplest models, the bulk DSr of the most evolved types is modelled as > 50. Evidence from phenocryst/glass/whole-rock concentrations supports high Sr partition coefficients in feldspars from high silica rhyolites. However, the low modal abundance of plagioclase commonly observed in such rocks is difficult to reconcile with such simple fractionation models of the observed trace-element trends. In certain cases, this may be because the apparent trace-element trend defined by the suite of cognetic rhyolites is the product of different batches of magma with separate differentiation histories accumulating in the magma chamber roof zone. ?? 1991.

  8. Rb-Sr And Sm-Nd Ages, and Petrogenesis of Depleted Shergottite Northwest Africa 5990

    NASA Technical Reports Server (NTRS)

    Shih, C. Y.; Nyquist, L. E.; Reese, Y.; Irving, A. J.

    2011-01-01

    Northwest Africa (NWA) 5990 is a very fresh Martian meteorite recently found on Hamada du Draa, Morocco and was classified as an olivine-bearing diabasic igneous rock related to depleted shergottites [1]. The study of [1] also showed that NWA 5990 resembles QUE 94201 in chemical, textural and isotopic aspects, except QUE 94201 contains no olivine. The depleted shergottites are characterized by REE patterns that are highly depleted in LREE, older Sm-Nd ages of 327-575 Ma and highly LREE-depleted sources with Nd= +35+48 [2-7]. Age-dating these samples by Sm-Nd and Rb-Sr methods is very challenging because they have been strongly shocked and contain very low abundances of light rare earth elements (Sm and Nd), Rb and Sr. In addition, terrestrial contaminants which are commonly present in desert meteorites will compromise the equilibrium of isotopic systems. Since NWA 5990 is a very fresh meteorite, it probably has not been subject to significant desert weathering and thus is a good sample for isotopic studies. In this report, we present Rb-Sr and Sm-Nd isotopic results for NWA 5990, discuss the correlation of the determined ages with those of other depleted shergottites, especially QUE 94201, and discuss the petrogenesis of depleted shergottites.

  9. The Chronology and Petrogenesis of the Mare Basalt Clast from Lunar Meteorite Dhofar 287: Rb-Sr and Sm- Nd Isotopic Studies

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Wiesmann, H.; Nazarov, M. A.; Taylor, L. A.

    2002-01-01

    The Sm-Nd isochron for lunar mare basalt meteorite Dhofar 287A yields T = 3.46 +/- 0.03 Ga and Nd = 0.6 +/- 0.3. Its Rb-Sr isotopic system is severely altered. The basalt is unique, probably coming from an enriched mantle source. Additional information is contained in the original extended abstract.

  10. NWA 7034 Martian Breccia: Disturbed Rb-Sr Systematics, Preliminary Is Approximately 4.4 Ga Sm-Nd Age

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Peng, Zhan Xiong; Agee, C

    2013-01-01

    Agee et al. [1] reported a Rb-Sr age of 2.089 [plus or minus] 0.081 Ga for the unique Martian meteoritic breccia NWA 7034 making it the oldest Martian basalt, dating to the early Am-azonian epoch [2] of Martian geologic history. We have attempt-ed to confirm this exciting result. Our new Rb-Sr analyses show the Rb-Sr isotopic system to be disturbed, but preliminary Sm-Nd data suggest an even older age of approximately 4.4 Ga for at least some brec-cia components.

  11. Resetting of RbSr ages of volcanic rocks by low-grade burial metamorphism

    USGS Publications Warehouse

    Asmeroma, Y.; Damon, P.; Shafiqullah, M.; Dickinson, W.R.; Zartman, R.E.

    1991-01-01

    We report a nine-point RbSr whole-rock isochron age of 70??3 Ma (MSWD 3.97) for Mid-Jurassic volcanic rocks. The same rocks have also been dated by the UThPb method on zircon, giving a crystallization age of 166 ?? 11 Ma, over twice as old as the RbSr age. The data demonstrate that whole-rock RbSr ages of volcanic rocks, even lava flows with SiO2 content as low as 57 wt.%, are susceptible to complete resetting. The rocks range in composition from rhyodacite tuffs to andesite lavas. The complete breakdown of all major minerals that contain Rb and Sr resulted in an alteration mineral assemblage consisting of phengite, albite, secondary quartz, and minor amounts of chlorite and epidote. Phengite is the K-bearing product of the breakdown of biotite and K-feldspar. Pressure during low-grade metamorphism of the volcanic rocks, estimated from phengite composition to have been in the range of 4 to 6 kbar, points to thrust-related burial as the main cause of resetting. Consequently, such reset isochrons may date large-scale events such as regional thrusting and metamorphism. The coherent resetting of the RbSr isochron suggests large-scale pervasive fluid movement during thrust-related burial metamorphism. ?? 1991.

  12. Sm-Nd and Rb-Sr Ages for Northwest Africa 2977, A Young Lunar Gabbro from the PKT

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y. D.; Irving, A. J.

    2009-01-01

    Northwest Africa (NWA) 2977 is an olivine gabbro cumulate equivalent to one of the lithologies in lunar mare breccia NWA 773 [1,2,3]. The Ar-39-Ar-40 age is 2.77+/-0.04 Ga based on the last approx.57% of the gas release [4], similar to results for NWA 773 [5]. A Sm-Nd age (T) of 2.865+/-0.031 Ga and Epsilon(sub Nd) = -7.84+/-0.22 for the NWA 773 gabbro reported by [6] has been revised to T = 2.993+/-=0.032 Ga, Epsilon(sub Nd) -4.5+/-0.3 [7]. Sm-147-Nd-143 isochron for NWA 2977: Whole rock, pyroxene, olivine, plagioclase, whole rock leachate (approx.phosphate) and the combined leachates from the mineral separates yield a well defined Sm-Nd isochron for an age T = 3.10+/-0.05 Ga and Epsilon(sub Nd-CHUR) = -3.74+/-0.26 [8], or Epsilon(sub Nd-HEDR) = -4.61+/-0.26 [9]. Rb-87-Sr-87 isochron: NWA 2977 contains only a modest amount of Rb and/or Sr contamination. The Sr-isotopic composition of the contaminant closely resembles that of seawater. The whole rock residue after leaching combined with leach residues for plagioclase and pyroxene define an isochron age of 3.29+/-0.11 Ga for initial Sr-87/Sr-86 = 0.70287+/-18. The olivine residue, with lower Sr abundance of approx 1.5 ppm, is only slightly displaced from the isochron. The relatively small uncertainties of the Rb-Sr isochron parameters and near-concordancy with the Sm-Nd age indicate that both the Rb-Sr and the Sm-Nd ages are reliable.

  13. Sm-Nd and Rb-Sr isotopic systematics of the Pea Ridge Fe-P deposit and related rocks, southeast Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marikos, M.A.; Barton, M.D.

    1993-03-01

    Pea ridge is a discordant Middle Proterozoic Fe-P deposit hosted in rhyolite tuffs and flows of the 1.4--1.5 Ga St. Francois terrane. Host rocks and the deposit are cut by basalt and aplite/pegmatite dikes. The deposit overlies a blind pluton which is partially surrounded by a trachytic ring complex. In the deposit, which is mined for Fe, early Qtz+Amph+Mag+Ap rock is cut by Mag+Ap+Qtz rock. Subsequently, portions of the deposit and host rocks were brecciated, oxidized and silicified to produce a complex suite of rocks enriched in Hem+Qtz+Ksp+Mu. Late breccia pipes/dikes cut the complex and were mineralized with Bar+Ksp+Flu+Chl+Cc+REE-phosphates. Sm/Ndmore » and Rb/Sr isotopic systematics have been studied to: (1) constrain source(s) of igneous rocks and deposit components, (2) refine ages of magmatism, mineralization, and later hydrothermal activity, (3) begin regional comparison of isotopic systematics in SE Missouri Fe deposits, and (4) complement ongoing Missouri DGLS/USGS studies. Fourteen combined Sm-Nd and Rb-Sr analyses were done on materials including two host rhyolites, two nearby trachytes, two gneiss samples representing plausible basement, two intramineral dikes, and six samples of mineralization.« less

  14. Towards Time-Scaling of Mixing for the Campanian Ignimbrite: Systemic Variation in Sr-Isotopic Composition from Mixing Experiments

    NASA Astrophysics Data System (ADS)

    de Campos, Cristina; Civetta, Lucia; Perugini, Diego; Dingwell, Donald B.

    2010-05-01

    Eruptions in the Campi Flegrei caldera, the most dangerous volcanic setting in Europe, are thought to be triggered by short-term pre-eruptive mixing of trachytic to trachydacitic resident and new basaltic, trachyandesitic (=shoshonitic) magma, in shallow magma chambers (e. g. Arienzo et al, 2008, Bull. Volcanol.). Previous geochemical and volcanological data on the Campanian Ignimbrite, (>150 km3, 39 Ma), in Campi Flegrei, point towards a layered reservoir, which evolved from the replenishment of the magma chamber with shoshonitic magma and short-term pre-eruptive mixing between a trachytic and a phonolitic trachytic magma. With the purpose to experimentally study the mobility and homogenization of Rb-Sr isotopes in this system, we performed mixing experiments using natural phonolitic trachytic (end-member A - S. Nicola type) and trachytic (end-member B - Mondragone-type) samples, representing the two end-members involved in the origin of the Campanian Ignimbrite. Resultant glasses from a time series, ranging from 1-hour up to 1-week, under constant flow velocity (0.5 rotations per minute; after De Campos et al., 2008. Chem. Geol.), have been analysed with respect to the Rb- and Sr-systematics. Our results reveal a progressive homogenization of the contrasting Sr-isotopes towards a hybrid value. With increasing experimental duration a clear decrease in the standard deviation of isotopic ratios has been observed, reflecting progressive isotopic homogenization. Our results also support the effectiveness of mixing in the Campi Flegrei reservoirs, in liquidus, under high temperature, before the onset of fractional crystallization. Since different eruptive events from Campi Flegrei can be well characterized by means of isotopic composition, the main goal for the present study will be to use experimental data and numerical modeling in order to estimate time scales of mixing associated with the eruption of the Campanian Ignimbrite, and then compare them to the several

  15. An extremely low U Pb source in the Moon: UThPb, SmNd, RbSr, and 40Ar 39Ar isotopic systematics and age of lunar meteorite Asuka 881757

    USGS Publications Warehouse

    Misawa, K.; Tatsumoto, M.; Dalrymple, G.B.; Yanai, K.

    1993-01-01

    We have undertaken UThPb, SmNd, RbSr, and 40Ar 39Ar isotopic studies on Asuka 881757, a coarse-grained basaltic lunar meteorite whose chemical composition is close to low-Ti and very low-Ti (VLT) mare basalts. The PbPb internal isochron obtained for acid leached residues of separated mineral fractions yields an age of 3940 ?? 28 Ma, which is similar to the U-Pb (3850 ?? 150 Ma) and Th-Pb (3820 ?? 290 Ma) internal isochron ages. The Sm-Nd data for the mineral separates yield an internal isochron age of 3871 ?? 57 Ma and an initial 143Nd 144Nd value of 0.50797 ?? 10. The Rb-Sr data yield an internal isochron age of 3840 ?? 32 Ma (??(87Rb) = 1.42 ?? 10-11 yr-1) and a low initial 87Sr 86Sr ratio of 0.69910 ?? 2. The 40Ar 39Ar age spectra for a glass fragment and a maskelynitized plagioclase are relatively flat and give a weighted mean plateau age of 3798 ?? 12 Ma. We interpret these ages to indicate that the basalt crystallized from a melt 3.87 Ga ago (the Sm-Nd age) and an impact event disturbed the Rb-Sr system and completely reset the K-Ar system at 3.80 Ga. The slightly higher Pb-Pb age compared to the Sm-Nd age could be due to the secondary Pb (from terrestrial and/or lunar surface Pb contamination) that remained in the residues after acid leaching. Alternatively, the following interpretation is also possible; the meteorite crystallized at 3.94 Ga (the Pb-Pb age) and the Sm-Nd, Rb-Sr, and K-Ar systems were disturbed by an impact event at 3.80 Ga. The crystallization age obtained here is older than those reported for low-Ti basalts (3.2-3.5 Ga) and for VLT basalts (3.4 Ga), but similar to ages of some mare basalts, indicating that the basalt may have formed from a magma related to a basin-forming event (Imbrium?). The age span for VLT basalts from different sampling sites suggest that they were erupted over a wide area during an interval of at least ~500 million years. The impact event that thermally reset the K-Ar system of Asuka 881757 must have been post

  16. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    PubMed

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  17. K-Ca and Rb-Sr Dating of Lunar Granite 14321 Revisited

    NASA Technical Reports Server (NTRS)

    Simon, Justin I.; Shih, C.-Y.; Nyquist, L. E.

    2011-01-01

    K-Ca and Rb-Sr age determinations were made for a bulk feldspar-rich portion of an Apollo rock fragment of the pristine lunar granite clast (14321,1062), an acid-leached split of the sample, and the leachate. K-Ca and Rb-Sr data were also obtained for a whole rock sample of Apollo ferroan anorthosite (FAN, 15415). The recent detection [1] of widespread intermediate composition plagioclase indicates that the generation of a diversity of evolved lunar magmas maybe more common and therefore more important to our understanding of crust formation than previously believed. Our new data strengthen the K-Ca and Rb-Sr internal isochrons of the well-studied Apollo sample 14321 [2], which along with a renewed effort to study evolved lunar magmas will provide an improved understanding of the petrogenetic history of evolved rocks on the Moon.

  18. Concordant Rb-Sr and Sm-Nd Ages for NWA 1460: A 340 Ma Old Basaltic Shergottite Related to Lherzolitic Shergottites

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y; Reese, Y. D.; Irving, A. J.

    2006-01-01

    Preliminary Rb-Sr and Sm-Nd ages reported by [1] for the NWA 1460 basaltic shergottite are refined to 336+/-14 Ma and 345+/-21 Ma, respectively. These concordant ages are interpreted as dating a lava flow on the Martian surface. The initial Sr and Nd isotopic compositions of NWA 1460 suggest it is an earlier melting product of a Martian mantle source region similar to those of the lherzolitic shergottites and basaltic shergottite EETA79001, lithology B. We also examine the suggestion that generally "young" ages for other Martian meteorites should be reinterpreted in light of Pb-207/Pb-206 - Pb-204/Pb-206 isotopic systematics [2]. Published U-Pb isotopic data for nakhlites are consistent with ages of approx.1.36 Ga. The UPb isotopic systematics of some Martian shergottites and lherzolites that have been suggested to be approx.4 Ga old [2] are complex. We nevertheless suggest the data are consistent with crystallization ages of approx.173 Ma when variations in the composition of in situ initial Pb as well as extraneous Pb components are considered.

  19. In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS

    NASA Astrophysics Data System (ADS)

    Li, Chao; Zhou, Limin; Zhao, Zheng; Zhang, Zhiyuan; Zhao, Hong; Li, Xinwei; Qu, Wenjun

    2018-07-01

    Scheelite is one of the main ore minerals in tungsten deposits, and Sr isotopic compositions of scheelite can be used to examine the petrogenesis of igneous rocks and fluid metasomatism in mineralization processes. Both thermal ionization mass spectrometer (TIMS) and femsecond laser ablation multi-collector inductively coupled plasma mass spectrometer (fs-LA-MC-ICP-MS) have been applied to analyze Sr isotopic compositions in scheelite. Here we describe a LA-MC-ICP-MS technique which can obtain in-situ, accurate, high precision 87Sr/86Sr ratios from 20 to 50 μm scheelite in line mode without requiring time-consuming mineral separation and pre-chemical procedures. We found that Ca dimers and Ca argides do not detectably affect the obtained 87Sr/86Sr ratios, and the adopted protocol overcomes interferences from Kr+, Rb+, Er2+ and Yb2+. The results of three MPI-DING reference glasses (KL2-G, ML3B-G and StHs6/80-G) are consistent with the recommended values. Here we show that the values of 87Sr/86Sr are relatively homogeneous for two scheelites from quartz veins, and are comparable to the values determined by a traditional solution method. Hence, these two scheelite samples have the potential to be reference materials for Sr isotopic determination by LA-MC-ICP-MS. To illustrate the utility of the technique, Sr isotopes of scheelites from three different types of tungsten deposits of South China are documented. The 87Sr/86Sr of scheelite from granite-related veinlet-disseminated and porphyry tungsten deposits varies systematically, showing a positive correlation between Sr content and 87Sr/86Sr ratios. These micrometer scale inhomogeneities could be explained by mixing of two components, reflecting intense fluid metasomatism during mineralization processes. High 87Sr/86Sr ratios were obtained for the scheelite samples from a quartz vein type tungsten deposit, indicating that the late stage ore-forming fluid was mainly derived from the surrounding strata. These examples

  20. .sup.82 Sr-.sup.82 Rb Radioisotope generator

    DOEpatents

    Grant, Patrick M.; Erdal, Bruce R.; O'Brien, Harold A.

    1976-01-01

    An improved .sup.82 Sr-.sup.82 Rb radioisotope generator system, based upon the complexing ion exchange resin Chelex-100, has been developed. Columns of this material can be easily and rapidly milked, and the Rb-Sr separation factor for a fresh generator was found to be > 10.sup.7. Approximately 80 percent of the .sup.82 Rb present was delivered in a 15-ml volume of aqueous 0.2 M NH.sub.4 Cl solution. After more than 6 liters of eluant had been put through the generator, the Rb-Sr separation factor was still observed to be > 10.sup.5, and no unusual strontium breakthrough behavior was seen in the system over nearly three .sup.82 Sr half lives.

  1. Sr - an element shows the way - Applications of Sr isotopes for provenance, tracing and migration (Invited)

    NASA Astrophysics Data System (ADS)

    Prohaska, T.; Irrgeher, J.; Zitek, A.; Teschler Nicola, M.

    2010-12-01

    Strontium - named after the small Scottish town Strontian - as such is an element with little popularity. Firstly described by Martin Heinrich Klaproth in 1798, the metal is used in metallurgy to some extent whereas its compounds are interesting in glass industries, electronics and pyrotechnics. The element has chemical similarity to Ca and makes up 1/60 of the earth’s amount of the latter. Nonetheless, it is its isotopic composition which makes Sr so interesting for a large number of scientists. The natural composition of the four naturally occurring isotopes (84Sr, 86Sr 87Sr and 88Sr) varies in nature due to the radioactive decay of 87Rb to 87Sr. Thus, it was early recognized as geochronometer especially in Ca rich matrices. With increasing precision of applied methodology, the natural variation of the 87Sr/86Sr isotope ratio (analyzed at first mainly by thermal ionization mass spectrometry (TIMS)) became more and more popular in provenance studies. The natural variation of the ratio is mainly determined by the geological age and the original composition of the rock and can be used therefore as fingerprint of the local geology. The ratio is transferred with no significant fractionation via the water into plants and finally via the food chain into animal and human tissues (especially bones and teeth). As the element is chemically similar to Ca, it appears in most matrices. The use for provenance studies is supported by the fact that the long half life (4.8 x 1010 years) does not lead to an alteration during the time scales which are investigated (from recent samples to human or animal skeletal remains which date back up to 30.000 BC). The uniqueness of the system besides the natural variation is defined by the ubiquity in nature and the relatively high (and thus measurable) elemental concentration in most tissues. It was finally the advent of multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) which augmented the number of applications

  2. A Rb-Sr and Sm-Nd Isotope Geochronology and Trace Element Study of Lunar Meteorite LaPaz Icefield 02205

    NASA Technical Reports Server (NTRS)

    Rankenburg, K.; Brandon, A. D.; Norman, M. D.

    2007-01-01

    Rubidium-strontium and samarium-neodymium isotopes of lunar meteorite LaPaz Icefield (LAP) 02205 are consistent with derivation of the parent magma from a source region similar to that which produced the Apollo 12 low-Ti olivine basalts followed by mixing of the magma with small amounts (1 to 2 wt%) of trace element-enriched material similar to lunar KREEP-rich sample SaU 169. The crystallization age of LAP 02205 is most precisely dated by an internal Rb-Sr isochron of 2991+/-14 Ma, with an initial Sr-87/Sr-88 at the time of crystallization of 0.699836+/-0.000010. Leachable REE-rich phosphate phases of LAP 02205 do not plot on a Sm-Nd mineral isochron, indicating contamination or open system behavior of the phosphates. Excluding anomalous phases from the calculation of a Sm-Nd isochron yields a crystallization age of 2992+/-85 (initial Epsilon Nd-143 = +2.9+/-0.8) that is within error of the Rb-Sr age, and in agreement with other independent age determinations for LAP 02205 from Ar-Ar and U-Pb methods. The calculated Sm-147/Nd-144 source ratios for LAP 02205, various Apollo 12 and 15 basalts, and samples with strong affinities to KREEP (SaU 169, NWA 773, 15386) are uncorrelated with their crystallization ages. This finding does not support the involvement of a common KREEP component as a heat source for lunar melting events that occurred after crystallization of the lunar magma ocean.

  3. Additional Sr Isotopic Heterogeneity in Zagami Olivine-Rich Lithology

    NASA Technical Reports Server (NTRS)

    Misawa, K.; Niihara, T.; Shih, C.-Y; Reese, Y. D.; Nyquist, L. E.; Yoneda, S.; Yamashita, H.

    2012-01-01

    Prior isotopic analyses of Zagami have established differing initial Sr-87/Sr-86 (ISr) ratios of among Zagami lithologies, fine-grained (FG), coarse-grained (CG), and dark mottled lithologies (DML)]. The Zagami sample (KPM-NLH000057) newly allocated from the Kanagawa Prefectural Museum of Natural History contained DML and the Ol-rich lithology which included more ferroan olivines (Ol-rich: Fa(sub 97- 99) vs late-stage melt pockets: Fa(sub 90-97)]). We have combined mineralogy-petrology and Rb-Sr isotopic studies on the Kanagawa Zagami sample, which will provide additional clues to the genesis of enriched shergottites and to the evolution of Martian crust and mantle

  4. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain Evidence for an oceanic impact site

    NASA Technical Reports Server (NTRS)

    Depaolo, D. J.; Kyte, F. T.; Marshall, B. D.; Oneil, J. R.; Smit, J.

    1983-01-01

    The results of isotopic and trace-element-abundance analyses of Ir-enriched Cretaceous-Tertiary-boundary clay sediments from Caravaca, Spain, and of adjacent carbonate and marl layers, are presented. Acetic-acid and HCl leachates and residues were analyzed by isotope dilution to determine K, Rb, Sr, Sm, and Nd concentrations and Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The stable isotope ratios delta-D, delta-(C-13), and delta-(0-18) were also determined. The results are presented in tables and graphs and compared with published data on the Caravaca sediments and on samples from other locations. The boundary clay is found to be distinguished from the adjacent layers by its isotopic ratios and to be of mainly terrestrial, lithospheric (deeper than 3-km) origin. Although submarine-weathering effects are evident and difficult to quantify, the degree of variation in Ni, Ir, Sr, and REE concentrations is considered too large to be attributed to postdepositional processes alone. These findings are seen as evidence for the ocean impact of a large single asteroid producing a worldwide blanket of ejecta, a large injection of water vapor into the atmosphere, and perhaps a gigantic tsunami, at the end of the Cretaceous period.

  5. Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China

    USGS Publications Warehouse

    Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.

    1986-01-01

    Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.

  6. Correlation by Rb-Sr geochronology of garnet growth histories from different structural levels within the Tauern Window, Eastern Alps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, John N.; Selverstone, Jane; Rosenfeld, John L.

    1993-06-01

    In order to evaluate rates of tectonometamorphic processes, growth rates of garnets from metamorphic rocks of the Tauern Window, Eastern Alps were measured using Rb-Sr isotopes. The garnet growth rates were determined from Rb-Sr isotopic zonation of single garnet crystals and the Rb-Sr isotopic compositions of their associated rock matrices. Garnets were analyzed from the Upper Schieferhulle (USH) and Lower Schieferhulle (LSH) within the Tauern Window. Two garnets from the USH grew at rates of 0.67(-0.13)+0.19 mm/million years and 0.88(-0.19)+0.34 mm/million years, respectively, indicating an average growth duration of 5.4 +- 1.7 million years. The duration of growth coupled withmore » the amount of rotation recorded by inclusion trails in the USH garnets yields an average shear-strain rate during garnet growth of 2.7(-0.7)+1.2 x 10(-14) s-1 . Garnet growth in the sample from the USH occurred between 35.4 +- 0.6 and 30 +- 0.8 Ma. The garnet from the LSH grew at a rate of 0.23 +- 0.015 mm/mil lion years, between 62 +- 1.5 Ma and 30.2 +- 1.5 Ma. Contemporaneous cessation of garnet growth in both units at approximately 30 Ma is in accord with previous dating of the thermal peak of metamorphism in the Tauern Window. Correlation with previously published pressure-temperature paths for garnets from the USH and LSH yields approximate rates of burial, exhumation and heating during garnet growth. Assuming that these P - T paths are applicable to the garnets in this study, the contemporaneous exhumation rates recorded by garnet in the USH and LSH were approximately 4(-2)+3 mm/year and 2 +- 1 mm/year, respectively. [References: 34]« less

  7. Heterogeneity of the Caribbean plateau mantle source: Sr, O and He isotopic compositions of olivine and clinopyroxene from Gorgona Island

    NASA Astrophysics Data System (ADS)

    Révillon, S.; Chauvel, C.; Arndt, N. T.; Pik, R.; Martineau, F.; Fourcade, S.; Marty, B.

    2002-12-01

    The composition of the mantle plumes that created large oceanic plateaus such as Ontong Java or the Caribbean is still poorly known. Geochemical and isotopic studies on accreted portions of the Caribbean plateau have shown that the plume source was heterogeneous and contained isotopically depleted and relatively enriched portions. A distinctive feature of samples from the Caribbean plateau is their unusual Sr isotopic compositions, which, at a given Nd isotopic ratio, are far higher than in samples from other oceanic plateaus. Sr, O and He isotopic compositions of whole rocks and magmatic minerals (clinopyroxene or olivine) separated from komatiites, gabbros and peridotites from Gorgona Island in Colombia were determined to investigate the origin of these anomalously radiogenic compositions. Sequentially leached clinopyroxenes have Sr isotopic compositions in the range 87Sr/ 86Sr=0.70271-0.70352, systematically lower than those of leached and unleached whole rocks. Oxygen isotopic ratios of clinopyroxene vary within the range δ 18O=5.18-5.35‰, similar to that recorded in oceanic island basalts. He isotopic ratios are high ( R/ Ra=8-19). The lower 87Sr/ 86Sr ratios of most of the clinopyroxenes shift the field of the Caribbean plateau in Nd-Sr isotope diagrams toward more 'normal' values, i.e. a position closer to the field defined by mid-ocean ridge basalts and oceanic-island basalts. Three clinopyroxenes have slightly higher 87Sr/ 86Sr ratios that cannot be explained by an assimilation model. The high 87Sr/ 86Sr and variations of 143Nd/ 144Nd are interpreted as a source characteristic. Trace-element ratios, however, are controlled mainly by fractionation during partial melting. We combine these isotopic data in a heterogeneous plume source model that accounts for the diversity of isotopic signatures recorded on Gorgona Island and throughout the Caribbean plateau. The heterogeneities are related to old recycled oceanic lithosphere in the plume source; the high 3

  8. Rb-Sr, K-Ar, and stable isotope evidence for the ages and sources of fluid components of gold-bearing quartz veins in the northern Sierra Nevada foothills metamorphic belt, California

    USGS Publications Warehouse

    Böhlke, John Karl; Kistler, R. W.

    1986-01-01

    Gold-bearing quartz veins occur in and near major fault zones in deformed oceanic and island-arc rocks west of the main outcrop of the Sierra Nevada composite batholith. Veins typically occupy minor reverse faults that crosscut blueschist to amphibolite-grade metamorphic rocks whose metamorphic ages range from early Paleozoic to Jurassic. Vein micas and carbonate-quartz-mica assemblages that formed by hydrothermal metasomatism of ultramafic wall rocks in the Alleghany, Grass Valley, Washington, and Mother Lode districts yield concordant K-Ar and Rb-Sr ages. The dated veins are significantly younger than prograde metamorphism, penetrative deformation, and accretion of their host rocks to the continental margin. New and previously published mineralization ages from 13 localities in the Sierra foothills range from about 140 to 110 m.y. ago, with mean and median between 120 and 115 m.y. The age relations suggest that mineralizing fluids were set in motion by deep magmatic activity related to the resumption of east-dipping subduction along the western margin of North America following the Late Jurassic Nevadan collision event.CO 2 -bearing fluids responsible for metasomatism and much of the vein mica, carbonate, albite, and quartz deposition in several northern mines were isotopically heavy (delta 18 O [asymp] 8-14ppm; delta D between about -10 and -50ppm) and do not resemble seawater, magmatic, or meteoric waters. Metasomatic and vein-filling mica, dolomite, magnesite, and quartz in altered ultramafic rocks generally formed from fluids with similar Sr and O isotope ratios at a given locality. Consistent quartz-mica delta 18 O fractionations (delta 18 O (sub Q-M) = 4.5-4.9ppm) from various localities imply uniform equilibration temperatures, probably between 300 degrees and 350 degrees C. On a local (mine) scale, fluids responsible for both carbonate alteration of mafic and ultramafic wall rocks and albitic alteration of felsic and pelitic rocks had similar Sr isotope

  9. Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS.

    PubMed

    Swoboda, S; Brunner, M; Boulyga, S F; Galler, P; Horacek, M; Prohaska, T

    2008-01-01

    This work focuses on testing and application of Sr isotope signatures for the fast and reliable authentication and traceability of Asparagus officinalis originating from Marchfeld, Austria, using multicollector inductively coupled plasma mass spectrometry after optimised Rb/Sr separation. The major sample pool comprises freeze-dried and microwave-digested asparagus samples from Hungary and Slovakia which are compared with Austrian asparagus originating from the Marchfeld region, which is a protected geographical indication. Additional samples from Peru, The Netherlands and Germany were limited in number and allowed therefore only restricted statistical evaluation. Asparagus samples from Marchfeld were harvested within two subsequent years in order to investigate the annual variation. The results show that the Sr isotope ratio is consistent within these 2 years of investigation. Moreover, the Sr isotope ratio of total Sr in soil was found to be significantly higher than in an NH4NO3 extract, reflecting the mobile (bioavailable) phase. The isotope composition in the latter extract corresponds well to the range found in the asparagus samples in Marchfeld, even though the concentration of Sr in asparagus shows no direct correlation to the concentration of Sr in the mobile phase of the soil. The major question was whether the 'Marchfelder Spargel' can be distinguished from samples from the neighbouring countries of Hungary and Slovakia. According to our findings, they can be clearly (100%) singled out from the Hungarian samples and can be distinguished from the Slovakian asparagus samples with a probability of more than 80%.

  10. Integrated Extraction Chromatographic Separation of the Lithophile Elements Involved in Long-Lived Radiogenic Isotope Systems (Rb-Sr, U-Th-Pb, Sm-Nd, La-Ce, and Lu-Hf) Useful in Geochemical and Environmental Sciences.

    PubMed

    Pin, Christian; Gannoun, Abdelmouhcine

    2017-02-21

    A fast and efficient sample preparation method in view of isotope ratio measurements is described, allowing the separation of 11 elements involved, either as "parent" or as "daughter" isotopes, in six radiogenic isotope systems used as chronometers and tracers in earth, planetary, and environmental sciences. The protocol is based on small extraction chromatographic columns, used either alone or in tandem, through which a single nitric acid solution is passed, without any intervening evaporation step. The columns use commercially available extraction resins (Sr resin, TRU resin, Ln resin, RE resin, and again Ln resin for isolating Sr and Pb, LREE then La-Ce-Nd-Sm, Lu(Yb), and Hf, Th, and U, respectively) along with an additional, in-house prepared resin for separating Rb. A simplified scheme is proposed for samples requiring the separation of Sr, Pb, Nd, and Hf only. Adverse effects of troublesome major elements (Fe 3+ , Ti) are circumvented by masking with ascorbic acid and hydrofluoric acid, respectively. Typical recoveries in the 85-95% range are achieved, with procedural blanks of 10-100 pg, negligible with regard to the amounts of analytes processed. The fractions separated are suitable for high precision isotope ratio measurements by TIMS or MC-ICP-MS, as demonstrated by the repeat analyses of several international reference materials of basaltic composition for 87 Sr/ 86 Sr, 208,207,206 Pb/ 204 Pb, 143 Nd/ 144 Nd, 176 Hf/ 177 Hf, and 230 Th/ 232 Th. Concentration data could be obtained by spiking and equilibrating the sample with appropriate isotopic tracers before the onset of the separation process and, finally, measuring the isotope ratios modified by the isotope dilution process.

  11. Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America

    USGS Publications Warehouse

    Stern, C.R.; Frey, F.A.; Futa, K.; Zartman, R.E.; Peng, Z.; Kurtis, Kyser T.

    1990-01-01

    The Pliocene and Quaternary Patagonian alkali basalts of southernmost South America can be divided into two groups. The "cratonic" basalts erupted in areas of Cenozoic plateau volcanism and continental sedimentation and show considerable variation in 87Sr/86Sr (0.70316 to 0.70512), 143Nd/144Nd (e{open}Nd) and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios (18.26 to 19.38, 15.53 to 15.68, and 38.30 to 39.23, respectively). These isotopic values are within the range of oceanic island basalts, as are the Ba/La, Ba/Nb, La/Nb, K/Rb, and Cs/Rb ratios of the "cratonic" basalts. In contrast, the "transitional" basalts, erupted along the western edge of the outcrop belt of the Pliocene and Quaternary plateau lavas in areas that were the locus of earlier Cenozoic Andean orogenic arc colcanism, have a much more restricted range of isotopic composition which can be approximated by 87Sr/86Sr=0.7039??0.0004, e{open}Nd, 206Pb/204Pb=18.60??0.08, 207Pb/204Pb=15.60??0.01, and 208Pb/204Pb=38.50??0.10. These isotopic values are similar to those of Andean orogenic are basalts and, compared to the "cratonic" basalts, are displaced to higher 87Sr/86Sr at a given 143Nd/144Nd and to higher 207Pb/204Pb at a given 208Pb/204Pb. The "transitional" basalts also have Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios higher than the "cratonic" and oceanic island basalts, although not as high as Andean orogenic are basalts. In contrast to the radiogenic isotopes, ??18O values for both groups of the Patagonian alkali basalts are indistinguishable and are more restricted than the range reported for Andean orogenic are basalts. Whole rock ??18O values calculated from mineral separates for both groups range from 5.3 to 6.5, while measured whole rock ??18O values range from 5.1 to 7.8. The trace element and isotopic data suggest that decreasing degrees of partial melting in association with lessened significance of subducted slabderived components are fundamental factors in the west to east transition from arc

  12. Rare earth abundances and Rb-Sr systematics of basalts, gabbro, anorthosite and minor granitic rocks from the Indian Ocean Ridge System, Western Indian Ocean

    USGS Publications Warehouse

    Hedge, C.E.; Futa, K.; Engel, C.G.; Fisher, R.L.

    1979-01-01

    Basalts dredged from the Mid-Indian Ocean Ridge System have rare earth, Rb, and Sr concentrations like those from other mid-ocean ridges, but have slightly higher Sr87/Sr86 ratios. Underlying gabbroic complexes are similar to the basalts in Sr87/Sr86, but are poorer K, Rb, and in rare earths. The chemical and isotopic data, as well as the geologic relations suggest a cumulate origin for the bulk of the gabbroic complexes. ?? 1979 Springer-Verlag.

  13. Evidence for a late thermal event of unequilibrated enstatite chondrites: a Rb-Sr study of Qingzhen and Yamato 6901 (EH3) and Khairpur (EL6)

    USGS Publications Warehouse

    Torigoye, N.; Shima, M.

    1993-01-01

    The Rb-Sr whole rock and internal systematics of two EH3 chondrites, Qingzhen and Yamato 6901, and of one EL6 chondrite, Khairpur, were determined. The internal Rb-Sr systematics of the EH3 chondrites are highly disturbed. Fractions corresponding to sulfide phases show excess 87Sr, while other fractions corresponding to silicate phases produce a linear trend on a Rb-Sr evolution diagram. If these linear relations are interpreted as isochrons, the ages of the silicate phases are 2.12?? 0.23 Ga and 2.05 ??0.33 Ga with the initial Sr isotopic ratios of 0.7112 ?? 0.0018 and 0.7089 ?? 0.0032, for Qingzhen and Yamato 6901, respectively. The Rb-Sr results are interpeted as indicative of a late thermal event about 2Ga ago on the parent bodies of these EH3 chondrites. These ages agree well with previously published K-Ar ages. An older isochron age of 4.481 ?? 0.036 Ga with a low initial Sr isotopic ratio of 0.69866 ?? 0.00038 was obtained for the data from silicate fractions of Khairpur, indicating early petrological equilibrium on the parent body of EL6 chondrites. -from Authors

  14. The Apollo 17 'melt sheet' - Chemistry, age and Rb/Sr systematics

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.; Nava, D. F.; Schuhmann, S.; Philpotts, J. A.; Schuhmann, P. J.; Lum, R. K. L.; Lindstrom, M. M.; Lindstrom, D. J.

    1977-01-01

    Major, minor, and trace-element compositions, age data, and Rb/Sr systematics of Apollo 17 boulders have been compiled, and additional analyses performed on a norite breccia clast (77215) included in the Apollo 17, Station 7 boulder. The Apollo 17 boulders are found to be identical or nearly so in major, minor, and trace-element composition, suggesting that they all originated as an impact melt analogous to melt sheets found in larger terrestrial craters. The matrix dates (Ar-40/Ar-39) and Rb/Sr systematics available suggest that this impact melt formed by a single impact about 4 billion years ago. This impact excavated, shocked, brecciated, and melted norites, norite cumulates, and possibly anorthositic gabbros and dunites about 4.4 billion years old. The impact was likely a major one, possibly the Serenitatis basin-forming event.

  15. Sm-Nd and Rb-Sr Isotopic Studies of Meteorite Kalahari 009: An Old VLT Mare Basalt

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Bischoff, A.

    2008-01-01

    Lunar meteorite Kalahari 009 is a fragmental basaltic breccia contain ing various very-low-Ti (VLT) mare basalt clasts embedded in a fine-g rained matrix of similar composition. This meteorite and lunar meteorite Kalahari 008, an anorthositic breccia, were suggested to be paired mainly due to the presence of similar fayalitic olivines in fragment s found in both meteorites. Thus, Kalahari 009 probably represents a VLT basalt that came from a locality near a mare-highland boundary r egion of the Moon, as compared to the typical VLT mare basalt samples collected at Mare Crisium during the Luna-24 mission. The concordant Sm-Nd and Ar-Ar ages of such a VLT basalt (24170) suggest that the extrusion of VLT basalts at Mare Crisium occurred 3.30 +/- 0.05 Ga ag o. Previous age results for Kalahari 009 range from approximately 4.2 Ga by its Lu-Hf isochron age to 1.70?0.04 Ga of its Ar-Ar plateau ag e. However, recent in-situ U-Pb dating of phosphates in Kalahari 009 defined an old crystallization age of 4.35+/- 0.15 Ga. The authors su ggested that Kalahari 009 represents a cryptomaria basalt. In this r eport, we present Sm-Nd and Rb-Sr isotopic results for Kalahari 009, discuss the relationship of its age and isotopic characteristics to t hose of other L-24 VLT mare basalts and other probable cryptomaria ba salts represented by Apollo 14 aluminous mare basalts, and discuss it s petrogenesis.

  16. Some Pb and Sr isotopic measurements on eclogites from the Roberts Victor mine, South Africa

    USGS Publications Warehouse

    Manton, W.I.; Tatsumoto, M.

    1971-01-01

    Five nodules of eclogite, one nodule of garnet peridotite and one sample of kimberlite from the Roberts Victor mine were analyzed for concentrations of U, Th, Pb, Rb and Sr and isotopic compositions of Pb and Sr. In the eclogites, U content ranges from 0.09 to 0.26 ppm, Th from 0.35 to 1.1 ppm, Pb from 0.79 to 5.5 ppm, Rb from 2.1 to 28 ppm and Sr from 133 to 346 ppm; 206Pb/204Pb ratios range from 14.8 to 18.5, 207Pb/204Pb from 14.9 to 15.7, 208Pb/204Pb from 35.2 to 38.5. The garnet peridotite contains 0.22 ppm U, 0.97 ppm Th, 1.05 ppm Pb, 6.9 ppm Rb and 108 ppm Sr and the kimberlite contains 2.5 ppm U, 30 ppm Th, 37 ppm Pb, 113 ppm Rb and 2040 ppm Sr. The lead in the eclogites has two components, a lead pyroextractable at 1100-1200?? and a non-pyroextractable residual lead. In three of the eclogites, which are to some extent altered, a proportion of the pyroextractable lead may be contaminating lead from the kimberlite, but an altered kyanite eclogite does not appear to be contaminated by this same kimberlite. The pyroextractable lead from a less altered eclogite contains a much larger proportion of 206Pb. Compositions calculated for the residual leads vary greatly. In many of the pyroextraction runs the primary eclogitic phases disappeared and the new phases plagioclase, clinopyroxene and a magnetic iron compound were formed. Why part of the lead should have been retained by these new phases is not understood. ?? 1971.

  17. A novel procedure for Rubidium separation and its isotope measurements on geological samples by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Ma, J.; Zhang, Z.; Wei, G.; Zhang, L.

    2017-12-01

    A method including a novel column Rb separation procedure and high-precision Rb isotope measurement in geological materials by using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in standard-sample-bracketing (SSB) mode has been developed. Sr-Spec resin was employed, in which the distribution coefficients for Rb, K, Ba and Sr are different in nitric acid, to sequentially separate them from the matrix. The dissolved samples were loaded on the column in 3 M HNO3, the main matrix such as Al, Ca, Fe, Mg, Mn and Na were removed by rinsing with 4.5 mL HNO3, Rb and K were then sequentially eluted by 3 M HNO3 in different volumes. After that, Ba was eluted by 8 M HNO3, and Sr was finally eluted by Milli-Q water. This enable us to collect the pure Rb, K, Ba and Sr one by one with recovery close to 100% for their isotopic compositions measurement on MC-ICP-MS. We here focus on Rb isotope measurement. The measurement using MC-ICP-MS yielded an internal precision for δ87Rb of < ± 0.03‰ (2SE), and the external precision was generally better than ± 0.06‰ (2SD) based on the long-term results of the Rb standard solutions NIST SRM 984. A series of geological rock standards, were analyzed using this method, and the results indicate significant Rb isotope differences in different geologic materials. This will provide a powerful tool to investigate Rb isotope fractionation during geological processes.Based on this method, Rb isotope compositions from a basaltic weathering profile were carried out. The data show the lighter Rb (85Rb) isotope is preferentially leached from the weathering profile and remains heavy Rb isotope (87Rb) in the weathered residues during the incipient weathering stage. From the moderate to advanced weathering stage, the significant variations of Rb isotope were observed and multiple factors, such as leaching, adsorption, desorption, and precipitation, should play important role in fractionating Rb isotope.

  18. Sr isotopic composition as a tracer of Ca sources in two forest ecosystems in Belgium.

    NASA Astrophysics Data System (ADS)

    Drouet, T.; Herbauts, J.; Demaiffe, D.

    2003-04-01

    The two main sources of Ca in forest ecosystem are the mineral weathering release and atmospheric inputs. We use the 87Sr/86Sr isotopic ratio (Sr is a proxy for Ca) to determine the Ca contribution from rain input in two forest ecosystems (beech stands) growing on soils formed from parent materials with distinct total Ca contents and contrasted isotopic ratios: Pleistocene loess in Central Belgium (leached brown soil) with present-day 87Sr/86Sr =0.72788 and Lower Devonian shales and sandstones in Ardennes (ochreous brown earth) with 87Sr/86Sr = 0.76913. The 87Sr/86Sr ratios and the Ca and Sr contents were measured in rainwater, vegetation (beech wood growth rings and leaves) and main soil horizons (total, labile and HCl 0.1 M soluble forms). The relative contributions of atmospheric input and soil mineral weathering to vegetation were calculated using mixing equations. Calculations based on the Sr isotope ratios of rainwater (endmember 1; 87Sr/86Sr close to seawater: 0.7090), labile soil fraction (endmember 2; 87Sr/86Sr: 0.71332 to 0.71785) and beech wood (mixing compartment) indicate that about 50 % (Central Belgium) to 35 % (Ardennes) of Ca uptake originate from atmospheric inputs. The choice of the appropriate 87Sr/86Sr ratio for the weathering endmember is however critical. The isotopic composition of the mineral source is theoretically determined by the mineralogical composition of the soil and the relative weatherability of the Sr-bearing minerals. Due to soil processes (weathering and clay illuviation), the distribution of minerals in both soil profiles is not homogeneous and varies from horizon to horizon. Which horizons are relevant and which kind of soil extract (labile soil fraction, acid soluble fraction, total soil,...) should be selected for isotopic measurement of weathering endmember, is therefore questionable. The different ways of estimation are discussed. Quantitative mineralogical reconstitutions of soil horizons and isotopic data indicate

  19. Measurement of strontium isotope ratio in nitric acid extract of peanut testa by ICP-Q-MS after removal of Rb by extraction with pure water.

    PubMed

    Zhu, Yanbei; Hioki, Akiharu; Chiba, Koichi

    2014-02-01

    The difference in the distributions of Sr and Rb in peanut seeds was utilized to develop a precise method for Sr isotope ratio measurement by inductively coupled plasma quadruple mass spectrometry (ICP-Q-MS). The testa instead of the whole peanut seed was selected as the sample because apparent enrichment of Sr in comparison to Rb was found in the testa. Furthermore, Rb in the testa was removed by pure water extraction with the aid of sonication to remove the isobaric interference in Sr isotope ratio measurement. The testa taken from one peanut seed was treated as one sample for the analysis. After optimization of the operating conditions, pure water (10 mL for each sample) extraction in 30 min with sonication was able to remove over 95% of Rb in the testa, while after the Rb removal Sr could be completely extracted using 10 mL of 0.3 mol L(-1) HNO3 for each sample. The integration time in ICP-Q-MS measurement was optimized to achieve a lower measurement uncertainty in a shorter time; the results showed that 1s was required and enough for the precise measurement of Sr isotope ratios giving a relative standard uncertainty (n=10) of ca. 0.1%. The present method was applied to peanut seeds grown in Japan, China, USA, India, and South Africa. © 2013 Published by Elsevier B.V.

  20. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation

    PubMed Central

    Carlson, Richard W.; Borg, Lars E.; Gaffney, Amy M.; Boyet, Maud

    2014-01-01

    New Rb-Sr, 146,147Sm-142,143Nd and Lu-Hf isotopic analyses of Mg-suite lunar crustal rocks 67667, 76335, 77215 and 78238, including an internal isochron for norite 77215, were undertaken to better define the time and duration of lunar crust formation and the history of the source materials of the Mg-suite. Isochron ages determined in this study for 77215 are: Rb-Sr=4450±270 Ma, 147Sm-143Nd=4283±23 Ma and Lu-Hf=4421±68 Ma. The data define an initial 146Sm/144Sm ratio of 0.00193±0.00092 corresponding to ages between 4348 and 4413 Ma depending on the half-life and initial abundance used for 146Sm. The initial Nd and Hf isotopic compositions of all samples indicate a source region with slight enrichment in the incompatible elements in accord with previous suggestions that the Mg-suite crustal rocks contain a component of KREEP. The Sm/Nd—142Nd/144Nd correlation shown by both ferroan anorthosite and Mg-suite rocks is coincident with the trend defined by mare and KREEP basalts, the slope of which corresponds to ages between 4.35 and 4.45 Ga. These data, along with similar ages for various early Earth differentiation events, are in accord with the model of lunar formation via giant impact into Earth at ca 4.4 Ga. PMID:25114305

  1. Rb-Sr age of the Shergotty achondrite and implications for metamorphic resetting of isochron ages

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Bogard, D. D.; Wooden, J.; Bansal, B.; Wiesmann, H.; Mckay, G.

    1979-01-01

    The age of the Shergotty achondrite is determined by Rb-Sr isotope analysis and the metamorphic resetting of isochron ages, which is presumed to have occurred during a shock event in the history of the meteorite, is discussed. The isochron best fitting the Rb-Sr evolution diagram is found to correspond to an age of 165 million years, with an initial Sr-87/Sr-86 value of 0.72260. Different apparent ages obtained by the K-Ar and Sm-Nd methods are interpreted in terms of a model which quantifies the degree of resetting of internal isochron ages by low temperature solid state diffusion. On the basis of these considerations, it is concluded that Shergotty crystallized from a melt 650 million years ago, was shock heated to 300 to 400 C after its parent body was involved in a collision 165 million years ago, and was first exposed to cosmic rays two million years ago.

  2. The evolution of a calc-alkaline basic to silicic magma system: Geochemical and Rb-Sr, Sm-Nd, and 18O /16O isotopic evidence from the Late Hercynian Atesina-Cima d'Asta volcano-plutonic complex, northern Italy

    NASA Astrophysics Data System (ADS)

    Barth, Susanne; Oberli, Felix; Meier, Martin; Blattner, Peter; Bargossi, Giuseppe M.; Di Battistini, Gianfranco

    1993-09-01

    Geochemical and Sr-Nd-O isotopic data presented for basaltic andesitic to rhyolitic and for quartz noritic to monzogranitic rock suites from the Late Hercynian calc-alkaline Atesina volcanic complex (AVC) and the Cima d'Asta pluton (CAP), Southern Alps (northern Italy), provide information on both the primary magmatic processes and the effects of (mainly Triassic) hydrothermal overprint. Fluid infiltration led to mobilization of major and trace elements (K 2O, Na 2O, CaO, Rb, Sr, and Ba), opensystem behavior in total-rock Rb-Sr, and shift in δ18O to elevated values (total rock up to 16.6%. and volcanic matrix up to 17.8%.). Oxygen isotopic disequilibrium between quartz-feldspar pairs suggests water-rock interaction at medium/low temperatures. The δ18O values of quartz, the REE characterized by regular LREE enrichment/HREE depletion, and the Sm-Nd isotopic signatures, however, remained virtually unaffected by secondary processes. The initial ɛNd values (at 270 Ma) of the AVC and CAP magmatites are restricted to overlapping ranges of -3.6 to -6.5 and of -2.7 to -6.5, respectively, indicating significant crustal contribution; these values and associated T DM model ages of 1.1-1.6 Ga agree well with those of typical South Alpine lower crustal magmatites. The AVC and CAP rocks do not follow the "normal" trend of increasingly crustal Nd isotopic signatures with progressive degree of magma evolution expected for a single-stage AFC-type process, but instead display an inversion of this relationship. Geochemical and isotopic constraints favor a model of a large-scale MASH-type melting and mixing zone at or near the base of the continental crust. Distinct elemental enrichment/depletion and REE crossover patterns displayed by high-silica as compared to less silicic AVC rhyolites suggest subsequent magma evolution within a shallow-level compositionally zoned chamber.

  3. Rb-Sr and Sm-Nd Isotopic Studies of Martian Depleted Shergottes SaU 094/005

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.

    2007-01-01

    Sayh al Uhaymir (SaU) 094 and SaU 005 are olivine-phyric shergottites from the Oman desert and are considered as pairs. [e.g., 1]. They are very similar to the Libyan desert shergottite Dar al Gani (DaG) 476 in petrology, chemistry and ejection age [2-6]. This group of shergottites, also recognized as depleted shergottites [e.g. 7] has been strongly shocked and contains very low abundances of light rare earth elements (REE). In addition, terrestrial contaminants are commonly present in meteorites found in desert environments. Age-dating these samples is very challenging, but lower calcite contents in the SaU meteorites suggest that they have been subjected to less severe desert weathering than their DaG counterparts [3-4]. In this report, we present Rb-Sr and Sm-Nd isotopic results for SaU 094 and SaU 005, discuss the correlation of their ages with those of other similar shergottites, and discuss their petrogenesis.

  4. Fluid inclusion, geochemical, Rb-Sr and Sm-Nd isotope studies on tungsten mineralized Degana and Balda granites of the Aravalli craton, NW India

    NASA Astrophysics Data System (ADS)

    Vijay Anand, Sundarrajan; Pandian, M. S.; Balakrishnan, S.; Sivasubramaniam, R.

    2018-06-01

    Granitic plutons occurring within and to the west of the Delhi Fold Belt in the Aravalli craton, northwestern India are the result of widespread felsic magmatism during Neoproterozoic, some of which are associated with greisen and skarn tungsten deposits. In this paper, we present the result of our study on fluid inclusions, geochemistry and geochronology of two such tungsten mineralized granite plutons at Degana and Balda, and interpret the nature of ore fluid, and petrogenesis and age of these mineralized granites. Fluid inclusion study reveals coexistence of moderate and hyper-saline aqueous fluid inclusions along with aqueous-carbonic inclusions, suggesting their origin due to liquid immiscibility during fluid-rock interaction. Geochemically, the granites are peraluminous, Rb enriched, Sr and Ba depleted and highly differentiated. The Rb-Sr isotopic systematics yielded 795± 11 Ma for Balda granite and 827± 8 Ma for Degana granite. We show that major phase of widespread granitoid magmatism and mineralization during the Neoproterozoic (840-790 Ma) in NW India is coeval with breakup of the Rodinia supercontinent and infer a causal relationship between them.

  5. Rb-Sr and Sm-Nd Studies of Olivine-Phyric Shergottites RBT 04262 and LAR 06319: Isotopic Evidence for Relationship to Enriched Basaltic Shergottites

    NASA Technical Reports Server (NTRS)

    Nyquist, L.E.; Shih, C.-Y.; Reese, Y.

    2009-01-01

    RBT 04262 and LAR 06319 are two Martian meteorites recently discovered in Antarctica. Both contain abundant olivines, and were classified as olivine-phyric shergottites. A detailed petrographic study of RBT 04262 suggested it should be reclassified as a lherzolitic shergottite. However, the moderately LREE-depleted REE distribution pattern indicated that it is closely related to enriched basaltic shergottites like Shergotty, Zagami, Los Angeles, etc. In earlier studies of a similarly olivinephyric shergottite NWA 1068 which contains 21% modal olivine, it was shown that it probably was produced from an enriched basaltic shergottite magma by olivine accumulation . As for LAR 06319, recent petrographic studies suggested that it is different from either lherzolitic shergottites or the highly LREE-depleted olivine-phyric shergottites. We performed Rb-Sr and Sm-Nd isotopic analyses on RBT 04262 and LAR 06319 to determine their crystallization ages and Sr and Nd isotopic signatures, and to better understand the petrogenetic relationships between them and other basaltic, lherzolitic and depleted olivine-phyric shergottites.

  6. Sr, Nd, and Pb Isotopic Geochemistry of Rhyolites from the Eastern Rhodopes, Bulgaria

    NASA Astrophysics Data System (ADS)

    Ivanova, R.; Kamenov, G. D.; Yanev, Y.

    2002-12-01

    Paleogene Eastern Rhodopes Volcanic Area (ERVA) is part of a more than 2000 km long magmatic belt in SE Europe extending from the Inner Dinarids (West Bosnia-Herzegovina) to Western Anatolia (European Turkey). Volcanic activity occurred during the Late Eocene-Early Oligocene and was spatially related to extensional Paleogene shallow marine basins underlain by a high-grade metamorphic basement. The volcanism is bimodal in character, with minor mafic (basalts) and major intermediate (mainly andesites) to acid (mainly rhyolites) volcanics present in similar volumes. This work focuses on Maritsa volcanic group (36-32 Ma) located in the NE part of the ERVA, S Bulgaria. The volcanic group comprises Lozen volcano composed of dacites, rhyodacites, and rhyolites, St Marina rhyolite dome, and Sheinovets rhyolite dome-cluster located within a caldera with the same name. Measured present day 87Sr/86Sr of the rhyolites range from 0.7075 to 0.7180, however on a plot 87Rb/86Sr vs 87Sr/86Sr the data form an errorchron (MSWD=21) with 30.5 +/-3.6Ma age and 87Sr/86Sr initial equal to 0.7074. Pb isotopic compositions in all of the volcanoes show similar values ranging from 18.712 to 18.768 in 206Pb/204Pb, 15.643 to 15.687 in 207Pb/204Pb, and 38.790 to 38.922 in 208Pb/204Pb. Nd isotopes show also little variations with 143Nd/144Nd ranging from 0.51242 to 0.51249. The similarity in the isotopic compositions between the volcanoes suggests common, homogeneous magmatic source. Crustal origin of the rhyolites as a result of melting of the metamorphic basement is not plausible because the rhyolites have different Sr and Nd isotopic compositions from the gneisses in the ERVA. Sr and Nd isotopic data for the rhyolites differ also from the basalts (i.e. possible mantle melts) in the Eastern Rhodopes region. Rhyolites have higher 87Sr/86Sr and lower 143Nd/144Nd ratios compared to the basalts, thus suggesting involvement of crustal component in the magma generation, most probably the metamorphic

  7. In-situ Rb-Sr geochronology

    NASA Astrophysics Data System (ADS)

    Anderson, F. S.; Nowicki, K.; Whitaker, T.

    This paper reports on the first rubidium-strontium (Rb-Sr) radiometric dates using a Laser Desorption Resonance Ionization Mass Spectrometry (LDRIMS) instrument capable of being miniaturized for flight to another planet. The LDRIMS instrument produces dates in under 24 hours, requires minimal sample preparation, and avoids the interference and mass resolution issues associated with other geochronology measurements. We have begun testing the bench-top prototype on the Boulder Creek Granite (BCG), from Colorado, comprised primarily of a gneissic quartz monzonite and granodiorite; whole rock Rb-Sr TIMS measurements result in dates of 1700± 40 Ma [1]. Data reduction of the LDRIMS Rb-Sr measurements on calibrated repeat runs result in a date for the BCG of 1.727± 0.087 Ga (n=288, MSWD=1). Most geochronology applications are willing to accept an MSWD up to ~2.7; at MSWD=2, the precision improves to ± 0.062 Ga. This technology is moving from lab prototype to field deployable instrument, and provides an opportunity to directly address the science goals of Mars Sample Return (MSR) within the bounds posed by current scientific, fiscal, and political pressures on the Mars program. Additionally, LDRIMS could potentially be flown to the Moon under the Discovery or New Frontiers program. We posit that in-situ geochronology missions to Mars to triage and validate samples for Mars Sample Return (MSR) are technically feasible in the 2018-2022 time frame.

  8. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation.

    PubMed

    Carlson, Richard W; Borg, Lars E; Gaffney, Amy M; Boyet, Maud

    2014-09-13

    New Rb-Sr, (146,147)Sm-(142,143)Nd and Lu-Hf isotopic analyses of Mg-suite lunar crustal rocks 67667, 76335, 77215 and 78238, including an internal isochron for norite 77215, were undertaken to better define the time and duration of lunar crust formation and the history of the source materials of the Mg-suite. Isochron ages determined in this study for 77215 are: Rb-Sr=4450±270 Ma, (147)Sm-(143)Nd=4283±23 Ma and Lu-Hf=4421±68 Ma. The data define an initial (146)Sm/(144)Sm ratio of 0.00193±0.00092 corresponding to ages between 4348 and 4413 Ma depending on the half-life and initial abundance used for (146)Sm. The initial Nd and Hf isotopic compositions of all samples indicate a source region with slight enrichment in the incompatible elements in accord with previous suggestions that the Mg-suite crustal rocks contain a component of KREEP. The Sm/Nd-(142)Nd/(144)Nd correlation shown by both ferroan anorthosite and Mg-suite rocks is coincident with the trend defined by mare and KREEP basalts, the slope of which corresponds to ages between 4.35 and 4.45 Ga. These data, along with similar ages for various early Earth differentiation events, are in accord with the model of lunar formation via giant impact into Earth at ca 4.4 Ga. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034

    NASA Astrophysics Data System (ADS)

    Nyquist, Laurence E.; Shih, Chi-Yu; McCubbin, Francis M.; Santos, Alison R.; Shearer, Charles K.; Peng, Zhan X.; Burger, Paul V.; Agee, Carl B.

    2016-03-01

    The bulk matrix domain of the Martian breccia NWA 7034 was examined petrographically and isotopically to better understand the provenance and age of the source material that make up the breccia. Both 147Sm-143Nd and 146Sm-142Nd age results for mineral separates from the bulk matrix portion of breccia NWA 7034 suggest that various lithological components in the breccia probably formed contemporaneously ~4.44 Ga ago. This old age is in excellent agreement with the upper intersection ages (4.35-4.45 Ga) for U-Pb discordia and also concordia defined by zircon and baddeleyite grains in matrix and igneous-textured clasts. Consequently, we confirm an ancient age for the igneous components that make up the NWA 7034 breccia. Substantial disturbance in the Rb-Sr system was detected, and no age significance could be gleaned from our Rb-Sr data. The disturbance to the Rb-Sr system may be due to a thermal event recorded by bulk-rock K-Ar ages of 1.56 Ga and U-Pb ages of phosphates at about 1.35-1.5 Ga, which suggest partial resetting from an unknown thermal event(s), possibly accompanying breccia formation. The NWA 7034 bulk rock is LREE enriched and similar to KREEP-rich lunar rocks, which indicates that the earliest Martian crust was geochemically enriched. This enrichment supports the idea that the crust is one of the enriched geochemical reservoirs on Mars that have been detected in studies of other Martian meteorites.

  10. The Nd-, Sr- and Pb-isotopic character of lavas from Taal, Laguna de Bay and Arayat volcanoes, southwestern Luzon, Philippines: Implications for arc magma petrogenesis

    USGS Publications Warehouse

    Mukasa, S.B.; Flower, M.F.J.; Miklius, Asta

    1994-01-01

    Following the amalgamation of a collage of pre-Neogene terranes largely by strike-slip and convergence mechanisms to form the Philippine islands, volcanic chains, related to oppositely dipping subduction zones, developed along the eastern and western margins of the archipelago. There is ample field evidence that this volcanic activity, predominantly calc-alkaline in chemical character, had commenced by the Oligocene. Volcanoes resulting from subduction along the Manila-Negros trench in the west (e.g. Taal, Laguna de Bay and Arayat) form a high-angle linear array, trending away from the MORE field on Pb-isotopic covariation diagrams; have the highest Sr- and lowest Nd-isotopic compositions, of the two chains (but nevertheless plotting above bulk earth on the 87Sr/86Sr versus 143Nd/144Nd covariation diagram); and exhibit Sm/Nd and Rb/Sr values that are lower and higher, respectively, than the estimated values for bulk earth. While the Sm/Nd and Rb/Sr characteristics are common to both chains, volcanoes associated with the Philippine-East Luzon trench have Pb-isotopic compositions that fall in the Indian Ocean MORB field and that require time-integrated evolution in a high Th/U environment. They also have higher Nd- and lower Sr-isotopic ratios. The source materials of Philippine volcanoes, therefore, have undergone varied recent enrichments in LILE, as indicated by the decoupling of isotopic and elemental ratios. These enrichments, particularly for the western volcanoes, cannot be entirely due to small degrees of partial melting in the mantle wedge, considering that they were accompanied by elevations in radiogenic Pb. Elevated Pb ratios are best explained by the introduction of subducted, continentally derived sediments. The sedimentary component in the western volcanoes is probably the South China Sea sediments derived largely from Eurasia. That this component is not available in the Philippine-East Luzon trench is reflected by the fact that the eastern volcanoes

  11. U-Th-Pb and Rb-Sr systematics of Allende and U-Th-Pb systematics of Orgueil

    USGS Publications Warehouse

    Tatsumoto, M.; Unruh, D.M.; Desborough, G.A.

    1976-01-01

    chondrules which contain less radiogenic lead did, however, not fit on the chord. The Rb-Sr data of Allende did not define an isochron suggesting that the Rb-Sr system was also disturbed by a later event, as suggested by the U-Pb concordia data. The lowest observed 87Sr/86Sr ratio in Allende inclusions is similar to the initial ratio of the Angra dos Reis achondrite (Papanastassiou, Thesis, 1970). The initial Pb isotopic composition of Orgueil calculated by a single-stage evolution model is more radiogenic than that of Canyon Diablo troilite. To reconcile the U-Pb data of Orgueil and Allende, we propose that the initial lead isotopic composition of the carbonaceous chondrites was slightly different from that of Canyon Diablo troilite Pb. ?? 1976.

  12. Sr and Nd isotopes of suspended sediments from rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Hatting, Karina; Santos, Roberto V.; Sondag, Francis

    2014-05-01

    The Rb-Sr and Sm-Nd isotopic systems are important tools to constrain the provenance of sediment load in river systems. This study presents the isotopic composition of Sr and Nd isotopes and major and minor elements in suspended sediments from the Marañón-Solimões, Amazonas and Beni-Madeira rivers. The data were used to constrain the source region of the sediments and to better understand the main seasonal and spatial transport processes within the basin based on the variations of the chemical and isotopic signals. They also allow establishing a relationship between sediment concentrations and flow rate values. The study presents data collected during a hydrological year between 2009 and 2010. The Marañón-Solimões River presents low Sr isotopic values (0.7090-0.7186), broad EpslonNd(0) range (-15.17 to -8.09) and Nd model (TDM) ages varying from 0.99 to 1.81 Ga. Sources of sediments to the Marañón-Solimões River include recent volcanic rocks in northern Peru and Ecuador, as well as rocks with long crustal residence time and carbonates from the Marañón Basin, Peru. The Beni-Madeira River has more radiogenic Sr isotope values (0.7255-0.7403), more negative EpslonNd(0) values (-20.46 to -10.47), and older Nd isotope model ages (from 1.40 to 2.35 Ga) when compared to the Marañón-Solimões River. These isotope data were related to the erosion of Paleozoic and Cenozoic foreland basins that are filled with Precambrian sediments derived from the Amazonian Craton. These basins are located in Bolivian Subandina Zone. The Amazon River presents intermediate isotopic values when compared to those found in the Marañón-Solimões and Beni-Madeira rivers. Its Sr isotope ratios range between 0.7193 and 0.7290, and its EpslonNd(0) values varies between -11.09 and -9.51. The Nd isotope model ages of the suspended sediments vary between 1.28 and 1.77 Ga. Concentrations of soluble and insoluble elements indicate a more intense weathering activity in sediments of the Beni

  13. Strontium isotopes reveal weathering processes in lateritic covers in southern China with implications for paleogeographic reconstructions

    PubMed Central

    Wei, Xiao; Wang, Shijie; Ji, Hongbing; Shi, Zhenhua

    2018-01-01

    The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China), were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils). Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations) are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern China presented the

  14. Strontium isotopes reveal weathering processes in lateritic covers in southern China with implications for paleogeographic reconstructions.

    PubMed

    Wei, Xiao; Wang, Shijie; Ji, Hongbing; Shi, Zhenhua

    2018-01-01

    The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China), were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils). Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations) are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern China presented the

  15. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes

    NASA Astrophysics Data System (ADS)

    Jiang, Fuqing; Frank, Martin; Li, Tiegang; Chen, Tian-Yu; Xu, Zhaokai; Li, Anchun

    2013-05-01

    The radiogenic strontium (Sr) and neodymium (Nd) isotope compositions of the detrital fraction of surface and subsurface sediments have been determined to trace sediment provenance and contributions from Asian dust off the east coast of Luzon Islands in the western Philippine Sea. The Sr and Nd isotope compositions have been very homogenous near the east coast of the Luzon Islands during the latest Quaternary yielding relatively least radiogenic Sr (87Sr/86Sr = 0.70453 to 0.70491) and more radiogenic Nd isotope compositions (ɛNd(0) = +5.3 to +5.5). These isotope compositions are similar to Luzon rocks and show that these sediments were mainly derived from the Luzon Islands. In contrast, the Sr and Nd isotope compositions of sediments on the Benham Rise and in the Philippine Basin are markedly different in that they are characterized by overall more variable and more radiogenic Sr isotope compositions (87Sr/86Sr = 0.70452 to 0.70723) and less radiogenic Nd isotope compositions (ɛNd(0) = -5.3 to +2.4). The Sr isotope composition in the Huatung Basin is intermediate between those of the east coast of Luzon and Benham Rise, but shows the least radiogenic Nd isotope compositions. The data are consistent with a two end-member mixing relationship between Luzon volcanic rocks and eolian dust from the Asian continent, which is characterized by highly radiogenic Sr and unradiogenic Nd isotope compositions. The results show that Asian continental dust contributes about 10-50% of the detrital fraction of the sediments on Benham Rise in the western Philippine Sea, which offers the potentials to reconstruct the climatic evolution of eastern Asia from these sediments and compare this information to the records from the central and northern Pacific.

  16. Rb-Sr whole-rock and mineral ages, K-Ar, 40Ar/39Ar, and U-Pb mineral ages, and strontium, lead, neodymium, and oxygen isotopic compositions for granitic rocks from the Salinian Composite Terrane, California:

    USGS Publications Warehouse

    Kistler, R.W.; Champion, D.E.

    2001-01-01

    This report summarizes new and published age and isotopic data for whole-rocks and minerals from granitic rocks in the Salinian composite terrane, California. Rubidium-strontium whole-rock ages of plutons are in two groups, Early Cretaceous (122 to 100 Ma) and Late Cretaceous (95 to 82 Ma). Early Cretaceous plutons occur in all granitic rock exposures from Bodega Head in the north to those from the Santa Lucia and Gabilan Ranges in the central part of the terrane. Late Cretaceous plutons have been identified in the Point Reyes Peninsula, the Santa Lucia and the Gabilan Ranges, and in the La Panza Range in the southern part of the terrane. Ranges of initial values of isotopic compositions are 87Sr/86Sr, 0.7046-0.7147, δ18O, +8.5 to +12.5 per mil, 206Pb/204Pb, 18.901-19.860, 207Pb/204Pb, 15.618-15.814, 208Pb/204Pb, 38.569- 39.493, and εNd, +0.9 to -8.6. The initial 87Sr/86Sr=0.706 isopleth is identified in the northern Gabilan Range and in the Ben Lomond area of the Santa Cruz Mountains, in Montara Mountain, in Bodega Head, and to the west of the Farallon Islands on the Cordell Bank. This isotopic boundary is offset about 95 miles (160km) by right-lateral displacements along the San Gregorio-Hosgri and San Andreas fault systems.

  17. Rb-Sr ages from phengite inclusions in garnets from high pressure rocks of the Swiss Western Alps

    NASA Astrophysics Data System (ADS)

    de Meyer, Caroline M. C.; Baumgartner, Lukas P.; Beard, Brian L.; Johnson, Clark M.

    2014-06-01

    The Zermatt-Saas Fee Zone (ZSZ) was subducted to eclogite-facies conditions, reaching peak pressures and temperatures of 20-28 kbar and 500-630 °C. The rocks were partially overprinted under greenschist-facies conditions during exhumation. Previous Rb-Sr isochron ages obtained on matrix phengites in metasediments of the ZSZ have been interpreted to date early exhumation of the ZSZ. Here we present new Rb-Sr geochronology on phengite inclusions in garnets to date prograde growth of garnets. We show that garnet acted as a shield for the included phengites, limiting Rb and Sr isotope exchange with the bulk rock, upon complete enclosure of the mica, during garnet growth, even if peak metamorphism exceeded the Rb-Sr blocking temperature. Similarly, garnet isolated the micas from the matrix during subsequent recrystallization due to fluid infiltration or deformation during exhumation. Phengite inclusion ages for two metapelitic samples from the same locality (Triftji) are 44.86±0.49 Ma and 43.6±1.8 Ma, and are about 4 m.y. older than the corresponding matrix mica ages of 40.01±0.51 Ma and 39.5±1.1 Ma, respectively. The results confirm previous Sm-Nd and Lu-Hf geochronology on the ZSZ that indicated protracted garnet growth during prograde metamorphism, and confirm that at least parts of the ZSZ underwent peak metamorphic HP conditions less than 43 m.y. ago, followed by rapid exhumation to upper greenschist-facies conditions around 40 Ma ago.

  18. Modeling crust-mantle evolution using radiogenic Sr, Nd, and Pb isotope systematics

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti

    2015-04-01

    The present-day elemental and isotopic composition of Earth's terrestrial reservoirs can be used as geochemical constraints to study evolution of the crust-mantle system. A flexible open system evolutionary model of the Earth, comprising continental crust (CC), upper depleted mantle (UM) -source of mid-ocean ridge basalts (MORB), and lower mantle (LM) reservoir with a D" layer -source of ocean island basalts (OIB), and incorporating key radioactive isotope systematics (Rb-Sr, Sm-Nd, and U-Th-Pb), is solved numerically at 1 Ma time step for 4.55 Ga, the age of the Earth. The best possible solution is the one that produces the present-day concentrations as well as isotopic ratios in terrestrial reservoirs, compiled from published data. Different crustal growth scenarios (exponential, episodic, early and late growth), proposed in earlier studies, and its effect on the evolution of isotope systematics of terrestrial reservoirs is studied. Model simulations strongly favor a layered mantle structure satisfying majority of the isotopic constraints. In the successful model, which is similar to that proposed by Kellogg et al. (1999), the present-day UM comprises of 60% of mantle mass and extends to a depth 1600 km, whereas the LM becomes non-primitive and more enriched than the bulk silicate Earth, mainly due to addition of recycled crustal material. Modeling suggest that isotopic evolution of reservoirs is affected by the mode of crustal growth. Only two scenarios satisfied majority of the Rb-Sr and Sm-Nd isotopic constraints but failed to reproduce the present-day Pb-isotope systematics; exponential growth of crust (mean age, tc=2.3 Ga) and delayed and episodic growth (no growth for initial 900 Ma, tc=2.05 Ga) proposed by Patchett and Arndt (1986). However, assuming a slightly young Earth (4.45 Ga) better satisfies the Pb-isotope systematics. Although, the delayed crustal growth model satisfied Sr-Nd isotopic constraints, presence of early Hadean crust (4.03 and 4.4 Ga

  19. Sources of granite magmatism in the Embu Terrane (Ribeira Belt, Brazil): Neoproterozoic crust recycling constrained by elemental and isotope (Sr-Nd-Pb) geochemistry

    NASA Astrophysics Data System (ADS)

    Alves, Adriana; Janasi, Valdecir de Assis; Campos Neto, Mario da Costa

    2016-07-01

    Whole rock elemental and Sr-Nd isotope geochemistry and in situ K-feldspar Pb isotope geochemistry were used to identify the sources involved in the genesis of Neoproterozoic granites from the Embu Terrane, Ribeira Belt, SE Brazil. Granite magmatism spanned over 200 Ma (810-580 Ma), and is dominated by crust-derived relatively low-T (850-750 °C, zircon saturation) biotite granites to biotite-muscovite granites. Two Cryogenian plutons show the least negative εNdt (-8 to -10) and highest mg# (30-40) of the whole set. Their compositions are strongly contrasted, implying distinct sources for the peraluminous (ASI ∼ 1.2) ∼660 Ma Serra do Quebra-Cangalha batholith (metasedimentary rocks from relatively young upper crust with high Rb/Sr and low Th/U) and the metaluminous (ASI = 0.96-1.00) ∼ 630 Ma Santa Catarina Granite. Although not typical, the geochemical signature of these granites may reflect a continental margin arc environment, and they could be products of a prolonged period of oceanic plate consumption started at ∼810 Ma. The predominant Ediacaran (595-580 Ma) plutons have a spread of compositions from biotite granites with SiO2 as low as ∼65% (e.g., Itapeti, Mauá, Sabaúna and Lagoinha granites) to fractionated muscovite granites (Mogi das Cruzes, Santa Branca and Guacuri granites; up to ∼75% SiO2). εNdT are characteristically negative (-12 to -18), with corresponding Nd TDM indicating sources with Paleoproterozoic mean crustal ages (2.0-2.5 Ga). The Guacuri and Santa Branca muscovite granites have the more negative εNdt, highest 87Sr/86Srt (0.714-0.717) and lowest 208Pb/206Pb and 207Pb/206Pb, consistent with an old metasedimentary source with low time-integrated Rb/Sr. However, a positive Nd-Sr isotope correlation is suggested by data from the other granites, and would be consistent with mixing between an older source predominant in the Mauá granite and a younger, high Rb/Sr source that is more abundant in the Lagoinha granite sample. The

  20. Zircon U-Pb chronology, geochemistry and Sr-Nd-Pb isotopic compositions of the Volcanic Rocks in the Elashan area, NW China: petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Wei, J.; Shi, W.; Li, P.; Chen, M.; Zhao, X.

    2017-12-01

    Elashan area is located in the intersection of the East Kunlun Orogenic Belt (EKOB) and the West Qinling Orogenic (WQOB). We present petrology, zircon U-Pb ages, whole-rock geochemistry and Sr-Nd-Pb isotopic compositions from the andesite and felsic volcanic rocks (rhyolite and rhyolitic tuffs) in Elashan group volcanic rock. The LA-ICP-MS zircon U-Pb age data indicate that the volcanic rocks are emplaced at 250 247 Ma. The volcanic rocks have high -K and aluminum - peraluminous characteristics, A/CNK = 1.07 1.82, δ ranges from 1.56 2.95, the main body is calc-alkaline rock. They are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in some high field strength elements (HFSEs, e.g., Nb, Ta, P and Ti), while having a flat heavy REE (HREEs) pattern. The ∑REE values of 178.68 to 298.11 ppm, average 230.50 ppm. The LREE/HREE values of 4.39 to 11.78 ppm, average 6.77 ppm. REE fractionation is obvious, REE distribution curve was right smooth, and have slightly negative Eu anomalies (Eu/Eu*=0.44-0.80, average 0.60), which as similar to the island arc volcanic rocks. The volcanic rocks have initial 87Sr/86Sr ratios of 0.71028-0.71232, ɛNd(t) values of -6.7 to -7.6, with T2DM-Nd ranging from 1561 to 1640 Ma. Pb isotopic composition (206 Pb / 204 Pb)t = 18.055 18.330, (207 Pb / 204 Pb)t = 15.586 15.618, (208 Pb / 204 Pb)t = 37.677 38.332. Geochemical and Sr-Nd-Pb isotopes indicates that Elashan group volcanic magma derived mainly from the lower crust. Elashan group volcanic rocks is the productive East Kunlun block and West Qinling block collision, which makes the thicken crust caused partial melting in the study area. The source rocks is probably from metamorphic sandstone of Bayankala. But with Y-Nb and Rb-(Y+Nb), R1-R2 and Rb/10-Hf-Ta*3 diagrams showing that intermediate-acid rocks mainly formed in volcanic arc-collision environment, probably the collision event is short , therefore rocks retain the original island

  1. Fluid/rock Interaction History of a Faulted Rhyolite-Granite Contact Determined by Sr- Pb-Isotopes, Th/U-Disequilibria and Elemental Distributions (Eastern Rhine Graben Shoulder, SW-Germany)

    NASA Astrophysics Data System (ADS)

    Marbach, T.; Mangini, A.; Kober, B.; Schleicher, A.; Warr, L. N.

    2003-04-01

    Major and trace element analyses allow to obtain information concerning the chemical changes induced by alteration. Differences are partly petrographic because the profile crosses the granite-rhyolite contact, but they are also due to different alteration levels induced by fluid circulation along the fault system which has drained the alteration processes. The granite-rhyolite contact constitutes the primary structure. Only the most incompatible elements (Si, Al, Zr, Hf) retain their original signatures and reflect a mixing between typical granite and rhyolite lithologies across the altered zones (cataclasite). The more mobile elements show a different composition within the altered zones (cataclasite) notably a high leaching of cations. The geochemical tracers also suggest at least one strong hydrothermal event with reducing conditions in the altered zones. The isotopic analyses delivered qualitative and temporal information. The use of several isotopic systems, Rb/Sr-, U/Pb-isotopes and Th/U disequilibria, reveals a complex history of polyphase fluid/rock interaction following the Permian volcanic extrusion, showing notable disturbances during the late Jurassic hydrothermal activities, the Tertiary rifting of the Rhine Graben and more recent Quaternary alteration. The granite zone of the sampling profile has underwent an event which set up a new Rb-Sr isotopic composition and reset the Rb/Sr system which originatly corresponded to the Carboniferous intrusion ages. The Rb-Sr data of the granite samples produce a whole rock isochron of 152 ± 5,7 Ma (2σ error) in good agreement with the well-known late Jurassic hydrothermal event (135--160 Ma). The rocks evolution lines for Pb support a Tertiary hydrothermal event (54 Ma ± 16; 1σ error), potentially connected with the development of the Rhine Graben. The profile samples have undergone uranium and thorium redistribution processes which have occurred within the last ˜10^6 years. The samples of the altered zones

  2. Spatial and temporal variations of Rb/Sr ratios of the bulk surface sediments in Lake Qinghai

    PubMed Central

    2010-01-01

    The Rb/Sr ratios of lake sediments have been suggested as indicators of weathering intensity by increasing work. However, the geochemistry of Rb/Sr ratios of lake sediments is variable between different lakes. In this study, we investigated the spatial and temporal patterns of Rb/Sr ratios, as well as those of other major elements in surface sediments of Lake Qinghai. We find that the spatial pattern of Rb/Sr ratios of the bulk sediments correlates well with that of the mass accumulation rate, and those of the terrigenous fractions, e.g., SiO2, Ti, and Fe. The temporal variations of Rb/Sr ratios also synchronize with those of SiO2, Ti, and Fe of each individual core. These suggest that Rb/Sr ratios of the surface sediments are closely related to terrigenous input from the catchment. Two out of eight cores show similar trends between Rb/Sr ratios and precipitation indices on decadal scales; however, the other cores do not show such relationship. The result of this study suggests that physical weathering and chemical weathering in Lake Qinghai catchment have opposite influence on Rb/Sr ratios of the bulk sediments, and they compete in dominating the Rb/Sr ratios of lake sediments on different spatial and temporal scales. Therefore, it is necessary to study the geochemistry of Rb/Sr ratio of lake sediments (especially that on short term timescales) particularly before it is used as an indicator of weathering intensity of the catchment. PMID:20615264

  3. Major, trace element and isotope geochemistry (Sr-Nd-Pb) of interplinian magmas from Mt. Somma-Vesuvius (Southern Italy)

    USGS Publications Warehouse

    Somma, R.; Ayuso, R.A.; de Vivo, B.; Rolandi, G.

    2001-01-01

    Major, trace element and isotopic (Sr, Nd, Pb) data are reported for representative samples of interplinian (Protohistoric, Ancient Historic and Medieval Formations) activity of Mt. Somma-Vesuvius volcano during the last 3500 years. Tephra and lavas exhibit significant major, trace element and isotopic variations. Integration of these data with those obtained by previous studies on the older Somma suites and on the latest activity, allows to better trace a complete petrological and geochemical evolution of the Mt. Somma-Vesuvius magmatism. Three main groups of rocks are recognized. A first group is older than 12.000 yrs, and includes effusive-explosive activity of Mt. Somma. The second group (8000-2700 yrs B.P.) includes the products emitted by the Ottaviano (8000 yrs. B.P.) and Avellino (3550 yrs B.P.) plinian eruptions and the interplinian activity associated with the Protohistoric Formation. Ancient Historic Formation (79-472 A.D.), Medieval Formation (472-1139 A.D.) and Recent interplinian activity (1631-1944 A.D.) belong to the third group of activity (79-1944 A.D.). The three groups of rocks display distinct positive trends of alkalis vs. silica, which become increasingly steeper with age. In the first group there is an increase in silica and alkalis with time, whereas an opposite tendency is observed in the two younger groups. Systematic variations are also evident among the incompatible (Pb, Zr, Hf, Ta, Th, U, Nb, Rb, Cs, Ba) and compatible elements (Sr, Co, Cr). REE document variable degrees of fractionation, with recent activity displaying higher La/Yb ratios than Medieval and Ancient Historic products with the same degree of evolution. N-MORB normalized multi-element diagrams for interplinian rocks show enrichment in Rb, Th, Nb, Zr and Sm (> *10 N-MORB). Sr isotope ratios are variable, with Protohistoric rocks displaying 87Sr/86Sr= 0.70711-0.70810, Ancient Historic 87Sr/86Sr=0.70665-0.70729, and Medieval 87Sr/86Sr=0.70685-0.70803. Neodymium isotopic

  4. The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages

    NASA Astrophysics Data System (ADS)

    Cao, Hua-Wen; Zhang, Shou-Ting; Santosh, M.; Zheng, Luo; Tang, Li; Li, Dong; Zhang, Xu-Huang; Zhang, Yun-Hui

    2015-11-01

    The Luanchuan Mo-W-Pb-Zn-Ag polymetallic ore district is located in the East Qinling metallogenic belt on the southern margin of the North China Craton. Two ore fields (Nannihu and Yuku) are recognized in the district, and three types of deposits are identified from the two ore fields as follows: (1) the 6 proximal porphyry-skarn type Mo-W deposits occurring at the inner contact zone of the granite porphyries, (2) the 3 middle skarn-hydrothermal type Zn deposits, and (3) the 8 distal hydrothermal type Pb-Zn-Ag deposits at the periphery of the porphyry. We present C-H-O isotope compositions of hydrothermal quartz and calcite, S-Pb isotope compositions of sulfide minerals, and sphalerite Rb-Sr isochron ages from the 17 deposits. The geochemical and geochronological data from the two ore fields all show systematic temporal and spatial variation, and primarily lead to the following inferences. (1) The temperatures and salinities of the ore-forming fluids decreased during mineralization. The ore-forming fluids gradually evolved from magmatic water to mixed magmatic-meteoric water. (2) The metallogenic components were primarily derived from igneous rocks, with increasing proportions of the materials from the ore-bearing rocks. (3) The mineralization ages of these deposits are close (147-136 Ma), which correspond to the emplacement of the granite intrusions. (4) The three types of deposits and the ore-related late Mesozoic intrusives constitute a unified magmatic-hydrothermal-mineralization system. Finally, we also suggest exploration strategies for the Luanchuan ore district.

  5. Veined pyroxenite xenoliths in Ugandan kamafugites: mantle or magma? Using in situ techniques for 87Sr/86Sr-isotopes and trace elements as tools

    NASA Astrophysics Data System (ADS)

    Link, Klemens; Tommasini, Simone; Braschi, Eleonora; Conticelli, Sandro; Barifaijo, Erasmus; Tiberindwa, John V.; Foley, Stephen F.

    2010-05-01

    The genesis of pyroxenite nodules in Ugandan kamafugites and their possible genetic relationships is a matter of debate. In earlier studies the pyroxenites were considered either as xenoliths from pervasively metasomatized peridotite mantle (Lloyd, 1981) or as distinct paragenesises occurring as veins within the peridotitic mantle (Harte et al., 1993). In both cases the xenoliths would represent mantle material that was at least partly involved as source material for the kamafugite melts. A third alternative could be that they represent cumulates of the lavas. In any case, the nodules provide important information for understanding the generation of ultrapotassic lavas and for characterizing the rift-related lithosphere mantle as part of the initial continental rift process. Originally the ultrapotassic kamafugites were considered to be single stage partial melts of pervasively metasomatized mantle but new geochemical studies indicate a multistage development (Rosenthal et al., 2009). Nd, Hf and Os isotopes point to mixing between components derived from metasomatically influenced peridotite and mica-pyroxenite. In-situ investigation of the Sr-isotope and trace element compositions of individual minerals in a number of xenoliths allows us to constrain their genesis and relation to the host lavas. The nodules appear to originate by near-liquidus crystallization of melts derived from enriched peridotite within the cratonic lithosphere mantle. They later partially remelted to form one source of the potassium-rich kamafugites. Sr-isotopes from different domains within single mineral grains in the nodules and host lavas are used to trace the nodules' role as a potential source to lavas, and trace element measurements are used to support the conclusions. Rb/Sr- measurements from the biotites to constrain the time between nodule crystallization and eruption of the Quaternary lavas to about 3.3 Ma. This also suggests a significant increase of the geothermal gradient

  6. Ages and Nd, Sr isotopic systematics in the Sierran foothills ophiolite belt, CA: the Smartville and Feather River complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, H.F.; Niemeyer, S.

    1985-01-01

    Sm-Nd dating has shown the Kings-Kaweah ophiolite to be approx. 480 My old. Its Nd, Sr, and Pb isotopic compositions require an unusually old depleted mantle source. Samples from the Smartville and Feather River complexes have been analyzed in a search for similar highly depleted, early Paleozoic ophiolites in the northern foothills ophiolite belt. Six whole rocks from Smartville, encompassing representative lithologies, plus plagioclase and pyroxene mineral separates define a 183 +/- 22 My Sm-Nd isochron. This age, interpreted as the igneous age, is older than, but within error of, approx. 160 My U-Pb ages previously obtained from plagiogranite zirconmore » analyses. One diabase with unusually high Rb/Sr yields a depleted mantle Sr model age of 200 +/- 25 My, consistent with the Sm-ND age. These compositions are clearly oceanic in character but do not discriminate among possible tectonic settings for the formation of the Smartville complex. Sm-Nd data for flaser gabbros and related rocks from Feather River scatter about an approx. 230 My errorchron with element of/sub Nd/(T) = +6.3 to +8.7. Initial /sup 87/Sr//sup 86/Sr ranges from 0.7028 to 0.7031. These results indicate a complex history with initial isotopic heterogeneities and/or disturbances of the isotopic systems. If primary, the element of/sub Nd/ (T) values are somewhat low, suggesting a possible arc origin for these rocks. Neither the Smartville nor Feather R. complexes appear to be related to the Kings-Kaweah ophiolite which, so far, is unique among foothill ophiolites in having an early Paleozoic age and a clear MORB, as opposed to arc or marginal basin, isotopic signature.« less

  7. Sm-Nd and Initial Sr-87/Sr-86 Isotopic Systematics of Asuka 881394 and Cumulate Eucrites Yamato 980318/433 Compared

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y; Young, Y. D.; Takeda, H.

    2011-01-01

    The Asuka 881394 achondrite contains fossil Al-26 and Mn-53 and has a Pb-206/Pb-207 age of 4566.5 +/- 0.2 Ma, the oldest for an achondrite. Recent re-investigation of A881394 yielded revised initial Sm-146/Sm-144 = (9.1 +/- 1.4) x 10(exp -3), a Sm-147-Nd-143 age of 4525 +/- 58 Ma, a Rb-87-Sr-87 age of 4490 +/- 130 Ma, and initial Sr-87/Sr-86 = 0.698991 +/- 19, respectively. The relatively large uncertainties in the Sm-Nd and Rb-Sr ages are due to disturbances of the isotopic systematics of tridymite and other minor phases. A preliminary value for the Sm-147-Nd-143 age of the Yamato 980318 cumulate eucrite of 4560 +/- 150 Ma was refined in later work to 4567 +/- 24 Ma as reported orally at LPSC 35. Similarly, a preliminary value for Sm-146/Sm-144 = (7.7 +/- 1.2) x 10 (exp -3) was refined to (6.0 +/- 0.3) x 10(exp -3). For Yamato 980433, a Sm-147-Nd-143 age of 4542 +/-42 Ma and Sm-146/Sm-144 = (5.7 +/- 0.5) x 10(exp -3) has been reported. Because these two cumulate eucrites are paired, we consider them to represent one igneous rock and present their combined isotopic data here.

  8. Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California: Mineral, chemical, and isotopic evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, C.M.

    Major element and trace element compositions of whole rocks, mineral compositions, and Rb-Sr isotopic compositions of enclave and host granitoid pairs from the Early Cretaceous, calc-alkaline Turtle pluton of southeastern California suggest that the local environmental profoundly affects some enclave types. In the Turtle pluton, where the source of fine-grained, mafic enclaves can be deduced to be magmatic by the presence of partially disaggregated basaltic dikes, mineral chemistry suggests partial or complete local equilibrium among mineral species in the enclave and its host granitoid. Because of local Rb-Sr isotopic equilibration between fine-grained enclaves and host granitoid, one cannot use Srmore » isotopes to distinguish an enclave source independent of its host rocks from an enclave source related to the enclosing pluton. However, preliminary Nd isotopic data suggest an independent, mantle source for enclaves.« less

  9. U-Th-Pb, Sm-Nd, Rb-Sr, and Lu-Hf systematics of returned Mars samples

    NASA Technical Reports Server (NTRS)

    Tatsumoto, M.; Premo, W. R.

    1988-01-01

    The advantage of studying returned planetary samples cannot be overstated. A wider range of analytical techniques with higher sensitivities and accuracies can be applied to returned samples. Measurement of U-Th-Pb, Sm-Nd, Rb-Sr, and Lu-Hf isotopic systematics for chronology and isotopic tracer studies of planetary specimens cannot be done in situ with desirable precision. Returned Mars samples will be examined using all the physical, chemical, and geologic methods necessary to gain information on the origin and evolution of Mars. A returned Martian sample would provide ample information regarding the accretionary and evolutionary history of the Martian planetary body and possibly other planets of our solar system.

  10. An In-Situ Rb-Sr Dating & Organics Characterization Instrument For A MER+ Sized Rover

    NASA Astrophysics Data System (ADS)

    Anderson, F.; Whitaker, T.; Nowicki, K.; Zacny, K.; Pierce, J.

    2012-12-01

    We posit that a Mars in-situ geochronology mission that will triage and validate samples for Mars Sample Return (MSR) is technically feasible in the 2018-2022 time frame and addresses the competing scientific, political, and fiscal requirements for flight in this decade.The mission must be responsive to the astrobiological and chronological science goals of the MEPAG, Decadal Survey (DS), and E2E-iSAG, and avoid the MSR appearance of long term political commitment and cost. These requirements can best be accomplished by a rover with a coring drill. JPL has reassessed the MER landing system performance, and determined that the system is capable of significantly higher landed mass (~40-60 kg plus reserve), allowing more sophisticated instruments to be carried. The instrument package is comprised of a time of flight (TOF) mass spectrometer combined with a laser desorption resonance ionization source to sensitively measure isobar free Rb-Sr isotopes for geochronology and organics characterization. The desorption laser is also used with a μRaman/LIBS for mineral characterization, which in combination with the TOF, will additionally provide measurements of K-Ar isotopes for a second form of radiometric dating. The laser desorption resonance ionization mass spectrometry (LDRIMS) technique avoids the interference and mass resolution issues associated with geochronology measurements, and has miniaturization potential. A sample is placed in the TOF mass spectrometer and surface atoms, molecules, and ions are desorbed with a 213 nm laser. Ions are suppressed by an electric field and the plume of expanding particles is present for many μs, during which it is first illuminated with laser light tuned to ionize only Sr, and then 1-3 μs later, for Rb. We have partially miniaturized the instrument, including Sr lasers, ablation laser, and mass spectrometer, and will soon to start using the instrument for field measurements. Our current prototype can measure the isotope ratio of

  11. The isotopic and chemical evolution of Mount St. Helens

    USGS Publications Warehouse

    Halliday, A.N.; Fallick, A.E.; Dickin, A.P.; Mackenzie, A.B.; Stephens, W.E.; Hildreth, W.

    1983-01-01

    Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000-2500 years ago: eruptions of dacite with ??{lunate}Nd = +5, ??{lunate}Sr = -10, variable ??18O, 206Pb/204Pb ??? 18.76, Ca/Sr ??? 60, Rb/Ba ??? 0.1, La/Yb ??? 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with ??{lunate}Nd = +4 to +8, ??{lunate}Sr = -7 to -22, variable ??18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb = 18.81-18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with ??{lunate}Nd = +6, ??{lunate}Sr = -13, ??18O ???6???, variable 206Pb/204Pb, Ca/Sr ??? 77, Rb/Ba = 0.1, La/Yb ??? 11. None of the products exhibit Eu anomalies and all are LREE enriched. There is a strong correlation between 87Sr/86Sr and differentiation indices. These data are interpreted in terms of a mantle heat source melting young crust bearing zircon and garnet, but not feldspar, followed by intrusion of this crustal reservoir by mantle-derived magma which caused further crustal melting and contaminated the crustal magma system with mafic components. Since 1000 years ago all the eruptions have been from the same reservoir which has displayed a much more gradual re-equilibration of Pb isotopic compositions than other components suggesting that Pb is being transported via a fluid phase. The Nd and Sr isotopic compositions lie along the mantle array and suggest that the mantle underneath Mt. St. Helens is not as depleted as MORB sources. There is no indication of seawater involvement in the source region. ?? 1983.

  12. 40K-40Ca and 87Rb-86Sr Dating by SIMS: The Double-Plus Advantage

    NASA Astrophysics Data System (ADS)

    Harrison, T. M.; McKeegan, K. D.; Schmitt, A. K.

    2009-12-01

    retentivity of 40Ca* relative to 40Ar* in white micas. This approach offers the potential to develop a branched-decay thermochronometer (K-Ca-Ar) permitting simultaneous solution of temperature-time history from μm-scale isotopic variations. A further advantage is that even low resolution SIMS instruments (e.g., ims7f) can utilize the double-plus method. Initial investigations using the same double-plus approach for Rb-Sr dating show promise. While resolving 87Rb+ from 87Sr+ requires an MRP of ~290k, unattainable using any current SIMS instrument, 87Rb++ is so strongly suppressed that determination of 87Sr++ is possible with minor peak stripping. 87Rb/86Sr can be determined either from 85Rb+/88Sr+ at MRP≈ 8k or by the use of energy filtering. In addition to micas, these approaches may be applicable to any mineral systems enriched in alkali metals relative to alkaline earths, such as alkali feldspars, feldspathoids, and alkaline halides.

  13. Application of Sr and O isotope relations to the petrogenesis of the alkaline rocks of the Red Hill complex, New Hampshire, USA

    USGS Publications Warehouse

    Foland, K.A.; Friedman, I.

    1977-01-01

    The Red Hill ring complex in central New Hampshire is composed of apparently cogenetic syenites, nepheline-sodalite syenite, and granite. The ages and petrogenetic relations among five of the six recognized units have been investigated by rubidiumstrontium and oxygen isotope analysis of whole rocks and separated minerals. Whole-rock samples from three syenite units are consistent with a single Rb-Sr isochron which gives an age of 198??3 m.y. and an initial (87Sr/86Sr)o ratio of 0.70330??0.00016 (??2 sigma; ??=1.42?? 10-11y-1). However, Sr isotope data for two other units, nepheline syenite and granite, are not consistent with this isochron but rather indicate higher initial ratios which range from 0.7033 to about 0.707. Whole-rock O isotope analyses give ??18O values which range from+6.2 to+9.3??? Sr and O isotope analyses on mineral separates indicate that observed whole-rock variations in (87Sr/86Sr)o are primary and are not due to any secondary process. The fact that the isotope systematics correlate with rock type, suggests that crustal interaction is likely to have played a significant role in the development of this over-and undersaturated association. Such process(es), while still not fully delineated, could be of fundamental importance to the genesis of associations of critically undersaturated and oversaturated intrusives. The data support the idea that interaction between magmas and crustal materials strongly influenced the compositional relations of similar complexes elsewhere including those of the White Mountain magma series. ?? 1977 Springer-Verlag.

  14. Sm-Nd in marine carbonates and phosphates - Implications for Nd isotopes in seawater and crustal ages

    NASA Technical Reports Server (NTRS)

    Shaw, H. F.; Wasserburg, G. J.

    1985-01-01

    The possibility of establishing a record of variations in the isotopic composition of Nd in seawater over geologic time is explored. To construct such a record, a phase must be identified which incorporated Nd with the same isotopic composition as seawater at the time of its formation, preserves that composition, and which is relatively common in sediments. To evaluate the suitability of carbonates and phosphates, the Rb, Sr, Sm, and Nd concentrations and the Nd and Sr isotopic composition of a variety of modern and ancient marine calcite, aragonite, and apatite samples have been measured and the results are presented and discussed.

  15. Effects of interaction between ultramafic tectonite and mafic magma on Nd-Pb-Sr isotopic systems in the Neoproterozoic Chaya Massif, Baikal-Muya ophiolite belt

    NASA Astrophysics Data System (ADS)

    Amelin, Yuri V.; Ritsk, Eugeni Yu.; Neymark, Leonid A.

    1997-04-01

    Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/ 144Nd- 143Nd/ 144Nd and 238U/ 204Pb- 206Pb/ 204Pb mineral isochrons, corresponding to ages of 640 ± 58 Ma (95% confidence level) and 620 ± 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ± 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites withɛ Nd = +6.6 to +7.1 andɛ Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit:ɛ Nd = +4.6 to +6.1 andɛ Sr = -8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/ 204Pb= 16.994 ± 0.023 and 207Pb/ 204Pb= 15.363 ± 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with

  16. Effects of interaction between ultramafic tectonite and mafic magma on Nd-Pb-Sr isotopic systems in the Neoproterozoic Chaya Massif, Baikal-Muya ophiolite belt

    USGS Publications Warehouse

    Amelin, Y.V.; Ritsk, E. Yu; Neymark, L.A.

    1997-01-01

    Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/144Nd- 143Nd/144Nd and 238U/204Pb-206Pb/204Pb mineral isochrons, corresponding to ages of 640 ?? 58 Ma (95% confidence level) and 620 ?? 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ?? 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites with ??Nd = +6.6 to +7.1 and ??Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit: ??Nd = + 4.6 to + 6.1 and ??Sr = - 8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/204Pb = 16.994 ?? 0.023 and 207Pb/204Pb = 15.363 ?? 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with basaltic

  17. Sm-Nd, Rb-Sr, and Mn-Cr Ages of Yamato 74013

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.- Y.; Reese, Y.D.

    2009-01-01

    Yamato 74013 is one of 29 paired diogenites having granoblastic textures. The Ar-39 - Ar-40 age of Y-74097 is approximately 1100 Ma. Rb-Sr and Sm-Nd analyses of Y-74013, -74037, -74097, and -74136 suggested that multiple young metamorphic events disturbed their isotopic systems. Masuda et al. reported that REE abundances were heterogeneous even within the same sample (Y-74010) for sample sizes less than approximately 2 g. Both they and Nyquist et al. reported data for some samples showing significant LREE enrichment. In addition to its granoblastic texture, Y-74013 is characterized by large, isolated clots of chromite up to 5 mm in diameter. Takeda et al. suggested that these diogenites originally represented a single or very small number of coarse orthopyroxene crystals that were recrystallized by shock processes. They further suggested that initial crystallization may have occurred very early within the deep crust of the HED parent body. Here we report the chronology of Y-74013 as recorded in chronometers based on long-lived Rb-87 and Sm-147, intermediate- lived Sm-146, and short-lived Mn-53.

  18. Sea-level and climate forcing of the Sr isotope composition of marginal basins in the late Miocene Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Cosentino, D.; Frijia, G.; Castorina, F.; Dudas, F. O.; Iadanza, A.; Cipollari, P.; Caruso, A.; Bowring, S. A.; Strecker, M. R.

    2013-12-01

    Sr isotope records from marginal marine basins track the mixing between sea water and local continental runoff. Because changes in sea level determine the amount of mixing between global marine and continental water, and climate affects the amount of continental runoff, both sea-level and climate changes can potentially be recorded in marine fossil Sr isotope composition. Our 128 new 87Sr/86Sr analyses on 73 oyster, foraminifera, and coral samples from eight late Miocene stratigraphic sections in southern Turkey, Crete, and Sicily show that 87Sr/86Sr in Mediterranean marginal basins started to depart from global ocean values several million years before the Messinian Salinity Crisis (MSC), with sub-basin 87Sr/86Sr commonly dropping 0.000100 below contemporaneous global ocean values. The marked departure coincided with tectonic uplift and basin shallowing along the margins of the Mediterranean Basin. In contrast, centrally-located basins within the Mediterranean (e.g., Cyprus, Sicily, Crete) only record departures during the MSC. Besides this general trend, our 57 new 87Sr/86Sr analyses from the astronomically tuned Lower Evaporite unit deposited during the MSC in the central Apennines (Italy) allow us to explore in detail the effect of sea-level and humidity changes on 87Sr/86Sr . Most of the variation in 87Sr/86Sr that we observe can be explained by changes in eustatic sea level, with greatest departures from global ocean values (with differences up to 0.000150) occurring during sea-level lowstands, which were characterized by relatively arid conditions in the Mediterranean. However, in a few cases, the greatest 87Sr/86Sr departures (up to 0.000300) occur during sea-level highstands, which are marked by more humid conditions. Because the correlations between peaks in Sr departures and highstands (humid conditions) occur only after episodes of prolonged aridity, variations of residence time of continental water (particularly groundwater) could have affected its Sr

  19. Internal Rb-Sr Age and Initial Sr-87/Sr-86 of a Silicate Inclusion from the Campo Del Cielo Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Nyquist, L.; Wiesmann, H.; Shih, C.; Schwandt, C.; Takeda, H.

    2003-01-01

    The largest group of iron meteorites, IAB, is distinguished by the presence of diverse silicate inclusions. In principle, Rb-Sr and Sm-Nd radiometric dating of these silicate inclusions by internal isochron techniques can determine both the times of melting and parent/daughter ratios in the precursor materials via initial Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The Sr-87/Sr-86 and Nd-143/Nd-144 ratios could distinguish chondritic precursors from already differentiated silicates. We reported Rb-Sr and Sm-Nd internal ischron ages of 4.52+/-0.03 Ga and 4.50+/-0.04 Ga, respectively, for plagioclase-diopside-rich material in the Caddo County IAB iron meteorite. These results are essentially identical to literature values of its Ar-Ar age of 4.520+/-0.005 Ga and its Sm-Nd age of 4.53+/-0.02 Ga. The purpose of this study is to evaluate the formation and evolution of silicate inclusions in IAB iron meteorites by determination of their initial Sr-87/Sr-86 ratios combined with higher-resolution chronology and mineralogical and geochemical studies.

  20. Petrogenesis and origin of the Upper Jurassic-Lower Cretaceous magmatism in Central High Atlas (Morocco): Major, trace element and isotopic (Sr-Nd) constraints

    NASA Astrophysics Data System (ADS)

    Essaifi, Abderrahim; Zayane, Rachid

    2018-01-01

    During an uplift phase, which lasted ca. 40 Ma, from the Late Jurassic (165 Ma) to the Early Cretaceous (125 Ma), transitional to moderately alkaline magmatic series were emplaced in the Central High Atlas. The corresponding magmatic products include basaltic lava flows erupted within wide synclines and intrusive complexes composed of layered mafic intrusions and monzonitic to syenitic dykes emplaced along narrow anticlinal ridges. The igneous rock sequence within the intrusive complexes is composed of troctolites, olivine-gabbros, oxide-gabbros, monzonites and syenites. The chemical compositions of the various intrusive rocks can be accounted for by crystal accumulation, fractional crystallization and post-magmatic remobilization. The evolution from the troctolites to the syenites was mainly controlled by a fractional crystallization process marked by early fractionation of olivine, plagioclase and clinopyroxene, followed by separation of biotite, amphibole, apatite, and Ti-magnetite. Hydrothermal activity associated with emplacement of the intrusions within the Jurassic limestones modified the elemental and the Sr isotopic composition of the hydrothermally altered rocks In particular the monzonitic to syenitic dykes underwent an alkali metasomatism marked by depletion in K and Rb and enrichment in Na and Sr. As a result, their Sr isotopic composition was shifted towards higher initial Sr isotopic ratios (0.7067-0.7075) with respect to the associated gabbros (0.7036-0.7046). On the contrary, the Nd isotopic compositions were preserved from isotope exchange with the limestones and vary in a similar range to those of the gabbros (+1.6 < εNdi < +4.1). The isotopic and the trace element ratios of the uncontaminated samples were used to constrain the source characteristics of this magmatism. The Sr-Nd isotopic data and the incompatible element ratios (e.g. La/Nb, Zr/Nb, Th/U, Ce/Pb) are consistent with generation from an enriched upper mantle similar to an ocean

  1. Correlated study of initial Sr-87/Sr-86 and Al-Mg isotopic systematics and petrologic properties in a suite of refractory inclusions from the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Podosek, Frank A.; Zinner, Ernst K.; Lundberg, Laura L.; Brannon, Joyce C.; Macpherson, Glenn J.

    1991-01-01

    The abundance and the distribution of Al-26, and the initial Sr-87/Sr-86 ratios were determined in a suite of six coarse-grained Ca-Al-rich inclusions from the Allende meteorite, using, respectively, petrographic and chemical characterizations and ion-probe mass spectrometric analyses of the Al-Mg isotopic system, and thermal emission spectrometric analyses of the Rb-Sr system. Results establish a firm association between primitive Al-26/Al-27 and primitive Sr-87/Sr-86 found in each of these inclusions. None of the results required interpretation in terms of heterogeneously distributed Al-26.

  2. Source area and seasonal variation of dissolved Sr isotope composition in rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Santos, Roberto V.; Sondag, Francis; Cochonneau, Gerard; Lagane, Christelle; Brunet, Pierre; Hattingh, Karina; Chaves, Jeane G. S.

    2014-05-01

    We present dissolved Sr isotope data collected over 8 years from three main river systems from the Amazon Basin: Beni-Madeira, Solimões, Amazon, and Negro. The data show large 87Sr/86Sr ratio variations that were correlated with the water discharge and geology of the source areas of the suspended sediments. The Beni-Madeira system displays a high average 87Sr/86Sr ratio and large 87Sr/86Sr fluctuations during the hydrological cycle. This large average value and fluctuations were related to the presence of Precambrian rocks and Ordovician sediments in the source area of the suspended sediment of the river. In contrast, the Solimões system displays a narrow range of Sr isotope ratio variations and an average value close to 0.709. This river drains mostly Phanerozoic rocks of northern Peru and Ecuador that are characterized by low Sr isotope ratios. Despite draining areas underlain by Precambrian rocks and having high 87Sr/86Sr ratios, such rivers as the Negro and Tapajós play a minor role in the total Sr budget of the Amazon Basin. The isotopic fluctuations in the Beni-Madeira River were observed to propagate downstream at least as far as Óbidos, in the Amazon River. This signal is characterized by an inverse relationship between the concentration of elemental Sr and its isotopic ratios. During the raining season there is an increase in Sr isotopic ratio accompanied by a decrease in elemental Sr concentration. During the dry season, the Sr isotopic ration decreases and the elemental Sr concentration increases.

  3. Transgenerational isotopic marking of carp Cyprinus carpio, L. using a 86Sr /84Sr double spike

    NASA Astrophysics Data System (ADS)

    Zitek, Andreas; Cervicek, Magdalena; Irrgeher, Johanna; Horsky, Monika; Kletzl, Manfred; Weismann, Thomas; Prohaska, Thomas

    2013-04-01

    Transgenerational isotopic marking has been recognized recently as an effective tool for mass marking and tracking of individual fish to their original source. Compared to other conventional marking techniques, transgenerational marking offers several advantages. Most importantly, it is possible to mark all offspring of one individual female without the necessity of handling eggs or larval fish. Furthermore it is possible to vary the concentrations of individual isotopes to obtain specific marks for individual female fish. An enriched isotopic spike solution is usually applied to gravid female spawners by injection into the body cavity for transgenerational marking. The isotope is then incorporated into the central otolith region of the offspring which is known to be built up by maternally derived material. Within this study transgenerational marking of a typical cyprinid fish species, Cyprinus carpio, L., was tested using a 86Sr /84Sr double spike. Buffered solutions with different isotopic composition and concentrations were administered to 4 female individuals by intraperitoneal injection 5 days before spawning, while one female was injected a blank solution. After spawning, otoliths (Lapilli) from juvenile fish were sampled at the age of about 5 months at fish sizes between 3 and 4 cm and analyzed for their isotopic composition by LA-ICPMS applying cross sectional line scans. Central otolith regions of the progeny showed a shift in the natural isotope ratios for the administered isotopes. Deconvolution of the blank corrected measurement data of the Sr isotopes was done to trace back the original spike ratio. The different spike ratios could be well distinguished reflecting the original composition of the spike solution. This study proved that it is possible to create batch-specific unique transgenerational marks in otolith cores by varying the concentrations of two naturally occurring Sr isotopes. This method has high potential to reduce the marking effort for

  4. Determination of (87)Sr/(86)Sr and δ(88/86)Sr ratios in plant materials using MC-ICP-MS.

    PubMed

    Liu, Hou-Chun; Chung, Chuan-Hsiung; You, Chen-Feng; Chiang, Yi-Hsuan

    2016-01-01

    A protocol for highly accurate and precise determination of Sr isotope ratios in plant materials, (87)Sr/(86)Sr and δ (88/86)Sr, by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is presented in this study. An Eichrom Sr resin was used for matrix separation and an improved Zr empirical external normalization coupled with standard-sample bracketing method (Zr EEN-SSB) was applied to mass bias correction during Sr isotope MC-ICP-MS measurements. Potential influences of matrix elements, and polyatomic and isobaric interferences on the Sr isotopic determination were further evaluated using NIST SRM 987 Sr isotopic standard spiked with various amount of Ca, Mg, and Rb contents. Concentrations of Ca and Mg lower than 30 ng g(-1) or Rb < 2 ng g(-1) in 150 ng g(-1) Sr analyte were estimated to have only a minor effect on Sr isotope ratios determination. On the other hand, intensity differences between sample and standards (IntSample/IntStandards) represented a large δ (88/86)Sr deviation of <0.9 or >1.3, reflecting the significance of intensity bias attributed to different mass bias behavior. An apple leaf material, NIST SRM 1515, was adopted as the plant material for overall evaluation of sample digestion, matrix separation, and potential spectral interferences on the measurements of Sr isotope ratios. Our results suggest that the partially remaining organic compounds in the incomplete digestion would have a significant bias on the extraction chromatography procedure, resulting in sizable uncertainty in δ (88/86)Sr ratios. Thus, complete digestion of the organic-enriched materials is of great importance for efficiency assurance in matrix separation. Extraction chromatography works well for the total digested samples, where Ca, Mg, and Rb were efficiently removed. The obtained average (87)Sr/(86)Sr and δ (88/86)Sr values for the NIST SRM 1515 apple leaves are 0.71398 ± 0.00004 and 0.23 ± 0.03‰ (2SD, n = 10

  5. Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas

    2014-05-01

    studies is critically discussed, where special emphasis is set on evaluating different data processing strategies on the example of enriched stable Sr isotopes.1 The analytical key parameters such as blank (Kr, Sr and Rb), variation of the natural Sr isotopic composition in the sample, mass bias, interferences (Rb) and total combined uncertainty are considered. A full metrological protocol for data processing using IPD is presented based on data gained during two transgenerational marking studies of fish, where the transfer of a Sr isotope double spike (84Sr and 86Sr) from female spawners of common carp (Cyprinus carpio L.) and brown trout (Salmo trutta f.f.)2 to the centre of the otoliths of their offspring was studied by (LA)-MC-ICP-MS. 1J. Irrgeher, A. Zitek, M. Cervicek and T. Prohaska, J. Anal. At. Spectrom., 2014, 29, 193-200. 2A. Zitek, J. Irrgeher, M. Kletzl, T. Weismann and T. Prohaska, Fish. Manage. Ecol., 2013, 20, 654-361.

  6. Exploring the Middle Pleistocene Lake Suguta Sr-isotope Stratigraphic record

    NASA Astrophysics Data System (ADS)

    Vonhof, Hubert; Junginger, Annett; Agmon, Nadav; Trauth, Martin

    2017-04-01

    Several studies into the Quaternary stratigraphic record of the Sr-isotope composition of paleolake Turkana in the East African Rift System (EARS) show how variation of climate left a signal of changing lacustrine Sr isotope values. This Sr isotope signal was captured in the lacustrine fossil record of the Turkana Basin, and can be a useful chemostratigraphic tool (e.g. Joordens et al., 2011; van der Lubbe et al., submitted). Such lacustrine Sr-isotope changes are believed to be paced by orbital-forced insolation cyclicity, and interpreted to be the result of changing contribution of run-off from different sub-catchments of lake Turkana, as climate change shifted regional rainfall patterns. Here, we present a first set of data from a middle Pleistocene stratigraphical sequence in the Suguta Valley, South of the Turkana Basin in the EARS. This sequence spans a couple of sedimentological cycles that potentially represent precession-forced lake level variation. In this setting, the Sr-isotope data do not vary in phase with these sedimentological cycles, but demonstrate a long trend of Sr isotope change. This may suggest that the catchment configuration of the Suguta Valley in the Mid Pleistocene was less suitable to record precession-forced hydroclimate change in Lacustrine Sr isotope ratios. This may have implications for the Turkana Basin Sr isotope record as well, because the two basins are believed to have been hydrologically connected in the Middle Pleistocene. references: 1)Joordens, J.C.A. et al., 2011. An astronomically-tuned climate framework for hominins in the Turkana Basin. Earth and Planetary Science Letters 307, 1-8. 2)van der Lubbe et al., submitted. Gradual or abrupt? Changes in water source of Lake Turkana (Kenya) during the African Humid Period inferred from Sr isotope ratios

  7. Evidence of three-body correlation functions in Rb+ and Sr2+ acetonitrile solutions

    NASA Astrophysics Data System (ADS)

    D'Angelo, P.; Pavel, N. V.

    1999-09-01

    The local structure of Sr2+ and Rb+ ions in acetonitrile has been investigated by x-ray absorption spectroscopy (XAS) and molecular dynamics simulations. The extended x-ray absorption fine structure above the Sr and Rb K edges has been interpreted in the framework of multiple scattering (MS) formalism and, for the first time, clear evidence of MS contributions has been found in noncomplexing ion solutions. Molecular dynamics has been used to generate the partial pair and triangular distribution functions from which model χ(k) signals have been constructed. The Sr2+ and Rb+ acetonitrile pair distribution functions show very sharp and well-defined first peaks indicating the presence of a well organized first solvation shell. Most of the linear acetonitrile molecules have been found to be distributed like hedgehog spines around the Sr2+ and Rb+ ions. The presence of three-body correlations has been singled out by the existence of well-defined peaks in the triangular configurations. Excellent agreement has been found between the theoretical and experimental data enforcing the reliability of the interatomic potentials used in the simulations. These results demonstrate the ability of the XAS technique in probing the higher-order correlation functions in solution.

  8. Neodymium and strontium isotopic study of Australasian tektites - New constraints on the provenance and age of target materials

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Papanastassiou, D. A.; Wasserburg, G. J.; Koeberl, C.

    1992-01-01

    The Nd and Sr isotopic compositions of Australasian tectites (including two flanged Australian tectites, two low-SiO2 Muong Nong-type tectites, and three high-SiO2 Muong Nong-type tectites) and the Nd, Sm, Sr, and Rb concentrations were investigated by isotope-dilution thermal ionization mass spectrometry, and the Sm-Nd and Rb-Sr isotope systematics were used to study the characteristics of the parental material. It is shown that the Nd and Sr isotopic data provide evidence that all Australasian tektites were derived from a single sedimentary formation with a narrow range of stratigraphic ages close to 170 Ma. It is suggested that all of the Australasian tektites were derived from a single impact event and that the australites represent the upper part of a melt sheet ejected at high velocity, whereas the indochinites represent melts formed at a lower level in the target material distributed closer to the area of the impact.

  9. Sr Isotopes and human skeletal remains, improving a methodological approach in migration studies

    NASA Astrophysics Data System (ADS)

    Solis Pichardo, G.; Schaaf, P. E.; Hernandez, T.; Horn, P.; Manzanilla, L. R.

    2013-12-01

    Asserting mobility of ancient humans is a major issue for anthropologists. Sr isotopes are widely used in anthropological sciences to trace human migration histories from ancient burials. Sr in bone approximately reflects the isotopic composition of the geological region where the person lived before death; whereas the Sr isotopic system in tooth enamel is thought to remain as a closed system and thus conserves the isotope ratio acquired during childhood. A comparison of the 87Sr/86Sr ratios found in tooth enamel and in bone is performed to determine if the human skeletal remains belonged to a local or a migrant. Until now, tooth enamel was considered to be less sensitive to secondary Sr contamination due to its higher crystallinity and larger sizes of the biogenic apatites in comparison to that in bone and dentine. In the past, enamel as well as bone material was powdered, dissolved and analyzed by thermal ionization mass spectrometry (TIMS). In this contribution we show, however, that simple dissolution of enamel frequently yields erroneous results. Tooth enamel is often affected by secondary strontium contamination processes such as caries or diagenetic and environmental input, which can change the original isotopic composition. To avoid these problems we introduced a pre-treatment and three-step leaching procedure in enamel samples. Leaching is carried out with acetic acid of different concentrations, yielding two leachates and one residue of each sample. Frequently the 87Sr/86Sr results of the three leachates display different values confirming that secondary contamination did occur. Several examples from Teotihuacan, central Mexico demonstrate that enamel 87Sr/86Sr without leaching can show correct biogenic values, but there is also a considerable probability for these values to represent a mixture of original and secondary Sr without significance for migration reconstructions. Only the residue value is interpreted by us as the representative ratio for

  10. Rubidium Isotope Composition of the Earth and the Moon: Evidence for the Origin of Volatile Loss During Planetary Accretion

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.

    2016-12-01

    The Earth-Moon system has a variety of chemical and isotopic characteristics that provide clues to understanding the mechanism of lunar formation. One important observation is the depletion in moderately volatile elements in the Moon compared to the Earth. This volatile element depletion may be a signature of volatile loss during the Moon-forming Giant Impact. Stable isotopes are powerful tracers of such a process, since volatile loss via evaporation enriches the residue in heavy isotopes. However, early studies searching for the fingerprint of volatile loss failed to find any resolvable variations [1]. Recent work has now revealed heavy isotope enrichments in the Moon relative to the Earth for the moderately volatile elements Zn [2,3] and K [4]. The purely lithophile nature of Rb (in contrast to the chalcophile/lithophile nature of Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to study the origin of lunar volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. The Rb isotope compositions of terrestrial rocks define a narrow range, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). There is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. In particular, eucrites are significantly enriched in 87Rb (up to several per mil) relative to chondrites. Similarly, lunar basalts are enriched in 87Rb compared to terrestrial basalts, by 200 ppm for 87Rb/85Rb. These data are the first measurements of a resolvable difference in Rb isotope composition between the Earth and the Moon. The variations in Rb isotope composition between the Earth and the Moon are consistent with Rb isotope fractionation due to evaporation. References: [1] Humayun & Clayton GCA 1995. [2] Paniello et al. Nature 2012. [3] Kato et al. Nat. Comm. 2015. [4] Wang and Jacobsen Nature in press.

  11. Geochemical and Sr isotopic variations in groundwaters of the Edwards aquifer, central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oetting, G.C.; Banner, J.L.; Sharp, J.M. Jr.

    1992-01-01

    The regionally-extensive Edwards aquifer of central Texas lies on the northwestern edge of the Gulf of Mexico Basin. The aquifer system is composed primarily of lower Cretaceous marine limestones and dolostones with minor evaporitic and siliciclastic confining units of the Edwards Group and associated formations. The eastern and southern boundaries of the freshwater aquifer are defined by an abrupt change in groundwater salinity that is known as the badwater line. Variation in the isotopic composition and concentration of Sr in the mineral phases and waters in this aquifer system provide means to examine groundwater evolution processes. Models of simultaneous variationsmore » in Sr isotopes and major and trace ions are used to constrain processes of groundwater-rock interaction and groundwater mixing. Geochemical variations were examined in Edwards carbonate host rocks and groundwaters in Williamson and Bell Counties. Groundwaters were sampled along and across the badwater line, and range in salinity from 320--2,630 mg/l total dissolved solids. Major ion distributions in the water samples demonstrate a hydrochemical facies transition from Ca-HCO[sub 3] freshwaters to Na-Cl-SO[sub 4]-HCO[sub 3] badwaters. Both water types show a wide range of [sup 87]Sr/[sup 86]Sr values: Ca-HCO[sub 3] waters range from values of 0.7078--0.7093, and Na-Cl-SO[sub 4]-HCO[sub 3] waters range from values of 0.7087--0.7097. The Sr isotope compositions for both water groups are significantly greater than their host marine carbonates ([approximately]0.7075). The high Sr isotopic compositions indicate an extraformational source of Sr in both hydrochemical facies. Fluid mixing processes involving a freshwater and at least two badwater endmembers are required to account for variations in elemental and isotopic compositions in the groundwaters. Mineral-solution reactions may operate during and/or subsequent to mixing to produce the compositional variability observed in some intermediate

  12. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  13. The effect of secondary apatite on the initial 87Sr/86Sr ratio determination in granitic rocks: a case study of the Tadamigawa pluton, northeastern Japan

    NASA Astrophysics Data System (ADS)

    Wakasugi, Y.; Ichino, K.; Tanioka, Y.; Wakaki, S.; Tsuboi, M.; Ishikawa, T.

    2017-12-01

    Apatite is a major accessory mineral in igneous rocks. Because Rb contents in apatite are very low, 87Sr/86Sr ratios of magmatic apatite are useful to estimate the initial 87Sr/86Sr ratio (SrI) of igneous rocks. Secondary post-magmatic event such as hydrothermal alteration may also crystallize secondary apatite, which may inhibit the estimation of SrI of igneous rocks. In this study, we examine the effects of secondary apatite on the initial 87Sr/86Sr ratio determination of granitic rocks by using acid leaching technique. Leached apatite samples were first separated from the whole rock powder as a heavy mineral fraction by heavy liquid technique, and the heavy mineral fraction was then leached by 3 M HNO3. The isotopic ratios of Sr and the concentrations of Rb and Sr were analyzed by TIMS and ICP-MS at Kochi Core Center, respectively. The Tadamigawa Older-stage granites, which locate in the Taishaku Mountains at the northeastern part of Japan, intrude into the Ashio Jurassic complex, and the ages of these rocks are late Cretaceous to Paleogene. The U-Pb ages of zircon and the K-Ar ages of biotite for these rocks are c. 100 Ma [1, 2]. Rb-Sr whole-rock isochron age of the pluton is 96.5 ± 1.3 Ma (SrI = 0.70534 ± 0.00003) and it is concordant with other radiometric ages. Rb-Sr mineral isochron ages range from 84.4 to 97.3 Ma and these ages are relatively younger than the Rb-Sr whole-rock isochron age. The difference among radiometric ages may reflect the difference of the closure temperature in each isotopic system. The Tadamigawa Older-stage granites have SrI for Rb-Sr mineral isochron range from 0.7053 to 0.7061 and are very similar to that (0.70534) for Rb-Sr whole-rock isochron. These may suggest that the Tadamigawa Older-stage granites are generated from same parental magma. However, 87Sr/86Sr ratios of the leached apatite samples were 0.70544-0.70856 and are relatively higher than SrI obtained from the Rb-Sr mineral isochrons (0.7053-0.7061). This result

  14. Elemental and Sr-Nd-Pb isotope geochemistry of the Florianópolis Dyke Swarm (Paraná Magmatic Province): crustal contamination and mantle source constraints

    NASA Astrophysics Data System (ADS)

    Marques, L. S.; De Min, A.; Rocha-Júnior, E. R. V.; Babinski, M.; Bellieni, G.; Figueiredo, A. M. G.

    2018-04-01

    The Florianópolis Dyke Swarm is located in Santa Catarina Island, comprising also the adjacent continental area, and belongs to the Paraná Magmatic Province (PMP). The dyke outcrops in the island are 0.1-70 m thick and most of them are coast-parallel (NE-SW trending), with subordinate NW-SE trending. The vast majority of the dykes has SiO2 varying from 50 to 55 wt% and relatively high-Ti (TiO2 > 3 wt%) contents and these rocks were divided using the criteria commonly used to distinguish the different magma-types identified in the volcanic rocks from the PMP. The Urubici dykes (Sr > 550 μg/g) are the most abundant and some of them experienced crustal contamination reaching to 10%, as evidenced by low P2O5/K2O (0.30-0.21), high (Rb/Ba)PM (1.0-2.2), and radiogenic Sr and Pb isotope compositions (87Sr/86Sri up to 0.70716 (back to 125 Ma) and 206Pb/204Pbm up to 19.093). The Pitanga (Sr < 550 μg/g) and the basaltic trachyandesite dykes are less abundant and almost all of them were also substantially affected by at least 15% of crustal assimilation, evidenced by high (Rb/Ba)PM (up to 2.6) and Sr (87Sr/86Sri = 0.70737-0.71758) and Pb (206Pb/204Pbm = 18.446-19.441) isotope ratios, as well as low P2O5/K2O values (0.30-0.18). The low-Ti (TiO2 < 2 wt%) dykes are scarce and show a large compositional variability (SiO2: 50.4-64.5 wt%), with similar geochemical characteristics of the low-Ti volcanic rocks (Gramado-Palmas) from southern PMP, although the most primitive dykes show hybrid characteristics of Ribeira and Esmeralda magmas. The presence of granitic xenoliths with border reactions and dykes with diffuse contacts indicate that crustal contamination probably occurred by assimilation from re-melted the host rocks. Considering only the high-Ti Urubici dykes that were not affected by crustal contamination, the Sr, Nd and Pb isotope mixing modelling indicates the participation of a heterogeneous metasomatized (refertilized) subcontinental lithospheric mantle (SCLM). This

  15. Age, geochemical and Sr Nd Pb isotopic constraints for mantle source characteristics and petrogenesis of Teru Volcanics, Northern Kohistan Terrane, Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, S. D.; Stern, R. J.; Manton, M. I.; Copeland, P.; Kimura, J. I.; Khan, M. A.

    2004-11-01

    This paper presents new geochemical and geochronology data for the Teru Volcanic Formation (previously known as the Shamran Volcanics) exposed west of Gilgit in the Kohistan terrane of the Pakistani Himalayas. The Teru Volcanic Formation ranges from basalt through andesite to rhyolite and has subalkaline and midalkaline affinities. Trace-element compositions and isotopic characteristics suggest these magmas were formed in a subduction zone setting; isotopic studies also support this conclusion. It is suggested that these lavas originated from a depleted mantle source, which experienced contamination by variable subduction components. Model mixing calculations using 87Sr/ 86Sr and 143Nd/ 144Nd data suggest that addition of 0.2-0.6% of Indus margin sediments and/or 2-4% of fluids derived from Indus margin sediment can generate the compositional variation of the Teru Volcanic Formation. Two samples from the Teru Volcanic Formation yielded 40Ar/ 39Ar ages of 43.8+0.5 and 32.5+0.4 Ma. These ages make the volcanic rocks of the Teru Volcanic Formation the youngest reported in the Kohistan terrane. These volcanic rocks unconformably overly the Shunji Pluton, which has a 65 Ma Rb-Sr whole-rock isochron age. The results of this research suggest that subduction-related volcanism was active until 33 Ma in the India-Asia collision zone.

  16. Sr and Nd isotope composition of the metamorphic, sedimentary and ultramafic xenoliths of Lanzarote (Canary Islands): Implications for magma sources

    NASA Astrophysics Data System (ADS)

    Aparicio, Alfredo; Tassinari, Colombo C. G.; García, Roberto; Araña, Vicente

    2010-01-01

    The lavas produced by the Timanfaya eruption of 1730-1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine ± orthopyroxene ± clinopyroxene ± plagioclase; their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The 87Sr/ 86Sr (around 0.703) and 143Nd/ 144Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the 147Sm/ 144Nd ratios show crustal values (0.13-0.16) in the ultramafic xenoliths and mantle values (0.18-0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange ( 87Sr/ 86Sr and 143Nd/ 144Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths.

  17. The origin of Neoproterozoic Cap Carbonates: a view from Mg and Sr Isotopes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Raub, T. D.; Evans, D. A.; Wang, Z.

    2010-12-01

    Neoproterozoic cap carbonates are suggested to document Earth’s transition from a ‘snowball earth’ to an ‘extreme greenhouse’ environment. Geochemistry of these rocks is essential for its paleo-environment reconstruction, and Mg and Sr isotopes can help to understand its origin and constrain geochemical evolution of the contemporary ocean. In this study, we studied Mg and Sr isotope composition of 18 cap dolostone samples from Nuccaleena formation carbonate and one from the the mixed siliciclastic transition at its base at Elatina Creek in Adelaide Geosyncline of South Australia. We established a step-leaching procedure using ammonium acetate, various concentrations of acetic acid, and HCl on four of these cap carbonate samples to untangle the isotopic signatures of its various constituent phases. 87Sr/86Sr values of the leachates in each sample decrease continuously as leaching process proceeds and sometimes rebound as silicates are dissolved. The lowest leachate 87Sr/86Sr values, down to 0.7084, are lower than the reported dolostone(~0.7096) but still higher than those of limestones overlying the dolostone in other basins(~0.7079), indicating an input of increasing level of weathering to the ocean over the course of cap-carbonate precipitation. In contrast, δ26MgDSM3 variation with progressing leaching steps exhibits a wave pattern (variation up to 0.4~0.5‰) during the leaching processes, due to different chemical affinity of Mg in various mineral phases. More importantly, Mg isotope composition of the portion that is associated with stratigraphically low, minimum Sr isotope composition is similar to those of contemporary corals (or inorganic aragonite precipitation), but up to ca. 0.6 per mil lower than stratigraphically-higher values, suggesting a warmer weather and/or more significant silicate weathering than contemporary Earth’s climate, and a transition from physical weathering to chemical weather during deglaciation.

  18. Geochemical and Isotopic (Sr, U) Tracing of Weathering Processes Controlling the Recent Geochemical Evolution of Soil Solutions in the Strengbach Catchment (Vosges, France)

    NASA Astrophysics Data System (ADS)

    Chabaux, F. J.; Prunier, J.; Pierret, M.; Stille, P.

    2012-12-01

    The characterization of the present-day weathering processes controlling the chemical composition of waters and soils in natural ecosystems is an important issue to predict and to model the response of ecosystems to recent environmental changes. It is proposed here to highlight the interest of a multi-tracer geochemical approach combining measurement of major and trace element concentrations along with U and Sr isotopic ratios to progress in this topic. This approach has been applied to the small granitic Strengbah Catchment, located in the Vosges Mountain (France), used and equipped as a hydro-geochemical observatory since 1986 (Observatoire Hydro-Géochimique de l'Environnement; http://ohge.u-strasbg.fr). This study includes the analysis of major and trace element concentrations and (U-Sr) isotope ratios in soil solutions collected within two soil profiles located on two experimental plots of this watershed, as well as the analysis of soil samples and vegetation samples from these two plots The depth variation of elemental concentration of soil solutions confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones, and clearly influence by the vegetation cycling.

  19. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland.

    PubMed

    Derry, L A; Keto, L S; Jacobsen, S B; Knoll, A H; Swett, K

    1989-01-01

    We report initial 87Sr/86Sr values from an Upper Proterozoic carbonate succession from Svalbard and East Greenland. This succession, now tectonically separated into three sequences, is thick, relatively continuous, and well preserved. The relative ages of the samples from within the basin are well constrained by litho-, bio-, and chemostratigraphic techniques. The data from this study and related data from the literature are used to construct a curve of 87Sr/86Sr for Upper Proterozoic seawater. The new data reported in this study substantially improve the isotopic record of Sr in seawater for the period between 650 and 800 Ma. The data indicate that delta 87Sr values of seawater were variable but low (delta 87Sr approximately -500 to -250) between 900 and 650 Ma, and rose rapidly to approximately +30 by 600 Ma. The range of variation of delta 87Sr in seawater during the Riphean-Vendian exceeds the entire range of delta 87Sr in seawater during the Phanerozoic. While variation in the average isotopic composition of Sr delivered to the oceans by rivers can account for some of the observed range, changes in the ratio of submarine hydrothermal flux to river water (continental) flux are responsible for the large variation in seawater Sr isotopic composition. Changes in the continental flux of Sr to the oceans can be related to tectonic factors. Large changes in the hydrothermal flux to river water flux ratio indicated by the data could have significant consequences for the chemistry of the ocean-atmosphere system.

  20. Multiple enrichment of the Carpathian-Pannonian mantle: Pb-Sr-Nd isotope and trace element constraints

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Jeffrey M.; Wilson, Marjorie; Downes, Hilary

    1997-07-01

    Pb isotope compositions of acid-leached clinopyroxene and amphibole mineral separates from spinel peridotite mantle xenoliths entrained in Tertiary-Quaternary alkali basalts from the Carpathian-Pannonian Region of eastern Europe provide important constraints on the processes of metasomatic enrichment of the mantle lithosphere in an extensional tectonic setting associated with recent subduction. Principal component analysis of Pb-Sr-Nd isotope and rare earth element compositions of the pyroxenes is used to identify the geochemical characteristics of the original lithospheric mantle protolith and a spectrum of infiltrating metasomatic agents including subduction-related aqueous fluids and silicate melts derived from a subduction-modified mantle wedge which contains a St. Helena-type (HIMU) plume component. The mantle protolith is highly depleted relative to mid-ocean ridge basalt-source mantle with Pb-Nd-Sr isotope compositions consistent with an ancient depletion event. Silicate melt infiltration into the protolith accounts for the primary variance in the Pb-Sr-Nd isotope compositions of the xenoliths and has locally generated metasomatic amphibole. Infiltration of aqueous fluids has introduced radiogenic Pb and Sr without significantly perturbing the rare earth element signature of the protolith. The Pb isotope compositions of the fluid-modified xenoliths suggest that they reacted with aqueous fluids released from a subduction zone which had equilibrated with sediment derived from an ancient basement terrain. We propose a model for mantle lithosphere evolution consistent with available textural and geochemical data for the xenolith population. The Pb-Sr-Nd isotope compositions of both alkaline mafic magmas and rare, subduction-related, calc-alkaline basaltic andesites from the region provide important constraints for the nature of the asthenospheric mantle wedge and confirm the presence of a HIMU plume component. These silicate melts contribute to the metasomatism

  1. Sr-Nd-Hf isotopic fingerprinting of transatlantic dust derived from North Africa

    NASA Astrophysics Data System (ADS)

    Zhao, Wancang; Balsam, William; Williams, Earle; Long, Xiaoyong; Ji, Junfeng

    2018-03-01

    Long-range transport of African dust plays an important role in understanding dust-climate relationships including dust source areas, dust pathways and associated atmospheric and/or oceanic processes. Clay-sized Sr-Nd-Hf isotopic compositions can be used as geochemical fingerprints to constrain dust provenance and the pathways of long-range transported mineral dust. We investigated the clay-sized Sr-Nd-Hf isotopic composition of surface samples along four transects bordering the Sahara Desert. The transects are from Mali, Niger/Benin/Togo, Egypt and Morocco. Our results show that the Mali transect on the West African Craton (WAC) produces lower εNd (εNd-mean = -16.38) and εHf (εHf-mean = -9.59) values than the other three transects. The Egyptian transect exhibits the lowest 87Sr/86Sr ratios (87Sr/86Srmean = 0.709842), the highest εHf (εHf-mean = -0.34) and εNd values of the four transects. Comparison of the clay-sized Sr-Nd-Hf isotopic values from our North African samples to transatlantic African dust collected in Barbados demonstrates that the dust's provenance is primarily the western Sahel and Sahara as well as the central Sahel. Summer emission dust is derived mainly from the western Sahel and Sahara regions. The source of transatlantic dust in spring and autumn is more varied than in the summer and includes dust not only from western areas, but also south central areas. Comparison of the Sr-Nd-Hf isotopic fingerprints between the source and sink of transatlantic dust also suggests that a northwestward shift in dust source occurs from the winter, through the spring and into the summer. The isotopic data we develop here provide another tool for discriminating changes in dust archives resulting from paleoenvironmental evolution of source regions.

  2. Sr-Nd isotope geology and tectonomagmatic setting of the Dehsalm intrusives (Lut Block, Eastern Iran)

    NASA Astrophysics Data System (ADS)

    Arjmandzadeh, Reza; Francisco Santos, Jose; Ribeiro, Sara

    2013-04-01

    The Dehsalm porphyritic shallow intrusives belong to the Lut Block volcanic-plutonic belt (central eastern Iran). Previous research on alteration, mineralization and hydrothermal fluids indicates that a Cu-Mo porphyry type mineralization system is related with these intrusives (Arjmandzadeh et al., 2012). The rocks studied in this work range in composition from gabbro-diorite to granite, with dominance of monzonites and quartz monzonites, and have geochemical features of high-K calc alkaline to shoshonitic volcanic arc suites. The trends of major element oxides on Harker diagrams, together with textural evidence, point to the crystal fractionation of clinopyroxene, Ca - plagioclase, hornblende, apatite and oxide minerals. Primitive mantle - normalized trace element spider diagrams display strong enrichment in LILE, such as Rb, Ba and Cs, and depletions in some high field strength elements (HFSE), such as Nb, Ti, Y and HREE. Chondrite-normalized plots show significant LREE enrichments, high LaN/YbN (21.5 to 31.0) and the lack of Eu anomaly. Sr/Y and La/Yb ratios of Dehsalm intrusives are respectively 31.6-72.2 and 21.5-33.5, which reveals that, despite their K-rich composition, these rocks also have some adakitic affinity. A Rb-Sr whole rock-feldspar-biotite age of 33.4±1 Ma was obtained in a quartz monzonite sample; this date may be interpreted as close to the intrusion age, considering that the chosen sample is almost unaltered and should have suffered fast cooling. The obtained age coincides, within error, with a previous geochronological result in a similar rock from the Chah-Shaljami area (Arjmandzadeh et al., 2011), further northwest along the eastern border of the Lut Block. 87Sr/86Sr(33Ma) and ɛNd(33Ma) values range from 0.70481 to 0.70508 and from +1.5 to +2.5, respectively, which fits into a supra-subduction mantle wedge source for the parental melts and indicates that crustal contribution for magma diversification was not relevant. Sr and Nd isotope

  3. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derry, L.A.; Keto, L.S.; Jacobsen, S.B.

    1989-09-01

    The authors report initial {sup 87}Sr/{sup 86}Sr values from an Upper Proterozoic carbonate succession from Svalbard and East Greenland. This succession, now tectonically separated into three sequences, is thick, relatively continuous, and well preserved. The relative ages of the samples from within the basin are well constrained by litho-, bio-, and chemostratigraphic techniques. The data from this study and related data from the literature are used to construct a curve of {sup 87}Sr/{sup 86}Sr for Upper Proterozoic seawater. The new data reported in this study substantially improve the isotopic record of Sr in seawater for the period between 650 andmore » 800 Ma. The data indicate that {Delta}{sup 87}Sr values of seawater were variable but low ({Delta}{sup 87}Sr {approximately}{minus}500 to {minus}250) between 900 and 650 Ma, and rose rapidly to {approximately} +30 by 600 Ma. The range of variation of {Delta}{sup 87}Sr in seawater during the Riphean-Vendian exceeds the entire range of {Delta}{sup 87}Sr in seawater during the Phanerozoic. While variation in the average isotopic composition of Sr delivered to the oceans by rivers can account for some of the observed range, changes in the ratio of submarine hydrothermal flux to river water (continental) flux are responsible for the large variation in seawater Sr isotopic composition. Changes in the continental flux of Sr to the oceans can be related to tectonic factors. Large changes in the hydrothermal flux to river water flux ratio indicated by the data could have significant consequences for the chemistry of the ocean-atmosphere system.« less

  4. Hafnium isotope results from mid-ocean ridges and Kerguelen.

    USGS Publications Warehouse

    Patchett, P.J.

    1983-01-01

    176Hf/177Hf ratios are presented for oceanic volcanic rocks representing both extremes of the range of mantle Hf-Nd-Sr isotopic variation. Hf from critical mid-ocean ridge basalts shows that 176Hf/177Hf does indeed have a greater variability than 143Nd/144Nd and 87Sr/86Sr in the depleted mantle. This extra variation is essentially of a random nature, and can perhaps be understood in terms of known Rb/Sr-Sm/Nd-Lu/Hf fractionation relationships. At the other extreme of mantle isotopic compositions, 176Hf/177Hf ratios for igneous rocks from the Indian Ocean island of Kerguelen show a closely similar variation to published 143Nd/144Nd ratios for the same samples. Comparison of Hf-Nd-Sr isotopic relatonships for Tristan da Cunha, Kerguelen and Samoa reveals divergences in the mantle array for ocean-island magma sources, and perhaps suggests that these irregularities are largely the result of an extra component of 87Sr/86Sr variation.-G.R.

  5. Petrogenesis of ultramafic xenoliths from Hawaii inferred from Sr, Nd, and Pb isotopes

    NASA Astrophysics Data System (ADS)

    Okano, Osamu; Tatsumoto, Mitsunobu

    Isotopic compositions of Nd, Sr, and Pb in xenoliths in the Honolulu volcanic series from the Salt Lake Crater (H-type) are similar to those of the host post-erosional basalts, but are distinct from the magma sources of Koolau shield tholeiites and MORB. In contrast, one spinel Iherzolite (K-type) has isotopic compositions of Nd and Sr that are close to those of Koolau tholeiite rather than to the other Hawaiian basalts. Previous studies have shown that Sr isotopic composition of the xenoliths and the host basalt and that trace element concentrations in minerals of garnet Iherzolites from Honolulu basalt were nearly in equilibrium with the host magma, indicating that Honolulu volcanics were derived from garnet Iherzolite or similar material. However, differences exist among the isotopic compositions (especially Nd) of the xenoliths indicating that they are accidental inclusions from upper layers. The similarity in isotopic compositions between xenoliths and Honolulu basalt suggests that the source areas in the mantle are chemically similar. Correlation of 238U/204Pb vs. 206Pb/204Pb of chrome diopside separated from the H-type spinel Iherzolites indicates that the xenoliths are 80±36 Ma, which corresponds to the lithosphere age of the Hawaiian site. This age is consistent with petrological studies [e.g., Sen and Leeman, 1991] which have found that the spinel Iherzolite inclusions are derived from the lithosphere wall rocks. The ɛNd = ˜+8 of the H-xenoliths is slightly lower than that for the East Pacific Rise MORB indicating that the xenoliths are derived from a trace element depleted source similar to the MORB residue. If the garnet Iherzolite xenoliths are derived from mixture of spinel Iherzolite with intrusive pyroxenite, then the source of the pyroxenite contained little plume component. The one exceptional spinel Iherzolite xenolith may be a residue of Koolau-like tholeiitic magma or may have been metasomatized by Koolau volcanism in the deep lithosphere

  6. Evaluating crustal contributions to enriched shergottites from the petrology, trace elements, and Rb-Sr and Sm-Nd isotope systematics of Northwest Africa 856

    NASA Astrophysics Data System (ADS)

    Ferdous, J.; Brandon, A. D.; Peslier, A. H.; Pirotte, Z.

    2017-08-01

    The origin of the incompatible trace element (ITE) characteristics of enriched shergottites has been critical for examining two contradicting scenarios to explain how these Martian meteorites form. The first scenario is that it reflects ITE enrichment in an early-formed mantle reservoir whereas the second scenario attributes it to assimilation of ancient Martian crust (∼4-4.5 Ga) by ITE-depleted magmas. Strongly differentiated shergottite magmas may yield added constraints for determining which scenario can best explain this signature in enriched shergottites. The meteorite Northwest Africa (NWA) 856 is a basaltic shergottite that, unlike many enriched shergottites, lacks olivine and has undergone extensive differentiation from more primitive parent magma. In similarity to other basaltic shergottites, NWA 856 is comprised primarily of compositionally zoned clinopyroxenes (45% pigeonite and 23% augite), maskelynite (23%) and accessory minerals such as ulvöspinel, merrillite, Cl-apatite, ilmenite, pyrrhotite, baddeleyite and silica polymorph. The CI-chondrite normalized rare earth element (REE) abundance patterns for its maskelynite, phosphates, and its whole rock are flat with corresponding light-REE depletions in clinopyroxenes. The 87Rb-87Sr and 147Sm-143Nd internal isochron ages are 162 ± 14 (all errors are ±2σ) Ma and 162.7 ± 5.5 Ma, respectively, with an initial εNdI = -6.6 ± 0.2. The Rb-Sr isotope systematics are affected by terrestrial alteration resulting in larger scatter and a less precise internal isochron age. The whole rock composition is used in MELTS simulations to model equilibrium and fractional crystallization sequences to compare with the crystallization sequence from textural observations and to the mineral compositions. These models constrain the depth of initial crystallization to a pressure range of 0.4-0.5 GPa (equivalent to 34-42 km) in anhydrous conditions at the Fayalite-Magnetite-Quartz buffer, and consistently reproduce the

  7. U-Th-Pb, Rb-Sr, and Sm-Nd isotopic systematics of lunar troctolitic cumulate 76535 - Implications on the age and origin of this early lunar, deep-seated cumulate

    NASA Technical Reports Server (NTRS)

    Premo, Wayne R.; Tatsumoto, M.

    1992-01-01

    The U-Th-Pb, Rb-Sr, and Sm-Nd isotopic systematics of four lightly leached residues of pristine, high-Mg, troctolitic cumulate 76535 were analyzed in order to determine their ages and magma sources. The data indicate that the cumulate was in isotopic equilibrium with a fluid or magma characterized by a high U-238/Pb-204 (mu) value of 600 at 4.236 Ga. Two and three stage Pb evolution calculations define even greater source mu values of about 1000, assuming low lunar initial mu values between 5 and 40 prior to about 4.43 Ga. These results are similar to mu values for KREEP sources and are also consistent with values from 78235, suggesting that at least some high-Mg suite rocks were derived from magma sources with high-mu values similar to KREEP, and support that idea that these rocks postdate primary lunar differentiation and formation of ferroan anorthosites.

  8. Spectroscopy of LiCa and RbSr Molecules on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Gunter; Ernst, Wolfgang E.

    2013-06-01

    We report on the investigation of mixed alkali metal (Ak) - alkaline earth metal (Ake) molecules on the surface of helium nanodroplets (He_{N}). These molecules have recently attracted considerable attention as candidates for the formation of ultracold molecules with a magnetic and an electronic dipole moment. In our experiments, LiCa and RbSr molecules are formed in a sequential pick-up process in their X^{2}Σ^{+} ground state and cool down rapidly to the droplet temperature of 0.38 K. Excitation spectra of LiCa and RbSr were recorded by using resonance enhanced multi-photon ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy. On the helium droplet, vibronic transitions in Ak-Ake molecules are broadened and show a characteristic asymmetric peak form, which is caused by the interaction between the molecule and the superfluid He_{N} environment. For the lower electronic transitions in LiCa and RbSr progressions of vibrational bands excited from the X^{2}Σ^{+} (ν'' = 0) state are observed. The LiCa spectra can be compared to molecular beam experiments, which enables the assignment of three band systems near 15260 cm^{-1}, 19300 cm^{-1} and 22120 cm^{-1} as ^{2}Σ^{+}, ^{2}Π_{Ω} and ^{2}Π band, respectively. In the RbSr excitation spectrum we observe a vibrationally resolved band system near 14020 cm^{-1}. Upon electronic excitation, a fraction of the molecules desorb from the droplet surface and dispersed fluorescence spectra allow to study the X^{2}Σ^{+} ground state and excited states of free Ak-Ake molecules. H. Hara, Y. Takasu, Y. Yamaoka, J.M. Doyle, Y. Takahashi, Phys. Rev. Lett. 106, 205304 (2011) C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in: Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, (2011) L. M. Russon, G. K. Rothschopf, M. D. Morse, A. I

  9. Sr, Nd and Pb isotopes in Proterozoic intrusives astride the Grenville Front in Labrador: Implications for crustal contamination and basement mapping

    USGS Publications Warehouse

    Ashwal, L.D.; Wooden, J.L.; Emslie, R.F.

    1986-01-01

    We report Sr, Nd and Pb isotopic compositions of mid-Proterozoic anorthosites and related rocks (1.45-1.65 Ga) and of younger olivine diabase dikes (1.4 Ga) from two complexes on either side of the Grenville Front in Labrador. Anorthositic or diabasic samples from the Mealy Mountains (Grenville Province) and Harp Lake (Nain-Churchill Provinces) complexes have very similar major, minor and trace element compositions, but distinctly different isotopic signatures. All Mealy Mountains samples have ISr = 0.7025-0.7033, ??{lunate}Nd = +0.6 to +5.6 and Pb isotopic compositions consistent with derivation from a mantle source depleted with respect to Nd/Sm and Rb/Sr. Pb isotopic compositions for the Mealy Mountains samples are slightly more radiogenic than model mantle compositions. All Harp Lake samples have ISr = 0.7032-0.7066, ??{lunate}Nd = -0.3 to -4.4 and variable, but generally unradiogenic 207Pb 204Pb and 206Pb 204Pb compared to model mantle, suggesting mixing between a mantle-derived component and a U-depleted crustal contaminant. Crustal contaminants are probably a variety of Archean high-grade quartzofeldspathic gneisses with low U/Pb ratios and include a component that must be isotopically similar to the early Archean (>3.6 Ga) Uivak gneisses of Labrador or the Amitsoq gneisses of west Greenland. This would imply that the ancient gneiss complex of coastal Labrador and Greenland is larger than indicated by present surface exposure and may extend in the subsurface as far west as the Labrador Trough. If Harp Lake and Mealy Mountains samples were subjected to the same degree of contamination, as suggested by their chemical similarities, then the Mealy contaminants must be much younger, probably early or middle Proterozoic in age. The Labrador segment of the Grenville Front, therefore, appears to coincide with the southern margin of the Archean North Atlantic craton and may represent a pre mid-Proterozoic suture. ?? 1986.

  10. Rb-Sr geochronology of the region between the Antarctic Peninsula and the Transantarctic Mountains: Haag nunataks and Mesozoic granitoids

    NASA Astrophysics Data System (ADS)

    Millar, I. L.; Pankhurst, R. J.

    Seventy-two new Rb-Sr whole-rock analyses are reported for Haag Nunataks, Mount Woollard, the Whitmore Mountains, the Pirrit and Nash hills, and Pagano Nunatak. For Haag Nunataks, three isochrons for gneisses and later aplogranite and microgranite sheets establish the age of crustal formation as 1000-1100 Ma. No other basement rocks of this age are known from the Antarctic Peninsula or Ellsworth Land. Results from the migmatite-pegmatite complex at Mount Woollard are inconclusive but do not suggest that this represents Precambrian crystalline basement. Provisional results for the Whitmore Mountains granites are compatible with crystallization of all components within error of a 182±5 Ma isochron for fine-grained microgranite, but variation in initial 87Sr/86Sr from 0.707 for porphyritic granites to 0.722 for the microgranite rule out simple crystal fractionation models which require a common parental magma. The granites of the Ellsworth-Thiel mountains ridge are well dated as Middle Jurassic by the new data: Pirrit Hills 173±3 Ma, Nash Hills 175±8 Ma, and Pagano Nunatak 175±8 Ma. Initial 87Sr/86Sr ratios of 0.707, 0.712, and 0.716, respectively, confirm that these are intracratonic S-type granites with a large crustal component involved in magma generation. The dolerite of Lewis Nunatak is shown by its Rb, Sr, and 87Sr/86Sr composition to be a member of the Jurassic Ferrar Supergroup.

  11. Evolution of the upper mantle beneath the southern Baikal rift zone: an Sr-Nd isotope study of xenoliths from the Bartoy volcanoes

    NASA Astrophysics Data System (ADS)

    Ionov, D. A.; Kramm, U.; Stosch, H.-G.

    1992-06-01

    Anhydrous and amphibole-bearing peridotite xenoliths occur in roughly equal quantitites in the Bartoy volcanic field about 100 km south of the southern tip of Lake Baikal in Siberia (Russia). Whole-rock samples and pure mineral separates from nine xenoliths have been analyzed for Sr and Nd isotopes in order to characterize the upper mantle beneath the southern Baikal rift zone. In an Sr-Nd isotope diagram both dry and hydrous xenoliths from Bartoy plot at the junction between the fields of MORB and ocean island basalts. This contrasts with data available on two other localities around Lake Baikal (Tariat and Vitim) where peridotites typically have Sr-Nd isotope compositions indicative of strong long-term depletion in incompatible elements. Our data indicate significant chemical and isotopic heterogeneity in the mantle beneath Bartoy that may be attributed to its position close to an ancient suture zone separating the Siberian Platform from the Mongol-Okhotsk mobile belt and occupied now by the Baikal rift. Two peridotites have clinopyroxenes depleted in light rare earth elements (LREE) with Sr and Nd model ages of about 2 Ga and seem to retain the trace element and isotopic signatures of old depleted lithospheric mantle, while all other xenoliths show different degrees of LREE-enrichment. Amphiboles and clinopyroxenes in the hydrous peridotites are in Sr-Nd isotopic disequilibrium. If this reflects in situ decay of 147Sm and 87Rb rather than heterogeneities produced by recent metasomatic formation of amphiboles then 300 400 Ma have passed since the minerals were last in equilibrium. This age range then indicates an old enrichment episode or repeated events during the Paleozoic in the lithospheric mantle initially depleted maybe ˜2 Ga ago. The Bartoy hydrous and enriched dry peridotites, therefore, are unlikely to represent fragments of a young asthenospheric bulge which, according to seismic reflection studies, reached the Moho at the axis of the Baikal rift zone

  12. Hafnium isotope results from mid-ocean ridges and Kerguelen

    USGS Publications Warehouse

    Jonathan, Patchett P.

    1983-01-01

    176Hf/177Hf ratios are presented for oceanic volcanics representing both extremes of the range of mantle HfNdSr isotopic variation. Hf from critical mid-ocean ridgebasalts shows that 176Hf/177Hf does indeed have a greater variability than 143Nd/144Nd and 87Sr/86Sr in the depleted mantle. This extra variation is essentially of a random nature, and can perhaps be understood in terms of known Rb/SrSm/NdLu/Hf fractionation relationships. At the other extreme of mantle isotopic composition, 176Hf/177Hf ratios for igneous rocks from the Indian Ocean island of Kerguelen show a closely similar variation to published 143Nd/144Nd ratios for the same samples. Comparison of HfNdSr c relationships for Tristan da Cunha, Kerguelen and Samoa reveals divergences in the mantle array for ocean island magma sources, and perhaps suggests that these irregularities are largely the result of an extra component of 87Sr/86Sr variation. ?? 1983.

  13. S- and Sr-isotopic compositions in barite-silica chimney from the Franklin Seamount, Woodlark Basin, Papua New Guinea: constraints on genesis and temporal variability of hydrothermal fluid

    NASA Astrophysics Data System (ADS)

    Ray, Durbar; Banerjee, Ranadip; Balakrishnan, S.; Paropkari, Anil L.; Mukhopadhyay, Subir

    2017-07-01

    Isotopic ratios of strontium and sulfur in six layers across a horizontal section of a hydrothermal barite-silica chimney from Franklin Seamount of western Woodlark Basin have been investigated. Sr-isotopic ratios in barite samples (87Sr/86Sr = 0.70478-0.70493) are less radiogenic than seawater (87Sr/86Sr = 0.70917) indicating that substantial leaching of sub-seafloor magma was involved in the genesis of hydrothermal fluid. The SO2 of magma likely contributed a considerable amount of lighter S-isotope in fluid and responsible for the formation of barite, which is isotopically lighter (δ34S = 19.4-20.5 ‰) than modern seawater (δ34S 21 ‰). The systematic changes in isotopic compositions across the chimney wall suggest temporal changes in the mode of mineral formation during the growth of the chimney. Enrichment of heavy S- and Sr-isotopes (δ34S = 20.58 ‰; 87Sr/86Sr = 0.70493) in the outermost periphery of the chimney indicates that, at the initial stage of chimney development, there was a significant contribution of seawater sulfate during barite mineralization. Thereafter, thickening of chimney wall occurred due to precipitation of fluid carrying more magmatic components relative to seawater. This led to a gradual enrichment of lighter isotopes (δ34S = 20.42-19.48 ‰; 87Sr/86Sr = 0.70491-0.704787) toward the inner portion of the chimney wall. In contrast, the innermost layer surrounding the fluid conduit is characterized by heavier and more radiogenic isotopes (δ34S = 20.3 ‰; 87Sr/86Sr = 0.7049). This suggests there was increasing influence of percolating seawater on the mineral paragenesis at the waning phase of the chimney development.

  14. Geochemical and NdSr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Taylor, S. R.; McCulloch, M. T.; Maynard, J. B.

    1990-07-01

    Petrographic, geochemical, and isotopic data for turbidites from a variety of tectonic settings exhibit considerable variability that is related to tectonic association. Passive margin turbidites (Trailing Edge, Continental Collision) display high framework quartz (Q) content in sands, evolved major element compositions (high Si/Al, K/Na), incompatible element enrichments (high Th/Sc, La/Sc, La/Yb), negative Eu-anomalies and variable Th/U ratios. They have low 143Nd /144Nd and high 87Sr /86Sr ( ɛNd = -26 to -10; 87Sr /86Sr = 0.709 to 0.734 ), indicating a dominance of old upper crustal sources. Active margin settings (Fore Arc, Continental Arc, Back Arc, Strike Slip) commonly exhibit quite different compositions. Th/Sc varies from <0.01 to 1.8, and ɛNd varies from -13.8 to +8.3. Eu-anomalies range from no anomaly ( Eu/Eu ∗ = 1.0 ) to Eu-depletions typical of post-Archean shales ( Eu/Eu ∗ = 0.65 ). Active margin data are explained by mixtures of young arc-derived material, with variable composition and old upper crustal sources. Major element data indicate that passive margin turbidites have experienced more severe weathering histories than those from active settings. Most trace elements are enriched in muds relative to associated sands because of dilution effects from quartz and calcite and concentration of trace elements in clays. Exceptions include Zr, Hf (heavy mineral influence) and Tl (enriched in feldspar) which display enrichments in sands. Active margin sands commonly exhibit higher Eu/Eu ∗ than associated muds, resulting from concentration of plagioclase during sorting. Some associated sands and muds, especially from active settings, have systematic differences in Th/Sc ratios and Nd-isotopic composition, indicating that various provenance components may separate into different grain-size fractions during sedimentary sorting processes. Trace element abundances of modern turbidites, from both active and passive settings, differ from Archean

  15. Lithospheric thickness controlled compositional variations in potassic basalts of Northeast China by melt-rock interactions

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Qiang; Chen, Li-Hui; Zeng, Gang; Wang, Xiao-Jun; Zhong, Yuan; Yu, Xun

    2016-03-01

    Melt-rock interaction is a common mantle process; however, it remains unclear how this process affects the composition of potassic basalt. Here we present a case study to highlight the link between compositional variations in the potassic basalts and melt-rock interaction in cold lithosphere. Cenozoic potassic basalts in Northeast China are strongly enriched in incompatible elements and show EM1-type Sr-Nd-Pb isotopes, suggesting an enriched mantle source. These rocks show good correlations between 87Sr/86Sr and K2O/Na2O and Rb/Nb. Notably, these ratios decrease with increasing lithospheric thickness, which may reflect melt-lithosphere interaction. Phlogopite precipitated when potassic melts passed through the lithospheric mantle, and K and Rb contents of the residual melts decreased over time. The thicker the lithosphere, the greater the loss of K and Rb from the magma. Therefore, the compositions of potassic basalts were controlled by both their enriched sources and reactions with lithospheric mantle.

  16. The geochemical and Sr-Nd-Pb-He isotopic characterization of the mantle source of Rungwe Volcanic Province: comparison with the Afar mantle domain

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; Hilton, D. R.; Halldorsson, S. A.; Wang, R.

    2012-12-01

    The ultimate source of heat and magmatism associated with continental rifting in the East African Rift System (EARS) is generally viewed to be the African Superplume, but there is continuing debate on the surface expression of this large anomalous feature, which originates in the lower mantle. Previous studies have demonstrated an insignificant role for crustal contamination thereby identifying a single mantle plume signature in Quaternary basalts from the Main Ethiopian Rift in the northern EARS. This is designated to be the Afar plume and is characterized by, e.g., 3He/4He >15 RA, 206Pb/204Pb = 19.5 and 87Sr/86Sr = 0.7035 [Rooney et al., J. Pet. 53, 2012]. In contrast, the signature of plume(s) in the southern EARS is less constrained. Rogers et al. [EPSL 176, 2000] proposed a plume in the sub-lithospheric Kenyan mantle with characteristically lower 43Nd/144Nd than the Afar plume whereas Furman [JAES 48, 2007] advocated a high μ [HIMU] plume based primarily on the high 206Pb/204Pb ratios of lavas in all areas within and south of the Turkana Depression: both models assume a 3He/4He lower than the Afar plume. Here we report the trace element and Sr-Nd-Pb isotopic composition of basaltic lavas from the Rungwe Volcanic Province (RVP) in the southern extreme of the Western Rift previously identified as a high 3He/4He locality (~15 RA; [Hilton et al., GRL 38, 2011]). Trace element analyses are within the previously reported range of lava compositions that include a relatively large lithospheric component. More importantly, we identify correlations among incompatible trace element and isotopic ratios (e.g., 3He/4He vs 206Pb/204Pb, Rb/Sr, Nb/Ta; 87Sr/86Sr vs 208Pb/204Pb). Our new results suggest the presence of a distinct, high 3He/4He mantle source beneath RVP that is more radiogenic (e.g., 206Pb/204Pb up to ~19.8; 87Sr/86Sr up to 0.7055) than the Afar mantle plume. There is also very little or no HIMU signature in RPV basalts based on their high Sr and low Nd isotopic

  17. Geochemical and isotopic (Nd-Pb-Sr-O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy

    USGS Publications Warehouse

    Ayuso, R.A.; de Vivo, B.; Rolandi, G.; Seal, R.R.; Paone, A.

    1998-01-01

    Alkaline volcanism produced by Monte Somma-Vesuvius volcano includes explosive plinian and subplinian activity in addition to effusive lava flows. Pumice, scoria, and lava (150 samples) exhibit major- and trace-element gradients as a function of SiO2 (58.9-47.2 wt%) and MgO (0-7.8 wt%); Mg value are ???50. Internally gradational chemical groups or cycles are distinguished by age: (1) 25 000 to 14 000 yr B.P.; (2) 8000 yr B.P. to A.D. 79; and (3) A.D. 79 to 1944. A small number of lavas, dikes and scora were also analysed from the Somma formation (~ 35 000 to 25 000 yr B.P.). Within each group, contents of Na2O + K2O increas with decreasing MgO along distinct rocks. Nb/Y values are variable from 0.66 to 3.14 (at SiO2 ??? 50 wt%) generally in the range of alkaline and ultra-alkaline rocks. Variations in contents of some majro elements (e.g., P and Ti), and trace elements (e.g., Th, Nb, Ta, Zr, Hf, Pb, La, and Sc), as well as contrasting trends in ratios of various elements (e.g., Ta/Yb, Hf/U, Th/Ta, Th/Hf, Th/Yb, etc.) are also generally consistent with the group subdivisions. For example, Th/Hf increases from ??? 5 to ??? 10 with decreasing age for the Vesuvius system as a whole, yielding similar compositions in the least evolved rocks (low-silica, high-MgO, imcompatible element-poor) erupted at the end of each cycle. Internal variations within individual eruptions also systematically changed generally towards a common mafic composition at the end of each cycle, thus reflecting the dominanit volume in the magma chamber. At the start of a new eruptive cycle, the rocks are relatively enriched in incompatible elements; younger groups also contain higher abundances than other groups. N-MORB-normalized multielement diagrams exhibit selective enrichments of Sr, K, Rb, Th, and the light rare-earth elements; deep Nb and Ta negative anomalies commonly seen in rocks generated at orogenic margins are absent in the light rare-earth elements; deep Nb and Ta netgative anomalies

  18. Isotope geochronology of the Precambrian

    NASA Astrophysics Data System (ADS)

    Levskii, L. K.; Levchenkov, O. A.

    This symposium discusses the use of isotope methods for establishing the geochronology of Precambrian formations, with special consideration given to geochronological studies of the early phases of the earth's core evolution in the Baltic and Vitim-Aldan shields and the Enderby Land (Antarctica). Attention is also given to the Early Archean Vodlozero gneiss complex and its structural-metamorphic evolution, the influence of geological events during the Proterozoic on the state of the U-Pb and Rb-Sr systems in the Archean postkinematic granites of Karelia, the Rb-Sr systems in the andesite basalts of the Suna-Semch' region (Karelia), and the geochronology of the Karelian granite-greenstone region. Also discussed are the petrogenesis and age of the rocks from the Kola ultradeep borehole, the isotope-geochronological evidence for the early Precambrian history of the Aldan-Olekma region, the Rb-Sr systems in metasedimentary rocks of the Khani graben, and the U-Pb ages of zircons from polymetamorphic rocks of the Archean granulite complex of Enderby Land.

  19. Sr, Nd and Pb Isotope Geochemistry of Near-ridge Seamounts in Eastern Pacific: Implications for Upper Mantle Composition and EPR Magmatic Segmentation

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; White, W. M.; Batiza, R.

    2005-12-01

    Near-ridge seamount lavas tend to reflect the true composition of the upper mantle source of MORB because these are generated by relatively smaller degrees of melting of smaller volumes of the mantle compared to nearby axial lavas; they also by-pass the axial chamber mixing and fractionation processes that are responsible for the relatively more uniform chemical and isotopic composition of normal-MORB. New Sr, Nd and Pb isotope data combined with published data for lavas from near-ridge seamounts on either side of the EPR segment between the 11o45' OSC and Orozco Transform at 15o00' show latitudinal isotopic variation very similar to that shown by the rise axial lavas (Castillo et al., G3 1, 1999). Seamount and axial lavas at both ends of the rise segment have on average slightly higher and more limited range of 143Nd/144Nd, but slightly lower 206Pb/204Pb and 87Sr/86Sr ratios than lavas at the center of the segment. Some of the seamounts are located on ~8 Ma rise flank crust although most of the seamount lavas are fairly young (e.g., lavas from Seamount 6 on ~3 Ma crust are only 3 to 900 kyr - Graham et al., Nature 326, 1987). Thus near-ridge seamount isotope data provide the first documentation for a large-scale (~350 km long x ~720 km wide), systematic compositional variation of the upper mantle source of EPR MORB. Such a scale of variation is larger and longer than the size and <1 myr life span of the majority of non-transform offsets, which are supposed to be responsible for the along-axis compositional variations of EPR MORB according to the "bottoms up" model of magmatic segmentation.

  20. Luna 16 - Some Li, K, Rb, Sr, Ba, rare-earth, Zr, and Hf concentrations.

    NASA Technical Reports Server (NTRS)

    Philpotts, J. A.; Schnetzler, C. C.; Schuhmann, S.; Thomas , H. H.; Bottino, M. L.

    1972-01-01

    Concentrations of Li, K, Rb, Sr, Na, rare-earths, Zr and Hf have been determined for some Luna 16 core materials by mass-spectrometric isotope-dilution. Two regolith fines samples from different depths in the core, and four rock-chips, including both igneous rocks and breccias, have similar trace-element concentrations. The Luna 16 materials have general lunar trace-element characteristics but differ from other returned lunar samples in a manner that suggests the presence of excess feldspar. Unless the Luna 16 igneous rocks are fused soils, they appear to represent either partial plagioclase cumulates or the least differentiated igneous material yet returned from the moon. The similarity in trace-element concentrations of the igneous rocks and the fines would then suggest largely local derivation of the Luna 16 regolith.

  1. Ab initio study of the RbSr electronic structure: potential energy curves, transition dipole moments, and permanent electric dipole moments.

    PubMed

    Pototschnig, Johann V; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E

    2014-12-21

    Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s (2)S) + Sr (5s4d (3)P°) and Rb (5p (2)P°) + Sr (5s(2) (1)S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s (2)S) + Sr (5s4d (3)P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

  2. Slab-derived components in the subcontinental lithospheric mantle beneath Chilean Patagonia: Geochemistry and Sr-Nd-Pb isotopes of mantle xenoliths and host basalt

    NASA Astrophysics Data System (ADS)

    Jalowitzki, Tiago; Gervasoni, Fernanda; Conceição, Rommulo V.; Orihashi, Yuji; Bertotto, Gustavo W.; Sumino, Hirochika; Schilling, Manuel E.; Nagao, Keisuke; Morata, Diego; Sylvester, Paul

    2017-11-01

    modified oceanic crust throughout the initial stages of the Farallón-Aluk ridge collision during Paleocene to Eocene time. However, based on the tectonic evolution of southern South America, we cannot exclude the influence of long-lived subduction events beneath south Patagonia. Although we believe that the studied samples were brought to the surface in this geodynamic context, there is no evidence that ocean island basalt (OIB)-like melts related to the Farallón-Aluk asthenospheric slab window affected the peridotite composition. The host alkaline basalt is a single unit with a HIMU-like OIB signature characterized by marked positive Nb-Ta anomalies coupled with negative anomalies in highly incompatible and fluid-mobile elements (Rb, K, Pb, and Sr). The compositional similarity between the HIMU-like OIB mantle source and the host basalt is also evident from trace element ratios [(Ba-Th-K-La-Zr)/Nb] as well as by the low 87Sr/86Sri (0.703039-0.703058) and relatively high 143Nd/144Ndi (0.512880-0.512874) and 206Pb/204Pb (19.333-19.389) isotopic ratios. The low 206Pb/204Pb ratios compared to end-member HIMU lavas (e.g., Sta. Helena and the Cook-Austral Islands) suggest that this region was modified by processes associated with a prolonged period of subduction related to the Andean orogenesis and the recycling of several oceanic plates beneath the continent, following the Mesozoic breakup of Gondwana or an even older subduction-related event with young recycling ages (< 2 Ga).

  3. Ar-Ar and Rb-Sr Ages of the Tissint Olivine-phyric Martian Shergottite

    NASA Technical Reports Server (NTRS)

    Park, J.; Herzog, G. F.; Nyquist, L. E.; Shih, C.-Y.; Turin, B.; Lindsay, F. N.; Delaney, J. S.; Swisher, C. C., III; Agee, C.

    2013-01-01

    The fifth martian meteorite fall, Tissint, is an olivine-phyric shergottite that contains olivine macrocrysts (approximately 1.5 mm) [1]. [2] reported the Sm-Nd age of Tissint as 596 plus or minus 23 Ma along with Rb-Sr data that defined no isochron. [3] reported Lu-Hf and Sm-Nd ages of 583 plus or minus 86 Ma and 616 plus or minus 67 Ma, respectively. The cosmic-ray exposure ages of Tissint are 1.10 plus or minus 0.15 Ma based on 10Be [4], and 1.0-1.1 Ma, based on 3He, 21Ne, and 38Ar [5,6].We report Ar-Ar ages and Rb-Sr data.

  4. Constraining the 40K decay constant with 87Rb-87Sr - 40K-40Ca chronometer intercomparison

    NASA Astrophysics Data System (ADS)

    Naumenko-Dèzes, Maria O.; Nägler, Thomas F.; Mezger, Klaus; Villa, Igor M.

    2018-01-01

    A literature survey reveals that the K-Ar chronometer gives ages that are ca. 1% younger than U-Pb ages. This offset is generally attributed to an inaccurate 40K decay constant. Three geological samples selected from a shortlist of eight with known U-Pb ages were investigated using detailed petrological methods and subsequently the Rb-Sr and K-Ca chronometers in order (a) to evaluate if they meet the requirement of a geological history reflecting a ;point-like; event (i.e. isochronous formation and subsequent ideal closure of chronometers) and (b) to narrow down the systematic uncertainty on the 40K decay constant by investigating the metrologically traceable K-Ca decay branch. Lepidolite of the Rubikon pegmatite, Namibia, was dated with Rb-Sr at 504.7 ± 4.2 Ma and the phlogopite and apatite from the Phalaborwa carbonatite complex, South Africa, yielded a Rb-Sr age of 2058.9 ± 5.2 Ma. Both Rb-Sr ages agree with published U-Pb ages. The Rb-Sr age of the late Archean Siilinjärvi carbonatite, Finland, records a later regional metamorphic event at 1869 ± 10 Ma. Only the samples from the Phalaborwa complex represent a ;point-like; magmatic event and meet all the criteria to make them suitable for the 40K decay constant intercalibration. The Phalaborwa K-Ca isochron has a slope of 1.878 ± 0.012. Forcing the K-Ca isochron to coincide with the U-Pb and Rb-Sr ages gives one equation with two unknowns. Assuming that the branching ratio of the K-Ca branch, BCa, lies in the interval (k = 2) of all published references, 0.8925 < BCa < 0.8963, then the most reliable uncertainty interval (k = 2) for the total 40K decay constant, λtot, is calculated as 5.484 × 10-10 a-1 < λtot < 5.498 × 10-10 a-1. This confirms that the currently used IUGS recommendation is inaccurate.

  5. Isotopic constraints on the age and early differentiation of the Earth.

    PubMed

    McCulloch, M T

    1996-03-01

    The Earth's age and early differentiation history are re-evaluated using updated isotopic constraints. From the most primitive terrestrial Pb isotopic compositions found at Isua Greenland, and the Pilbara of Western Australia, combined with precise geochronology of these localities, an age 4.49 +/- 0.02 Ga is obtained. This is interpreted as the mean age of core formation as U/Pb is fractionated due to sequestering of Pb into the Earth's core. The long-lived Rb-Sr isotopic system provides constraints on the time interval for the accretion of the Earth as Rb underwent significant depletion by volatile loss during accretion of the Earth or its precursor planetesimals. A primitive measured 87Sr/86Sr initial ratio of 0.700502 +/- 10 has been obtained for an early Archean (3.46 Ga) barite from the Pilbara Block of Western Australia. Using conservative models for the evolution of Rb/Sr in the early Archean mantle allows an estimate to be placed on the Earth's initial Sr ratio at approximately 4.50 Ga, of 0.69940 +/- 10. This is significantly higher than that measured for the Moon (0.69900 +/- 2) or in the achondrite, Angra dos Reis (0.69894 +/- 2) and for a Rb/Sr ratio of approximately 1/2 of chondrites corresponds to a mean age for accretion of the Earth of 4.48 + /- 0.04 Ga. The now extinct 146Sm-142Nd (T1/2(146)=103 l0(6)yrs) combined with the long-lived 147Sm-143Nd isotopic systematics can also be used to provide limits on the time of early differentiation of the Earth. High precision analyses of the oldest (3.8-3.9 Ga) Archean gneisses from Greenland (Amitsoq and Akilia gneisses), and Canada (Acasta gneiss) do not show measurable (> +/- l0ppm) variations of 142Nd, in contrast to the 33 ppm 142Nd excess reported for an Archean sample. The general lack of 142Nd variations, combined with the presence of highly positive epsilon 143 values (+4.0) at 3.9 Ga, indicates that the record of large-scale Sm/Nd fractionation events was not preserved in the early-Earth from 4

  6. High-precision γ -ray spectroscopy of the cardiac PET imaging isotope Rb 82 and its impact on dosimetry

    DOE PAGES

    Nino, M. N.; McCutchan, E. A.; Smith, S. V.; ...

    2016-02-01

    82Rb is a positron-emitting isotope used in cardiac positron emission tomography (PET) imaging which has been reported to deliver a significantly lower effective radiation dose than analogous imaging isotopes like 201Tl and 99mTc sestamibi. High-quality β-decay data are essential to accurately appraise the total dose received by the patients. A source of 82Sr was produced at the Brookhaven Linac Isotope Producer (BLIP), transported to Argonne National Laboratory, and studied with the Gammasphere facility. Significant revisions have been made to the level scheme of 82Kr including 12 new levels, 50 new γ-ray transitions, and the determination of many new spin assignmentsmore » through angular correlations. Lastly, these new high-quality data allow a precise reappraisal of the β-decay strength function and thus the consequent dose received by patients.« less

  7. Rb-Sr isotopic studies of postorogenic granites from the eastern Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Stuckless, J.S.; Futa, Kiyoto

    1987-01-01

    Available data indicate that postorogenic granites tend to be older in the southern part of the Arabian Shield. This suggests that plutonism started in the south and progressed to the north. Initial 87Sr/86Sr values also form a regional pattern. These ratios tend to be higher in the eastern part of the Arabian Shield, and suggest one source of continental affinity to the east and one of oceanic affinity to the west. The distribution of initial strontium isotope ratios does not clearly discriminate between the various models for Shield evolution; however, a sedimentary source region of mixed end members seems more compatible with the data pattern than models based on discrete boundaries between unrelated accreted blocks.

  8. Sr Isotopes and Migration of Prairie Mammoths (Mammuthus columbi) from Laguna de las Cruces, San Luis Potosi, Mexico

    NASA Astrophysics Data System (ADS)

    Solis-Pichardo, G.; Perez-Crespo, V.; Schaaf, P. E.; Arroyo-Cabrales, J.

    2011-12-01

    Asserting mobility of ancient humans is a major issue for anthropologists. For more than 25 years, Sr isotopes have been used as a resourceful tracer tool in this context. A comparison of the 87Sr/86Sr ratios found in tooth enamel and in bone is performed to determine if the human skeletal remains belonged to a local or a migrant. Sr in bone approximately reflects the isotopic composition of the geological region where the person lived before death; whereas the Sr isotopic system in tooth enamel is thought to remain as a closed system and thus conserves the isotope ratio acquired during childhood. Sr isotope ratios are obtained through the geologic substrate and its overlying soil, from where an individual got hold of food and water; these ratios are in turn incorporated into the dentition and skeleton during tissue formation. In previous studies from Teotihuacan, Mexico we have shown that a three-step leaching procedure on tooth enamel samples is important to assure that only the biogenic Sr isotope contribution is analyzed. The same Sr isotopic tools can function concerning ancient animal migration patterns. To determine or to discard the mobility of prairie mammoths (Mammuthus columbi) found at Laguna de las Cruces, San Luis Potosi, México the leaching procedure was applied on six molar samples from several fossil remains. The initial hypothesis was to use 87Sr/86Sr values to verify if the mammoth population was a mixture of individuals from various herds and further by comparing their Sr isotopic composition with that of plants and soils, to confirm their geographic origin. The dissimilar Sr results point to two distinct mammoth groups. The mammoth population from Laguna de Cruces was then not a family unit because it was composed by individuals originated from different localities. Only one individual was identified as local. Others could have walked as much as 100 km to find food and water sources.

  9. The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf-Nd-Sr-Pb isotope systematics of Kaula lavas and pyroxenite xenoliths

    NASA Astrophysics Data System (ADS)

    Bizimis, Michael; Salters, Vincent J. M.; Garcia, Michael O.; Norman, Marc D.

    2013-10-01

    Rejuvenated volcanism refers to the reemergence of volcanism after a hiatus of 0.5-2 Ma following the voluminous shield building stage of Hawaiian volcanoes. The composition of the rejuvenated source and its distribution relative to the center of the plume provide important constraints on the origin of rejuvenated volcanism. Near-contemporaneous lavas from the Kaula-Niihau-Kauai ridge and the North Arch volcanic field that are aligned approximately orthogonally to the plume track can constrain the lateral geochemical heterogeneity and distribution of the rejuvenated source across the volcanic chain. Nephelinites, phonolites and pyroxenite xenoliths from Kaula Island have radiogenic Hf, Nd and unradiogenic Sr isotope compositions consistent with a time-integrated depleted mantle source. The pyroxenites and nephelinites extend to the lowest 208Pb/204Pb reported in Hawaiian rocks. These data, along with new Pb isotope data from pyroxenites from the Salt Lake Crater (Oahu) redefine the composition of the depleted end-member of the Hawaiian rejuvenated source at 208Pb/204Pb=37.35±0.05, 206Pb/204Pb = 17.75±0.03, ɛNd = 9-10, ɛHf ˜16-17 and 87Sr/88Sr <0.70305. The revised isotope composition also suggests that this depleted component may contribute to LOA and KEA trend shield stage Hawaiian lavas, consistent with the rejuvenated source being part of the Hawaiian plume and not entrained upper mantle. The isotope systematics of rejuvenated magmas along the Kaula-Niihau-Kauai-North Arch transect are consistent with a larger proportion of the rejuvenated depleted component in the periphery of the plume track rather than along its axis.

  10. Rb-Sr and Sm-Nd Study of Asuka 881394: Evidence of "Late" Metamorphism

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y.; Takeda, H.

    2011-01-01

    The Asuka 881394 achondrite contains fossil Al-26 and Mn-53 [1,2,3] and has a Pb-207/Pb-206 age of 4566.5 plus or minus 0.2 Ma [3], the oldest for an achondrite. Preliminary results showed initial Sm-146/Sm-144 = (7.4 plus or minus 1.2) x 10(exp -3), indicative of an ancient age, but Rb-87 - Sr-87 and Sm-147 - Nd-143 ages of 4370 plus or minus 60 and 4490 plus or minus 20 Ma, resp. [1], were younger than expected from the presence of short-lived nuclides. We revisit the Rb-Sr and Sm-Nd chronology of A881394 in an attempt to establish whether late metamorphism led to inconsistency in its apparent ages.

  11. Age, compositional, and isotopic evidence for crustal recycling in a Late Archean arc, Beartooth Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooden, J.L.; Mueller, P.A.; Graves, M.A.

    1985-01-01

    Late Archean rocks of the eastern Beartooth Mountains range in composition from basaltic andesite to granite and were emplaced 2.73-2.80 Ga ago in a middle to early Archean terrane as indicated by U-Pb zircon studies. Although trace element abundances are extremely variable for this group of rocks, their initial Pb, Sr, and Nd isotopic compositions are remarkably homogenous. A composite Rb-Sr isochron (>30 samples) yield an age of 2.79/plus minus/0.04 Ga with an initial ratio of 0.7022/plus minus/2 while /epsilon/Nd 2.78 Ga ago ranges from -1.5 to -3.1 (av. -2.2). Whole-rock Pb data for these rocks scatter about a 2.75more » Ga isochron and feldspar Pb data suggest initial 206/204 = 13.88, 207/204 = 14.96, and 208/204 = 34.3. These values lie well above values for average crustal leads 2.78 Ga ago as modeled by Stacey and Kramer (1975) and would require development in a reservior with /mu/= 12 from 3.7-2.8 Ga (/mu/= 7.2, 4.5-3.7 Ga). The marked differences between these values and those of the late Archean mantle require that an early to middle Archean crust played a role in the genesis of these rocks. The compositional variety and isotopic homogeneity may have developed as the result of crust-mantle mixing similar to that observed in modern volcanic-plutonic arcs along continental margins where crustal materials can be subducted, and fluids derived from these materials added to the overlying mantle wedge and lower crust. During this period, contaminated mantle may have been generated on a regional scale as evidenced by the isotopic systematics of young mafic volcanics from the northwestern U.S. (e.g. Snake River Plain, Yellowstone, Columbia River).« less

  12. U-Th-Pb and Rb-Sr systematics of Apollo 17 boulder 7 from the North Massif of the Taurus-Littrow valley

    NASA Technical Reports Server (NTRS)

    Nunes, P. D.; Tatsumoto, M.; Unruh, D. M.

    1974-01-01

    Portions of highland breccia boulder 7 collected during the Apollo 17 mission were studied using U-Th-Pb and Rb-Sr systematics. A Rb-Sr internal isochron age of 3.89 plus or minus 0.08 b.y. with an initial Sr-87/Sr-86 of 0.69926 plus or minus 0.00008 was obtained for clast 1 (77135,57) (a troctolitic microbreccia). A troctolitic portion of microbreccia clast 77215,37 yielded a U-Pb internal isochron of 3.8 plus or minus 0.2 b.y. and an initial Pb-206/Pb-207 of 0.69. These internal isochron ages are interpreted as reflecting metamorphic events, probably related to impacts, which reset Rb-Sr and U-Pb mineral systems of older rocks.

  13. Interaction of overlayers of Al and Rb with single-crystalline surfaces of Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Wells, B. O.; Shen, Z.-X.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1990-03-01

    Photoemission results from Al and Rb interfaces with single crystals of Bi2Sr2CaCu2O8 high-temperature superconductors are reported. The Al and Rb adsorbates are found to react quite differently with the Bi2Sr2CaCu2O8 substrate. While adatoms of Rb significantly affect only the Bi and O atoms in the top atomic layer, the Al adsorbate profoundly disrupts the bonding character of the whole Bi2Sr2CaCu2O8 material. For Al, the Bi and Cu states are strongly reduced, and the Sr and O states show evidence of oxidized components. In addition, Al causes a strong out-diffusion of oxygen from the bulk. The differences in the reactivity of Al and Rb are discussed in terms of the different mobility of the two atoms.

  14. Rb-Sr and K-Ar age of globular phyllosilicates and biostratigraphy of the Riphean deposits of the Olenek Uplift (North Siberia)

    NASA Astrophysics Data System (ADS)

    Zaitseva, T. S.; Gorokhov, I. M.; Semikhatov, M. A.; Ivanovskaya, T. A.; Kuznetsov, A. B.; Dorzhieva, O. V.

    2017-11-01

    This work presents results of the complex mineralogical, geochemical, and isotope-geochronological investigation of globular dioctahedral 2: 1 phyllosilicates (GPS) of the illite-glauconite series from the Riphean sequences of the Olenek Uplift. It is established that GPS (glauconite, Al-glauconite, Fe-illite) in deposits of the Arymass, Debengda, and Khaipakh formations are represented by mixed-layer varieties of two types: (1) with relatively low (<10%) and (2) higher (10-20%) contents of expandable layers. Among the mixed-layer varieties are those with disordered alternation of micaceous and smectite layers (R = 0), as well as with tendency to ordering (R ≥ 1). The parameter b of an elementary cell of minerals varies from 9.18 to 9.72 Å. The Rb-Sr age dating of GPS was first carried out in combination with the calculation of theoretical pattern of the cation distribution in the mineral structure and comparison of the calculation results obtained with the Mössbauer and IR spectroscopy data. This approach is based on the assumption that development and evolution of isotope systems in GPS are synchronous with the evolution of the crystalline structure of the mineral at various stages of the geological and geochemical history of the development of sedimentary units. Analysis of the obtained data allows us to state that the structural features of the Riphean GPS from the Olenek section reflect the early diagenetic stages of the formation of the minerals studied. The 87Sr/86Sr initial ratios in the studied sediments are consistent with the range of variations in this ratio in the Middle Riphean Ocean (0.7049-0.7061). The Rb-Sr and K-Ar ages of the GPS of the Arymass (1305 ± 8 and 1302 Ma, respectively), Debengda (1265 ± 12 and 1284 ± 22 Ma), and Khaipakh (1172 ± 18 and 1112 ± 24 Ma) formations in the Olenek Uplift section are close to the accumulation time of corresponding deposits and, correspondingly, have significance for stratigraphic correlations.

  15. Environmental isotopes (18O, 2H, and 87Sr/86Sr) as a tool in groundwater investigations in the Keta Basin, Ghana

    NASA Astrophysics Data System (ADS)

    Jørgensen, Niels; Banoeng-Yakubo, Bruce

    2001-03-01

    Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Résumé. L'analyse des isotopes du milieu (18O, 2H, et 87Sr/86Sr) a été mise en œuvre pour des études hydrogéologiques portant sur des eaux souterraines salées des aquifères du bassin de Keta (Ghana). Les rapports isotopiques 87Sr/86Sr de l'eau souterraine et de l'eau de surface du bassin de Keta reflètent principalement la géologie et la composition minéralogique des formations des bassins d'alimentation et des zones de recharge. Les compositions isotopiques en 18O et en 2H des eaux souterraines profondes présentent de faibles variations et se placent près de la droite des eaux météoriques mondiales. Les eaux des nappes peu profondes

  16. Zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes of the Bozhushan granite, Yunnan province, SW China: Constraints on petrogenesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Cui; Hu, Rui-Zhong; Bi, Xian-Wu; Zhong, Hong; Lan, Jiang-Bo; Zhao, Cheng-Hai; Zhu, Jing-Jing

    2015-03-01

    The Bainiuchang silver-polymetallic ore deposit is a super-large deposit in the western part of the South China tungsten-tin province (or the Nanling tungsten-tin province). The deposit is spatially and temporally associated with the Bozhushan granite pluton. Our new data indicate that the Bozhushan granitoids formed at 86-87 Ma. The granitoids are geochemically consistent with A-type granite. The Bozhushan pluton consists predominantly of biotite granite that is characterized by weakly peraluminous to metaluminous compositions and high alkali contents (Na2O + K2O = 7.51-9.06 wt.%). The granitic rocks are enriched in large-ion lithophile elements (LILE) Rb, Th, U, and K, but relatively depleted in Ba and Sr. In addition, they have high Zr + Nb + Ce + Y contents (310-478 ppm) and high 10,000× Ga/Al ratios (2.7-3.1). The temperatures of the parental magmas for the Bozhushan granites are estimated to be 790-842 °C based on the zircon saturation thermometer. Isotopically, the Bozhushan granites are characterized by elevated initial 87Sr/86Sr ratios (0.7126-0.7257) and low εNd values (-11.2 to -12.4), and high δ18O values (7.91-9.58‰) and low εHf values (-9.5 to -6.1) for zircon crystals, which indicate a dominant continental crustal source. The two-stage Hf model ages vary from 1.53 to 1.86 Ga. The isotopic compositions support the interpretation that the granitic rocks formed by melting of the Meso- and Neoproterozoic metasedimentary basements of the Cathaysia block. These results, together with geological records in the other parts of the western Cathaysia block, suggest that the formation of the Bozhushan A-type granites is related to lithospheric extension and asthenospheric upwelling that are associated with the change of plate motion in Late-Cretaceous.

  17. Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence

    USGS Publications Warehouse

    Bullen, Thomas D.; Chadwick, Oliver A.

    2016-01-01

    Nutrient biolifting is an important pedogenic process in which plant roots obtain inorganic nutrients such as phosphorus (P) and calcium (Ca) from minerals at depth and concentrate those nutrients at the surface. Here we use soil chemistry and stable isotopes of the alkaline earth elements Ca, strontium (Sr) and barium (Ba) to test the hypothesis that biolifting of P has been an important pedogenic process across a soil climosequence developed on volcanic deposits at Kohala Mountain, Hawaii. The geochemical linkage between these elements is revealed as generally positive site-specific relationships in soil mass gains and losses, particularly for P, Ba and Ca, using the ratio of immobile elements titanium and niobium (Ti/Nb) to link individual soil samples to a restricted compositional range of the chemically and isotopically diverse volcanic parent materials. At sites where P is enriched in surface soils relative to abundances in deeper soils, the isotope compositions of exchangeable Ca, Sr and Ba in the shallowest soil horizons (< 10 cm depth) are lighter than those of the volcanic parent materials and trend toward those of plants growing on fresh volcanic deposits. In contrast the isotope composition of exchangeable Ba in deeper soil horizons (> 10 cm depth) at those sites is consistently heavier than the volcanic parent materials. The isotope compositions of exchangeable Ca and Sr trend toward heavier compositions with depth more gradually, reflecting increasing leakiness from these soils in the order Ba < Sr < Ca and downward transfer of light biocycled Ca and Sr to deeper exchange sites. Given the long-term stability of ecosystem properties at the sites where P is enriched in surface soils, a simple box model demonstrates that persistence of isotopically light exchangeable Ca, Sr and Ba in the shallowest soil horizons requires that the uptake flux to plants from those near-surface layers is less than the recycling flux returned to the surface as

  18. High-precision 87Sr/86Sr analyses in wines and their use as a geological fingerprint for tracing geographic provenance.

    PubMed

    Marchionni, Sara; Braschi, Eleonora; Tommasini, Simone; Bollati, Andrea; Cifelli, Francesca; Mulinacci, Nadia; Mattei, Massimo; Conticelli, Sandro

    2013-07-17

    The radiogenic isotopic compositions of inorganic heavy elements such as Sr, Nd, and Pb of the food chain may constitute a reliable geographic fingerprint, their isotopic ratios being inherited by the geological substratum of the territory of production. The Sr isotope composition of geomaterials (i.e., rocks and soils) is largely variable, and it depends upon the age of the rocks and their nature (e.g., genesis, composition). In this study we developed a high-precision analytical procedure for determining Sr isotopes in wines at comparable uncertainty levels of geological data. With the aim of verifying the possibility of using Sr isotope in wine as a reliable tracer for geographic provenance, we performed Sr isotope analyses of 45 bottled wines from four different geographical localities of the Italian peninsula. Their Sr isotope composition has been compared with that of rocks from the substrata (i.e., rocks) of their vineyards. In addition wines from the same winemaker but different vintage years have been analyzed to verify the constancy with time of the (87)Sr/(86)Sr. Sr isotope compositions have been determined by solid source thermal ionization mass spectrometry following purification of Sr in a clean laboratory. (87)Sr/(86)Sr of the analyzed wines is correlated with the isotopic values of the geological substratum of the vineyards, showing little or no variation within the same vineyard and among different vintages. Large (87)Sr/(86)Sr variation is observed among wines from the different geographical areas, reinforcing the link with the geological substratum of the production territory. This makes Sr isotopes a robust geochemical tool for tracing the geographic authenticity and provenance of wine.

  19. Provenance of cryoconite deposited on the glaciers of the Tibetan Plateau: New insights from Nd-Sr isotopic composition and size distribution

    NASA Astrophysics Data System (ADS)

    Dong, Zhiwen; Kang, Shichang; Qin, Dahe; Li, Yang; Wang, Xuejia; Ren, Jiawen; Li, Xiaofei; Yang, Jiao; Qin, Xiang

    2016-06-01

    This study presents the Nd-Sr isotopic compositions and size distributions of cryoconite deposited on the glaciers at different locations on the Tibetan Plateau, in order to trace its source areas and the provenance of long-range transported (LRT) Asian dust on the Tibetan Plateau. The result of scanning electron microscope-energy dispersive X-ray spectrometer analysis indicated that mineral dust particles were dominant in the cryoconite. Most of the cryoconite samples from the Tibetan Plateau indicated different Sr and Nd isotopic composition compared with sand from large deserts (e.g., the Taklimakan and Qaidam deserts). Some cryoconite samples showed very similar Nd-Sr isotopic ratios compared with those of nearby glacier basins (e.g., at Laohugou Glacier No.12, Dongkemadi Glacier, and Shiyi Glacier), indicating the potential input of local crustal dust to cryoconite. The volume-size distribution for the cryoconite particles also indicated bimodal distribution graphs with volume median diameters ranging from 0.57 to 20 µm and from 20 to 100 µm, demonstrating the contribution of both LRT Asian dust and local dust inputs to cryoconite. Based on the particle size distribution, we calculated a mean number ratio of local dust contribution to cryoconite ranging from 0.7% (Baishui Glacier No.1) to 17.6% (Shiyi Glacier) on the Tibetan Plateau. In general, the marked difference in the Nd-Sr isotopic ratios of cryoconite compared with those of large deserts probably indicates that materials from the western deserts have not been easily transported to the hinterland of Tibetan Plateau by the Westerlies under the current climatic conditions, and the arid deserts on the Tibetan Plateau are the most likely sources for cryoconite deposition. The resistance of the Tibetan Plateau to the Westerlies may have caused such phenomena, especially for LRT eolian dust transported over the Tibetan Plateau. Thus, this work is of great importance in understanding the large-scale eolian

  20. Provenance of cryoconite deposited on the glaciers of the Tibetan Plateau: new insights from Nd-Sr isotopic composition and size distribution

    NASA Astrophysics Data System (ADS)

    Dong, Z.

    2016-12-01

    This study presents the Nd-Sr isotopic compositions and size distributions of cryoconite deposited on the glaciers at different locations on the Tibetan Plateau, in order to trace its source areas and the provenance of long-range transported (LRT) Asian dust on the Tibetan Plateau. The result of SEM-EDS analysis indicated that mineral dust particles were dominant in the cryoconite. Most of the cryoconite samples from the Tibetan Plateau indicated different Sr and Nd isotopic composition compared with sand from large deserts (e.g., the Taklimakan and Qaidam deserts). Some cryoconite samples showed very similar Nd-Sr isotopic ratios compared with those of nearby glacier basins (e.g., at Laohugou Glacier No.12, Dongkemadi Glacier and Shiyi Glacier), indicating the potential input of local crustal dust to cryoconite. The volume-size distribution for the cryoconite particles also indicated bi-modal distribution graphs with volume median diameters ranging from 0.57 to 20 μm and from 20 to 100 μm, demonstrating the contribution of both LRT Asian dust and local dust inputs to cryoconite. Based on the particle size distribution, we calculated a mean number ratio of local dust contribution to cryoconite ranging from 0.7% (Baishui Glacier No.1) to 17.6% (Shiyi Glacier) on the Tibetan Plateau. In general, the marked difference in the Nd-Sr isotopic ratios of cryoconite compared with those of large deserts probably indicates that, materials from the western deserts have not been easily transported to the hinterland of Tibetan Plateau by the Westerlies under the current climatic conditions, and the arid deserts on the Tibetan Plateau are the most likely sources for cryoconite deposition. The resistance of the Tibetan Plateau to the Westerlies may have caused such phenomena, especially for LRT eolian dust transported over the Tibetan Plateau. Thus, this work is of great importance in understanding the large scale eolian dust transport and climate over the Tibetan Plateau.

  1. Fingerprints for main varieties of argentinean wines: terroir differentiation by inorganic, organic, and stable isotopic analyses coupled to chemometrics.

    PubMed

    Di Paola-Naranjo, Romina D; Baroni, Maria V; Podio, Natalia S; Rubinstein, Hector R; Fabani, Maria P; Badini, Raul G; Inga, Marcela; Ostera, Hector A; Cagnoni, Mariana; Gallegos, Ernesto; Gautier, Eduardo; Peral-Garcia, Pilar; Hoogewerff, Jurian; Wunderlin, Daniel A

    2011-07-27

    Our main goal was to investigate if robust chemical fingerprints could be developed for three Argentinean red wines based on organic, inorganic, and isotopic patterns, in relation to the regional soil composition. Soils and wines from three regions (Mendoza, San Juan, and Córdoba) and three varieties (Cabernet Sauvignon, Malbec, and Syrah) were collected. The phenolic profile was determined by HPLC-MS/MS and multielemental composition by ICP-MS; (87)Sr/(86)Sr and δ(13)C were determined by TIMS and IRMS, respectively. Chemometrics allowed robust differentiation between regions, wine varieties, and the same variety from different regions. Among phenolic compounds, resveratrol concentration was the most useful marker for wine differentiation, whereas Mg, K/Rb, Ca/Sr, and (87)Sr/(86)Sr were the main inorganic and isotopic parameters selected. Generalized Procrustes analysis (GPA) using two studied matrices (wine and soil) shows consensus between them and clear differences between studied areas. Finally, we applied a canonical correlation analysis, demonstrating significant correlation (r = 0.99; p < 0.001) between soil and wine composition. To our knowledge this is the first report combining independent variables, constructing a fingerprint including elemental composition, isotopic, and polyphenol patterns to differentiate wines, matching part of this fingerprint with the soil provenance.

  2. Fine resolution chronology based on initial Sr-87/Sr-86

    NASA Technical Reports Server (NTRS)

    Stewart, B. W.; Papanastassiou, D. A.; Capo, R. C.; Wasserburg, G. J.

    1993-01-01

    It has been recognized that small variations in initial Sr-87/Sr-86 (Sr(sub I)), can provide a fine scale relative chronology for the chemical fractionation of materials with low Rb/Sr from parent reservoirs with high Rb/Sr. Similarly, Sr(sub I), as determined for low Rb/Sr phases in meteorites, may permit a fine resolution chronology of the recrystallization or metamorphism of planetary materials. For the establishment of a primitive Sr-87/Sr-86 chronology, it is important to search for samples with extremely low Rb/Sr for which the measured Sr-87/Sr-86 is below BABI, in which case the primitive nature of the Sr can be directly established. Using the measured Rb/Sr to calculate an initial Sr-87/Sr-86 can introduce substantial uncertainty if the Rb-Sr are disturbed. We report Sr-87/Sr-86 in plagioclase from silicate pebbles from the Vaca Muerta mesosiderite on which we have reported Sm-147-Nd-143 and Ne-142 correlations. For the purpose of cross-calibration with our previous work we have performed extensive new measurements on Angra dos Reis and on anorthite from Moore County, which have very low Rb/Sr and primitive Sr-87/Sr-86.

  3. Sr isotope zoning in plagioclase from andesites at Cabo De Gata, Spain: Evidence for shallow and deep contamination

    NASA Astrophysics Data System (ADS)

    Waight, Tod E.; Tørnqvist, Jakob B.

    2018-05-01

    Plagioclase crystals in andesites from the Cabo De Gata region show generally radiogenic Sr isotope compositions and consistent core to rim increases in 87Sr/86Sr that are indicative of open system processes in the lithosphere and crustal contamination during crystallization. High-grade metamorphic rocks of the Alpujárride and Nevado-Filábride complexes represent the most likely crustal contaminants. The plagioclases are characterized by subtly zoned and resorbed calcic cores (An73-86). These cores also have radiogenic 87Sr/86Sr (0.7127-0.7129), although typically less radiogenic than plagioclase rims, groundmass plagioclase and whole rock compositions (up to 87Sr/86Sr = 0.7135). These cores are interpreted to represent early crystallization of plagioclase from hydrous melts emplaced into the lower crust. The parental melts to these andesites must therefore have already inherited their radiogenic Sr isotope compositions prior to entering the lower crust and before the onset of crystallization of plagioclase, which is inconsistent with previous models suggesting that the generally radiogenic nature of Sr in these volcanics reflects large amounts of crustal contamination. Instead, the isotope systematics are consistent with models invoked significant addition of a subducted sediment component to the mantle source. The high-An% plagioclase cores are characterized by resorption textures, which are consistent with dissolution during rapid decompression and/or devolatisation during magma migration from the lower crust into upper crustal magma chambers.

  4. Lithium and boron in late-orogenic granites - Isotopic fingerprints for the source of crustal melts?

    NASA Astrophysics Data System (ADS)

    Romer, Rolf L.; Meixner, Anette; Förster, Hans-Jürgen

    2014-04-01

    Geochemically diverse late- and post-Variscan granites of the Erzgebirge-Vogtland, the Saxon Granulite Massif, and Thuringia (Germany) formed by anatectic melting of Palaeozoic sedimentary successions and associated mafic to felsic volcanic rocks. The compositional diversity of the least evolved of these granites is largely inherited from the protoliths. We present Li and B-isotopic data of these granites and compare them with the isotopic composition of their protoliths, to investigate whether (i) there exist systematic differences in the Li and B-isotopic composition among different granite types and (ii) Li and B-isotopic compositions provide information on the granite sources complementary to information from the isotopic composition of Sr, Nd, and Pb and the trace-element signatures. Low-F biotite and two-mica granite types have flat upper continental crust (UCC)-normalized trace-element pattern with variable enrichments in Li, Rb, Cs, Sn, and W and depletions in Sr, Ba, and Eu. These signatures are least pronounced for the Niederbobritzsch biotite granite, which has the largest contribution of mafic material, and most pronounced for the two-mica granites. The granites show a relatively narrow range of δ7Li values (-3.0 to -0.5) and a broad range of δ11B values (-13.4 to +20.1). The δ11B values are lower in rocks with distinctly higher contents of Li, Rb, Cs, and Sn. The high δ11B of the Niederbobritzsch granite may be explained by the melting of former altered oceanic crust in its source. Relative to UCC, intermediate-F to high-F low-P granites show strong depletions in Sr, Ba, Eu as well as Zr and Hf, strong enrichments in Li, Rb, and Cs as well as Nb, Sn, Ta, and W, and REE pattern with stronger enrichments for HREE than for LREE. These granites show narrow ranges of δ7Li (-2.0 to +1.6) and δ11B values (-14.7 to -9.1), reflecting the smaller variability of the Li and B-isotopic composition in their source lithologies. The anomalously high δ7Li value

  5. VARIATIONS IN ISOTOPIC ABUNDANCES OF STRONTIUM, CALCIUM, AND ARGON AND RELATED TOPICS. Eleventh Annual Progress Report for 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-12-01

    Separate abstracts were prepared for twenty-eight of the thirty-three papers. The other papers deal with whole-rock Rb- Sr ages of Ontario norite and micropegmatite and the Southern Rhodesia Great Dyke, Sr isotopes in vein type mineral deposits, whole-rock Rb-- Sr studies of volcanics, and accuracy in Sr / sup 87//Sr/sup 86/ measurements. (D.C.W.)

  6. Neodymium and strontium isotopic dating of diagenesis and low-grade metamorphism of argillaceous sediments

    NASA Astrophysics Data System (ADS)

    Schaltegger, Urs; Stille, Peter; Rais, Naoual; Piqué, Alain; Clauer, Norbert

    1994-03-01

    The behaviour of the Rb-Sr and Sm-Nd isotopic systems with increasing degree of Hercynian metamorphic overprint was studied along a transect in Cambrian shales of northwestern Morocco. Clay fractions of < 0.2 to 2-6 μm size from five samples were investigated, representing a range from nonmetamorphic to epizonal metamorphic conditions. The samples were washed in cold l N HC1 prior to digestion to separate soluble/exchangeable Rb, Sr, Sm, and Nd from amounts of these elements fixed in the crystallographic sites of the minerals and to analyze both components separately. The results reveal that the Rb-Sr isotopic system is dominated by Sr hosted by clay mineral phases (both detrital and authigenic illite and chlorite) and carbonate-hosted soluble Sr. Isotopic homogenization of Sr occurred during Hercynian metamorphism, yielding ages between 309 and 349 Ma. The Sm-Nd isotopic system, on the other hand, is dominated by cogenetic apatite and Fe oxide/ hydroxide, both having high contents of leachable REEs. The leachates yield a Sm-Nd isochron age of 523 ± 72 Ma, indicating diagenetic equilibrium between apatite and Fe-oxide/hydroxide. Fine-grained clay fractions of < 0.2 μm size plot onto this reference line, suggesting isotopic equilibrium with the leachates. Size fractions > 0.2 μm show inheritance of a detrital Nd component. The study demonstrates that the diagenesis of the investigated argillaceous sediments can be dated by the Sm-Nd chronometer in authigenic cement phases. The isotopic system of these minerals (apatite, Fe hydroxide/oxide) was homogenized during authigenic mineral growth in a sediment that was flushed by diagenetic fluids and had abundant primary or secondary interconnected pore space. The Hercynian metamorphic overprint caused partial isotopic rehomogenization of the adsorbed and clay-hosted portion of the Sr as well as of the carbonate-hosted Sr. The Sm-Nd system in the cement phases survived this metamorphism. This results in decoupling of

  7. Sr Isotopes at the Onset of the Ice Ages at the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Fuchs, Rita; Lazar, Boaz; Angiolini, Lucia; Crippa, Gaia; Stein, Mordechai

    2017-04-01

    Sr isotopes can be used to constrain the marine Sr budget. The temporal variations in the 87Sr/86Sr ratios (radiogenic Sr) have been reconstructed over the past few decades based on marine macro and micro fossils data (e.g. brachiopods and foraminifera). It is used to constrain the sources and amounts of strontium that dictate the temporal variations in oceanic Sr throughout the Phanerozoic. On the other hand, the study of processes controlling the composition stable Sr isotopes (δ88/86Sr) is very new and only limited research was conducted on this topic during the past few years. Up to date, no δ88/86Sr data are available for considerable parts of Earth's history and the contribution of the potential Sr sources to the oceans is poorly constrained. Here, we set to examine the behavior of radiogenic and stable Sr isotopes in the marine environment of the northern Apennines (Italy) during the time interval of the late Pliocene to early-Middle Pleistocene - upon the onset of ice ages in the northern latitudes. We collected fossil mollusks from outcrops of the Arda and Stirone Rivers that are rich in bivalves, brachiopods, foraminifera (that were used for establishing the chronostratigraphy of the sections) and other genera. Ecological and sedimentological analysis of the section suggest a normal marine environment of depth range of several tens of meters that existed on the southern flanks of the large Po embayment. In order to evaluate the potential of the fossil assemblages in the Arda and Stirone sections to serve as reliable recorders of the marine δ88/86Sr of seawater during the desired period, we examined mineralogical and chemical properties of the fossils (e.g. distribution of trace elements like Sr and Mg in the skeletons, microstructures like secondary fillings of punctate shells in brachiopod) and measured the 87Sr/86Sr ratios. Among the species analyzed, Aequipecten opercularis (bivalve) and Glycymeris inflata (bivalve) have aragonite skeletons that

  8. Granitoids of the Ufalei block (South Urals): Sr-Nd isotope systematics, geodynamic position and genetic reconstructions

    NASA Astrophysics Data System (ADS)

    Ronkin, Yu. L.; Shardakova, G. Yu.; Maslov, A. V.; Shagalov, E. S.; Lepikhina, O. P.

    2009-04-01

    Petrogeochemical and isotopic-geochronological signatures in granitoids developed in structures with complex geological history represent an important feature for reconstructing paleogeodynamic settings. Granitoids are widespread in the western slope of the Urals, where the Uralian Orogen contacts via a collage of different-age blocks of the east European Platform. The Ufalei block located in the Central Urals megazone at the junction between the South and Middle Urals’ segments represents one such boundary structure with multistage geological evolution. The isotopic ages obtained by different methods for acid igneous rocks range from 1290 to 245 Ma. We determined close Rb-Sr and Sm-Nd ages (317 Ma) for granites of the Nizhnii Ufalei Massif. By their petrochemical parameters, granitoids and host granite-gneisses differ principally from each other: the former are close to subduction-related, while the latter, to continental-riftogenic varieties. The primary ratio (87Sr/86Sr)0 = 0.70428 and ɛNd ≈ +4 values indicate significant contribution of oceanic (island-arc?) material to the substrate, which served as a source for granites of the Nizhnii Ufalei Massif. Model Nd ages of granites vary from 641 to 550 Ma. Distinct oceanic rocks and varieties with such ages are missing from the surrounding structures. New isotopic dates obtained for ultramafic and mafic rocks from different zones of the Urals related to the Cadomian cycle imply development of unexposed Upper Riphean-Vendian “oceanic” rocks in the central part of the Ufalei block, which played a substantial role in the formation of the Nizhnii Ufalei granitoids. Such rocks could be represented, for example, by fragments of the Precambrian Timanide-type ophiolite association. The analysis of original materials combined with published data point to the heterogeneous composition and structure of the Ufalei block and a significant part of the western segment of the Central Uralian Uplift and extremely complex

  9. Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin

    2016-09-01

    The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.

  10. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere

    USGS Publications Warehouse

    Tatsumoto, M.; Basu, A.R.; Wankang, H.; Junwen, W.; Guanghong, X.

    1992-01-01

    The UThPb, SmNd, and RbSr isotopic systematics of mafic and ultramafic xenolithic rocks and associated megacrystic inclusions of aluminous augite and garnet, that occur in three alkalic volcanic suites: Kuandian in eastern Liaoning Province, Hanluoba in Hebei Province, and Minxi in western Fujian Province, China are described. In various isotopic data plots, the inclusion data invariably fall outside the isotopic ranges displayed by the host volcanic rocks, testifying to the true xenolithic nature of the inclusions. The major element partitioning data on Ca, Mg, Fe, and Al among the coexisting silicate minerals of the xenoliths establish their growth at ambient mantle temperatures of 1000-1100??C and possible depths of 70-80 km in the subcontinental lithosphere. Although the partitioning of these elements reflects equilibrium between coexisting minerals, equilibria of the Pb, Nd, and Sr isotopic systems among the minerals were not preserved. The disequilibria are most notable with respect to the 206Pb 204Pb ratios of the minerals. On a NdSr isotopic diagram, the inclusion data plot in a wider area than that for oceanic basalts from a distinctly more depleted component than MORB with higher 143Nd 144Nd and a much broader range of 87Sr 86Sr values, paralleling the theoretical trajectory of a sea-water altered lithosphere in NdSr space. The garnets consistently show lower ?? and ?? values than the pyroxenes and pyroxenites, whereas a phlogopite shows the highest ?? and ?? values among all the minerals and rocks studied. In a plot of ??207 and ??208, the host basalts for all three areas show lower ??207 and higher ??208 values than do the xenoliths, indicating derivation of basalts from Th-rich (relative to U) sources and xenoliths from U-rich sources. The xenolith data trends toward the enriched mantle components, EMI and EMII-like, characterized by high 87Sr 86Sr and ??207 values but with slightly higher 143Nd 144Nd. The EMI trend is shown more distinctly by the host

  11. A Sr and Mg isotopic study of soil and stream waters along an erosional gradient, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Rosen, V. B.; Maher, K.; Kouba, C. M.; Weinman, B. A.; Yoo, K.; Mudd, S. M.

    2012-12-01

    Since chemical weathering rates are proposed to regulate atmospheric CO2 concentrations and by extension global temperature over geologic timescales, understanding the relationship between chemical weathering rates and physical erosion is crucial to accurately interpreting Earth's climate history. The rate of supply of fresh minerals to the weathering zone is known to be an important control on chemical weathering rates. However, the consequences of physical erosion on the isotopic composition of weathering-derived solutes are more difficult to assess. This study capitalizes on a series of granitic hillslope transects with different erosion rates but similar climate, vegetation, and bedrock, in order to assess the consequences of erosion on the Sr and Mg isotopic composition of solutes. Reactive transport model simulations of varying complexity have been used to complement the field measurements and to analyze the sensitivity of fluid isotopic compositions to changes in key parameters such as erosion rate, flow rate, and biological cycling. The three hillslopes in the Feather River Basin, California reflect different degrees of channel erosion at their bases—BRC is a hillslope with active channel incision (60% average slope, below the knickpoint), FTA is a hillslope reflecting the transition between the relict and modern-day incising areas (50% average slope, at the knickpoint), and POMD is a 30% average hillslope in the relict landscape above the knickpoint. We measured the major element compositions, as well as the Sr and Mg isotopic compositions of soil water leaches (deionized water leaches), lysimeters, stream waters, and groundwaters by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The 87Sr/86Sr values of soil and stream waters show minimal variation (0.7042 to 0.7046) as a function of soil depth, erosion rate, or sampling season despite abundant radiogenic biotite in the profiles. These results agree with the reactive transport

  12. Source Signature of Sr Isotopes in Fluids Emitting From Mud volcanoes in Taiwan

    NASA Astrophysics Data System (ADS)

    Chung, C.; You, C.; Chao, H.

    2003-12-01

    Located at the boundary between the Philippine Sea Plate and the Asia Continental Plate, abundance of mud volcanoes were erupted on land in Taiwan. According to their occurrences and associated tectonic settings, these mud volcanoes were classified into four groupies. The group (I) mud volcanoes are located in the western coastal plane, whereas group (II) and (III) are situated near the Kutinkung anticline axis and the Chishan fault respectively. The group (IV) mud volcanoes are discovered at the Coastal Range. Although there are numerous studies focused on morphology, possible fluid migration paths and sources are poorly understood. We have collected and analyzed major ions and Sr isotopic ratios in fluids separated from various mud volcanoes in Taiwan. Chemical contents of these fluids were measured by IC and the emitted gasses were analyzed by GC. The Sr concentrations in these fluids were determined using AA and the isotopic compositions were analyzed by TIMS. The dominated ions in fluids are Na and Cl which account for 98% of dissolved materials. All fluids show similar Na/Cl ratios(0.7-0.8), slightly higher than seawater but each group has unique Sr isotopic signature. Waters expelled from group I mud volcanoes featured with low salinity and high Sr isotopic ratios ranged from 0.71150 to 0.71175. Groups II and III were outcroped in the Kutinkung formation but show distinctive chemical compositions. Group II fluids have four times Cl concentrations(358-522mM) compared with those of group III(85-162mM). The latter fluids appear to be more radiogenic(0.71012- 0.71075) indicating possible influence due to water-rock interactions. Low 87Sr/86Sr(0.70692-0.70939) is typical characteristic of mud volcano fluids in group IV where large Mg and K depletion were discovered, suggesting effects due to sediment diagenetic processes. The chemical compositions of mud volcano associated gasses show similar distribution pattern. The major gas constituents in mud volcano zones

  13. Pb, Sr, and Nd isotopic compositions of a suite of Large Archean, igneous rocks, eastern Beartooth Mountains - Implications for crust-mantle evolution

    NASA Technical Reports Server (NTRS)

    Wooden, J. L.; Mueller, P. A.

    1988-01-01

    Compositionally diverse Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains (Montana and Wyoming) were studied and shown to have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial values lower than predicted for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. A model involving subduction of continental detritus and contamination of the overlying mantle is suggested.

  14. Demonstration Of A Portable Approach For Rb-Sr Geochronology On The Boulder Creek Granite: Implications For Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Anderson, F.; Nowicki, K.; Whitaker, T.

    2011-12-01

    We have succeeded at producing a Rubidium-Strontium (Rb-Sr) geochronology measurement of the Boulder Creek Granite of 1.369±0.144 Ga (MSWD=1; actual value 1.34±0.07 Ga [0]) in under 5 hours using a laser desorption resonance ionization mass spectrometer (LDRIMS) that can be miniaturized for portable use. The LDRIMS approach would enable new in-situ radiometric measurements for the Moon and Mars that would significantly improve geologic interpretation of these complex surfaces and constrain impactor flux throughout the solar system. Models of the age error based on existing Rb-Sr measurements of Mars meteorites using 100-1000 LDRIMS measurements at ±0.1% (1σ) accuracy show that analytical uncertainties <±50 Ma are possible [1]. The LDRIMS technique avoids the interference and mass resolution issues associated with other geochronology measurements [2]. Our current prototype can measure the isotope ratio of lab standards with 10 ppm net Sr or Rb to a precision of ±0.1% (1σ), with a sensitivity of 1:1010 in ~15 minutes. The speed of the LDRIMS measurement allows thousands of samples to be measured in significantly shorter periods of time than traditional methods, with little or no sample preparation. This abstract focuses on samples of the Boulder Creek Granite from Elephant Butte located in Boulder, Colorado, composed of a "gneissic quartz monzonite and granodiorite with local facies of aplite, alaskite, hornblende diorite, and pegmatite" [3]. We rough cut a block of Boulder Creek Granite to fit our sample holder, verifying that a range of quartz, plagioclase, hornblende and biotite were visible, and placing it in our sample chamber. 3000 laser desorption shots were acquired at each of 97 spots manually separated in a rastering fashion by ~300-500 μm. For this initial experiment, no attempt was made to localize desorption to a single mineral, or identify the mineral under desorption. The age error of ±144 m.y. is consistent with our analytical models for a

  15. Precise determination of triple Sr isotopes (δ⁸⁷Sr and δ⁸⁸Sr) using MC-ICP-MS.

    PubMed

    Liu, Hou-Chun; You, Chen-Feng; Huang, Kuo-Fang; Chung, Chuan-Hsiung

    2012-01-15

    The non-traditional stable strontium (Sr) isotopes have received increasing attention recently as new geochemical tracers for studying Sr isotopic fractionation and source identification. This has been attributed to the advancement in multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), allows to determine precisely and simultaneously of the triple Sr isotopes. In this study, we applied a modified empirical external normalization (EEN) MC-ICPMS procedure for mass bias correction in Sr isotopic measurement using (92)Zr/(90)Zr. High-purity Zr Standard was spiked into sample solutions and the degree of fractionation was calculated off-line using an exponential law. The long-term external reproducibility for NIST SRM 987 δ(87)Sr and δ(88)Sr was better than 0.040‰ and 0.018‰ (2SD), respectively. The IAPSO standard seawater was used as a secondary standard to validate the analytical protocol and the absolute ratios measured were 0.709161±0.000018 for (87)Sr/(86)Sr, 0.177±0.021‰ for δ(87)Sr, and 0.370±0.026‰ for δ(88)Sr (2SD, n=7). These values are in good agreement with the literature data analyzed by thermal ionization mass spectrometry (TIMS) double spike technique. Rock standards, BHVO-2, BCR-2 and AGV-2 were also analyzed to validate the robustness of the methodology and showed identical results with literature data. Compared to previous (91)Zr/(90)Zr correction, we obtained improved results based on (92)Zr/(90)Zr, probably due to similar mass difference between (92)Zr/(90)Zr and measured Sr isotopes. The new analytical protocol presented in this study not only improves the analytical precision but also increases sample efficiency by omitting the use of the standard-sample bracketing (SSB) procedure. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Ca isotope fractionation and Sr/Ca partitioning associated with anhydrite formation at mid-ocean ridge hydrothermal systems: An experimental approach

    NASA Astrophysics Data System (ADS)

    Syverson, D. D.; Scheuermann, P.; Pester, N. J.; Higgins, J. A.; Seyfried, W. E., Jr.

    2016-12-01

    The elemental and isotopic mass balance of Ca and Sr between seawater and basalt at mid-ocean ridge (MOR) hydrothermal systems is an integrated reflection of the various physiochemical processes, which induce chemical exchange, in the subseafloor. Specifically, the processes of anhydrite precipitation and recrystallization are recognized to be important controls on governing the Ca and Sr elemental and isotope compositions of high temperature vent fluids, however, few experimental data exist to constrain these geochemical effects. Thus, to better understand the associated Sr/Ca partitioning and Ca isotope fractionation and rate of exchange between anhydrite and dissolved constituents, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350°C and 500 bar at chemical conditions indicative of active MOR hydrothermal systems. The experimental data suggest that upon entrainment of seawater into MOR hydrothermal systems, anhydrite will precipitate rapidly and discriminate against the heavy isotopes of Ca (Δ44/40Ca(Anh-Fluid) = -0.68 - -0.25 ‰), whereas Sr/Ca partitioning depends on the saturation state of the evolving hydrothermal fluid with respect to anhydrite at each PTX (KD(Anh-Fluid) = 1.24 - 0.55). Coupling experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems in the oceanic crust, data suggest that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will be influenced by disequilibrium effects, while, at higher temperatures further into the oceanic crust, anhydrite will be representative of equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. These experimental observations are consistent with analyzed Sr/Ca and Ca isotope compositions of anhydrites and vent fluids sampled from modern MOR hydrothermal systems1,2 and can be used to further constrain the geochemical effects of hydrothermal circulation in the oceanic crust

  17. Sm-Nd and Rb-Sr Isotopic Systematics of a Heavily Shocked Martian Meteorite Tissint and Petrogenesis of Depleted Shergottites

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Nyquist, L. E.; Park, J.; Agee, Carl B.

    2014-01-01

    Tissint is a very fresh Martian meteorite that fell near the town of Tissint in Morocco on July 18, 2011. It contains abundant olivine megacrysts (23%) in a fine-grained matrix of pyroxene (55%), maskelynitized plagioclase (15%), opaques (4%) and melt pockets (3%) and is petrographically similar to lithologies A and C of picritic shergottite EETA 79001 [1,2]. The presence of 2 types of shock-induced glasses and all 7 high-pressure mineral phases that were ever found in melt pockets of Martian meteorites suggests it underwent an intensive shock metamorphism of 25 GPa and 2000 C localized in melt pockets [2]. Mineral textures suggest that olivines, pyroxenes and plagioclases probably did not experience such hightemperature. Earlier determinations of its age yielded 596+/-23 Ma [3] and 616+/-67 Ma [4], respectively, for the Sm-Nd system and 583+/-86 Ma for the Lu-Hf system [4], in agreement with the 575+/-18 Ma age of the oldest olivine-phyric depleted shergottite Dho 019 [5]. However, the exposure ages of Tissint (1 Ma [1, 6, 7]) and Dho 019 (20 Ma [8]) are very different requiring two separate ejection events. These previously determined Sm-Nd and Lu-Hf ages are older than the Ar-Ar maskelynite plateau age of 524+/-15 Ma [9], reversing the pattern usually observed for Martian meteorites. In order to clarify these age issues and place models for Tissint's petrogenesis on a firm basis, we present new Rb-Sr and Sm- Nd isotopic results for Tissint, and discuss (a) the shock effects on them and the Ar-Ar chronometer, (b) correlation of the determined ages with those of other depleted shergottites, and (c) the petrogenesis of depleted shergottites. Since the meteorite is a recent fall, terrestrial contamination is expected to be minimal, but, the strong shock metamorphism might be expected to compromise the equilibrium of the isotopic systems.

  18. The sources and time-integrated evolution of diamond-forming fluids - Trace elements and isotopic evidence

    NASA Astrophysics Data System (ADS)

    Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Logvinova, Alla; Sobolev, Nikolay V.

    2014-01-01

    Sub-micrometer inclusions in fibrous diamond growth zones carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The major and trace element patterns of diamond-forming fluids vary widely. Such elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Thus, the combination of elemental and isotope data is a powerful tool in constraining the origin of fluids from which diamonds precipitate. Here we present combined trace element composition (34 diamonds) and Sr isotopic data (23 diamonds) for fluid-rich diamonds from six worldwide locations. The Nd and Pb isotopic composition of two of the diamonds were also obtained. Several of the samples were analyzed in at least 2 locations to investigate variations in the fluid during diamond growth. The data was acquired using an off-line laser sampling technique followed by solution ICPMS and TIMS analysis. The Sr isotopic compositions of diamond fluids from the different suites range between convecting mantle values for Udachnaya (87Sr/86Sr363 = 0.70300 ± 16 to 0.70361 ± 4), to highly enriched values, up to 87Sr/86Sr = 0.72330 ± 3, for a diamond from Congo. No isochronous relationships were observed in any of the suites. The lowest Nd isotopic composition recorded so far in a diamond is from Congo (εNd71 = -40.4), which also contains the most radiogenic Sr isotopic composition. In contrast, a less enriched but still rather unradiogenic Nd isotope composition (εNd540 = -11) was obtained for a diamond from Snap Lake, which has moderately radiogenic Sr isotopic enrichment (87Sr/86Sr540 = 0.70821 ± 1). The Pb isotopic system measured in one diamond indicates a complex evolution for the fluid source, with extreme 207Pb/204Pb ratio (15.810 ± 3) and moderate

  19. Application of LA-MC-ICP-MS for analysis of Sr isotope ratios in speleothems

    NASA Astrophysics Data System (ADS)

    Weber, Michael; Scholz, Denis; Wassenburg, Jasper A.; Jochum, Klaus Peter; Breitenbach, Sebastian

    2017-04-01

    Speleothems are well established climate archives. In order to reconstruct past climate variability, several geochemical proxies, such as δ13C and δ18O as well as trace elements are available. Since several factors influence each individual proxy, robust interpretation is often hampered. This calls for multi-proxy approaches involving additional isotope systems that can help to delineate the role of different sources of water within the epikarst and changes in soil composition. Sr isotope ratios (87Sr/86Sr) have been shown to provide useful information about water residence time and water mixing in the host rock. Furthermore, Sr isotopes are not fractionated during calcite precipitation, implying that the 87Sr/86Sr ratio of the speleothem provides a direct record of the drip water. While most speleothem studies applying Sr isotopes used the TIMS methodology, LA-MC-ICP-MS has been utilized for several other archives, such as otoliths and teeth. This method provides the advantage of faster data acquisition, higher spatial resolution, larger sample throughput and the absence of chemical treatment prior to analysis. Here we present the first LA-MC-ICP-MS Sr isotope data for speleothems. The analytical uncertainty of our LA-MC-ICP-MS Sr data is in a similar range as for other carbonate materials. The results of different ablation techniques (i.e. line scan and spots) are reproducible within error, implying that the application of this technique on speleothems is possible. In addition, several comparative measurements of different carbonate reference materials (i.e. MACS-3, JCt-1, JCp-1), such as tests with standard bracketing and comparison of the 87Sr/86Sr ratios with nanosecond laser ablation system and a state-of-the-art femtosecond laser ablation system, show the robustness of the method. We applied the method to samples from Morocco (Grotte de Piste) and India (Mawmluh Cave). Our results show only very small changes in the 87Sr/86Sr ratios of both speleothems

  20. Pb, Sr, and Nd isotopes in seamount basalts from the Juan de Fuca Ridge and Kodiak-Bowie seamount chain, northeast Pacific

    USGS Publications Warehouse

    Hegner, E.; Tatsumoto, M.

    1989-01-01

    Pb, Sr, and Nd isotopic ratios and their parent/daughter element concentrations for 28 basalts from 10 hotspot and nonhotspot seamounts are reported. Nd and Sr isotopic compositions (143Nd/144Nd = 0.51325-0.51304; 87Sr/86Sr = 0.70237-0.70275) plot in the envelope for Juan de Fuca-Gorda ridge basalts with tholeiitic basalts showing more depleted sources and a better negative correlation than transitional to alkalic basalts. Pb isotopic ratios in tholeiitic and alkalic basalts overlap (206Pb/204Pb = 18.29-19.44) and display a trend toward more radiogenic Pb in alkalic basalts. The isotopic data for hotspot and nonhotspot basalts are indistinguishable and correlate broadly with rock composition, implying that they are controlled by partial melting. The isotopic variation in the seamount basalts is about 60% (Nd-Sr) to 100% (Pb) of that in East Pacific Rise basalts and is interpreted as a lower limit for the magnitude of mantle heterogeneity in the northeast Pacific. The data indicate absence of a chemically distinct plume component in the linear seamount chains and strongly suggest an origin from mid-ocean ridge basalt-like east Pacific mantle. -Authors

  1. The Dissolved Ca Isotope Composition of Himalayan-Tibetan Waters

    NASA Astrophysics Data System (ADS)

    Tipper, E. T.; Galy, A.; Bickle, M. J.

    2004-12-01

    Determining the relative proportions of carbonate versus silicate weathering in the Himalaya is important for understanding the long-term atmospheric CO2 budget and the marine Sr isotope record. 87Sr/86Sr is not a straightforward proxy of carbonate to silicate weathering in the Himalaya and up to 50% of the dissolved Ca may be removed by the precipitation of secondary calcite. Ca isotopes have the potential to constrain the relative inputs of carbonates to silicates and incongruent dissolution processes in the weathering environment. Ca is the major cation carried by rivers. Thirty four Himalayan rock and water samples from the Nepal Himalaya and Tibet have been analysed for 44/42Ca and 43/42Ca on a Nu-Instruments Multiple Collector -ICP-MS. Unlike the 44/40Ca ratio the 44/42Ca is not susceptible to excess 40Ca production from the decay of K. All samples lie on a single mass fractionation line. There is a total range of 0.4 \\permil variation in \\delta44Ca with values from 0.63 \\permil - 0.21 \\permil relative to the SRM915a standard. This is comparable to that already reported with \\delta44/40Ca for small catchments and global rivers. Small first order catchments from each of the main lithotectonic units of the Himalaya have been analysed to examine the effect of lithology on dissolved Ca isotopic composition. In agreement with previous studies elsewhere there is little correlation between source rock and dissolved composition for small rivers spanning a range of source rock from limestone to various silicates and covering a vegetation range from temperate semi-desert to jungle. \\delta44Ca is not correlated with 87Sr/86Sr or Na/Ca ratios confirming that source rock composition is not the dominant control on the observed range in \\delta44Ca. A time-series has been examined for the Marsyandi River, central Nepal. In spite of significant systematic variations in major element chemistry including Ca concentration and 87Sr/86Sr the variations in \\delta44Ca are

  2. Phenomenological study of nuclear structure of neutron-rich 88Rb isotope

    NASA Astrophysics Data System (ADS)

    Gupta, Surbhi; Gupta, Anuradha; Bharti, Arun

    2018-05-01

    A theoretical study of the nuclear structure of odd-odd 88Rb nucleus in the A ˜100 mass region is carried out by using the angular-momentum-projection technique implemented in the Projected Shell Model (PSM). The influence of the high-j orbitals, h11/2 for neutrons and g9/2 for protons on the structure of 88Rb isotope is investigated in the present case by assuming an axial symmetry in the deformed basis. For this isotope, PSM calculations are performed to obtain the yrast line and also the description of the formation of the yrast level structure from multi-quasi-particle configurations. The back-bending in moment of inertia and transition energies have also been calculated and compared with the experimental data.

  3. Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes

    USGS Publications Warehouse

    Stoeser, D.B.; Frost, C.D.

    2006-01-01

    New Nd, Sr and O isotopic data for granitoid rocks of the Saudi Arabian Shield are presented together with published Nd, Pb, Sr and O isotopic data and all available geologic and geochronologic information to re-evaluate the terranes defined for the Saudi Arabian part of the Arabian-Nubian Shield. Three groups of terranes are identified: 1) the western arc terranes, 2) the eastern arc terranes, and 3) the Khida terrane. The Khida terrane is the only terrane composed of pre-Neoproterozoic continental crust. The western arc terranes are of oceanic arc affinity, and have the least radiogenic Pb and Sr and most radiogenic Nd isotopic compositions and some of the lowest ??18O values of any rocks of the Saudi Arabian Shield. Although some previous studies have characterized the eastern arc terranes as of continental affinity, this study shows that they too are composed of Neoproterozoic oceanic arcs, although their sources have slightly elevated 208Pb/204Pb, Nd, Sri, and ??18O values compared to the western arc terranes. These data suggest that either the isotopic composition of the mantle source for the western arc terranes is more depleted than that of the eastern arc terranes or the eastern arc terranes have been mixed with a small amount of cratonic source material, or both. We further elaborate on the Hulayfah-Ad Dafinah fault zone as a major boundary within the Saudi Arabian portion of the East African Orogen. With further study, its northern extension may be shown to pass through what has been defined as the Hail terrane, and its southern extension appears to lie under cover east of the Tathlith-Malahah terrane and extend into Yemen. It may represent the collision zone between East and West Gondwana, and at the very least it is an important suture between groups of arc terranes of contrasting isotopic composition caught between two converging continents.

  4. Sediment Sources, Depositional Environment, and Diagenetic Alteration of the Marcellus Shale, Appalachian Basin, USA: Nd, Sr, Li and U Isotopic Constraints

    NASA Astrophysics Data System (ADS)

    Phan, T. T.; Capo, R. C.; Gardiner, J. B.; Stewart, B. W.

    2017-12-01

    The organic-rich Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, is a major target of natural gas exploration. Constraints on local and regional sediment sources, depositional environments, and post-depositional processes are essential for understanding the evolution of the basin. In this study, multiple proxies, including trace metals, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U and Li isotopes were applied to bulk rocks and authigenic fractions of the Marcellus Shale and adjacent limestone/sandstone units from two locations separated by 400 km. The range of ɛNd values (-7.8 to -6.4 at 390 Ma) is consistent with a clastic sedimentary component derived from a well-mixed source of fluvial and eolian material of the Grenville orogenic belt. The Sm-Nd isotope system and bulk REE distributions appear to have been minimally affected by post-depositional processes, while the Rb-Sr isotope system shows evidence of limited post-depositional redistribution. While REE are primarily associated with silicate minerals (80-95%), REE patterns of sequentially extracted fractions reflect post-depositional alteration at the intergranular scale. Although the chemical index of alteration (CIA = 54 to 60) suggests the sediment source was not heavily weathered, Li isotope data are consistent with progressively increasing weathering of the source region during Marcellus Shale deposition. δ238U values in bulk shale and reduced phases (oxidizable fraction) are higher than those of modern seawater and upper crust. The isotopically heavy U accumulated in these authigenic phases can be explained by the precipitation of insoluble U in anoxic/euxinic bottom water. Unlike carbonate cement within the shale, the similarity between δ238U values and REE patterns of the limestone units and those of modern seawater indicates that the limestone formed under open ocean (oxic) conditions.

  5. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    NASA Astrophysics Data System (ADS)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other

  6. Isotopic Composition of the Neolithic Alpine Iceman's Tooth Enamel and Clues to his Origin

    NASA Astrophysics Data System (ADS)

    Muller, W.; Muller, W.; Halliday, A. N.

    2001-12-01

    Five small enamel fragments from three teeth of the upper right jaw from the mummy of the Neolithic Alpine Iceman have been investigated for their isotopic composition in order to shed light on his geographic origins. Soils from approximately contemporaneous sites were sampled for comparison. Tooth enamel forms ontogenetically very early and is not re-mineralized during later lifetime (unlike with bone material). Therefore, unique insights into the Iceman's childhood can be acquired. Enamel also is the densest tissue of a human body and is thus less susceptible to post-mortem alteration. Both radiogenic (Sr, Pb, Nd) and stable isotopes (O, C) are investigated. Radiogenic isotopes allow reconstruction of the local geological background, because humans incorporate Sr, Pb and Nd from their local environment by eating local food. Stable isotopes provide information about altitude and/or position relative to the main Alpine watershed. High spatial-resolution laser-ablation ICPMS profiles reveal that most elements are distributed in a manner that is essentially similar to modern human teeth except of that La, Ce, Nd (LREE) show up to a 100-fold enrichment towards the outer enamel surface. These uptake-profiles may reflect interaction with melt water, consistent with data for the composition of samples of the Iceman's skin. Biogenic apatites (enamel, bone) have very low in-vivo LREE concentrations, but take up LREEs post-mortem from the burial environment. Ice core samples from the finding site show concentrations up to 400 ppt Ce. Such high uptake of the LREEs precludes the derivation of an in-vivo Nd isotopic signal, but both other radiogenic tracers, Sr and Pb, show pristine (in-vivo) concentrations of 87 ppm and 0.1 ppm, respectively. Strontium isotopic compositions were determined on fragments from the canine, the first and second premolar (1 - 9 mg) and two hip bone samples, utilizing three sequential leaching steps for each sample to detect possible alteration

  7. Using trace element content and lead isotopic composition to assess sources of PM in Tijuana, Mexico

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Castro, T.; Bernal, J. P.; Almanza-Veloz, V.; Zavala, M.; González-Castillo, E.; Saavedra, M. I.; Perez-Arvízu, O.; Díaz-Trujillo, G. C.; Molina, L. T.

    2016-05-01

    PM2.5 samples were collected at two urban sites (Parque Morelos (PQM) and CECyTE (CEC)) in Tijuana during the Cal-Mex campaign from May 24 to June 5, 2010. Concentration of trace elements (Mg, Al, Ti, V, Mn, Fe, Co, Ni, Zn, Cu, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Ba, La, Ce, and Pb), and Pb isotopic composition were determined in order to study the sources of PM impacting each site. Other chemical analysis (gravimetric, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs)), were also performed. Finally, back-trajectories were calculated to facilitate the interpretation of the chemical data. Trace elements results show that CEC is a receptor site affected by mixed regional sources: sea salt, mineral, urban, and industrial. On the other hand, PQM seems to be impacted mainly by local sources. In particular, Pb at CEC is of anthropogenic, as well as crustal origin. This conclusion is supported by the lead isotopic composition, whose values are consistent with a combination of lead extracted from US mines, and lead from bedrocks in the Mexican Sierras. Some of the time variability observed can be explained using the back-trajectories.

  8. Mineral dissolution in the Cape Cod aquifer, Massachusetts, USA: I . Reaction stoichiometry and impact of accessory feldspar and glauconite on strontium isotopes, solute concentrations, and REY distribution

    USGS Publications Warehouse

    Bau, Michael; Alexander, Brian; Chesley, John T.; Dulski, Peter; Brantley, Susan L.

    2004-01-01

    To compare relative reaction rates of mineral dissolution in a mineralogically simple groundwater aquifer, we studied the controls on solute concentrations, Sr isotopes, and rare earth element and yttrium (REY) systematics in the Cape Cod aquifer. This aquifer comprises mostly carbonate-free Pleistocene sediments that are about 90% quartz with minor K-feldspar, plagioclase, glauconite, and Fe-oxides. Silica concentrations and pH in the groundwater increase systematically with increasing depth, while Sr isotopic ratios decrease. No clear relationship between 87Sr/86Sr and Sr concentration is observed. At all depths, the 87Sr/86Sr ratio of the groundwater is considerably lower than the Sr isotopic ratio of the bulk sediment or its K-feldspar component, but similar to that of a plagioclase-rich accessory separate obtained from the sediment. The Si-87Sr/86Sr-depth relationships are consistent with dissolution of accessory plagioclase. In addition, solutes such as Sr, Ca, and particularly K show concentration spikes superimposed on their respective general trends. The K-Sr-87Sr/86Sr systematics suggests that accessory glauconite is another major solute source to Cape Cod groundwater. Although the authigenic glauconite in the Cape Cod sediment is rich in Rb, it is low in in-grown radiogenic 87Sr because of its young Pleistocene age. The low 87Sr/86Sr ratios are consistent with equilibration of glauconite with seawater. The impact of glauconite is inferred to vary due to its variable abundance in the sediments. In the Cape Cod groundwater, the variation of REY concentrations with sampling depth resembles that of K and Rb, but differs from that of Ca and Sr. Shale-normalized REY patterns are light REY depleted, show negative Ce anomalies and super-chondritic Y/Ho ratios, but no Eu anomalies. REY input from feldspar, therefore, is insignificant compared to input from a K-Rb-bearing phase, inferred to be glauconite. These results emphasize that interpretation of groundwater

  9. New Rb-Sr mineral ages temporally link plume events with accretion at the margin of Gondwana

    USGS Publications Warehouse

    Flowerdew, M.J.; Daly, J.S.; Riley, T.R.

    2007-01-01

    Five of six Rb-Sr muscovite mineral isochron ages from the Scotia Metamorphic Complex of the South Orkney Islands, West Antarctica, average 190 ± 4 Ma. The muscovite ages are interpreted to date foliation-formation and thus also accretion and subduction at the Gondwana margin. Coincident picrite and ferropicrite magmatism, indicative of melts from deep-seated depleted mantle, permits a causative link between accretion and the arrival of the Karoo – Ferrar – Chon Aike mantle plume in the Early Jurassic. Three biotite Rb-Sr mineral isochron ages are consistently younger and average 176 ± 5 Ma. The biotite ages may record post-metamorphic cooling or more likely retrogressive metamorphic effects during uplift.

  10. Dating Melt Rock 63545 By Rb-Sr and Sm-Nd: Age of Imbrium; Spa Dress Rehearsal

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C. Y.; Reese, Y. D.

    2011-01-01

    Apollo 16 sample 63545 was initially described as one of a group of 19 generally rounded, fine-grained, crystalline rocks that were collected as rake samples [1]. This 16 g "rocklet" was collected at Station 13 on the ejecta blanket of North Ray Crater at the foot of Smoky Mountain [2]. Originally classified as a Very High Alumina (VHA) basalt on geochemical grounds [3], it was later argued to be an impact melt rock [4]. Here we report a Rb-Sr and Sm-Nd isotopic study that shows that some portions of the rock failed to reach isotopic equilibrium on last melting in agreement with the impact melt rock interpretation. Nevertheless, by omitting mineral fractions that are discordant with the majority of the data, we arrive at the time of last melting as 3.88 plus or minus 0.05 Ga ago. This age is in agreement with the Ar-39/Ar-40 plateau age of 3839 plus or minus 23 Ma [5], if the latter is adjusted for the 1.4-1.8% revision in the age of the hornblende monitor [6]. This investigation was undertaken in part as proof-of-concept for SPA-basin sample return.

  11. Generation and Evolution of Quaternary Magmas Beneath Tengchong: Sr-Nd-Pb-Hf Isotope and Zircon U-series Age Constraints

    NASA Astrophysics Data System (ADS)

    Zou, H.; Ma, M.; Fan, Q.; Xu, B.; Li, S. Q.; Zhao, Y.; King, D. T., Jr.

    2017-12-01

    The Tengchong volcanic field on the southeastern margin of the Tibetan Plateau represents rare Quaternary volcanic eruptions on the plateau. The Quaternary Tengchong volcanic field formed high-potassium calc-alkaline volcanic rocks that include trachybasalts, basaltic trachyandesites, trachyandesites, and dacites. Herein, we present comprehensive Nd-Sr-Pb-Hf isotopic and elemental data for trachybasalts, basaltic trachyandesites, and trachyandesites from four young Tengchong volcanoes at Maanshan, Dayingshan, Heikongshan, and Laoguipo, in order to understand their magma genesis and evolution. Nd-Sr-Pb-Hf isotopes for the primitive Tengchong magma (trachybasalts with SiO2 <52.5 wt. % and MgO >5.5% wt. %) reflect a heterogeneous enriched mantle source. High Th/U, Th/Ta, and Rb/Nb ratios and Nd-Sr-Pb-Hf isotope characteristics of the primitive magmas suggest that the enriched mantle beneath Tengchong formed as a result of subduction of clay-rich sediments, which probably came from the Indian continental plate. Partial melting of the enriched mantle was generated by deep continental subduction coupled with recent regional extension in the Tengchong area. With regard to the evolved magmas (basaltic trachyandesites and trachyandesites), good correlations between SiO2 content and the ratios 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 177Hf/176Hf strongly suggest that the combined assimilation and fractional crystallization (AFC) was an important process during magma evolution to form these basaltic trachyandesites and trachyandesites. Uranium-series zircon dating on these evolved lavas from Tengchong is used to constrain their magma evolution and residence timescales.

  12. Petrogenesis of Tertiary continental intra-plate lavas between Siebengebirge and Westerwald, Germany: Constraints from trace element systematics and Nd, Sr and Pb isotopes

    NASA Astrophysics Data System (ADS)

    Schubert, S.; Jung, S.; Pfänder, J. A.; Hauff, F.; Garbe-Schönberg, D.

    2015-10-01

    New 39Ar/40Ar ages and major- and trace-element and radiogenic isotope data are presented for basanites and alkali basalts from the transition area between the Westerwald and Siebengebirge volcanic fields (Germany) that belongs to the Central European Volcanic Province (CEVP). The 39Ar/40Ar ages indicate ages of c. 24 and c. 5 Ma which are fully compatible with previous K/Ar ages indicating that the evolution of this volcanic field belongs to the Westerwald area (28-22 Ma and 5 Ma) rather than to the Siebengebirge area (26-23 Ma). Based on the occurrence of > 30 isolated volcanic plugs with a simple igneous history, this volcanic field can be viewed as a monogenetic volcanic field. Compositions of some basanites are primitive, whereas others and the alkali basalts show decreasing Cr and Ni contents and CaO/Al2O3 ratios. However, increasing TiO2, Al2O3 and incompatible elements (Sr, Zr, Y, Hf, Ta) concentrations with decreasing MgO indicating fractionation of mainly olivine with minor amounts of clinopyroxene and spinel can be noticed. Rare earth element systematics suggest that most of the alkaline rocks are generated by different degrees of melting (5%-10%) of a garnet-bearing peridotite containing some residual amphibole. Negative anomalies of Rb and K in primitive mantle-normalized diagrams and a lack of Ba/Rb fractionation suggest that amphibole was the major OH-bearing mineral phase in the mantle. The alkaline rocks have a restricted range in 87Sr/86Sr and 143Nd/144Nd ratios ranging from 0.7033 to 0.7044 and from 0.51275 to 0.51285, respectively. Lead isotope compositions (206Pb/204Pb: 19.21-19.65; 207Pb/204Pb: 15.62-15.67; 208Pb/204Pb: 39.10-39.46) of the alkaline rocks are within the range of most OIB in which the higher values approach the composition of the European Asthenospheric Reservoir (EAR). The correlation between Sr and Nd isotopes and trace element constraints (Ce/Pb; Nb/U) indicates that for some samples interaction with crustal rocks during

  13. Sr and Nd isotopic compositions, age and petrogenesis of A-type granitoids of the Vernon Supersuite, New Jersey Highlands, USA

    USGS Publications Warehouse

    Volkert, R.A.; Feigenson, M.D.; Patino, L.C.; Delaney, J.S.; Drake, Avery A.

    2000-01-01

    Voluminous late Mesoproterozoic monzonite through granite of the Vernon Supersuite underlies an area of approximately 1300 km2 in the Highlands of northern New Jersey. The Vernon Supersuite consists of hastingsite ?? biotite-bearing granitoids of the Byram Intrusive Suite (BIS) and hedenbergite-bearing granitoids of the Lake Hopatcong Intrusive Suite (LHIS). These rocks have similar major and trace element abundances over a range of SiO2 from 58 to 75 wt.%, are metaluminous to weakly peraluminous, and have a distinctive A-type chemistry characterized by high contents of Y, Nb, Zr, LREE, and Ga/Al ratios, and low MgO, CaO, Sr and HREE. Whole-rock Rb-Sr isochrons of BIS granite yield an age of 1116 ?? 41 Ma and initial 87Sr/86Sr ratio of 0.70389, and of LHIS granite an age of 1095 ?? 9 Ma and initial 87Sr/86Sr ratio of 0.70520. Both suites have similar initial 143Nd/144Nd ratios of 0.511267 to 0.511345 (BIS) and 0.511359 to 0.511395 (LHIS). Values of ??(Nd) are moderately high and range from +1.21 to +2.74 in the BIS and +2.24 +2.95 in the LHIS. Petrographic evidence, field relationships, geochemistry, and isotopic data support an interpretation of comagmatism and the derivation of both suites from a mantle-derived or a juvenile lower crustal parent with little crustal assimilation. Both suites crystallized under overlapping conditions controlled by P-T-f(H(2)O). Lake Hopatcong magma crystallized at a liquidus temperature that approached 900??C and a pressure of about 6 kbar, and remained relatively anhydrous throughout its evolution. Initial P-T conditions of the Byram magma were ??? 850??C and about 5.5 kbar. BIS magma was emplaced contemporaneous with, or slightly preceding LHIS magma, and both magmas were emplaced during a compressional tectonic event prior to granulite facies metamorphism that occurred in the Highlands between 1080 and 1030 Ma. (C) 2000 Elsevier Science B.V. All rights reserved.

  14. Late Proterozoic charnockites in Orissa, India: A U-Pb and Rb-Sr isotopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aftalion, M.; Bowes, D.R.; Dash, B.

    1988-11-01

    Charnockite formation in the Angul district of Orissa took place between 1088 + 26/ -17 Ma, the U-Pb zircon upper intercept crystallization age of a leptynite neosome, and 957 +8/ -4-956 {plus minus} 4 Ma, the U-Pb zircon-monazite upper intercept and U-Pb monazite crystallization ages of a granite. Confirmation of the Proterozoic age of the charnockites is given by (1) a U-Pb zircon upper intercept 1159 + 59/ -30 Ma age and a Rb-Sr whole-rock 1080 {plus minus} 65 Ma age for an augen gneiss which pre-dates the leptynite, and (2) U-Pb monazite ages of 973 {plus minus} 5,964 {plusmore » minus} 4, and 953 {plus minus} 4 Ma for a gray quartzofeldspathic gneiss, the augen gneiss, and the leptynite, respectively: these late Proterozoic dates are interpreted as representing ages recorded during charnockitization. The ca. 950-980 Ma charnockite- and granite-forming events are related to the evolution of mantle-derived, CO{sub 2}-bearing basic magma emplaced into the deeper levels of an extensional tectonic-transcurrent fault regime. The ca. 1100-1150 Ma tectonothermal and igneous events represent compressional tectonism in reactivated crystalline basement in the late mid-Proterozoic Eastern Ghats orogenic belt.« less

  15. Determination of Sr and Ca sources in small tropical catchments (La Selva, Costa Rica) - A comparison of Sr and Ca isotopes

    NASA Astrophysics Data System (ADS)

    Wiegand, B. A.; Schwendenmann, L.

    2013-04-01

    SummaryA comparative study of Sr and Ca isotopes was conducted to assess solute sources and effects of biogeochemical processes on surface water and groundwater in four small tropical catchments located at La Selva Biological Station, Costa Rica. Variable concentrations of dissolved Sr2+ and Ca2+ in the catchments are related to mixing of waters from different origin. Three catchments are influenced by high-solute bedrock groundwater, while another catchment is primarily supplied by local recharge. 87Sr/86Sr ratios were employed to discriminate contributions from mineral weathering and atmospheric sources. Solutes in bedrock groundwater have a predominant geogenic origin, whereas local recharge is characterized by low-solute inputs from rainwater and minor in situ weathering releases from nutrient-depleted soils. Bedrock groundwater contributes more than 60% of dissolved Sr2+ to surface discharge in the Salto, Saltito, and Arboleda catchments, whereas the Taconazo catchment receives more than 95% of dissolved Sr2+ from rainwater. δ44/40Ca values of dissolved Ca2+ vary greatly in the catchments, mainly as a result of heterogeneous Ca isotope compositions of the contributing sources. Based on differences in δ44/40Ca values, two distinct bedrock groundwaters discharging at the Salto and the Arboleda catchments are suggested. Effects of biological processes in the plant-soil system on solute generation in the catchments are indicated by variable Ca/Sr ratios. However, these effects cannot clearly be assessed by Ca isotopes due to the strong heterogeneity of δ44/40Ca values of Ca2+ sources and high Ca2+ concentrations in bedrock groundwater.

  16. Reaction of Rb and oxygen overlayers with single-crystalline Bi2Sr2CaCu2O8+δ superconductors

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Dessau, D. S.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-02-01

    Single crystals of Bi2Sr2CaCu2O8+δ superconductors, in situ cleaved and modified by Rb and oxygen overlayers, have been studied using ultraviolet and x-ray photoemission spectroscopy. The core-level results show that Rb strongly reacts with the Bi and O states, while the Cu and Sr states are left unchanged. This observation strongly indicates that the Bi-O plane forms the surface layer. Subsequent exposure to oxygen results in new oxygen states at the surface as monitored by the O 1s core-level data. For both Rb and oxygen overlayers the valence-band spectra are severely altered. In particular, new valence-band states, presumably of oxygen character, are formed.

  17. Origin of epigenetic calcite in coal from Antarctica and Ohio based on isotope compositions of oxygen, carbon and strontium

    USGS Publications Warehouse

    Faure, G.; Botoman, G.

    1984-01-01

    Isotopic compositions of oxygen, carbon and strontium of calcite cleats in coal seams of southern Victoria Land, Antarctica, and Tuscarawas County, Ohio, contain a record of the conditions a the time of their formation. The Antarctic calcites (?? 18O(SMOW) = +9.14 to +11.82%0) were deposited from waters enriched in 16O whose isotopic composition was consistent with that of meteoric precipitation at low temperature and high latitude. The carbon of the calcite cleats (?? 13C(PDB) = -15.6 to -16.9%0) was derived in part from the coal (?? 13C(PDB) = -23.5 to -26.7%0) as carbon dioxide and by oxidation of methane or other hydrocarbon gases. The strontium ( 87Sr 86Sr = 0.71318-0.72392) originated primarily from altered feldspar grains in the sandstones of the Beacon Supergroup. Calcite cleats in the Kittaning No. 6 coal seam of Ohio (?? 18O(SMOW) = +26.04 to +27.79%0) were deposited from waters that had previously exchanged oxygen, possibly with marine carbonate at depth. The carbon (?? 13C(PDB) = 0.9 to +2.4%0) is enriched in 13C even though that cleats were deposited in coal that is highly enriched in 12C and apparently originated from marine carbonates. Strontium in the cleats ( Sr 87 0.71182-0.71260) is not of marine origin but contains varying amounts of radiogenic 87Sr presumably derived from detrital Rb-bearing minerals in the adjacent sedimentary rocks. The results of this study suggest that calcite cleats in coal of southern Victoria Land, Antarctica, were deposited after the start of glaciation in Cenozoic time and that those in Ohio precipitated from formation waters derived from the underlying marine carbonate rocks, probably in the recent geologic past. ?? 1984.

  18. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography

    NASA Astrophysics Data System (ADS)

    Klein, R.; Adler, A.; Beanlands, R. S.; de Kemp, R. A.

    2007-02-01

    A rubidium-82 (82Rb) elution system is described for use with positron emission tomography. Due to the short half-life of 82Rb (76 s), the system physics must be modelled precisely to account for transport delay and the associated activity decay and dispersion. Saline flow is switched between a 82Sr/82Rb generator and a bypass line to achieve a constant-activity elution of 82Rb. Pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control (PCC) algorithm is developed which produces a constant-activity elution within the constraints of long feedback delay and short elution time. The system model parameters are adjusted through a self-tuning algorithm to minimize error versus the requested time-activity profile. The system is self-calibrating with 2.5% repeatability, independent of generator activity and elution flow rate. Accurate 30 s constant-activity elutions of 10-70% of the total generator activity are achieved using both control methods. The combined PWM-PCC method provides significant improvement in precision and accuracy of the requested elution profiles. The 82Rb elution system produces accurate and reproducible constant-activity elution profiles of 82Rb activity, independent of parent 82Sr activity in the generator. More reproducible elution profiles may improve the quality of clinical and research PET perfusion studies using 82Rb.

  19. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography.

    PubMed

    Klein, R; Adler, A; Beanlands, R S; Dekemp, R A

    2007-02-07

    A rubidium-82 ((82)Rb) elution system is described for use with positron emission tomography. Due to the short half-life of (82)Rb (76 s), the system physics must be modelled precisely to account for transport delay and the associated activity decay and dispersion. Saline flow is switched between a (82)Sr/(82)Rb generator and a bypass line to achieve a constant-activity elution of (82)Rb. Pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control (PCC) algorithm is developed which produces a constant-activity elution within the constraints of long feedback delay and short elution time. The system model parameters are adjusted through a self-tuning algorithm to minimize error versus the requested time-activity profile. The system is self-calibrating with 2.5% repeatability, independent of generator activity and elution flow rate. Accurate 30 s constant-activity elutions of 10-70% of the total generator activity are achieved using both control methods. The combined PWM-PCC method provides significant improvement in precision and accuracy of the requested elution profiles. The (82)Rb elution system produces accurate and reproducible constant-activity elution profiles of (82)Rb activity, independent of parent (82)Sr activity in the generator. More reproducible elution profiles may improve the quality of clinical and research PET perfusion studies using (82)Rb.

  20. Strontium isotope fractionation during strontianite (SrCO3) dissolution, precipitation and at equilibrium

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; Harrison, Anna L.; Eisenhauer, Anton; Dietzel, Martin

    2017-12-01

    In this study we examine the behavior of stable Sr isotopes between strontianite [SrCO3] and reactive fluid during mineral dissolution, precipitation, and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 0.01 M NaCl solutions wherein the pH was adjusted by bubbling of a water saturated gas phase of pure CO2 or atmospheric air. The equilibrium Sr isotope fractionation between strontianite and fluid after dissolution of the solid under 1 atm CO2 atmosphere was estimated as Δ88/86SrSrCO3-fluid = δ88/86Sr SrCO3 - δ88/86Srfluid = -0.05 ± 0.01‰. On the other hand, during strontianite precipitation, an enrichment of the fluid phase in 88Sr, the heavy isotopomer, was observed. The evolution of the δ88/86Srfluid during strontianite precipitation can be modeled using a Rayleigh distillation approach and the estimated, kinetically driven, fractionation factor αSrCO3-fluid between solid and fluid is calculated to be 0.99985 ± 0.00003 corresponding to Δ88/86SrSrCO3-fluid = -0.15‰. The obtained results further support that under chemical equilibrium conditions between solid and fluid a continuous exchange of isotopes occurs until the system approaches isotopic equilibrium. This isotopic exchange is not limited to the outer surface layer of the strontianite crystal, but extends to ∼7-8 unit cells below the crystal surface. The behavior of Sr isotopes in this study is in excellent agreement with the concept of dynamic equilibrium and it suggests that the time needed for achievement of chemical equilibrium is generally shorter compared to that for isotopic equilibrium. Thus it is suggested that in natural Sr-bearing carbonates an isotopic change may still occur close to thermodynamic equilibrium, despite no observable change in aqueous elemental concentrations. As such, a secondary and ongoing change of Sr isotope signals in carbonate minerals caused by isotopic re-equilibration with fluids has to be considered in order to use Sr

  1. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics

    NASA Astrophysics Data System (ADS)

    Kogarko, L. N.; Lahaye, Y.; Brey, G. P.

    2010-03-01

    The two world’s largest complexes of highly alkaline nepheline syenites and related rare metal loparite and eudialyte deposits, the Khibina and Lovozero massifs, occur in the central part of the Kola Peninsula. We measured for the first time in situ the trace element concentrations and the Sr, Nd and Hf isotope ratios by LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) in loparite, eudialyte an in some other pegmatitic minerals. The results are in aggreement with the whole rock Sr and Nd isotope which suggests the formation of these superlarge rare metal deposits in a magmatic closed system. The initial Hf, Sr, Nd isotope ratios are similar to the isotopic signatures of OIB indicating depleted mantle as a source. This leads to the suggestion that the origin of these gigantic alkaline intrusions is connected to a deep seated mantle source—possibly to a lower mantle plume. The required combination of a depleted mantle and high rare metal enrichment in the source can be explained by the input of incompatible elements by metasomatising melts/fluids into the zones of alkaline magma generation shortly before the partial melting event (to avoid ingrowth of radiogenic isotopes). The minerals belovite and pyrochlore from the pegmatites are abnormally high in 87Sr /86Sr ratios. This may be explained by closed system isotope evolution as a result of a significant increase in Rb/Sr during the evolution of the peralkaline magma.

  2. Elemental and isotopic (C, O, Sr, Nd) compositions of Late Paleozoic carbonated eclogite and marble from the SW Tianshan UHP belt, NW China: Implications for deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjiang; Zhang, Lifei; Lü, Zeng; Bader, Thomas

    2018-03-01

    Subduction zones are important for understanding of the global carbon cycle from the surface to deep part of the mantle. The processes involved the metamorphism of carbonate-bearing rocks largely control the fate of carbon and contribute to local carbon isotopic heterogeneities of the mantle. In this study, we present petrological and geochemical results for marbles and carbonated eclogites in the Southwestern Tianshan UHP belt, NW China. Marbles are interlayered with coesite-bearing pelitic schists, and have Sr-Nd isotopic values (εNd (T=320Ma) = -3.7 to -8.9, 87Sr/86Sr (i) = 0.7084-0.7089), typical of marine carbonates. The marbles have dispersed low δ18OVSMOW values (ranging from 14 to 29‰) and unaffected carbon isotope (δ13CVPDB = -0.2-3.6‰), possibly due to infiltration of external H2O-rich fluids. Recycling of these marbles into mantle may play a key role in the carbon budget and contributed to the mantle carbon isotope heterogeneity. The carbonated eclogites have high Sr isotopic compositions (87Sr/86Sr (i) = 0.7077-0.7082) and positive εNd (T = 320 Ma) values (from 7.6 to 8.2), indicative of strong seafloor alteration of their protolith. The carbonates in the carbonated eclogites are mainly dolomite (Fe# = 12-43, Fe# = Fe2+/(Fe2+ + Mg)) that were added into oceanic basalts during seafloor alteration and experienced calcite - dolomite - magnesite transformation during the subduction metamorphic process. The uniformly low δ18O values (∼11.44‰) of carbonates in the carbontaed eclogites can be explained by closed-system equilibrium between carbonate and silicate minerals. The low δ13C values (from -3.3 to -7.7‰) of the carbonated eclogites most likely reflect contribution from organic carbon. Recycling of these carbonated eclogites with C isotope similar to typical mantle reservoirs into mantle may have little effect on the mantle carbon isotope heterogeneity.

  3. Mixed fluid sources involved in diamond growth constrained by Sr-Nd-Pb-C-N isotopes and trace elements

    NASA Astrophysics Data System (ADS)

    Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Cartigny, Pierre

    2010-01-01

    Sub-micrometer inclusions in diamonds carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The trace element patterns of diamond fluids vary within a limited range and are similar to those of carbonatitic/kimberlitic melts that originate from beneath the lithospheric mantle. A convecting mantle origin for the fluid is also implied by C isotopic compositions and by a preliminary Sr isotopic study (Akagi, T., Masuda, A., 1988. Isotopic and elemental evidence for a relationship between kimberlite and Zaire cubic diamonds. Nature 336, 665-667.). Nevertheless, the major element chemistry of HDFs is very different from that of kimberlites and carbonatites, varying widely and being characterized by extreme K enrichment (up to ˜ 39 wt.% on a water and carbonate free basis) and high volatile contents. The broad spectrum of major element compositions in diamond-forming fluids has been related to fluid-rock interaction and to immiscibility processes. Elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Here we present the results of the first multi radiogenic-isotope (Sr, Nd, Pb) and trace element study on fluid-rich diamonds, implemented using a newly developed off-line laser sampling technique. The data are combined with N and C isotope analysis of the diamond matrix to better understand the possible sources of fluid involved in the formation of these diamonds. Sr isotope ratios vary significantly within single diamonds. The highly varied but unsupported Sr isotope ratios cannot be explained by immiscibility processes or fluid-mineral elemental fractionations occurring at the time of diamond growth. Our results demonstrate the clear involvement of a mixed fluid, with one component originating from ancient

  4. Origin of the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: Evidence from regional Pb and Sr isotope sources

    USGS Publications Warehouse

    Ayuso, R.A.; Kelley, K.D.; Leach, D.L.; Young, L.E.; Slack, J.F.; Wandless, G.; Lyon, A.M.; Dillingham, J.L.

    2004-01-01

    Pb and Sr isotope data were obtained on the shale-hosted Zn-Pb-Ag Red Dog deposits (Qanaiyaq, Main, Aqqaluk, and Paalaaq), other shale-hosted deposits near Red Dog, and Zn-Pb-Ag sulfide and barite deposits in the western and central Brooks Range. The Red Dog deposits and other shale-hosted Zn-Pb-Ag deposits near Red Dog are hosted in the Mississippian Kuna Formation, which is underlain by a sequence of marine-deltaic clastic rocks of the Upper Devonian to Lower Mississippian Endicott Group. Ag-Pb-Zn vein-breccias are found in the Endicott Group. Galena formed during the main mineralization stages in the Red Dog deposits and from the Anarraaq and Wulik deposits have overlapping Pb isotope compositions in the range 206Pb/204Pb = 18.364 to 18.428, 207Pb/204Pb = 15.553 to 15.621, and 208Pb/204Pb = 38.083 to 38.323. Galena and sphalerite formed during the main ore-forming stages in the Red Dog deposits define a narrow field on standard uranogenic and thorogenic Pb isotope diagrams. Lead in sulfides of the Red Dog district is less radiogenic (238U/204Pb: ?? = 9.51-9.77) than is indicated by the average crustal lead evolution model (?? = 9.74), a difference consistent with a long history of evolution at low ratios of ?? before the Carboniferous. The homogeneous regional isotopic reservoir of Pb may indicate large-scale transport and leaching of minerals with various ?? ratios and Th/Pb ratios. Younger and genetically unrelated fluids did not significantly disturb the isotopic compositions of galena and sphalerite after the main mineralization event in the Red Dog district. Some pyrite shows evidence of minor Pb remobilization. The overall lead isotope homogeneity in the shale-hosted massive sulfide deposits is consistent with three types of control: a homogeneous regional source, mixing of lead during leaching of a thick sedimentary section and fluid transport, or mixing at the site of deposition. Isotopic variability of the hydrothermal fluids, as represented by galena

  5. Isotopic composition of Pb and Th in interplinian volcanics from Somma-Vesuvius volcano, Italy

    USGS Publications Warehouse

    Cortini, M.; Ayuso, R.A.; de Vivo, B.; Holden, P.; Somma, R.

    2004-01-01

    We present a detailed isotopic study of volcanic rocks emitted from Somma-Vesuvius volcano during three periods of interplinian activity: "Protohistoric" (3550 y B.P. to 79 A.D.), "Ancient Historic" (79 to 472 A.D.) and "Medieval" (472 to 1631 A.D.). Pb isotopic compositions of two acid leached fractions and whole rock residues of 37 whole rock samples (determined by Somma et al., 2001) show that each of the three interplinian periods is distinguished by small, systematic, and unique uranogenic and thorogenic Pb isotopic trends. This key and novel feature is compatible with the notion that the Pb isotopic data reflect small-scale source heterogeneity operating over relatively short periods of time. From this representative group of samples, a selected set of nine whole rocks were analysed for Th isotopes. 232Th/238U ratios in the source can be obtained independently from Pb and from Th isotopes. Those obtained from Pb isotopes represent source ratios, time-integrated over the whole age of the Earth; they range from 3.9 to 4.1. 232Th/238U obtained from Th isotopes are those of the present source. They are lower, and cluster around 3.5; this difference probably indicates recent U enrichment of the present source. The behaviour of Pb, as inferred by its isotopic ratios, is quite distinct from that of Sr and Nd isotopes: Pb isotope variations are not correlated to Sr or Nd isotope variations. The isotopic contrast is compatible with the idea that the isotopes were decoupled during magmatic production, evolution, and ascent through the crust. Thus, the Pb isotopes do not reflect the effects of the same processes as in the case of the Sr and Nd isotopes, or, as we also favor, they do not necessarily reflect the same source contributions into the magmas. Moreover, the Pb isotopic evolution of the interplinian rocks chiefly reflects mixing, driven by processes that are superimposed on, and independent of, other source contributions that determine the isotopic compositions

  6. Isotopic reconstruction of ancient human migrations: A comprehensive Sr isotope reference database for France and the first case study at Tumulus de Sables, south-western France

    NASA Astrophysics Data System (ADS)

    Willmes, M.; Boel, C.; Grün, R.; Armstrong, R.; Chancerel, A.; Maureille, B.; Courtaud, P.

    2012-04-01

    Strontium isotope ratios (87Sr/86Sr) can be used for the reconstruction of human and animal migrations across geologically different terrains. Sr isotope ratios in rocks are a product of age and composition and thus vary between geologic units. From the eroding environment Sr is transported into the soils, plants and rivers of a region. Humans and animals incorporate Sr from their diet into their bones and teeth, where it substitutes for calcium. Tooth enamel contains Sr isotope signatures acquired during childhood and is most resistant to weathering and overprinting, while the dentine is often diagenetically altered towards the local Sr signature. For the reconstruction of human and animal migrations the tooth enamel 87Sr/86Sr ratio is compared to the Sr isotope signature in the vicinity of the burial site and the surrounding area. This study focuses on the establishment of a comprehensive reference map of bioavailable 87Sr/86Sr ratios for France. In a next step we will compare human and animal teeth from key archaeological sites to this reference map to investigate mobility. So far, we have analysed plant and soil samples from ~200 locations across France including the Aquitaine basin, the western and northern parts of the Paris basin, as well as three transects through the Pyrenees Mountains. The isotope data, geologic background information (BRGM 1:1M), field images, and detailed method descriptions are available through our online database iRhum (http://rses.anu.edu.au/research/ee). This database can also be used in forensic studies and food sciences. As an archaeological case study teeth from 16 adult and 8 juvenile individuals were investigated from an early Bell Beaker (2500-2000 BC) site at Le Tumulus des Sables, south-west France (Gironde). The teeth were analysed for Sr isotope ratios using laser ablation ICP-MS. Four teeth were also analysed using solution ICP-MS, which showed a significant offset to the laser ablation results. This requires further

  7. Sr-Nd-Pb Isotope Geochemistry of Melange Formation: Implications for Identification of Fluid Sources in the Mantle Wedge and the Arc

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.; King, R. L.; Moriguti, T.; Nakamura, E.

    2004-12-01

    Paramount to our ability to decipher the behavior of fluids and melts within the mantle wedge and the overall subduction system are the chemical compositions of rocks adjacent to the slab-mantle interface. Profound metamorphic and metasomatic alteration of pre-subduction lithologies to form melange along the slab-mantle interface may yield rock types inheriting mixed chemical compositions of diverse pre-subduction lithologies. Early work on melange geochemistry indicates competitive effects between mechanical mixing, metasomatism by fluids or melts, and mineral stabilities imposed by the resulting bulk composition. We have explored the Sr-Nd-Pb isotope geochemistry of low- to high-grade melange zones in the Catalina Schist, CA, to address this crucial missing component in studies of subduction-zone mass flux. The Catalina Schist contains lawsonite-albite (LA), lawsonite-blueschist (LB), and amphibolite (AM) facies melange zones, all with mineralogy dominated by talc, chlorite, and Na-Ca amphiboles, with additional minerals such as micas, rutile, zircon, and apatite stabilized based on bulk sample chemistry. Major element compositions vary, from strongly ultramafic in the AM melange, to more crustal-like compositions (i.e., more reminiscent of basaltic to sedimentary protoliths) for LA and LB melange. However, initial Sr and Nd isotope ratios for all grades of melange are essentially indistinguishable, displaying a wide variation from 87Sr/86Sr=0.703-0.709 and ɛ Nd= +15 to -15. Covariations are generally negative, similar to that of the mantle array, but with some samples extending to higher Sr ratios at constant ɛ Nd that probably reflect inheritance of seawater Sr. No clear mixing relationships between 87Sr/86Sr and 1/Sr exist, suggesting either localized buffering of Sr isotope ratios or that mixing relations are obscured by secondary devolatilization. However, a clear mixing trend for Nd indicates two end-members, one a high-concentration, positive ɛ Nd

  8. Age and origin of anorthosites, charnockites, and granulites in the Central Virginia Blue Ridge: Nd and Sr isotopic evidence

    USGS Publications Warehouse

    Pettingill, H.S.; Sinha, A.K.; Tatsumoto, M.

    1984-01-01

    Rb-Sr isotopic data for anorthosites, charnockites, ferrodioritic to quartz monzonitic plutons, and high-grade gneisses of the Blue Ridge of central Virginia show evidence of post-emplacement metamorphism, but in some cases retain Grenville ages. The Pedlar River Charnockite Suite yields an isochron age of 1021 +/-36 Ma, (initial 87Sr/86Sr ratio of 0.7047 +/-6), which agrees with published U-Pb zircon ages. Five samples of that unit which contain Paleozoic mylonitic fabrics define a regression line of 683 Ma, interpreted as a mixing line with no age significance. Samples of the Roseland Anorthosite Complex show excessive scatter on a Rb-Sr evolution diagram probably due to Paleozoic (475 m.y.) metamorphism. Data from the ferrodioritic to quartz monzonitic plutons of the area yield an age of 1009 +/-26 Ma (inital ratio=0.7058 +/-4), which is in the range of the U-Pb zircon ages of 1000-1100 Ma. The Stage Road Layered Gneiss yields an age of 1147 +/-34 Ma (initial ratio of 0.7047 +/- 5). Sm-Nd data for the Pedlar River Charnockite Suite reflect a pre-Grenville age of 1489 +/-118 Ma (e{open}Nd=+6.7 +/-1.2). Data for the Roseland Anorthosite Complex and the ferrodioritic to quartz monzonitic plutons yield Grenville isochron ages of 1045 +/44 Ma (e{open}Nd=+1.0 +/-0.3) and 1027 +/-101 Ma (e{open}Nd=+1.4 +/-1.0), respectively. Two Roseland Anorthosite samples plot far above the isochron, demonstrating the effects of post-emplacement disturbance of Sm-Nd systematics, while mylonitized Pedlar River Charnockite Suite samples show no evidence of Sm-Nd redistribution. The disparity of the Sm-Nd age and other isotopic ages for the Pedlar River Charnockite Suite probably reflects a Sm-Nd "source" age, suggesting the presence of an older crust within this portion of the ca. 1 Ga old basement. ?? 1984 Springer-Verlag.

  9. In-situ trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the northern North China Craton

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Liu, Yongsheng; Chen, Chunfei; Xu, Rong; Ducea, Mihai N.; Hu, Zhaochu; Zong, Keqing

    2017-09-01

    Subduction and collision are the key processes triggering geochemical refertilization of the lithospheric mantle beneath cratons. However, the way that the subducted plate influences the cratonic lithospheric mantle remains unclear. Here, in-situ major and trace-element and Sr isotopic compositions of peridotite and pyroxenite xenoliths carried by the Dongbahao Cenozoic basalts, located close to the northern margin of North China Craton (NCC), were examined to investigate the effects of the subducted Paleo-Asian oceanic plate on the lithospheric mantle of the NCC. Based on petrographic and geochemical features, peridotites were subdivided into two types recording two-stage metasomatism. Clinopyroxene (Cpx) in both types of peridotites show chemical zoning. In those peridotites we refer to as Type 1 peridotites, Cpx exhibit uniform convex-upward rare earth element (REE) patterns but core-rim variations in 87Sr/86Sr ratios (0.7065-0.7082 in the cores and 0.7043-0.7059 in the spongy rims), and have high (La/Yb)N ratios (> 1.12) (N means normalized to chondrite), relatively low Ti/Eu ratios (< 3756) and negative high field strength element (HFSE) (Nb, Ta, Zr, Hf and Ti) anomalies in the cores, indicating early-stage metasomatism by carbonatitic melts derived from the subducted sedimentary carbonate rocks. Cpx in the Type 2 peridotites have highly variable REE patterns (from light rare earth element (LREE)-depleted to LREE-enriched) and feature zoned Sr isotopic compositions contrasting to those in Type 1, i.e., increasing 87Sr/86Sr ratios from the cores (0.7020-0.7031) to the spongy rims (0.7035-0.7041). Accompanying variations of 87Sr/86Sr ratios, Cpx in both types of peridotites display increasing Nb/La ratios from the cores to the spongy rims. In addition, Cpx in the Type 2 peridotites show remarkably increased (La/Yb)N, Ca/Al, Sm/Hf and Zr/Hf ratios but decreased Ti/Eu and Ti/Nb ratios from the cores to the spongy rims. These features imply a later

  10. Prospects for transferring 87Rb84Sr dimers to the rovibrational ground state based on calculated molecular structures

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Zhu, Shaobing; Li, Xiaolin; Qian, Jun; Wang, Yuzhu

    2014-06-01

    Using fitted model potential curves of the ground and lowest three excited states yielded by the relativistic Kramers-restricted multireference configuration interaction method with 19 electrons correlated, we theoretically investigate the rovibrational properties including the number of vibrational state and diagonally distributed Franck-Condon factors for a 87Rb84Sr molecule. Benefiting from a turning point at about v'=20 for the Franck-Condon factors between the ground state and spin-orbit 2(Ω=1/2) excited state, we choose |2(Ω=1/2),v'=21,J'=1> as the intermediate state in the three-level model to theoretically analyze the possibility of performing stimulated Raman adiabatic passage to transfer weakly bound RbSr molecules to the rovibrational ground state. With 1550 nm pump laser (2 W/cm2) and 1342 nm dump laser (10 mW/cm2) employed and appropriate settings of pulse time length (about 300 μs), we have formalistically achieved a round-trip transfer efficiency of 60%, namely 77% for one-way transfer. The results demonstrate the possibility of producing polar 87Rb84Sr molecules efficiently in a submicrokelvin regime, and further provide promising directions for future theoretical and experimental studies on alkali-alkaline(rare)-earth dimers.

  11. Major and trace element, and Sr isotope compositions of clinopyroxene phenocrysts in mafic dykes on Jiaodong Peninsula, southeastern North China Craton: Insights into magma mixing and source metasomatism

    NASA Astrophysics Data System (ADS)

    Liang, Yayun; Deng, Jun; Liu, Xuefei; Wang, Qingfei; Qin, Cheng; Li, Yan; Yang, Yi; Zhou, Mian; Jiang, Jieyan

    2018-03-01

    Early Cretaceous mafic dyke swarms are widely developed on Jiaodong Peninsula in the southeastern part of the North China Craton (NCC), but their petrogenesis remains enigmatic. We have examined the in-situ major element, trace element and Sr isotope compositions of the clinopyroxene phenocrysts in these dykes in order to evaluate the extent of magma mixing and source metasomatism. Depending on the type of mineral zoning, the clinopyroxene phenocrysts in our samples can be classified into two groups: Group I (reverse zoning) and Group II (no zoning). Based on core compositions, the Group I phenocrysts with obvious reverse zoning can be divided into two subgroups: Groups IA and IB. The cores of Group IA clinopyroxenes have low values of Mg#, low Al2O3 contents, high Na2O contents, and high 87Sr/86Sr ratios, and they were probably derived from newly accreted lower crust that formed through the underplating of basaltic magma. In contrast, the cores of Group IB clinopyroxenes have lower Mg# values and lower contents of Al2O3, ΣREE (total rare earth elements), and incompatible elements, but they have similar 87Sr/86Sr ratios; these cores crystallised from crust-derived andesitic-dacitic magma. Group IA and IB clinopyroxene phenocryst rims (Group I rims) all have similar compositions with higher values of Mg# and higher Al2O3, Cr and Ni contents than the cores. The rims have high 87Sr/86Sr ratios, are enriched in LREEs (light rare earth elements) and LILEs (large ion lithophile elements), and are depleted in HFSEs (high field strength elements); these characteristics indicate that all the high-Mg rims were derived from a similar magma, possibly a relatively primitive magma derived from lithospheric mantle. We suggest, therefore, that the reversely-zoned clinopyroxene phenocrysts (Group I) in the Jiaodong mafic dykes provide evidence of magma mixing between a magma derived from lithospheric mantle and crust-derived andesitic-dacitic melt alongside with the newly accreted

  12. Pb isotope compositions of modern deep sea turbidites

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; McLennan, S. M.

    2001-01-01

    Modern deep sea turbidite muds and sands collected from Lamont piston cores represent a large range in age of detrital sources as well as a spectrum of tectonic settings. Pb isotope compositions of all but three of the 66 samples lie to the right of the 4.56 Ga Geochron, and most also lie along a slope consistent with a time-integrated κ ( 232Th/ 238U) between 3.8 and 4.2. Modern deep sea turbidites show a predictable negative correlation between both Pb and Sr isotope ratios and ɛNd and ɛHf, clearly related to the age of continental sources. However, the consistency between Pb and Nd isotopes breaks down for samples with very old provenance ( ɛNd<-20) that are far less radiogenic than predicted by the negative correlation. The correlations among Sr, Nd and Hf isotopes also become more scattered in samples with very old provenance. The unradiogenic Pb isotopic character of modern sediments with Archean Nd model ages is consistent with a model where Th and U abundances of the Archean upper crust are significantly lower than the post-Archean upper crust.

  13. Pb, Sr and Nd isotopic composition and trace element characteristics of coarse airborne particles collected with passive samplers

    NASA Astrophysics Data System (ADS)

    Hoàng-Hòa, Thi Bich; Stille, Peter; Dietze, Volker; Guéguen, Florence; Perrone, Thierry; Gieré, Reto

    2015-09-01

    Passive samplers for collection of coarse airborne particulate matter have been installed in and around the coal-mining town of Cam Pha, Quang Ninh Province (Vietnam). Analysis of Pb, Sr, and Nd isotope ratios and of major and trace element distribution patterns in atmospheric particulates collected at three stations allowed for the identification of four important dust components: (1) coal dust from an open-pit mine and fly ash particles from a coal-fired power station, (2) diesel soot, (3) traffic dust from metal, tire and pavement abrasion, and (4) limestone-derived dust. Outside of the coal-mining area, traffic-derived dust defines the atmospheric baseline composition of the studied environment.

  14. Linking Barbados Mineral Dust Aerosols to North African Sources Using Elemental Composition and Radiogenic Sr, Nd, and Pb Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Bozlaker, Ayse; Prospero, Joseph M.; Price, Jim; Chellam, Shankararaman

    2018-01-01

    Large quantities of African dust are carried across the Atlantic to the Caribbean Basin and southern United States where it plays an important role in the biogeochemistry of soils and waters and in air quality. Dusts' elemental and isotopic composition was comprehensively characterized in Barbados during the summers of 2013 and 2014, the season of maximum dust transport. Although total suspended insoluble particulate matter (TSIP) mass concentrations varied significantly daily and between the two summers, the abundances (μg element/g TSIP) of 50 elements during "high-dust days" (HDD) were similar. Aerosols were regularly enriched in Na, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, and W relative to the upper continental crust. Enrichment of these elements, many of which are anthropogenically emitted, was significantly reduced during HDD, attributed to mixing and dilution with desert dust over source regions. Generally, Ti/Al, Si/Al, Ca/Al, Ti/Fe, Si/Fe, and Ca/Fe ratios during HDD differed from their respective values in hypothesized North African source regions. Nd isotope composition was relatively invariant for "low-dust days" (LDD) and HDD. In contrast, HDD-aerosols were more radiogenic exhibiting higher 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios compared to LDD. Generally, Barbados aerosols' composition ranged within narrow limits and was much more homogeneous than that of hypothesized African source soils. Our results suggest that summertime Barbados aerosols are dominated by a mixture of particles originating from sources in the Sahara-Sahel regions. The Bodélé Depression, long suspected as a major source, appears to be an insignificant contributor of summertime western Atlantic dust.

  15. Sr and U isotope ratios in soil waters as tracers of weathering dynamic in soils (Strengbach catchment - Vosges-mountains; France).

    NASA Astrophysics Data System (ADS)

    Chabaux, François; Prunier, Jonathan; Pierret, Marie-Claire; Stille, Peter

    2013-04-01

    It is proposed in this study to highlight the interest of multi-tracer geochemical approaches combining measurement of major and trace element concentrations along with U and Sr isotopic ratios to constrain the characterization of the present-day weathering processes controlling the chemical composition of waters and soils in natural ecosystems. This is important if we want to predict and to model correctly the response of ecosystems to recent environmental changes. The approach is applied to the small granitic Strengbah Catchment, located in the Vosges Mountain (France), used and equipped as a hydro-geochemical observatory since 1986 (Observatoire Hydro-Géochimique de l'Environnement; http://ohge.u-strasbg.fr). This study includes the analysis of major and trace element concentrations and (U-Sr) isotope ratios in soil solutions collected within two soil profiles located on two experimental plots of this watershed, along with the analysis of soil samples and vegetation samples from these two plots. The depth variation of elemental concentrations of soil solutions confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones, and clearly influence by the vegetation cycling. From the obtained data, it can be therefore proposed a scheme where in addition to the external flux associated to the decomposition of organic matter and throughfall, occurs a double lithogenic flux: a surface flux which can be associated to dissolution of secondary minerals contained in fine silt fractions and a deeper one, controlled by water-rock interactions which can mobilize elements from primary minerals like plagioclases or orthose

  16. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James B. Paces; Zell E. Peterman; Kiyoto Futa

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously aroundmore » the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared

  17. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Paces, James B.; Peterman, Zell E.; Futo, Kiyoto; Oliver, Thomas A.; Marshall, Brian D.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  18. The Origin and Evolution of Nucleosynthetic Sr Isotope Variability in Calcium and Aluminum-rich Refractory Inclusions

    NASA Astrophysics Data System (ADS)

    Myojo, Kunihiro; Yokoyama, Tetsuya; Okabayashi, Satoki; Wakaki, Shigeyuki; Sugiura, Naoji; Iwamori, Hikaru

    2018-01-01

    Nucleosynthetic isotope anomalies in meteorites are useful for investigating the origin of materials in the protoplanetary disk and dynamical processes of planetary formation. In particular, calcium and aluminum-rich inclusions (CAIs) found in chondrites are key minerals for decoding the initial conditions of the solar system before the accretion of small planetary bodies. In this study, we report isotopic analyses for three Allende CAIs, fluffy type A (FTA), type B, and fine-grained spinel rich (FS) inclusions, with a specific emphasis on the measurements of 84Sr/86Sr ratios. It was found that the average μ 84Sr values (106 relative deviations from a standard material) were 175, 129, and 56 ppm for the samples of FTA, type B, and FS inclusions, respectively. Additionally, the FTA samples exhibited heterogeneous μ 84Sr values, while those for the type B and FS inclusions were homogeneous within individual inclusions. The elevated μ 84Sr values were most likely explained by the relative enrichment of r-process nuclides in the CAI formation region. The variation of μ 84Sr values between the FTA and type B inclusions, as well as within the FTA inclusion, suggests the presence of multiple CAI source reservoirs with distinct isotopic compositions, which is either inherited from isotopic heterogeneity in the molecular cloud or caused by the selective destruction of r-process-enriched supernova grains via nebular thermal processing. On the other hand, the reaction between a refractory precursor of the FS inclusion and a gaseous reservoir enriched in Mg, Si, and 16O resulted in the lowest μ 84Sr values for the FS inclusion.

  19. All-diode-laser cooling of Sr+ isotope ions for analytical applications

    NASA Astrophysics Data System (ADS)

    Jung, Kyunghun; Yamamoto, Kazuhiro; Yamamoto, Yuta; Miyabe, Masabumi; Wakaida, Ikuo; Hasegawa, Shuichi

    2017-06-01

    Trapping and cooling of Sr+ isotope ions by an all-diode-laser system has been demonstrated in order to develop a novel mass spectrometric technique in combination with ion trap-laser cooling. First, we constructed external cavity diode lasers and associated stabilization apparatus for laser cooling of Sr+ ions. The transition frequencies confirmed by optogalvanic spectroscopy enabled successful cooling of 88Sr+ ions. An image of two trapped ions has been captured by CCD camera. Minor isotopes, 84Sr+ and 86Sr+, were also cooled and trapped. From an analysis of the observed spectra of a string crystal of each isotope, the isotope shifts of the cooling transition (5s 2S1/2 → 5p 2P1/2) of Sr+ ions were determined to be +371(8) MHz for Δν84-88 and +169(8) MHz for Δν86-88. In the case of the repumping transition (4d 2D3/2 → 5p 2P1/2), Δν84-88 and Δν86-88 were measured to be -833(6) and -400(5) MHz, respectively. These values are in good agreement with previously reported values.

  20. Isotopic and Chemical Evidence for Primitive Aqueous Alteration in the Tagish Lake Meteorite

    NASA Astrophysics Data System (ADS)

    Sakuma, Keisuke; Hidaka, Hiroshi; Yoneda, Shigekazu

    2018-01-01

    Aqueous alteration is one of the primitive activities that occurred on meteorite parent bodies in the early solar system. The Tagish Lake meteorite is known to show an intense parent body aqueous alteration signature. In this study, quantitative analyses of the alkaline elements and isotopic analyses of Sr and Ba from acid leachates of TL (C2-ungrouped) were performed to investigate effects of aqueous alteration. The main purpose of this study is to search for isotopic evidence of extinct 135Cs from the Ba isotopic analyses in the chemical separates from the Tagish Lake meteorite. Barium isotopic data from the leachates show variable 135Ba isotopic anomalies (ε = ‑2.6 ∼ +3.6) which correlatewith 137Ba and 138Ba suggesting a heterogeneous distribution of s- and r-rich nucleosynthetic components in the early solar system. The 87Rb–87Sr and 135Cs–135Ba decay systems on TL in this study do not provide any chronological information. The disturbance of the TL chronometers is likely a reflection of the selective dissolution of Cs and Rb given the relatively higher mobility of Cs and Rb compared to Ba and Sr, respectively, during fluid mineral interactions.

  1. Tracing of aerosol sources in an urban environment using chemical, Sr isotope, and mineralogical characterization.

    PubMed

    Duarte, Regina M B O; Matos, João T V; Paula, Andreia S; Lopes, Sónia P; Ribeiro, Sara; Santos, José Francisco; Patinha, Carla; da Silva, Eduardo Ferreira; Soares, Rosário; Duarte, Armando C

    2017-04-01

    In the framework of two national research projects (ORGANOSOL and CN-linkAIR), fine particulate matter (PM 2.5 ) was sampled for 17 months at an urban location in the Western European Coast. The PM 2.5 samples were analyzed for organic carbon (OC), water-soluble organic carbon (WSOC), elemental carbon (EC), major water-soluble inorganic ions, mineralogical, and for the first time in this region, strontium isotope ( 87 Sr/ 86 Sr) composition. Organic matter dominates the identifiable urban PM 2.5 mass, followed by secondary inorganic aerosols. The acquired data resulted also in a seasonal overview of the carbonaceous and inorganic aerosol composition, with an important contribution from primary biomass burning and secondary formation processes in colder and warmer periods, respectively. The fossil-related primary EC seems to be continually present throughout the sampling period. The 87 Sr/ 86 Sr ratios were measured on both the labile and residual PM 2.5 fractions as well as on the bulk PM 2.5 samples. Regardless of the air mass origin, the residual fractions are more radiogenic (representative of a natural crustal dust source) than the labile fractions, whose 87 Sr/ 86 Sr ratios are comparable to that of seawater. The 87 Sr/ 86 Sr ratios and the mineralogical composition data further suggest that sea salt and mineral dust are important primary natural sources of fine aerosols throughout the sampling period.

  2. Magnesium Isotopic Compositions of Continental Basalts From Various Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Yang, W.; Li, S.; Tian, H.; Ke, S.

    2016-12-01

    Recycled sedimentary carbonate through subduction is the main light Mg isotopic reservoir in Earth's deep interior, thus Mg isotopic variation of mantle-derived melts provides a fresh perspective on investigating deep carbon cycling. Here we investigate Mg isotopic compositions of continental basalts from various tectonic settings: (1) The Cenozoic basalts from eastern China, coinciding with the stagnant Pacific slab in the mantle transition zone revealed by seismic tomography; (2) The Cenozoic basalts from Tengchong area, southwestern China, which comprises a crucial part of the collision zone between the Indian and Eurasian plates; (3) The Permian basalts from Emeishan large igneous province, related to a mantle plume. The Cenozoic basalts from both eastern China and Tengchong area exhibit light Mg isotopic compositions (δ26Mg = -0.60 to -0.30‰ and -0.51 to -0.33‰), suggesting recycled sedimentary carbonates in their mantle sources. This is supported by their low Fe/Mn, high CaO/Al2O3, low Hf/Hf* and low Ti/Ti* ratios, which are typical features of carbonated peridotite-derived melt. The Tengchong basalts also show high 87Sr/86Sr, high radiogenic Pb and upper crustal-like trace element pattern, indicating contribution of recycled continental crustal materials. By contrast, all Emeishan basalts display a mantle-like Mg isotopic composition, with δ26Mg ranging from -0.35 to -0.19‰. Since the Emeishan basalts derived from a mantle plume, their mantle-like Mg isotopic composition may indicate limited sedimentary carbonated recycled into the lower mantle. This is consistent with a recent experimental study which concluded that direct recycling of carbon into the lower mantle may have been highly restricted throughout most of the Earth's history.

  3. The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst

    USGS Publications Warehouse

    Katz, B.G.; Bullen, T.D.

    1996-01-01

    The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The 87Sr/86Sr ratio along with the stable isotopes, D, 18O, and 13C were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the 87Sr/86Sr ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2+ generally increase with depth, and higher concentrations of Sr2+ in water from the Upper Floridan aquifer (20-35 ??g/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [??13C = -1.6 permil (???)] is also indicated by an enriched ??13CDIC (-8.8 to - 11.4???) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (??13CDIC < - 16???). Groundwater downgradient from Lake Barco was enriched in 18O and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the 87Sr/86Sr ratio of groundwater and aquifer material become less radiogenic and the Sr2+ concentrations generally increase with depth. However, Sr2+ concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2+ concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2

  4. The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst

    NASA Astrophysics Data System (ADS)

    Katz, Brian G.; Bullen, Thomas D.

    1996-12-01

    The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The 87Sr/86Sr ratio along with the stable isotopes, D, 18O, and 13C were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the 87Sr/86Sr ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2+ generally increase with depth, and higher concentrations of Sr2+ in water from the Upper Floridan aquifer (20-35 μg/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [δ13C= -1.6permil(‰)] is also indicated by an enriched δ13CDIC(-8.8 to -11.4 ‰) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (δ13CDIC< -16‰). Groundwater downgradient from Lake Barco was enriched in18O and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the 87Sr/86Sr ratio of groundwater and aquifer material become less radiogenic and the Sr2+ concentrations generally increase with depth. However, Sr2+ concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2+ concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2+ from

  5. Neodymium, strontium and chromium isotopic studies of the LEW86010 and Angra dos Reis meteorites and the chronology of the angrite parent body

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Bansal, B.; Wiesmann, H.; Shih, C.-Y.

    1994-01-01

    Neodymium, stontium, and chromium isotopic studies of the LEW86010 angrite established its absolute age and the formation interval between its crystallization and condensation of Allende CAIs from the solar nebula. Pyroxene and phosphate were found to contain approximately 8% of its Sm and Nd inventory. A conventional Sm-147-Nd-143 isochron yielded an age of 4.53 +/- 0.04 Ga (2 sigma and Epsilon(sub Nd sup 143)) = 0.45 +/- 1.1. An Sm-146-Nd-142 isochron gives initial Sm-146/Sm-144 = 0.0076 +/- 0.0009 and Epsilon (sub Nd sup 142) = -2.5 +/- 0.4. The Rb-Sr analyses give initial Sr-87/Sr-86 Iota(sub Sr sup 87) = 0.698972 +/- 8 and 0.698970 +/- 18 for LEW and ADOR, respectively, relative to Sr-87/Sr-86 = 0.71025 for NBS987. The difference, Delta Iota(sub Sr Sup 87), between Iota (sub sr sup 87) for the angrites and literature values for Allende CAIs, corresponds to approximately Ma of growth in a solar nebula with a CI chondrite value of Rb-87/Sr-86 = 0.91, or approximately 5 Ma in a nebula with solar photospheric Rb-87/Sr-86 = 1.51. Excess Cr-53 from extinct Mn-53(t(sub 1/2) = 3.7 Ma)in LEW86010 corresponds to initial Mn-53/Mn-55 = 4.4 +/- 1.0 x 10(exp -5) for the inclusions as previously reported by the Paris group (Birck and Allegre, 1988). The Sm-146/Sm-144 value found for LEW86010 corresponds to solar system initial (Sm-146/Sm-144) = 0.0080 +/- 0.0009 for crystallization 8 Ma after Allende, the difference between Pb-Pb ages of angrites and Allende, or 0.0086 +/- 0.0009 for crystallation 18 Ma after Allende, using the Mn-Cr formation interval. The isotopic data are discussed in the context of a model in which an undifferentiated 'chondritic' parent body formed from the solar nebula approximately Ma after Allende CAIs and subsequently underwent differentiation accompanied by loss of volatiles. Parent bodies with Rb/Sr similar to that of CI, CM, or CO chondrites could satisfy the Cr and Sr isotopic systematics. If the angrite parent body had Rb/Sr similar to that of

  6. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth.

    PubMed

    Rooney, Alan D; Macdonald, Francis A; Strauss, Justin V; Dudás, Francis Ö; Hallmann, Christian; Selby, David

    2014-01-07

    After nearly a billion years with no evidence for glaciation, ice advanced to equatorial latitudes at least twice between 717 and 635 Mya. Although the initiation mechanism of these Neoproterozoic Snowball Earth events has remained a mystery, the broad synchronicity of rifting of the supercontinent Rodinia, the emplacement of large igneous provinces at low latitude, and the onset of the Sturtian glaciation has suggested a tectonic forcing. We present unique Re-Os geochronology and high-resolution Os and Sr isotope profiles bracketing Sturtian-age glacial deposits of the Rapitan Group in northwest Canada. Coupled with existing U-Pb dates, the postglacial Re-Os date of 662.4 ± 3.9 Mya represents direct geochronological constraints for both the onset and demise of a Cryogenian glaciation from the same continental margin and suggests a 55-My duration of the Sturtian glacial epoch. The Os and Sr isotope data allow us to assess the relative weathering input of old radiogenic crust and more juvenile, mantle-derived substrate. The preglacial isotopic signals are consistent with an enhanced contribution of juvenile material to the oceans and glacial initiation through enhanced global weatherability. In contrast, postglacial strata feature radiogenic Os and Sr isotope compositions indicative of extensive glacial scouring of the continents and intense silicate weathering in a post-Snowball Earth hothouse.

  7. Kiglapait Feldspar States 5 to <2 Kbar, 1250 to 240 Degrees C in 20 Ma: Liquidus, Solidus, Solvi, and Subsolidus with Sr Isotope Partitioning: a Review

    NASA Astrophysics Data System (ADS)

    Morse, S. A.

    2017-12-01

    The 1305 Ga Kiglapait Intrusion of coastal Labrador records the crystallization of troctolite through olivine gabbro to magnetite- and apatite-bearing rocks to monoclinic sanidine- mesoperthite-ferrosyenite below an inverted stratigraphy of a thin Upper Border Zone. The crystallization history was about 1 Ma. ¶The evolutionary history of Kiglapait feldspars in an 8.4 km thick magma chamber runs from plagioclase An70 at 5 kbar and 1250°C, cooling through to ferrosyenite with mesoperthite and two feldspars at 3 kbar and 1,000°C. The residual magma encountered the binodal solvus and finished crystallizing as an azeotrope with plagioclase (Or 21, An 15) and sanidine (Or 52, An 8) in liquid (Xor = 1/3; An 11). Cooling in the subsolidus brought the feldspars to compositions An15-Or 3, An0-Or 80-85 at 800-730°C. Metastable mesoperthite on the coherent solvus in various stages of late equilibration persists in the local assemblages. Arrested to complete feldspar symplectites suggest the local presence of a vapor phase. ¶Splits of the final Or-rich feldspar were found by mass spectrometry to have a dominant quantity of Rb and 87Sr/86Sr along with % amounts of Ba; in contrast, the plag fraction has very low Rb and 87Sr/86Sr. The estimated timing of the isotopic segregation was plausibly continuous with major-element fractionation or perhaps at the moment(s) of exsolution. ¶The cooling record of the solidified intrusion at 3 kbar is shown by 40Ar/39Ar data to have been rapid, reaching an ambient temperature near 240°C within the first 20 Ma, compared to the ambient country-rock temperature before intrusion of 350°C. The difference suggests a late uplift of the region after the Kiglapait magmatism. ¶Contributions from Y. Yu, T. Krogh, M. Hamilton, D. Lindsley, D. DePaolo, M. Jercinovic and S.R. Hart are especially acknowledged.

  8. A Coast Mountains provenance for the Valdez and Orca groups, southern Alaska, based on Nd, Sr, and Pb isotopic evidence

    USGS Publications Warehouse

    Farmer, G.L.; Ayuso, R.; Plafker, G.

    1993-01-01

    Nd, Sr, and Pb isotopic data were obtained for fourteen fine- to coarse-grained samples of accreted flysch of the Late Cretaceous and early Tertiary Valdez and Orca Groups in southern Alaska to determine the flysch provenance. Argillites and greywackes from the Orca Group, as well as compositionally similar but higher metamorphic grade rocks from the Valdez Group, show a restricted range of correlated ??{lunate}Nd ( -0.6 to -3.8) and 87Sr 86Sr (0.7060-0.7080) at the time of sediment deposition ( ??? 50 Ma). Pb isotopic compositions also vary over a narrow range ( 206Pb 204Pb = 19.138-19.395, 207Pb 204Pb = 15.593-15.703, 208Pb 204Pb = 38.677-39.209), and in the Orca Group the samples generally become more radiogenic with decreasing ??{lunate}Nd and increasing 87Sr 86Sr. All samples have similar trace element compositions characterized by moderate light rare earth element enrichments, and low ratios of high field strength elements to large ion lithophile elements. Based on petrographic, geochemical, and isotopic data the sedimentary rocks are interpreted to have been derived largely from a Phanerozoic continental margin arc complex characterized by igneous rocks with ??{lunate}Nd values between 0 and -5. The latter conclusion is supported by the ??{lunate}Nd values of a tonalite clast and a rhyodacite clast in the Orca Group (??{lunate}Nd = -4.9 and -0.9, respectively). However, trondjemitic clasts in the Orca Group have significantly lower ??{lunate}Nd ( ??? -10) and require a derivation of a portion of the flysch from Precambrian crustal sources. The Nd, Sr, and Pb isotopic compositions of both the Valdez and Orca Groups overlap the values determined for intrusive igneous rocks exposed within the northern portion of the Late Cretaceous to early Tertiary Coast Mountains Plutonic Complex in western British Columbia and equivalent rocks in southeastern Alaska. The isotopic data support previous conclusions based on geologic studies which suggest that the flysch was

  9. Precision control of eluted activity from a Sr/Rb generator for cardiac positron emission tomography.

    PubMed

    Klein, R; Adler, A; Beanlands, R S; deKemp, R A

    2004-01-01

    A rubidium-82 (/sup 82/Rb) elution system is described for use with clinical positron emission tomography. The system is self-calibrating with 1.4% repeatability, independent of generator activity and elution flow rate. Saline flow is switched between a /sup 82/Sr//sup 82/Rb generator and a bypass line to achieve a constant activity elution of /sup 82/Rb. In the present study, pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control algorithm is developed which produces a constant activity elution within the constraints of long feedback delay and short elution time. Accurate constant-activity elutions of 10-70% of the total generator activity were demonstrated using the threshold comparison control. The adaptive-corrective control of the PWM valve provided a substantial improvement in precision of the steady-state output.

  10. Sr-isotopic composition of marbles from the Puerto Galera area (Mindoro, Philippines): additional evidence for a Paleozoic age of a metamorphic complex in the Philippine island arc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knittel, U.; Daniels, U.

    1987-02-01

    The Sr-isotopic composition of marbles from the Puerto Galera area (Mindoro, Philippines) is compatible with either a Tertiary or a Paleozoic age. The former is considered as unlikely because nonmetamorphic sediments of that age overlie the metamorphic complex. This implies that the metamorphic complex does not represent the basement of the Philippine arc but is an accreted terrane.

  11. Tracing Altiplano-Puna plateau surface uplift via radiogenic isotope composition of Andean arc lavas

    NASA Astrophysics Data System (ADS)

    Scott, E. M.; Allen, M. B.; Macpherson, C.; McCaffrey, K. J. W.; Davidson, J.; Saville, C.

    2016-12-01

    We have compiled published geochemical data for Jurassic to Holocene Andean arc lavas from 5oN to 47oS, covering the current extent of the northern, central and southern volcanic zones. Using this dataset we evaluate the spatial and temporal evolution of age corrected Sr- and Nd-radiogenic isotopes in arc lavas at a continental-scale, in order to understand the tectonic and surface uplift histories of the Andean margin. It has long been noted that baseline 87Sr/86Sr and 143Nd/144Nd ratios of Quaternary lavas from the central volcanic zone, located within the Altiplano-Puna plateau, are distinct from volcanic rocks to the north and south. This is commonly attributed to greater crustal thickness, which increases to roughly twice that of the average continental crust within the Altiplano-Puna plateau. By comparing 87Sr/86Sr and 143Nd/144Nd ratios in Quaternary lavas to published crustal thickness models, present day topography and the compositions of basement terranes, we note that Sr- and Nd-isotope values of Quaternary lavas are an effective proxy for present day regional elevation. In contrast, variation in basement terranes has only a small, second order effect on isotopic composition at the scale of our study. Using this isotopic proxy, we infer the spatial extent of the plateau and its surface uplift history from the Jurassic to the present. Our results concur with a crustal thickening model of continued surface uplift, which initiated in the Altiplano, with deformation propagating southwards into the Puna throughout the Neogene and then continuing in central Chile and Argentina up to the present day.

  12. A multi-proxy isotope study (δ41K, δ26Mg, 87Sr/86Sr) of low-temperature oceanic crust alteration: the Troodos Ophiolite and Ocean Drilling Program Hole 801C

    NASA Astrophysics Data System (ADS)

    Santiago Ramos, D. P.; Higgins, J. A.

    2017-12-01

    Low-temperature alteration of oceanic crust plays an important role in a number of geochemical cycles, thus modulating the chemical composition of the oceans. In particular, it has been established that low-temperature (<150oC) alteration of basalt is a major sink of seawater potassium. However, little is known about the effects of this process on the potassium isotope composition of seawater, which is 0.5‰ enriched relative to bulk silicate Earth (δ41KBSE=-0.54‰). Here we measure a number of isotope systems (δ41K, δ26Mg, 87Sr/86Sr) in both host rock and vein material from the upper volcanic section of Cretaceous (Troodos Ophiolite) and Jurassic (ODP 801C) oceanic crust using a MC-ICP-MS. The goal is to estimate the K isotopic fractionation associated with basalt alteration in low-temperature conditions, and how it might affect the K isotope enrichment of seawater relative to BSE. We find that marine hydrothermal samples from Troodos and ODP site 801C are enriched in potassium relative to the unaltered glass compositions and have δ41K values both higher and lower than BSE, ranging from -0.45‰ to -0.69‰ (n = 9) and -0.32‰ to -0.71‰ (n = 5), respectively. The low measured δ41K values could represent 1) fractionation (α<1) of K isotopes during uptake from seawater (δ41KSW 0‰), or 2) remobilized mantle-sourced K (δ41KBSE=-0.54‰) from deeper within the ophiolite sequence. Measurements of δ26Mg (n=15) and 87Sr/86Sr (n=12) in these samples yield enriched values relative to bulk silicate Earth, suggesting that alteration of oceanic crust likely happened under high water-to-rock ratios in both Troodos and ODP 801C, and that the added potassium is seawater-sourced. We thus suggest that the isotopically light δ41K values measured in both sites are associated with the formation of secondary clays enriched in the 39K isotope. This light isotope enrichment could be intensified if seawater K sourcing is a diffusion-limited process, as aqueous potassium

  13. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source

    NASA Astrophysics Data System (ADS)

    Ying, Jifeng; Zhou, Xinhua; Zhang, Hongfu

    2004-08-01

    Major and trace element and Nd-Sr isotope data of the Mesozoic Laiwu-Zibo carbonatites (LZCs) from western Shandong Province, China, provide clues to the petrogenesis and the nature of their mantle source. The Laiwu-Zibo carbonatites can be petrologically classified as calcio-, magnesio- and ferro-carbonatites. All these carbonatites show a similarity in geochemistry. On the one hand, they are extremely enriched in Ba, Sr and LREE and markedly low in K, Rb and Ti, which are similar to those global carbonatites, on the other hand, they have extremely high initial 87Sr/ 86Sr (0.7095-0.7106) and very low ɛNd (-18.2 to -14.3), a character completely different from those global carbonatites. The small variations in Sr and Nd isotopic ratios suggest that crustal contamination can not modify the primary isotopic compositions of LZC magmas and those values are representatives of their mantle source. The Nd-Sr isotopic compositions of LZCs and their similarity to those of Mesozoic Fangcheng basalts imply that they derived from an enriched lithospheric mantle. The formation of such enriched lithospheric mantle is connected with the major collision between the North China Craton (NCC) and the Yangtze Craton. Crustal materials from the Yangtze Craton were subducted beneath the NCC and melts derived from the subducted crust of the Yangtze Craton produced an enriched Mesozoic mantle, which is the source for the LZCs and Fangcheng basalts. The absence of alkaline silicate rocks, which are usually associated with carbonatites suggest that the LZCs originated from the mantle by directly partial melting.

  14. Rb-Sr-analyses of apollo 16 melt rocks and a new age estimate for the imbrium basin: lunar basin chronology and the early heavy bombardment of the moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, A.; Stoeffler, D.

    1987-07-01

    Rb-Sr-model ages on 7 impact glass-bombs and internal Rb-Sr isochrons for two crystalline impact melt rocks from the Apollo 16 collection have been determined. The post-Cayley glass-bombs with model ages between 4.75 +- 0.45 AE and 3.97 +- 0.08 AE can be classified according to their calculated single stage (/sup 87/Rb/sup 86/Sr)/sub I/-ratios: 67728, 67946, and 67627.8 point to a KREEP-free precursor terrain - the Descartes highlands; whereas 63566, 67567, 67627.10 and 67629 are derived from the more heterogeneous Cayley plains. The very feldspar-rich impact melt rock 65795, which is compositionally similar to the group of feldspathic microporphyritic melt brecciasmore » (FM-suite), yields a crystallization age of 3.81 +- 0.04 AE (2sigma; lambda/sup 87/Rb = 1.42/sup -11/ yr/sup -1/) and I/sub Sr/ of .69929 +- 3. The authors suggest that the Imbrium basin and the related Fra Mauro and Cayley formations were formed 3.77 +- 0.02 AE ago and could be even as young as 3.75 AE. As a consequence, they adopt 3.92 +- 0.03 AE, 3.87 +- 0.03 AE, and 3.84 +- 0.04 AE as ages for the Nectaris, Serenitatis, and Crisium basins, respectively, in agreement with the relative crater densities measured on the ejecta blankets of these basins. The proposed age sequence leads to an average formation interval for the observed 12-13 Nectarian basins of 7 to 14 m.y. leaving approx. 30 pre-Nectarian basins of unknown age. These facts suggest that there is no late terminal lunar cataclysm in the sense of a culmination of the lunar impact rate at approx. 3.8 AE ago. Rather, the observations are compatible with a steeply and steadily decreasing flux of impactors in the sense of an early heavy bombardment which started at the time of the moon's accretion and terminated around 3.75 AE ago.« less

  15. Sr-Nd isotopes constrain on the deposit history of the basins in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Li, Y.; Jiang, S.

    2015-12-01

    The Brazos-Trinity Basin IV and Ursa Basin are situated on the northern slope of the Gulf of Mexico. The Ursa basin lies in the center of late Pleistocene Mississippi River deposition, received the sediment deposition during Marine Isotope Stage (MIS) 2- 4. The Brazos-Trinity Basin IV belongs to a part of the Brazos-Trinity fan, it recorded the turbidite deposition and hemiplegic deposition during MIS1- 5. The Sr and Nd isotopic composition of the detrital composition of the sediment in both basins indicates the change of the sediment provenance during the basin-filled process. In the Ursa basin, The difference of 87Sr/86Sr ratio and ɛNd of the detrital component between MIS1,2 (87Sr/86Sr ~ 0.7219 - 0.7321, ɛNd ~ -12 - -13.4) and MIS3,4(87Sr/86Sr ~ 0.7310 - 0.7354, ɛNd ~ -16 - -17.9) is suggested to be related with the provenance change of the detrital particles since LGM. The addition of detrital particle from Appalachians with less radiogenic 87Sr/86Sr and positive ɛNd altered the character of the sediment of the Mississippi River during the last glaciation and deglaciation. In the Brazos-Trinity Basin IV, the narrow range of 87Sr/86Sr and ɛNd indicate that the sediment source of Brazos-Trinity Basin IV had not changed obviously during MIS5e to MIS2, mostly from coastal rivers such as Brazos River, Trinity River and Sabine River. The pre-fan with 87Sr/86Sr ~0.735 and ɛNd ~ -14.5 to -16.9, which is very similar to the deep sediment in the Ursa Basin with 87Sr/86Sr ~0.733 to 0.735 and ɛNd ~ -16 to -18. It is suggested that sediments of the pre-fan of the Brazos-Trinity Basin IV were supplied from the ancestral Mississippi River Delta during the low sea level (MIS 6). During the MIS5, the discharge of Mississippi River is thought switched to its present course, ~300 km to the east.

  16. U-Th-Pb and Rb-Sr systematics of Apollo 17 boulder 7 from the North Massif of the Taurus-Littrow Valley

    USGS Publications Warehouse

    Nunes, P.D.; Tatsumoto, M.; Unruh, D.M.

    1974-01-01

    Portions of highland breccia boulder 7 collected during the Apollo 17 mission were studied using UThPb and RbSr systematics. A RbSr internal isochron age of 3.89 ?? 0.08 b.y. with an initial 87Sr/86Sr of 0.69926 ?? 0.00008 was obtained for clast 1 (77135,57) (a troctolitic microbreccia). A troctolitic portion of microbreccia clast 77215,37 yielded a UPb internal isochron of 3.8 ?? 0.2 b.y. and an initial 206Pb/207Pb of 0.69. These internal isochron age are interpreted as reflecting metamorphic events, probably related to impacts, which reset RbSr and UPb mineral systems of older rocks. Six portions of boulder 7 were analyzed for U, Th, and Pb as whole rocks. Two chemical groups appear to be defined by the U, Th, and Pb concentration data. Chemical group A is characterized by U, Th, and Pb concentrations and 238U/204Pb values which are higher than those of group B. Group A rocks have typical 232Th/238U ratios of ??? 3.85, whereas-group B rocks have unusually high Th/U values of ??? 4.1. Whole-rock UPb and PbPb ages are nearly concordant. Two events appear to be reflected in these data - one at ??? 4.4 b.y. and one at ??? 4.5 b.y. The chemical groupings show no correlation with documented ages. The old ages of ??? 4.4 b.y. and ??? 4.5 b.y. may, like the younger ??? 4.0 b.y. ages, be related to basin excavation events. ?? 1974.

  17. Miniature Dual-Mode Absolute Scalar Magnetometer Based on the Rubidium Isotope 87Rb

    NASA Astrophysics Data System (ADS)

    Korth, H.; Strohbehn, K.; Kitching, J.

    2016-10-01

    Miniaturized absolute scalar magnetometer based on the rubidium isotope 87Rb takes advantage of recent breakthroughs in micro-fabricated atomic devices, has a total mass of 210 g and uses <1 W of power, and maintains a sensitivity of 0.1 nT rms.

  18. Persistence of fertile and hydrous lithospheric mantle beneath the northwestern Ethiopian plateau: Evidence from modal, trace element and Sr-Nd-Hf isotopic compositions of amphibole-bearing mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Alemayehu, Melesse; Zhang, Hong-Fu; Aulbach, Sonja

    2017-07-01

    We present new trace element compositions of amphiboles, Sr-Nd-Hf isotope compositions of clinopyroxenes and mineral modes for spinel peridotite xenoliths that were entrained in a Miocene alkali basalt (Gundeweyn, northwestern Ethiopian plateau), in order to understand the geochemical evolution and variation occurring within the continental lithospheric mantle (CLM) in close proximity to the East African Rift system, and its dynamic implications. With the exception of a single amphibole-bearing sample that is depleted in LREE (La/YbN = 0.45 × Cl), amphiboles in lherzolites and in one harzburgite show variable degrees of LREE enrichment (La/YbN = 2.5-12.1 × Cl) with flat HREE (Dy/YbN = 1.5-2.1 × Cl). Lherzolitic clinoyroxenes have 87Sr/86Sr (0.70227 to 0.70357), 143Nd/144Nd (0.51285 to 0.51346), and 176Hf/177Hf (0.28297 to 0.28360) ranging between depleted lithosphere and enriched mantle. LREE-enriched clinopyroxenes generally have more enriched isotope compositions than depleted ones. While lherzolites with isotope compositions similar to those of the Afar plume result from the most recent metasomatic overprint, isotope compositions more depleted than present-day MORB can be explained by an older melt extraction and/or isotopic rehomogenisation event, possibly related to the Pan-African orogeny. Several generations of amphibole are recognized in accord with this multi-stage evolution. Texturally unequilibrated amphibole occurring within the peridotite matrix and in melt pockets attest to continued hydration and refertilization of the lithospheric mantle subsequent to Oligocene flood basalt magmatism, during which an earlier-emplaced inventory of amphibole was likely largely consumed. However, a single harzburgite contains amphibole with the highest Mg# and lowest TiO2 content, which is interpreted as sampling a volumetrically subordinate mantle region beneath the Ethiopian plateau that was not tapped during flood basalt magmatism. Strikingly, both trace

  19. Zircon U-Pb geochronology, Sr-Nd-Hf isotopic composition and geological significance of the Late Triassic Baijiazhuang and Lvjing granitic plutons in West Qinling Orogen

    NASA Astrophysics Data System (ADS)

    Duan, Meng; Niu, Yaoling; Kong, Juanjuan; Sun, Pu; Hu, Yan; Zhang, Yu; Chen, Shuo; Li, Jiyong

    2016-09-01

    The Qinling Orogen was a consequence of continental collision of the South China Craton with the North China Craton in the Triassic and caused widespread granitoid magmatism. However, the petrogenesis of these granitoids remains controversial. In this paper, we choose the Baijiazhuang (BJZ) and Lvjing (LJ) plutons in the West Qinling Orogen for a combined study of the zircon U-Pb geochronology, whole-rock major and trace element compositions and Sr-Nd-Hf isotopic characteristics. We obtained zircon crystallization ages of 216 Ma and 212 Ma for the BJZ and the LJ plutons, respectively. The granitoid samples from both plutons have high K2O metaluminous to peraluminous compositions. They are enriched in large ion lithophile elements (LILEs), light rare earth elements (LREEs) and depleted in high field-strength elements (HFSEs) with significant negative Eu anomalies. The BJZ samples have initial Sr isotopic ratios of 0.7032 to 0.7078, εNd(t) of - 10.99 to - 8.54 and εHf (t) of - 10.22 to - 6.41. The LJ granitoids have initial Sr isotopic ratios of 0.7070 to 0.7080, εNd(t) of - 5.37 to - 4.58 and εHf(t) of - 3.64 to - 1.78. The enriched isotopic characteristics of the two plutons are consistent with their source being dominated by ancient continental crust. However, two BJZ samples show depleted Sr isotope compositions, which may infer possible involvement of mantle materials. Mantle-derived melt, which formed from partial melting of mantle wedge peridotite facilitated by dehydration of the subducted/subducting Mianlue ocean crust, provide the required heat for the crustal melting while also contributing to the compositions of these granitoids. That is, the two granitic plutons are magmatic responses to the closure of the Mianlue ocean basin and the continental collision between the Yangtze and South Qinling crustal terranes. (143Nd/144Nd)i = (143Nd/144Nd) - (147Sm/144Nd) × (eλt - 1), εNd(t) = [(143Nd/144Nd) / (143Nd/144Nd)CHUR(t) - 1] × 104, (143Nd/144Nd

  20. Ore genesis of the Wusihe carbonate-hosted Zn-Pb deposit in the Dadu River Valley district, Yangtze Block, SW China: evidence from ore geology, S-Pb isotopes, and sphalerite Rb-Sr dating

    NASA Astrophysics Data System (ADS)

    Xiong, Suo-Fei; Gong, Yong-Jun; Jiang, Shao-Yong; Zhang, Xiao-Jing; Li, Qian; Zeng, Guo-Ping

    2018-01-01

    The Wusihe carbonate-hosted Zn-Pb deposit (3.7 Mt. Zn + Pb at a grade of 8.6% Zn and 2.0% Pb) is the largest deposit in the Dadu River Valley district of the Sichuan-Yunnan-Guizhou metallogenic province of southwest China. Three types of orebodies occur: (1) stratiform, banded and lamellar, within dolomite of the Neoproterozoic Dengying Formation; (2) vein type; and (3) breccia type. Four stages of mineralization are distinguished: (i) pyrite stage, (ii) pyrite-pyrrhotite-galena-sphalerite-bitumen stage, (iii) sphalerite-galena stage, and (iv) bitumen-calcite stage. Sphalerite and galena from stages II and III show δ34S ranges from +7.1 to +9.7‰ and +9.1 to +13.1‰, respectively. High-precision in situ lead isotope analyses of sulfides show 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios of 37.938 to 38.336, 15.579 to 15.682, and 17.951 to 18.195, respectively, which suggest a mixing of lead from the basement and the host rocks. Rb-Sr isotope analyses for six sphalerite samples of stage II yielded an isochron age of 411 ± 10 Ma (MSWD = 1.4). Combining all available ore geology and geochemical data, together with fluid inclusion data reported previously, we suggest that the Wusihe deposit is a Mississippi Valley-type (MVT) deposit.

  1. Sr-Nd-Hf Isotopic Analysis of <10 mg Dust Samples: Implications for Ice Core Dust Source Fingerprinting

    NASA Astrophysics Data System (ADS)

    Újvári, Gábor; Wegner, Wencke; Klötzli, Urs; Horschinegg, Monika; Hippler, Dorothee

    2018-01-01

    Combined Sr-Nd-Hf isotopic data of two reference materials (AGV-1/BCR2) and 50, 10, and 5 mg aliquots of carbonate-free fine grain (<10 μm) separates of three loess samples (Central Europe/NUS, China/BEI, USA/JUD) are presented. Good agreement between measured and reference Sr-Nd-Hf isotopic compositions (ICs) demonstrate that robust isotopic ratios can be obtained from 5 to 10 mg size rock samples using the ion exchange/mass spectrometry techniques applied. While 87Sr/86Sr ratios of dust aluminosilicate fractions are affected by even small changes in pretreatments, Nd isotopic ratios are found to be insensitive to acid leaching, grain-size or weathering effects. However, the Nd isotopic tracer is sometimes inconclusive in dust source fingerprinting (BEI and NUS both close to ɛNd(0) -10). Hafnium isotopic values (<10 μm fractions) are homogenous for NUS, while highly variable for BEI. This heterogeneity and vertical arrays of Hf isotopic data suggest zircon depletion effects toward the clay fractions (<2 μm). Monte Carlo simulations demonstrate that the Hf IC of the dust <10 μm fraction is influenced by both the abundance of zircons present and maturity of crustal rocks supplying this heavy mineral, while the <2 μm fraction is almost unaffected. Thus, ɛHf(0) variations in the clay fraction are largely controlled by the Hf IC of clays/heavy minerals having high Lu/Hf and radiogenic 176Hf/177Hf IC. Future work should be focused on Hf IC of both the <10 and <2 μm fractions of dust from potential source areas to gain more insight into the origin of last glacial dust in Greenland ice cores.

  2. Origin and evolution of the Ilmeny-Vishnevogorsky carbonatites (Urals, Russia): insights from trace-element compositions, and Rb-Sr, Sm-Nd, U-Pb, Lu-Hf isotope data

    NASA Astrophysics Data System (ADS)

    Nedosekova, I. L.; Belousova, E. A.; Sharygin, V. V.; Belyatsky, B. V.; Bayanova, T. B.

    2013-02-01

    The carbonatites of the Ilmeny-Vishnevogorsky Alkaline Complex (IVAC) are specific in geological and geochemical aspects and differ by some characteristics from classic carbonatites of the zoned alkaline-ultramafic complexes. Geological, geochemical and isotopic data and comparison with relevant experimental systems show that the IVAC carbonatites are genetically related to miaskites, and seem to be formed as a result of separation of carbonatite liquid from a miaskitic magma. Appreciable role of a carbonate fluid is established at the later stages of carbonatite formation. The trace element contents in the IVAC carbonatites are similar to carbonatites of the ultramafic-alkaline complexes. The characteristic signatures of the IVAC carbonatites are a high Sr content, a slight depletion in Ba, Nb, Та, Ti, Zr, and Hf, and enrichment in HREE in comparison with carbonatites of ultramafic-alkaline complexes. This testifies a specific nature of the IVAC carbonatites related to the fractionation of a miaskitic magma and to further Late Paleozoic metamorphism. Isotope data suggest a mantle source for IVAC carbonatites and indicate that moderately depleted mantle and enriched EMI-type components participated in magma generation. The lower crust could have been involved in the generation of the IVAC magma.

  3. Radiogenic Isotopes in Weathering and Hydrology

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Erel, Y.

    2003-12-01

    as on the observation that radiogenic isotopes are sometimes preferentially released compared to nonradiogenic isotopes of the same element during acid leaching of rocks ( Hart and Tilton, 1966; Silver et al., 1984; Erel et al., 1991). A major finding of these investigations was that weathering often results in anomalously young Rb-Sr isochron ages, and discordant Pb-Pb ages. Rubidium is generally retained relative to strontium in whole-rock samples, and in some cases radiogenic strontium and lead are lost preferentially to common strontium and lead from weathered minerals.The most widely utilized of these isotopic systems is Rb-Sr, followed by U-Pb. The K-Ar system is not directly applicable to most studies of rock-water interaction, because argon is a noble gas, and upon release during mineral weathering mixes with atmospheric argon, limiting its usefulness as a tracer in most weathering applications. Argon and other noble gas isotopes have, however, found important applications in hydrology (see Chapter 5.15). Three other isotopic systems commonly used in geochronology and petrology include Sm-Nd, Lu-Hf, and Re-Os. These parent and daughter elements are in very low abundance and concentrated in trace mineral phases. Sm-Nd, Lu-Hf, and Re-Os have been used in a few weathering studies but have not been utilized extensively in investigations of weathering and hydrology.The decay of 87Rb to 87Sr has a half-life of 48.8 Gyr, and this radioactive decay results in natural variability in the 87Sr/86Sr ratio in rubidium-bearing minerals (e.g., Blum, 1995). The trace elements rubidium and strontium are geochemically similar to the major elements potassium and calcium, respectively. Therefore, minerals with high K/Ca ratios develop high 87Sr/86Sr ratios over geologic timescales. Once released into the hydrosphere, strontium retains its isotopic composition without significant fractionation by geochemical or biological processes, and is therefore a good tracer for sources and

  4. Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks

    USGS Publications Warehouse

    Kistler, Ronald Wayne; Peterman, Zell E.

    1978-01-01

    Initial 87Sr/ 86 Sr was determined for samples of Mesozoic granitic rocks in the vicinity of the Garlock fault zone in California. These data along with similar data from the Sierra Nevada and along the San Andreas fault system permit a reconstruction of basement rocks offset by the Cenozoic lateral faulting along both the San Andreas and Garlock fault systems. The location of the line of initial 87Sr/ 86 Sr = 0.7060 can be related to the edge of the Precambrian continental crust in the western United States. Our model explains the present configuration of the edge of Precambrian continental crust as the result of two stages of rifting that occurred about 1,250 to 800 m.y. ago, during Belt sedimentation, and about 600 to 350 m.y. ago, prior to and during the development of the Cordilleran geosyncline and to left-lateral translation along a locus of disturbance identified in the central Mojave Desert. The variations in Rb, Sr, and initial 87Sr/ 86 Sr of the Mesozoic granitic rocks are interpreted as due to variations in composition and age of the source materials of the granitic rocks. The variations of Rb, Sr, and initial 87Sr/ 86 Sr in Mesozoic granitic rocks, the sedimentation history during the late Precambrian and Paleozoic, and the geographic position of loci of Mesozoic magmatism in the western United States are related to the development of the continental margin and different types of lithosphere during rifting.

  5. Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution

    USGS Publications Warehouse

    Wooden, J.L.; Mueller, P.A.

    1988-01-01

    A series of compositionally diverse, Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains, Montana and Wyoming, U.S.A., have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial ratios lower than would be expected for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. Crustal contamination during emplacement can be ruled out for a variety of reasons. Instead a model involving subduction of continental detritus and contamination of the overlying mantle as is often proposed for modern subduction environments is preferred. This contaminated mantle would have all the isotopic characteristics of mantle enriched by internal mantle metasomatism but would require no long-term growth or changes in parent to daughter element ratios. This contaminated mantle would make a good source for some of the Cenozoic mafic volcanics of the Columbia River, Snake River Plain, and Yellowstone volcanic fields that are proposed to come from ancient, enriched lithospheric mantle. The isotopic characteristics of the 2.70 Ga old Stillwater Complex are a perfect match for the proposed contaminated mantle which provides an alternative to crustal contamination during emplacement. The Pb isotopic characteristics of the Late Archean rocks of the eastern Beartooth Mountains are similar to those of other Late Archean rocks of the Wyoming Province and suggest that Early Archean, upper crustal rocks were common in this terrane. The isotopic signatures of Late Archean rocks in the Wyoming Province are distinctive from those of other Archean cratons in North America which are dominated by a MORB-like, Archean mantle source (Superior Province) and/or a long-term depleted crustal source (Greenland). ?? 1988.

  6. Petrology and isotopic geochemistry of the Archaean basement lithologies near Gardiner, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, R.E.; Sinha, A.K.

    1985-01-01

    In an attempt to recognize potential source rocks for some of the rhyolites of the Yellowstone Rhyolite Plateau, four major exposures of Precambrian rocks have been analyzed for major and trace elements and isotopic composition. The terrain is characterized by granitic gneisses with subordinant mica schist, quartzite, amphibolite, and two-mica granite. The gneiss units from the northern (Yankee Jim Canyon) and eastern (Lamar Canyon) outcrops are characterized by k-feldspar augen in a gneissic groundmass of two-feldspar--quartz--mica--epidote. The feldspar compositions are Or/sub 95/ and An/sub 5-15/ indicating metamorphic re-equilibration. Mafic phases are iron-rich with Fe:Mg of 1.0 in epidote, 0.7 inmore » pyroxene, and 0.5 in biotite. Sr isotopic analyses yield present day values of 0.7201-0.7519 for Lamar Canyon, 0.7157-0.7385 for Yankee Jam Canyon, and 0.7200-0.7679 for mica schist from the western and northern outcrops. Rb-Sr whole-rock data indicate a complicated isotopic history with ages ranging from 2800 to 3600 my. The 2800 my ages are consistent with ages for the Tobacco Root and Ruby Mountains to the NW (James and Hedge, 1980) and the Beartooth Range to the NE (Nunes and Tilton, 1971) while the 3600 my age may be related to the formation of the protolith. The rhyolites of the northern Yellowstone Rhyolite Plateau (Sr/sub I/=0.7100) cannot be derived from the exposed Archaean rocks based on Sr isotopic and whole-rock chemistry, and must be derived from lithologies not exposed in the area. This study shows that care must be taken when using surface lithologies to model potential sources materials for volcanic rocks in an associated terrain.« less

  7. Calcium inputs and transport in a base-poor forest ecosystem as interpreted by Sr isotopes

    Treesearch

    Scott W. Bailey; James W. Hornbeck; Charles T. Driscoll; Henri E. Gaudette

    1996-01-01

    Depletion of Ca in forests and its effects on forest health are poorly quantified. Depletion has been difficult to document due to limitations in determining rates at which Ca becomes available for ecosystem processes through weathering, and difficulty in determining changes in ecosystem storage. We coupled a detailed analysis of Sr isotopic composition with a mass...

  8. Observation of Isotope Ratios (δ2H, δ18O, 87Sr/86Sr) of Tap Water in Urban Environments

    NASA Astrophysics Data System (ADS)

    Mancuso, C. J.; Tipple, B. J.; Ehleringer, J. R.

    2014-12-01

    Urban environments are centers for rapidly growing populations. In order to meet the culinary water needs of these areas, municipal water departments use water from multiple locations and/or sources, often piped differentially to different locations within a municipality. This practice creates isotopically distinct locations within an urban area and therefore provides insight to urban water management practices. In our study we selected urban locations in the Salt Lake Valley, UT (SLV) and San Francisco Bay Area, CA (SFB) where we hypothesized geographically distinct water isotopic ratio differences existed. Within the SLV, municipal waters come from the same mountainous region, but are derived from different geologically distinct watersheds. In contrast, SFB waters are derived from regionally distinct water sources. We hypothesized that the isotope ratios of tap waters would differ based upon known municipal sources. To test this, tap water samples were collected throughout the urban regions in SLV and SFB and analyzed for δ2H, δ18O and 87Sr/86Sr isotope ratios. Seasonal collections were also made to assess if isotope ratios differed throughout the year. Within SLV and SFB, different regions were characterized by distinct paired δ18O and 87Sr/86Sr values. These different realms also agreed with known differences in municipal water supplies within the general geographic region. Waters from different cities within Marin County showed isotopic differences, consistent with water derived from different local reservoirs. Seasonal variation was observed in paired δ18O and 87Sr/86Sr values of tap water for some locations within SLV and SFB, indicating management decisions to shift from one water source to another depending on demand and available resources. Our study revealed that the δ18O and 87Sr/86Sr values of tap waters in an urban region can exhibit significant differences despite close spatial proximity if districts differ in their use of local versus

  9. Ultracold collisions between Rb atoms and a Sr+ ion

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2015-05-01

    In last decade, a novel field emerged, in which ultracold atoms and ions in overlapping traps are brought into interaction. In contrast to the short ranged atom-atom interaction which scales as r-6, atom-ion potential persists for hundreds of μm's due to its lower power-law scaling - r-4. Inelastic collisions between the consistuents lead to spin and charge transfer and also to molecule formation. Elastic collisions control the energy transfer between the ion and the atoms. The study of collisions at the μK range has thus far been impeded by the effect of the ion's micromotion which limited collision energy to mK scale. Unraveling this limit will allow to investigate few partial wave and even S-wave collisions. Our system is capable of trapping Sr+ ions and Rb and Sr atoms and cooling them to their quantum ground state. Atoms and ions are trapped and cooled in separate chambers. Then, the atoms are transported using an optical conveyer belt to overlap the ions. In contrast to other experiments in this field where the atoms are used to sympathetic cool the ion, our system is also capable of ground state cooling the ion before immersing it into the atom cloud. By this method, we would be able to explore heating and cooling dynamics in the ultracold regime.

  10. Multi-isotope tracers to investigate processes in the Elbe, Weser and Ems river catchment using B, Mo, Sr, and Pb isotope ratios assessed by MC ICP-MS

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Reese, Anna; Zimmermann, Tristan; Prohaska, Thomas; Retzmann, Anika; Wieser, Michael E.; Zitek, Andreas; Proefrock, Daniel

    2017-04-01

    Environmental monitoring of complex ecosystems requires reliable sensitive techniques based on sound analytical strategies to identify the source, fate and sink of elements and matter. Isotopic signatures can serve to trace pathways by making use of specific isotopic fingermarks or to distinguish between natural and anthropogenic sources. The presented work shows the potential of using the isotopic variation of Sr, Pb (as well-established isotopic systems), Mo and B (as novel isotopic system) assessed by MC ICP-MS in water and sediment samples to study aquatic ecosystem transport processes. The isotopic variation of Sr, Pb, Mo and B was determined in different marine and estuarine compartments covering the catchment of the German Wadden Sea and its main tributaries, the Elbe, Weser and Ems River. The varying elemental concentrations, the complex matrix and the expected small variations in the isotopic composition required the development and application of reliable analytical measurement approaches as well as suited metrological data evaluation strategies. Aquatic isoscapes were created using ArcGIS® by relating spatial isotopic data with geographical and geological maps. The elemental and isotopic distribution maps show large variation for different parameters and also reflect the numerous impact factors (e.g. geology, anthropogenic sources) influencing the catchment area.

  11. He and Sr isotopic constraints on subduction contributions to Woodlark Basin volcanism, Solomon Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trull, T.W.; Kurz, M.D.; Perfit, M.R.

    In order to assess the nature and spatial extent of subduction contributions to arc volcanism, Sr and He isotopic compositions are measured for dredged volcanic rocks from the Woodlark Basin in the western Pacific. {sup 87}Sr/{sup 86}Sr ratios increase geographically, from ocean ridge values (.7025-.7029) at the Woodlark Spreading Center to island arc ratios (.7035-.7039) in the Solomon Islands forearc, with intermediate values near the triple junction where the Woodlark Spreading Center subducts beneath the Solomon Islands. {sup 3}He/{sup 4}He ratios are also more radiogenic in the forearc (6.9 {plus minus} .2 R{sub a} at active Kavachi volcano) than alongmore » the spreading center, where values typical of major ocean ridges were found (8.2 - 9.3 R{sub a}). Very low {sup 3}He/{sup 4}He ratios occur in many triple junction rocks (.1 to 5 R{sub a}), but consideration of He isotopic differences between crushing and melting analyses suggests that the low ratios were caused by atmospheric (1 R{sub a}) and radiogenic ({approx} 0.2 R{sub a}) helium addition after eruption. Variations in unaltered, magnetic {sup 3}He/{sup 4}He, and {sup 87}Sr/{sup 86}Sr ratios are best explained by subduction-related fluid or silicate melt contributions to the magma source region, perhaps from ancient Pacific lithosphere. However, mantle volatiles dominate the generation of Woodlark Basin rocks despite extensive subduction in the region.« less

  12. Thermal evolution of Site U1414 by stable isotopes δ13C and δ18O, 87Sr/86Sr and fluid inclusion analyses, IODP Expedition 344

    NASA Astrophysics Data System (ADS)

    Brandstätter, Jennifer; Kurz, Walter; Krenn, Kurt; Richoz, Sylvain

    2017-04-01

    IODP Expedition 344 is the second expedition in course of the Costa Rica Seismogenesis Project (Program A), that was designed to reveal processes that effect nucleation and seismic rupture of large earthquakes at erosional subduction zones. Site 344-U1414, located 1 km seaward of the deformation front offshore Costa Rica, serves to evaluate fluid-rock interaction and geochemical processes linked with the tectonic evolution of the incoming Cocos Plate from the Early Miocene up to recent times. Combined isotope analyses and microthermometric analyses of fluid inclusions of hydrothermal veins within lithified sediments and the igneous basement (Cocos Ridge basalt), was used to reveal the thermal history of Site 344-U1414. Veins in the sedimentary rocks are mainly filled by coarse-grained calcite and subordinately by quartz. Veins within the basalt show polymineralic filling of clay minerals, calcite, aragonite and quartz. Blocky veins with embedded wall rock fragments, appearing in the sediments and in the basalt, indicate hydraulic fracturing. The carbon isotopic composition of the vein calcite suggest the influence of a CO2 -rich fluid mixed with seawater (-3.0 to -0.4‰ V-PDB) and the δ18O values can be differentiated in two groups, depending on the formation temperature (-13.6 to -9.3‰ and -10.8 to -4.7‰ V-PDB). 87Sr/86Sr ratios from the veins confirm the results of the stable isotope analyses, with a higher 87Sr/86Sr ratio close to seawater composition and lower ratios indicating the influence of basalt alteration. The hydrothermal veins contain different types of fluid inclusions with high and low entrapment temperatures and low saline fluids. The occurrence of decrepitated fluid inclusions, formed by increased internal overpressure, is related to isobaric heating. Elongated fluid inclusion planes, arc-like fluid inclusions and low homogenization temperatures suggest subsequent isobaric cooling. The stable isotopic content, strontium isotopic composition

  13. Petrogenesis of the Late Jurassic peraluminous biotite granites and muscovite-bearing granites in SE China: geochronological, elemental and Sr-Nd-O-Hf isotopic constraints

    NASA Astrophysics Data System (ADS)

    Jiang, Yao-Hui; Zhu, Shu-Qi

    2017-12-01

    Biotite granites and muscovite-bearing granites are dominant rock types of the widespread granites in SE China. However, their petrogenesis has been enigmatic. A combined study of zircon U-Pb dating and Lu-Hf isotopes, whole-rock element geochemistry and Sr-Nd-O isotopes was performed for three late Mesozoic granitic plutons (Xinfengjie, Jiangbei and Dabu) in central Jiangxi province, SE China. All the plutons are composed of biotite granites and muscovite-bearing granites that have been poorly investigated previously. The new data not only allow us to assess their sources and magma evolution processes, but also helps us to better understand the genetic link to the large-scale polymetallic mineralization in SE China. LA-ICP-MS zircon U-Pb dating shows that three plutons were emplaced in the Late Jurassic (159-148 Ma) and that the muscovite-bearing granites are almost contemporaneous with the biotite granites. The biotite granites have SiO2 contents of 70.3-74.4 wt% and are weakly to strongly peraluminous with ASI from 1.00 to 1.26, and show a general decrease in ASI with increasing SiO2. They have relatively high zircon saturation temperatures ( T Zr = 707-817 °C, most > 745 °C) and show a general decrease in T Zr with increasing SiO2. They have high initial 87Sr/86Sr ratios (0.7136 to 0.7166) and high δ18O values (9.1-12.8‰, most > 9.5‰) and clearly negative ɛ Nd (T) (- 9.5 to - 11.8) and ɛ Hf (T) (in situ zircon) (- 13.1 to - 13.5). The muscovite-bearing granites have high SiO2 contents (74.7-78.2 wt%). They are also weakly to strongly peraluminous with ASI of 1.04-1.18 but show a general increase in ASI with increasing SiO2. They have relatively low T Zr (671-764 °C, most < 745 °C) and also show a general decrease in T Zr with increasing SiO2. The muscovite-bearing granites have high Rb (up to 810 ppm) and high (K2O + Na2O)/CaO (up to 270), Rb/Sr (up to 42) and Rb/Ba (up to 30) as well as low K/Rb (< 150, down to 50), Zr/Hf (< 24, down to 11) and Nb

  14. Strontium isotope systematics of scheelite and apatite from the Felbertal tungsten deposit, Austria - results of in-situ LA-MC-ICP-MS analysis

    NASA Astrophysics Data System (ADS)

    Kozlik, Michael; Gerdes, Axel; Raith, Johann G.

    2016-02-01

    the intrusion of the K1-K3 metagranitoid at Felbertal. The subsequent regional metamorphic overprint of the deposit caused redistribution of 87Sr as a consequence of metamorphic reactions involving Rb and Sr-bearing minerals. Metamorphic Scheelite 3 and apatite rims (e.g., in the K1-K3 orthogneiss) generally became more radiogenic during this process. However, local recrystallisation of primary scheelite under closed conditions (without addition of 87Sr by the metamorphic fluid) is also documented. The latter process resulted in a homogenisation of the isotope composition of Scheelite 3. Further increase in 87Sr/86Sr ratios in Scheelite 3 and apatite rims is attributed to Late Alpine (?) metamorphic recrystallisation and redistribution of 87Sr by metamorphic fluids.

  15. New aragonite 87Sr/86Sr records of Mesozoic ammonoids and approach to the problem of N, O, C and Sr isotope cycles in the evolution of the Earth

    NASA Astrophysics Data System (ADS)

    Zakharov, Yuri D.; Dril, Sergei I.; Shigeta, Yasunari; Popov, Alexander M.; Baraboshkin, Eugenij Y.; Michailova, Irina A.; Safronov, Peter P.

    2018-02-01

    New Sr isotope data from well-preserved aragonite ammonoid shell material from the Mesozoic are compared with that from a living Nautilus shell. The prominent negative Sr isotope excursions known from the Middle Permian, Jurassic and Cretaceous probably have their origins in intensive plate tectonic activity, followed by enhanced hydrothermal activity at the mid-ocean ridges (mantle volcanism) which supplied low radiogenic Sr to seawater. The maximum positive (radiogenic) shift in the lower Mesozoic Sr isotope curve (Lower Triassic peak) was likely caused by a significant expansion of dry land surfaces (Dabie-Sulu Triassic orogeny) and their intensive silicate weathering in conditions of extreme warming and aridity in the very end of the Smithian, followed by warm and humid conditions in the late Spathian, which apparently resulted in a significant oceanic input of radiogenic Sr through riverine flux. The comparatively high 87Sr/86Sr ratio obtained from the living Nautilus shell is probably a function of both the Alpine orogeny, which was accompanied by significant continental weathering and input of radiogenic Sr to the oceans, and the weakening of mantle volcanism.

  16. Isotopic imprints of mountaintop mining contaminants.

    PubMed

    Vengosh, Avner; Lindberg, T Ty; Merola, Brittany R; Ruhl, Laura; Warner, Nathaniel R; White, Alissa; Dwyer, Gary S; Di Giulio, Richard T

    2013-09-03

    Mountaintop mining (MTM) is the primary procedure for surface coal exploration within the central Appalachian region of the eastern United States, and it is known to contaminate streams in local watersheds. In this study, we measured the chemical and isotopic compositions of water samples from MTM-impacted tributaries and streams in the Mud River watershed in West Virginia. We systematically document the isotopic compositions of three major constituents: sulfur isotopes in sulfate (δ(34)SSO4), carbon isotopes in dissolved inorganic carbon (δ(13)CDIC), and strontium isotopes ((87)Sr/(86)Sr). The data show that δ(34)SSO4, δ(13)CDIC, Sr/Ca, and (87)Sr/(86)Sr measured in saline- and selenium-rich MTM impacted tributaries are distinguishable from those of the surface water upstream of mining impacts. These tracers can therefore be used to delineate and quantify the impact of MTM in watersheds. High Sr/Ca and low (87)Sr/(86)Sr characterize tributaries that originated from active MTM areas, while tributaries from reclaimed MTM areas had low Sr/Ca and high (87)Sr/(86)Sr. Leaching experiments of rocks from the watershed show that pyrite oxidation and carbonate dissolution control the solute chemistry with distinct (87)Sr/(86)Sr ratios characterizing different rock sources. We propose that MTM operations that access the deeper Kanawha Formation generate residual mined rocks in valley fills from which effluents with distinctive (87)Sr/(86)Sr and Sr/Ca imprints affect the quality of the Appalachian watersheds.

  17. Strontium stable isotope behaviour accompanying basalt weathering

    NASA Astrophysics Data System (ADS)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  18. Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean

    USGS Publications Warehouse

    Chan, L.-H.; Hein, J.R.

    2007-01-01

    To test the feasibility of using lithium isotopes in marine ferromanganese deposits as an indicator of paleoceanographic conditions and seawater composition, we analyzed samples from a variety of tectonic environments in the global ocean. Hydrogenetic, hydrothermal, mixed hydrogenetic–hydrothermal, and hydrogenetic–diagenetic samples were subjected to a two-step leaching and dissolution procedure to extract first the loosely bound Li and then the more tightly bound Li in the Mn oxide and Fe oxyhydroxide. Total leachable Li contents vary from 2 by coulombic force. Hence, the abundant Li in hydrothermal deposits is mainly associated with the dominant phase, MnO2. The surface of amorphous FeOOH holds a slightly positive charge and attracts little Li, as demonstrated by data for hydrothermal Fe oxyhydroxide. Loosely sorbed Li in both hydrogenetic crusts and hydrothermal deposits exhibit Li isotopic compositions that resemble that of modern seawater. We infer that the hydrothermally derived Li scavenged onto the surface of MnO2 freely exchanged with ambient seawater, thereby losing its original isotopic signature. Li in the tightly bound sites is always isotopically lighter than that in the loosely bound fraction, suggesting that the isotopic fractionation occurred during formation of chemical bonds in the oxide and oxyhydroxide structures. Sr isotopes also show evidence of re-equilibration with seawater after deposition. Because of their mobility, Li and Sr in the ferromanganese crusts do not faithfully record secular variations in the isotopic compositions of seawater. However, Li content can be a useful proxy for the hydrothermal history of ocean basins. Based on the Li concentrations of the globally distributed hydrogenetic and hydrothermal samples, we estimate a scavenging flux of Li that is insignificant compared to the hydrothermal flux and river input to the ocean.

  19. Comprehensive Pb-Sr-Nd-Hf isotopic, trace element, and mineralogical characterization of mafic to ultramafic rock reference materials

    NASA Astrophysics Data System (ADS)

    Fourny, Anaïs.; Weis, Dominique; Scoates, James S.

    2016-03-01

    Controlling the accuracy and precision of geochemical analyses requires the use of characterized reference materials with matrices similar to those of the unknown samples being analyzed. We report a comprehensive Pb-Sr-Nd-Hf isotopic and trace element concentration data set, combined with quantitative phase analysis by XRD Rietveld refinement, for a wide range of mafic to ultramafic rock reference materials analyzed at the Pacific Centre for Isotopic and Geochemical Research, University of British Columbia. The samples include a pyroxenite (NIM-P), five basalts (BHVO-2, BIR-1a, JB-3, BE-N, GSR-3), a diabase (W-2), a dolerite (DNC-1), a norite (NIM-N), and an anorthosite (AN-G); results from a leucogabbro (Stillwater) are also reported. Individual isotopic ratios determined by MC-ICP-MS and TIMS, and multielement analyses by HR-ICP-MS are reported with 4-12 complete analytical duplicates for each sample. The basaltic reference materials have coherent Sr and Nd isotopic ratios with external precision below 50 ppm (2SD) and below 100 ppm for Hf isotopes (except BIR-1a). For Pb isotopic reproducibility, several of the basalts (JB-3, BHVO-2) require acid leaching prior to dissolution. The plutonic reference materials also have coherent Sr and Nd isotopic ratios (<50 ppm), however, obtaining good reproducibility for Pb and Hf isotopic ratios is more challenging for NIM-P, NIM-N, and AN-G due to a variety of factors, including postcrystallization Pb mobility and the presence of accessory zircon. Collectively, these results form a comprehensive new database that can be used by the geochemical community for evaluating the radiogenic isotope and trace element compositions of volcanic and plutonic mafic-ultramafic rocks.

  20. 87Sr/86Sr isotopes in grapes of different cultivars: A geochemical tool for geographic traceability of agriculture products.

    PubMed

    Tescione, Ines; Marchionni, Sara; Casalini, Martina; Vignozzi, Nadia; Mattei, Massimo; Conticelli, Sandro

    2018-08-30

    87 Sr/ 86 Sr was determined on fresh red and white grapes, soils and rocks from three selected vineyards to verify the isotopic relationships between the fruit of the vine and geologic substrata of vineyards. 87 Sr/ 86 Sr were determined on sampled grapes of four different harvest years and different grape varieties, on bioavailable fraction of soils, on whole soils, and on bedrocks from the geo-pedological substratum of the vineyards. The vineyards chosen for the experimental works belong to an organic farming winery and thus cultivation procedures were strictly controlled. Grapes were sampled during the harvests of four different but consecutive years with 87 Sr/ 86 Sr that does not change reflecting the values of the soil bioavailable fraction. No variations among grapes from different vine cultivars were observed. A strict isotope relationship with soil bio-available fraction was observed. These findings demonstrate the reliability of 87 Sr/ 86 Sr, even at a very small scale, for food products geographic origin assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Chemical and U-Sr isotopic variations in stream and source waters of the Strengbach watershed (Vosges mountains, France)

    NASA Astrophysics Data System (ADS)

    Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.

    2014-10-01

    This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca / Na, Mg / Na, and Sr / Na ratios, but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals, and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system, and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured bedrock depleted in 234U), implying (234U/238U) AR below 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the - over time - homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs, depending on the hydrological

  2. The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian)

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. B.; Semikhatov, M. A.; Gorokhov, I. M.

    2014-11-01

    Published and original data on the Sr isotopic characterization of carbonates from the Riphean and Vendian key sections of the Southern Urals, Siberia, Asia, Africa, Australia, and North America are considered in compliance with the suggested principles of reconstructing the Sr isotopic composition of the Proterozoic seawater. The suggested methodic approach is used to plot the reference curve of the 87Sr/86Sr variations in the Riphean and Vendian oceans. During the time span of 1600-1250 Ma, the 87Sr/86Sr variations were in a narrow range corresponding to 0.70456-0.70494, but approaching the date of about 1030 Ma, the 87Sr/86Sr ratio rose to 0.70601-0.70611 and then quickly declined to 0.70519-0.70523 near the date of 1000 Ma. In the second half of the late Riphean and in the Vendian, the ratio grew almost steadily from 0.70521-0.70535 to values of 0.70874-0.70885 characteristic of the Late Vendian time. The subsequent regular growth of that ratio in seawater lasted from 840 to 550 Ma, though there were short-term epochs when the ratio noticeably dropped to 0.70561-0.70575 at approximately 760 Ma and to 0.70533-0.70538 at 670-660 Ma. After the mid-Late Vendian maximum, it declined to 0.70812-0.70823 at the end of the Nemakit-Daldynian Age and decreased to 0.70806-0.70812 during the Tommotian Age of the Early Cambrian. As is shown, the Sr isotopic variations in the Riphean and Vendian oceans were interrelated with global tectonic events in geospheres and formation stages of the Rodinia and Gondwana supercontinents. The Baikalian Complex of Siberia is considered in the work as a case in point illustrating advantages of the expounded approach with respect to age substantiation of particular stratigraphic subdivisions.

  3. Sr-Nd-Pb isotope variability across and along the Ecuadorian volcanic arc

    NASA Astrophysics Data System (ADS)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Mouhcine; Hidalgo, Silvana

    2016-04-01

    Determining the contribution of different potential sources in arc magma genesis is of paramount importance for discriminating the role of deep-seated processes at work in the slab and mantle wedge, as well as the process occurring during the magma ascent through the arc crust. The Ecuadorian volcanic arc (2°S - 1°N) results from the subduction of the oceanic Nazca plate below the continental south-American plate. This volcanic province, developed in front of the subducting Carnegie ridge, is characterized by at least 50-60 volcanic centres of Pleistocene-Holocene age, which are distributed along the Western and Eastern Cordilleras and in the back-arc region. Previous studies on this province focused on two main issues: (1) the role of the deep-seated process occurring at the level of the subducting slab and the mantle wedge ([1], [2]), and (2) the role of crustal process ([3]). In this work, we use existing and new (57 samples from 36 volcanoes of the whole Ecuadorian arc) major-trace element and Sr-Nd-Pb isotope data to resolve precisely magma compositional changes occurring across and along the volcanic arc and to precise the role of the heterogeneous crust underlying this arc segment. In the 207Pb/204Pb vs. 206Pb/204Pb diagram, most of Western Cordillera volcanic centres and Back arc volcanoes display a flat trend characterized by a large variation in 206Pb/204Pb (18.5 - 19.15), with little variation in 207Pb/204Pb (15.54-15.62). Along this trend, back arc volcanoes tend towards unradiogenic compositions with Reventador as end-member whereas western cordilleras volcanoes generally show more radiogenic compositions (Pilavo, Imbabura). In contrast, the Eastern cordillera volcanoes display more radiogenic 207Pb/204Pb (15.60 - 15.70) or 208Pb/204Pb (38.7 - 39) at a given 206Pb/204Pb compared to the Western cordillera with similar variation in 206Pb/204Pb (18.85 - 19.05). Extreme compositions are observed at Tungurahua and Antisana volcanoes. Several volcanoes of

  4. A hybrid composite dike suite from the northern Arabian Nubian Shield, southwest Jordan: Implications for magma mixing and partial melting of granite by mafic magma

    NASA Astrophysics Data System (ADS)

    Jarrar, Ghaleb H.; Yaseen, Najel; Theye, Thomas

    2013-03-01

    The Arabian Nubian Shield is an exemplary juvenile continental crust of Neoproterozoic age (1000-542 Ma). The post-collisional rift-related stage (~ 610 to 542 Ma) of its formation is characterized among others by the intrusion of several generations of simple and composite dikes. This study documents a suite of hybrid composite dikes and a natural example of partial melting of granite by a mafic magma from the northernmost extremity of Arabian Nubian Shield in southwest Jordan. The petrogenesis of this suite is discussed on the basis of field, petrographic, geochemical, and Rb/Sr isotopic data. These dikes give spectacular examples of the interaction between basaltic magma and the granitic basement. This interaction ranges from brecciation, partial melting of the host alkali feldspar granite to complete assimilation of the granitic material. Field structures range from intrusive breccia (angular partially melted granitic fragments in a mafic groundmass) to the formation of hybrid composite dikes that are up to 14 m in thickness. The rims of these dikes are trachyandesite (latite) with alkali feldspar ovoids (up to 1 cm in diameter); while the central cores are trachydacite to dacite and again with alkali feldspar ovoids and xenoliths from the dike rims. The granitic xenoliths in the intrusive breccia have been subjected to at least 33% partial melting. A seven-point Rb/Sr isochron from one of these composite dikes yields an age of 561 ± 33 Ma and an initial 87Sr/86Sr ratio of 0.70326 ± 0.0003 (2σ) and MSWD of 0.62. Geochemical modeling using major, trace, rare earth elements and isotopes suggests the generation of the hybrid composite dike suite through the assimilation of 30% to 60% granitic crustal material by a basaltic magma, while the latter was undergoing fractional crystallization at different levels in the continental crust.

  5. Origin discrimination of defatted pork via trace elements profiling, stable isotope ratios analysis, and multivariate statistical techniques.

    PubMed

    Park, Yu Min; Lee, Cheong Mi; Hong, Joon Ho; Jamila, Nargis; Khan, Naeem; Jung, Jong-Hyun; Jung, Young-Chul; Kim, Kyong Su

    2018-09-01

    This study verified the origin of 346 defatted Korean and non-Korean pork samples via trace elements profiling, and C and N stable isotope ratios analysis. The analyzed elements were 6 Li, 7 Li, 10 B, 11 B, 51 V , 50 Cr, 52 Cr, 53 Cr, 55 Mn, 58 Ni, 60 Ni, 59 Co, 63 Cu, 65 Cu, 64 Zn, 66 Zn, 69 Ga, 71 Ga, 75 As, 82 Se, 84 Sr, 86 Sr, 87 Sr, 88 Sr, 85 Rb, 94 Mo, 95 Mo, 97 Mo, 107 Ag, 109 Ag, 110 Cd, 111 Cd, 113 Cd, 112 Cd, 114 Cd, 116 Cd, 133 Cs, 206 Pb, 207 Pb, and 208 Pb. Content (mg/kg) of 51 V (0.012), 50 Cr (0.882), 75 As (0.017), 85 Rb (57.7), and 87 Sr (46.3) were high in Korean pork samples whereas 6 Li, 7 Li, 59 Co, 55 Mn, 58 Ni, 84 Sr, 86 Sr, 88 Sr, 111 Cd, and 133 Cs were found higher in non-Korean samples. The results of discriminant analysis showed that the trace elements content and stable isotope ratios were significant for the discrimination of geographical origins with a perfect discrimination rate of 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Isotopic composition of cosmic ray nitrogen at 1.5 GeV/amu

    NASA Technical Reports Server (NTRS)

    Dwyer, R.; Meyer, P.

    1975-01-01

    For any location, the earth's magnetic field acts as a filter for incoming cosmic rays, allowing only particles above a certain rigidity. The relative isotopic composition of abundant elements can be measured with a detector sensitive to the velocity of particles in the penumbra of the earth's magnetic field. In this paper, the nitrogen velocity spectrum is compared with that of carbon plus oxygen as a reference, since in this case Z-dependent effects are minimal. The form of the energy spectrum of carbon, nitrogen, and oxygen, needed for proper correction, was measured in the same experiment. The results were obtained using a scintillator-Cerenkov counter telescope with a geometric factor of 0.25 sq in sr, flown twice on high-altitude balloons from Palestine, Texas, obtaining an exposure factor of 20 sq m sr hr. Results are presented on the isotopic composition of nitrogen at about 1.5GeV/amu.

  7. Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments

    NASA Astrophysics Data System (ADS)

    Singh, Sunil K.; France-Lanord, Christian

    2002-09-01

    Bank sediments and suspended loads of the Brahmaputra River and its important tributaries were collected from the Himalayan front to Bangladesh along with most of the important tributaries. Chemical and isotopic compositions of the sediments are used to trace sediment provenance and to understand erosion patterns in the basin. Overall isotopic compositions range from 0.7053 to 0.8250 for Sr and ɛNd from -20.5 to -6.9. This large range derives from the variable proportions of sediments from Himalayan formations with high Sr isotopic ratios and low ɛNd, and Transhimalayan plutonic belt with lower Sr isotopic ratios and higher ɛNd. The latter are exposed to erosion in the Tsangpo and in the eastern tributary drainages. Overall erosion of the Himalayan rocks is dominant, representing ca 70% of the detrital influx. Compositions of the Brahmaputra main channel are rather stable between 0.7177 and 0.7284 for Sr and between -14.4 and -12.5 for ɛNd throughout its course in the plain from the Siang-Tsangpo at the foot of the Himalayan range down to the delta. This stability, despite the input of large Himalayan rivers suggests that the Siang-Tsangpo River represents the major source of sediment to the whole Brahmaputra. Geochemical budget implies that erosion of the Namche Barwa zone represents about 45% of the total flux at its outflow before confluence with the Ganga from only 20% of the mountain area. Higher erosion rates in the eastern syntaxis compared to the other Himalayan ranges is related to the rapid exhumation rates of this region, possibly triggered by higher precipitation over the far-eastern Himalaya and the high incision potential of the Tsangpo River due to its very high water discharge.

  8. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  9. Chemical and stable-radiogenic isotope compositions of Polatlı-Haymana thermal waters (Ankara, Turkey)

    NASA Astrophysics Data System (ADS)

    Akilli, Hafize; Mutlu, Halim

    2016-04-01

    Complex tectono-magmatic evolution of the Anatolian land resulted in development of numerous geothermal areas through Turkey. The Ankara region in central Anatolia is surrounded by several basins which are filled with upper Cretaceous-Tertiary sediments. Overlying Miocene volcanics and step faulting along the margins of these basins played a significant role in formation of a number of low-enthalpy thermal waters. In this study, chemical and isotopic compositions of Polatlı and Haymana geothermal waters in the Ankara region are investigated. The Polatlı-Haymana waters with a temperature range of 24 to 43 °C are represented by Ca-(Na)-HCO3 composition implying derivation from carbonate type reservoir rocks. Oxygen-hydrogen isotope values of the waters are conformable with the Global Meteoric Water Line and point to a meteoric origin. The carbon isotopic composition in dissolved inorganic carbon (DIC) of the studied waters is between -21.8 and -1.34 permil (vs. VPDB). Marine carbonates and organic rocks are the main sources of carbon. There is a high correlation between oxygen (3.7 to 15.0 permil; VSMOW) and sulfur (-9.2 to 19.5 permil; VCDT) isotope compositions of sulfate in waters. The mixing of sulfate from dissolution of marine carbonates and terrestrial evaporite units is the chief process behind the observed sulfate isotope systematics of the samples. 87Sr/86Sr ratios of waters varying from 0.705883 to 0.707827 are consistent with those of reservoir rocks. The temperatures calculated by SO4-H2O isotope geothermometry are between 81 and 138 °C nearly doubling the estimates from chemical geothermometers.

  10. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  11. Raman study of potassium silicate glasses containing Rb +, Sr 2+, Y 3+ and Zr 4+: Implications for cation solution mechanisms in multicomponent silicate liquids

    NASA Astrophysics Data System (ADS)

    Ellison, Adam J. G.; Hess, Paul C.

    1994-04-01

    The parallel- and perpendicular-polarized Raman spectra of (1 - x)K 2O · xM 2/zz+O · 4SiO 2e glasses are presented, where M is one of the Period V cations Rb +, Sr 2+, Y 3+ or Zr 4+. These compositions represent the equal-oxygen substitution of a Period V cation for K +, which preserves the ratio of non-bridging oxygen (NBO) to Si atoms but not, in general, the ratio of all oxygen to all cations. Rb + and K + occupy very similar sites and appear to share the same NBO with virtually no energetic penalty. As the valence of the Period V cation increases, so does the tendency of the cation to form silicate species that are depolymerized relative to the species dominating the structure of the bulk glass. The tendency to form regions comparatively rich in Si-O-Si bonds increases in the same sense. The dominant silicate species are those with 0 or 1 NBO in all glasses. The spectra indicate that K+ shares NBO with Rb + or Sr 2+, that there is relatively little sharing of NBO by K + and Y 3+, and that K + and Zr 4+ share the same NBO in what appears to be a nearly fixed bulk stoichiometric K:Zr ratio of 2:1. The latter provides a mechanism for the substantial increase in ZrO 2 solubility seen in peralkaline liquids. A novel means of expressing homogeneous equilibria in silicate liquids is presented, whereby it is possible to make concrete predictions about the coordination numbers of cations in silicate liquids and to predict how they might be affected by the presence of other cations.

  12. Geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of Late Cretaceous A-type granites from the Sibumasu Block, Southern Myanmar, SE Asia

    NASA Astrophysics Data System (ADS)

    Jiang, Hai; Li, Wen-Qian; Jiang, Shao-Yong; Wang, He; Wei, Xiao-Peng

    2017-01-01

    The Late Cretaceous to Paleogene granitoids occur widespread in the Sibumasu block within Myanmar (SE Asia), which show a close association with tin-tungsten mineralization. However, the precise timing, petrogenesis and tectonic significance of these granitoids are poorly constrained so far. In this study, we present a detailed study on geochronology, elemental and Sr-Nd-Hf isotopic geochemistry for the Hermyingyi and Taungphila granites in southern Myanmar, with the aim of determining their petrogenesis and tectonic implications. LA-ICP-MS U-Pb dating of zircon grains from the two granites yield ages of 69-70 Ma, indicating a Late Cretaceous magmatic event. These granitic rocks are weakly peraluminous and belong to the high-K calc-alkaline series. They are both characterized by high SiO2, K2O + Na2O, FeOT/(FeOT + MgO) and Ga/Al ratios and low Al2O3, CaO, MgO, P2O5 and TiO2 contents, enriched in Rb, Th, U and Y, but depleted in Ba, Sr, P, and Eu, suggesting an A-type granite affinity. Moreover, they display prominent tetrad REE patterns and non-CHARAC trace element behavior, which are common in late magmatic differentiates with strong hydrothermal interaction or deuteric alteration. The granites belong to A2-type and probably formed at a high temperature and anhydrous condition. They have zircon εHf(t) values from - 12.4 to - 10.0 and whole-rock εNd(t) values from - 11.3 to - 10.6, with Paleoproterozoic TDM2 ages (1741-1922 Ma) for both Hf and Nd isotopes. Geochemical and isotopic data suggest that these A-type granites were derived from partial melting of the Paleoproterozoic continental crust dominated by metaigneous rocks with tonalitic to granodioritic compositions, without significant input of mantle-derived magma and followed by subsequent fractional crystallization. By integrating all available data for the regional tectonic evolution in SE Asia and adjacent regions, we attribute the formation of the Late Cretaceous A-type granites to a back-arc extension

  13. Isotopic composition of strontium in three basalt-andesite centers along the Lesser Antilles arc

    USGS Publications Warehouse

    Hedge, C.E.; Lewis, J.F.

    1971-01-01

    Si87/Sr86 ratios have been determined for lavas and py lastic rocks from three basalt-andesite centers along the Lesser Antilles arc-Mt. Misery on the island of St. Kitts, Soufriere on the island of St. Vincent, and Carriacou, an island of The Grenadines. The average Si87/Sr86 content of these rocks is 0.7038 for Mt. Misery, 0.7041 for Soufriere, and 0.7053 for Carriacou. All the Sr87/Sr86 values from each center are the same within analytical uncertainty (??0.0002). The constancy of strontium isotopic data within each center supports the hypothesis that basalts and andesites for each specific center investigated are generated from the same source - in agreement with petrographic and major- and minor-element data. Strontium isotopic compositions and elemental concentrations, particularly of strontium and nickel, indicate that this source was mantle peridotite and that the relationship between the respective basalts and andesites is probably fractional crystallization. ?? 1971 Springer-Verlag.

  14. High-resolution dating of deep-sea clays using Sr isotopes in fossil fish teeth

    NASA Astrophysics Data System (ADS)

    Ingram, B. Lynn

    1995-09-01

    Strontium isotopic compostitions of ichthyoliths (microscopic fish remains) in deep-sea clays recovered from the North Pacific Ocean (ODP holes 885A, 886B, and 886C) are used to provide stratigraphic age control within these otherwise undatable sediments. Age control within the deep-sea clays is crucial for determining changes in sedimentation rates, and for calculating fluxes of chemical and mineral components to the sediments. The Sr isotopic ages are in excellent agreement with independent age datums from above (diatom ooze), below (basalt basement) and within (Cretaceous-Tertiary boundary) the clay deposit. The 87Sr/ 86Sr ratios of fish teeth from the top of the pelagic clay unit (0.708989), indicate an Late Miocene age (5.8 Ma), as do radiolarian and diatom biostratigraphic ages in the overlying diatom ooze. The 87Sr/ 86Sr ratio (0.707887) is consistent with a Cretaceous-Tertiary boundary age, as identified by anomalously high iridium, shocked quartz, and sperules in Hole 886C. The 87Sr/ 86Sr ratios of pretreated fish teeth from the base of the clay unit are similar to Late Cretaceous seawater (0.707779-0.707519), consistent with radiometric ages from the underlying basalt of 81 Ma. Calculation of sedimentation rates based on Sr isotopic ages from Hole 886C indicate an average sedimentation rate of 17.7 m/Myr in Unit II (diatom ooze), 0.55 m/Myr in Unit IIIa (pelagic clay), and 0.68 m/Myr in Unit IIIb (distal hydrothermal precipitates). The Sr isotopic ages indicate a period of greatly reduced sedimentation (or possible hiatus) between about 35 and 65 Ma (Eocene-Paleocene), with a linear sedimentation rate of only 0.04 m/Myr The calculated sedimentation rates are generally inversely proportional to cobalt accumulation rates and ichthyolith abundances. However, discrepancies between Sr isotope ages and cobalt accumulation ages of 10-15 Myr are evident, particularly in the middle of the clay unit IIIa (Oligocene-Paleocene).

  15. Nd, Sr and Pb isotopic composition of metasomatised xenoliths from the backarc Patagonian Mantle Wedge: Insights into the origin of the uprising melts

    NASA Astrophysics Data System (ADS)

    Zanetti, Alberto; Mazzucchelli, Maurizio; Hemond, Christope; Cipriani, Anna; Bertotto, Gustavo W.; Cingolani, Carlos; Vannucci, Riccardo

    2010-05-01

    Information about the geochemical composition of metasomatic melts migrating through the Patagonian mantle wedge is provided by the ultramafic xenoliths occurrence of Tres Lagos (TL; lat. 49.13°S, long. 71.18°W), Argentina. Such a locality is placed at the eastern border of the Meseta de la Muerte backarc basaltic plateau, where a post-plateau volcanic diatreme contains mantle xenoliths in both pyroclastites and lavas. Its latitude corresponds with the Northern limit of the Austral Volcanic Arc (AVZ), which is separated from the Southern Volcanic Zone (SVZ) by a gap in the arc magmatism ranging between 49° and 46°30' latitude S. The analysed xenoliths have been distinguished into two groups (Group 1 & 2). Group 1 consists of lherzolites and harzburgites, whereas Group 2 is formed by harzburgites. The texture of the Group 1 lherzolites varies from protogranular to granoblastic to porphyroblastic, whereas Group 1 harzburgites have always granoblastic texture. Group 2 harzburgites have granular texture, which may change to porphyroblastic owing to the random concentration of large olivine and orthopyroxene crystals. The clinopyroxenes (Cpx) from Group 1 lherzolites have PM-normalised REE patterns ranging from LREE-depleted (LaN/SmN= 0.24-0.37), to LREE-enriched (LaN/YbN up to 4.08) and spoon-shaped: the latter have minimum at Pr and Pr-Yb concentrations similar to those shown by the LREE-depleted Cpx. The Cpx from Group 1 harzburgites have lower REE concentrations with respect to the lherzolite ones and their REE patterns vary from HREE-enriched, steadily fractionated, (LaN/YbN = 0.21-0.35, Ybn ~ 1-2) to spoon-shaped (LaN/SmN = 2.81; SmN/YbN = 0.89; YbN ~ 3. The Cpx from the Group 2 harzburgites have convex-upward (LaN/SmN = 0.31; SmN/YbN = 1.50) to LREE-enriched (LaN/YbN = 2.94) patterns. The Sr, Nd and Pb isotopic compositions of the Group 1 clinopyroxenes form arrays spanning from DM to the field delimited by the TL basaltic lavas, pointing to EMI end

  16. Is the Modern Marine 87Sr/86Sr Cycle Balanced?

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, B.

    2017-12-01

    The marine 87Sr/86Sr record is one of the best-reconstructed isotope records with thousands of high quality measurements spanning the past 800 million years. It records a global signal of tectonic, biotic and climatic processes on Earth. Yet despite decades of research we still do not know whether the current marine Sr budget is in steady state. Studies of the marine 88Sr/86Sr record indicate that sources and sinks do not balance. The magnitude and isotope composition of the terrestrial inputs are being debated, and the magnitude and temporal variability of unradiogenic contributions are not well constrained. Here I provide a revised assessment of all continental sources of Sr to the ocean, including river runoff, submarine groundwater discharge (Beck et al., 2013), dissolution of riverine suspended matter in seawater and dissolution of volcanic ash deposited on the ocean (Jones et al., 2012). I contrast continental sources of Sr with estimates of marine sources of Sr to seawater, specifically high- and low-temperature submarine hydrothermal fluids, as well as diffusive diagenetic fluxes. Best current data imply that unradiogenic submarine hydrothermal inputs to seawater are insufficient to balance the flux of radiogenic continental Sr. The revised assessment of riverine contributions is based on Sr data for almost 230 rivers, an increasing amount of time-series data for such rivers, as well as river discharge and sediment flux data for more than 2000 rivers. Regional sampling biases have been corrected with the aid of digital bedrock maps, specifically along the western margin of North America, East Africa and the large drainage region of Arabia, India and SE Asia. Significant uncertainty in the chemical and isotopic compositions of runoff from Greenland and East Africa remains. The main uncertainty in the budget, however, is related to the possibility that modern rivers do not represent the pre-anthropogenic (natural) state of continental runoff (e.g. Ganges

  17. The fate of moderately volatile elements during planetary formation in the inner Solar System

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.

    2017-12-01

    Moderately volatile element abundances are variable among inner Solar System bodies, with differing degrees of depletion compared to chondrites. These variations are a consequence of the processes of planetary formation. The conditions and the specific mechanisms of planetary accretion and differentiation can be investigated by analyzing the stable isotope compositions of terrestrial and extraterrestrial samples. The moderately volatile lithophile elements are particularly useful to distinguish between the effects of accretion and those of core formation. Recent work has shown isotope variations in inner Solar System bodies for the moderately volatile elements Zn and K. The purely lithophile nature of Rb (in contrast to Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to further study moderately volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. Terrestrial rocks define a narrow range in Rb isotope composition, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). Larger Rb isotope variations are observed in extraterrestrial materials. Carbonaceous chondrites display a trend toward lighter Rb isotope composition coupled with decreasing Rb/Sr, opposite to the effect expected if their volatile element variations were caused by evaporative loss of Rb. This relationship indicates that the volatile element abundance variations in carbonaceous chondrites are not due to evaporation or condensation, but rather are due to the mixing of chemically and isotopically distinct primordial reservoirs. In contrast, there is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. Significant heavy isotope enrichments (up to several per mil for 87Rb/85Rb) are found for volatile-depleted planetesimals, including eucrites. In addition, lunar rocks also display heavy Rb isotope enrichments

  18. Petrogenesis and geodynamic implications of Ediacaran highly fractionated A-type granitoids in the north Arabian-Nubian Shield (Egypt): Constraints from whole-rock geochemistry and Sr-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Sami, Mabrouk; Ntaflos, Theodoros; Farahat, Esam S.; Mohamed, Haroun A.; Hauzenberger, Christoph; Ahmed, Awaad F.

    2018-04-01

    Mineral chemistry, whole-rock geochemical and Sr-Nd isotopic data are reported for the Abu-Diab granitoids in the northern Arabian-Nubian Shield (ANS) of Egypt, to investigate their petrogenesis and geodynamic significance. Gabal Abu-Diab constitute a multiphase pluton, consisting largely of two-mica granites (TMGs) enclosing microgranular enclaves and intruded by garnet bearing muscovite granites (GMGs) and muscovite granites (MGs). The granitoids are weakly peraluminous (A/CNK = 1.01-1.12) and show high SiO2 (>72.9 wt%) and alkali (K2O + Na2O = 8.60-9.13) contents. The geochemical features show that they are post-collisional and highly fractionated A-type granitoids. Compared to their host TMGs, the microgranular enclaves are strongly peraluminous (A/CNK = 1.18-1.24) with lower SiO2 and higher abundances of trace elements. The TMGs are depleted in Ba, Nb, P and Ti and are enriched in LREEs relative to HREEs with weakly negative Eu anomalies (Eu/Eu* = 0.45-0.64). In contrast, the GMGs and MGs are extremely depleted in Ba, Sr and Ti and have tetrad-type REE patterns (TE1-3 = 1.1-1.3) with strongly pronounced negative Eu anomalies (Eu/Eu* = 0.03-0.26), similar to rare metals bearing granites. The Ediacaran (585 ± 24 Ma) TMGs, are characterized by restricted and relatively low initial 87Sr/86Sr ratios (0.70337-0.70382) that suggests their derivation from a depleted mantle source, with little contamination from the older continental crust. In contrast, the GMGs and MGs have extremely high 87Rb/86Sr and 87Sr/86Sr ratios that reflect the disturbance of the Rb-Sr isotopic system and may give an indication for magmatic-fluid interaction. However, all the granitoids display positive εNd(t) (4.41-6.57) and depleted mantle model ages TDM2 between 777 and 956 Ma, which indicate their derivation from a Neoproterozoic juvenile magma sources and preclude the occurrence of pre-Neoproterozoic crustal rocks in the ANS. The microgranular enclaves represent globules of hot mafic

  19. Brother is high Sr/Y two-mica granite and sister is leucogranite: twin granites in the Northern Himalayan Gneiss Domes, southern Tibet

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Gao, L.; Xie, K.

    2011-12-01

    Leucogranites in the Himalayan orogen is widely considered as the type example of crustal melts, which provides a probe to investigate the interplay among high-grade metamorphism, crustal anatexis, and tectonic transition in large-scale collisional belts. Whether the leucogranite was a daughter product from a more primitive granitic melt is an interesting question that deserves careful examination to address the above issue. We report a new suite of two-mica granite (TMG) and leucogranite (LG) in the Yardoi gneiss dome (YGD) in the easternmost of the Northern Himalayan Gneiss Domes (NHGD), south of the Yarlung-Tsangpo suture. SHRIMP and LA-ICP-MS zircon U/Pb dating show that TMG and LG formed at ~17.7 Ma to ~20.0 Ma and at ~17.1 Ma, respectively. Both suites of granite have high Na/K (>1.30) ratios. The TMGs are characterized by (1) high Sr (>450 ppm), low Rb (<95 ppm) and Y (<6 ppm), and high Sr/Y (>86) ratios; (2) no Eu anomalies; and (3) low initial 87Sr/86Sr ratios (<0.7098) and higher ɛNd (>-8.5) values. In contrast, the LGs have (1) lower Sr (<130 ppm) and higher Rb (92-130 ppm); (2) pronounced negative Eu anomalies with Eu/Eu*<0.55; and (3) relatively higher Sr (87Sr/86Sr(t) =0.7136-0.7148) and unradiogenic Nd (ɛNd(t)=-7.7~-11.1). These data demonstrate that these Mid-Miocene granites have major and trace element and radiogenic isotope compositions similar to those of >35 Ma granites, but significantly different from those granites of similar ages in the High Himalaya as well as in the NHGD. High Sr/Y and relatively unradiogenic Sr isotope compositions in the TMGs could be derived from partial melting of mafic materials formed during previous compressional thickening event which was triggered by the input of juvenile heat and material associated with the Miocene E-W extension. An AFC process (plagioclase fractional crystallization and contamination by crustal materials) could be a primary factor leading to the formation of these LGs. Concurrence of high Sr

  20. Multi-Isotopic evidence from West Eifel Xenoliths

    NASA Astrophysics Data System (ADS)

    Thiemens, M. M.; Sprung, P.

    2015-12-01

    Mantle Xenoliths from the West Eifel intraplate volcanic field of Germany provide insights into the nature and evolution of the regional continental lithospheric mantle. Previous isotope studies have suggested a primary Paleoproterozoic depletion age, a second partial melting event in the early Cambrian, and a Variscan metasomatic overprint. Textural and Sr-Nd isotopic observations further suggest two episodes of melt infiltration of early Cretaceous and Quaternary age. We have investigated anhydrous, vein-free lherzolites from this region, focusing on the Dreiser Weiher and Meerfelder Maar localities. Hand separated spinel, olivine, ortho- and clinopryoxene, along with host and bulk rocks were dissolved and purified for Rb-Sr, Sm-Nd, and Lu-Hf analysis on the Cologne/Bonn Neptune MC-ICP-MS. We find an unexpected discontinuity between mineral separates and whole rocks. While the latter have significantly more radiogenic ɛNd and ɛHf, mineral separates imply close-to chondritic compositions. Our Lu-Hf data imply resetting of the Lu-Hf systematic after 200 Ma. Given the vein-free nature of the lherzolites, this appears to date to the second youngest metasomatic episode. We suggest that markedly radiogenic Nd and Hf were introduced during the Quarternary metasomatic episode and most likely reside on grain boundaries.

  1. Migration and rearing histories of chinook salmon (Oncorhynchus tshawytscha) determined by ion microprobe Sr isotope and Sr/Ca transects of otoliths

    USGS Publications Warehouse

    Bacon, C.R.; Weber, P.K.; Larsen, K.A.; Reisenbichler, R.; Fitzpatrick, J.A.; Wooden, J.L.

    2004-01-01

    Strontium isotope and Sr/Ca ratios measured in situ by ion microprobe along radial transects of otoliths of juvenile chinook salmon (Oncorhynchus tshawytscha) vary between watersheds with contrasting geology. Otoliths from ocean-type chinook from Skagit River estuary, Washington, had prehatch regions with 87Sr/86Sr ratios of ???0.709, suggesting a maternally inherited marine signature, extensive fresh water growth zones with 87Sr/86Sr ratios similar to those of the Skagit River at ???0.705, and marine-like 87Sr/86Sr ratios near their edges. Otoliths from stream-type chinook from central Idaho had prehatch 87Sr/86Sr ratios ???0.711, indicating that a maternal marine Sr isotopic signature is not preserved after the ???1000- to 1400-km migration from the Pacific Ocean. 87Sr/86Sr ratios in the outer portions of otoliths from these Idaho juveniles were similar to those of their respective streams (???0.708-0.722). For Skagit juveniles, fresh water growth was marked by small decreases in otolith Sr/Ca, with increases in Sr/Ca corresponding to increases in 87Sr/86Sr with migration into salt water. Otoliths of Idaho fish had Sr/Ca radial variation patterns that record seasonal fluctuation in ambient water Sr/Ca ratios. The ion microprobe's ability to measure both 87Sr/86Sr and Sr/Ca ratios of otoliths at high spatial resolution in situ provides a new tool for studies of fish rearing and migration. ?? 2004 NRC Canada.

  2. A preliminary bioavailable strontium isotope soil map of Europe.

    NASA Astrophysics Data System (ADS)

    Hoogewerff, Jurian; Reimann, Clemens; Ueckermann, Henriette; Frei, Robert; Frei, Karin; van Aswegen, Thalita; Stirling, Claudine; Reid, Malcolm; Clayton, Aaron; Gemas Project Team

    2017-04-01

    The GEMAS project collected samples from grazing land (n=2118, 0-20cm depth) and agricultural soil (n=2211, 0-10cm depth) at a scale of 1 site/2500km2 in most of Europe1. Elemental analysis using different extractions (Aqua Regia and MMI), whole soil XRF data and Q-ICPMS lead isotope data have been published1. Here we report high-precision 87Sr/86Sr results for the first 1000+ samples. To best represent Sr in plants and animals an ammonium nitrate soil extraction was chosen2. Samples were measured in three laboratories and shared QC samples demonstrated the robustness of the complete extraction and measurement protocol. Observed 87Sr/86Sr values range from 0.7038 to 0.7597 with the majority of samples centring about the median of 0.7092. Spatial interpolation of the data shows some major trends over Europe with high 87Sr/86Sr in known old intrusive terrains in Scandinavia, Iberia and the Alps. To improve the spatial resolution we investigated relations between measured 87Sr/86Sr values and other parameters for which higher spatial density (interpolated) data exists in geological and lithological databases like IGME50003 and GLiM4. For each sampling site matching geological age data and lithology were obtained by overlaying sampling locations on the IGME5000 and GLiM maps and extracting age and lithology information. All statistical and geospatial manipulations were performed using the R statistical package. Overall the 87Sr/86Sr values show a moderate correlation (Pearson R=0.54) with age but demonstrate varying homogeneity in different lithological units. Within the GEMAS dataset the strontium isotope ratios correlate most strongly with the lead isotope results,206Pb/208Pb (R=0.56) indicating a combined age and "crustalinity" effect. Whole soil Rb (XRF) is slightly higher correlated (R=0.26) with 87Sr/86Sr than extracted Rb (AR) at R=0.12 indicating some influence of the long term Rb signal in the soil parent material. Sodium is the highest correlated whole soil

  3. Hafnium isotope stratigraphy of ferromanganese crusts

    PubMed

    Lee; Halliday; Hein; Burton; Christensen; Gunther

    1999-08-13

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in (87)Sr/(86)Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  4. New igneous zircon Pb/Pb and metamorphic Rb/Sr ages in the Yaounde Group (Cameroon, Central Africa): implications for the Central African fold belt evolution close to the Congo Craton

    NASA Astrophysics Data System (ADS)

    Owona, Sébastien; Tichomirowa, Marion; Ratschbacher, Lothar; Ondoa, Joseph Mvondo; Youmen, Dieudonné; Pfänder, Jörg; Tchoua, Félix M.; Affaton, Pascal; Ekodeck, Georges Emmanuel

    2012-10-01

    Three meta-igneous bodies from the Yaounde Group have been analyzed for their petrography, geochemistry, and 207Pb/206Pb zircon ages. According to their geochemical patterns, they represent meta-diorites. The meta-plutonites yielded identical zircon ages with a mean of 624 ± 2 Ma interpreted as their intrusion age. This age is in agreement with previously published zircon ages of meta-diorites from the Yaounde Group. The meta-diorites derived mainly from crustal rocks with minor contribution from mantle material. The 87Rb/86Sr isochron ages of one meta-diorite sample and three meta-sedimentary host rocks are significantly younger than the obtained intrusion age. Therefore, they are not related to igneous processes. 87Rb/86Sr isochron ages differ from sample to sample (599 ± 3, 572 ± 4, 554 ± 5, 540 ± 5 Ma) yielding the oldest Neoproterozoic age (~600 Ma) for a paragneiss sample at a more northern location. The youngest Rb/Sr isochron age (~540 Ma) was obtained for a mica schist sample at a more southern location closer to the border of the Congo Craton. The 87Rb/86Sr whole rock-biotite ages are interpreted as cooling ages related to transpressional processes during exhumation. Therefore, several discrete metamorphic events related to the exhumation of the Yaounde Group were dated. It could be shown by Rb/Sr dating for the first time that these late tectonic processes occurred earlier at more distant northern locations of the Yaounde Group and lasted at least until early Cambrian (~540 Ma) more closely to the border of the Congo Craton.

  5. Development of high through-put Sr isotope analysis for monitoring reservoir integrity for CO{sub 2} storage.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Andy; Jain, Jinesh; Stewart, Brian

    2012-01-01

    Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.

  6. Zircon U-Pb ages and Sr-Nd isotope ratios for the Sirstan granitoid body, NE Iraq: Evidence of magmatic activity in the Middle Cretaceous Period

    NASA Astrophysics Data System (ADS)

    Abdulzahra, Imad Kadhim; Hadi, Ayten; Azizi, Hossein; Asahara, Yoshihiro; Yamamoto, Koshi

    2017-03-01

    The Sirstan granitoid (SG), comprising diorite and granodiorite, is located in the Shalair Valley area, in the northeastern part of Iraq within the Sanandaj-Sirjan Zone (SSZ) of the Zagros Orogenic Belt. The U-Pb zircon dating of the SG rocks has revealed a concordia age of 110 Ma, which is interpreted as the age of crystallization of this granitoid body during the Middle Cretaceous. The whole-rock Rb-Sr isochron data shows an age of 52.4 ± 9.4 Ma (MSWD = 1.7), which implies the reactivation of the granitoid body in the Early Eocene due to the collision between the Arabian and Iranian plates. These rocks show metaluminous affinity with low values of Nb, Ta and Ti compared to chondrite, suggesting the generation of these rocks over the subduction zone in an active continental margin regime. The SG rocks are hornblende-bearing I-type granitoids with microgranular mafic enclaves. The positive values of ɛNd (t = 110 Ma) (+0.1 to +2.7) and the low (87Sr/86Sr)i ratios (0.7044 to 0.7057) indicate that the magma source of the SG granitoids is a depleted subcontinental mantle. The chemical and isotope compositions show that the SG body originated from the metasomatic mantle without a major role for continental contamination. Our findings show that the granitoid bodies distributed in the SSZ were derived from the continuous Neo-Tethys subduction beneath the SSZ in Mesozoic times and that the SSZ was an active margin in the Middle Cretaceous.

  7. Tracking selenium behaviour in chalk aquifer (northern France): Sr and 34S-sulphates isotopes constraints.

    NASA Astrophysics Data System (ADS)

    Cary, Lise; Benabderraziq, Hind; Elkhattabi, Jamal; Parmentier, Marc; Gourcy, Laurence; Négrel, Philippe

    2014-05-01

    Groundwaters in parts of the Paris Basin (France) are facing increasing selenium (Se) contents that can exceed the drinking water limit of 10 μg/L according to the European Framework Directive in the field of water policy (2000/60/EC). To better understand the groundwater origins and the selenium dynamics, the water chemistry of the Chalk aquifer supplying drinkable water to Lille city was studied. This area is submitted to quantitative and qualitative pressure from industrial, urban and agriculture origins. An integrated study was settled to determine the water sources and dynamics of elements, with a focus on Se. After a large chemical characterisation of the groundwater chemistry in the four field wells, a monthly monitoring was held in four wells and in the Deûle channel. Chemical analysis of major and trace elements, stable isotopes (δ18O, δ2H), strontium isotopes, and δ34S and δ18O of sulphates were realised. The chemical composition of solids sampled at various depths at vicinity of the four wells was also analysed. The specific geochemical signature of groundwater as revealed by Sr isotopes, in addition to element concentrations ratios like Mg/Sr and Se/Sr, highlighted mixture of three main groundwaters bodies: (1) the upstream groundwaters in the recharge area with the most radiogenic 87Sr/86Sr isotopic signature; (2) the confined groundwaters with high Sr concentrations due to water-rock interactions and the lowest 87Sr/86Sr isotopic signature close to the one of the chalk in Paris and London basins; (3) the Se-rich formations of Tertiary and Quaternary. The contents of Se, mainly present as SeV I (and locally as SeIV ), displayed spatial and temporal disparities that can be explained by geological and hydrogeological conditions. Se-rich clayed sediments originating from the dismantling of Se-rich tertiary formations (i.e. Ypresian) overlay the chalk formation and can be found in saturated conditions depending of the water table level. Oxidation of

  8. Investigating human geographic origins using dual-isotope (87Sr/86Sr, δ18O) assignment approaches.

    PubMed

    Laffoon, Jason E; Sonnemann, Till F; Shafie, Termeh; Hofman, Corinne L; Brandes, Ulrik; Davies, Gareth R

    2017-01-01

    Substantial progress in the application of multiple isotope analyses has greatly improved the ability to identify nonlocal individuals amongst archaeological populations over the past decades. More recently the development of large scale models of spatial isotopic variation (isoscapes) has contributed to improved geographic assignments of human and animal origins. Persistent challenges remain, however, in the accurate identification of individual geographic origins from skeletal isotope data in studies of human (and animal) migration and provenance. In an attempt to develop and test more standardized and quantitative approaches to geographic assignment of individual origins using isotopic data two methods, combining 87Sr/86Sr and δ18O isoscapes, are examined for the Circum-Caribbean region: 1) an Interval approach using a defined range of fixed isotopic variation per location; and 2) a Likelihood assignment approach using univariate and bivariate probability density functions. These two methods are tested with enamel isotope data from a modern sample of known origin from Caracas, Venezuela and further explored with two archaeological samples of unknown origin recovered from Cuba and Trinidad. The results emphasize both the potential and limitation of the different approaches. Validation tests on the known origin sample exclude most areas of the Circum-Caribbean region and correctly highlight Caracas as a possible place of origin with both approaches. The positive validation results clearly demonstrate the overall efficacy of a dual-isotope approach to geoprovenance. The accuracy and precision of geographic assignments may be further improved by better understanding of the relationships between environmental and biological isotope variation; continued development and refinement of relevant isoscapes; and the eventual incorporation of a broader array of isotope proxy data.

  9. Ca, Sr, O and D isotope approach to defining the chemical evolution of hydrothermal fluids: example from Long Valley, CA, USA

    USGS Publications Warehouse

    Brown, Shaun T.; Kennedy, B. Mack; DePaolo, Donald J.; Hurwitz, Shaul; Evans, William C.

    2013-01-01

    We present chemical and isotopic data for fluids, minerals and rocks from the Long Valley meteoric-hydrothermal system. The samples encompass the presumed hydrothermal upwelling zone in the west moat of the caldera, the Casa Diablo geothermal field, and a series of wells defining a nearly linear, ∼16 km long, west-to-east trend along the likely fluid flow path. Fluid samples were analyzed for the isotopes of water, Sr, and Ca, the concentrations of major cations and anions, alkalinity, and total CO2. Water isotope data conform to trends documented in earlier studies, interpreted as indicating a single hydrothermal fluid mixing with local groundwater. Sr isotopes show subtle changes along the flow path, which requires rapid fluid flow and minimal reaction between the channelized fluids and the wallrocks. Sr and O isotopes are used to calculate fracture spacing using a dual porosity model. Calculated fracture spacing and temperature data for hydrothermal fluids indicate the system is (approximately) at steady-state. Correlated variations among total CO2, and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2), which drives calcite precipitation as the fluid flows west-to-east and cools. The shifts in Ca isotopes require that calcite precipitated at temperatures of 150–180 °C is fractionated by ca. −0.3‰ to −0.5‰ relative to aqueous species. Our data are the first evidence that Ca isotopes undergo kinetic fractionation at high temperatures (>100 °C) and can be used to trace calcite precipitation along hydrothermal fluid flow paths.

  10. Primitive helium isotopic compositions associated with Miocene lavas from Northwest Iceland

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Reinhard, A.; Blichert-Toft, J.; Price, A. A.; Kurz, M. D.; Halldorsson, S. A.

    2016-12-01

    Elevated 3He/4He ratios identified in hotspots globally are associated with an early-formed, less degassed mantle reservoir that resides in the deep mantle, but the origin and mechanism for the long-term preservation of this mantle domain are not well understood. The highest known terrestrial mantle-derived 3He/4He ratios (49.5 Ra) have been measured in 62 million year old lavas from Baffin Island and West Greenland, associated with the proto-Iceland plume [1]. Mid-Miocene lavas from northwest Iceland have 3He/4He ratios of up to 37 Ra [2]. Thus, the Iceland plume has tapped a high-3He/4He mantle source over much of the Cenozoic. This is important, as 182W [3] and 129Xe [4] data indicate that the high 3He/4He domain sampled by the Iceland plume formed in the early Hadean. We report new 3He/4He measurements on magmatic olivine in mid-Miocene lavas from Northwest Iceland. Fusion experiments indicate that the new, high 3He/4He ratios do not have a cosmogenic 3He contribution. New Sr, Nd, Hf, and Pb isotopic data place important constraints on the isotopic composition of the highest 3He/4He mantle domain sampled by mid-Miocene Iceland lavas. An important question is whether the highest 3He/4He lavas from Iceland have Sr-Nd-Hf-Pb isotopic compositions that overlap with those found in the high-3He/4He lavas from Baffin Island. If not, it will be important to understand the mechanism responsible for the offset in Sr-Nd-Hf-Pb isotopic compositions, and whether this also explains the lower maximum 3He/4He in mid-Miocene Icelandic lavas relative to their counterparts in Baffin Island. The new data will have implications for the preservation of primitive reservoirs in the deep mantle. [1] Stuart et al., Nature, v. 424, 2003. [2] Hilton et al., Earth Planet Sci. Lett., v. 173, 1999. [3] Rizo et al., Science, v. 352, 2016. [4] Mukhopadhyay, Nature, v. 486, 2012.

  11. Using stable isotopes (δD, δ18O, δ34S and 87Sr/86Sr) to identify sources of water in abandoned mines in the Fengfeng coal mining district, northern China

    NASA Astrophysics Data System (ADS)

    Qu, Shen; Wang, Guangcai; Shi, Zheming; Xu, Qingyu; Guo, Yuying; Ma, Luan; Sheng, Yizhi

    2018-05-01

    With depleted coal resources or deteriorating mining geological conditions, some coal mines have been abandoned in the Fengfeng mining district, China. Water that accumulates in an abandoned underground mine (goaf water) may be a hazard to neighboring mines and impact the groundwater environment. Groundwater samples at three abandoned mines (Yi, Er and Quantou mines) in the Fengfeng mining district and the underlying Ordovician limestone aquifer were collected to characterize their chemical and isotopic compositions and identify the sources of the mine water. The water was HCO3·SO4-Ca·Mg type in Er mine and the auxiliary shaft of Yi mine, and HCO3·SO4-Na type in the main shaft of Quantou mine. The isotopic compositions (δD and δ18O) of water in the three abandoned mines were close to that of Ordovician limestone groundwater. Faults in the abandoned mines were developmental, possibly facilitating inflows of groundwater from the underlying Ordovician limestone aquifers into the coal mines. Although the Sr2+ concentrations differed considerably, the ratios of Sr2+/Ca2+ and 87Sr/86Sr and the 34S content of SO4 2- were similar for all three mine waters and Ordovician limestone groundwater, indicating that a close hydraulic connection may exist. Geochemical and isotopic indicators suggest that (1) the mine waters may originate mainly from the Ordovician limestone groundwater inflows, and (2) the upward hydraulic gradient in the limestone aquifer may prevent its contamination by the overlying abandoned mine water. The results of this study could be useful for water resources management in this area and other similar mining areas.

  12. A method for combined Sr-Nd-Hf isotopic analysis of <10 mg dust samples: implication for ice core science

    NASA Astrophysics Data System (ADS)

    Ujvari, Gabor; Wegner, Wencke; Klötzli, Urs

    2017-04-01

    Aeolian mineral dust particles below the size of 10-20 μm often experience longer distance transport in the atmosphere, and thus Aeolian dust is considered an important tracer of large-scale atmospheric circulation. Since ice core dust is purely Aeolian in origin, discrimination of its potential source region(s) can contribute to a better understanding of past dust activity and climatic/environmental causes. Furthermore, ice core dust source information provides critical experimental constraints for model simulations of past atmospheric circulation patterns [1,2]. However, to identify dust sources in past dust archives such as ice cores, the mineralogy and geochemistry of the wind-blown dust material must be characterized. While the amount of dust in marine cores or common terrestrial archives is sufficient for different types of analyses and even for multiple repeat measurements, dust content in ice cores is usually extremely low even for the peak dusty periods such as the Last Glacial Maximum (LGM) (5-8 mg dust/kg ice; [3]). Since the most powerful dust fingerprinting methods, such as REE composition and Sr-Nd-Pb isotopic analyses are destructive there is a clear need to establish sequential separation techniques of Sr, Nd, Pb and other REEs to get the most information out of small (5-10 mg) dust samples recovered from ice cores. Although Hf isotopes have recently been added as a robust tool of aerosol/dust source discrimination (e.g. [4,5,6,7]), precise Hf isotopic measurements of small (<10 mg) dust samples are still challenging due to the small Hf amounts (on the order of 1-10 ng) and often compromised by potential problems arising during ion exchange chemistry. In this pilot study an improved method for chemical separation of Sr, Nd and Hf by Bast et al. [8] was applied, which allows the precise isotope analysis of sub-ng amounts of Hf by MC-ICPMS. This ion exchange chromatography procedure has been combined with established methods of separating and

  13. An Ldrims Instrument for Portable Rb-Sr Dating with Accuracy of Better than ±150 MA for the MARS-2020 Rover

    NASA Astrophysics Data System (ADS)

    Anderson, F. Scott; Whitaker, Tom; Hamilton, Victoria; Nowicki, Keith

    2013-04-01

    Using a laser desorption resonance ionization mass spectrometer (LDRIMS), we can now demonstrate repeatable dates with portable hardware that could be carried on MER- or MSL-sized rovers. This is important because NASA is developing science requirements for a Mars 2020 rover mission based on MSL hardware, and for Mars, the National Research Council Decadal Survey (NRC DS) specifically supports: "...long-term development of instruments ... focusing on the most important future in situ measurements... [including] ... in situ geochronology experiments". The LDRIMS instrument can produce these science measurements today, and in so doing, triage samples for Mars Sample Return. The LDRIMS technique can be miniaturized and avoids the mass interference issues requiring unwieldy chemical separation for traditional geochronology techniques. With LDRIMS sample is placed in a time-of-flight (TOF) mass spectrometer and surface atoms, molecules, and ions are desorbed with a 213 nm laser. Ions are suppressed by an electric field and the plume of expanding particles is present for many μs, during which it is first illuminated with laser light tuned to ionize only Sr, and then 1-3 μs later, for Rb. This eliminates isobars for Rb and Sr, insures that the measured atoms come from the same ablation event, and hence target materials, and reduces the total number of measurements required. The LDRIMS system has demonstrated a sensitivity of 300 parts-per-trillion, and isotope ratio precisions of ±0.3 to ±0.1% in 3000-5000 ablations of one spot on a sample in 3-5 minutes. The bench top prototype has been tested on the Boulder Creek Granite (BCG) from Elephant Butte, Colorado, comprised primarily of a gneissic quartz monzonite and granodiorite. Whole rock Rb-Sr TIMS measurements of the BCG, and our own preliminary micro-drill TIMS measurements of individual minerals, are consistent with an age of 1700±40 Ma. To obtain a LDRIMS date using the BCG sample, we measured hundreds of spots

  14. Reconstructing conditions during dolomite formation on a Carnian coastal sabkha/alluvial plain using 87Sr/86Sr isotopes - Travenanzes Formation, northern Italy

    NASA Astrophysics Data System (ADS)

    Rieder, Maximilian; Wegner, Wencke; Horschinegg, Monika; Preto, Nereo; Breda, Anna; Klötzli, Urs; Peckmann, Jörn; Meister, Patrick

    2016-04-01

    The study of large amounts of dolomite that formed in the Triassic Tethyan realm is hampered by late diagenetic or hydrothermal overprint. These dolomites are difficult to link to past environmental and early diagenetic conditions, and their correlation to models for dolomite formation in modern environments is problematic. Preto et al. (2015) suggested, based on evidence from nano-scale structure analysis by transmission electron microscopy and petrographic observations, that dolomites in the Carnian Travenanzes Formation of the Southern Alps (Dolomites area) represent a preserved primary phase. The Travenanzes Formation was deposited in an extended alluvial plain or coastal sabkha environment subject to a semi-arid climate. Beds and nodules of nearly stoichiometric dolomite are embedded in large amounts of clay, which shielded early formed dolomite from diagenetic fluids. This finding of penecontemporaneous dolomite provides an ideal model case for reconstructing past environmental conditions at the time of dolomite precipitation. While Preto et al. (2015) argued that dolomite formation was mediated by extracellular polymeric substances produced by sulphate-reducing bacteria, it remains unclear whether precipitation occurred from evaporating seawater or mainly from brine derived from evaporating continental groundwater. Both cases exist in modern environments of dolomite formation. In the coastal sabkhas of Abu Dhabi and Qatar, dolomite precipitates from concentrated brine derived from seawater, either through seepage and reflux or through evaporative pumping (the sabkha model). In the coastal ephemeral lakes of the Coorong Lagoon system (South Australia) dolomite precipitation occurs from evaporating groundwater. The goal of this study is to distinguish marine from continental influence during formation of Carnian dolomite using 87Sr/86Sr isotope ratios. Sr isotopes could reveal different origins of ionic solutions for dolomite precipitation, which is not

  15. Zircon Lu-Hf isotope systematics and U-Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya Zone-NE Turkey: a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif

    2017-05-01

    The early Mesozoic was a critical era for the geodynamic evolution of the Sakarya Zone as transition from accretion to collision events in the region. However, its complex evolutionary history is still debated. To address this issue, we present new in situ zircon U-Pb ages and Lu-Hf isotope data, whole-rock Sr-Nd isotopes, and mineral chemistry and geochemistry data of plutonic rocks to better understand the magmatic processes. The Gokcedere pluton is mainly composed of gabbro and gabbroic diorite. LA-ICP-MS zircon U-Pb dating reveals that the pluton was emplaced in the early Jurassic (177 Ma). These gabbros and gabbroic diorites are characterized by relatively low SiO2 content of 47.09 to 57.15 wt% and high Mg# values varying from 46 to 75. The samples belong to the calc-alkaline series and exhibit a metaluminous I-type character. Moreover, they are slightly enriched in large ion lithophile elements (Rb, Ba, Th and K) and light rare earth elements and depleted in high field strength elements (Nb and Ti). Gabbroic rocks of the pluton have a depleted Sr-Nd isotopic composition, including low initial 87Sr/86Sr ranging from 0.705124 to 0.705599, relatively high ɛ Nd ( t) values varying from 0.1 to 3.5 and single-stage Nd model ages ( T DM1 = 0.65-0.95 Ga). In situ zircon analyses show that the rocks have variable and positive ɛ Hf ( t) values (4.6 to 13.5) and single-stage Hf model ages ( T DM1 = 0.30 to 0.65 Ga). Both the geochemical signature and Sr-Nd-Hf isotopic composition of the gabbroic rocks reveal that the magma of the studied rocks was formed by the partial melting of a depleted mantle wedge metasomatized by slab-derived fluids. The influence of slab fluids is mirrored by their trace-element characteristics. Trace-element modeling suggests that the primary magma was generated by a low and variable degree of partial melting ( 5-15%) of a depleted and young lithospheric mantle wedge consisting of phlogopite- and spinel-bearing lherzolite. Heat to melt the

  16. Influence of magmatic volatiles on boron isotope compositions in vent fluids from the Eastern Manus Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Wilckens, F. K.; Kasemann, S.; Bach, W.; Reeves, E. P.; Meixner, A.; Seewald, J.

    2016-12-01

    In this study we present boron (B), lithium (Li) and strontium (Sr) concentrations and isotopic composition of submarine hydrothermal fluids collected in 2006 and 2011 from PACMANUS, DESMOS and SuSu Knolls vent fields located in the Eastern Manus Basin [1,2]. Hydrothermal vent fluids within the Eastern Manus Basin range from high-temperature black smoker fluids to low-temperature diffuse fluids and acid-sulfate fluids. In general, the different fluid types show variable water-rock ratios during water-rock interaction and different inputs of magmatic volatiles. End-member black smoker fluids, which have in general high temperatures (mostly higher than 280°C) and pH values higher than 2 (measured at 25°C) are characterized by low δ7Li values (3.9 to 5.9‰) and 87Sr/86Sr ratios (0.704 to 0.705) similar to the values for island arc basalts. These results suggest low water-rock ratios during hydrothermal circulation. B concentrations and isotopic compositions in these fluids range from 1.0 to 2.6μM and 13 to 20‰, respectively. These data match with other vent fluids from island arc settings in the Western Pacific and plot in a B versus δ11B diagram on a two-component mixing line between seawater and island arc basalts [3]. Sr and Li isotopic composition of white smoker and acid-sulfate fluids overlap generally with the isotopic ratios for the black smoker fluids. However, in some fluids Sr isotope ratios are up to 0.709 near seawater composition suggesting higher water-rock ratios during water-rock interaction. B concentrations and isotope ratios in the white smoker and acid-sulfate fluids range from 0.6 to 2.2μM and 9 to 16‰, respectively which are lower compared with the values of black smoker fluids. In addition, these fluids do not fit on the mixing line between seawater and island arc basalt, and define another mixing trend in a B versus δ11B diagram. To explain this contradictory trend, a third mixing endmember is required that shifts B concentrations

  17. Molecular Spectra of RbSr: Helium Droplet Assisted Preparation of a Diatomic Molecule

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Günter; Buchsteiner, Thomas; Pototschnig, Johann V.; Ernst, Wolfgang E.

    2014-06-01

    We report on the first spectroscopic investigation of the ground and excited states of RbSr. The molecules are prepared in their vibronic ground state (X^2Σ^+1/2, ν" = 0) in a sequential pickup process on the surface of helium nanodroplets, confined in a cold (0.38 K) and weakly perturbing superfluid environment. Utilizing resonance-enhanced multi-photon ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy our investigations cover the spectral regime of 11500 cm-1 - 23000 cm-1. The weak interaction between molecules and helium droplets causes a broadening of the observed transitions. For spectrally resolved band systems the helium droplet isolation approach facilitates the determination of molecular constants. Our assignment is assisted by theoretical calculations of potential energy curves based on a multireference configuration interaction (MRCI) approach. Several strong transitions could be identified; the most prominent spectral feature is a vibrational resolved band system at 14000 cm-1. In contrast to the excitation spectra, dispersed fluorescence (DF) spectra are not influenced by the helium environment, because the molecules leave the droplets upon photoexcitation, revealing detailed insights into the electronic structure of the free RbSr molecule. G. Krois, J.V. Pototschnig, F. Lackner and W.E. Ernst, J. Phys. Chem. A, 117 (50), 13719-13731 (2013) C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in: Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, (2011) P.S. Żuchowski, R. Guerout, and O. Dulieu, arXiv preprint arXiv:1402.0702 (2014) B. Pasquiou, A. Bayerle, S.M. Tzanova, S. Stellmer, J. Szczepkowski, M. Parigger, R. Grimm, and F. Schreck, Phys. Rev. A, 88 (2), 023601 (2013).

  18. Geochemical and multi-isotopic ( 87Sr/ 86Sr, 143Nd/ 144Nd, 238U/ 235U) perspectives of sediment sources, depositional conditions, and diagenesis of the Marcellus Shale, Appalachian Basin, USA

    DOE PAGES

    Phan, Thai T.; Gardiner, James B.; Capo, Rosemary C.; ...

    2017-10-25

    Here, we investigate sediment sources, depositional conditions and diagenetic processes affecting the Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, a major target of natural gas exploration. Multiple proxies, including trace metal contents, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U isotopes were applied to whole rock digestions and sequentially extracted fractions of the Marcellus shale and adjacent units from two locations in the Appalachian Basin. The narrow range of εNd values (from –7.8 to –6.4 at 390 Ma) is consistent with derivation of the clastic sedimentary component of the Marcellus Shale from amore » well-mixed source of fluvial and eolian material of the Grenville orogenic belt, and indicate minimal post-depositional alteration of the Sm-Nd system. While silicate minerals host >80% of the REE in the shale, data from sequentially extracted fractions reflect post-depositional modifications at the mineralogical scale, which is not observed in whole rock REE patterns.« less

  19. Geochemical and multi-isotopic ( 87Sr/ 86Sr, 143Nd/ 144Nd, 238U/ 235U) perspectives of sediment sources, depositional conditions, and diagenesis of the Marcellus Shale, Appalachian Basin, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Thai T.; Gardiner, James B.; Capo, Rosemary C.

    Here, we investigate sediment sources, depositional conditions and diagenetic processes affecting the Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, a major target of natural gas exploration. Multiple proxies, including trace metal contents, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U isotopes were applied to whole rock digestions and sequentially extracted fractions of the Marcellus shale and adjacent units from two locations in the Appalachian Basin. The narrow range of εNd values (from –7.8 to –6.4 at 390 Ma) is consistent with derivation of the clastic sedimentary component of the Marcellus Shale from amore » well-mixed source of fluvial and eolian material of the Grenville orogenic belt, and indicate minimal post-depositional alteration of the Sm-Nd system. While silicate minerals host >80% of the REE in the shale, data from sequentially extracted fractions reflect post-depositional modifications at the mineralogical scale, which is not observed in whole rock REE patterns.« less

  20. Shifting material source of Chinese Loess since ~2.7 Ma reflected by Sr isotopic composition.

    PubMed

    Zhang, Wenfang; Chen, Jun; Li, Gaojun

    2015-05-21

    Deciphering the sources of eolian dust on the Chinese Loess Plateau (CLP) is fundamental to reconstruct paleo-wind patterns and paleo-environmental changes. Existing datasets show contradictory source evolutions of eolian dust on the CLP, both on orbital and tectonic timescales. Here, the silicate Sr and Nd isotopic compositions of a restricted grain size fraction (28-45 μm) were measured to trace the source evolution of the CLP since ~2.7 Ma. Our results revealed an unchanged source on orbital timescales but a gradual source shift from the Qilian Mountains to the Gobi Altay Mountains during the past 2.7 Ma. Both tectonic uplift and climate change may have played important roles for this shift. The later uplift of the Gobi Altay Mountains relative to the Qilian Mountains since 5 ± 3 Ma might be responsible for the increasing contribution of Gobi materials to the source deserts in Alxa arid lands. Enhanced winter monsoon may also facilitate transportation of Gobi materials from the Alxa arid lands to the CLP. The shifting source of Asian dust was also reflected in north Pacific sediments. The finding of this shifting source calls for caution when interpreting the long-term climate changes based on the source-sensitive proxies of the eolian deposits.

  1. Origins of invasive piscivores determined from the strontium isotope ratio (87Sr/86Sr) of otoliths

    USGS Publications Warehouse

    Wolff, Brian A.; Johnson, Brett M.; Breton, Andre R.; Martinez, Patrick J.; Winkelman, Dana L.; Gillanders, Bronwyn

    2012-01-01

    We examined strontium isotope ratios (87Sr/86Sr) in fish otoliths to determine the origins of invasive piscivores in the Upper Colorado River Basin (UCRB, western USA). We examined 87Sr/86Sr from fishes in different reservoirs, as well as the temporal stability and interspecies variability of 87Sr/86Sr of fishes within reservoirs, determined if 87Sr/86Sr would be useful for "fingerprinting" reservoirs where invasive piscivores may have been escaping into riverine habitat of endangered fishes in the UCRB, and looked for evidence that such movement was occurring. Our results showed that in most cases 87Sr/86Sr was unique among reservoirs, overlapped among species in a given reservoir, and was temporally stable across years. We identified the likely reservoir of origin of river-caught fish in some cases, and we were also able to determine the year of possible escapement. The approach allowed us to precisely describe the 87Sr/86Sr fingerprint of reservoir fishes, trace likely origins of immigrant river fish, and exclude potential sources, enabling managers to focus control efforts more efficiently. Our results demonstrate the potential utility of 87Sr/86Sr as a site-specific and temporally stable marker for reservoir fish and its promise for tracking fish movements of invasive fishes in river-reservoir systems.

  2. Evolution of the lithospheric mantle beneath Mt. Baekdu (Changbaishan): Constraints from geochemical and Sr-Nd-Hf isotopic studies on peridotite xenoliths in trachybasalt

    NASA Astrophysics Data System (ADS)

    Park, Keunsu; Choi, Sung Hi; Cho, Moonsup; Lee, Der-Chuen

    2017-08-01

    Major and trace element compositions of minerals as well as Sr-Nd-Hf isotopic compositions of clinopyroxenes from spinel peridotite xenoliths entrained in Late Cenozoic trachybasalt from Mt. Baekdu (Changbaishan) were used to elucidate lithospheric mantle formation and evolution in the eastern North China Craton (NCC). The analyzed peridotites were mainly spinel lherzolites with rare harzburgites. They consisted of olivine (Fo89.3-91.0), enstatite (Wo1-2En88-90Fs8-11), diopside (Wo45-50En45-51Fs4-6), and spinel (Cr# = 8.8-54.7). The peridotite residues underwent up to 25% partial melting in fertile mid-ocean-ridge basalt (MORB) mantle. Plots of the Cr# in spinel against the Mg# in coexisting olivine or spinel suggested an affinity with abyssal peridotites. Comparisons of Cr# and TiO2 in spinel were also compatible with an abyssal peridotite-like composition; however, harzburgites were slightly enriched in TiO2 because of the reaction with MORB-like melt. Temperatures estimated using two-pyroxene thermometry ranged from 750 to 1010 °C, reflecting their lithospheric mantle origin. The rare earth element (REE) patterns in clinopyroxenes of the peridotites varied from light REE (LREE) depleted to spoon shaped to LREE enriched, reflecting secondary overprinting effects of metasomatic melts or fluids on the residues from primordial melting. The calculated trace element pattern of metasomatic melt equilibrated with clinopyroxene in Mt. Baekdu peridotite showed strong enrichment in large-ion lithophile elements, Th and U together with slight fractionation in heavy REEs (HREEs) and considerable depletion in Nb and Ti. The Sr-Nd-Hf isotopic compositions of clinopyroxenes separated from the peridotites varied from more depleted than present-day MORB to bulk Earth values. However, some clinopyroxene showed a decoupling between Nd and Sr isotopes, deviating from the mantle array with a high 87Sr/86Sr ratio. This sample also showed a significant Nd-Hf isotope decoupling lying

  3. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    USGS Publications Warehouse

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  4. Carbon, oxygen, and strontium isotopic composition of methane-derived authigenic carbonates in methane seep areas, eastern margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Kakizaki, Y.; Ishikawa, T.; Hiruta, A.; Matsumoto, R.

    2016-12-01

    We report the occurrence, mineralogy, and isotopic composition (δ13C; δ18O) of methane-derived authigenic carbonates (MDACs) from three methane seep areas with shallow gas hydrate (Umitaka Spur, Joetsu Knoll, and off-Tobishima Island), in the southeastern margin of Japan Sea. Furthermore, we present strontium isotopic ratios (87Sr/86Sr) of MDACs, pore waters, and seawater from Umitaka Spur. MDACs range from a few mm to several tens of cm in diameter. Their shape is quite varied, e.g. nodular, platy, and indetermine form. Most MDACs are composed of high-Mg calcite. The δ13C values of MDACs from Umitaka Spur range from -30 to -4 permil. These isotopic values are higher than those of Joetsu Knoll and off-Tobishima Island. This difference is dependent upon the formation depth of MDACs in the sediment column. It probably indicates a difference in the formation environment of MDACs (e.g. methane flux). Meanwhile, range of the δ18O values of MDACs from those three areas is mostly equal. The 87Sr/86Sr ratios in MDACs from shallow sediment depth of Umitaka Spur are equal to those of modern surface seawater just above Umitaka Spur. The 87Sr/86Sr ratios of MDACs from deeper sediment depth are lower, and the Sr-isotopic trend indicates an upward increase. This trend can be correlated to the global Sr-isotopic trend of the seawater from late Pleistocene to present. It means that 87Sr/86Sr ratios of MDACs reflect the 87Sr/86Sr ratio of seawater at the formation age. However, the 87Sr/86Sr ratios in pore water are lower than those of MDACs, yet follow a parallel trend. This would suggest that the pore water includes a source of light Sr, presumably released from tuff and volcaniclastics during diagenetic processes. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  5. Isotopic coherence of refractory inclusions from CV and CK meteorites: Evidence from multiple isotope systems

    NASA Astrophysics Data System (ADS)

    Shollenberger, Quinn R.; Borg, Lars E.; Render, Jan; Ebert, Samuel; Bischoff, Addi; Russell, Sara S.; Brennecka, Gregory A.

    2018-05-01

    Calcium-aluminum-rich inclusions (CAIs) are the oldest dated materials in the Solar System and numerous previous studies have revealed nucleosynthetic anomalies relative to terrestrial rock standards in many isotopic systems. However, most of the isotopic data from CAIs has been limited to the Allende meteorite and a handful of other CV3 chondrites. To better constrain the isotopic composition of the CAI-forming region, we report the first Sr, Mo, Ba, Nd, and Sm isotopic compositions of two CAIs hosted in the CK3 desert meteorites NWA 4964 and NWA 6254 along with two CAIs from the CV3 desert meteorites NWA 6619 and NWA 6991. After consideration of neutron capture processes and the effects of hot-desert weathering, the Sr, Mo, Ba, Nd, and Sm stable isotopic compositions of the samples show clearly resolvable nucleosynthetic anomalies that are in agreement with previous results from Allende and other CV meteorites. The extent of neutron capture, as manifested by shifts in the observed 149Sm-150Sm isotopic composition of the CAIs is used to estimate the neutron fluence experienced by some of these samples and ranges from 8.40 × 1013 to 2.11 × 1015 n/cm2. Overall, regardless of CAI type or host meteorite, CAIs from CV and CK chondrites have similar nucleosynthetic anomalies within analytical uncertainty. We suggest the region that CV and CK CAIs formed was largely uniform with respect to Sr, Mo, Ba, Nd, and Sm isotopes when CAIs condensed and that CAIs hosted in CV and CK meteorites are derived from the same isotopic reservoir.

  6. Evidence for mass-dependent isotopic fractionation of strontium in a glaciated granitic watershed

    NASA Astrophysics Data System (ADS)

    de Souza, Gregory F.; Reynolds, Ben C.; Kiczka, Mirjam; Bourdon, Bernard

    2010-05-01

    The stable isotope composition of strontium (expressed as δ 88/86Sr) may provide important constraints on the global exogenic strontium cycle. Here, we present δ 88/86Sr values and 87Sr/ 86Sr ratios for granitoid rocks, a 150 yr soil chronosequence formed from these rocks, surface waters and plants in a small glaciated watershed in the central Swiss Alps. Incipient chemical weathering in this young system, whether of inorganic or biological origin, has no resolvable effect on the 87Sr/ 86Sr ratios and δ 88/86Sr values of bulk soils, which remain indistinguishable from bedrock in terms of Sr isotopic composition. Although due in part to the chemical heterogeneity of the forefield, the lack of a resolvable difference between soil and bedrock isotopic composition indicates that these soils have thus far witnessed minimal net loss of Sr; a low degree of chemical weathering is also implied by bulk soil chemistry. The isotopic composition of Sr in streamwater is more radiogenic than median soil, reflecting the preferential weathering of biotite in the catchment; streamwater δ 88/86Sr values, however, are indistinguishable from bulk soil δ 88/86Sr values, implying that no resolvable fractionation of Sr isotopes takes place during release to the weathering flux in the Damma forefield. Analyses of plant tissue reveal that plants ( Rhododendron and Vaccinium) preferentially assimilate the lighter isotopes of Sr such that their δ 88/86Sr values are significantly lower than those of the soils in which they grow. Additionally, δ 88/86Sr values of foliar and floral tissues are lower than those of roots, contrary to observations for Ca, for which Sr is often used as an analogue in weathering studies. We suggest that processes that discriminate against Sr in favour of Ca, due to the different nutritional requirement of plants for these two elements, are responsible for the observed contrast.

  7. Sr-Nd-Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Paraná Continental Flood Basalts (Brazil)

    NASA Astrophysics Data System (ADS)

    Rocha-Júnior, Eduardo R. V.; Marques, Leila S.; Babinski, Marly; Nardy, Antônio J. R.; Figueiredo, Ana M. G.; Machado, Fábio B.

    2013-10-01

    There has been little research on geochemistry and isotopic compositions in tholeiites of the Northern region from the Paraná Continental Flood Basalts (PCFB), one of the largest continental provinces of the world. In order to examine the mantle sources involved in the high-Ti (Pitanga and Paranapanema) basalt genesis, we studied Sr, Nd, and Pb isotopic systematics, and major, minor and incompatible trace element abundances. The REE patterns of the investigated samples (Pitanga and Paranapanema magma type) are similar (parallel to) to those of Island Arc Basalts' REE patterns. The high-Ti basalts investigated in this study have initial (133 Ma) 87Sr/86Sr ratios of 0.70538-0.70642, 143Nd/144Nd of 0.51233-0.51218, 206Pb/204Pb of 17.74-18.25, 207Pb/204Pb of 15.51-15.57, and 208Pb/204Pb of 38.18-38.45. These isotopic compositions do not display any correlation with Nb/Th, Nb/La or P2O5/K2O ratios, which also reflect that these rocks were not significantly affected by low-pressure crustal contamination. The incompatible trace element ratios and Sr-Nd-Pb isotopic compositions of the PCFB tholeiites are different to those found in Tristan da Cunha ocean island rocks, showing that this plume did not play a substantial role in the PCFB genesis. This interpretation is corroborated by previously published osmium isotopic data (initial γOs values range from +1.0 to +2.0 for high-Ti basalts), which also preclude basalt generation by melting of ancient subcontinental lithospheric mantle. The geochemical composition of the northern PCFB may be explained through the involvement of fluids and/or small volume melts related to metasomatic processes. In this context, we propose that the source of these magmas is a mixture of sublithospheric peridotite veined and/or interlayered with mafic components (e.g., pyroxenites or eclogites). The sublithospheric mantle (dominating the osmium isotopic compositions) was very probably enriched by fluids and/or magmas related to the

  8. Stable and Radiogenic Sr Isotopes in Barite - Clues on the Links Between Weathering, Climate and the C Cycle

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Eisenhauer, A.; Wallmann, K. J. G.; Griffith, E. M.; Ridgwell, A.

    2017-12-01

    The radiogenic Sr-isotopic signature (87Sr/86Sr) of seawater fluctuates primarily in response to changes in the inputs of Sr from weathering and hydrothermal activity, which have distinct 87Sr/86Sr values. Changes in the isotopic ratio of the weathered terrain also contribute to observed changes in 87Sr/86Sr. The stable Sr-isotope ratios in seawater (mass dependent isotopic fractionation; δ88/86Sr) fluctuate primarily in response to the rate of calcium carbonate (CaCO3) accumulation at the seafloor. Together the radiogenic and stable Sr can constrain the coupling between weathering and sedimentation and shed light on the relation between weathering, CaCO3 deposition, the global carbon (C) cycle and climate. Reconstruction of the coupled stable and radiogenic Sr seawater curves over the past 35 Ma of Earth history indicates that the location and rate of CaCO3 burial in the ocean fluctuated considerably over the past 35 Ma. Between 35 to 18 Ma a reduction in neritic CaCO3 burial and increased burial in pelagic settings is observed. The trend was reversed between 20 and 3 Ma and finally over the last 3 million years a rapid change from neritic to pelagic burial is seen. The lack of continues increase of pelagic CaCO3 burial rates suggests that silicate weathering rates have not increased monotonically over the past 35 Ma implying strong feedbacks operating in the climate system - lower atmospheric pCO2 and cooling trends (which control chemical weathering as seen from carbonate deposition in the ocean) countered the effects of uplift (which controls physical weathering) - modulating weathering rates and preventing a runaway ice-house. In addition the data suggests considerable fluctuations in seawater Sr concentrations over time. These data demonstrate how using multiple isotope proxies can help constrain interpretations of the geological record.

  9. Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity's ChemCam: early results for Gale crater from Bradbury Landing Site to Rocknest

    USGS Publications Warehouse

    Ollila, Ann M.; Newsom, Horton E.; Clark, Benton; Wiens, Roger C.; Cousin, Agnes; Blank, Jen G.; Mangold, Nicolas; Sautter, Violaine; Maurice, Sylvestre; Clegg, Samuel M.; Gasnault, Olivier; Forni, Olivier; Tokar, Robert; Lewin, Eric; Dyar, M. Darby; Lasue, Jeremie; Anderson, Ryan; McLennan, Scott M.; Bridges, John; Vaniman, Dave; Lanza, Nina; Fabre, Cecile; Melikechi, Noureddine; Perett, Glynis M.; Campbell, John L.; King, Penelope L.; Barraclough, Bruce; Delapp, Dorothea; Johnstone, Stephen; Meslin, Pierre-Yves; Rosen-Gooding, Anya; Williams, Josh

    2014-01-01

    The ChemCam instrument package on the Mars rover, Curiosity, provides new capabilities to probe the abundances of certain trace elements in the rocks and soils on Mars using the laser-induced breakdown spectroscopy technique. We focus on detecting and quantifying Li, Ba, Rb, and Sr in targets analyzed during the first 100 sols, from Bradbury Landing Site to Rocknest. Univariate peak area models and multivariate partial least squares models are presented. Li, detected for the first time directly on Mars, is generally low (100 ppm and >1000 ppm, respectively. These analysis locations tend to have high Si and alkali abundances, consistent with a feldspar composition. Together, these trace element observations provide possible evidence of magma differentiation and aqueous alteration.

  10. The He isotope composition of the earliest picrites erupted by the Ethiopia plume, implications for mantle plume source

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay; Rogers, Nick; Davies, Marc

    2016-04-01

    The earliest basalts erupted by mantle plumes are Mg-rich, and typically derived from mantle with higher potential temperature than those derived from the convecting upper mantle at mid-ocean ridges and ocean islands. The chemistry and isotopic composition of picrites from CFB provide constraints on the composition of deep Earth and thus the origin and differentiation history. We report new He-Sr-Nd-Pb isotopic composition of the picrites from the Ethiopian flood basalt province from the Dilb (Chinese Road) section. They are characterized by high Fe and Ti contents for MgO = 10-22 wt. % implying that the parent magma was derived from a high temperature low melt fraction, most probably from the Afar plume head. The picrite 3He/4He does not exceed 21 Ra, and there is a negative correlation with MgO, the highest 3He/4He corresponding to MgO = 15.4 wt. %. Age-corrected 87Sr/86Sr (0.70392-0.70408) and 143Nd/144Nd (0.512912-0.512987) display little variation and are distinct from MORB and OIB. Age-corrected Pb isotopes display a significant range (e.g. 206Pb/204Pb = 18.70-19.04) and plot above the NHRL. These values contrast with estimates of the modern Afar mantle plume which has lower 3He/4He and Sr, Nd and Pb isotope ratios that are more comparable with typical OIB. These results imply either interaction between melts derived from the Afar mantle plume and a lithospheric component, or that the original Afar mantle plume had a rather unique radiogenic isotope composition. Regardless of the details of the origins of this unusual signal, our observations place a minimum 3He/4He value of 21 Ra for the Afar mantle plume, significantly greater than the present day value of 16 Ra, implying a significant reduction over 30 Myr. In addition the Afar source was less degassed than convecting mantle but more degassed than mantle sampled by the proto-Iceland plume (3He/4He ~50 Ra). This suggests that the largest mantle plumes are not sourced in a single deep mantle domain with a

  11. Pb-Sr-Nd isotopes in surficial materials at the Pebble Porphyry Cu-Au-Mo Deposit, Southwestern Alaska: can the mineralizing fingerprint be detected through cover?

    USGS Publications Warehouse

    Ayuso, Robert A.; Kelley, Karen D.; Eppinger, Robert G.; Forni, Francesca

    2013-01-01

    The Cretaceous Pebble porphyry Cu-Au-Mo deposit is covered by tundra and glacigenic sediments. Pb-Sr-Nd measurements were done on sediments and soils to establish baseline conditions prior to the onset of mining operations and contribute to the development of exploration methods for concealed base metal deposits of this type. Pebble rocks have a moderate range for 206Pb/204Pb = 18.574 to 18.874, 207Pb/204Pb = 15.484 to 15.526, and 208,Pb/204Pb = 38.053 to 38.266. Mineralized granodiorite shows a modest spread in 87Sr/86Sr (0.704354–0.707621) and 143Nd/144Nd (0.512639–0.512750). Age-corrected (89 Ma) values for the granodiorite yield relatively unradiogenic Pb (e.g., 207Pb/204Pb 87Sr/86Sr, and positive values of ɛNd (1.00–4.52) that attest to a major contribution of mantle-derived source rocks. Pond sediments and soils have similar Pb isotope signatures and 87Sr/86Sr and 143Nd/144Nd values that resemble the mineralized granodiorites. Glacial events have obscured the recognition of isotope signatures of mineralized rocks in the sediments and soils. Baseline radiogenic isotope compositions, prior to the onset of mining operations, reflect natural erosion, transport and deposition of heterogeneous till sheets that included debris from barren rocks, mineralized granodiorite and sulfides from the Pebble deposit, and other country rocks that pre- and postdate the mineralization events. Isotopic variations suggest that natural weathering of the deposit is generally reflected in these surficial materials. The isotope data provide geochemical constraints to glimpse through the extensive cover and together with other geochemical observations provide a vector to concealed mineralized rocks genetically linked with the Pebble deposit.

  12. History of the Pasamonte achondrite: Relative susceptibility of the SmNd, RbSr, and UPb systems to metamorphic events

    USGS Publications Warehouse

    Unruh, D.M.; Nakamura, N.; Tatsumoto, M.

    1977-01-01

    The RbSr, SmNd, and UPb systematics of the eucrite Pasamonte have been studied in order to investigate the relative susceptibility of the different systems to post-crystallization events and to determine the age and history of the meteorite. The RbSr and 238U-206Pb data of mineral separates do not define an isochron but the SmNd data define an internal isochron which corresponds to the formation age of 4.58 ?? 0.12 b.y. (109 years). The 207Pb-206Pb data of mineral separates define an apparent age of 4.53 ?? 0.03 b.y., however we conclude that this age, while in agreement with the SmNd age, is not strictly valid since the UPb data indicate at least three stages of evolution. The UPb data indicate that the parent body of the meteorite experienced brecciation shortly after the formation of the parent body surface (???4.2-4.45 b.y. ago) and a recent disturbance (collision?) 6 ?? 30 m.y. ago. The latter age is within the range of cosmic ray exposure ages for achondrites. ?? 1977.

  13. Nonmonotonic variation of seawater [sup 87]Sr/[sup 86]Sr across the Ivorian/Chadian boundary (Mississippian, Osagean): Evidence from marine cements within the Irish Waulsortian Limestone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douthit, T.L.; Meyers, W.J.; Hanson, G.N.

    1993-05-01

    Detailed analysis of compositionally unaltered marine fibrous cements (MFC) from a single core through the Mississippian irish Waulsortian Limestone indicates that the variation of seawater [sup 87]Sr/[sup 86]Sr is nonmonotonic across the Ivorian-Chadian boundary. This nonmonotonic variation has not been recognized by previous studies. Furthermore, marine cement yielded [sup 87]Sr/[sup 86]Sr ratios lower than previously reported values for the Ivorian-Chadian (sagean). Marine fibrous cements are interpreted to be compositionally unaltered on the basis of nonluminescent character and stable isotope (C, O) composition comparable to previous estimates of Mississippian marine calcite. The isotope chemistry (C, O, Sr) and cathodoluminescent character ofmore » the marine fibrous cements therefore remained intact during their conversion from high-Mg calcite to low-Mg calcite + microdolomite, a conversion that probably took place in marine water during precipitation of Zone 1 calcite cement, the oldest non-MFC cement. High stratigraphic resolution was obtained by restricting the sample set to a single core, 429 m long, thereby eliminating chronostratigraphic correlation errors. The core is estimated to represent about 9.8 million years of Waulsortian Limestone deposition. The maximum rate of change in seawater [sup 87]Sr/[sup 86]Sr is [minus]0.00012/Ma, comparable in magnitude to Tertiary values. The authors data document the presence of fine-scale seawater [sup 87]Sr/[sup 86]Sr modulations for the Ivorian/Chadian, in contrast to the previously published monotonic seawater [sup 87]Sr/[sup 86]Sr curve for this interval, and emphasize the importance of well characterized intraformational isotopic baselines.« less

  14. Rb‐Sr resonance ionization geochronology of the Duluth Gabbro: A proof of concept for in situ dating on the Moon

    PubMed Central

    Levine, Jonathan; Whitaker, Tom J.

    2015-01-01

    Rationale We report new 87Rb‐87Sr isochron data for the Duluth Gabbro, obtained with a laser ablation resonance ionization mass spectrometer that is a prototype spaceflight instrument. The gabbro has a Rb abundance and a range of Rb/Sr ratios that are similar to those of KREEP‐rich basalts found on the nearside of the Moon. Dating of previously un‐sampled young lunar basalts, which generally have a KREEP‐rich composition, is critical for understanding the bombardment history of the Moon since 3.5 Ga, which in turn informs the chronology of the solar system. Measurements of lunar analogs like the Duluth Gabbro are a proof of concept for in situ dating of rocks on the Moon to constrain lunar history. Methods Using the laser ablation resonance ionization mass spectrometer we ablated hundreds of locations on a sample, and at each one measured the relative abundances of the isotopes of Rb and Sr. A delay between the resonant photoionization processes separates the elements in time, eliminating the potential interference between 87Rb and 87Sr. This enables the determination of 87Rb‐87Sr isochron ages without sophisticated sample preparation that would be impractical in a spaceflight context. Results We successfully dated the Duluth Gabbro to 800 ± 300 Ma using traditional isochron methods like those used in our earlier analysis of the Martian meteorite Zagami. However, we were able to improve this to 1100 ± 200 Ma, an accuracy of <1σ, using a novel normalization approach. Both these results agree with the age determined by Faure et al. in 1969, but our novel normalization improves our precision. Conclusions Demonstrating that this technique can be used for measurements at this level of difficulty makes ~32% of the lunar nearside amenable to in situ dating, which can complement or supplement a sample return program. Given these results and the scientific value of dating young lunar basalts, we have recently proposed a spaceflight mission called the Moon Age

  15. Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.

    PubMed

    Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2015-09-15

    We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications.

  16. Trace element and isotopic composition of apatite in carbonatites from the Blue River area (British Columbia, Canada) and mineralogy of associated silicate rocks

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger; Chudy, Thomas; McFarlane, Christopher R. M.; Wu, Fu-Yuan

    2017-08-01

    Apatites from the Verity, Fir, Gum, Howard Creek and Felix carbonatites of the Blue River (British Columbia, Canada) area have been investigated with respect to their paragenesis, cathodoluminescence, trace element and Sr-Nd isotopic composition. Although all of the Blue River carbonatites were emplaced as sills prior to amphibolite grade metamorphism and have undergone deformation, in many instances magmatic textures and mineralogy are retained. Attempts to constrain the U-Pb age of the carbonatites by SIMS, TIMS and LA-ICP-MS studies of zircon and titanite were inconclusive as all samples investigated have experienced significant Pb loss during metamorphism. The carbonatites are associated with undersaturated calcite-titanite amphibole nepheline syenite only at Howard Creek although most contain clasts of disaggregated phoscorite-like rocks. Apatite from each intrusion is characterized by distinct, but wide ranges, in trace element composition. The Sr and Nd isotopic compositions define an array on a 87Sr/86Sr vs²Nd diagram at 350 Ma indicating derivation from depleted sub-lithospheric mantle. This array could reflect mixing of Sr and Nd derived from HIMU and EM1 mantle sources, and implies that depleted mantle underlies the Canadian Cordillera. Although individual occurrences of carbonatites in the Blue River region are mineralogically and geochemically similar they are not identical and thus cannot be considered as rocks formed from a single batch of parental magma at the same stage of magmatic evolution. However, a common origin is highly probable. The variations in the trace element content and isotopic composition of apatite from each occurrence suggest that each carbonatite represents a combination of derivation of the parental magma(s) from mineralogically and isotopically heterogeneous depleted mantle sources coupled with different stages of limited differentiation and mixing of these magmas. We do not consider these carbonatites as primary direct

  17. Age and origin of base and precious metal veins of the Coeur d'Alene mining district, Idaho

    USGS Publications Warehouse

    Fleck, R.J.; Criss, R.E.; Eaton, G.F.; Cleland, R.W.; Wavra, C.S.; Bond, W.D.

    2002-01-01

    Ore-bearing quartz-carbonate veins of the Coeur d'Alene mining district yield 87Sr/86Sr ratios of 0.74 to >1.60 for low Rb/Sr, carbonate gangue minerals, similar to current ranges measured in Middle Proterozoic, high Rb/Sr rocks of the Belt Supergroup. Stable isotope and fluid inclusion studies establish a genetic relationship between vein formation and metamorphic-hydrothermal systems of the region. These extraordinary 87Sr/86Sr ratios require accumulation of radiogenic 87Sr in a high Rb/Sr system over an extended period prior to incorporation of Sr into the hydrothermal veins. Evaluation of the age and composition of potential sources of highly radiogenic Sr indicates that the ore-bearing veins of the Coeur d'Alene district formed during the Cretaceous from components scavenged from rocks of the Belt Supergroup, the primary host rocks of the district. Proterozoic Pb isotope ratios observed in galena from many Coeur d'Alene veins were established when Pb separated from uranium during deposition or diagenesis of the Belt Supergroup at 1400 to 1500 Ma, possibly as disseminated syngenetic deposits. K-Ar and Rb-Sr apparent ages and ??18O values of Belt Supergroup rocks decrease from the Coeur d'Alene district toward the Idaho and Kaniksu batholiths, approximately normal to the trends of metamorphic isograds, fold axes, foliation, and the major reverse faults of the district. Isoclinal folding, thrust faulting, high-temperature metamorphism, granitic plutonism, and regional-scale metamorphic-hydrothermal activity is documented in the region between 140 and 45 Ma, representing the only such combination of events in the Coeur d'Alene region subsequent to about 1300 Ma. The Sr and oxygen results and geologic evidence favor formation of the ore-bearing carbonate veins by fluids related to a complex metamorphic-hydrothermal system during the Cretaceous. Pb with Proterozoic isotopic compositions was probably mobilized and incorporated like other metals into the hydrothermal

  18. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U-Pb and Sr-Nd perovskite isotope analysis

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Liu, Chuan-Zhou; Tappe, Sebastian; Kostrovitsky, Sergey I.; Wu, Fu-Yuan; Yakovlev, Dmitry; Yang, Yue-Heng; Yang, Jin-Hui

    2014-10-01

    We report combined U-Pb ages and Sr-Nd isotope compositions of perovskites from 50 kimberlite occurrences, sampled from 9 fields across the Yakutian kimberlite province on the Siberian craton. The new U-Pb ages, together with previously reported geochronological constraints, suggest that kimberlite magmas formed repeatedly during at least 4 episodes: Late Silurian-Early Devonian (419-410 Ma), Late Devonian-Early Carboniferous (376-347 Ma), Late Triassic (231-215 Ma), and Middle/Late Jurassic (171-156 Ma). Recurrent kimberlite melt production beneath the Siberian craton - before and after flood basalt volcanism at 250 Ma - provides a unique opportunity to test existing models for the origin of global kimberlite magmatism. The internally consistent Sr and Nd isotope dataset for perovskites reveals that the Paleozoic and Mesozoic kimberlites of Yakutia have distinctly different initial radiogenic isotope compositions. There exists a notable increase in the initial 143Nd/144Nd ratios through time, with an apparent isotopic evolution that is intermediate between that of Bulk Earth and Depleted MORB Mantle. While the Paleozoic samples range between initial 87Sr/86Sr of 0.7028-0.7034 and 143Nd/144Nd of 0.51229-0.51241, the Mesozoic samples show values between 0.7032-0.7038 and 0.51245-0.51271, respectively. Importantly, perovskites from all studied Yakutian kimberlite fields and age groups have moderately depleted initial εNd values that fall within a relatively narrow range between +1.8 and +5.5. The perovskite isotope systematics of the Yakutian kimberlites are interpreted to reflect magma derivation from the convecting upper mantle, which appears to have a record of continuous melt depletion and crustal recycling throughout the Phanerozoic. The analyzed perovskites neither record highly depleted nor highly enriched isotopic components, which had been previously identified in likely plume-related Siberian Trap basalts. The Siberian craton has frequently been suggested

  19. Mineralogical, Chemical, and Isotopic Heterogeneity in Zagami: Evidence for a Complex Petrogenesis

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Misawa, K.; Shih, C-Y.; Niihara, T.; Park, J.

    2013-01-01

    Textural variations in the shergottite Zagami were initially interpreted as evidence that it formed in a heterogeneous lava flow. Variations in initial Sr-87/Sr-86 ratios between a Coarse Grained (CG) and a Fine Grained (FG) lithology and evidence for more extensive fractionation of the Rb/Sr ratio in a Dark Mottled Lithology (DML) are consistent with such an interpretation. More recently, Niihara et al. and Misawa et al. have reported the mineralogy and Sr-isotopic systematics of an Olivine Rich Lithology (ORL) found in association with the coarse-grained DML lithology in the Kanagawa Zagami specimen [6,7]. Here we call this lithology DML(Ka) to maintain a distinction with DML(USNM) as studied. An Ar-Ar study by Park et al. of a late stage K-rich melt enriched in K2O to approx 7% and intruded into ORL yielded an Ar-Ar age of 202+/0 7 Ma. The present work extends the study of Kanagawa Zagami to Nd-isotopes.

  20. Mapping the origins of Imperial Roman workers (1st-4th century CE) at Vagnari, Southern Italy, using 87 Sr/86 Sr and δ18 O variability.

    PubMed

    Emery, Matthew V; Stark, Robert J; Murchie, Tyler J; Elford, Spencer; Schwarcz, Henry P; Prowse, Tracy L

    2018-04-18

    We obtained the oxygen and strontium isotope composition of teeth from Roman period (1st to 4th century CE) inhabitants buried in the Vagnari cemetery (Southern Italy), and present the first strontium isotope variation map of the Italian peninsula using previously published data sets and new strontium data. We test the hypothesis that the Vagnari population was predominantly composed of local individuals, instead of migrants originating from abroad. We analyzed the oxygen ( 18 O/ 16 O) and strontium ( 87 Sr/ 86 Sr) isotope composition of 43 teeth. We also report the 87 Sr/ 86 Sr composition of an additional 13 molars, 87 Sr/ 86 Sr values from fauna (n = 10), and soil (n = 5) samples local to the area around Vagnari. The 87 Sr/ 86 Sr variation map of Italy uses 87 Sr/ 86 Sr values obtained from previously published data sources from across Italy (n = 199). Converted tooth carbonate (δ 18 O DW ) and 87 Sr/ 86 Sr data indicate that the majority of individuals buried at Vagnari were local to the region. ArcGIS bounded Inverse Distance Weighting (IDW) interpolation of the pan-Italian 87 Sr/ 86 Sr data set approximates the expected 87 Sr/ 86 Sr range of Italy's geological substratum, producing the first strontium map of the Italian peninsula. Results suggest that only 7% of individuals buried at Vagnari were born elsewhere and migrated to Vagnari, while the remaining individuals were either local to Vagnari (58%), or from the southern Italian peninsula (34%). Our results are consistent with the suggestion that Roman Imperial lower-class populations in southern Italy sustained their numbers through local reproduction measures, and not through large-scale immigration from outside the Italian peninsula. © 2018 Wiley Periodicals, Inc.

  1. Sr and Pb isotopic geochemistry of feldspars and implications for the growth of megacrysts in plutonic settings.

    NASA Astrophysics Data System (ADS)

    Munnikhuis, J.; Glazner, A. F.; Coleman, D. S.; Mills, R. D.

    2015-12-01

    Why megacrystic textures develop in silicic igneous rocks is still unknown. One hypothesis is that these crystals nucleate early in a magma chamber with a high liquid content. A supportive observation of this hypothesis is areas in plutons with high concentrations of megacrysts suggesting flow sorting. Another group of hypotheses suggest megacrystic textures form during protracted late-stage coarsening in a low-melt, interlocked matrix due to either thermal oscillations from incremental pluton emplacement, or Ostwald ripening. Isotopic analyses of large, euhedral K-feldspar megacrysts from the Cretaceous intrusive suites of the Sierra Nevada batholith (SNB) provide new insight into their origin. Megacrysts from the SNB reach the decimeter scale, are Or rich (85-90%), are perthitic, and host mineral inclusions of nearly all phases in the host rock. In-situ micro-drilling of transects, from core to rim, of the alkali feldspars provides material for Sr and Pb isotopic analyses by thermal ionization mass spectrometry (TIMS). Preliminary 87Sr/86Sr(i) isotopic data from samples from the Cathedral Peak Granodiorite, of the Tuolumne Intrusive Suite range from 0.706337 to 0.706452 (~1.6ɛSr) near the cores, whereas a sawtooth pattern with larger variability, 0.706179 to 0.706533 (~5ɛSr), occurs nears the rims. We interpret these preliminary data to indicate that the late portion of growth (i.e. crystal rim) was dominated by either cannibalism of small K-feldspar crystals with isotopic variability, or by addition of isotopically diverse late components to the magma. By comparing the Sr and Pb isotopic stratigraphy of megacrysts from a variety of rock matrices and different granitoids in the SNB isotopic trends can be evaluated to determine if crystals sizes are dependent on disequilibrium processes or grow at a steady state.

  2. Ca and Sr isotope records support ocean acidification during end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Wang, J.; Jacobson, A. D.; Zhang, H.; Ramezani, J.; Sageman, B. B.; Hurtgen, M.; Bowring, S. A.; Shen, S.

    2017-12-01

    The end-Permian mass extinction represents the most devastating loss of biodiversity during the Phanerozoic. A negative carbon isotope (δ13C) excursion that accompanies the event suggests a significant perturbation to the global carbon cycle, likely induced by CO2 emissions during eruption of the Siberian Traps large igneous province. The carbon cycle is linked with the Ca and Sr cycles through chemical weathering and carbonate precipitation. Therefore, analyses of Ca (δ44/40Ca), radiogenic Sr (87Sr/86Sr), and stable Sr (δ88/86Sr) isotope abundance variations in marine carbonate rocks spanning the Permian-Triassic Boundary (PTB) can reveal key information about biogeochemical changes that occurred during this time. We report δ44/40Ca, 87Sr/86Sr, and δ88/86Sr records analyzed by TIMS for the Meishan and Dajiang sections in China. δ44/40Ca values exhibit similar patterns in both sections. The values remain unchanged across the extinction event layer (EXT) and then decrease by 0.20‰ before increasing by 0.20‰ to 0.40‰ around the PTB. In the Meishan section, 87Sr/86Sr ratios increase after the EXT and return to pre-excursion levels by the PTB. Simultaneously, δ88/86Sr values decrease by 0.12‰ across the EXT and increase by 0.08‰ by the PTB. The patterns of our data support the hypothesis that elevated atmospheric CO2 levels enhanced chemical weathering inputs and might have caused transient ocean acidification, with an "alkalinity overshoot" and increased carbonate deposition occurring after the extinction. Additional measurements and model calculations are underway to help refine and improve these preliminary interpretations.

  3. The clay mineral and Sr-Nd isotopic composition for fine-grained fraction of sediments from northwestern South China Sea: implications for sediment provenance

    NASA Astrophysics Data System (ADS)

    Cai, G.

    2013-12-01

    *Guanqiang Cai caiguanqiang@sina.com Guangzhou Marine Geological Survey, Guangzhou, 510760, P.R. China As the largest marginal sea in the western pacific, the South China Sea (SCS) receives large amount of terrigenous material annually through numerous rivers from surrounding continents and islands, which make it as the good place for the study of source to sink process. Yet few studies put emphasis on the northwestern continental shelf and slope in the SCS, even though most of the detrital materials derived from the Red River and Hainan Island are deposited in this area, and northwestern shelf plays a significant role in directly linking the South China, the Indochina and the South China Sea and thus controlling the source to sink process of terrestrial sediment. We presented the clay mineral and Sr-Nd isotopic composition of fine-grained fraction for sediments from northwestern SCS, in order to identify sediment source and transportation. The results show that the clay mineral of northwestern SCS sediments are mainly illite (30%~59%), smectite (20%~40%) and kaolinite (8%~35%), with minor chlorite. The illite chemical index varies between 0.19 and 0.75 with an average of 0.49, indicating an intensive hydrolysis in the source region. The 87Sr/86Sr ratios of sediments range from 0.716288 to 0.734416 (average of 0.724659), and ɛ Nd(0) values range from -10.31 to -11.62 (average of -10.93), which suggest that the source rocks of these sediments are derived from continental crust. The Hainan Island is an important source for sediments deposited in the nearshore and western shelf, especially for illite, kaolinite and smectite clay minerals. Furthermore, the relatively high contents of kaolinite and smectite in sediments from eastern shelf and southern slope of Hainan Island are also controlled by the supply of terrigenous materials from Hainan, which cannot be resulted from sedimentary differentiation of the Pearl and Red river sediments. And the correlation analysis

  4. Isotopic evolution of Mauna Loa volcano

    NASA Astrophysics Data System (ADS)

    Kurz, Mark D.; Kammer, David P.

    1991-04-01

    In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high 3He/ 4He ( ˜ 16-20 times atmospheric), higher 206Pb/ 204Pb ( ˜ 18.2), and lower 87Sr/ 86Sr ( ˜ 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 × atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with 3He/ 4He ratios similar to the other young Kau basalt ( ˜ 8.5 × atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. An asthenospheric source, or variation within the plume source, is considered more likely than

  5. Isotopic composition of recent shark teeth as a proxy for environmental conditions

    NASA Astrophysics Data System (ADS)

    Vennemann, T. W.; Hegner, E.; Cliff, G.; Benz, G. W.

    2001-05-01

    The O, C, and Sr isotope compositions of teeth from ten species, belonging to five families, and three orders of sharks were measured to determine the influence of habitat, diet, and possible species-specific fractionation effects on the isotopic composition of biogenic phosphate from fish. The sharks were recently caught in subtropical waters off the KwaZulu-Natal (KZN) coast of South Africa, as well as from cold waters in Prince William Sound (PWS), Alaska, and Victor Bay (VB), Nunavut, Canada. δ 18O values of tooth phosphate (δ 18O P) range from 20.9 to 23.5‰ for the KZN sharks. For most species the range in measured δ 18O P values is about 0.6‰, but it may be as high as 1.1‰ for different teeth from a single shark. Dentine and enameloid within individual teeth have no apparent differences in δ 18O P values. The δ 18O P values of the KZN shark teeth reflect the typical habitat of the studied species, primarily the thermal structure of the water column off KZN at depths between 20 and 280 m. The δ 18O P values of teeth from different Greenland sharks from VB and Pacific sleeper sharks from PWS are very homogeneous, averaging 25.8 and 24.7‰, respectively. These values appear to be in equilibrium with deep (>500 m) ocean waters in each case at temperatures of about -0.3°C or less. There is little discernable evidence for species-specific fractionation effects for the oxygen isotope composition of phosphate in the studied marine fish. The oxygen isotope composition of carbonate in apatite averages about 9.1‰ higher than corresponding δ 18O P values, in agreement with equilibrium fractionation between carbonate and phosphate, but with a large variance (1σ = ±1.5‰). δ 18O C values also vary by up to 1‰ between enameloid and dentine within single teeth, but in a non-systematic way. Differences in δ 13C values between carbonate in enameloid and dentine is also large (up to 8‰) but the δ 13C values vary systematically. Enameloid is always

  6. Modification of Ca isotope and trace metal composition of the major matrices involved in shell formation of Mytilus edulis

    NASA Astrophysics Data System (ADS)

    Heinemann, Agnes; Fietzke, Jan; Eisenhauer, Anton; Zumholz, Karsten

    2008-01-01

    In this study we present the first combined investigation into the composition of the major matrices involved in calcification processes (surrounding water, extrapallial fluid, aragonite, and calcite) of Mytilus edulis with respect to their calcium isotope (δ44/40Ca) and elemental compositions (Sr/Ca and Mg/Ca). Our aim was to examine the suitability of Mytilus edulis as a proxy archive and to contribute to the understanding of the process of biomineralization. Mytilus edulis specimens were live collected from the Schwentine Estuary, Kiel Fjord, and North Sea (Sylt). δ44/40Ca was determined by thermal ionization mass spectrometry (TIMS) accompanied by measurements of Mg/Ca and Sr/Ca using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The elemental and isotopic compositions of the investigated matrices showed systematic offsets. The carbonates are strongly depleted in their magnesium and strontium concentrations and fractionated toward lighter calcium isotope compositions relative to the surrounding Schwentine Estuary water. The opposite is observed for the extrapallial fluid (EPF). Our findings extend the results of previous studies reporting a strong biological control and the interaction of different environmental conditions influencing biomineralization. Future studies should focus on the temporal development of the interrelation between the different matrices.

  7. A reconnaissance Rb-Sr, Sm-Nd, U-Pb, and K-Ar study of some host rocks and ore minerals in the West Shasta Cu- Zn district, California ( USA).

    USGS Publications Warehouse

    Kistler, R.W.; McKee, E.H.; Futa, K.; Peterman, Z.E.; Zartman, R.E.

    1985-01-01

    The Copley Greenstone, Balaklala Rhyolite, and Mule Mountain stock in the West Shasta Cu-Zn district, California, have Rb-Sr, Sm-Nd, U-Pb, and K-Ar systematics that indicate they are a cogenetic suite of ensimatic island-arc rocks about 400 Ma. Pervasive alteration and mineralization of these rocks, for the most part, was syngenetic and the major component of the mineralizing fluid was Devonian seawater. K-Ar ages of quarz-sericite concentrates from ore horizons and Rb-Sr systematics of a few rock and ore specimens record a later thermal and mineralizing event in the district of about 260 Ma. Contamination of some rocks with pelagic sediments is indicated by the Sm-Nd data. -Authors

  8. Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: Implications for evolution of the subcontinental lithospheric mantle

    USGS Publications Warehouse

    Mukasa, S.B.; Wilshire, H.G.

    1997-01-01

    Ultramafic and mafic xenoliths from the Cima volcanic field, southern California, provide evidence of episodic modification of the upper mantle and underplating of the crust beneath a portion of the southern Basin and Range province. The upper mantle xenoliths include spinel peridotite and anhydrous and hydrous pyroxenite, some cut by igneous-textured pyroxenite-gabbro veins and dikes and some by veins of amphibole ?? plagioclase. Igneous-textured pyroxenites and gabbros like the dike rocks also occur abundantly as isolated xenoliths inferred to represent underplated crust. Mineral and whole rock trace element compositions among and within the different groups of xenoliths are highly variable, reflecting multiple processes that include magma-mantle wall rock reactions, episodic intrusion and it filtration of basaltic melts of varied sources into the mantle wall rock, and fractionation. Nd, Sr, and Pb isotopic compositions mostly of clinopyroxene and plagioclase mineral separates show distinct differences between mantle xenoliths (??Nd = -5.7 to +3.4; 87Sr/86Sr = 0.7051 - 0.7073; 206Pb/204Pb = 19.045 - 19.195) and the igneous-textured xenoliths (??Nd = +7.7 to +11.7; 87Sr/86Sr = 0.7027 - 0.7036 with one carbonate-affected outlier at 0.7054; and 206Pb/204Pb = 18.751 - 19.068), so that they cannot be related. The igneous-textured pyroxenites and gabbros are similar in their isotopic compositions to the host basaltic rocks, which have ??Nd of+5.1 to +9.3; 87Sr/86Sr of 0.7028 - 0.7050, and 206Pb/204Pb of 18.685 - 21.050. The igneous-textured pyroxenites and gabbros are therefore inferred to be related to the host rocks as earlier cogenetic intrusions in the mantle and in the lower crust. Two samples of peridotite, one modally metasomatized by amphibole and the other by plagioclase, have isotopic compositions intermediate between the igneous-textured xenoliths and the mantle rock, suggesting mixing, but also derivation of the metasomatizing magmas from two separate and

  9. Mid-Miocene two-mica granites in the Malashan gneiss dome, south Tibet: Geochemical characteristics and formation mechanism

    NASA Astrophysics Data System (ADS)

    Gao, L.; Zeng, L.

    2011-12-01

    Knowledge of the timing of formation and geochemical nature of the Cenozoic granites along the High Himalaya as well as the Tethyan Himalaya is essential to test or formulate models that link high-grade metamorphism, crustal anatexis, and tectonic transition during the evolution of the Himalayan orogen. The Malashan gneiss dome, one of the prominent domes within the Tethyan Himalaya, consists of pelitic schists, calc-silicate metamorphic rocks, and at least two generations of granites. Two mica granites(TMG) occur as large plutons in Cuobu and Malashan, whereas a small leucogranite pluton occurs at the western side of the Paiku Lake. Two-mica granites from the Cuobu and the Malashan share similar characteristics in mineral composition, major and trace element geochemistry and isotope(Sr and Nd) compositions. New LA-ICP-MS zircon U/Pb analyses yielded that the Cuobu and the Malashan TMG formed at 17.6±0.1 Ma and 16.9±0.1 Ma, respectively. Both suits of granites are characterized by:(1)high SiO2(>71.3wt%), Al2O3(>14.8wt%), and relatively high CaO(>1.5wt%); (2)high A/CNK(>1.0) and K/Na ratios; (3)relatively high Sr(>146ppm), low Rb(<228ppm) and Rb/Sr ratios(<1.3); (4) enriched in LREE, depleted in HREE, as well as no or weakly negative Eu anomalies(Eu*=0.7~0.9); (5) as compared to leucogranites of similar ages in other Northern Himalayan Gneiss Domes, lower initial 87Sr/86Sr ratios (0.7390~0.7484) and similarly unradiogenic Nd isotope compositions (ɛNd(t)=-13.7~-14.4). Correlations between Ba and Rb/Sr ratios and between Rb/Sr and initial 87Sr/86Sr ratios imply that these two-mica granites were derived from muscovite H2O-fluxed melting of metasedimentary rocks at T=700-780oC. Such a reaction could be represented by 9Muscovite + 15Plagioclase + 7Quartz + xH2O = 31Melt, in which enhances the involvement of plagioclase, but suppresses the biotite due to relatively low temperature and the presence of water. This reaction not only produces granitic melts with low Rb/Sr

  10. Controls on the iron isotopic composition of global arc magmas

    NASA Astrophysics Data System (ADS)

    Foden, John; Sossi, Paolo A.; Nebel, Oliver

    2018-07-01

    We determined the iron isotope composition of 130 mafic lavas from 15 arcs worldwide with the hypothesis that the results would reflect the relatively high oxidation state of arc magmas. Although this expectation was not realized, this Fe isotope data set reveals important insights into the geodynamic controls and style of the melting regimes in the sub-arc mantle. Samples are from oceanic arcs from the circum-Pacific, the Indonesian Sunda-Banda islands, Scotia and the Lesser Antilles as well as from the eastern Pacific Cascades. Their mean δ57Fe value is +0.075 ± 0.05‰, significantly lighter than MORB (+0.15 ± 0.03‰). Western Pacific arcs extend to very light δ57Fe (Kamchatka = -0.11 ± 0.04‰). This is contrary to expectation, because Fe isotope fractionation factors (Sossi et al., 2016, 2012) and the incompatibility of ferric versus ferrous iron during mantle melting, predict that melts of more oxidized sources will be enriched in heavy Fe isotopes. Subducted oxidation capacity flux may correlate with hydrous fluid release from the slab. If so, a positive correlation between each arc's thermal parameter (ϕ) and δ57Fe is predicted. On the contrary, the sampled arcs mostly contribute to a negative array with the ϕ value. High ϕ arcs, largely in the western Pacific, have primary magmas with lower δ57Fe values than the low ϕ, eastern Pacific arcs. Arcs with MORB-like Sr-, Nd- and Pb-isotopes, show a large range of δ57Fe from heavy MORB-like values (Scotia or the Cascades) to very light values (Kamchatka, Tonga). Although all basalts with light δ57Fe values have MORB-like Pb-, Nd- and Sr-isotope ratios some, particularly those from eastern Indonesia, have heavier δ57Fe and higher Pb- and Sr- and lower Nd-isotope ratios reflecting sediment contamination of the mantle wedge. Because basalts with MORB-like radiogenic isotopes range all the way from heavy to light δ57Fe values this trend is process-, not source composition-driven. Neither the slab

  11. Nd, Sr, and O isotopic variations in metaluminous ash-flow tuffs and related volcanic rocks at the Timber Mountain/Oasis Valley Caldera, Complex, SW Nevada: implications for the origin and evolution of large-volume silicic magma bodies

    USGS Publications Warehouse

    Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W.

    1991-01-01

    Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16-9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial e{open}Nd values (???1 e{open}Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar e{open}Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher e{open}Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low e{open}Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20-40% (by mass) wall-rock into magmas that were injected into the upper crust. The low e{open}Nd magmas most likely formed via the incorporation of low ??18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher ??18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13-14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low e{open}Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70-80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites

  12. Geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) constraints on Quaternary bimodal volcanism of the Nigde Volcanic Complex (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Aydin, F.; Siebel, W.; Uysal, I.; Ersoy, E. Y.; Schmitt, A. K.; Sönmez, M.; Duncan, R.

    2012-04-01

    The Nigde Volcanic Complex (NVC) is a major Late Neogene-Quaternary volcanic centre within the Cappadocian Volcanic Province of Central Anatolia. The Late Neogene evolution of the NVC generally initiated with the eruption of extensive andesitic-dacitic lavas and pyroclastic flow deposits, and minor basaltic lavas. This stage was followed by a Quaternary bimodal magma suite which forms Na-alkaline/transitional basaltic and high-K calc-alkaline to alkaline silicic volcanic rocks. In this study, we present new geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) data for the bimodal volcanic suite within the NVC. Recent data suggest that the eruption of this suite took place ranges between ~650 and ~220 ka (Middle-Late Pleistocene). Silicic rocks consisting of rhyolite and associated pumice-rich pyroclastic fall out and surge deposits define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5127), and show virtually no difference in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of the silicic (0.704-0.705) and basaltic rocks (0.703-0.705) are rather similar reflecting a common source. The most mafic sample from basaltic rocks related to monogenetic cones is characterized by 87Sr/86Sr = 0.704, 143Nd/144Nd = 0.5127, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68. These values suggest a moderately depleted signature of the mantle source. The geochronological and geochemical data suggest that NVC silicic and basaltic rocks are genetically closely related to each other. Mantle derived differentiated basaltic melts which experienced low degree of crustal assimilation are suggested to be the parent melt of the rhyolites. Further investigations will focus on the spatial and temporal evolution of Quaternary bimodal magma suite in the NVC and the genetic relation between silicic and basaltic rocks through detailed oxygen isotope analysis and (U

  13. A geochronological 40Ar/39Ar and 87Rb/81Sr study of K-Mn oxides from the weathering sequence of Azul, Brazil

    NASA Astrophysics Data System (ADS)

    Ruffet, G.; Innocent, C.; Michard, A.; Féraud, G.; Beauvais, A.; Nahon, D.; Hamelin, B.

    1996-06-01

    KMn oxides of hollandite group minerals such as cryptomelane (K 1-2(Mn 3+, Mn 4+) 8O 16nH 2O) are often precipitated authigenically in weathering profiles. The presence of structural K allows these minerals to be dated by the KAr and 40Ar/ 39Ar methods, making it possible to study the progression of oxidation fronts during weathering processes. Within the context of a recent 40Ar/ 39Ar study of cryptomelane from the Azul Mn deposit in the Carajàs region (Amazônia, Brazil), Vasconcelos et al. (1994) defined three age clusters (65-69, 51-56, and 40-43 Ma) and proposed that they correspond to the episodic precipitation of the three generations of Mn oxide that have been identified in the deposit (Beauvais et al., 1987). We performed a laser probe 40Ar/ 39Ar and 87Rb/ 87Sr study on new samples from the same Mn deposit. Our 40Ar/ 39Ar data confirm that cryptomelane is a suitable mineral for 40Ar/ 39Ar dating, although in some cases we clearly identify the existence of 39Ar recoil effects. Although the corresponding age spectra are generally strongly disturbed, our results also confirm that the earliest cryptomelane generation is of Upper Cretaceous-Paleocene age. We obtained good plateau ages from veins and concretions of the second cryptomelane generation. Some of these results allow definition of a well-constrained age cluster at 46.7-48.1 Ma not observed by Vasconcelos et al. (1994). A petrographic study confirms that none of the samples analyzed in the present study contained material associated with the third generation of cryptomelane. We propose that these new results support the idea of a more or less continuous crystallization of KMn oxides, mainly constrained by local factors, rather than the model advanced by Vasconcelos et al. (1994), which suggests that each cryptomelane generation corresponds to distinct weathering events related to global climatic changes. 87Sr/ 86Sr data show large variations, clearly inherited from the 2.1 Ga parent rock of

  14. Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina.

    PubMed

    Hissler, Christophe; Stille, Peter; Krein, Andreas; Geagea, Majdi Lahd; Perrone, Thierry; Probst, Jean-Luc; Hoffmann, Lucien

    2008-11-01

    Trace metal atmospheric contamination was assessed in one of the oldest European industrial sites of steel production situated in the southern part of the Grand-Duchy of Luxembourg. Using elemental ratios as well as Pb, Sr, and Nd isotopic compositions as tracers, we found preliminary results concerning the trace metal enrichment and the chemical/isotopic signatures of the most important emission sources using the lichen Xanthoria parietina sampled at 15 sites along a SW-NE transect. The concentrations of these elements decreased with increasing distance from the historical and actual steel-work areas. The combination of the different tracers (major elements, Rare Earth Element ratios, Pb, Sr and Nd isotopes) enabled us to distinguish between three principal sources: the historical steel production (old tailings corresponding to blast-furnace residues), the present steel production (industrial sites with arc electric furnace units) and the regional background (baseline) components. Other anthropogenic sources including a waste incinerator and major roads had only weak impacts on lichen chemistry and isotopic ratios. The correlation between the Sr and Nd isotope ratios indicated that the Sr-Nd isotope systems represented useful tools to trace atmospheric emissions of factories using scrap metal for steel production.

  15. Nd, Sr and O isotopic study of the petrogenesis of two syntectonic members of the New Hampshire Plutonic Series

    NASA Astrophysics Data System (ADS)

    Lathrop, A. S.; Blum, Joel D.; Chamberlain, C. Page

    1996-07-01

    Nd, Sr and O isotope systematics were used to investigate the petrogenesis of two adjacent plutons of the Bethlehem Gneiss (BG) and the Kinsman Quartz Monzonite (KQM), exposed within the Central Maine Terrane (CMT) of New England. Both are Acadian-aged (≈413 Ma) synmetamorphic and syntectonic members of the New Hampshire Plutonic Series (NHPS). Potential source rocks analyzed for this study include Silurian and Devonian metasedimentary rocks of the CMT, and Ordovician metasedimentary rocks and granitic gneisses of the Bronson Hill Anticlinorium (BHA), which border the CMT to the west. The ɛSr(413), ɛNd(413) and δ18O values for the KQM range from 56.3 to 120.0, 2.8 to -6.4, and 7.6‰ to 12.9‰, respectively; values for the BG range from 7.4 to 144.7, 0.6 to -9.3, and 8.3‰ to 11.3‰, respectively; and values for possible source rocks range from 38.1 to 654.2, -10.7 to 5.4, and 6.2‰ to 14.1‰, respectively. Both the BG and KQM have extremely heterogeneous initial isotopic compositions consistent with mixing of multiple crustal source rocks, and neither contains a volumetrically significant (i.e., ≥10%) mantlederived component. Overlapping values of ɛNd(413), ɛSr(413) and δ18O values for both the BG and KQM samples resemble values for metasedimentary host rocks of the CMT and BHA. We observe no systematic correlations between ɛNd and ɛSr values for either the BG or the KQM. The ɛSr and δ18O values for the BG do not form any simple mixing trends, nor is there any direct correlation between the isotopic compositions of contact BG samples and their adjacent host rocks, in contrast to our observations for the KQM (Lathrop et al. 1994). We propose that the KQM and BG magmas were generated through anatexis of metasedimentary rocks from both the BHA and CMT in response to crystal thickening during the Acadian orogeny. Melting may have been initiated within CMT metasediments in response to high heat production in these mid-crustal rocks combined with

  16. Isotopic studies of the late Archean plutonic rocks of the Wind River Range, Wyoming.

    USGS Publications Warehouse

    Stuckless, J.S.; Hedge, C.E.; Worl, R.G.; Simmons, K.R.; Nkomo, I.T.; Wenner, D.B.

    1985-01-01

    Two late Archaean intrusive events were documented in the Wind River Range by isotopic studies of the Rb-Sr and U-Th-Pb systems in whole-rock samples and the U-Pb systematics for zircon. An age of approx 2630(20) m.y. for the Louis Lake batholith and apparent ages of 2504(40) to 2575(50) m.y. for the Bear Ears pluton were obtained. Post-magmatic hydrothermal events approximately Tertiary in age, lowered delta 18O values and disturbed parent-daughter relationships in most of the isotopic systems investigated. The two intrusive units apparently were derived from different protoliths. Initial isotopic ratios and petrochemistry for the Louis Lake batholith are consistent with an early Archaean trondhjemitic to tonalitic source. The protolith for the Bear Ears pluton must have been subjected to high-grade metamorphism that caused loss of Rb and U prior to magma generation. -L.C.H.

  17. Isotopically distinct reservoirs in the solar nebula: Isotope anomalies in Vigarano meteorite inclusions

    NASA Technical Reports Server (NTRS)

    Loss, R. D.; Lugmair, G. W.; Davis, A. M.; Macpherson, G. J.

    1994-01-01

    The isotopic compositions of Mg, Ca, Ti, Cr, Zn, Sr, Ba, Nd, and Sm were measured in four relatively unaltered refractory inclusions from the Vigarano carbonaceous chondrite meteorite. Three of the inclusions (USNM 1623-2, 1623-3, and 1623-8) show similar Mg, Ca, Ti, and Cr isotopic compositions to those found in most inclusions in the Allende carbonaceous chondrite. This indicates that these Vigarano inclusions sampled the same isotopic reservoirs as the majority of the Allende inclusions that isotope signatures in the latter were not significantly modified by the secondary alteration that permeates most Allende inclusions. In contrast, inclusion 1623-5 has large deficits in Mg-26, Ca-48, and Ti-50 and small but distinct Cr-54, Zn-66, Sr-84, Ba-135, Ba-137, and Sm-144 anomalies. The magnitudes of these unusual anomalies in the refractory elements are within analytical uncertainty of those found in the Allende 'FUN" inclusion C1, yet 1623-5 has a very different bulk chemical composition from C1. The fact that 1623-5 and C1 have identical isotopic anomalies yet have significantly distinct major and trace element contents provide convincing evidence for the presence of isotopically distinct reservoirs in the early solar system.

  18. Initial Isotopic Heterogeneities in ZAGAMI: Evidence of a Complex Magmatic History

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y. D.

    2006-01-01

    Interpretations of Zagami s magmatic history range from complex [1,2] to relatively simple [3]. Discordant radiometric ages led to a suggestion that the ages had been reset [4]. In an attempt to identify the mechanism, Rb-Sr isochrons were individually determined for both fine-grained and coarse-grained Zagami [5]. Ages of approx.180 Ma were obtained from both lithologies, but the initial Sr-87/Sr-86 (ISr) of the fine-grained lithology was higher by 8.6+/-0.4 e-units. Recently, a much older age of approx.4 Ga has been advocated [6]. Here, we extend our earlier investigation [5]. Rb-Sr Data: In [5] we applied identical, simplified, procedures to both lithologies to test whether a grain-size dependent process such as thermally-driven subsolidus isotopic reequilibration had caused age-resetting. Minerals were separated only by density. In the present experiment, purer mineral separates were analysed with improved techniques. Combined Rb-Sr results give ages (T) = 166+/-12 Ma and 177+/-9 Ma and I(subSr) = 0.72174+/-9 and 0.72227+/-7 for the coarse-grained and fine-grained lithologies, respectively. ISr in the fine-grained sample is thus higher than in the coarse-grained sample by 7.3+/-1.6 e-units. The results for the coarse-grained lithology are in close agreement with T = 166+/-6 Ma, ISr = 0.72157+/-8 for an adjacent sample [7] and T = 178+/-4 Ma, ISr = 0.72151+/-5 [4, adjusted] for a separate sample. Thus, fine-grained Zagami appears on average to be less typical of the bulk than coarse-grained Zagami.

  19. Isotopic complexities and the age of the Delfonte volcanic rocks, eastern Mescal Range, southeastern California: Stratigraphic and tectonic implications

    USGS Publications Warehouse

    Fleck, R.J.; Mattinson, J.M.; Busby, C.J.; Carr, M.D.; Davis, G.A.; Burchfiel, B.C.

    1994-01-01

    Combined U-Pb zircon, Rb-Sr, 40Ar/39Ar laser-fusion, and conventional K-Ar geochronology establish a late Early Cretaceous age for the Delfonte volcanic rocks. U-Pb zircon analyses define a lower intercept age of 100.5 ± 2 Ma that is interpreted as the crystallization age of the Delfonte sequence. Argon studies document both xenocrystic contamination and postemplacement Ar loss. Rb-Sr results from mafic lavas at the base of the sequence demonstrate compositionally correlated variations in initial 87Sr/86Sr ratios (Sri) from 0.706 for basalts to 0.716 for andesitic compositions. This covariation indicates substantial mixing of subcontinental lithosphere with Proterozoic upper crust. Correlations between Rb/Sr and Sri may result not only in pseudoisochrons approaching the age of the crustal component, but also in reasonable but incorrect apparent ages approaching the true age.Ages obtained in this study require that at least some of the thrust faulting in the Mescal Range-Clark Mountain portion of the foreland fold-and-thrust belt occurred later than ca. 100 Ma and was broadly contemporaneous with emplacement of the Keystone thrust plate in the Spring Mountains to the northeast. Comparison of the age and Rb-Sr systematics of ash-flow tuff boulders in the synorogenic Lavinia Wash sequence near Goodsprings, Nevada, with those of the Delfonte volcanic rocks supports a Delfonte source for the boulders. The 99 Ma age of the Lavinia Wash sequence is nearly identical to the Delfonte age, requiring rapid erosion, transport, and deposition following Delfonte volcanism.

  20. Lithospheric control on basaltic magma compositions within a long-lived monogenetic magmatic province: the Cainozoic basalts of eastern Victoria, south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Price, R. C.; Nicholls, I. A.; Maas, R.

    2012-12-01

    Basaltic volcanism, ranging in age from Late Jurassic to Holocene and extending across southern Victoria in south-eastern Australia was initiated ~ 95 Ma ago during the earliest stages of rifting associated with opening of the Tasman Sea and Southern Ocean. Volcanic activity has continued sporadically since that time with the only major hiatus being between 18 and 7 Ma (Price et al, 2003). Basaltic rocks with ages in the range 18-90 Ma occur in small lava fields scattered across eastern and south-eastern Victoria and have also been recovered from bore holes in the west of the state. These have in the past been referred to as the "Older Volcanics" to differentiate them from more volumetrically extensive and younger (< 5 Ma) lava fields to the west. Older Volcanics vary in composition from SiO2-undersaturated basanites, basalts and hawaiites through transitional basalts to hypersthene normative tholeiites. Strontium, Nd and Pb isotopic compositions lie between DM and EM 2 in Sr-Nd-Pb isotopic space. They are isotopically similar to Samoan OIB but different from intra-plate rocks of the New Zealand-Antarctic diffuse alkaline magmatic province (DAMP). Trace element compositions are generally characterised by enrichment of Cs, Ba, Rb, Th, U, Nb, K and light REE over heavy REE, Ti, Zr and Y but there is subtle diversity within and between particular lava fields. (La/Yb)n and K/Nb ratios show significant variation and some basalts are relatively enriched in Sr, P and Pb. Potassium and Rb show distinctive relative depletions in some samples and this could be indicating low degree melting with residual phlogopite. When Sr isotope data for Older Volcanics are projected onto an east-west profile they outline distinctive discontinuities that can be related to surface and subsurface structural features within the basement. This has previously been identified in the "Newer Volcanics" (< 5 Ma) province of western Victoria (Price et al., 1997, 2003). Both Proterozoic and

  1. Acigöl rhyolite field, central Anatolia (part II): geochemical and isotopic (Sr-Nd-Pb, δ18O) constraints on volcanism involving two high-silica rhyolite suites

    NASA Astrophysics Data System (ADS)

    Siebel, W.; Schmitt, A. K.; Kiemele, E.; Danišík, M.; Aydin, F.

    2011-12-01

    The Acigöl rhyolite field erupted the most recent high-silica rhyolites within the Cappadocian Volcanic Province of central Anatolia, Turkey. It comprises two sequences of domes and pyroclastic rocks with eruption ages of ~150-200 ka (eastern group) and ~20-25 ka (western group). Compositionally, the eastern rhyolite group lavas are less evolved (SiO2 = 74-76 wt%), whereas the western group has higher silica abundance (SiO2 = ~77 wt%) with extremely depleted feldspar-compatible trace elements. Within each group, compositional variability is small and 143Nd/144Nd (0.51257-0.51265) and Pb isotope compositions (206Pb/204Pb = 18.87-18.88, 207Pb/204Pb = 15.65-15.67 and 208Pb/204Pb = 38.94-38.98) are homogeneous. The western group rhyolites have δ18O(zircon) overlapping mantle values (5.7 ± 0.2‰), whereas eastern group rhyolites are enriched in δ18O by ~0.5‰, consistent with a tendency to lower ɛNd values. By contrast, western group rhyolites have markedly more radiogenic 87Sr/86Sr ratios (0.7065-0.7091) compared to those of the eastern group (0.7059-0.7065). The presence of angular granitic xenoliths and a correlation between hydration (based on loss on ignition data) and 87Sr/86Sr in the western lavas, however, indicates that Sr was added during the eruption or post-eruption alteration. Isotope constraints preclude the possibility that the rhyolite magmas formed by partial melting of any known regional crystalline basement rocks. Basalts and andesites erupted in the periphery of the Acigöl field are characterised by 87Sr/86Sr ratios between 0.7040 and 0.7053, 143Nd/144Nd = 0.51259-0.51300, 206Pb/204Pb = 18.85-18.87, 207Pb/204Pb = 15.646-15.655, 208Pb/204Pb = 38.90-38.97. The isotopic and trace element data favour an origin of the rhyolites by mixing of basaltic/andesitic magmas with minor amounts of crustal melts and followed by extensive fractional crystallization.

  2. Sudbury project (University of Muenster-Ontario Geological Survey): Sr-Nd in heterolithic breccias and gabbroic dikes

    NASA Technical Reports Server (NTRS)

    Buhl, D.; Deutsch, A.; Lakomy, R.; Brockmeyer, P.; Dressler, B.

    1992-01-01

    One major objective of our Sudbury project was to define origin and age of the huge breccia units below and above the Sudbury Igneous Complex (SIC). The heterolithic Footwall Breccia (FB) represents a part of the uplifted crater floor. It contains subrounded fragments up to several meters in size and lithic fragments with shock features (greater than 10 GPa) embedded into a fine- to medium-grained matrix. Epsilon(sub Nd)-epsilon(sub Sr) relationships point to almost exclusively parautochthonous precursor lithologies. The different textures of the matrix reflect the metamorphic history of the breccia layer; thermal annealing by the overlying hot impact melt sheet (SIC) at temperatures greater than 1000 C resulted in melting of the fine crushed material, followed by an episode of metasomatic K-feldspar growth and, finally, formation of low-grade minerals such as actinolite and chlorite. Isotope relationships in the Onaping breccias (Gray and Green Member) are much more complex. All attempts to date the breccia formation failed: Zircons are entirely derived from country rocks and lack the pronounced Pb loss caused by the heat of the slowly cooling impact melt sheet (SIC). Rb-Sr techniques using either lithic fragments of different shock stages or the thin slab method, set time limits for the apparently pervasive alkali mobility in these suevitic breccias. The data array and the intercept in the plots point to a major Rb-Sr fractionation around 1.54 Ga ago. This model age is in the same range as the age obtained for the metasomatic matrix of the FB. Rb-Sr dating of a shock event in impact-related breccias seems to be possible only if their matrix had suffered total melting by the hot melt sheet (FB) or if they contain a high fraction of impact melt (suevitic Onaping breccias), whereas the degree of shock metamorphism in rock or lithic fragments plays a minor role. In the Sudbury case, however, the impact melt in the seuvitic breccias is devitrified and recrystallized

  3. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: Geochemical and Sr isotope evidence

    USGS Publications Warehouse

    Piochi, M.; Ayuso, R.A.; de Vivo, B.; Somma, R.

    2006-01-01

    New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma

  4. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano

    NASA Astrophysics Data System (ADS)

    Bryce, Julia G.; Depaolo, Donald J.; Lassiter, John C.

    2005-09-01

    Sr, Nd, and Os isotopic measurements were made on 110 Mauna Kea lava and hyaloclastite samples from the drillcore retrieved from the second phase of the Hawaii Scientific Drilling Project (HSDP-2). The samples come from depths of 255 to 3098 meters below sea level, span an age range from 200 to about 550-600 kyr, and represent an ordered record of the lava output from Mauna Kea volcano as it drifted a distance of about 40 km over the magma-producing region of the Hawaiian hot spot. The deepest (oldest) samples represent the time when Mauna Kea was closest to the center of the melting region of the Hawaiian plume. The Sr and Os isotopic ratios in HSDP-2 lavas show only subtle isotopic shifts over the ˜400 kyr history represented by the core. Neodymium isotopes (ɛNd values) increase systematically with decreasing age from an average value of nearly +6.5 to an average value of +7.5. This small change corresponds to subtle shifts in 87Sr/86Sr and 187Os/188Os isotope ratios, with small shifts of ɛHf, a large shift in 208Pb/204Pb and 208Pb/207Pb values, and with a very large shift in He isotope ratios from R/RA values of about 7-8 to values as high as 25. When Mauna Kea was closest to the plume core, the magma source did not have primitive characteristics for Nd, Sr, Pb, Hf, and Os isotopes but did have variable amounts of "primitive" helium. The systematic shifts in Nd, Hf, Pb, and He isotopes are consistent with radial isotopic zoning within the melting region of the plume. The melting region constitutes only the innermost, highest-temperature part of the thermally anomalous plume mantle. The different ranges of values observed for each isotopic system, and comparison of Mauna Kea lavas with those of Mauna Loa, suggest that the axial region of the plume, which has a radius of ˜20 km, is a mixture of recycled subducted components and primitive lower mantle materials, recently combined during the formational stages of the plume at the base of the mantle. The

  5. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  6. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Jurassic granodiorite from the Sankuanggou intrusion, Heilongjiang Province, Northeastern China: Petrogenesis and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Deng, Ke; Li, Qiugen; Chen, Yanjing; Zhang, Cheng; Zhu, Xuefeng; Xu, Qiangwei

    2018-01-01

    Mesozoic granitoid rocks represent a volumetrically component of the Northeastern (NE) China and preserve useful information about the tectonomagmatic history of this region. The Sankuanggou intrusion associated with skarn Fe-Cu deposit in the Duobaoshan ore field within NE China primarily consists of granodiorite with minor alkali-feldspar granite and diorite, which intrudes the Ordovician Duobaoshan Formation in the region. Zircon LA-ICP-MS U-Pb geochronology and whole-rock geochemistry, and Sr-Nd-Pb-Hf isotope analysis were performed on the Sankuanggou intrusion to investigate the petrogenesis and geodynamic implications. Zircon U-Pb dating of magmatic zircons from the granodiorite rock suggests that the intrusion was emplaced in the Early Jurassic (177 ± 1 Ma). Geochemically, it belongs to the metaluminous to slightly peraluminous high-K calc-alkaline I-type granitoids with a narrow range of SiO2 concentration (65.73-67.33 wt.%), high Ba, Sr, LREE and LILE contents and low abundance of Rb, Y, HREE and HFSE. All of these studied samples have homogeneous initial isotope traits with (87Sr/86Sr)i ranging from 0.70415 to 0.70423, εNd(t) of + 3.6 to + 4.0, (206Pb/204Pb)i = 17.933-18.458, (207Pb/204Pb)i = 15.520-15.587 and (208Pb/204Pb)i = 37.523-38.087, and zircon εHf(t) values varying from + 4.8 to + 9.9. These results, combined with the previous data, demonstrate that the Sankuanggou granitoids were formed by partial melting of the pre-existing juvenile crust in an extensional regime related to the post-collisional setting following the closure of the CAOB rather than previously proposed continental arc setting related to Paleo-Pacific or the Mongol-Okhotsk subduction, although their potential influence should not be dismissed.

  7. Lu-Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: Evidence for Paleoproterozoic subduction beneath the Slave craton, Canada

    NASA Astrophysics Data System (ADS)

    Schmidberger, Stefanie S.; Simonetti, Antonio; Heaman, Larry M.; Creaser, Robert A.; Whiteford, Sean

    2007-02-01

    Lu-Hf, Sm-Nd and in-situ clinopyroxene Sr and Pb isotope systematics, and mineral major and in-situ trace element compositions were obtained for a suite of non-diamond and diamond-bearing eclogites from the Diavik kimberlites (A154; 55 Ma old), Slave craton (Canada). Temperature estimates of last equilibration in the lithosphere for the non-diamond-bearing Diavik eclogites define two groups; low-temperature (800-1050 °C) and high-temperature eclogites (1100-1300 °C). Most diamond-eclogites indicate temperatures similar to those of the high-temperature eclogites. Isotopic and major and trace element systematics for the non-diamond- and diamond-bearing eclogites indicate overlapping chemical compositions suggesting similar rock formational histories. Calculated whole rock major and trace element abundances using chemical and modal abundances for constituent minerals exhibit broad similarities with mafic cumulates from ophiolite sequences. Most importantly the calculated whole rock eclogite compositions display positive Sr and Eu anomalies, typically interpreted as the result of plagioclase accumulation in cumulate rocks of oceanic crust sequences. Initial whole rock Hf isotopic values and in-situ Sr isotope data from clinopyroxene grains provide evidence that the eclogites were derived from precursor rocks with depleted mantle isotope characteristics. These combined results support the interpretation that the eclogites from Diavik represent remnants of subducted oceanic crust. Lu-Hf isotope systematics indicate that the oceanic protolith for the eclogites formed in the Paleoproterozoic at ˜ 2.1 Ga, which is in agreement with the in-situ Pb isotope data from clinopyroxene. This result also corroborates the ˜ 2.1 Ga Lu-Hf model ages recorded by mantle zircons from eclogite found within the Jericho kimberlite in the northern Slave Province (˜ 200 km northwest of Diavik). The results from both studies indicate a link between eclogite formation and Paleoproterozoic

  8. Chemical and U-Sr isotopic variations of stream and source waters at a small catchment scale (the Strengbach case; Vosges mountains; France)

    NASA Astrophysics Data System (ADS)

    Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.

    2014-03-01

    This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern than from the southern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1 m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca/Na, Mg/Na, Sr/Na ratios but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured rock depleted in 234U) implying (234U/238U) AR < 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the over time homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs depending on the hydrological conditions

  9. The Strontium Isotope Composition of Fossil Hackberry Seed Carbonate and Tooth Enamel as a Potential Record of Soil Erosion

    NASA Astrophysics Data System (ADS)

    Cooke, M. J.; Stern, L. A.; Banner, J. L.

    2001-12-01

    The Edwards Plateau in central Texas has experienced significant soil erosion since the Last Glacial Maximum. In contrast to the thin soils that mantle the Cretaceous limestone bedrock of the modern Edwards Plateau, Quaternary fossils of burrowing mammals contained within several central Texas cave deposits suggest soil cover was much thicker in the latest Pleistocene and early Holocene. As the landscape is denuded, the Cretaceous limestone bedrock is exhumed and becomes a more important source of exchangeable Sr to the soils. Therefore, the Sr isotope composition of the soil and organisms deriving nutrients from the soil, such as plants and herbivores, should become more like the Sr isotope composition of the bedrock as erosion continues. Because the marine limestone bedrock has a lower 87Sr/86Sr value than the soil, the exchangeable soil Sr should evolve to lower 87Sr/86Sr values through time resulting in a decrease in the 87Sr/86Sr of plants and animals deriving nutrients from the soil. In order to test this hypothesis, terrestrial fossils from an extensively dated Quaternary deposit within Hall's Cave, Kerr County, Texas were analyzed by TIMS for 87Sr/86Sr. The materials analyzed include aragonitic fossil hackberry seeds and rodent tooth enamel. Results indicate an overall decrease in the 87Sr/86Sr of fossil hackberry seed aragonite and rodent tooth enamel over the last 16,000 years, with the highest rate of decrease in the 87Sr/86Sr of fossil hackberry seeds (0.70982 to 0.70841) occurring between approximately 16,000 and 10,000 Y.B.P. This decrease in the 87Sr/86Sr is interpreted as evidence for an increase in the proportion of bedrock-derived Sr to the soils, corresponding to a general decrease in soil thickness. An increase in aridity or an increase in the seasonality of precipitation during this time could account for the post-glacial soil erosion in central Texas. This study suggests that the 87Sr/86Sr of fossils may be a useful proxy for paleo soil depth

  10. Continental igneous rock composition: A major control of past global chemical weathering

    PubMed Central

    Bataille, Clément P.; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-01-01

    The composition of igneous rocks in the continental crust has changed throughout Earth’s history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of (87Sr/86Sr)seawater variations to the strontium isotopic composition (87Sr/86Sr) in igneous rocks generated through time. We demonstrate that the 87Sr/86Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the 87Sr/86Sr ratio in zircon-bearing igneous rocks. The reconstructed 87Sr/86Sr variations in igneous rocks are strongly correlated with the (87Sr/86Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on (87Sr/86Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the (87Sr/86Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the (87Sr/86Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times. PMID:28345044

  11. Effect of thermal maturation on the K-Ar, Rb-Sr and REE systematics of an organic-rich New Albany Shale as determined by hydrous pyrolysis

    USGS Publications Warehouse

    Clauer, Norbert; Chaudhuri, Sambhudas; Lewan, M.D.; Toulkeridis, T.

    2006-01-01

    Hydrous-pyrolysis experiments were conducted on an organic-rich Devonian-Mississippian shale, which was also leached by dilute HCl before and after pyrolysis, to identify and quantify the induced chemical and isotopic changes in the rock. The experiments significantly affect the organic-mineral organization, which plays an important role in natural interactions during diagenetic hydrocarbon maturation in source rocks. They produce 10.5% of volatiles and the amount of HCl leachables almost doubles from about 6% to 11%. The Rb-Sr and K-Ar data are significantly modified, but not just by removal of radiogenic 40Ar and 87Sr, as described in many studies of natural samples at similar thermal and hydrous conditions. The determining reactions relate to alteration of the organic matter marked by a significant change in the heavy REEs in the HCl leachate after pyrolysis, underlining the potential effects of acidic fluids in natural environments. Pyrolysis induces also release from organics of some Sr with a very low 87Sr/86Sr ratio, as well as part of U. Both seem to have been volatilised during the experiment, whereas other metals such as Pb, Th and part of U appear to have been transferred from soluble phases into stable (silicate?) components. Increase of the K2O and radiogenic 40Ar contents of the silicate minerals after pyrolysis is explained by removal of other elements that could only be volatilised, as the system remains strictly closed during the experiment. The observed increase in radiogenic 40Ar implies that it was not preferentially released as a volatile gas phase when escaping the altered mineral phases. It had to be re-incorporated into newly-formed soluble phases, which is opposite to the general knowledge about the behavior of Ar in supergene natural environments. Because of the strictly closed-system conditions, hydrous-pyrolysis experiments allow to better identify and even quantify the geochemical aspects of organic-inorganic interactions, such as

  12. Structural and compositional characterization of synthetic (Ca,Sr)-tremolite and (Ca,Sr)-diopside solid solutions

    NASA Astrophysics Data System (ADS)

    Gottschalk, M.; Najorka, J.; Andrut, M.

    Tremolite (CaxSr1-x)2Mg5[Si8O22/(OH)2] and diopside (CaxSr1-x)Mg[Si2O6] solid solutions have been synthesized hydrothermally in equilibrium with a 1 molar (Ca,Sr)Cl2 aqueous solution at 750°C and 200 MPa. The solid run products have been investigated by optical, electron scanning and high resolution transmission electron microscopy, electron microprobe, X-ray-powder diffraction and Fourier-transform infrared spectroscopy. The synthesized (Ca,Sr)-tremolites are up to 2000 µm long and 30 µm wide, the (Ca,Sr)-diopsides are up to 150 µm long and 20 µm wide. In most runs the tremolites and diopsides are well ordered and chain multiplicity faults are rare. Nearly pure Sr-tremolite (tr0.02Sr-tr0.98) and Sr-diopside (di0.01Sr-di0.99) have been synthesized. A continuous solid solution series, i.e. complete substitution of Sr2+ for Ca2+ on M4-sites exists for (Ca,Sr)-tremolite. Total substitution of Sr2+ for Ca2+ on M2-sites can be assumed for (Ca,Sr)-diopsides. For (Ca,Sr)-tremolites the lattice parameters a, b and β are linear functions of composition and increase with Sr-content whereas c is constant. For the diopside series all 4 lattice parameters are a linear function of composition; a, b, c increase and β decreases with rising Sr-content. The unit cell volume for tremolite increases 3.47% from 906.68 Å3 for tremolite to 938.21 Å3 for Sr-tremolite. For diopside the unit cell volume increases 4.87 % from 439.91 Å3 for diopside to 461.30 Å3 for Sr-diopside. The observed splitting of the OH stretching band in tremolite is caused by different configurations of the next nearest neighbors (multi mode behavior). Resolved single bands can be attributed to the following configurations on the M4-sites: SrSr, SrCa, CaCa and CaMg. The peak positions of these 4 absorption bands are a linear function of composition. They are shifted to lower wavenumbers with increasing Sr-content. No absorption band due to the SrMg configuration on the M4-site is observed. This indicates

  13. Hydrologic and environmental controls on uranium-series and strontium isotope ratios in a natural weathering environment

    NASA Astrophysics Data System (ADS)

    White, A. M.; Ma, L.; Moravec, B. G.; McIntosh, J. C.; Chorover, J.

    2017-12-01

    In a remote, volcanic headwater catchment of the Jemez River Basin Critical Zone Observatory (JRB-CZO) in NM, stable water isotopes and solute chemistry have shown that snowmelt infiltrates and is stored before later discharging into springs and streams via subsurface flowpaths that vary seasonally. Therefore, water-rock reactions are also expected to change with season as hydrologic flowpaths transport water, gases and solutes through different biogeochemical conditions, rock types and fracture networks. Uranium-series isotopes have been shown to be a novel tracer of water-rock reactions and source water contributions while strontium isotopes are frequently used as indicators of chemical weathering and bedrock geology. This study combines both isotopes to understand how U and Sr isotope signatures evolve through the Critical Zone (CZ). More specifically, this work examines the relationship between seasonality, water transit time (WTT), and U-series and Sr isotopes in stream and spring waters from three catchments within the JRB-CZO, as well as lithology, rock type and CZ structure in solid phase cores. Samples from ten springs with known WTTs were analyzed for U and Sr isotopes to determine the effect of WTT on the isotopic composition of natural waters. Results suggest that WTT alone cannot explain the variability of U and Sr isotopes in JRB-CZO springs. Stream samples were also collected across two water years to establish how seasonality controls surface water isotopic composition. U and Sr isotope values vary with season, consistent with a previous study from the La Jara catchment; however, this study revealed that these changes do not show a systematic pattern among the three catchments suggesting that differences in the mineralogy and structure of the deep CZ in individual catchments, and partitioning of water along deep vs surficial and fracture vs matrix flow paths, likely also control isotopic variability. The distribution of U-series and Sr isotopes in

  14. Sr and Mg Isotopes of post-glacial limestones: implications for the chemical evolution of the Neoproterozoic Ocean after snowball earth

    NASA Astrophysics Data System (ADS)

    Liu, C.; Wang, Z.; Macdonald, F. A.

    2013-12-01

    The variation of ocean chemistry after the Marinoan (~635Ma) glaciation reflects the integrated effect of changes in continental weathering, carbonate precipitation and hydrothermal process in response to the extreme climatic event. To reconstruct the contemporary seawater chemistry, we analyzed Sr and Mg isotopes of the post-glacial carbonate overlying cap dolostones in the basal Ediacaran Ol Formation of the Tsagaan Olom Group in southwestern Mongolia. We employed an incremental leaching technique by dissolving carbonates sequentially with ammonium acetate and increasing concentrations of acetic acid to separate metals from various mineral phases in the carbonate (including surface adsorbed phases, calcite and dolomite). The leachates from each step and the dissolved bulk samples passed through chromatographic columns to extract pure Mg and Sr, which were then analyzed for their isotopic compositions by MC-ICP-MS (Neptune) at Yale University. Elemental ratios (Mg/Ca and Sr/(Mg+Ca)) in each leaching steps were measured as well. The following observations were noted from these experiments. First, the Mg/Ca ratio of the leachate decreased in the first few steps, reached a plateau in the middle steps and increased in the last few steps, implying a leaching sequence of surface-adsorbed phases, calcite and dolomite. Second, the Sr/(Mg+Ca) ratios remain almost constant except in the first two steps, suggesting similar Sr concentrations in different carbonates but elevated values in surface-adsorbed phases. Third, variations of both δ26MgDSM3 and 87Sr/86Sr values of the leachates with leaching steps exhibit similar trends to Mg/Ca, indicating enrichment of 26Mg and 87Sr in dolomite. Fourth, 87Sr/86Sr values of the leachates exhibit a wider plateau than δ26MgDSM3, denoting a binary mixing of dissolved calcite and dolomite in the last few steps. Finally, higher 87Sr/86Sr ratios and δ26MgDSM3 values were observed for bulk samples than their calcite components. The 87Sr

  15. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Kieffer, Bruno; Maerschalk, Claude; Barling, Jane; de Jong, Jeroen; Williams, Gwen A.; Hanano, Diane; Pretorius, Wilma; Mattielli, Nadine; Scoates, James S.; Goolaerts, Arnaud; Friedman, Richard M.; Mahoney, J. Brian

    2006-08-01

    The Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia has undertaken a systematic analysis of the isotopic (Sr, Nd, and Pb) compositions and concentrations of a broad compositional range of U.S. Geological Survey (USGS) reference materials, including basalt (BCR-1, 2; BHVO-1, 2), andesite (AGV-1, 2), rhyolite (RGM-1, 2), syenite (STM-1, 2), granodiorite (GSP-2), and granite (G-2, 3). USGS rock reference materials are geochemically well characterized, but there is neither a systematic methodology nor a database for radiogenic isotopic compositions, even for the widely used BCR-1. This investigation represents the first comprehensive, systematic analysis of the isotopic composition and concentration of USGS reference materials and provides an important database for the isotopic community. In addition, the range of equipment at the PCIGR, including a Nu Instruments Plasma MC-ICP-MS, a Thermo Finnigan Triton TIMS, and a Thermo Finnigan Element2 HR-ICP-MS, permits an assessment and comparison of the precision and accuracy of isotopic analyses determined by both the TIMS and MC-ICP-MS methods (e.g., Nd isotopic compositions). For each of the reference materials, 5 to 10 complete replicate analyses provide coherent isotopic results, all with external precision below 30 ppm (2 SD) for Sr and Nd isotopic compositions (27 and 24 ppm for TIMS and MC-ICP-MS, respectively). Our results also show that the first- and second-generation USGS reference materials have homogeneous Sr and Nd isotopic compositions. Nd isotopic compositions by MC-ICP-MS and TIMS agree to within 15 ppm for all reference materials. Interlaboratory MC-ICP-MS comparisons show excellent agreement for Pb isotopic compositions; however, the reproducibility is not as good as for Sr and Nd. A careful, sequential leaching experiment of three first- and second-generation reference materials (BCR, BHVO, AGV) indicates that the heterogeneity in Pb isotopic compositions

  16. Mg/Ca, Sr/Ca and Ca isotope ratios in benthonic foraminifers related to test structure, mineralogy and environmental controls

    NASA Astrophysics Data System (ADS)

    Gussone, Nikolaus; Filipsson, Helena L.; Kuhnert, Henning

    2016-01-01

    We analysed Mg/Ca, Sr/Ca and Ca isotope ratios of benthonic foraminifers from sediment core tops retrieved during several research cruises in the Atlantic Ocean, in order to improve the understanding of isotope fractionation and element partitioning resulting from biomineralisation processes and changes in ambient conditions. Species include foraminifers secreting tests composed of hyaline low magnesium calcite, porcelaneous high magnesium calcite as well as aragonite. Our results demonstrate systematic isotope fractionation and element partitioning patterns specific for these foraminiferal groups. Calcium isotope fractionation is similar in porcelaneous and hyaline calcite tests and both groups demonstrate the previously described anomaly with enrichment of heavy isotopes around 3-4 °C (Gussone and Filipsson, 2010). Calcium isotope ratios of the aragonitic species Hoeglundina elegans, on the other hand, are about 0.4‰ lighter compared to the calcitic species, which is in general agreement with stronger fractionation in inorganic aragonite compared to calcite. However, the low and strongly variable Sr content suggests additional processes during test formation, and we propose that transmembrane ion transport or a precursor phase to aragonite may be involved. Porcelaneous tests, composed of high Mg calcite, incorporate higher amounts of Sr compared to hyaline low Mg calcite, in agreement with inorganic calcite systematics, but also porcelaneous tests with reduced Mg/Ca show high Sr/Ca. While calcium isotopes, Sr/Ca and Mg/Ca in benthonic foraminifers primarily appear to fractionate and partition with a dominant inorganic control, δ44/40Ca temperature and growth rate dependencies of benthonic foraminifer tests favour a dominant contribution of light Ca by transmembrane transport relative to unfractionated seawater Ca to the calcifying fluid, thus controlling the formation of foraminiferal δ44/40Ca and Sr/Ca proxy signals.

  17. Petrogenesis of mid-Miocene rhyolites from the Idaho-Oregon-Nevada region, USA: Implications from feldspar Sr and Pb isotope data

    NASA Astrophysics Data System (ADS)

    Wypych, A.; Hart, W. K.

    2012-12-01

    The Idaho-Oregon-Nevada (ION) region provides an excellent natural laboratory for studying the complex processes that form continental crust. During the Oligocene-Miocene, the ION region underwent widespread extension and volcanism with bimodal (silicic and mafic) volcanism dominating the mid-Miocene [1]. This bimodal volcanism is temporally related to the main Columbia River flood basalt activity to the north, and initiated with mafic eruptions at ~17 Ma, followed closely by silicic magmatism at ~16.5 Ma. This intimate link between mafic and silicic activity continued until ~13 Ma. The ION region is situated on a boundary between Proterozoic cratonic lithosphere to the east and Mesozoic accreted terrains to the west as defined by Sr and Nd isotopic compositions. In this region, however, the boundary is not sharp and distinctive, but rather forms a heterogeneous "transitional zone" between the two lithospheric domains. Another feature adding to the complexity of this region is the fact that it lies at the junction of two major volcanic trends: the Snake River Plain- Yellowstone (SRP-Y) progressing in time and space to the northeast and the High Lava Plains - Newberry (HPL-N) progressing to the northwest. The ION region volcanism as well as the SRP-Y and HLP-N volcanic trends is caused by mantle upwelling behind the subducting Juan de Fuca slab, voluminous mafic magma injections into the crust, melting of spatially, temporally, and compositionally heterogeneous crust, and mixing of the primitive and more evolved products [1,2,3]. An ongoing petrographic, major and trace element and Sr-Nd-Pb-Hf isotope investigation of 24 pairs of glass separates and whole rock samples from five ION silicic centers representing a west (off-craton) to east (on-craton) transect across this zone of transitional lithosphere provides evidence of open system processes involved in the production of the silicic material as well as spatial, temporal and compositional diversity within and

  18. Environmental controls on the boron and strontium isotopic composition of aragonite shell material of cultured Arctica islandica

    NASA Astrophysics Data System (ADS)

    Liu, Y.-W.; Aciego, S. M.; Wanamaker, A. D., Jr.

    2015-06-01

    Ocean acidification, the decrease in ocean pH associated with increasing atmospheric CO2, is likely to impact marine organisms, particularly those that produce carbonate skeletons or shells. Therefore, it is important to investigate how environmental factors (seawater pH, temperature and salinity) influence the chemical compositions in biogenic carbonates. In this study we report the first high-resolution strontium (87Sr / 86Sr and δ88 / 86Sr) and boron (δ11B) isotopic values in the aragonite shell of cultured Arctica islandica (A. islandica). The 87Sr / 86Sr ratios from both tank water and shell samples show ratios nearly identical to the open ocean, which suggests that the shell material reflects ambient ocean chemistry without terrestrial influence. The 84Sr-87Sr double-spike-resolved shell δ88 / 86Sr and Sr concentration data show no resolvable change throughout the culture period and reflect no theoretical kinetic mass fractionation throughout the experiment despite a temperature change of more than 15 °C. The δ11B records from the experiment show at least a 5‰ increase through the 29-week culture season (January 2010-August 2010), with low values from the beginning to week 19 and higher values thereafter. The larger range in δ11B in this experiment compared to predictions based on other carbonate organisms (2-3‰) suggests that a species-specific fractionation factor may be required. A significant correlation between the ΔpH (pHshell - pHsw) and seawater pH (pHsw) was observed (R2 = 0.35), where the pHshell is the calcification pH of the shell calculated from boron isotopic composition. This negative correlation suggests that A. islandica partly regulates the pH of the extrapallial fluid. However, this proposed mechanism only explains approximately 35% of the variance in the δ11B data. Instead, a rapid rise in δ11B of the shell material after week 19, during the summer, suggests that the boron uptake changes when a thermal threshold of > 13 °C is

  19. Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini-geodynamic implications

    USGS Publications Warehouse

    Briqueu, L.; Javoy, M.; Lancelot, J.R.; Tatsumoto, M.

    1986-01-01

    In this comparative study of variations in the isotopic compositions (Sr, Nd, O and Hf) of the calc-alkaline magmas of the largest two volcanoes, Milos and Santorini, of the Aegean arc (eastern Mediterranean) we demonstrate the complexity of the processes governing the evolution of the magmas on the scale both of the arc and of each volcano. On Santorini, the crustal contamination processes have been limited, effecting the magma gradually during its differentiation. The most differentiated lavas (rhyodacite and pumice) are also the most contaminated. On Milos, by contrast, these processes are very extensive. They are expressed in the 143Nd/144Nd vs. 87Sr/86Sr diagram as a continuous mixing curve between a mantle and a crustal end member pole defined by schists and metavolcanic rocks outcropping on these volcanoes. In contrast with Santorini, the least differentiated lavas on Milos are the most contaminated. These isotopic singularities can be correlated with the geodynamic evolution of the Aegean subduction zone, consisting of alternating tectonic phases of distension and compression. The genesis of rhyolitic magmas can be linked to the two phases of distension, and the contamination of the calc-alkaline mantle-derived magmas with the intermediate compressive phase. The isotopic characteristics of uncontaminated calc-alkaline primitive magmas of Milos and Santorini are directly comparable to those of magmas generated in subduction zones for which a contribution of subducted sediments to partial melts from the mantle is suggested, such as in the Aleutian, Sunda, and lesser Antilles island arcs. However, in spite of the importance of the sediment pile in the eastern Mediterranen oceanic crust (6-10 km), the contribution of the subducted terrigenous materials remains of limited amplitude. ?? 1986.

  20. An analytical approach to Sr isotope ratio determination in Lambrusco wines for geographical traceability purposes.

    PubMed

    Durante, Caterina; Baschieri, Carlo; Bertacchini, Lucia; Bertelli, Davide; Cocchi, Marina; Marchetti, Andrea; Manzini, Daniela; Papotti, Giulia; Sighinolfi, Simona

    2015-04-15

    Geographical origin and authenticity of food are topics of interest for both consumers and producers. Among the different indicators used for traceability studies, (87)Sr/(86)Sr isotopic ratio has provided excellent results. In this study, two analytical approaches for wine sample pre-treatment, microwave and low temperature mineralisation, were investigated to develop accurate and precise analytical method for (87)Sr/(86)Sr determination. The two procedures led to comparable results (paired t-test, with tisotopic values were compared with isotopic data coming from (i) soils of their territory of origin and (ii) wines obtained by same grape varieties cultivated in different districts. The obtained results have shown no significant variability among the different vintages of wines and a perfect agreement between the isotopic range of the soils and wines has been observed. Nevertheless, the investigated indicator was not enough powerful to discriminate between similar products. To this regard, it is worth to note that more soil samples as well as wines coming from different districts will be considered to obtain more trustworthy results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Nd and Sr isotopic variations in acidic rocks from Japan: significance of upper-mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Terakado, Yasutaka; Nakamura, Noboru

    1984-10-01

    Initial Nd and Sr isotopic ratios have been measured for Cretaceous acidic and related intermediate rocks (24 volcanic and two plutonic rocks) from the Inner Zone of Southwest Japan (IZSWJ) to investigate the genesis of acidic magmas. The initial Nd and Sr isotopic ratios for these rocks show three interesting features: (1) ɛ Nd values for acidic rocks (+2 to -9) are negatively correlated with ɛ Sr values (+10 to +90) together with those for intermediate rocks ( ɛ Nd=+3 to -8; ɛ Sr=0 to +65). (2) The ɛ Nd values for silica rich rocks (>60% SiO2) correlate with the longitude of the sample locality, decreasing from west to east in a stepwise fashion: Four areas characterized by uniform ɛ Nd values are discriminated. (3) Low silica rocks (<60% SiO2) in a certain area have distinctly different ɛ Nd values from those of the high silica rocks in the same area. These results as well as those deduced from the additional samples collected, for comparison, from other provinces in Japan suggest that the acidic rocks can be formed neither by fractional crystallization processes from more basic magmas nor by crustal assimilation processes. The isotopic variations of the acidic rocks may reflect regional isotopic heterogeneity in the lower crust, and this heterogeneity may ultimately be attributed to the regional heterogeneity of the uppermost-mantle beneath the Japanese Islands.

  2. Magnesium isotopic composition of the mantle

    NASA Astrophysics Data System (ADS)

    Teng, F.; Li, W.; Ke, S.; Marty, B.; Huang, S.; Dauphas, N.; Wu, F.; Helz, R. L.

    2009-12-01

    Studies of Mg isotopic composition of the Earth not only are important for understanding its geochemistry but also can shed light on the accretion history of the Earth as well as the evolution of the Earth-Moon system. However, to date, the Mg isotopic composition of the Earth is still poorly constrained and highly debated. There is uncertainty in the magnitude of Mg isotope fractionation at mantle temperatures and whether the Earth has a chondritic Mg isotopic composition or not. To constrain further the Mg isotopic composition of the mantle and investigate the behavior of Mg isotopes during igneous differentiation, we report >200 high-precision (δ26Mg < 0.1‰, 2SD) analyses of Mg isotopes on 1) global mid-ocean ridge basalts covering major ridge segments of the world and spanning a broad range in latitudes, chemical and radiogenic isotopic compositions; 2) ocean island basalts from Hawaiian (Koolau, Kilauea and Loihi) and French Polynesian volcanoes (Society island and Cook Austral chain); 3) olivine grains from Hawaiian volcanoes (Kilauea, Koolau and Loihi) and 4) peridotite xenoliths from Australia, China, France, Tanzania and USA. Global oceanic basalts and peridotite xenoliths have a limited (<0.2 ‰) variation in Mg isotopic composition, with an average δ26Mg = -0.25 relative to DSM3. Olivines from Hawaiian lavas have δ26Mg ranging from -0.43 to +0.03, with most having compositions identical to basalts and peridotites. Therefore, the mantle’s δ26Mg value is estimated to be ~ -0.25 ± 0.1 (2SD), different from that reported by Wiechert and Halliday (2007; δ26Mg = ~ 0) but similar to more recent studies (δ26Mg = -0.27 to -0.33) (Teng et al. 2007; Handler et al. 2009; Yang et al., 2009). Moreover, we suggest the Earth, as represented by the mantle, has a Mg isotopic composition similar to chondrites (δ26Mg = ~-0.33). The need for a model such as that of Wiechert and Halliday (2007) that involves sorting of chondrules and calcium

  3. Dissolution of barite for the analysis of strontium isotopes and other chemical and isotopic variations using aqueous sodium carbonate

    USGS Publications Warehouse

    Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.

    1985-01-01

    A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.

  4. Nd-Sr-Pb isotopic variations along the Gulf of Aden - Evidence for Afar mantle plume-continental lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Schilling, Jean-Guy; Kingsley, Richard H.; Hanan, Barry B.; McCully, Brian L.

    1992-07-01

    The rare-earth-element concentrations and Nd, Sr, and Pb isotopic compositions of the basalts in the Gulf of Aden are described and related to asthenospheric and lithospheric interactions with a thermal toruslike plume. Specific attention is given to the spatial and temporal traits of the mantle sources, and isotopic and geochemical data are used to determine the extent to which basaltic volcanism is derived from a mantle plume, the mantle lithosphere, and upwelling of the depleted atmosphere. The impingement and dispersion of a plume head is confirmed beneath the Afar region, and the geological record shows continental stretching and rifting prior to the impingement in the outskirts of the Horn of Africa. The data suggest that the isotopic variations along the Gulf of Aden/Red Sea/Ethiopia Rift system can be explained by the interaction of a thermal toruslike plume with the depleted asthenosphere and the overlying continental mantle lithosphere.

  5. Reconstruction of the Eocene Arctic Ocean Using Ichthyolith Isotope Analyses

    NASA Astrophysics Data System (ADS)

    Gleason, J. D.; Thomas, D. J.; Moore, T. C.; Waddell, L. M.; Blum, J. D.; Haley, B. A.

    2007-12-01

    Nd, Sr, O and C isotopic compositions of Eocene fish debris (teeth, bones, scales), and their reduced organic coatings, have been used to reconstruct water mass composition, water column structure, surface productivity and salinities of the Arctic Ocean Basin at Lomonosov Ridge between 55 and 44 Ma. Cleaned ichthyolith samples from IODP Expedition 302 (ACEX) record epsilon Nd values that range from -5.7 to -7.8, distinct from modern Arctic Intermediate Water (-10.5) and North Atlantic Deep Water. These Nd values may record some exchange with Pacific/Tethyan water masses, but inputs from local continental sources are more likely. Sr isotopic values are consistent with a brackish-to-fresh water surface layer (87Sr/86Sr = 0.7079-0.7087) that was poorly mixed with Eocene global seawater (0.7077-0.7078). Leaching experiments show reduced organic coatings to be more radiogenic (>0.7090) than cleaned ichthyolith phosphate. Ichthyolith Sr isotopic variations likely reflect changes in localized river input as a function of shifts in the Arctic hydrologic cycle, and 87Sr/86Sr values might be used as a proxy for surface water salinity. Model mixing calculations indicate salinities of 5 to 20 per mil, lower than estimates based on O isotopes from fish bone carbonate (16 to 26 per mil). Significant salinity drops (i.e., 55 Ma PETM and 48.5 Ma Azolla event) registered in oxygen isotopes do not show large excursions in the 87Sr/86Sr data. Carbon isotopes in fish debris record a spike in organic activity at 48.5 Ma (Azolla event), and otherwise high-productivity waters between 55 and 44 Ma. The combined Sr-Nd-O-C isotopic record is consistent with highly restricted basin-wide circulation in the Eocene, indicative of a highly stratified water column with anoxic bottom waters, a "fresh" water upper layer, and enhanced continental runoff during warm intervals until the first appearance of ice rafted debris at 45 Ma.

  6. Extreme isotopic variations in the upper mantle: evidence from Ronda

    NASA Astrophysics Data System (ADS)

    Reisberg, Laurie; Zindler, Alan

    1986-12-01

    The Ronda Ultramafic Complex in southern Spain represents a piece of the Earth's mantle which has been tectonically emplaced into the crust. Nd and Sr isotopic analyses are presented for leached, hand-picked Cr-diopside separates prepared from 15 rock and 18 river sediment samples from Ronda. These results demonstrate that within this small, contiguous body there exists the entire range of Nd isotopic compositions, and much of the range of Sr compositions, found in rocks derived from the sub-oceanic mantle. The sediment cpx samples show that the average isotopic composition of the massif becomes progressively less "depleted" moving from SW to NE along the long axis of the massif. The rock cpx samples document 143Nd/ 144Nd variations from 0.5129 to 0.5126 and 87Sr/ 86Sr variations from 0.7031 to 0.7039 within a uniform outcrop less than 10 m in extent. Thus, extreme isotopic fluctuations exist over a wide range of wavelengths. Sr and Nd isotopes are generally inversely correlated, forming a trend on a Nd-Sr diagram that sharply crosscuts that of the "mantle array". Many of the 143Nd/ 144Nd values, and all of the Sm/Nd values, from one section of the massif are lower than that SCV015SCV0 of the bulk earth, implying that this region existed, or was influenced by a component which existed, in a LREE-enriched environment for a significant period of time. Among the sediment cpxs there is a positive correlation between 143Nd/ 144Nd and 147Sm/ 144Nd. The rock cpx separates display considerably more scatter. A simple, single-stage differentiation event starting with a uniform mantle source cannot explain these results. At least one episode of mixing with a LREE-enriched component is required. If these results from Ronda are typical of the upper mantle, basalts with different isotopic compositions need not derive from spatially separated mantle sources.

  7. Petrogenesis of granodiorite in the Balong region, eastern Kunlun Orogen, China: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Huang, X.; Li, H.; Wang, Y.; Liu, Y.

    2017-12-01

    Numerous granitoid intrusions that close to the Balong region have great scientific significance to reveal tectonic evolution and geodynamic background of eastern Kunlun Orogen (EKO). Balong granodiorite (BLG) is located at the northern of the EKO. It generally emplaced into the Proterozoic to Lower Palaeozoic rocks and contains abundant mafic microgranular enclaves. LA-ICP-MS zircon U-Pb dating of the BLG gives a 206Pb/238U age of 230.7±1.9 Ma, indicating that it was emplaced in the Late Triassic. The BLG is high-K calc-alkaline series and metaluminous, with SiO2 of 59.86 61.83%, K2O+Na2O of 5.98 6.40%, CaO of 4.95 5.77% and P2O5 of 0.14% 0.18%. The granodioritic rocks are enriched in LILE (Ba, Rb, Sr), but depleted in HFSE (Nb, Ta, P, Ti), with weak negative Eu anomalies (δEu=0.70 0.82). Mineralogy and geochemistry of the rocks show an affinity to I-type granite. The BLG, having (87Sr/86Sr)i ratios of 0.70819 to 0.70832, ɛNd(t) values of -5.27 to -5.75, and zircon ɛHf(t) values ranging from -3.86 to -1.34. The whole-rock Nd isotopic model ages (1432 1471 Ma) and zircon Hf isotopic model ages (1205 1357 Ma) indicate that the BLG is generated by partial melting of lower crust (Precambrian metabasaltic basement rocks) with different degree of involvement of mantle material. Combined with regional geological data, the granodiorite was derived from dehydration melting of mafic lower crustal rocks during the subduction of the Anyemaqen ocean lithosphere at Late Permian-Triassic in a subduction setting. Basaltic magma underplating and crust-mantle mixing are main mechanisms for the origin of large-scale I-type granitoid in Balong.

  8. Mineralogy, geochemistry, and Sr-Pb isotopic geochemistry of hydrothermal massive sulfides from the 15.2°S hydrothermal field, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Li, Xiaohu; Chu, Fengyou; Li, Zhenggang; Wang, Jianqiang; Yu, Xing; Bi, Dongwei

    2018-04-01

    The 15.2°S hydrothermal field is located at 15.2°S, 13.4°W within the Mid-Atlantic Ridge (MAR) and was initially discovered during Cruise DY125-22 by the Chinese expedition during R/V Dayangyihao in 2011. Here, we provide detailed mineralogical, bulk geochemical, and Sr-Pb isotopic data for massive sulfides and basalts from the 15.2°S hydrothermal field to improve our understanding of the mineral compositions, geochemical characteristics, type of hydrothermal field, and the source of metals present at this vent site. The samples include 14 massive sulfides and a single basalt. The massive sulfides are dominated by pyrite with minor amounts of sphalerite and chalcopyrite, although a few samples also contain minor amounts of gordaite, a sulfate mineral. The sulfides have bulk compositions that contain low concentrations of Cu + Zn (mean 7.84 wt%), Co (mean 183 ppm), Ni (mean 3 ppm), and Ba (mean 16 ppm), similar to the Normal Mid-Ocean Ridge Basalt (N-MORB) type deposits along the MAR but different to the compositions of the Enriched-MORB (E-MORB) and ultramafic type deposits along this spreading ridge. Sulfides from the study area have Pb isotopic compositions (206Pb/204Pb = 18.4502-18.4538, 207Pb/204Pb = 15.4903-15.4936, 208Pb/204Pb = 37.8936-37.9176) that are similar to those of the basalt sample (206Pb/204Pb = 18.3381, 207Pb/204Pb = 15.5041, 208Pb/204Pb = 37.9411), indicating that the metals within the sulfides were derived from leaching of the surrounding basaltic rocks. The sulfides also have 87Sr/86Sr ratios (0.708200-0.709049) that are much higher than typical MAR hydrothermal fluids (0.7028-0.7046), suggesting that the hydrothermal fluids mixed with a significant amount of seawater during massive sulfide precipitation.

  9. Dating the Martian meteorite Zagami by the 87Rb-87Sr isochron method with a prototype in situ resonance ionization mass spectrometer

    PubMed Central

    Scott Anderson, F; Levine, Jonathan; Whitaker, Tom J

    2015-01-01

    RATIONALE The geologic history of the Solar System builds on an extensive record of impact flux models, crater counts, and ∼270 kg of lunar samples analyzed in terrestrial laboratories. However, estimates of impactor flux may be biased by the fact that most of the dated Apollo samples were only tenuously connected to an assumed geologic context. Moreover, uncertainties in the modeled cratering rates are significant enough to lead to estimated errors for dates on Mars and the Moon of ∼1 Ga. Given the great cost of sample return missions, combined with the need to sample multiple terrains on multiple planets, we have developed a prototype instrument that can be used for in situ dating to better constrain the age of planetary samples. METHODS We demonstrate the first use of laser ablation resonance ionization mass spectrometry for 87Rb-87Sr isochron dating of geological specimens. The demands of accuracy and precision have required us to meet challenges including regulation of the ambient temperature, measurement of appropriate backgrounds, sufficient ablation laser intensity, avoidance of the defocusing effect of the plasma created by ablation pulses, and shielding of our detector from atoms and ions of other elements. RESULTS To test whether we could meaningfully date planetary materials, we have analyzed a piece of the Martian meteorite Zagami. In each of four separate measurements we obtained 87Rb-87Sr isochron ages for Zagami consistent with its published age, and, in both of two measurements that reached completion, we obtained better than 200 Ma precision. Combining all our data into a single isochron with 581 spot analyses gives an 87Rb-87Sr age for this specimen of 360 ±90 Ma. CONCLUSIONS Our analyses of the Zagami meteorite represent the first successful application of resonance ionization mass spectrometry to isochron geochronology. Furthermore, the technique is miniaturizable for spaceflight and in situ dating on other planetary bodies. © 2014 The

  10. Geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Zhunsujihua granitoid intrusions associated with the molybdenum deposit, northern Inner Mongolia, China: implications for petrogenesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojun; Lentz, David R.; Yao, Chunliang; Liu, Rui; Yang, Zhen; Mei, Yanxiong; Fan, Xianwang; Huang, Fei; Qin, Ying; Zhang, Kun; Zhang, Zhenfei

    2018-03-01

    The Zhunsujihua porphyry molybdenum deposit, located in northern Inner Mongolia of China that belongs to Central-Asian Orogenic Belt (CAOB), is the only Mo deposit formed in the late Carboniferous in this area so far. Its mineralization is mainly restricted to the Zhunsujihua granitoid intrusions, which are composed of the main granodiorite (GD) and crosscutting, virtually coeval minor syn-ore leucogranite (LG) and diorite porphyry (DP) dykes. LA-ICP-MS zircon U-Pb dating yields crystallization ages of 300.0 ± 2.0, 299.3 ± 2.0, and 299.0 ± 2.6 Ma for the GD, LG, and DP, respectively. The major and trace element lithogeochemical data show that the GD and LG are metaluminous to weakly peraluminous, high-K calc-alkaline series with I-type granite characteristics, strongly oxidized, with low concentrations of Ba, Nb, Sr, P, and Ti and elevated K and Rb contents, indicating typical arc magmatic features. The LG is a product derived by extensive fractional crystallization of a parental magma similar to the GD as evident from the lower Eu/Eu*, Nb/Ta, Zr/Hf, and T Zr. The moderately altered DP exhibits high concentrations of K, Rb, Cs, LREE, Y, and low Sr/Y, with a positive ɛ Nd (300 Ma), which indicates a mantle or juvenile source associated with an arc setting. The Sr-Nd-Hf isotope data show low I Sr (0.70406-0.70461) and moderate ɛ Nd (300 Ma) (-0.9 to 1.5) for the GD and LG, and relatively high ɛ Hf (300 Ma) values (-3.6 to +11.2) for the GD, suggesting the magma mainly originated from the juvenile lower crust that was derived from depleted mantle, with a minor component of ancient continental crust. Lead isotope data have characteristics of a lower crust source with minor contamination by upper crustal material. Combined with previous research, the Zhunsujihua granitoid intrusions developed in an intracontinental volcanic arc (Uliastai) associated with northward subduction of the Paleo-Asian Ocean plate during late Carboniferous to early Permian; this suggests

  11. A strontium and neodymium isotopic study of Apollo 17 high-Ti mare basalts: Resolution of ages, evolution of magmas, and origins of source heterogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paces, J.B.; Neal, C.R.; Taylor, L.A.

    1991-07-01

    A combined Sr and Nd isotopic study of 15 Apollo 17 high-Ti mare basalts was undertaken to investigate geochronological and compositional differences between previously identified magma types (A, B1, B2, and C). Whole-rock and mineral separates for one of the least-evolved Type B1 basalts, 70139, yield Sm-Nd and Rb-Sr isochron ages of 3.71 {plus minus} 0.12 Ga and 3.65 {plus minus} 0.07 Ga and a Rb-Sr isochron age of 3.67 {plus minus} 0.10 Ga. Although these two ages are non-resolvable by themselves, compilation of all available geochronological data allows resolution of Type A and B1/B2 ages at high levels ofmore » confidence (> 99%). The most reliably dated samples, classified according to their geochemical type, yield weighted average ages of 3.75 {plus minus} 0.02 Ga for Type A (N = 4) and 3.69 {plus minus} 0.02 Ga for Type B1/B2 (N = 3) basalts. Insufficient geochronological data are available to place the rare, Type C basalts within this stratigraphy. The authors propose that age differences correlate with geochemical magma type, and that early magmatism was dominated by eruption of Type A basalts while later activity was dominated by effusion of Type B1 and B2 basalts.« less

  12. Isotope hydrology of the Chalk River Laboratories site, Ontario, Canada

    USGS Publications Warehouse

    Peterman, Zell; Neymark, Leonid; King-Sharp, K.J.; Gascoyne, Mel

    2016-01-01

    This paper presents results of hydrochemical and isotopic analyses of groundwater (fracture water) and porewater, and physical property and water content measurements of bedrock core at the Chalk River Laboratories (CRL) site in Ontario. Density and water contents were determined and water-loss porosity values were calculated for core samples. Average and standard deviations of density and water-loss porosity of 50 core samples from four boreholes are 2.73 ± 12 g/cc and 1.32 ± 1.24 percent. Respective median values are 2.68 and 0.83 indicating a positive skewness in the distributions. Groundwater samples from four deep boreholes were analyzed for strontium (87Sr/86Sr) and uranium (234U/238U) isotope ratios. Oxygen and hydrogen isotope analyses and selected solute concentrations determined by CRL are included for comparison. Groundwater from borehole CRG-1 in a zone between approximately +60 and −240 m elevation is relatively depleted in δ18O and δ2H perhaps reflecting a slug of water recharged during colder climatic conditions. Porewater was extracted from core samples by centrifugation and analyzed for major dissolved ions and for strontium and uranium isotopes. On average, the extracted water contains 15 times larger concentration of solutes than the groundwater. 234U/238U and correlation of 87Sr/86Sr with Rb/Sr values indicate that the porewater may be substantially older than the groundwater. Results of this study show that the Precambrian gneisses at Chalk River are similar in physical properties and hydrochemical aspects to crystalline rocks being considered for the construction of nuclear waste repositories in other regions.

  13. Zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotopic constraints on the timing and origin of Mesozoic granitoids hosting the Mo deposits in northern Xilamulun district, NE China

    NASA Astrophysics Data System (ADS)

    Shu, Qihai; Lai, Yong; Zhou, Yitao; Xu, Jiajia; Wu, Huaying

    2015-12-01

    Located in the east section of the Central Asian orogen in northeastern China, the Xilamulun district comprises several newly discovered molybdenum deposits, primarily of porphyry type and Mesozoic ages. This district is divided by the Xilamulun fault into the southern and the northern parts. In this paper, we present new zircon U-Pb dating, trace elements and Hf isotope, and/or whole rock Sr-Nd-Pb isotopic results for the host granitoids from three Mo deposits (Yangchang, Haisugou and Shabutai) in northern Xilamulun. Our aim is to constrain the age and petrogenesis of these intrusions and their implications for Mo mineralization. Zircon U-Pb LA-ICP-MS dating shows that the monzogranites from the Shabutai and Yangchang deposits formed at 138.4 ± 1.5 and 137.4 ± 2.1 Ma, respectively, which is identical to the molybdenite Re-Os ages and coeval well with the other Mo deposits in this region, thereby indicating an Early Cretaceous magmatism and Mo mineralization event. Zircon Ce/Nd ratios from the mineralized intrusions are significantly higher than the barren granites, implying that the mineralization-related magmas are characterized by higher oxygen fugacity. These mineralized intrusions share similar zircon in-situ Hf and whole rock Sr-Nd isotopic compositions, with slightly negative to positive εHf(t) ranging from - 0.8 to + 10.0, restricted εNd(t) values from - 3.7 to + 1.6 but a little variable (87Sr/86Sr)i ratios between 0.7021 and 0.7074, indicative of formation from primary magmas generated from a dominantly juvenile lower crust source derived from depleted mantle, despite diverse consequent processes (e.g., magma mixing, fractional crystallization and crustal contamination) during their evolution. The Pb isotopes (whole rock) also show a narrow range of initial compositions, with (206Pb/204Pb)i = 18.03-18.88, (207Pb/204Pb)i = 15.48-15.58 and (208Pb/204Pb)i = 37.72-38.28, in agreement with Sr-Nd-Hf isotopes reflecting the dominance of a mantle component

  14. Rb-Sr, Sm-Nd, and U-Pb geochronology of the rocks within the Khlong Marui shear zone, southern Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanapayont, Pitsanupong; Klötzli, Urs; Thöni, Martin; Grasemann, Bernhard; Edwards, Michael A.

    2012-08-01

    In southern Thailand, the Khlong Marui shear zone is dominated by a NNE-SSW striking high topographic lozenge shaped area of ca. 40 km long and 6 km wide between the Khlong Marui Fault and the Bang Kram Fault. The geology within this strike-slip zone consists of strongly deformed layers of mylonitic meta-sedimentary rocks associated with orthogneisses, mylonitic granites, and pegmatitic veins with a steeply dipping foliation. The strike-slip deformation is characterized by dextral ductile deformation under amphibolite facies and low to medium greenschist facies. In situ U-Pb ages of inherited zircon cores from all zircons in the Khlong Marui shear zone indicate that they have the same material from the Archean. Late Triassic to Late Cretaceous ages obtained for zircon outer cores of the mylonitic granite are probably related to a period of magmatic activity that was significantly influenced by the West Burma and Shan-Thai collision and the subduction along the Sunda Trench. The early dextral ductile deformation phase of the Khlong Marui shear zone in the Early Eocene suggested by U-Pb ages of zircon rims, and the later dextral transpressional deformation in the Late Eocene indicated by mica Rb-Sr ages. Rb-Sr, Sm-Nd, and U-Pb dating correlation implies that the major exhumation period of the ductile lens was in the Eocene. This period was tectonically influenced in the SE Asia region by the early India-Asia collision.

  15. The Strontium Fingerprint and Footprint: Using 87Sr/86Sr to Find the Sources and Range of Architectural Timber Acquisition of Great House Construction at Chaco Canyon, New Mexico

    NASA Astrophysics Data System (ADS)

    English, N. B.; Reynolds, A. C.; Quade, J.; Betancourt, J. L.

    2006-12-01

    We describe the spatial and temporal patterns of timber acquisition by great house builders in Chaco Canyon, New Mexico. The 87Sr/86Sr ratios from annually-dated, architectural logs in 10^{th} to 12^{th} century structures are compared to the 87Sr/86Sr of modern tree stands from the surrounding mountains. Although not a stable isotope system, the long half-life of the 87Sr parent (87Rb, t1/2 = 48.8 Ga) yields a stable isotope system on the timescales used to determine the geographic origin of ecosystem resources. The small mass difference among strontium's isotopes eliminates measurable biologic or kinetic fractionation at earth surface conditions. Strontium tracer studies, however, do require distinct end-member ratios to be feasible. Strontium isotopes, alone or in combination with other isotopes, provide a simple way to study and trace the geographic origin of ecosystem resources. Over the 150 km-wide Chaco Basin, 87Sr/86Sr ratios of modern trees range from 0.7055 to 0.7192. 87Sr/86Sr ratios from this and other studies show that during great house construction Chaco Canyon was provisioned with plant materials that came from more than 75 km away in all directions. This includes (1) corn (Zea mays) grown on the eastern flanks of the Chuska Mountains and floodplain of the San Juan River to the west and north, (2) spruce (Picea sp.) and fir (Abies sp.) architectural beams from the high crests of the Chuska and San Mateo Mountains to the west and south, and (3) ponderosa pine (Pinus ponderosa) from the low slopes of the La Platas and San Juan Mountains to the north, the San Pedro Mountains to the east, the Chuska and San Mateo Mountains and nearby mesas. There are no systematic patterns in spruce/fir or ponderosa provenance by great house (Pueblo Bonito, Chetro Ketl, Pueblo del Arroyo) or by time, suggesting the use of stockpiles from a few preferred sources from the beginning of large scale construction in or around Chaco Canyon. This is contrary to the view that

  16. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE PAGES

    Balboni, Enrica; Jones, Nina; Spano, Tyler; ...

    2016-08-31

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  17. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Enrica; Jones, Nina; Spano, Tyler

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  18. The size-isotopic evolution connection among layered mafic instrusions: Clues from a Sr-Nd isotopic study of a small complex

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Pin, Christian; Duthou, Jean-Louis; Platevoet, Bernard

    1994-05-01

    Several theoretical and experimental works have focused on the processes occuring in continental mafic magma chambers. In contrast, systematic isotopic studies of natural remnants of these latter remain scarce, although they can give fundamental constraints for theoretical studies. This is especially true if different layered complex with contrasting characteristics (e.g., different size) are compared. For this reason, we present the results of a Sr-Nd isotopic profile across a small layered mafic intrusion of Permian age exposed near Fozzano (SW Corsica). In the main zone of the layered section, decreasing Sr-87/Sr(sub i)-86 and increasing Nd-143/Nd(sub i)-144 are observed from less evolved (bottom) to more evolved (top) rocks. This peculiar pattern precludes assimilation and fractional crystallization (AFC) as a dominant mechanism in the petrogenesis of this body. Instead, we interpret this trend as reflecting the dilution of an early stage contaminated magma by several reinjections of fresh basalt in the chamber. In agreement with mineralogical and structural data, every cyclic unit is interpreted as a new magmatic input. On the basis of rough refill and fractional crystallization (RFC) calculations, the average volume for each reinjection is estimated to have been about 0.04 cu km. The cumulative volume of these injections would amount to about 75% of the total volume of the layered complex. This implies that reinjections were accompanied by an important increase of the volume of the chamber or by magma withdrawal by surface eruptions. The RFC mechanism documented within this small layered body constrasts with the isotopic pattern observed between several intrusions at the regional scale in SW Corsica, and within large continental mafic magma chambers elsewhere. In these cases the isotopic evolution is dominated by AFC processes, and there is no clear isotopic evidence for reinjections, unless major influx of fresh magma occurred. It is suggested that there is

  19. Geographical origin of Amazonian freshwater fishes fingerprinted by ⁸⁷Sr/⁸⁶Sr ratios on fish otoliths and scales.

    PubMed

    Pouilly, Marc; Point, David; Sondag, Francis; Henry, Manuel; Santos, Roberto V

    2014-08-19

    Calcified structures such as otoliths and scales grow continuously throughout the lifetime of fishes. The geochemical variations present in these biogenic structures are particularly relevant for studying fish migration and origin. In order to investigate the potential of the (87)Sr/(86)Sr ratio as a precise biogeochemical tag in Amazonian fishes, we compared this ratio between the water and fish otoliths and scales of two commercial fish species, Hoplias malabaricus and Schizodon fasciatus, from three major drainage basins of the Amazon: the Madeira, Solimões, and Tapajós rivers, displaying contrasted (87)Sr/(86)Sr ratios. A comparison of the (87)Sr/(86)Sr ratios between the otoliths and scales of the same individuals revealed similar values and were very close to the Sr isotopic composition of the local river where they were captured. This indicates, first, the absence of Sr isotopic fractionation during biological uptake and incorporation into calcified structures and, second, that scales may represent an interesting nonlethal alternative for (87)Sr/(86)Sr ratio measurements in comparison to otoliths. Considering the wide range of (87)Sr/(86)Sr variations that exist across Amazonian rivers, we used variations of (87)Sr/(86)Sr to discriminate fish origin at the basin level, as well as at the sub-basin level between the river and savannah lakes of the Beni River (Madeira basin).

  20. Barium isotopic compositions of oceanic basalts from São Miguel, Azores Archipelago

    NASA Astrophysics Data System (ADS)

    Yu, H.; Nan, X.; Huang, F.

    2016-12-01

    Oceanic island basalts (OIB) provide important information to decipher the processes of mantle convection and crustal material recycling1. OIBs from São Miguel, Azores Archipelago have extreme radiogenic isotope compositions2-3, representing an enriched component in their mantle source. However, the origins of the enriched mantle are still in debate. Previous studies proposed that the enriched component could be subducted terrigenous sediments2,4, delaminated subcontinental lithosphere5-6, recycled oceanic crust with evolved compositions (such as a subducted seamount)7, or enriched (E-MORB type) under-plated basalts which infiltrated the oceanic mantle lithosphere8. In this study, we use Ba isotopes to constrain the origin of enriched component beneath São Miguel because Ba isotopes can be significantly fractionated at the Earth's surface with low temperature environment than in the mantle with high temperature9-10. We analyzed Ba isotopes of 15 basalts from São Miguel. Although these samples have large variations of 87Sr/86Sr (0.703440-0.705996), 206Pb/204Pb (19.319-20.095) and 187Os/188Os (0.127-0.161), they have limited variation of 137Ba/134Ba (-0.003 to +0.048‰). The average 137Ba/134Ba of São Miguel basalts is 0.019±0.033‰ (n=15, 2SD), which is in the range of mantle (0.026±0.090‰, n=32, 2SD)9, indicating there is no surface material in the mantle source of São Miguel. The enriched source of São Miguel could be evolved material from the mantle. 1. Hofmann, 1997, Nature; 2. Hawkesworth et al., 1979, Nature; 3. White et al., 1979, CMP; 4. Turner et al., 1997, CG; 5. Widom et al., 1997, CG; 6. Moreira et al., 1999, EPSL; 7. Beier et al., 2007, EPSL; 8. Elliott et al., 2007, GCA; 9. Huang et al., 2015, Goldschmidt abs 1331; 10. Nan et al., 2016, Goldschmidt abs 2246.

  1. Northwest Africa 8159: An approximately 2.3 Billion Year Old Martian Olivine-Bearing Augite Basalt

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Peters, T. J.; Tappa, M. J.; Agee, C. B.

    2014-01-01

    Based on petrology, mineralogy, and bulk composition, the new NWA 8159 martian meteorite is distinct from all known samples from Mars. In particular, the augite compositional trends are unique, but most similar to those of nakhite intercumulus. Whether NWA 8159 represents a new lithology or is related to a known meteorite group remains to be determined. Sr and Nd isotopic analyses will allow comparison of source characteristics with SNC and other new ungrouped meteorites (e.g., NWA 7635). Here we report initial Rb-Sr and Sm-Nd isotopic results for NWA 8159 with the objective to determine its formation age and to potentially identify similarities and potential source affinities with other martian rocks.

  2. Multiple isotopes (O, C, Li, Sr) as tracers of CO2 and brine leakage from CO2-enhanced oil recovery activities in Permian Basin, Texas, USA

    NASA Astrophysics Data System (ADS)

    Phan, T. T.; Sharma, S.; Gardiner, J. B.; Thomas, R. B.; Stuckman, M.; Spaulding, R.; Lopano, C. L.; Hakala, A.

    2017-12-01

    Potential CO2 and brine migration or leakage into shallow groundwater is a critical issue associated with CO2 injection at both enhanced oil recovery (EOR) and carbon sequestration sites. The effectiveness of multiple isotope systems (δ18OH2O, δ13C, δ7Li, 87Sr/86Sr) in monitoring CO2 and brine leakage at a CO2-EOR site located within the Permian basin (Seminole, Texas, USA) was studied. Water samples collected from an oil producing formation (San Andres), a deep groundwater formation (Santa Rosa), and a shallow groundwater aquifer (Ogallala) over a four-year period were analyzed for elemental and isotopic compositions. The absence of any change in δ18OH2O or δ13CDIC values of water in the overlying Ogallala aquifer after CO2 injection indicates that injected CO2 did not leak into this aquifer. The range of Ogallala water δ7Li (13-17‰) overlaps the San Andres water δ7Li (13-15‰) whereas 87Sr/86Sr of Ogallala (0.70792±0.00005) significantly differs from San Andres water (0.70865±0.00003). This observation demonstrates that Sr isotopes are much more sensitive than Li isotopes in tracking brine leakage into shallow groundwater at the studied site. In contrast, deep groundwater δ7Li (21-25‰) is isotopically distinct from San Andres produced water; thus, monitoring this intermitted formation water can provide an early indication of CO2 injection-induced brine migration from the underlying oil producing formation. During water alternating with gas (WAG) operations, a significant shift towards more positive δ13CDIC values was observed in the produced water from several of the San Andres formation wells. The carbon isotope trend suggests that the 13C enriched injected CO2 and formation carbonates became the primary sources of dissolved inorganic carbon in the area surrounding the injection wells. Moreover, one-way ANOVA statistical analysis shows that the differences in δ7Li (F(1,16) = 2.09, p = 0.17) and 87Sr/86Sr (F(1,18) = 4.47, p = 0.05) values of

  3. A model that helps explain Sr-isotope disequilibrium between feldspar phenocrysts and melt in large-volume silicic magma systems

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1998-01-01

    Feldspar phenocrysts of silicic volcanic rocks are commonly in Sr-isotopic disequilibrium with groundmass. In some cases the feldspar is more radiogenic, and in others it is less radiogenic. Several explanations have been published previously, but none of these is able to accommodate both senses of disequilibrium. We present a model by which either more- or less-radiogenic feldspar (or even both within a single eruptive unit) can originate. The model requires a magma body open to interaction with biotite- and feldspar-bearing wall rock. Magma is incrementally contaminated as wall rock melts incongruently. Biotite preferentially melts first, followed by feldspar. Such melting behavior, which is supported by both field and experimental studies, first contaminates magma with a relatively radiogenic addition, followed by a less-radiogenic addition. Feldspar phenocrysts lag behind melt (groundmass of volcanic rock) in incorporating the influx of contaminant, thus resulting in Sr-isotopic disequilibrium between the crystals and melt. The sense of disequilibrium recorded in a volcanic rock depends on when eruption quenches the contamination process. This model is testable by isotopic fingerprinting of individual feldspar crystals. For a given set of geologic boundary conditions, specific core-to-rim Sr-isotopic profiles are expectable. Moreover, phenocrysts that nucleate at different times during the contamination process should record different and predictable parts of the history. Initial results of Sr-isotopic fingerprinting of sanidine phenocrysts from the Taylor Creek Rhyolite are consistent with the model. More tests of the model are desirable.Feldspar phenocrysts of silicic volcanic rocks are commonly in Sr-isotopic disequilibrium with groundmass. In some cases the feldspar is more radiogenic, and in others it is less radiogenic. Several explanations have been published previously, but none of these is able to accommodate both senses of disequilibrium. We present a

  4. Experimental evidence shows no fractionation of strontium isotopes ((87)Sr/(86)Sr) among soil, plants, and herbivores: implications for tracking wildlife and forensic science.

    PubMed

    Flockhart, D T Tyler; Kyser, T Kurt; Chipley, Don; Miller, Nathan G; Norris, D Ryan

    2015-01-01

    Strontium isotopes ((87)Sr/(86)Sr) can be useful biological markers for a wide range of forensic science applications, including wildlife tracking. However, one of the main advantages of using (87)Sr/(86)Sr values, that there is no fractionation from geological bedrock sources through the food web, also happens to be a critical assumption that has never been tested experimentally. We test this assumption by measuring (87)Sr/(86)Sr values across three trophic levels in a controlled greenhouse experiment. Adult monarch butterflies were raised on obligate larval host milkweed plants that were, in turn, grown on seven different soil types collected across Canada. We found no significant differences between (87)Sr/(86)Sr values in leachable Sr from soil minerals, organic soil, milkweed leaves, and monarch butterfly wings. Our results suggest that strontium isoscapes developed from (87)Sr/(86)Sr values in bedrock or soil may serve as a reliable biological marker in forensic science for a range of taxa and across large geographic areas.

  5. Pb-Sr-Nd-O isotopic characterization of Mesozoic rocks throughout the northern end of the Peninsular Ranges batholith: Isotopic evidence for the magmatic evolution of oceanic arc–continental margin accretion during the Late Cretaceous of southern California

    USGS Publications Warehouse

    Kistler, Ronald W.; Wooden, Joseph L.; Premo, Wayne R.; Morton, Douglas M.

    2014-01-01

    Within the duration of the U.S. Geological Survey (USGS)–based Southern California Areal Mapping Project (SCAMP), many samples from the northern Peninsular Ranges batholith were studied for their whole-rock radioisotopic systematics (rubidium-strontium [Rb-Sr], uranium-thorium-lead [U-Th-Pb], and samarium-neodymium [Sm-Nd]), as well as oxygen (O), a stable isotope. The results of three main studies are presented separately, but here we combine them (>400 analyses) to produce a very complete Pb-Sr-Nd-O isotopic profile of an arc-continent collisional zone—perhaps the most complete in the world. In addition, because many of these samples have U-Pb zircon as well as argon mineral age determinations, we have good control of the timing for Pb-Sr-Nd-O isotopic variations.The ages and isotopic variations help to delineate at least four zones across the batholith from west to east—an older western zone (126–108 Ma), a transitional zone (111–93 Ma), an eastern zone (94–91 Ma), and a much younger allochthonous thrust sheet (ca. 84 Ma), which is the upper plate of the Eastern Peninsular Ranges mylonite zone. Average initial 87Sr/86 Sr (Sri), initial 206Pb/204Pb (206 Pbi), initial 208Pb/204Pb (average 208Pbi), initial epsilon Nd (average εNdi), and δ18O signatures range from 0.704, 18.787, 38.445, +3.1, and 4.0‰–9.0‰, respectively, in the westernmost zone, to 0.7071, 19.199, 38.777, −5, and 9‰–12‰, respectively, in the easternmost zone. The older western zone is therefore the more chemically and isotopically juvenile, characterized mostly by values that are slightly displaced from a mantle array at ca. 115 Ma, and similar to some modern island-arc signatures. In contrast, the isotopic signatures in the eastern zones indicate significant amounts of crustal involvement in the magmatic plumbing of those plutons. These isotopic signatures confirm previously published results that interpreted the Peninsular Ranges batholith as a progressively

  6. Integrated elemental and Sr-Nd-Pb-Hf isotopic studies of Mesozoic mafic dykes from the eastern North China Craton: implications for the dramatic transformation of lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Liu, Shen; Feng, Caixia; Santosh, M.; Feng, Guangying; Coulson, Ian M.; Xu, Mengjing; Guo, Zhuang; Guo, Xiaolei; Peng, Hao; Feng, Qiang

    2018-02-01

    Evolution of the lithospheric mantle beneath the North China Craton (NCC) from its Precambrian cratonic architecture until Paleozoic, and the transformation to an oceanic realm during Mesozoic, with implications on the destruction of cratonic root have attracted global attention. Here we present geochemical and isotopic data on a suite of newly identified Mesozoic mafic dyke swarms from the Longwangmiao, Weijiazhuang, Mengjiazhuang, Jiayou, Huangmi, and Xiahonghe areas (Qianhuai Block) along the eastern NCC with an attempt to gain further insights on the lithospheric evolution of the region. The Longwangmiao dykes are alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 4.3) and EM1-like Sr-Nd-Pb-Hf isotopic signature ((87Sr/86Sr) i > 0.706; ε Nd (t) < -6.3, (206Pb/204Pb) i > 16.6, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.8, ε Hf (t) < -22.4). The Weijiazhuang dykes are sub-alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 3.7), and display similar EM1-like isotopic features ((87Sr/86Sr) i > 0.706; ε Nd (t) < -7.0, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -23.3). The Mengjiazhuang dykes are also sub-alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 2.4) and EM1-like isotopic features((87Sr/86Sr) i > 0.706; ε Nd (t) < -18.4, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -8.6). The Jiayou dykes also display sub-alkaline affinity with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 3.7) and EM1-like Sr-Nd-Pb-Hf isotopic features ((87Sr/86Sr) i > 0.706; ε Nd(t) < -15.3, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -18.4). The Huangmi dykes are alkaline (with Na2O + K2O ranging to more than 5.9 wt.%)) with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 9.3) and EM1-like isotopic composition ((87Sr/86Sr) i > 0.705; ε Nd (t) < -15.1, (206Pb/204Pb) i > 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36

  7. Mesoproterozoic orangeites of Karelia (Kostomuksha-Lentiira): evidence for composition of mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Kargin, Alexey; Nosova, Anna; Larionova, Yulia; Kononova, Voctoria; Borisovskiy, Sergey; Kovalchuk, Elena; Griboedova, Irina

    2014-05-01

    The 1.23-1.20 Ga old diamondiferous lamproites and orangeites (kimberlites of II group) of the Kostomuksha-Taloveys and the Lentiira-Kuhmo dyke fields intrude the Archaean crust of the Karelian craton, NE of the East European Platform. Mineral (a trend of compositional evolution of mica, presence of carbonate minerals in basis, composition of olivine) and geochemical (major elements, ratio of trace elements, primitive mantle normalized trace elements patterns) characteristics of these rocks suggest an orangeitic rather than lamproitic or lamprophyric nature. The composition of Phl-Ol orangeites suggests intensive processes of fractional crystallization for their melts. Cpx-Phl-Ol orangeites indicate higher intensity of lithospheric mantle assimilation then other orangeitic types. Phl-Carb orangeites of the Taloveys area and Cpx-Phl-Ol one of the Lentiira area are closest to primary melts. The Ol-Phl-Cpx orangeites of the Lentiira area contain three generations of unaltered olivine that vary in composition and origin: a) xenocryst derived from depleted mantle peridotite; b) orangeitic olivine phenocryst and c) and olivine like early stage crystallization of megacryst assemblage or a product of metasomatic interaction between mantle peridotite and protokimberlitic melt. Orangeites of Kostomuksha-Lentiira have low- and medium-radiogenic value of (87Sr/86Sr)1200 that range from 0.7038 to 0.7067. Phl-Carb orangeites of Taloveys have less radiogenic isotopic composition of Nd (eNd -11 ... -12) then Cpx-Phl-Ol and Phl-Ol orangeites of Kostomuksha (eNd -6.9 ... -9.4). The study of Sm-Nd and Rb-Sr isotopic systems suggests that an ancient metasomatic mantle source took part in origin of orangeites. We propose a two-steps model of origin of their source (Kargin et al., 2014): 1) The metasomatic component of mantle source (like as MARID-type veins) formed during Lapland-Kola and/or Svecofennian orogeny events (2.1-1.8 Ga ago). 2) The intrusion of orangeites is comparable by

  8. Constraints on the Composition and Evolution of the Lunar Crust from Meteorite NWA 3163

    NASA Technical Reports Server (NTRS)

    McLeod, C. L.; Brandon, A. D.; Fernandes, V. A.; Peslier, A. H.; Lapen, T. J.; Irving, A. J.

    2013-01-01

    The lunar meteorite NWA 3163 (paired with NWA 4881, 4483) is a ferroan, feldspathic granulitic breccia characterized by pigeonite, augite, olivine, maskelynite and accessory Tichromite, ilmenite and troilite. Bulk rock geochemical signatures indicate the lack of a KREEP- derived component (Eu/Eu* = 3.47), consistent with previously studied lunar granulites and anorthosites. Bulk rock chondrite-normalized signatures are however distinct from the anorthosites and granulites sampled by Apollo missions and are relatively REE-depleted. In-situ analyses of maskelynite reveal little variation in anorthite content (average An% is 96.9 +/- 1.6, 2 sigma). Olivine is relatively ferroan and exhibits very little variation in forsterite content with mean Fo% of 57.7 +/- 2.0 (2 sigma). The majority of pyroxene is low-Ca pigeonite (En57Fs33Wo10). Augite (En46Fs21Wo33) is less common, comprising approximately 10% of analyzed pyroxene. Two pyroxene thermometry on co-existing orthopyroxene and augite yield an equilibrium temperature of 1070C which is in reasonable agreement with temperatures of 1096C estimated from pigeonite compositions. Rb-Sr isotopic systematics of separated fractions yield an average measured Sr-87/Sr-87 of 0.699282+/-0.000007 (2 sigma). Sr model ages are calculated using a modern day Sr-87/Sr-86 Basaltic Achondrite Best Initial (BABI) value of 0.70475, from an initial BABI value Sr-87/Sr-86 of 0.69891 and a corresponding Rb-87/Sr-97 of 0.08716. The Sr model Thermomechanical analysis (TMA) age, which represents the time of separation of a melt from a source reservoir having chondritic evolution, is 4.56+/-0.1 Ga. A Sr model T(sub RD) age, which is a Rb depletion age and assumes no contribution from Rb in the sample in the calculation, yields 4.34+/-0.1 Ga (i.e. a minimum age). The Ar-Ar dating of paired meteorite NWA 4881 reveals an age of c. 2 Ga, likely representing the last thermal event this meteorite experienced. An older Ar-40/Ar-39 age of c. 3.5 Ga may

  9. Subduction and melting processes inferred from U-Series, Sr Nd Pb isotope, and trace element data, Bicol and Bataan arcs, Philippines

    NASA Astrophysics Data System (ADS)

    DuFrane, S. Andrew; Asmerom, Yemane; Mukasa, Samuel B.; Morris, Julie D.; Dreyer, Brian M.

    2006-07-01

    We present U-series, Sr-Nd-Pb isotope, and trace element data from the two principal volcanic chains on Luzon Island, developed over oppositely dipping subduction zones, to explore melting and mass transfer processes beneath arcs. The Bataan (western) and Bicol (eastern) arcs are currently subducting terrigenous and pelagic sediments, respectively, which have different trace element and isotopic compositions. The range of ( 230Th/ 238U) disequilibria for both arcs is 0.85-1.15; only lavas from Mt. Mayon (Bicol arc) have 230Th activity excesses. Bataan lavas have higher 87Sr/ 86Sr and lower 143Nd/ 144Nd than Bicol lavas ( 87Sr/ 86Sr = 0.7042-0.7046, 143Nd/ 144Nd = 0.51281-0.51290 vs. 87Sr/ 86Sr = 0.70371-0.70391, 143Nd/ 144Nd = 0.51295-0.51301) and both arcs show steep linear arrays towards sediment values on 207Pb/ 204Pb vs. 206Pb/ 204Pb diagrams. Analysis of incompatible element and isotopic data allows identification of a sediment component that, at least in part, was transferred as a partial melt to the mantle wedge peridotite. Between 1% and 5% sediment melt addition can explain the isotopic and trace element variability in the rocks from both arcs despite the differences in sediment supply. We therefore propose that sediment transfer to the mantle wedge is likely mechanically or thermally limited. It follows that most sediments are either accreted, reside in the sub-arc lithosphere, or are recycled into the convecting mantle. However, whole-sale sediment recycling into the upper mantle is unlikely in light of the global mid-ocean ridge basalt data. Fluid involvement is more difficult to characterize, but overall the Bicol arc appears to have more fluid influence than the Bataan arc. Rock suites from each arc can be related by a dynamic melting process that allows for 230Th ingrowth, either by dynamic or continuous flux melting, provided the initial ( 230Th/ 232Th) of the source is ˜0.6-0.7. The implication of either model is that inclined arrays on the U

  10. Magnesium isotopic composition of the Earth and chondrites

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Li, Wang-Ye; Ke, Shan; Marty, Bernard; Dauphas, Nicolas; Huang, Shichun; Wu, Fu-Yuan; Pourmand, Ali

    2010-07-01

    To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ 25Mg and ±0.07‰ on δ 26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL). Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ 25Mg = -0.13 ± 0.05 (2SD) and δ 26Mg = -0.26 ± 0.07 (2SD) for global oceanic basalts ( n = 110) and δ 25Mg = -0.13 ± 0.03 (2SD) and δ 26Mg = -0.25 ± 0.04 (2SD) for global peridotite xenoliths ( n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ 25Mg = -0.15 ± 0.04 (2SD) and δ 26Mg = -0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes. Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 ± 0.04 for δ 25Mg and -0.25 ± 0.07 for δ 26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites

  11. Ca, Sr, Mo and U isotopes evidence ocean acidification and deoxygenation during the Late Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Silva-Tamayo, Juan Carlos; Payne, Jon; Wignall, Paul; Newton, Rob; Eisenhauer, Anton; Weyer, Stenfan; Neubert, Nadja; Lau, Kim; Maher, Kate; Paytan, Adina; Lehrmann, Dan; Altiner, Demir; Yu, Meiyi

    2014-05-01

    The most catastrophic extinction event in the history of animal life occurred at the end of the Permian Period, ca. 252 Mya. Ocean acidification and global oceanic euxinia have each been proposed as causes of this biotic crisis, but the magnitude and timing of change in global ocean chemistry remains poorly constrained. Here we use multiple isotope systems - Ca, Sr, Mo and U - measured from well dated Upper Permian- Lower Triassic sedimentary sections to better constrain the magnitude and timing of change in ocean chemistry and the effects of ocean acidification and de-oxygenation through this interval. All the investigated carbonate successions (Turkey, Italy and China) exhibit decreasing δ44/40Ca compositions, from ~-1.4‰ to -2.0‰ in the interval preceding the main extinction. These values remain low during most of the Griesbachian, to finally return to -1.4‰ in the middle Dienerian. The limestone succession from southern Turkey also displays a major decrease in the δ88/86Sr values from 0.45‰ to 0.3‰ before the extinction. These values remain low during the Griesbachian and finally increase to 0.55‰ by the middle Dienerian. The paired negative anomalies on the carbonate δ44/40Ca and δ88/86Sr suggest a decrease in the carbonate precipitation and thus an episode of ocean acidification coincident with the major biotic crisis. The Mo and U isotope records also exhibit significant rapid negative anomalies at the onset of the main extinction interval, suggesting rapid expansion of anoxic and euxinic marine bottom waters during the extinction interval. The rapidity of the isotope excursions in Mo and U suggests substantially reduced residence times of these elements in seawater relative to the modern, consistent with expectations for a time of widespread anoxia. The large C-isotope variability within Lower Triassic rocks, which is similar to that of the Lower-Middle Cambrian, may reflect biologically controlled perturbations of the oceanic carbon cycle

  12. Deciphering fluid sources of hydrothermal systems: A combined Sr- and S-isotope study on barite (Schwarzwald, SW Germany)

    USGS Publications Warehouse

    Staude, S.; Gob, S.; Pfaff, K.; Strobele, F.; Premo, W.R.; Markl, G.

    2011-01-01

    Primary and secondary barites from hydrothermal mineralizations in SW Germany were investigated, for the first time, by a combination of strontium (Sr) isotope systematics (87Sr/86Sr), Sr contents and δ34S values to distinguish fluid sources and precipitation mechanisms responsible for their formation. Barite of Permian age derived its Sr solely from crystalline basement rocks, whereas all younger barite also incorporate Sr from formation waters of the overlying sediments. In fact, most of the Sr in younger barite is leached from Lower and Middle Triassic sediments. In contrast, most of the sulfur (S) of Permian, Jurassic and northern Schwarzwald Miocene barite originated from basement rocks. The S source of Upper Rhinegraben (URG)-related Paleogene barite differs depending on geographic position: for veins of the southern URG, it is the Oligocene evaporitic sequence, while central URG mineralizations derived its S from Middle Triassic evaporites. Using Sr isotopes of barite of known age combined with estimates on the Sr contents and Sr isotopic ratios of the fluids' source rocks, we were able to quantify mixing ratios of basement-derived fluids and sedimentary formation waters for the first time. These calculations show that Jurassic barite formed by mixing of 75–95% ascending basement-derived fluids with 5–25% sedimentary formation water, but that only 20–55% of the Sr was brought by the basement-derived fluid to the depositional site. Miocene barite formed by mixing of an ascending basement-derived brine (60–70%) with 30–40% sedimentary formation waters. In this case, only 8–15% of the Sr was derived from the deep brine. This fluid-mixing calculation is an example for deposits in which the fluid source is known. This method applied to a greater number of deposits formed at different times and in various geological settings may shed light on more general causes of fluid movement in the Earth's crust and on the formation of hydrothermal ore deposits.

  13. Isotopic Compositions of the Elements, 2001

    NASA Astrophysics Data System (ADS)

    Böhlke, J. K.; de Laeter, J. R.; De Bièvre, P.; Hidaka, H.; Peiser, H. S.; Rosman, K. J. R.; Taylor, P. D. P.

    2005-03-01

    The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the "best measurement" of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E) and its uncertainty U[Ar(E)] recommended by CAWIA in 2001.

  14. Geochronology and geochemistry of lithologies of the Tabuaço W-prospect area (Northern Portugal)

    NASA Astrophysics Data System (ADS)

    Cerejo, Tiago; Francisco Santos, Jose; Sousa, Joao Carlos; Castanho, Nuno; Sergio, Gabriel; Ribeiro, Sara

    2016-04-01

    This work is focussed on lithologies occurring at Quinta de São Pedro das Águias, which is located in the Tabuaço prospect (an area of 45 km2 where exploration for W-skarn deposits is taking place, in northern Portugal, close to the Douro valley). At Quinta de São Pedro das Águias several lithologies are recognized: "normal" phyllites, black phyllites (graphite-bearing), marbles, calcsilicate (s.s.) rocks and skarns (sometimes, scheelite-bearing), belonging to the Bateiras Formation, of the Douro Group (one of the two major subdivisions of the Neoproterozoic-Cambrian Dúrico-Beirão Supergroup); Paredes da Beira-Tabuaço granite; several aplitic and pegmatitic bodies. The studied area belongs to the Central Iberian Zone, a geotectonic unit of the Iberian Variscan Chain. Rb-Sr isotope analyses done in the scope of this work, provided a 316 ± 7 Ma whole-rock isochron (MSWD = 1.7; initial 87Sr/86Sr = 0.7146) for the granitoids, using the 87Rb decay constant recently recommended by IUPAC-IUGS (Villa et al., 2015). This date is interpreted here as the emplacement age of those rocks, during a late stage of the Variscan D3. The granite revealed a S-type nature, namely because it is a muscovite granite, it shows a peraluminous composition (average A/CNK = 1.28), and the Sr and Nd isotope fingerprints (-8.9 ≤ ɛNd(316Ma) ≤ -7.8; +0.7105 ≤ 87Sr/86Sr(316Ma) ≤ 0.7182) fit into the composition of metasedimentary crust. The analysed phyllites show the following isotopic compositions: -9.7 ≤ ɛNd(316Ma) ≤ -8.2; +0.7148 ≤ 87Sr/86Sr(316Ma) ≤ 0.7188. Therefore, the isotope signatures, at 316 Ma, of the granite and of the studied metapelites overlap, suggesting that the parental magma was generated by anatexis of Grupo do Douro metasediments. According to their petrographic, geochemical and isotopic features, aplites and pegmatites are viewed as extreme differentiates from the granite. São Pedro das Águias metapelites show biotite zone parageneses

  15. Characterizing multiple sources and interaction in the critical zone through Sr-isotope tracing of surface and groundwater

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Pauwels, Hélène

    2017-04-01

    The Critical Zone (CZ) is the lithosphere-atmosphere boundary where complex physical, chemical and biological processes occurs and control the transfer and storage of water and chemical elements. This is the place where life-sustaining resources are, where nutrients are being released from the rocks. Because it is the place where we are living, this is a fragile zone, a critical zone as a perturbed natural ecosystem. Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Here, we first report on Sr isotope data as well as major ions, from shallow and deep groundwater in several granite and schist areas over France with intensive agriculture covering large parts of these catchments. In three granite and Brioverian 'schist' areas of the Armorican Massif, the range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are partly related to agricultural practices and water rock interaction. The relationship between Sr- isotope and Mg/Sr ratios allow defining the different end-members, mainly rain, agricultural practice and water-rock interaction. The data from the Armorican Massif and other surface and groundwater for catchment draining silicate bedrocks (300-450Ma) like the Hérault, Seine, Moselle, Garonne, Morvan, Margeride, Cantal, Pyrénées and Vosges are scattered between at least three geochemical signatures. These include fertilizer and

  16. A young Moon-forming giant impact at 70-110 million years accompanied by late-stage mixing, core formation and degassing of the Earth.

    PubMed

    Halliday, Alex N

    2008-11-28

    New W isotope data for lunar metals demonstrate that the Moon formed late in isotopic equilibrium with the bulk silicate Earth (BSE). On this basis, lunar Sr isotope data are used to define the former composition of the Earth and hence the Rb-Sr age of the Moon, which is 4.48+/-0.02Ga, or 70-110Ma (million years) after the start of the Solar System. This age is significantly later than had been deduced from W isotopes based on model assumptions or isotopic effects now known to be cosmogenic. The Sr age is in excellent agreement with earlier estimates based on the time of lunar Pb loss and the age of the early lunar crust (4.46+/-0.04Ga). Similar ages for the BSE are recorded by xenon and lead-lead, providing evidence of catastrophic terrestrial degassing, atmospheric blow-off and significant late core formation accompanying the ca 100Ma giant impact. Agreement between the age of the Moon based on the Earth's Rb/Sr and the lead-lead age of the Moon is consistent with no major losses of moderately volatile elements from the Earth during the giant impact. The W isotopic composition of the BSE can be explained by end member models of (i) gradual accretion with a mean life of roughly 35Ma or (ii) rapid growth with a mean life of roughly 10Ma, followed by a significant hiatus prior to the giant impact. The former assumes that approximately 60 per cent of the incoming metal from impactors is added directly to the core during accretion. The latter includes complete mixing of all the impactor material into the BSE during accretion. The identical W isotopic composition of the Moon and the BSE limits the amount of material that can be added as a late veneer to the Earth after the giant impact to less than 0.3+/-0.3 per cent of ordinary chondrite or less than 0.5+/-0.6 per cent CI carbonaceous chondrite based on their known W isotopic compositions. Neither of these on their own is sufficient to explain the inventories of both refractory siderophiles such as platinum group

  17. Remarkable isotopic and trace element trends in potassic through sodic Cretaceous plutons of the Yukon-Koyukuk Basin, Alaska, and the nature of the lithosphere beneath the Koyukuk terrane

    USGS Publications Warehouse

    Arth, Joseph G.; Criss, Robert E.; Zmuda, Clara C.; Foley, Nora K.; Patton, W.W.; Miller, T.P.

    1989-01-01

    During the period from 110 to 80 m.y. ago, a 450-km-long magmatic belt was active along the northern margin of Yukon-Koyukuk basin and on eastern Seward Peninsula. The plutons intruded Upper Jurassic(?) and Lower Cretaceous volcanic arc rocks and Cretaceous sedimentary rocks in Yukon-Koyukuk basin and Proterozoic and lower Paleozoic continental rocks in Seward Peninsula. Within Yukon-Koyukuk basin, the plutons vary in composition from calc-alkalic plutons on the east to potassic and ultrapotassic alkalic plutons on the west. Plutons within Yukon-Koyukuk basin were analyzed for trace element and isotopic compositions in order to discern their origin and the nature of the underling lithosphere. Farthest to the east, the calc-alkalic rocks of Indian Mountain pluton are largely tonalite and sodic granodiorite, and have low Rb (average 82 ppm), high Sr (>600 ppm), high chondrite-normalized (cn) Ce/Yb (16–37), low δ18O (+6.5 to +7.1), low initial 87Sr/86Sr (SIR) (0.704), and high initial 143Nd/144Nd (NIR) (0.5126). These rocks resemble those modelled elsewhere as partial melts and subsequent fractionates of basaltic or gabbroic metaigneous rocks, and may be products of melting in the deeper parts of the Late Jurassic(?) and Early Cretaceous volcanic arc. Farthest to the west, the two ultrapotassic bodies of Selawik and Inland Lake are high in Cs (up to 93 ppm), Rb (up to 997 ppm), Sr, Ba, Th, and light rare earth elements, have high (Ce/Yb)cn (30, 27), moderate to low δ18O (+8.4, +6.9), high SIR (0.712, 0.710), and moderate NIR (0.5121–0.5122). These rocks resemble rocks of Australia and elsewhere that were modelled as melts of continental mantle that had been previously enriched in large cations. This mantle may be Paleozoic or older. The farthest west alkalic pluton of Selawik Hills is largely monzonite, quartz monzonite, and granite; has moderate Rb (average 284 ppm), high Sr (>600 ppm), high (Ce/Yb)cn (15–25), moderate δ18O (+8.3 to +8.6), high SIR (0.708

  18. Compositions of HIMU, EM1, and EM2 from Global Trends between Radiogenic Isotopes and Major Elements in Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Dasgupta, R.

    2008-12-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO2, TiO2, FeO, Al2O3 and K2O) and major elements ratios (CaO/Al2O3 and K2O/TiO2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'ì' = 238U/204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al2O3, FeOT, and TiO2 and low SiO2 and Al2O3. EM1 (enriched mantle 1; intermediate 87Sr/86Sr and low 206Pb/204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/86Sr and intermediate 206Pb/204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K2O concentrations and K2O/TiO2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al2O3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al2O3 vs K2O/TiO2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent- daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place

  19. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew G.; Dasgupta, Rajdeep

    2008-11-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO 2, TiO 2, FeO, Al 2O 3 and K 2O) and major elements ratios (CaO/Al 2O 3 and K 2O/TiO 2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'μ' = 238U/ 204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/ 86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al 2O 3, FeO T, and TiO 2 and low SiO 2 and Al 2O 3. EM1 (enriched mantle 1; intermediate 87Sr/ 86Sr and low 206Pb/ 204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/ 86Sr and intermediate 206Pb/ 204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K 2O concentrations and K 2O/TiO 2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al 2O 3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al 2O 3 vs K 2O/TiO 2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent-daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial

  20. H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and relations between evolution of a continental magmatic center and modifications of the lithosphere

    USGS Publications Warehouse

    Johnson, C.M.; Lipman, P.W.; Czamanske, G.K.

    1990-01-01

    Over 200 H, O, Sr, Nd, and Pb isotope analyses, in addition to geologic and petrologic constraints, document the magmatic evolution of the 28.5-19 Ma Latir volcanic field and associated intrusive rocks, which includes multiple stages of crustal assimilation, magma mixing, protracted crystallization, and open- and closed-system evolution in the upper crust. In contrast to data from younger volcanic centers in northern New Mexico, relatively low and restricted primary ??18O values (+6.4 to +7.4) rule out assimilation of supracrustal rocks enriched in 18O. Initial 87Sr/86Sr ratios (0.705 to 0.708), ??18O values (-2 to-7), and 206Pb/204Pb ratios (17.5 to 18.4) of metaluminous precaldera volcanic rocks and postcaldera plutonic rocks suggest that most Latir rocks were generated by fractional crystallization of substantial volumes of mantle-derived basaltic magma that had near-chondritic Nd isotope ratios, accompanied by assimilation of crustal material in two main stages: 1) assimilation of non-radiogenic lower crust, followed by 2) assimilation of middle and upper crust by inter-mediate-composition magmas that had been contaminated during the first stage. Magmatic evolution in the upper crust peaked with eruption of the peralkaline Amalia Tuff (???26 Ma), which evolved from metaluminous parental magmas. A third stage of late, roofward assimilation of Proterozoic rocks in the Amalia Tuff magma is indicated by trends in initial 87Sr/86Sr and 206Pb/204Pb ratios from 0.7057 to 0.7098 and 19.5 to 18.8, respectively, toward the top of the pre-eruptive magma chamber. Highly evolved postcaldera plutons are generally fine grained and are zoned in initial 87Sr/86Sr and 206Pb/204Pb ratios, varying from 0.705 to 0.709 and 17.8 to 18.6, respectively. In contrast, the coarser-grained Cabresto Lake (???25 Ma) and Rio Hondo (???21 Ma) plutons have relatively homogeneous initial 87Sr/86Sr and 206Pb/204Pb ratios of approximately 0.7053 and 17.94 and 17.55, respectively. ??18O values for

  1. DUPAL anomaly in the Sea of Japan: Pb, Nd, and Sr isotopic variations at the eastern Eurasian continental margin

    USGS Publications Warehouse

    Tatsumoto, M.; Nakamura, Y.

    1991-01-01

    Volcanic rocks from the eastern Eurasian plate margin (southwestern Japan, the Sea of Japan, and northeastern China) show enriched (EMI) component signatures. Volcanic rocks from the Ulreung and Dog Islands in the Sea of Japan show typical DUPAL anomaly characteristics with extremely high ??208/204 Pb (up to 143) and enriched Nd and Sr isotopic compositions (??{lunate}Nd = -3 to -5, 87Sr 86Sr = ~0.705). The ??208/204 Pb values are similar to those associated with the DUPAL anomaly (up to 140) in the southern hemisphere. Because the EMI characteristics of basalts from the Sea of Japan are more extreme than those of southwestern Japan and inland China basalts, we propose that old mantle lithosphere was metasomatized early (prior to the Proterozoic) with subduction-related fluids (not present subduction system) so that it has been slightly enriched in incompatible elements and has had a high Th/U for a long time. The results of this study support the idea that the old subcontinental mantle lithosphere is the source for EMI of oceanic basalts, and that EMI does not need to be stored at the core/ mantle boundary layer for a long time. Dredged samples from seamounts and knolls from the Yamato Basin Ridge in the Sea of Japan show similar isotopic characteristics to basalts from the Mariana arc, supporting the idea that the Yamato Basin Ridge is a spreading center causing separation of the northeast Japan Arc from Eurasia. ?? 1991.

  2. Geochronology and petrogenesis of Apollo 14 very high potassium mare basalts

    NASA Technical Reports Server (NTRS)

    Shih, C.-Y.; Bansal, B. M.; Wiesmann, H.; Nyquist, L. E.; Bogard, D. D.

    1986-01-01

    Rb-Sr, K-Ar, and Sm-Nd isotopic studies were undertaken for two Apollo 14 very high potassium (VHK) highly radiogenic mare basaltic clasts from breccias 14305 and 14168. Rb-Sr data indicate ages of 3.83 + or - 0.08 b.y., and 3.82 + or - 0.12 b.y. for samples 14305 and 14168 respectively, for lambda(Rb-87) = 0.0 139/b.y. Their corresponding initial Sr-87/Sr-86 ratios are nearly identical, as well as their Ar-39 to Ar-40 age spectra, and it is proposed that they were derived from the same flow. The Sm-Nd isotopic data of whole rock and mineral separates for the two VHK basalts define an internal isochrone age of 3.94 + or - 0.16 b.y. for lambda (Sm-147) = 0.00654/b.y. and an initial Nd-143/Nd-144 of 0.50673 + or - 21. The similarity in isotopic ages suggests that VHK basalts crystallized from a melt about 3.85 b.y. ago. VHK basalts show very large Rb/Sr fractionation but no significant Sm/Nd fractionation at the time of crystallization. The source material had a Rb/Sr ratio similar to those of Apollo 14 high-Al mare basalts and a nearly chrondritic Sm/Nd ratio. Basalt/granite interaction was found to be responsible for the extreme enrichments of Rb/Sr and K/La during the formation of VHK basalts. It is concluded that K, Rb-rich components of granitic wall rocks in the highland crust were selectively introduced into ascending hot high-Al mare basaltic magma upon contact.

  3. Nucleosynthetic Heterogeneity Controls Vanadium Isotope Variations in Bulk Chondrites

    NASA Technical Reports Server (NTRS)

    Nielsen, S. G.; Righter, K.; Wu, F.; Owens, J. D.; Prytulak, J.; Burton, K.; Parkinson, I.; Davis, D.

    2018-01-01

    The vanadium (V) isotope composition of early solar system materials have been hypothesized to be sensitive to high energy irradiation that originated from the young Sun. Vanadium has two isotopes with masses 50 and 51 that have (51)V/(50)V ratio of approximately 410. High energy irradiation produces (50)V from various target isotopes of Ti, Cr and Fe, which would result in light V isotope compositions (expressed as delta (51)V in per mille = 1000 x (((51)V/(50)V(sub sample)/(51)V/(50)V(sub AlfaAesar)) - 1)) relative to a presumably chondritic starting composition. Recently published V isotope data for calcium aluminium inclusions (CAIs) has revealed some very negative values relative to chondrites (by almost -4 per mille) that were indeed interpreted to reflect irradiation processes despite the fact that the studied CAIs all exhibited significant initial abundances of (10)Be, while only a few CAIs displayed light V isotope compositions. It is difficult to relate V isotope variations directly to a singular process because V only possesses two isotopes. Therefore, V isotope variations can principally be produced both mass dependent and independent processes. Mass dependent kinetic stable isotope fractionation is common in CAIs for refractory elements due to partial condensation/evaporation processes. The element strontium (Sr) has an almost identical condensation temperature to V and studies of stable Sr isotope compositions in CAIs reveal both heavy and light values relative to chondrites of several permil. These variations are similar in magnitude to those reported for V isotopes in CAIs, which suggests it is possible that some of the V isotope variation in CAIs could be due to kinetic stable isotope fractionation during condensation/evaporation processes.

  4. Dating the Martian meteorite Zagami by the ⁸⁷Rb-⁸⁷Sr isochron method with a prototype in situ resonance ionization mass spectrometer.

    PubMed

    Anderson, F Scott; Levine, Jonathan; Whitaker, Tom J

    2015-01-30

    The geologic history of the Solar System builds on an extensive record of impact flux models, crater counts, and ~270 kg of lunar samples analyzed in terrestrial laboratories. However, estimates of impactor flux may be biased by the fact that most of the dated Apollo samples were only tenuously connected to an assumed geologic context. Moreover, uncertainties in the modeled cratering rates are significant enough to lead to estimated errors for dates on Mars and the Moon of ~1 Ga. Given the great cost of sample return missions, combined with the need to sample multiple terrains on multiple planets, we have developed a prototype instrument that can be used for in situ dating to better constrain the age of planetary samples. We demonstrate the first use of laser ablation resonance ionization mass spectrometry for (87)Rb-(87)Sr isochron dating of geological specimens. The demands of accuracy and precision have required us to meet challenges including regulation of the ambient temperature, measurement of appropriate backgrounds, sufficient ablation laser intensity, avoidance of the defocusing effect of the plasma created by ablation pulses, and shielding of our detector from atoms and ions of other elements. To test whether we could meaningfully date planetary materials, we have analyzed a piece of the Martian meteorite Zagami. In each of four separate measurements we obtained (87)Rb-(87)Sr isochron ages for Zagami consistent with its published age, and, in both of two measurements that reached completion, we obtained better than 200 Ma precision. Combining all our data into a single isochron with 581 spot analyses gives an (87)Rb-(87)Sr age for this specimen of 360 ±90 Ma. Our analyses of the Zagami meteorite represent the first successful application of resonance ionization mass spectrometry to isochron geochronology. Furthermore, the technique is miniaturizable for spaceflight and in situ dating on other planetary bodies. © 2014 The Authors. Rapid Communications in

  5. Extreme Hf-Os Isotope Compositions in Hawaiian Peridotite Xenoliths: Evidence for an Ancient Recycled Lithosphere

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Lassiter, J. C.; Salters, V. J.; Sen, G.; Griselin, M.

    2004-12-01

    We report on the first combined Hf-Os isotope systematics of spinel peridotite xenoliths from the Salt Lake Crater (SLC), Pali and Kaau (PK) vents from the island of Oahu, Hawaii. These peridotites are thought to represent the Pacific oceanic lithosphere beneath Oahu, as residues of MORB-type melting at a paleo-ridge some 80-100Ma ago. Clinopyroxene mineral separates in these peridotites have very similar Nd and Sr isotope compositions with the post erosional Honolulu Volcanics (HV) lavas that bring these xenoliths to the surface. This and their relatively elevated Na and LREE contents suggest that these peridotites are not simple residues of MORB-type melting but have experience some metasomatic enrichment by the host HV lavas. However, the SLC and PK xenoliths show an extreme range in Hf isotope compositions towards highly radiogenic values (ɛ Hf= 7-80), at nearly constant Nd isotope compositions (ɛ Nd= 7-10), unlike any OIB or MORB basalt. Furthermore, these Oahu peridotites show a bimodal distribution in their bulk rock 187Os/186Os ratios: the PK peridotites have similar ratios to the abyssal peridotites (0.130-0.1238), while the SLC peridotites have highly subchondritic ratios (0.1237-0.1134) that yield 500Ma to 2Ga Re-depletion ages. Hf-Os isotopes show a broad negative correlation whereby the samples with the most radiogenic 176Hf/177Hf have the most unradiogenic 187Os/186Os ratios. Based on their combined Hf-Os-Nd isotope and major element compositions, the PK peridotites can be interpreted as fragments of the Hawaiian lithosphere, residue of MORB melting 80-100Ma ago, that have been variably metasomatized by the host HV lavas. In contrast, the extreme Hf-Os isotope compositions of the SLC peridotites suggest that they cannot be the source nor residue of any kind of Hawaiian lavas, and that Hf and Os isotopes survived the metasomatism or melt-rock reaction that has overprinted the Nd and Sr isotope compositions of these peridotites. The ancient (>1Ga

  6. Uranium-Lead Zircon Ages and Sr, Nd, and Pb Isotope Geochemistry of Selected Plutonic Rocks from Western Idaho

    USGS Publications Warehouse

    Unruh, Daniel M.; Lund, Karen; Kuntz, Mel A.; Snee, Lawrence W.

    2008-01-01

    Across the Salmon River suture in western Idaho, where allochthonous Permian to Cretaceous oceanic rocks are juxtaposed against Proterozoic North American rocks, a wide variety of plutonic rocks are exposed. Available data indicate much variation in composition, source, and structural state of these plutons. The plutonic rocks were long described as the western border zone of the Cretaceous Idaho batholith but limited pre-existing age data indicate more complicated origins. Because the affinity and age of the plutonic rocks cannot be reliably determined from field relations, TIMS U-Pb dating in conjunction with Sr, Nd, and Pb isotopic studies of selected plutons across the suture in western Idaho were undertaken. The data indicate three general groups of plutons including (1) those that intruded the island arc terranes during the Triassic and Jurassic, those that intruded near the western edge of oceanic rocks along the suture in the Early Cretaceous, and the plutons of the Idaho batholith that intruded Proterozoic North American rocks in the Late Cretaceous. Plutons that intruded Proterozoic North American rocks commonly include xenocrystic zircons and in several cases, ages could not be determined. The least radiogenic Sr and most radiogenic Nd are found among the Blue Mountains superterrane island arc samples. Suture-zone plutons have isotopic characteristics that span the range between Idaho batholith and island arc samples but mostly follow island arc signatures. Plutons of the Idaho batholith have the most radiogenic initial Pb and Sr ratios and the least radiogenic Nd of the samples analyzed.

  7. Sr, Nd, Pb and Hf Isotopic Compositions of Late Cenozoic Alkali Basalts in South Korea: Evidence for Mixing Between the Two Dominant Asthenospheric Mantle Domains beneath East Asia

    NASA Astrophysics Data System (ADS)

    Choi, S.; Mukasa, S. B.; Kwon, S.; Andronikov, A. V.

    2004-12-01

    We determined the Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic basaltic rocks from six lava-field provinces in South Korea, including Baengnyeong Island, Jogokni, Ganseong area, Jeju Island, Ulleung Island and Dog Island, in order to understand the nature of the mantle source. The basalts have OIB-like trace element abundance patterns, and also contain mantle-derived xenoliths. Available isotope data of late Cenozoic basalts from East Asia, along with ours, show that the mantle source has a DMM-EM1 array for northeast China and a DMM-EM2 array for Southeast Asia. We note that the basalts falling on an array between DMM and an intermediate end member between EM1 and EM2, are located between the two large-scale isotopic provinces, i.e., around the eastern part of South Korea. The most intriguing observation on the isotopic correlation diagrams is spatial variation from predominantly EM2 signatures in the basaltic lavas toward increasingly important addition of EM1, starting from Jeju Island to Ulleung and Dog Islands to Ganseong area, and to Baengnyeong Island. This is without any corresponding changes in the basement and the lithospheric mantle beneath the region. These observations suggest that the asthenospheric mantle source is dominant for the Cenozoic intraplate volcanism in East Asia, which is characterized by two distinct, large-scale domains. Previous studies on East Asian Cenozoic volcanic rocks have invoked origins by either plume activity or decompressional melting in a rift environment. On the basis of our new trace element and isotopic compositions which have OIB-like characteristics, we prefer a plume origin for these lavas. However, because tomographic images do not show distinct thermal anomaly that would be interpreted as a plume, we suggest that the magmatism might be the product of small, difficult to image multiple plumes that tapped the shallow part of the asthenosphere (probably the transition zone in the upper mantle).

  8. Evaluation strategies and uncertainty calculation of isotope amount ratios measured by MC ICP-MS on the example of Sr.

    PubMed

    Horsky, Monika; Irrgeher, Johanna; Prohaska, Thomas

    2016-01-01

    This paper critically reviews the state-of-the-art of isotope amount ratio measurements by solution-based multi-collector inductively coupled plasma mass spectrometry (MC ICP-MS) and presents guidelines for corresponding data reduction strategies and uncertainty assessments based on the example of n((87)Sr)/n((86)Sr) isotope ratios. This ratio shows variation attributable to natural radiogenic processes and mass-dependent fractionation. The applied calibration strategies can display these differences. In addition, a proper statement of uncertainty of measurement, including all relevant influence quantities, is a metrological prerequisite. A detailed instructive procedure for the calculation of combined uncertainties is presented for Sr isotope amount ratios using three different strategies of correction for instrumental isotopic fractionation (IIF): traditional internal correction, standard-sample bracketing, and a combination of both, using Zr as internal standard. Uncertainties are quantified by means of a Kragten spreadsheet approach, including the consideration of correlations between individual input parameters to the model equation. The resulting uncertainties are compared with uncertainties obtained from the partial derivatives approach and Monte Carlo propagation of distributions. We obtain relative expanded uncertainties (U rel; k = 2) of n((87)Sr)/n((86)Sr) of < 0.03 %, when normalization values are not propagated. A comprehensive propagation, including certified values and the internal normalization ratio in nature, increases relative expanded uncertainties by about factor two and the correction for IIF becomes the major contributor.

  9. Application of {sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O and {delta}{sup 13}C Isotopes to diagenesis, correlation and connectivity of a fractured chalk reservoir, the Sidi El Kilani Field Tunisia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mearns, E.W.; Mcbride, J.J.; Bramwell, M.

    1995-08-01

    Strontium Stratigraphy Analysis of the primary matrix chalk of the Abiod Formation reservoir in the Sidi El Kilani Field indicate a Campanian to Maastrichtian age (Upper Cretaceous). A resolution of {+-}1Ma has been achieved and results suggest that there are no major stratigraphic breaks in the studied sequences. Sr-O-C isotope data from early fracture-filling calcite cements suggest they may have formed by the redistribution of CaCO{sub 3} from underlying carbonate sequences and may have precipitated at temperatures in the region of 35-55{degrees}C. The {sup 87}Sr/{sup 86}Sr isotope ratios of formation waters determined by residual salt analysis (SrRSA) suggest that themore » chemical evolution of waters during reservoir filling was controlled by the influx of basinal waters as opposed to in situ water-rock interaction. Late, fracture-filling dolomite and barite cements have Sr-O-C isotope characteristics consistent with precipitation from these migrating basinal fluids at temperatures similar to current reservoir conditions (70-75{degrees}C). Sr RSA results suggest that the reservoir section in two of the wells may have been in direct lateral communication at the time of oil emplacement. These wells however are separated by a strike-slip fault. The SrRSA results therefore suggest that the fault is a partial barrier which has restricted pressure equilibration in the relatively short timescale of oil production, but which may have allowed homogenization of Sr isotope ratios in formation water.« less

  10. Hot cell purification of strontium-82, 85 and other isotopes from proton irradiated molybdenum

    DOEpatents

    Bentley, G.E.; Barnes, J.W.

    1979-10-17

    A process suitable for producing curie quantities of quite pure Sr-82,85 is given. After a Mo target is irradiated with energetic protons having energies greater than about 200 MeV, thus producing a large number of radioactive species, the particular species of Sr-82,85 are substantially separated from the other products by a 6-step process. The process comprises dissolution of the target in H/sub 2/O/sub 2/, followed by use of several ion exchange resins, extraction with an organophosphorus compound, and several adjustments of pH values. Other embodiments include processes for producing relatively pure long-lived Rb isotopes, Y-88, and Zr-88.

  11. Hot cell purification of strontium-82, 85 and other isotopes from proton irradiated molybdenum

    DOEpatents

    Bentley, Glenn E.; Barnes, John W.

    1981-01-01

    A process suitable for producing curie quantities of quite pure Sr-82,85 is given. After a Mo target is irradiated with energetic protons having energies greater than about 200 MeV, thus producing a large number of radioactive species, the particular species of Sr-82,85 are substantially separated from the other products by a 6-step process. The process comprises dissolution of the target in H.sub.2 O.sub.2, followed by use of several ion exchange resins, extraction with an organophosphorus compound, and several adjustments of pH values. Other embodiments include processes for producing relatively pure long-lived Rb isotopes, Y-88, and Zr-88.

  12. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China

    NASA Astrophysics Data System (ADS)

    Gilder, Stuart A.; Gill, James; Coe, Robert S.; Zhao, Xixi; Liu, Zhongwei; Wang, Genxian; Yuan, Kuirong; Liu, Wenlong; Kuang, Guodun; Wu, Haoruo

    1996-07-01

    In order to better constrain the paleogeographic evolution of south China we measured Sm-Nd and Rb-Sr isotopic compositions for 23 Mesozoic granites that crop out throughout the area. Tightly grouped neodymium depleted mantle model ages (1.4 ± 0.3 Ga) suggest the region is underlain by relatively homogeneous Proterozoic crust and fail to define crustal provinces. Neither the isotopic nor geologic data suggest that a Mesozoic suture exists. However, granites possessing anomalously high Sm (>8 ppm) and Nd (>45 ppm) concentrations, relatively high initial epsilon neodymium (-4 to -8), and high but variable initial 87Sr/86Sr (0.759 to 0.713) form a northeast trending zone that coincides with two prominent Mesozoic basins. Southeast of the zone lie the majority of Mesozoic intrusives and Upper Triassic to Lower Cretaceous extensional basins found in south China. Mesozoic paleomagnetic poles are well clustered northwest of the zone. Pre-Cretaceous poles southeast of it are discordant with respect to those from the northwest. The only recognized tectonostratigraphic terrane in south China lies southeast of the zone. The terrane is bordered by a northeast trending sinistral fault that was active in the Mesozoic. Other faults in south China have similar attitudes, ages, and sense of shear. Together, the observations suggest that the Mesozoic tectonic regime in south China consisted of strike-slip activity plus concomitant rifting as terranes or fragments of similar crust were transported north along sinistral faults. The zone, defined by the granites enriched in Nd and Sm, demarcates displaced terranes to the southeast from relatively stable land to the northwest.

  13. Ca and Sr Isotope Sytematics in Mid-Ocean Ridge Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Pester, N. J.; Syverson, D. D.; Higgins, J. A.; Seyfried, W. E., Jr.

    2016-12-01

    We report a comprehensive suite of Ca isotopic data (δ44/40Ca) from mid-ocean ridge hydrothermal fluids, standardized relative to seawater. Samples were acquired from 7 different vent fields on the EPR, JdFR and MAR during expeditions between 1999 and 2014. All endmember hydrothermal fluids (within analytical uncertainty) reflect an entirely MORB-dominated signal (-1.0 to -1.2 ‰). This rather uniform signal, despite variable fluid chemistries and a mixture of mafic to ultramafic host lithologies, is somewhat surprising given the noteworthy Ca concentrations in both the hydrothermal fluids and precursor seawater. One explanation for this observation involves the change in anhydrite (CaSO4) saturation with increasing temperature, and the molal concentration ratio of [Mg]:[Ca]:[SO4] in modern seawater of 53:10:28. The near quantitative removal of seawater Mg to silicate alteration phases, favorable at all temperatures, is largely charge balanced by exchange for basaltic Ca, and this process alone can account for the majority of the rock dominated δ44/40Casw signal. That these values are equivalent to MORB, however, suggests a high proportion of this Mg-Ca exchange occurs after seawater Ca precipitates as anhydrite in lower temperature (recharge) regimes of the hydrothermal system, aided by the low [Ca]/[SO4]. 87/86Sr ratios of hydrothermal fluids exhibit a seawater signal of 20 to 30% and Sr is therefore not quantitatively removed during incipient anhydrite formation. Strontium mobility in hydrothermal systems is still poorly understood, but the offset between the Ca and Sr isotopic signatures is consistent with near-equilibrium partitioning of Sr into anhydrite observed in recent experiments. Such observations from modern MOR systems place important constraints on the role of hydrothermal fluxes in paleo-seawater evolution, such as feedbacks involving significant variability in [Mg]:[Ca]:[SO4] ratios of seawater suggested over much of the Phanerozoic.

  14. Problems of geological and isotopic age of the Okhotsk-Chukotsk Volcanogenic Belt (OCVB)

    NASA Astrophysics Data System (ADS)

    Belyi, V. F.

    2008-12-01

    The working stratigraphic chart accepted for the Okhotsk-Chukotsk Volcanogenic Belt (OCVB) at the 3rd Interdepartmental Regional Stratigraphic Conference (IRSC) integrated data of the medium-scale geological survey, the established succession of endemic floras of the developing volcanic highland, and the results of palynological and magnetostratigraphic study ( Resolutions of the 3rd…, 2003). The OCVB was formed during the middle Albian-Santonian (and initial Campanian probably). Sequences of the belt are attributed to the Buor-Kemyus (early-middle Albian), Arman (late Albian), Amka (Cenomanian), and Arkagala (Turonian-Santonian) phytostratigraphic horizons. The lack of data on relations between the horizons and fauna-bearing marine deposits is a serious obstacle for correlation of regional subdivisions with the general stratigraphic scale. The problem can be solved using geological methods of palynological and tephrochronological research. Isotopic ages of the OCVB rocks were determined applying the K-Ar and Rb-Sr isotopic dating in the early period and the Ar-Ar and U-Pb (SHRIMP) methods in recent years. The subdivision scheme of the OCVB volcanics based on the K-Ar relict and Rb-Sr isochron dates, which is accepted as addendum to the working stratigraphic chart, confirms in general the geological inferences concerning the OCVB age. The Ar-Ar and U-Pb dates (less than 100 determinations in total) obtained for the Okhotsk, Central Chukotsk, and Anadyr sectors of the OCVB external zone provoked opinions that the belt age should be radically revised. Analysis of new isotopic dates showed that they contradict in variable extent to geological data on the Okhotsk and Central Chukotsk sectors, whereas there is no significant discordance between isotopic and geological data on the Anadyr sector. Consequently, it can be empirically concluded that geological factors influenced the isotopic systems (“clock”). There is also a considerable discordance between the Ar

  15. The Sr, Nd and O isotopic studies of the 1991 1995 eruption at Unzen, Japan

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Hwa; Nakada, Setsuya; Shieh, Yuch-Ning; DePaolo, Donald J.

    1999-04-01

    The magma generation at Unzen volcano may be considered as the product of crustal material mixed with mantle magma accompanied by fractional crystallization (AFC). The magma in the Unzen volcano is estimated to consist of about 50-80% of residual magma ( F) and about 30-70% assimilated crustal material ( A) relative to the original magma. Concerning the 1991-1995 eruption, it is estimated that the magma formed as the result of mixing of about 50-60% crustal material and about 55-65% of residual magma. An alternative magma eruption model for the 1991-1995 eruption is proposed here. In the early stage, the isotopic characteristics of 1991 eruption are defined by AFC process in the deeper magma chamber. Later, the magma ascended through the conduit and quiescently stayed for a long time in a shallow reservoir before eruption. The minerals continuously crystallized as phenocrysts especially at the chilled top and outer margin in the shallow chamber. The crystallized phenocryst mush was reworked into the central part of the magma chamber by means of magma convection and rapid magma ascent. Therefore, the reaction between phenocrysts and melt occurs only in internal chemical disequilibrium in the magma chamber. In contrast, the isotopic compositions of the original magma shall be little influenced by the above processes throughout its eruptive history. The 1991-1995 eruptive rocks of the Unzen volcano show their characteristics in Sr and Nd isotopic values independent of their two previous eruptions. However, the isotopic values of early eruptive product could represent the original magma value. This result also supports the previous work of Chen et al. (1993) [Chen, C.H., DePaolo, D.J., Nakada, S., Shieh, Y.N., 1993. Relationship between eruption volume and neodymium isotopic composition at Unzen volcano. Nature 362, 831-834], that suggested the ɛNd of early or precursory eruptive products could be a qualitative indicator of the maximum size of a continuing or

  16. Isotopic compositions of the elements, 2001

    USGS Publications Warehouse

    Böhlke, J.K.; De Laeter, J. R.; De Bievre, P.; Hidaka, H.; Peiser, H.S.; Rosman, K.J.R.; Taylor, P.D.P.

    2005-01-01

    The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the “best measurement” of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E)">Ar(E)Ar(E) and its uncertainty U[Ar(E)]">U[Ar(E)]U[Ar(E)] recommended by CAWIA in 2001.

  17. Zinc isotope systematics of subduction-zone magmas

    NASA Astrophysics Data System (ADS)

    Huang, J.; Zhang, X. C.; Huang, F.; Yu, H.

    2016-12-01

    Subduction-zone magmas are generated by partial melting of mantle wedge triggered by addition of fluids derived from subducted hydrothermally altered oceanic lithosphere. Source of the fluids may be sediment, altered oceanic crust and serpentinized peridotite/serpentinite. Knowledge of the exact fluid source can facilitate our better understanding of the mechanism of fluid flux, element cycling and crust-mantle interaction in subduction zones. Zinc isotopes have the potential to place a constraint on this issue, because (1) Zn has an intermediate mobility during fluid-rock interaction and is enriched in subduction-zone fluids (e.g., Li et al., 2013); (2) sediment, altered oceanic crust and serpentinite have distinct Zn isotopic compositions (Pons et al., 2011); and (3) the mantle has a homogeneous Zn isotope composition (δ66Zn = 0.28 ± 0.05‰, Chen et al., 2013). Thus, the Zn isotopic composition of subduction-zone magmas reflects the characteristics of slab-derived fluids of different sources. Here, high-precision Zn isotope analyses were conducted on igneous rocks from arcs of Central America, Kamchatka, South Lesser Antilles, and Aleutian. One rhyolite with 75.1 wt.% SiO2 and 0.2 wt.% FeOT displays the heaviest δ66Zn value of 0.394‰ (relative to JMC Lyon) that probably results from the crystallization of Fe-Ti oxides during the late-stage differentiation. The rest of rocks have Zn isotopic compositions (0.161 to 0.339‰) similar to or lighter than those of the mantle. In an individual arc, the δ66Zn values of rocks show broad negative correlations with Ba/Th and 87Sr/86Sr ratios, suggesting that the slab-derived fluids should have lighter δ66Zn as well as higher Ba/Th and 87Sr/86Sr ratios relative to the mantle. These features are in accordance with those of serpentinites. Thus, addition of serpentinite-derived 66Zn-depleted fluids into the mantle wedge can explain the declined δ66Zn of subduction-zone magmas. ReferenceChen et al. (2013) EPSL 369

  18. Chronologic implications for slow cooling of troctolite 76535 and temporal relationships between the Mg-suite and the ferroan anorthosite suite

    NASA Astrophysics Data System (ADS)

    Borg, Lars E.; Connelly, James N.; Cassata, William S.; Gaffney, Amy M.; Bizzarro, Martin

    2017-03-01

    Ages have been obtained using the 87Rb-87Sr, 147Sm-143Nd, and 146Sm-142Nd isotopic systems for one of the most slowly cooled lunar rocks, Apollo 17 Mg-suite troctolite 76535. The 147Sm-143Nd, 146Sm-142Nd, and Rb-Sr ages derived from plagioclase, olivine, and pyroxene mineral isochrons yield concordant ages of 4307 ± 11 Ma, 4299+29/-35 Ma, and 4279 ± 52 Ma, respectively. These ages are slightly younger than the age determined on ferroan anorthosite suite (FAS) rock 60025 and are therefore consistent with the traditional magma ocean model of lunar differentiation in which the Mg-suite is intruded into the anorthositic crust. However, the Sm-Nd ages record when the rock passed below the closing temperature of the Sm-Nd system in this rock at ∼825 °C, whereas the Rb-Sr age likely records the closure temperature of ∼650 °C. A cooling rate of 3.9 °C/Ma is determined using the ages reported here and in the literature and calculated closure temperatures for the Ar-Ar, Pb-Pb, Rb-Sr, and Sm-Nd systems. This cooling rate is in good agreement with cooling rates estimated from petrographic observations. Slow cooling can lower apparent Sm-Nd crystallization ages by up to ∼80 Ma in the slowest cooled rocks like 76535, and likely accounts for some of the variation of ages reported for lunar crustal rocks. Nevertheless, slow cooling cannot account for the overlap in FAS and Mg-suite rock ages. Instead, this overlap appears to reflect the concordance of Mg-suite and FAS magmatism in the lunar crust as indicated by ages calculated for the solidus temperature of 76535 and 60025 of 4384 ± 24 Ma and 4383 ± 17, respectively. Not only are the solidus ages of 76535 and 60025 nearly concordant, but the Sm-Nd isotopic systematics suggest they are derived from reservoirs that were minimally differentiated prior to ∼4.38 Ga. Although the Sr isotopic composition of 60025 indicates its source was minimally differentiated, the Sr isotopic composition of 76535 indicates it underwent

  19. The chemical and isotopic differentiation of an epizonal magma body: Organ Needle pluton, New Mexico

    USGS Publications Warehouse

    Verplanck, P.L.; Farmer, G.L.; McCurry, M.; Mertzman, S.A.

    1999-01-01

    Major and trace element, and Nd and Sr isotopic compositions of whole rocks and mineral separates from the Oligocene, alkaline Organ Needle pluton (ONP), southern New Mexico, constrain models for the differentiation of the magma body parental to this compositionally zoned and layered epizonal intrusive body. The data reveal that the pluton is rimmed by lower ??(Nd) (~-5) and higher 87Sr/86Sr (~0.7085) syenitic rocks than those in its interior (??(Nd) ~ 2, 87Sr/86Sr ~0.7060) and that the bulk compositions of the marginal rocks become more felsic with decreasing structural depth. At the deepest exposed levels of the pluton, the ??(Nd)~-5 lithology is a compositionally heterogeneous inequigranular syenite. Modal, compositional and isotopic data from separates of rare earth element (REE)-bearing major and accesory mineral phases (hornblende, titanite, apatite, zircon) demonstrate that this decoupling of trace and major elements in the inequigranular syenite results from accumulation of light REE (LREE)-bearing minerals that were evidently separated from silicic magmas as the latter rose along the sides of the magma chamber. Chemical and isotopic data for microgranular mafic enclaves, as well as for restite xenoliths of Precambrian granite wall rock, indicate that the isotopic distinction between the marginal and interior facies of the ONP probably reflects assimilation of the wall rock by ??(Nd) ~-2 mafic magmas near the base of the magma system. Fractional crystallization and crystal liquid separation of the crystally contaminated magma at the base and along the margins of the chamber generated the highly silicic magmas that ultimately pooled at the chamber top.

  20. Geochemical, isotopic and geochronological characterization of listvenite from the Upper Unit on Tinos, Cyclades, Greece

    NASA Astrophysics Data System (ADS)

    Hinsken, Tim; Bröcker, Michael; Strauss, Harald; Bulle, Florian

    2017-06-01

    We describe a largely unknown listvenite deposit from Tinos, Cyclades, Greece and combine field observations with petrographic, bulk-rock geochemical, isotope (Sr, O, C), and Rb-Sr geochronological data. The volumetrically small listvenite occurrences are associated with metabasic phyllites, talc schists, meta-gabbros, ophicalcites and serpentinites of the Upper Unit. Geochemical characteristics (high Mg#, Cr, Ni), as well as preserved relic Cr-spinel and the typical mesh-texture of serpentinized Mg-silicates, document derivation from ultramafic precursors. Judging from field and textural observations it is very likely that carbonation affected serpentinite and not unaltered meta-peridotite. The direct contact or transition zones to ultramafic rocks are not preserved, but serpentinites that escaped carbonation are closely associated. The listvenites occur near a low-angle normal fault that probably focused fluid infiltration and distribution. The carbonation is associated with the influx of CO2-rich, K-bearing fluids that led to the formation of ferroan magnesite, quartz and Cr-bearing white mica (fuchsite), but otherwise the transformation of serpentinized peridotite into listvenite had been a largely isochemical process. The studied rocks do not contain elevated concentrations of precious metals (Au, Pt, Pd). Field relationships suggest that the listvenite-bearing occurrences most likely represent the same tectonostratigraphic level as Upper Unit rocks that had been thermally overprinted in the contact aureole of Miocene granitoids at ca. 15 Ma. Accordingly the intrusion depth provides a minimum pressure constraint for the somewhat older carbonation. Pressure estimates for thermally overprinted rocks and the granitoids suggest an intrusion depth of ca. 7-10 km that corresponds to a pressure of ca. 2-3 kbar. Chlorite thermometry applied to the Tinos listvenites mostly indicates temperatures of ca. 250 °C during carbonation. Internal Rb-Sr mineral isochrons

  1. Sr isotope characterization of atmospheric inputs to soils along a climate gradient of the Chilean Coastal Range

    NASA Astrophysics Data System (ADS)

    Oeser, Ralf; Schuessler, Jan A.; Floor, Geerke H.; von Blanckenburg, Friedhelm

    2017-04-01

    The rate and degree of rock weathering controls the release, distribution, and cycling of mineral nutrients at the Earth's surface, being essential for developing and sustaining of ecosystems. Climate plays an important role as water flow and temperature determine both the biological community and activity, and also set the speed of weathering. Because of this double control by climate, the impact of biological activity on rock weathering and the feedbacks between the geosphere and the biosphere under different climatic conditions are not well understood. We explore the impact of biota on rock weathering in the four EarthShape primary study areas which are situated along the Chilean Coastal Range, featuring an outstanding vegetation gradient controlled by climate, ranging over 2000 km from hyper-arid, to temperate, to humid conditions. The study sites are within 80 km of the Pacific coast and are located in granitic lithology. Moreover, the sites were unglaciated during the last glacial maximum. However, as substrates get depleted in mineral nutrients, ecosystems are increasingly nourished by atmospheric inputs, sources, such as solutes contained in rain, dust, and volcanic ash. We aim to quantify the primary nutrient inputs to the ecosystem from these different potential sources. Radiogenic strontium (Sr) isotope ratios are a powerful tool to trace chemical weathering, soil formation, as well as cation provenance and mobility [1]. We determined 87Sr/86Sr ratios on bulk bedrock, saprolite, and soil and performed sequential extractions of the the easily bioavailable soil phases up to 2 m depth on two soil depth profiles in each of the four study sites. Our first results from the La Campana study site indicate that the radiogenic Sr isotope ratios of saprolite samples decrease from 0.70571 (n = 4) at the base of the profile to lower values of 0.70520 (n = 4) at the top of the immobile saprolite, indicating increasing biotite weathering. 87Sr/86Sr increases in the

  2. Using Nd and Sr isotopes to trace dust and volcanic inputs to soils on French Guadeloupe Island

    NASA Astrophysics Data System (ADS)

    Guo, J.; Pereyra, Y.; Ma, L.; Gaillardet, J.; Sak, P. B.; Bouchez, J.

    2017-12-01

    Soil is at the central part of the Critical Zone for its important roles in sustaining ecosystems and agriculture. At French Guadeloupe, a tropical humid volcanic island, previous studies have shown that the mineral nutrient elements such as K, Na, Ca, and Mg are highly depleted in the surface soil. And mineral nutrients introduced by dusts are an important mineral nutrient source for vegetation growth in this area. It is important to understand and quantify the sources of the mineral dust added to surface soils. Nd isotope ratios, due to their distinct signatures between two unique end-members in soils for this area: the young volcanic areas like Guadeloupe and the dust source region from the old continental shields like Sahara Desert, can be a robust tracer to understand this critical process. Nevertheless, Sr isotope ratios can trace the inputs of marine aerosols. Here we present a new Nd isotope study on Guadeloupe soil depth profiles, combined with previous Sr isotope data, to fingerprint the sources of dust and volcanic inputs into soils. Soil samples from three surface profiles (0 - 1000cm deep) at different locations of the Guadeloupe Island were systematically analyzed. The results show distinct depth variations for Nd isotope signature along profiles. For all profiles, deep soils are relatively consisted with bedrock value (ɛNd: 5.05). But in surface soils (0-600cm), unlike Sr isotope ratios that are significantly modified by marine aerosol input, Nd isotope ratios show similar decrease (to ɛNd:-10) and frequent fluctuations toward the surface, suggesting dust is the dominant source of Nd in these soils. This conclusion is further supported by REE and other trace element data. Thus, with a simplified two end-member model, Sahara dust contributes the Nd percentages in soils varying from 10.7% at the deepest profiles to 69.5% on surface, showing a significant amount of Nd on the surface soil came from dust source. The deep soil profiles are also

  3. Clay mineralogy, strontium and neodymium isotope ratios in the sediments of two High Arctic catchments (Svalbard)

    NASA Astrophysics Data System (ADS)

    Hindshaw, Ruth S.; Tosca, Nicholas J.; Piotrowski, Alexander M.; Tipper, Edward T.

    2018-03-01

    The identification of sediment sources to the ocean is a prerequisite to using marine sediment cores to extract information on past climate and ocean circulation. Sr and Nd isotopes are classical tools with which to trace source provenance. Despite considerable interest in the Arctic Ocean, the circum-Arctic source regions are poorly characterised in terms of their Sr and Nd isotopic compositions. In this study we present Sr and Nd isotope data from the Paleogene Central Basin sediments of Svalbard, including the first published data of stream suspended sediments from Svalbard. The stream suspended sediments exhibit considerable isotopic variation (ɛNd = -20.6 to -13.4; 87Sr / 86Sr = 0.73421 to 0.74704) which can be related to the depositional history of the sedimentary formations from which they are derived. In combination with analysis of the clay mineralogy of catchment rocks and sediments, we suggest that the Central Basin sedimentary rocks were derived from two sources. One source is Proterozoic sediments derived from Greenlandic basement rocks which are rich in illite and have high 87Sr / 86Sr and low ɛNd values. The second source is Carboniferous to Jurassic sediments derived from Siberian basalts which are rich in smectite and have low 87Sr / 86Sr and high ɛNd values. Due to a change in depositional conditions throughout the Paleogene (from deep sea to continental) the relative proportions of these two sources vary in the Central Basin formations. The modern stream suspended sediment isotopic composition is then controlled by modern processes, in particular glaciation, which determines the present-day exposure of the formations and therefore the relative contribution of each formation to the stream suspended sediment load. This study demonstrates that the Nd isotopic composition of stream suspended sediments exhibits seasonal variation, which likely mirrors longer-term hydrological changes, with implications for source provenance studies based on fixed

  4. Geochemical, oxygen, and neodymium isotope compositions of metasediments from the Abitibi greenstone belt and Pontiac Subprovince, Canada: Evidence for ancient crust and Archean terrane juxtaposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, R.; Kerrich, R.; Maas, R.

    1993-02-01

    The Abitibi greenstone belt (AGB) and Pontiac Subprovince (PS) in the southwestern Superior Province are adjacent greenstone-plutonic and metasedimentary-dominated terranes, respectively, separated by a major fault zone. Metasediments from these two contrasting terranes are compared in terms of major- and trace-element and O- and Nd-isotope compositions, and detrital zircon ages. The following two compositional populations of metasediments are present in the low-grade, Abitibi southern volcanic zone: (1) a mafic-element-enriched population (MEP) characterized by flat, depleted REE patterns; enhanced Mg, Cr, Co, Ni, and Sc; low-incompatible-element contents; and minor or absent normalized negative troughs at Nb, Ta, and Ti; and (2)more » a low-mafic-element population (LMEP) featuring LREE-enriched patterns; enhanced Rb, Cs, Ba, Th, and U contents; and pronounced normalized negative troughs at Nb, Ta, and Ti. These geochemical features are interpreted to indicate that the MEP sediments were derived from an ultramafic- and mafic-dominated oceanic provenance, whereas the LMEP sediments represent mixtures of mafic and felsic are source rocks. The PS metasediments are essentially indistinguishable from Abitibi LMEP on the basis of major-element and transition metal abundances, suggesting comparable types of source rocks and degrees of maturity, but are distinct in terms of some trace elements and O-isotope compositions. The Pontiac metasediments are depleted in [sup 18]O and enriched in Cs, Ba, Pb, Th, U, Nb, Ta, Hf, Zr, and total REE and also have higher ratios of Rb/K, Cs/Rb, Ba/Rb, Ta/Nb, Th/La, and Ba/La relative to the Abitibi LMEP. Two subtypes of REE patterns have been identified in PS metasediments. The first subtype is interpreted to be derived from provenances of mixed mafic and felsic volcanic rocks, whereas the Eu-depleted type has features that are typical of post-Archean sediments or Archean K-rich granites and volcanic equivalents. 100 refs., 9 figs., 4

  5. Isotopic variation in the Tuolumne Intrusive Suite, central Sierra Nevada, California

    USGS Publications Warehouse

    Kistler, R.W.; Chappell, B.W.; Peck, D.L.; Bateman, P.C.

    1986-01-01

    Granitoid rocks of the compositionally zoned Late Cretaceous Toulumne Intrusive Suite in the central Sierra Nevada, California, have initial87Sr/86Sr values (Sri) and143Nd/144Nd values (Ndi) that vary from 0.7057 to 0.7067 and from 0.51239 to 0.51211 respectively. The observed variation of both Sri and Ndi and of chemical composition in rocks of the suite cannot be due to crystal fractionation of magma solely under closed system conditons. The largest variation in chemistry, Ndi, and Sri is present in the outer-most equigranular units of the Tuolumne Intrusive Suite. Sri varies positively with SiO2, Na2O, K2O, and Rb concentrations, and negatively with Ndi, Al2O3, Fe2O3, MgO, FeO, CaO, MnO, P2O5, TiO2, and Sr concentrations. This covariation of Sri, Ndi and chemistry can be modeled by a process of simple mixing of basaltic and granitic magmas having weight percent SiO2 of 48.0 and 73.3 respectively. Isotopic characteristic of the mafic magma are Sri=0.7047, Ndi=0.51269 and ??18O=6.0, and of the felsic magma are Sri=0.7068, Ndi=0.51212 and ??18O=8.9. The rocks sampled contain from 50 to 80% of the felsic component. An aplite in the outer equigranular unit of the Tuolumne Intrusive Suite apparently was derived by fractional crystallization of plagioclase and hornblende from magma with granudiorite composition that was a product of mixing of the magmas described above. Siliceous magmas derived from the lower crust, having a maximum of 15 percent mantle-derived mafic component, are represented by the inner prophyritic units of the Tuolumne Intrusive Suite. ?? 1986 Springer-Verlag.

  6. Oxygen and strontium isotope tracing of human migration at the Bell Beaker site Le Tumulus des Sables, France.

    NASA Astrophysics Data System (ADS)

    Willmes, Malte; James, Hannah; Boel, Ceridwen; Courtaud, Patrice; Chancerel, Antoine; McMorrow, Linda; Armstrong, Richard; Kinsley, Les; Aubert, Maxime; Eggins, Stephen; Moffat, Ian; Grün, Rainer

    2014-05-01

    Oxygen (δ18O) and strontium (87Sr/86Sr) isotopes were used as tools to investigate human migration at the early Bell Beaker site (2500-2000 BC) Le Tumulus des Sables, Saint-Laurent-Médoc, south-west France. The O and Sr isotope ratios measured in tooth enamel record the average dietary isotope signature ingested by that individual during their childhood. When this data is compared to the isotope signature of the burial site it can be used to indicate if the individual migrated into this area during their lifetime. The O isotopic composition of meteoric water changes depending on climate, temperature and quantity of precipitation. O isotope ratios in skeletal and dental remains are related to body water, which in turn is influenced by diet, physiology and climate. Most of the water consumed by large mammals comes from drinking water, typically sourced locally. Sr isotope ratios on the other hand vary between different geologic regions, depending on their age and composition. Sr is released through weathering and transported into the soil, ground and surface water, where it becomes available for uptake by plants, enters the food cycle and eventually ends up in skeletal and dental tissue where it substitutes for calcium. We analysed the teeth of 18 adult and 8 juvenile disarticulated skeletons from Le Tumulus des Sables. O isotopes were analysed in-situ by Sensitive High Resolution Ion Micro Probe (SHRIMP).The Sr isotope analysis involved drilling a 0.2-0.5 mg sample of enamel from the tooth. The Sr was then chemically separated and analysed by Thermal Ionization Mass Spectrometry (TIMS). These results were then compared to the O isoscape of Europe and bioavailable Sr isotope data (fauna, plants, soils) from the IRHUM database. We found that most of the individuals at Le Tumulus des Sables show O and Sr isotope ratios corresponding to the local environmental signal and we interpret these as part of the local population. 3 adults however show slightly higher 87Sr/86

  7. Strontium and neodymium isotopic evidence for the heterogeneous nature and development of the mantle beneath Afar (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Betton, P. J.; Civetta, L.

    1984-11-01

    Neodymium isotope and REE analyses of recent volcanic rocks and spinel lherzolite nodules from the Afar area are reported. The 143Nd/ 144Nd ratios of the volcanic rocks range from 0.51286 to 0.51304, similar to the range recorded from Iceland. However, the 87Sr/ 86Sr ratios display a distinctly greater range (0.70328-0.70410) than those reported from the primitive rocks of Iceland. Whole rock samples and mineral separates from the spinel lherzolite nodules exhibit uniform 143Nd/ 144Nd ratios (ca. 0.5129) but varied 87Sr/ 86Sr ratios in the range 0.70427-0.70528. The Sr sbnd Nd isotope variations suggest that the volcanic rocks may have been produced by mixing between two reservoirs with distinct isotopic compositions. Two possible magma reservoirs in this area are the source which produced the "MORB-type" volcanics in the Red Sea and Gulf of Aden and the anomalous source represented by the nodule suite. The isotopic composition of the volcanics is compatible with mixing between these two reservoirs. It is shown that the anomalous source with a high 87Sr/ 86Sr ratio cannot have been produced by simple processes of partial melting and mixing within normal mantle. Instead the high 87Sr/ 86Sr is equated with a fluid phase. A primitive cognate fluid, subducted seawater or altered oceanic lithosphere may have been responsible for the generation of the source with a high 87Sr/ 86Sr ratio.

  8. 87Sr/86Sr isotope ratio analysis by laser ablation MC-ICP-MS in scales, spines, and fin rays as a nonlethal alternative to otoliths for reconstructing fish life history

    USGS Publications Warehouse

    Willmes, Malte; Glessner, Justin J. G.; Carleton, Scott A.; Gerrity, Paul C.; Hobbs, James A.

    2016-01-01

    Strontium isotope ratios (87Sr/86Sr) in otoliths are a well-established tool to determine origins and movement patterns of fish. However, otolith extraction requires sacrificing fish, and when working with protected or endangered species, the use of nonlethal samples such as scales, spines, and fin rays is preferred. Unlike otoliths that are predominantly aragonite, these tissues are composed of biological apatite. Laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) analysis of biological apatite can induce significant interference on mass 87, causing inaccurate 87Sr/86Sr measurements. To quantify this interference, we applied LA-MC-ICP-MS to three marine samples (white seabass (Atractoscion nobilis) otolith; green sturgeon (Acipenser medirostris) pectoral fin ray; salmon shark (Lamna ditropis) tooth), and freshwater walleye (Sander vitreus) otoliths, scales, and spines). Instrument conditions that maximize signal intensity resulted in elevated 87Sr/86Sr isotope ratios in the bioapatite samples, related to a polyatomic interference (40Ca31P16O, 40Ar31P16O). Retuning instrument conditions to reduce oxide levels removed this interference, resulting in accurate 87Sr/86Sr ratios across all tissue samples. This method provides a novel, nonlethal alternative to otolith analysis to reconstruct fish life histories.

  9. Nickel isotopic composition of the mantle

    NASA Astrophysics Data System (ADS)

    Gall, Louise; Williams, Helen M.; Halliday, Alex N.; Kerr, Andrew C.

    2017-02-01

    This paper presents a detailed high-precision study of Ni isotope variations in mantle peridotites and their minerals, komatiites as well as chondritic and iron meteorites. Ultramafic rocks display a relatively large range in δ60 Ni (permil deviation in 60 Ni /58 Ni relative to the NIST SRM 986 Ni isotope standard) for this environment, from 0.15 ± 0.07‰ to 0.36 ± 0.08‰, with olivine-rich rocks such as dunite and olivine cumulates showing lighter isotope compositions than komatiite, lherzolite and pyroxenite samples. The data for the mineral separates shed light on the origin of these variations. Olivine and orthopyroxene display light δ60 Ni whereas clinopyroxene and garnet are isotopically heavy. This indicates that peridotite whole-rock δ60 Ni may be controlled by variations in modal mineralogy, with the prediction that mantle melts will display variable δ60 Ni values due to variations in residual mantle and cumulate mineralogy. Based on fertile peridotite xenoliths and Phanerozoic komatiite samples it is concluded that the upper mantle has a relatively homogeneous Ni isotope composition, with the best estimate of δ60Nimantle being 0.23 ± 0.06‰ (2 s.d.). Given that >99% of the Ni in the silicate Earth is located in the mantle, this also defines the Ni isotope composition of the Bulk Silicate Earth (BSE). This value is nearly identical to the results obtained for a suite of chondrites and iron meteorites (mean δ60 Ni 0.26 ± 0.12‰ and 0.29 ± 0.10‰, respectively) showing that the BSE is chondritic with respect to its Ni isotope composition, with little to no Ni mass-dependent isotope fractionation resulting from core formation.

  10. Late Eocene to present isotopic (Sr-Nd-Pb) and geochemical evolution of sediments from the Lomonosov Ridge, Arctic Ocean: Implications for continental sources and linkage with the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Stevenson, Ross; Poirier, André; Véron, Alain; Carignan, Jean; Hillaire-Marcel, Claude

    2015-09-01

    New geochemical and isotopic (Sr, Nd, Pb) data are presented for a composite sedimentary record encompassing the past 50 Ma of history of sedimentation on the Lomonosov Ridge in the Arctic Ocean. The sampled sediments encompass the transition of the Arctic basin from an enclosed anoxic basin to an open and ventilated oxidized ocean basin. The transition from anoxic basin to open ventilated ocean is accompanied by at least three geochemical and isotopic shifts and an increase in elements (e.g., K/Al) controlled by detrital minerals highlighting significant changes in sediment types and sources. The isotopic compositions of the sediments prior to ventilation are more variable but indicate a predominance of older crustal contributions consistent with sources from the Canadian Shield. Following ventilation, the isotopic compositions are more stable and indicate an increased contribution from younger material consistent with Eurasian and Pan-African crustal sources. The waxing and waning of these sources in conjunction with the passage of water through Fram Strait underlines the importance of the exchange of water mass between the Arctic and North Atlantic Oceans.

  11. Growth Rates, Stable Oxygen Isotopes (18O), and Strontium (Sr/Ca) Composition in Two Species of Pacific Sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with 18O Calibration and Application to Paleoceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grottoli, A.; Adkins, J; Panero, W

    2010-01-01

    The isotopic and elemental composition of sclerosponge skeletons is used to reconstruct paleoceanographic records. Yet few studies have systematically examined the natural variability in sclerosponge skeletal {delta}{sup 18}O, growth, and Sr/Ca, and how that may influence the interpretation of sclerosponge proxy records. Here, we analyzed short records in seven specimens of Acanthocheatetes wellsi (high-Mg calcite, 21 mol% Mg) from Palau, four A. wellsi (high-Mg calcite, 21 mol% Mg) from Saipan, and three Astrosclera willeyana (aragonite) sclerosponges from Saipan, as well as one long record in an A. wellsi specimen from Palau spanning 1945-2001.5. In Saipan, species-specific and mineralogical effects appearmore » to have a negligible effect on sclerosponge {delta}{sup 18}O, facilitating the direct comparison of {delta}{sup 18}O records between species at a given location. At both sites, A. wellsi {delta}{sup 18}O and growth rates were sensitive to environmental conditions, but Sr/Ca was not sensitive to the same conditions. High-resolution {delta}{sup 18}O analyses confirmed this finding as both A. wellsi and A. willeyana deposited their skeleton in accordance with the trends in isotopic equilibrium with seawater, though with a 0.27{per_thousand} offset in the case of A. willeyana. In the high-Mg-calcite species A. wellsi, Mg may be interfering with Sr incorporation into the skeleton. On multidecadal timescales, A. wellsi sclerosponge {delta}{sup 18}O in Palau tracked the Southern Oscillation Index variability post-1977, but not pre-1977, coincident with the switch in the Pacific Decadal Oscillation (PDO) at {approx}1976. This suggests that water mass circulation in the region is influenced by El Nino-Southern Oscillation variability during positive PDO phases, but not during negative ones.« less

  12. Strontium and neodymium isotopes in hot springs on the East Pacific Rise and Guaymas Basin

    NASA Technical Reports Server (NTRS)

    Piepgras, D. J.; Wasserburg, G. J.

    1985-01-01

    Solutions collected from 21 deg N, East Pacific Rise (Epr) and Guaymas Basin, Gulf of California, are analyzed for Nd isotopic composition and Sm and Nd concentrations. The results indicate extensive but not complete isotopic exchange with Sr in the depleted oceanic crust and that Sr concentrations in these solutions are buffered. In contrast, the Nd data exhibit a wide range in isotopic composition and concentration between vents. Many samples show substantial contributions from MORB, but all have isotopic compositions below MORB, in spite of enrichments in Nd up to 100 times seawater. It is shown that the fluids must exchange Nd with a sedimentary reservoir having an isotopic composition less than Pacific seawater. Low-temperature reactions with metalliferous sediments on the flanks of the EPR may provide such a source. Using a simple box method, estimates of the hydrothermal fluxes of Nd are compared to fluxes which are necessary to maintain a radiogenic isotopic composition of about -3 in the Pacific against the influx of Antarctic waters. It is concluded that erosion from island arcs is the main source of radiogenic Nd in the Pacific.

  13. Temporal Variations in the Mantle Source of MORB near the Vema Fracture Zone (Central Atlantic): Nd and Sr Isotopes in Peridotites and Basaltic Glasses

    NASA Astrophysics Data System (ADS)

    Cipriani, A.; Cipriani, A.; Brunelli, D.; Brueckner, H. K.; Brueckner, H. K.; Bonatti, E.; Bonatti, E.

    2001-12-01

    Sr-Nd-Pb isotopic ratios of zero age basalts sampled along Mid-Ocean Ridges (MOR) have demonstrated that the mantle is heterogeneous at a regional scale. However, how the mantle evolves through time below a single segment of MOR it is still matter of debate. Peridotites and basaltic glasses were collected along a lithospheric section uplifted and exposed on the southern side of the Vema transform (10o North, Atlantic Ocean) along a seafloor spreading flow line for a stretch of almost 200 km (corresponding to roughly 10 my). This set of samples offers a unique opportunity to detect changes through time of the mantle signature in a segment of Mid Atlantic Ridge, by analyzing radiogenic isotopes in the clinopyroxenes (cpx) from peridotites and glasses from the overlying basalts. Work is in progress; initial Sr and Nd measurements from cpxs within peridotites indicate several things. First, the cpxs display "depleted" mantle signatures. Second, there is a considerable variation of the isotopic ratios along the exposed section (143Nd/144Nd varies from 0.51293 to 0.51345, 87Sr/86Sr varies from 0.70228 to 0.70422) and these variations occur over a short time scale (some occur within an interval of one million year). Next, the Sr and Nd ratios are inversely correlated and fall along the mantle array. Finally, cpx Nd ratios are inversely correlated with the Cr/Al ratio of the spinel and ortopyroxene (opx) from the peridotites while Sr ratios are positively correlated. Thus, the chemically most depleted peridotite with high Cr/Al ratios show the most enriched isotopic signatures, a pattern that has also been observed in alpine-type peridotites and peridotite nodules and that is generally interpreted as metasomatism by enriched fluids affecting depleted peridotite more extensively than less depleted peridotite. This may indicate that the temporal variations in the extent of melting detected by Cr/Al ratio in spinel and opx (Bonatti et al., Variations with age of mantle

  14. Comparison of TIMS and MC-ICP-MS Analyses of Pb Isotopic Compositions on Prehistoric Mauna Loa Basalts: Implications for Plume Source Components

    NASA Astrophysics Data System (ADS)

    De Jong, J.; Weis, D.; Maerschalk, C.; Rhodes, J. M.

    2001-12-01

    Recent isotopic studies on Hawaiian lavas have shown the necessity of constraining fractionation for Pb isotopes. This isotopic system presents systematic variations reflecting the presence of different plume components in the source of Hawaiian basalts. We have analyzed a series of 23 tholeiitic Mauna Loa basalts ranging in age from 36,780 to 140 y for their Pb isotopic compositions by TIMS (Micromass Sector 54) and MC-ICP-MS (Nu Plasma) to directly compare results from the same, carefully leached, samples. These analyses indicate an internal precision better than 120 ppm for the MC-ICP-MS Pb ratios, while for the TIMS ratios, it is in the per mil range. This results in a more coherent dataset for the MC-ICP-MS analyses, with the range of 207Pb/204Pb variations decreasing by a factor of 3 and of 208Pb/204Pb ratios by a factor of 1.5. The co-variations between the Pb isotopic data and other geochemical parameters for the Hawaiian lavas are now much stronger and better defined. There are clearly two groups amongst the prehistoric Mauna Loa basalts: one group with higher 87Sr/86Sr (>0.7038) and low 206Pb/204Pb (<18.15) that covers the entire range of Nb/Y (0.31 to 0.51) observed in this volcano, and the other group with low 87Sr/86Sr (<0.7038) and higher 206Pb/204Pb with Nb/Y<0.4. The second group is only present in basalts younger than 3,000 y or older than 24,000 y. The high 87Sr/86Sr group was not sampled in the HSDP I drill core, which covers an age range of 100,000 y. This either reflects a sampling bias, as the upper flow units (<10,000 y) were not sampled for geochemistry, or variations in magma supply. Altogether, Mauna Loa lava flows that are younger than 20,000 y show much more isotopic variation than older flows and there is a nearly continuous transition away from the Kilauea component. This may indicate that the transition between the Mauna Loa and Mauna Kea trends is not as sharp as previously documented. This study shows the importance of reducing the

  15. Unraveling the hidden origin and migration of plagioclase phenocrysts by in situ Sr isotopes: the case of final dome activity at Nisyros volcano, Greece

    NASA Astrophysics Data System (ADS)

    Braschi, Eleonora; Francalanci, Lorella; Tommasini, Simone; Vougioukalakis, George E.

    2014-03-01

    This contribution reports a detailed study on in situ Sr isotope analyses, along with textural and compositional characteristics, of plagioclase phenocrysts occurring in the rhyodacitic dome-lavas and associated mafic enclaves, erupted during the last magmatic activity at Nisyros volcano (Greece). Dome-lavas and enclaves have a paragenesis dominated by plagioclase. We recognize five different types of plagioclase based on their specific textures and composition. Dome-lava plagioclases (Type-1) are mainly large (1-5 mm), subhedral, clear, and poorly zoned crystals with low An content (An25-35). The plagioclase phenocrysts (Type-4 and Type-5) and groundmass microlites crystallizing in the enclaves, and found in dome-lavas as xenocrysts, have high An content (An75-95). In both dome-lavas and enclaves, two other types of plagioclase do also occur: (1) plagioclase phenocrysts with size and core composition similar to those of Type-1 having a dusty sieve zone (DSZ) at the rims (Type-2); (2) plagioclases with a DSZ affecting the entire crystal but a thin rim (Type-3). The drilled plagioclases have 87Sr/86Sr negatively correlated with their An content. Low An cores of Type-1 and Type-2 have quite homogeneous 87Sr/86Sr (0.7044-0.7046), whose values are more radiogenic than their host magmas (0.70403-0.70408) and similar to those of the previous Upper Pumice (UP) rhyolite magma (0.70438-0.70456). The DSZs of Type-2 and Type-3 show lower and scattered 87Sr/86Sr (0.70397-0.70426) with intermediate and variable An content. High An cores of Type-4 and Type-5 have the least radiogenic Sr isotope composition (0.70379) in equilibrium with that measured in the enclaves (0.70384-0.70389). We demonstrate that Type-1 plagioclase crystallizes in the previous UP rhyolitic magmas representing the silica-rich magma from which the dome-lava melts derived by open system evolutionary processes (e.g., mixing, mingling, and crystal migration), caused by successive refilling of mafic enclave

  16. Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization

    USGS Publications Warehouse

    Barnaby, R.J.; Oetting, G.C.; Gao, G.

    2004-01-01

    The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.

  17. Reconstruction of travel history using coupled δ18 O and 87 Sr/86 Sr measurements of hair.

    PubMed

    Chau, Thuan H; Tipple, Brett J; Hu, Lihai; Fernandez, Diego P; Cerling, Thure E; Ehleringer, James R; Chesson, Lesley A

    2017-03-30

    Oxygen isotope ratios (δ 18 O values) of hair largely reflect features of regional hydrology while strontium isotope ratios ( 87 Sr/ 86 Sr) are thought to reflect bedrock geology; combination of both isotope signatures may provide greater capacity for determining provenance and reconstructing travel history of an organism. To test this hypothesis, we compared the O-Sr isotope profiles of hair from domestic horses with known residency histories. Tail hairs were collected from a pair of horses pastured together for a period of 16 months, one of which lived in a different location for the 8 months prior. Hair samples were washed with solvents to remove external contaminants prior to sequential sampling for δ 18 O and 87 Sr/ 86 Sr analysis via TC/EA-IRMS and MC-ICP-MS, respectively. Hair digests were concentrated and analyzed employing low-flow natural aspiration to measure 87 Sr/ 86 Sr. Tail hair from the control and transported horses had mean δ 18 O values of 11.25 ± 1.62 ‰ and 10.96 ± 1.53 ‰, and mean 87 Sr/ 86 Sr of 0.7101 ± 0.0006 and 0.7109 ± 0.0020, respectively. The δ 18 O and 87 Sr/ 86 Sr profiles for the control and transported horses were indistinguishable when they were pastured together. The 87 Sr/ 86 Sr profiles were significantly different during the period that the horses were living apart, while the δ 18 O values were indistinguishable during that period. By comparing the O-Sr isotope profiles of a control and transported horse, we investigated isotopic signal(s) potentially useful for reconstructing travel histories via high-resolution sequential sampling along single strands of tail hair. Improved analytical capabilities allowed for extremely low Sr abundance samples to be analyzed for 87 Sr/ 86 Sr and proved capable of resolving a horse's movement between distinct regions. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Controls over δ44/40Ca and Sr/Ca variations in coccoliths: New perspectives from laboratory cultures and cellular models

    NASA Astrophysics Data System (ADS)

    Mejía, Luz María; Paytan, Adina; Eisenhauer, Anton; Böhm, Florian; Kolevica, Ana; Bolton, Clara; Méndez-Vicente, Ana; Abrevaya, Lorena; Isensee, Kirsten; Stoll, Heather

    2018-01-01

    Coccoliths comprise a major fraction of the global carbonate sink. Therefore, changes in coccolithophores' Ca isotopic fractionation could affect seawater Ca isotopic composition, affecting interpretations of the global Ca cycle and related changes in seawater chemistry and climate. Despite this, a quantitative interpretation of coccolith Ca isotopic fractionation and a clear understanding of the mechanisms driving it are not yet available. Here, we address this gap in knowledge by developing a simple model (CaSri-Co) to track coccolith Ca isotopic fractionation during cellular Ca uptake and allocation to calcification. We then apply it to published and new δ 44 / 40 Ca and Sr/Ca data of cultured coccolithophores of the species Emiliania huxleyi and Gephyrocapsa oceanica. We identify changes in calcification rates, Ca retention efficiency and solvation-desolvation rates as major drivers of the Ca isotopic fractionation and Sr/Ca variations observed in cultures. Higher calcification rates, higher Ca retention efficiencies and lower solvation-desolvation rates increase both coccolith Ca isotopic fractionation and Sr/Ca. Coccolith Ca isotopic fractionation is most sensitive to changes in solvation-desolvation rates. Changes in Ca retention efficiency may be a major driver of coccolith Sr/Ca variations in cultures. We suggest that substantial changes in the water structure strength caused by past changes in temperature could have induced significant changes in coccolithophores' Ca isotopic fractionation, potentially having some influence on seawater Ca isotopic composition. We also suggest a potential effect on Ca isotopic fractionation via modification of the solvation environment through cellular exudates, a hypothesis that remains to be tested.

  19. Interaction between different groundwaters in brittany catchments (france): characterizing multiple sources through Sr- and S isotope tracing

    NASA Astrophysics Data System (ADS)

    Negrel, Ph; Pauwels, H.

    2003-04-01

    Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Sr- and S-isotope data as well as major ions, from shallow and deep groundwater in three granite and Brioverian "schist" areas of the Armorican Massif (NW France) with intensive agriculture covering large parts are presented. The stable-isotope signatures of the waters plot close to the general meteoric-water line, reflecting a meteoric origin and the lack of significant evaporation or water-rock interaction. The water chemistry from the different catchments shows large variation in the major-element contents. Plotting Na, Mg, NO_3, K, SO_4 and Sr vs. Cl contents concentrations reflect agricultural input from hog and livestock farming and fertilizer applications, with local sewage-effluent influence, although some water samples are clearly unpolluted. The δ34S(SO_4) is controlled by several potential sources (atmospheric sulphate, pyrite-derived sulphates, fertilizer sulphates). Some δ18O and δ34S values are expected to increase through sulphate reduction, with higher effect on δ34S for the dissimilatory processes and on δ18O for assimilatory processes. The range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are related to agricultural practises. As in granite-gneiss watersheds in France, 87Sr/86Sr ratios range from 0.71265 to 0.72009. The relationship between 87Sr/86Sr and Mg/Sr

  20. Isotopes as Tracers of the Hawaiian Coffee-Producing Regions

    PubMed Central

    2011-01-01

    Green coffee bean isotopes have been used to trace the effects of different climatic and geological characteristics associated with the Hawaii islands. Isotope ratio mass spectrometry (IRMS) and inductively coupled plasma mass spectrometry ((MC)-ICP-SFMS and ICP-QMS) were applied to determine the isotopic composition of carbon (δ13C), nitrogen (δ15N), sulfur (δ34S), and oxygen (δ18O), the isotope abundance of strontium (87Sr/86Sr), and the concentrations of 30 different elements in 47 green coffees. The coffees were produced in five Hawaii regions: Hawaii, Kauai, Maui, Molokai, and Oahu. Results indicate that coffee plant seed isotopes reflect interactions between the coffee plant and the local environment. Accordingly, the obtained analytical fingerprinting could be used to discriminate between the different Hawaii regions studied. PMID:21838232

  1. Characterizing the Effect of Shock on Isotopic Ages. 2; Mg-Suite Troctolite Major Elements

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer; Cohen, Barbara

    2009-01-01

    Two troctolites from the lunar magnesium suite (Mg-suite), 76335 and 76535, have Sm-147-ND-143 and Rb-87- Sr-87 ages that do not indicate the same age for their respective sample. In the case of 76335, the Sm-147-ND-143 age is 4278 +/- 60 Ma, but the Rb-87-Sr-87 data does not reveal an isochron]. For 76535, the Sm-147-ND-143 age is significantly younger (4260 +/- 60 Ma) than the Rb-87- Sr-87 age (4570 +/- 70 Ma, Lambda = 1.402x10(exp -11)). This study was designed to discover why the Sm-147-ND-143 and Rb-87-Sr-87 ages did not match for each individual sample.

  2. Geochemical evolution of Kohala Volcano, Hawaii

    USGS Publications Warehouse

    Lanphere, M.A.; Frey, F.A.

    1987-01-01

    Kohala Volcano, the oldest of five shield volcanoes comprising the island of Hawaii, consists of a basalt shield dominated by tholeiitic basalt, Pololu Volcanics, overlain by alkalic lavas, Hawi Volcanics. In the upper Pololu Volcanics the lavas become more enriched in incompatible elements, and there is a transition from tholeiitic to alkalic basalt. In contrast, the Hawi volcanics consist of hawaiites, mugearites, and trachytes. 87Sr/86Sr ratios of 14 Pololu basalts and 5 Hawi lavas range from 0.70366 to 0.70392 and 0.70350 to 0.70355, respectively. This small but distinct difference in Sr isotopic composition of different lava types, especially the lower 87Sr/86Sr in the younger lavas with higher Rb/Sr, has been found at other Hawaiian volcanoes. Our data do not confirm previous data indicating Sr isotopic homogeneity among lavas from Kohala Volcano. Also some abundance trends, such as MgO-P2O5, are not consistent with a simple genetic relationship between Pololu and Hawi lavas. We conclude that all Kohala lavas were not produced by equilibrium partial melting of a compositionally homogeneous source. ?? 1987 Springer-Verlag.

  3. 87Sr/ 86Sr Concentrations in the Appalachian Basin: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mordensky, Stanley P.; Lieuallen, A. Erin; Verba, Circe

    This document reviews 87Sr/ 86Sr isotope data across the Appalachian Basin from existing literature to show spatial and temporal variation. Isotope geochemistry presents a means of understanding the geochemical effects hydraulic fracturing may have on shallow ground substrates. Isotope fractionation is a naturally occurring phenomenon brought about by physical, chemical, and biological processes that partition isotopes between substances; therefore, stable isotope geochemistry allows geoscientists to understand several processes that shape the natural world. Strontium isotopes can be used as a tool to answer an array of geological and environmental inquiries. In some cases, strontium isotopes are sensitive to the introductionmore » of a non-native fluid into a system. This ability allows strontium isotopes to serve as tracers in certain systems. Recently, it has been demonstrated that strontium isotopes can serve as a monitoring tool for groundwater and surface water systems that may be affected by hydraulic fracturing fluids (Chapman et al., 2013; Kolesar Kohl et al., 2014). These studies demonstrated that 87Sr/ 86Sr values have the potential to monitor subsurface fluid migration in regions where extraction of Marcellus Shale gas is occurring. This document reviews publicly available strontium isotope data from 39 sample locations in the Appalachian Basin (Hamel et al., 2010; Chapman et al., 2012; Osborn et al., 2012; Chapman et al., 2013; Capo et al., 2014; Kolesar Kohl et al., 2014). The data is divided into two sets: stratigraphic (Upper Devonian/Lower Mississippi, Middle Devonian, and Silurian) and groundwater. ArcMap™ (ESRI, Inc.) was used to complete inverse distance weighting (IDW) analyses for each dataset to create interpolated surfaces in an attempt to find regional trends or variations in strontium isotopic values across the Appalachian Basin. 87Sr/ 86Sr varies up to ~ 0.011 across the Appalachian Basin, but the current publicly available data is

  4. Isotopic evolution of Mauna Loa Volcano: A view from the submarine southwest rift zone

    NASA Astrophysics Data System (ADS)

    Kurz, Mark D.; Kenna, T. C.; Kammer, D. P.; Rhodes, J. Michael; Garcia, Michael O.

    New isotopic and trace element measurements on lavas from the submarine southwest rift zone (SWR) of Mauna Loa continue the temporal trends of subaerial Mauna Loa flows, extending the known compositional range for this volcano, and suggesting that many of the SWR lavas are older than any exposed on land. He and Nd isotopic compositions are similar to those in the oldest subaerial Mauna Loa lavas (Kahuku and Ninole Basalts), while 87Sr/86Sr ratios are slightly lower (as low as .7036) and Pb isotopes are higher (206Pb'204Pb up to 18.30). The coherence of all the isotopes suggests that helium behaves as an incompatible element, and that helium isotopic variations in the Hawaiian lavas are produced by melting and mantle processes, rather than magma chamber or metasomatic processes unique to the gaseous elements. The variations of He, Sr, and Nd are most pronounced in lavas of approximately 10 ka age range [Kurz and Kammer, 1991], but the largest Pb isotopic variation occurs earlier. These variations are interpreted as resulting from the diminishing contribution from the upwelling mantle plume material as the shield building ends at Mauna Loa. The order of reduction in the plume isotopic signature is inferred to be Pb (at >100 ka), He (at ˜14 ka), Sr (at ˜9 ka), and Nd (at ˜8 ka); the different timing may relate to silicate/melt partition coefficients, with most incompatible elements removed first, and also to concentration variations within the plume. Zr/Nb, Sr/Nb, and fractionation-corrected Nb concentrations, correlate with the isotopes and are significantly higher in some of the submarine SWR lavas, suggesting temporal variability on time scales similar to the Pb isotopes (i.e. ˜ 100 ka). Historical lavas define trace element and isotopic trends that are distinct from the longer term (10 to 100 ka) variations, suggesting that different processes cause the short term variability. The temporal evolution of Mauna Loa, and particularly the new data from the

  5. Sr isotope variations in the Carnian-Norian succession at Pizzo Mondello, Sicani Mountains, Sicily

    NASA Astrophysics Data System (ADS)

    Onoue, T.; Yamashita, K.; Rigo, M.; Abate, B.

    2017-12-01

    The Norian stage in the Late Triassic is exceptionally long (23 Myr) and was subdivided into three substages: the Lacian, Alaunian, and Sevatian. In order to infer the Norian environmental changes in the western Tethys Ocean, the stratigraphic variations of 87Sr/86Sr in the Upper Triassic limestone succession in Sicily were examined. The Pizzo Mondello section studied here mainly consists of a pelagic carbonate sequence of the Scillato Formation, and ranges in age from Tuvalian (late Carnian) to Rhaetian. The Scillato Formation represents a deep-water pelagic facies deposited along the Sicanian Basin in the western Tethys Ocean. We selected fine-grained limestone samples from both the microfacies of lime-mudstone and wackestone to approximate the primary 87Sr/86Sr signature of the limestone beds. The 87Sr/86Sr values are relatively constant in the Tuvalian and Lacian (early Norian). However, the remarkable rise in 87Sr/86Sr occurred across the Lacian-Alaunian (early-middle Norian) transition. Variations in 87Sr/86Sr values show an increasing trend in 87Sr/86Sr from 0.7077 at the base of Lacian to 0.7080 in the Sevatian (late Norian). In the Sevatian, the 87Sr/86Sr ratios display a sudden negative excursion toward lower values and show a relatively quick recovery to pre-excursion 87Sr/86Sr ratios. Korte et al. (2003) suggested that the rise in the 87Sr/86Sr values from the middle Carnian to the late Norian coincide with the Cimmerian orogeny. Our new 87Sr/86Sr data from the Pizzo Mondello section reveal a comparable trend, with a sharp increase in 87Sr/86Sr within the Alaunian, suggesting the rapid uplift and erosion in the Cimmerian Mountains at this time. The cause of the 87Sr/86Sr excursion in the Sevatian remains uncertain. However, the biostratigraphic record of conodonts suggests that a morphological evolution towards platform-less elements occurred with the beginning of the Sr-isotope excursion.

  6. Precise K-Ar, 40Ar/39Ar, Rb-Sr and U/Pb mineral ages from the 27.5 Ma fish canyon tuff reference standard

    USGS Publications Warehouse

    Lanphere, M.A.; Baadsgaard, H.

    2001-01-01

    The accuracy of ages measured using the 40Ar/39Ar technique is affected by uncertainties in the age of radiation fluence-monitor minerals. At present, there is lack of agreement about the ages of certain minerals used as fluence monitors. The accuracy of the age of a standard may be improved if the age can be measured using different decay schemes. This has been done by measuring ages on minerals from the Oligocene Fish Canyon Tuff (FCT) using the K-Ar, 40Ar/39Ar. Rb-Sr and U/Pb methods. K-Ar and 40Ar/39Ar total fusion ages of sanidine, biotite and hornblende yielded a mean age of 27.57 ?? 0.36 Ma. The weighted mean 40Ar/39Ar plateau age of sanidine and biotite is 27.57 ?? 0.18 Ma. A biotite-feldspar Rb-Sr isochron yielded an age of 27.44 ?? 0.16 Ma. The U-Pb data for zircon are complex because of the presence of Precambrian zircons and inheritance of radiogenic Pb. Zircons with 207Pb/235U < 0.4 yielded a discordia line with a lower concordia intercept of 27.52 ?? 0.09 Ma. Evaluation of the combined data suggests that the best age for FCT is 27.51 Ma. Published by Elsevier Science B.V.

  7. Lead Isotopes in Olivine-Phyric Shergottite Tissint: Implications for the Geochemical Evolution of the Shergottite Source Mantle

    NASA Technical Reports Server (NTRS)

    Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.

    2015-01-01

    Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean

  8. Investigating the hydrological significance of stalagmite geochemistry (Mg, Sr) using Sr isotope and particulate element records across the Late Glacial-to-Holocene transition

    NASA Astrophysics Data System (ADS)

    Belli, R.; Borsato, A.; Frisia, S.; Drysdale, R.; Maas, R.; Greig, A.

    2017-02-01

    The trace element and Sr isotope records in two coeval stalagmites characterized by different growth rates and flow regimes at Savi cave (Grotta Savi, NE Italy) reveal different sources and incorporation mechanisms for Mg and Sr. Mg is sourced primarily from dissolved cave host rock while particulate Mg derived from soil plays a subordinate role. The presence of particulate-borne Mg is inferred from the co-variation of Mg and particle-associated elements (Th, Al and Mn) which are preferentially concentrated in open columnar calcite layers. Variation in Mg concentrations corrected for particle-influenced components, the Mgc parameter, is controlled by water-rock interaction, with higher and lower Mgc during dry and wet phases, respectively. This is thought to reflect incongruent dissolution of Mg-rich phases. Correction of Sr concentrations for contributions from airborne exogenic Sr, based on 87Sr/86Sr ratios, yields the bedrock-only contribution (Src). Src variation in stalagmite calcite is influenced by speleothem growth rate and by variation of the calcite-water Sr partitioning in wet and dry phases, and only to a minor extent by incongruent dissolution of Mg-rich phases. Concentration profiles for Mgc and Srcg (corrected for growth rate effects) show inverse correlations and are inferred to show hydrological significance which is captured in a hydrological index, HI. We suggest HI provides robust information on water-rock interaction related to hydrological changes and can be utilized in both wet and semi-arid environments, provided the corrections for soil Mg and exogenic Sr can be applied with confidence. Application of the HI index allows correction of Grotta Savi oxygen isotope data, to yield a δ18Oc time series that shows when changes in moisture sources and atmospheric reorganization, or changes in moisture amount, were significant. This is especially evident during the Younger Dryas (YD). The Savi record supports the concept of a two-phase YD, marked by

  9. The ruthenium isotopic composition of the oceanic mantle

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Walker, R. J.

    2017-09-01

    The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.

  10. Helium-strontium isotope constraints on mantle evolution beneath the Roman Comagmatic Province, Italy

    NASA Astrophysics Data System (ADS)

    Martelli, M.; Nuccio, P. M.; Stuart, F. M.; Burgess, R.; Ellam, R. M.; Italiano, F.

    2004-08-01

    A study of the He isotopic ratios of fluid inclusions in olivine and pyroxene from the Roman Comagmatic Province (RCP), Italy, is presented together with 87Sr/ 86Sr isotope compositions of the whole rock or pyroxene phenocrysts. A clear covariation in He and Sr isotopes is apparent, with a strong northward increase in radiogenic He and Sr being evident. He and Sr isotopes ratios range from 3He/ 4He=5.2 Ra and 87Sr/ 86Sr=0.7056 in south Campania, to 3He/ 4He=0.44 Ra and 87Sr/ 86Sr=0.715905 in the northernmost Latium. Helium isotope ratios are significantly lower than MORB values and are among the lowest yet measured in subduction zone volcanism. The 3He/ 4He of olivine and pyroxene phenocryst-hosted volatiles appear to be little influenced by posteruptive processes and magma-crust interaction. The 3He/ 4He- 87Sr/ 86Sr covariation is consistent with binary mixing between an asthenospheric mantle similar to HIMU ocean island basalts, and an enriched (radiogenic) mantle end member generated from subduction of the Ionian/Adriatic plate. The contribution of radiogenic He from metasomatic fluids and postmetasomatism radiogenic ingrowth in the wedge is strongly dependent on the initial He concentration of the mantle. Only when asthenosphere He concentrations are substantially lower than the MORB source mantle, and metasomatism occurred at the beginning of the subduction (˜30 Ma), can ingrowth in the mantle wedge account for the 3He/ 4He of the most radiogenic basalts.

  11. Composition of island arcs and continental growth.

    NASA Technical Reports Server (NTRS)

    Jakes, P.; White, A. J. R.

    1971-01-01

    Island arc volcanism has contributed and is still contributing to continental growth, but the composition of island arcs differs from that of the upper continental crust in its lower abundance of Si, K, Rb, Ba, Sr and light rare earth elements. In their advanced stage of evolution, island arcs contain more than 80% of tholeiitic and 15% of ?island arc' calc-alkaline rocks with varied SiO2 contents. The larger proportion of tholeiitic rocks is in the lower crustal levels. The high stratigraphical levels of the island arcs are composed of tholeiitic plus calc-alkaline and/or high potash (shoshonitic) associations with higher abundances of K, Rb, Sr, and Ba. Stratification of the island arc crust is accentuated by another type of calc-alkaline volcanism (Andean type) originating at a late stage of arc evolution, probably by partial melting at the base of the crust. This causes enrichment of the upper crust in K, Rb, Ba and REE and accounts for upper crustal abundances of these elements as well as of SiO2.

  12. Preparation of highly stable zeolite-alginate foam composite for strontium(90Sr) removal from seawater and evaluation of Sr adsorption performance.

    PubMed

    Hong, Hye-Jin; Kim, Byoung-Gyu; Ryu, Jungho; Park, In-Su; Chung, Kang-Sup; Lee, Sang Moon; Lee, Jin-Bae; Jeong, Hyeon Su; Kim, Hyunchul; Ryu, Taegong

    2018-01-01

    Alginate bead is a promising strontium (Sr) adsorbent in seawater, but highly concentrated Na ions caused over-swelling and damaged the hydrogel bead. To improve the mechanical stability of alginate bead, flexible foam-type zeolite-alginate composite was synthesized and Sr adsorption performance was evaluated in seawater; 1-10% zeolite immobilized alginate foams were prepared by freeze-dry technique. Immobilization of zeolite into alginate foam converted macro-pores to meso-pores which lead to more compact structure. It resulted in less swollen composite in seawater medium and exhibited highly improved mechanical stability compared with alginate bead. Besides, Sr adsorption efficiency and selectivity were enhanced by immobilization of zeolite in alginate foam due to the increase of Sr binding sites (zeolite). In particular, Sr selectivity against Na was highly improved. The 10% zeolite-alginate foam exhibited a higher log K d of 3.3, while the pure alginate foam exhibited 2.7 in the presence of 0.1 M Na. Finally, in the real seawater, the 10% zeolite-alginate foam exhibited 1.5 times higher Sr adsorption efficiency than the pure alginate foam. This result reveals that zeolite-alginate foam composite is appropriate material for Sr removal in seawater due to its swelling resistance as well as improved Sr adsorption performance in complex media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sulfur Isotope Composition of Putative Primary Troilite in Chondrules

    NASA Technical Reports Server (NTRS)

    Tachibana, Shogo; Huss, Gary R.

    2002-01-01

    Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.

  14. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods.

    PubMed

    Copeland, Sandi R; Sponheimer, Matt; le Roux, Petrus J; Grimes, Vaughan; Lee-Thorp, Julia A; de Ruiter, Darryl J; Richards, Michael P

    2008-10-01

    Strontium isotope ratios (87Sr/86Sr) in tooth enamel provide a means to investigate migration and landscape use in humans and other animals. Established methods for measuring (87)Sr/(86)Sr in teeth use bulk sampling (5-20 mg) and labor-intensive elemental purification procedures before analysis by either thermal ionization mass spectrometry (TIMS) or multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Another method for measuring 87Sr/86Sr is laser ablation MC-ICP-MS, but concerns have been expressed about its accuracy for measuring tooth enamel. In this study we test the precision and accuracy of the technique by analyzing 30 modern rodent teeth from the Sterkfontein Valley, South Africa by laser ablation MC-ICP-MS and solution MC-ICP-MS. The results show a mean difference in 87Sr/86Sr measured by laser ablation and by solution of 0.0003 +/- 0.0002. This degree of precision is well within the margin necessary for investigating the potential geographic origins of humans or animals in many areas of the world. Because laser ablation is faster, less expensive, and less destructive than bulk sampling solution methods, it opens the possibility for conducting 87Sr/86Sr analyses of intra-tooth samples and small and/or rare specimens such as micromammal and fossil teeth.

  15. Vibronic Transitions in the X-Sr Series (X=Li, Na, K, Rb): on the Accuracy of Nuclear Wavefunctions Derived from Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Meyer, Ralf; Pototschnig, Johann V.; Hauser, Andreas W.; Ernst, Wolfgang E.

    2016-06-01

    Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. The preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. On the theoretical side, highly accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. Particularly problematic is the correct description of potential features at large intermolecular distances. Franck-Condon overlap integrals for nuclear wavefunctions in barely bound vibrational states are extremely sensitive to inaccuracies of the potential at long range. In this study, we compare the predictions of common, wavefunction-based ab initio techniques for a known de-excitation mechanism in alkali-alkaline earth dimers. It is the aim to analyze the predictive power of these methods for a preliminary evaluation of potential cooling mechanisms in heteronuclear open shell systems which offer the experimentalist an electric as well as a magnetic handle for manipulation. The series of X-Sr molecules, with X = Li, Na, K and Rb, has been chosen for a direct comparison. Quantum degenerate mixtures of Rb and Sr have already been produced, making this combination very promising for the production of ultracold molecules. B. Pasquiou, A. Bayerle, S. M. Tzanova, S. Stellmer, J. Szczepkowski, M. Parigger, R. Grimm, and F. Schreck, Phys. Rev. A, 2013, 88, 023601

  16. Assessing Covariation of Holocene Monsoon Intensity and Local Moisture Conditions in Eastern and Southwestern Amazon Basin Using Speleothem δ18O and 87Sr/86Sr Values

    NASA Astrophysics Data System (ADS)

    Ward, B. M.; Wong, C. I.; Novello, V. F.; Silva, L.; McGee, D.; Cheng, H.; Wang, X.; Edwards, R. L.; Cruz, F. W., Sr.; Santos, R. V.

    2017-12-01

    δ18O records from South America offer insight into past variability of the South American Monsoon System (SAMS). Potential, however, for understanding local moisture conditions is limited as precipitation δ18O is strongly influenced by regional climate dynamics. Here we create Holocene speleothem 87Sr/86Sr records at 200-yr resolution using TIMS methods in the Center for Isotope Geochemistry at Boston College to complement existing Holocene δ18O speleothem records and investigate local moisture conditions above caves located in the eastern Amazon Basin (PAR - 4°S, 55°W) and southwestern Brazil (JAR - 21°S, 56°W). Speleothem 87Sr/86Sr variability is interpreted to reflect differences in the extent of water-rock interaction due to differences in infiltration rates under wet and dry conditions. Drier conditions promote longer residence time, enhanced water-rock interaction, and greater evolution of dripwater 87Sr/86Sr values from an initial isotopic signature acquired from the soil to the signature of the cave host rock. PAR speleothem 87Sr/86Sr values range from 0.71024 to 0.71067 and are bracketed by soil (0.71710 to 0.70956) and bedrock (0.70852 to 0.70899) values. JAR speleothem 87Sr/86Sr values range from 0.71216 to 0.71539 and are greater than bedrock values (0.70825 to 0.71219), although some speleothem values exceed the single analysis conducted of the soil isotopic composition (0.71473). JAR speleothem 87Sr/86Sr values increase from the early to mid Holocene, consistent with increase in local moisture availability associated with intensification of the SAMS suggested by decreasing δ18O values in many records from the region. Speleothem 87Sr/86Sr values at JAR decrease from the mid to late Holocene, consistent with an increase in δ18O values at PAR that suggest a decline in monsoon intensity. 87Sr/86Sr variability at JAR, however, is positively correlated with the δ18O record. Preliminary 87Sr/86Sr results from PAR are only broadly consistent with

  17. Preparation, characterization and photocatalytic activities of TiO2-SrTiO3 composites

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhu, Lianjie; Gao, Fubo; Xie, Hanjie

    2017-01-01

    Series of TiO2-SrTiO3 composites were synthesized by hydrothermal method, using TiO2 nanotube array as a precursor and Sr(OH)2 as a Sr source material. TiO2-SrTiO3 products with various composition were obtained by simply changing the reaction time. The as-synthesized products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical properties were studied by means of UV-Vis absorption spectroscopy and photoluminescence (PL) spectra. Their photocatalytic activities were assessed by photodegradation of rhodamine B (RhB) solution and the photocatalytic reaction mechanism was discussed. The TiO2-SrTiO3 composites obtained at 2 h exhibits the highest activity for photodegradation of RhB.

  18. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy

    USGS Publications Warehouse

    Battistel, Maria; Hurwitz, Shaul; Evans, William; Barbieri, Maurizio

    2017-01-01

    Geothermal energy exploration is based in part on interpretation of the chemistry, temperature, and discharge rate of thermal springs. Here we present the major element chemistry and the δD, δ18O, 87Sr/86Sr and δ11B isotopic ratio of groundwater from the low-enthalpy geothermal system near the city of Viterbo in the Cimino-Vico volcanic district of west-Central Italy. The geothermal system hosts many thermal springs and gas vents, but the resource is still unexploited. Water chemistry is controlled by mixing between low salinity,HCO3-rich fresh waters (<24.2°C) flowing in shallow volcanic rocks and SO4-rich thermal waters (25.3°C to 62.2°C) ascending from deep, high permeability Mesozoic limestones. The (equivalent) SO4/Cl (0.01–0.02), Na/Cl (2.82–5.83) and B/Cl ratios (0.02–0.38) of thermal waters differs from the ratios in other geothermal systems from Central Italy, probably implying a lack of hydraulic continuity across the region. The δ18O (−6.6‰ to −5.9‰) and δD (−40.60‰ to −36.30‰) isotopic composition of spring water suggest that the recharge area for the geothermal system is the summit region of Mount Cimino. The strontium isotope ratios (87Sr/86Sr) of thermal waters (0.70797–0.70805) are consistent with dissolution of the Mesozoic evaporite-carbonate units that constitute the reservoir, and the ratios of cold fresh waters mainly reflect shallow circulation through the volcanic cover and some minor admixture (<10%) of thermal water as well. The boron isotopic composition (δ11B) of fresh waters (−5.00 and 6.12‰) is similar to that of the volcanic cover, but the δ11B of thermal waters (−8.37‰ to −4.12‰) is a mismatch for the Mesozoic reservoir rocks and instead reflects dissolution of secondary boron minerals during fluid ascent through flysch units that overlie the reservoir. A slow and tortuous ascent enhances extraction of boron but also promotes conductive cooling, partially masking the heat present in the

  19. Tracing Nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan)

    NASA Astrophysics Data System (ADS)

    Padoan, Marta; Garzanti, Eduardo; Harlavan, Yehudit; Villa, Igor Maria

    2011-06-01

    Strontium and neodymium isotopes, measured on diverse mud and sand fractions of sediment in transit along all major Nile branches, identify detritus sourced from Precambrian basements, Mesozoic strata, and Tertiary volcanic rocks exposed along the shoulders of the East African rift and in Ethiopian highlands. Sr and Nd isotopic ratios reflect the weighted average of detrital components generated in different catchments, allowing us to discriminate provenance, calculate sediment budgets, and investigate grain-size and hydraulic-sorting effects. 87Sr/ 86Sr and 143Nd/ 144Nd range, respectively, from as high as 0.722 and as low as 0.5108 for sediment derived from Archean gneisses in northern Uganda, to 0.705 and 0.5127 for sediment derived from Neoproterozoic Ethiopian and Eritrean basements. 87Sr/ 86Sr and 143Nd/ 144Nd, ranging 0.705-0.709 and 0.5124-0.5130 for Blue Nile tributaries, are 0.704-0.705 and 0.5127-0.5128 for largely volcaniclastic sediments of River Tekeze-Atbara, and 0.705-0.706 and 0.5126-0.5127 for main Nile sediments upstream Lake Nasser. Model mantle derivation ages ( tDM), oldest in Uganda where sediment is principally derived from the Congo Craton (3.4-3.0 Ga for Victoria and Albert Nile), progressively decrease northward across the Saharan Metacraton, from 2.6 Ga (Bahr el Jebel in South Sudan), to 2.4-2.2 Ga (Bahr ez Zeraf across the Sudd), and finally 1.6-1.3 Ga (White Nile upstream Khartoum). Instead, tDM ages of Sobat mud increase from 0.9 to 1.5 Ga across the Machar marshes. TDM ages are younger for sediments shed by Ethiopian (1.2-0.7 Ga) and Eritrean basements (1.5-1.2 Ga), and youngest for sediments shed from Ethiopian flood basalts (0.3-0.2 Ga). Integrated geochemical, mineralogical, and settling-equivalence analyses suggest influence on the Nd isotopic signal by volcanic lithic grains and titanite rather than by LREE-rich monazite or allanite. Because contributions by ultradense minerals is subordinate, intrasample variability of Sr and

  20. Rare earth elements and (87)Sr/(86)Sr isotopic characterization of Indian Basmati rice as potential tool for its geographical authenticity.

    PubMed

    Lagad, Rupali A; Singh, Sunil K; Rai, Vinai K

    2017-02-15

    The increasing demand for premium priced Indian Basmati rice (Oryza sativa) in world commodity market causing fraudulent activities like adulteration, mislabelling. In order to develop authentication method for Indian Basmati rice, (87)Sr/(86)Sr ratios and REEs composition of Basmati rice, soil and water samples were determined and evaluated their ability as geographical tracer in the present study. In addition, the possible source of Sr in rice plant has also been examined. Basmati rice samples (n=82) showed (87)Sr/(86)Sr ratios in the range 0.71143-0.73448 and concentrations of 10 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb) in ppb levels. Statistical analysis showed strong correlation between (87)Sr/(86)Sr ratios of rice, silicate and carbonate fractions of soil. Good correlation and closeness of (87)Sr/(86)Sr of rice with water indicate its uptake in rice from water. Rice grown in southern Uttar Pradesh contains higher (87)Sr/(86)Sr compared to other region of Indo-Gangetic Plain due to higher (87)Sr/(86)Sr of the Ganga compared to other rivers. (87)Sr/(86)Sr ratios can be used as a tracer for differentiating Indian Basmati rice from the other country originated rice samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Reinterpreting the Early Cretaceous Sulfur Isotope Records: Implications for the Evolution of Seawater Chemistry

    NASA Astrophysics Data System (ADS)

    Mills, J. V.; Gomes, M. L.; Sageman, B. B.; Jacobson, A. D.; Hurtgen, M. T.

    2013-12-01

    The geologic record of the Cretaceous is punctuated by several periods of high organic carbon burial interpreted to represent global Ocean Anoxic Events (OAEs). In addition to the short-term (<1-Myr) changes in carbon (C) cycling associated with OAEs, evidence from a number of geochemical proxies has been interpreted to represent large-scale changes in ocean chemistry during the period. Specifically, the sulfur (S) isotope composition of early Cretaceous seawater sulfate as recorded in marine barite exhibits an ~5 permil shift in d34Ssulfate that persists for ~15Myr before returning to pre-excursion values. Superimposed upon this long-term shift in S-isotopes is OAE1a, the second major anoxic event recognized in the Cretaceous. Two hypotheses have been proposed to explain this S isotope perturbation: (1) massive evaporite deposition associated with rifting during the opening of the South Atlantic and a corresponding decrease in pyrite burial rates and (2) increased inputs of volcanic-derived S due to extensive LIP-volcanism. While there is geologic evidence for both evaporite deposition and enhanced hydrothermal activity, the relative influence of these potential driving factors remains largely unconstrained. Variation in the strontium (Sr) isotope composition of marine carbonates provides a tool for distinguishing between these influences. We examine the S isotope composition of carbonate-associated sulfate (CAS) spanning the Barremian through Aptian from Resolution Guyot (ODP Site 866) and compare the S isotope record to time equivalent records of carbon and strontium isotopes. Correlative changes in the C, S, and Sr cycles are observed: an ~5 permil shift in d34Ssulfate, which begins at the onset of OAE1a and continues after the positive d13Ccarb excursion, is accompanied by a contemporaneous, parallel shift in 87Sr/86Sr to unradiogenic values. The tight coupling observed between S and Sr throughout the interval is highly suggestive of a common driving mechanism

  2. Sm-Nd Isotopic Systematics of Troctolite 76335

    NASA Technical Reports Server (NTRS)

    Edmunson, J.; Nyquist, L. E.; Borg, L. E.

    2007-01-01

    A study of the Sm-Nd isotopic systematics of lunar Mg-suite troctolite 76335 was undertaken to further establish the early chronology of lunar magmatism. Because the Rb-Sr isotopic systematics of similar sample 76535 yielded an age of 4570 +/- 70 Ma [2, lambda = 1.402 x 10(exp -11)], 76335 was expected to yield an old age. In contrast, the Sm-Nd and K-Ar ages of 76535 indicate that the sample is approximately 4260 Ma old, one of the youngest ages obtained for a Mg-suite rock. This study establishes the age of 76335 and discusses the constraints placed on its petrogenesis by its Sm-Nd isotope systematics. The Sm-Nd isotopic system of lunar Mg-suite troctolite 76335 indicates an age of 4278 +/- 60 Ma with an initial epsilon (sup 143)(sub Nd) value of 0.06 +/- 0.39. These values are consistent with the Sm-Nd isotopic systematics of similar sample 76535. Thus, it appears that a robust Sm-Nd age can be determined from a highly brecciated lunar sample. The Sm-Nd isotopic systematics of troctolites 76335 and 76535 appear to be different from those dominating the Mg-suite norites and KREEP basalts. Further analysis of the Mg-suite must be completed to reveal the isotopic relationships of these early lunar rocks.

  3. Growth rates, stable oxygen isotopes (δ18O), and strontium (Sr/Ca) composition in two species of Pacific sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with δ18O calibration and application to paleoceanography

    NASA Astrophysics Data System (ADS)

    Grottoli, AndréA. G.; Adkins, Jess F.; Panero, Wendy R.; Reaman, Daniel M.; Moots, Kate

    2010-06-01

    The isotopic and elemental composition of sclerosponge skeletons is used to reconstruct paleoceanographic records. Yet few studies have systematically examined the natural variability in sclerosponge skeletal δ18O, growth, and Sr/Ca, and how that may influence the interpretation of sclerosponge proxy records. Here, we analyzed short records in seven specimens of Acanthocheatetes wellsi (high-Mg calcite, 21 mol% Mg) from Palau, four A. wellsi (high-Mg calcite, 21 mol% Mg) from Saipan, and three Astrosclera willeyana (aragonite) sclerosponges from Saipan, as well as one long record in an A. wellsi specimen from Palau spanning 1945-2001.5. In Saipan, species-specific and mineralogical effects appear to have a negligible effect on sclerosponge δ18O, facilitating the direct comparison of δ18O records between species at a given location. At both sites, A. wellsi δ18O and growth rates were sensitive to environmental conditions, but Sr/Ca was not sensitive to the same conditions. High-resolution δ18O analyses confirmed this finding as both A. wellsi and A. willeyana deposited their skeleton in accordance with the trends in isotopic equilibrium with seawater, though with a 0.27‰ offset in the case of A. willeyana. In the high-Mg-calcite species A. wellsi, Mg may be interfering with Sr incorporation into the skeleton. On multidecadal timescales, A. wellsi sclerosponge δ18O in Palau tracked the Southern Oscillation Index variability post-1977, but not pre-1977, coincident with the switch in the Pacific Decadal Oscillation (PDO) at ˜1976. This suggests that water mass circulation in the region is influenced by El Niño— Southern Oscillation variability during positive PDO phases, but not during negative ones.

  4. Geological, geochemical and isotope diversity of 134 Ma dykes from the Florianópolis Dyke Swarm, Paraná Magmatic Province: Geodynamic controls on petrogenesis

    NASA Astrophysics Data System (ADS)

    Florisbal, L. M.; Janasi, V. A.; Bitencourt, M. F.; Nardi, L. V. S.; Marteleto, N. S.

    2018-04-01

    The Florianópolis Dyke Swarm (FDS), one of the major dyke swarms belonging to the Early cretaceous (135-131 Ma) Paraná Magmatic Province, is largely dominated by high Sr-Ti-P basalts that are confirmed here as feeders of the unique Urubici (= Khumib) lavas of the Paraná and Edendeka lava piles on the basis of their age and geochemistry. Our study integrates field, petrographic, whole-rock geochemistry, and Sr-Nd-Pb isotope geochemistry of representative samples from three main areas of exposition (Santa Catarina Island, Garopaba and Pinheira beaches), thus encompassing the whole extension of the FDS. Compared to the Urubici lavas, the dykes have usually higher contents of LILE and LREE, more radiogenic Sr and Pb, and more unradiogenic Nd, features attributed to a more pronounced interaction with melts derived from the country rocks registered in the basic magmas that remained in the conduits. Some of these dykes show strongly interactive contacts that must be part of a wider zone of crustal melting, probably more developed at greater depths. Small volumes of intermediate to acidic rocks form the cores of some composite dykes, and correspond to products of fractional crystallization from Urubici basalts contaminated with high Rb/Sr, and U/Th crustal melts (probably derived from Neoproterozoic granites), as indicated by geochemical and Sr-Nd-Pb isotope data. The chemical and isotope signatures of the less contaminated FDS basalts and related Urubici lavas do not show clear evidence of inputs from primitive mantle, and seem heavily influenced by enriched mantle. This suggests that the mantle wedge that was affected by subduction during the Neoproterozoic may have been frozen and coupled to the base of the lithospheric plate where the Early cretaceous magmatism occurred. A control of previous tectonic limits on the sources of the Urubici basalts seems evident, since they seem to be related to the younger lithosphere from the South Domain, related to the Florian

  5. The silicon isotope composition of the upper continental crust

    NASA Astrophysics Data System (ADS)

    Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Halliday, Alex N.

    2013-05-01

    The upper continental crust (UCC) is the major source of silicon (Si) to the oceans and yet its isotopic composition is not well constrained. In an effort to investigate the degree of heterogeneity and provide a robust estimate for the average Si isotopic composition of the UCC, a representative selection of well-characterised, continentally-derived clastic sediments have been analysed using high-precision MC-ICPMS. Analyses of loess samples define a narrow range of Si isotopic compositions (δ30Si = -0.28‰ to -0.15‰). This is thought to reflect the primary igneous mineralogy and predominance of mechanical weathering in the formation of such samples. The average loess δ30Si is -0.22 ± 0.07‰ (2 s.d.), identical to average granite and felsic igneous compositions. Therefore, minor chemical weathering does not resolvably affect bulk rock δ30Si, and loess is a good proxy for the Si isotopic composition of unweathered, crystalline, continental crust. The Si isotopic compositions of shales display much more variability (δ30Si = -0.82‰ to 0.00‰). Shale Si isotope compositions do not correlate well with canonical proxies for chemical weathering, such as CIA values, but do correlate negatively with insoluble element concentrations and Al/Si ratios. This implies that more intensive or prolonged chemical weathering of a sedimentary source, with attendant desilicification, is required before resolvable negative Si isotopic fractionation occurs. Shale δ30Si values that are more positive than those of felsic igneous rocks most likely indicate the presence of marine-derived silica in such samples. Using the data gathered in this study, combined with already published granite Si isotope analyses, a weighted average composition of δ30Si = -0.25 ± 0.16‰ (2 s.d.) for the UCC has been calculated.

  6. The magmatic evolution and genesis of the Quaternary basanite-trachyphonolite suite of Itasy (Madagascar) as inferred by geochemistry, Sr-Nd-Pb isotopes and trace element distribution in coexisting phases

    NASA Astrophysics Data System (ADS)

    Melluso, L.; Tucker, R. D.; Cucciniello, C.; le Roex, A. P.; Morra, V.; Zanetti, A.; Rakotoson, R. L.

    2018-06-01

    The Itasy is a Pleistocene-Holocene volcanic field in central Madagascar, located to the west of the Ankaratra volcanic complex. It comprises scoria cones and lava domes (>120), with associated pyroclastic fall and mafic lava flows, covering an area of ab. 400 km2. The last volcanic episodes probably dated ca. 6000-7100 y BP; warm springs and geysers are active. The juvenile samples comprise a peculiar, almost bimodal, rock suite ranging from potassic leucite-kaersutite-bearing basanites, tephrites and phonotephrites, to benmoreites and titanite-haüyne-bearing trachyphonolites (MgO from 9-10 wt% to 0.1 wt%). These rocks show continuous and overlapping variations in the bulk-rock and phase composition (olivine, clinopyroxene, amphibole, feldspar, leucite, haüyne, nepheline, oxides, apatite, titanite, glass and other accessories). The basanites have homogeneous isotopic composition (87Sr/86Sr = 0.70366-0.70378, 143Nd/144Nd = 0.51274-0.51277, 206Pb/204Pb = 18.7-18.9, 207Pb/204Pb = 15.53-15.56; 208Pb/204Pb = 38.89-39.01), and a marked enrichment in the most incompatible elements (LILE and HFSE reach 100-215 times primitive mantle). These features are consistent with low degrees of partial melting of a volatile-, LILE- and HFSE-rich, amphibole-bearing peridotitic mantle induced by uplift during an E-W-directed extensional regime, as is found in central Madagascar. The marked changes in the geochemical composition, and small variations of the Sr-Nd-Pb isotopes in the trachyphonolites (87Sr/86Sr = 0.70425-0.70446, 143Nd/144Nd = 0.51266-0.51269, 206Pb/204Pb = 18.18-18.39, 207Pb/204Pb = 15.49-15.51; 208Pb/204Pb = 38.38-39.57) with respect to basanites and tephrites point to a limited amount of crustal contamination by the relatively low-206Pb/204Pb, low-143Nd/144Nd, high-87Sr/86Sr Precambrian basement rocks (of Middle Archean to Late Proterozoic age), and highlight the geochemical effects of titanite and anorthoclase removal on the trace element fractionation trends, a

  7. Controls on the barium isotope compositions of marine sediments

    NASA Astrophysics Data System (ADS)

    Bridgestock, Luke; Hsieh, Yu-Te; Porcelli, Donald; Homoky, William B.; Bryan, Allison; Henderson, Gideon M.

    2018-01-01

    The accumulation of barium (Ba) in marine sediments is considered to be a robust proxy for export production, although this application can be limited by uncertainty in BaSO4 preservation and sediment mass accumulation rates. The Ba isotope compositions of marine sediments could potentially record insights into past changes in the marine Ba cycle, which should be insensitive to these limitations, enabling more robust interpretation of sedimentary Ba as a proxy. To investigate the controls on the Ba isotope compositions of marine sediments and their potential for paleo-oceanographic applications, we present the first Ba isotope compositions results for sediments, as well as overlying seawater depth profiles collected in the South Atlantic. Variations in Ba isotope compositions of the sediments predominantly reflect changes in the relative contributions of detrital and authigenic Ba sources, with open-ocean sediments constraining the isotope composition of authigenic Ba to be δ 138/134Ba ≈ + 0.1 ‰. This value is consistent with the average isotope composition inferred for sinking particulate Ba using simple mass balance models of Ba in the overlying water column and is hypothesized to reflect the removal of Ba from the upper water column with an associated isotopic fractionation of Δ diss-part 138/134Ba ≈ + 0.4 to +0.5. Perturbations to upper ocean Ba cycling, due to changes in export production and the supply of Ba via upwelling, should therefore be recorded by the isotope compositions of sedimentary authigenic Ba. Such insights will help to improve the reliable application of Ba accumulation rates in marine sediments as a proxy for past changes in export production.

  8. Temporal geochemical evolution of Kilauea Volcano: Comparison of Hilina and Puna Basalt

    NASA Astrophysics Data System (ADS)

    Chen, C.-Y.; Frey, F. A.; Rhodes, J. M.; Eastern, R. M.

    Temporal geochcmical variations in Hawaiian shield-building lavas provide important constraints on the origin and evolution of these lavas. We determined the major and trace element content, and Sr, Nd and Pb isotopic ratios of the oldest subaerially exposed lavas on Kilauea Volcano, i.e., the >25 Ka to perhaps 100 Ka, Hilina Basalt. Except for lower K2O and Rb abundances in Hilina lavas, the compositions of these prehistoric lavas overlap with historical Kilauea lavas. Although the studied Hilina lavas are not highly altered, the lower abundances of K2O and Rb may reflect post-eruptive alteration. Compared with historical Kilauea lavas, Hilina lavas have a similar range in Sr and Nd isotopic ratios, but they range to more radiogenic Pb isotopic ratios. The mantle source of Kilauea lavas is heterogeneous in isotopic ratios and perhaps in abundance ratios of some incompatible elements, but there is no evidence for systematic long-term geochemical variations in the source of Kilauea lavas. None of the prehistoric Kilauea lavas have isotopic characteristics similar to those of subaerial Mauna Loa lavas. Apparently, the sources and ascent paths of lavas forming the adjacent Kilauea and Mauna Loa shields have largely remained distinct during subaerial growth of the Kilauea shield. Compared to lavas from other Hawaiian shields, Kilauea lavas range to relatively high 206Pb/204Pb and low 87Sr/86Sr. These isotopic ratios are correlated with trace element abundance ratios that involve Nb, e.g., Zr/Nb; some Hilina lavas define the upper range in 206Pb/204Pb (˜18.82), and they have low Zr/Nb (˜8). This "Kilauea component" which has isotopic characteristics similar to the FOZO component (e.g., Hauri et al., 1994a] is an intrinsic part of the Hawaiian plume.

  9. Triple oxygen isotope composition of photosynthetic oxygen

    NASA Astrophysics Data System (ADS)

    van der Meer, Anne; Kaiser, Jan

    2013-04-01

    The measurement of biological production rates is essential for our understanding how marine ecosystems are sustained and how much CO2 is taken up through aquatic photosynthesis. Traditional techniques to measure marine production are laborious and subject to systematic errors. A biogeochemical approach based on triple oxygen isotope measurements in dissolved oxygen (O2) has been developed over the last few years, which allows the derivation of gross productivity integrated over the depth of the mixed layer and the time-scale of O2 gas exchange (Luz and Barkan, 2000). This approach exploits the relative 17O/16O and 18O/16O isotope ratio differences of dissolved O2 compared to atmospheric O2 to work out the rate of biological production. Two parameters are key for this calculation: the isotopic composition of dissolved O2 in equilibrium with air and the isotopic composition of photosynthetic oxygen. Recently, a controversy has emerged in the literature over these parameters (Kaiser, 2011) and one of the goals of this research is to provide additional data to resolve this controversy. In order to obtain more information on the isotopic signature of biological oxygen, laboratory experiments have been conducted to determine the isotopic composition of oxygen produced by different phytoplankton cultures.

  10. Open system models of isotopic evolution in Earth's silicate reservoirs: Implications for crustal growth and mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti; Stracke, Andreas

    2016-12-01

    An open system evolutionary model of the Earth, comprising continental crust (CC), upper and lower mantle (UM, LM), and an additional isolated reservoir (IR) has been developed to study the isotopic evolution of the silicate Earth. The model is solved numerically at 1 Myr time steps over 4.55 Gyr of Earth history to reproduce both the present-day concentrations and isotope ratios of key radioactive decay systems (Rb-Sr, Sm-Nd, and U-Th-Pb) in these terrestrial reservoirs. Various crustal growth scenarios - continuous versus episodic and early versus late crustal growth - and their effect on the evolution of Sr-Nd-Pb isotope systematics in the silicate reservoirs have been evaluated. Modeling results where the present-day UM is ∼60% of the total mantle mass and a lower mantle that is non-primitive reproduce the estimated geochemical composition and isotope ratios in Earth's silicate reservoirs. The isotopic evolution of the silicate Earth is strongly affected by the mode of crustal growth; only an exponential crustal growth pattern with crustal growth since the early Archean satisfactorily explains the chemical and isotopic evolution of the crust-mantle system and accounts for the so-called Pb paradoxes. Assuming that the OIB source is located in the deeper mantle, our model could, however, not reproduce its target ɛNd of +4.6 for the UM, which has been estimated from the average isotope ratios of 32 individual ocean island localities. Hence, either mantle plumes sample the LM in a non-representative way, or the simplified model set-up does not capture the full complexity of Earth's lower mantle (Nd isotope) evolution. Compared to the results obtained for a 4.55 Ga Earth, a model assuming a protracted U-Pb evolution of silicate Earth by ca. 100 Myr reproduces a slightly better fit for the Pb isotope ratios in Earth's silicate reservoirs. One notable feature of successful models is the early depletion of incompatible elements (as well as rapid decrease in Th/U) in

  11. Applicability of 87Sr/86Sr in examining return flow of irrigation water in highly agricultural watersheds in Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Nakano, T.; Shin, K. C.; Tsuchihara, T.; Miyazu, S.; Kubota, T.

    2017-12-01

    Water flows in watersheds containing extensive areas of irrigated paddies are complex because of the substantial volumes involved and the repeated cycles of water diversion from, and return to, streams. For better management of low-flow conditions, numerous studies have attempted to quantify the return flow using the stable isotopes of water; however, the temporal variation in these isotopic compositions due to fractionation during evaporation from water surfaces hinders their application to watersheds with extensive irrigated paddies. In this study, we tested the applicability of the strontium isotopes (87Sr/86Sr, hereafter Sr ratio) for studying hydrological processes in a typical agricultural watershed located on the alluvial fan of the Kinu River, namely the Gogyo River, in central Japan. The Sr ratio of water changes only because of interactions with the porous media it flows through, or because of mixing with water that has different Sr ratios. We sampled water both at a single rice paddy, and on the watershed scale in the irrigated and non-irrigated periods. The soil water under the paddy decreased as sampling depth increased, and the soil water at a depth of 1.5 m showed a similar Sr ratio to the spring. The water sampled in the drainage channel with a concrete lined bottom showed a similar Sr ratio to the irrigation water, whereas that with a soil bottom was plotted between the plots of the irrigation water and shallow aquifer. These results suggest the Sr ratio decreases as it mixes with the soil water through percolation; whereas the Sr ratio will be less likely to change when water drains from paddies via surface pathways. The streamflow samples were plotted linearly on the Sr ratio and 1/Sr plot, indicating that the streamflow was composed of two end-members; the irrigation water and the shallow aquifer. The continuous decline in the Sr ratio along the stream suggests an exfiltration of water from the shallow aquifers. The stream water during the non

  12. Boron Isotopic Composition Correlates with Ultra-Structure in a - Sea Coral Lophelia Pertusa: Implications for Biomineralization and - PH

    NASA Astrophysics Data System (ADS)

    Blamart, D.; Rollion-Bard, C.; Meibom, A.; Cuif, J.; Juillet-Leclerc, A.; Dauphin, Y.; Douarin, M.

    2007-12-01

    The geochemistry (stable isotopes and trace elements) of biogenic carbonates has been widely used for more than fifty years to reconstruct past climatic variability. During this time, the studies were mainly based on bulk sampling limiting sometimes the interpretations of the geochemical data as paleoclimatic proxies. Recently, high spatial resolution sampling techniques, such as micro-mill and SIMS, have been employed in the study of C, O and B isotopic compositions and trace elements (Mg, Sr) in the skeletons of a variety of (deep-sea) coral species. These studies have documented dramatic 'vital effects' and uncovered a systematic relationship between skeletal ultra-structure and stable isotopic composition. The formation of skeleton corals follows a universal two-step growth process. At the tips of the skeletal structures, the mineralizing cell layer produces centers of calcification (COC) or, equivalently, Early Mineralization Zone (EMZ). These EMZ are subsequently overgrown by fibrous aragonite(FA) consisting of cyclically added layers. The EMZ are characterized by systematically lighter C and O isotopic compositions compared with the adjacent FA. A number of geochemical models have been proposed, in which this systematic stable isotopic difference between EMZ and FA is ascribed to a biologically induced variation in the pH of a proposed Extra-cytoplasmic Calcifying Fluid (ECF) reservoir. In these models, relatively high pH conditions during the formation of EMZ result in relatively light C and O isotopic compositions compared with FA, which form under generally lower pH conditions. A direct test of such models would be possible if the Boron isotopic composition, which is pH sensitive, of EMZ and FA could be measured. We performed ion microprobe d11B measurements for EMZ and FA in Lophelia pertusa, a deep-sea coral common in the North-East Atlantic Ocean. We observe a systematic difference in B isotopic composition between the EMZ and FA skeleton. In EMZ, the

  13. Radiogenic isotopic approaches for quantifying radionuclide transport (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Depaolo, D. J.; Singleton, M. J.; Christensen, J. N.; Conrad, M. E.

    2009-12-01

    Naturally occurring variations in the isotopic compositions of U and Sr provide unique opportunities for assessing the fate and transport of radionuclides at field-scale conditions. When coupled with reactive transport models, U and Sr isotopes may also provide additional constraints on the rates of sediment-fluid or sediment-waste interactions. Such isotopic approaches can be useful for sites where subsurface characterization is complicated by a lack of accessibility or the presence of substantial heterogeneity. In addition, a variety of quantitative modeling approaches of different complexity can be used to evaluate experimentally determined parameters for radionuclide mobility at the field-scale. At the Hanford Site in eastern Washington, 87Sr/86Sr and 234U/238U ratios have been used to quantify the residence time of Sr and U in the unsaturated zone, the long-term background infiltration rate through the unsaturated zone, and to assess the influence of enhanced wastewater discharge on the regional unconfined aquifer. As a result of different processing techniques or due to interactions between caustic waste and the natural sediment, waste plumes may also inherit isotopic fingerprints (e.g. 234U/238U, 235U/238U, 236U/238U; δ15N & δ18O of nitrate) that can be used to resolve multiple sources of contamination. Finally, enriched isotopic tracers can be applied to experimental manipulations to assess the retardation of a variety of contaminants. Collectively this isotopic data contributes unique perspectives on both the hydrologic conditions across the site and the mobility of key radionuclides. Predicting the long-term fate and transport of radionuclides in the environment is often challenging due to natural heterogeneity and incomplete characterization of the subsurface, however detailed analysis of isotopic variations can provide one additional means of characterizing the subsurface.

  14. Constraints on Late Paleozoic Ocean Response to Climate Change Based on Brachiopod δ11B and 87Sr/86Sr

    NASA Astrophysics Data System (ADS)

    Legett, S. A.; Rasbury, T.; Grossman, E. L.; Hemming, G.

    2017-12-01

    In order to understand the possible effects of climate change on present day oceans, it is important to determine how marine systems responded to climate change in the past. This study uses δ11B values from well-preserved Carboniferous and Permian brachiopods as well as models to examine chemical trends in seawater and how these relate to long- and short-term climate changes. Our results show that δ11B rises rapidly going into the Carboniferous from a low of 10‰ to a high of 17‰ and remains relatively stable through the Carboniferous, despite the initiation of glaciation in the Mid Carboniferous. At the Carboniferous-Permian boundary, δ11B declines into the Early Permian before reaching a low at the Sakmarian. This decline in δ11B is coincident with the decrease in 87Sr/86Sr through this interval, which corresponds to evidence for aridity going into the Permian. We hypothesize that a reduction in silicate weathering drives an increase in atmospheric pCO2 and a subsequent lowering of ocean pH going into the Permian. This is consistent with our interpretation of the Carboniferous-Permian boundary, as a major mechanism for controlling seawater boron isotope composition is the adsorption of borate on clays, removing isotopically light boron and thus leaving seawater boron isotopically heavy. Therefore, at lower pH seawater should become isotopically lighter as this mechanism for removal is reduced. These hypotheses are supported by our initial modeling results of the B and Sr isotopic budgets of the ocean during the Late Paleozoic.

  15. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stueber, A.M.; Walter, L.M.; Huston, T.J.

    1993-02-01

    We have analyzed a suite of seventy-four formation-water samples from Mississippian and Pennsylvanian carbonate and siliciclastic strata in the Illinois basin for major, minor, and trace element concentrations and for strontium isotopic composition. A subset of these samples was also analyzed for boron isotopic composition. Data are used to interpret origin of salinity and chemical and Sr isotopic evolution of the brines and in comparison with a similar data set from an earlier study of basin formation waters from Silurian-Devonian reservoirs. Systematics of Cl-Br-Na show that present Mississippian-Pennsylvanian brine salinity can be explained by a combination of subaerial seawater evaporationmore » short of halite saturation and subsurface dissolution of halite from an evaporite zone in the middle Mississippian St. Louis Limestone, along with extensive dilution by mixing with meteoric waters. Additional diagenetic modifications in the subsurface interpreted from cation/Br ratios include K depletion through interaction with clay minerals, Ca enrichment, and Mg depletion by dolomitization, and Sr enrichment through CaCO[sub 3] recrystallization and dolomitization. Ste. Genevieve Limestone (middle Mississippian) formation waters show [sup 87]Sr/[sup 86]Sr ratios in the range 0.70782-0.70900, whereas waters from the siliciclastic reservoirs are in the rante 0.70900-0.71052. Inverse correlations between [sup 87]Sr/[sup 86]Sr and B,Li, and Mg concentrations suggest that the brines acquired radiogenic [sup 87]Sr through interaction with siliciclastic minerals. Completely unsystematic relations between [sup 87]Fr/[sup 86]Sr and 1/Sr are observed; Sr concentrations in Ste. Genevieve and Aux Vases (middle Mississippian) waters appear to be buffered by equilibrium with respect to SrSo[sub 4]. These formation waters are distinguished from Silurian-Devonian brines in the basin by elevated Cl/Br and Na/Br ratios and by unsystematic Sr isotope relationships.« less

  16. Determination of 90Sr and Pu isotopes in contaminated groundwater samples by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, Miroslav V.; Ostapczuk, Peter; Halicz, Ludwik; Hille, Ralf; Becker, J. Sabine

    2005-04-01

    A sensitive analytical method for determining the artificial radionuclides 90Sr, 239Pu and 240Pu at the ultratrace level in groundwater samples from the Semipalatinsk Test Site area in Kazakhstan by double-focusing sector field inductively coupled plasma mass spectrometry (ICP-SFMS) was developed. In order to avoid possible isobaric interferences at m/z 90 for 90Sr determination (e.g. 90Zr+, 40Ar50Cr+, 36Ar54Fe+, 58Ni16O2+, 180Hf2+, etc.), the measurements were performed at medium mass resolution under cold plasma conditions. Pu was separated from uranium by means of extraction chromatography using Eichrom TEVA resin with a recovery of 83%. The limits of detection for 90Sr, 239Pu and 240Pu in water samples were determined as 11, 0.12 and 0.1 fg ml-1, respectively. Concentrations of 90Sr and 239Pu in contaminated groundwater samples ranged from 18 to 32 and from 28 to 856 fg ml-1, respectively. The 240Pu/239Pu isotopic ratio in groundwater samples was measured as 0.17. This isotope ratio indicates that the most probable source of contamination of the investigated groundwater samples was the nuclear weapons tests at the Semipalatinsk Test Site conducted by the USSR in the 1960s.

  17. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiguo; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Chen, Lili; Ke, Shan; Xu, Lijuan

    2017-04-01

    The Tarim Large Igneous Province in NW China hosts numerous magmatic carbonatite dikes along its northern margin. The carbonatites are composed mainly of dolomite (90 vol.%) and minor calcite (5 vol.%), with apatite, barite, celestine, aegirine, monazite and bastnaesite as accessory minerals. The rocks correspond to magnesiocarbonatites with a compositional range of 13.73-19.59 wt.% MgO, and 20.03-30.11 wt.% CaO, along with 1.65-3.31 wt.% total Fe2O3, 0.02-2.39 wt.% SiO2 and other minor elements, such as P2O5, Na2O and K2O. These magnesiocarbonatites are characterized by extreme enrichment in incompatible elements with high total rare earth element (REE) contents of 372-36965 ppm. The strontium [(87Sr/86Sr)i = 0.70378-0.70386], neodymium [εNd(t) = +2.51 - +3.59] and oxygen (δ18OV-SMOW = 5.9‰-8.0‰) isotope values of these rocks are consistent with a mantle origin, whereas the magnesium (δ26Mg = -1.09‰ to -0.85‰) and carbon (δ13CV-PDB = -4.1‰ to -5.9‰) isotopes are decoupled from mantle values and reflect signature of recycled sedimentary carbonates. Global plate tectonic models predict that sedimentary carbonates in convergent margins are subducted to deep domains in the mantle, with phase transitions from calcite/dolomite to magnesite, and eventually to periclase/perovskite. The involvement of a mantle plume enhances the normal mantle geotherms and promotes decomposition reactions of magnesite. The decoupling of Mg-C and Sr-Nd-O isotopes in the mangesiocarbonatites provides insights on the origin of carbonatites, and also illustrates a case of interaction between mantle plume and subduction-related components.

  18. A Xenolith Perspective on the Composition and Age of the Northern Tanzanian Lithosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Aulbach, S.; Bellucci, J. J.; Blondes, M. S.; Chesley, J.; Lee, C.; Mansur, A. T.; Manya, S.; McDonough, W. F.

    2009-12-01

    intermediate compositions; no granulite-facies metapelites have been found. Marbles, schists, quartzites and amphibolites from the MB likely derive from middle-crustal depths. All zircon U-Pb ages are Archean (≥ 2.6 Ga) and many of the samples fall along a 2.6 Ga Sm-Nd reference line. U-Pb thermochronology largely records slow cooling in the MB following the Pan-African Orogeny and is consistent with a present-day conductive geotherm of 47 mW/m2 in a crust with very low heat production (see Blondes et al., this meeting). Despite the fact that ɛNd varies from -4 to -32 in the lower crustal xenoliths, 87Sr/86Sr is much less variable and the data fall along a near-vertical trend in a Sr vs. Nd isotope plot, reflecting ancient Rb depletion relative to Sr. Similarly, the unradiogenic Pb in granulite feldspars from both TC and MB is consistent with ancient U depletion. Collectively, such distinctive radiogenic isotope characteristics can serve as a diagnostic signature of crustal assimilation in rift magmas from northern Tanzania.

  19. Tracing mineral weathering reactions in the critical zone using Mg, Ca, and Sr isotopes, Luquillo Mountains, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Buss, H. L.; White, A. F.; Vivit, D.; Bullen, T. D.; Blum, A. E.; Dessert, C.; Gaillardet, J.

    2008-12-01

    Mineral weathering in the critical zone directly impacts the availability of many important soil nutrients. As part of the USGS Water Energy and Biogeochemical Budgets (WEBB) program and the Critical Zone Exploration Network, we are investigating mineral nutrient distributions and fluxes in depth profiles (to 16 m) at five sites in the Bisley 1 catchment in the Luquillo Mountains of Puerto Rico. The Bisley 1 catchment contains a thick regolith developed on marine bedded, andesitic, volcaniclastic bedrock. Pore waters were sampled as a function of depth from nested suction water samplers. Pore water chemistry was analyzed and compared to total chemistry of solid samples taken from augered cores. Mg, Ca and Sr isotope ratios were measured of the pore waters at the Institut de Physique du Globe de Paris (Mg) and at the USGS in Menlo Park, CA (Ca, Sr). The Mg isotope ratios increase with increasing depth from δ26Mg = -0.772 at the surface to - 0.267 at depth, relative to the DSM3 standard. Sr isotope ratios vary from 0.70922 to 0.71016 87Sr/86Sr, with no discernible depth trend. The regolith is highly weathered and is depleted in primary minerals (except quartz) with respect to bedrock. Volumetric strain, calculated with respect to quartz, indicates approximately 25% volume collapse occurred relative to the original volume of the bedrock. Plagioclase, chlorite, pyroxene, and amphibole weather at the bedrock-regolith interface. The regolith contains quartz, kaolinite, other clays, and iron and manganese oxides. Increasing solid and pore water Mg concentrations and δ26Mg with depth likely indicate a two step weathering process wherein high-Mg chlorite dissolves at the bedrock-regolith interface and forms Mg-containing secondary clays and oxides, which then dissolve within the regolith profile.

  20. Tracking Intercontinental Dust Transport With Radiogenic Isotopes: Hefei, China to California, Spring 2002

    NASA Astrophysics Data System (ADS)

    Christensen, J. N.; Cliff, S. S.; Vancuren, R. A.; Perry, K. D.; Depaolo, D. J.

    2006-12-01

    Research over the past decade has highlighted the importance of intercontinental transport and exchange of atmospheric aerosols, including soil-derived dust and industrial pollutants. Far-traveled aerosols can affect air quality, atmospheric radiative forcing and cloud formation and can be an important component in soils. Principal component analysis of elemental data for aerosols collected over California has identified a persistent Asian soil dust component that peaks with Asian dust storm events [1]. Isotopic fingerprinting can provide an additional and potentially more discriminating tool for tracing sources of dust. For example, the naturally variable isotopic compositions of Sr and Nd reflect both the geochemistry of the dust source and its pre- weathering geologic history. Sr and Nd isotopic data and chemical data have been collected for a time series of PM2.5 filter samples from Hefei, China taken from eraly April into early May, 2002. This period encompassed a series of dust storms. The sampling time frame overlapped with the 2002 Intercontinental Transport and Chemical Transformation (ITCT-2K2) experiment along the Pacific coast of North America and inland California. Highs in 87Sr/86Sr in the Hefei time series coincide with peaks in Ca and Si representing peaks in mineral particulate loading resulting from passing dust storms. Mixing diagrams combining isotopic data with chemical data identify several components; a high 87Sr/86Sr component that we identify with mineral dust (loess), and two different low 87Sr/86Sr components (local sources and marine aerosol). Using our measured isotopic composition of the "loess" standard CJ-1 [2] as representative of the pure high 87Sr/86Sr component, we calculate 24 hour average loess particulate concentrations in air which range up to 35 micrograms per cubic meter. Marine aerosol was a major component on at least one of the sampled days. The results for the Hefei samples provide a basis for our isotopic study of

  1. Structure in the secular variation of seawater sup 87 Sr/ sup 86 Sr for the Ivorian/Chadian (Osagean, Lower Carboniferous)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douthit, T.L.; Hanson, G.N.; Meyers, W.J.

    1990-05-01

    The secular variations of {sup 87}Sr/{sup 86}Sr in seawater for the Ivorian/Chadian, (equivalent to the Osagean, Lower Carboniferous) were determined through detailed analysis of well-preserved marine cements from the Waulsortian facies of Ireland. The results indicate that marine cements have utility in characterizing marine paleochemistries. Marine cements were judged pristine on the basis of nonluminescent character and stable isotopic composition comparable to previous estimates of Mississippian marine calcite. Analysis of the marine cements yielded {sup 87}Sr/{sup 86}Sr ratios lower than previously reported values for the Ivorian/Chadian. Error resulting from chronostratigraphic correlation between different geographic areas was avoided by restricting themore » sample set to a single 1,406-ft-long core (core P-1). The P-1 core is estimated to represent a minimum of 8.7 m.y. of continuous Waulsortian Limestone deposition. The {sup 87}Sr/{sup 86}Sr ratios of 11 nonluminescent cements document a non-monotonic variation in seawater {sup 87}Sr/{sup 86}Sr along the length of the core. {sup 87}Sr/{sup 86}Sr ranges from a high of 0.707908 in the early Ivorian to a low of about 0.707650 in the late Ivorian and middle Chadian with an early Chadian maximum at 0.707800 (all data are adjusted to a value of 0.710140 for SRM 987). The indicated maximum rate of change in seawater {sup 87}Sr/{sup 86}Sr is {minus}0.00011/Ma, comparable in magnitude to Tertiary values. The secular variation curve of seawater {sup 87}Sr/{sup 86}Sr for the Ivorian/Chadian has previously been thought to decrease monotonically with decreasing age. These data suggest that the seawater {sup 87}Sr/{sup 86}Sr variation over this interval may be sinusoidal in nature and emphasize the importance of well-characterized intraformational isotopic base lines.« less

  2. Origin of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, NE China: Constraints from geology, geochronology, geochemistry, and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Fang; Wang, Yin-Hong; Liu, Jia-Jun; Wang, Jian-Ping; Zhao, Chun-Bo; Song, Zhi-Wei

    2016-03-01

    The Wunugetushan porphyry Cu-Mo deposit is located in the southeastern margin of the Mongol-Okhotsk Orogenic Belt and in the northwestern segment of the Great Xing'an Range, NE China. The orebodies of this deposit are mainly hosted in the monzogranitic porphyry stock and in contact with the granitic porphyry dyke and biotite granite batholith. The SHRIMP zircon U-Pb dating of the granitic porphyry dyke yielded ages of 201.4 ± 3.1 Ma (2σ, MSWD = 1.5). These results indicate that the magmatism in the Wunugetushan area might have occurred at ca. 201 Ma in the early Jurassic, and that the mineralization age (ca. 181 Ma) of this deposit is later than the age of intrusive granitic porphyry in the area. Geochemically, the Wunugetushan granitoids belong to high-K calc-alkaline and shoshonitic series, enriched in K, Rb, Nd, and Pb, and depleted in Sr, Nb, Ti and P, with negative Eu anomalies. In situ Hf isotopic analyses of zircons using LA-MC-ICP-MS indicate that the εHf(t) values for zircons from a granitic porphyry sample vary from +2.4 to +11.8 and that the corresponding crustal model ages (TDMC) vary from 483 to 1088 Ma. The least-altered monzogranitic porphyry, granitic porphyry and biotite granite yielded relatively uniform εNd(t) values from -1.0 to +0.6 and low (87Sr/86Sr)i ratios ranging from 0.704387 to 0.708385. The geochemical and Sr-Nd-Hf isotopic data for the granitoids indicate that the source magma for these rocks could be derived from a juvenile lower crust. The δ34S values of sulfides show a narrow range (+0.76‰ to +3.20‰) similar to those of magmatic sulfur, further implying a lower crust origin. Based on the results of this study and the regional geodynamic evolution, it is proposed that the formation of the Wunugetushan deposit and associated granitoids should be linked to the southeastward subduction of the Mongol-Okhotsk oceanic plate beneath the Erguna Massif during the early Jurassic, and that the monzogranitic porphyry intrusions in

  3. The carbon isotopic composition of ecosystem breath

    NASA Astrophysics Data System (ADS)

    Ehleringer, J.

    2008-05-01

    At the global scale, there are repeatable annual fluctuations in the concentration and isotopic composition of atmospheric carbon dioxide, sometimes referred to as the "breathing of the planet". Vegetation components within ecosystems fix carbon dioxide through photosynthesis into stable organic compounds; simultaneously both vegetation and heterotrophic components of the ecosystem release previously fixed carbon as respiration. These two-way fluxes influencing carbon dioxide exchange between the biosphere and the atmosphere impact both the concentration and isotopic composition of carbon dioxide within the convective boundary layer. Over space, the compounding effects of gas exchange activities from ecosystems become reflected in both regional and global changes in the concentration and isotopic composition of atmospheric carbon dioxide. When these two parameters are plotted against each other, there are significant linear relationships between the carbon isotopic composition and inverse concentration of atmospheric carbon dioxide. At the ecosystem scale, these "Keeling plots" intercepts of C3-dominated ecosystems describe the carbon isotope ratio of biospheric gas exchange. Using Farquhar's model, these carbon isotope values can be translated into quantitative measures of the drought-dependent control of photosynthesis by stomata as water availability changes through time. This approach is useful in aggregating the influences of drought across regional landscapes as it provides a quantitative measure of stomatal influence on photosynthetic gas exchange at the ecosystem-to-region scales. Multi-year analyses of the drought-dependent trends across terrestrial ecosystems show a repeated pattern with water stress in all but one C3-ecosystem type. Ecosystems that are dominated by ring-porous trees appear not to exhibit a dynamic stomatal response to water stress and therefore, there is little dependence of the carbon isotope ratio of gas exchange on site water balance

  4. (86)Y production via (86)Sr(p,n) for PET imaging at a cyclotron.

    PubMed

    Sadeghi, M; Aboudzadeh, M; Zali, A; Zeinali, B

    2009-01-01

    Excitation functions of (86)Y production via (86)Sr(p,xn), (86)Sr(d,xn), (85)Rb(alpha,xn), (85)Rb((3)He,xn), and (nat)Zr(d,alphaxn) reactions were studied by means of ALICE-ASH code and the results were compared with ALICE-91 code and experimental data. The greatest nuclear reaction of cyclotron (86)Y production was found out as (86)Sr(p,n)(86)Y process. (86)Y production yield was calculated too. A SrCO(3) thick film was deposited on a copper substrate by sedimentation method. The deposited (nat)SrCO(3) was irradiated with 15MeV proton at 30microA current beam. The separation of Y from Cu and Sr was carried out by means of dual ion exchange chromatography.

  5. Positive magnetoresistance of La0.7Sr0.3MnO3/C composites

    NASA Astrophysics Data System (ADS)

    Kabirov, Yu. V.; Gavrilyachenko, V. G.; Bogatin, A. S.

    2016-07-01

    The perovskite manganite La0.7Sr0.3MnO3 compound is used as a component in ceramic (1-x)(La0.7Sr0.3MnO3)-xC composites at x = 0.15-0.85. It is found that every studied specimen is characterized by the linear dependence of the positive magnetoresistance (PMR) on the magnetic field strength at room temperature. The 0.6(La0.7Sr0.3MnO3)-0.4C composite has the largest magnetoresistance value (15%) at room temperature and intensity of magnetic field H=15kOe. A possible mechanism for the PMR of (1-x)(La0.7Sr0.3MnO3)-xC composites is discussed.

  6. Chemical composition of HAL, an isotopically-unusual Allende inclusion

    NASA Technical Reports Server (NTRS)

    Davis, A. M.; Tanaka, T.; Grossman, L.; Lee, T.; Wasserburg, G. J.

    1982-01-01

    Samples of hibonite, black rim, and portions of friable rim from an unusual Allende inclusion, named HAL, were analyzed by INAA and RNAA for 37 major, minor, and trace elements. An unusually low amount of Ce was found in HAL, although it otherwise was highly enriched in REE compared to C1 chondrites. HAL is also depleted in Sr, Ba, U, V, Ru, Os, and Ir relative to other refractory elements. It is concluded that the distribution of REE between hibonite and rims was established when hibonite and other refractory minerals were removed at slightly different temperatures from a hot, oxidizing gas in which they previously coexisted as separate grains. Possible locations for the chemical and mass dependent isotopic fractionation are considered to be in ejecta from the low temperature helium-burning zone of a supernova and in the locally oxidizing environment generated by evaporation of interstellar grains of near-chondritic chemical composition.

  7. Chemical composition of HAL, an isotopically-unusual Allende inclusion

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Tanaka, T.; Grossman, L.; Lee, T.; Wasserburg, G. J.

    1982-09-01

    Samples of hibonite, black rim, and portions of friable rim from an unusual Allende inclusion, named HAL, were analyzed by INAA and RNAA for 37 major, minor, and trace elements. An unusually low amount of Ce was found in HAL, although it otherwise was highly enriched in REE compared to C1 chondrites. HAL is also depleted in Sr, Ba, U, V, Ru, Os, and Ir relative to other refractory elements. It is concluded that the distribution of REE between hibonite and rims was established when hibonite and other refractory minerals were removed at slightly different temperatures from a hot, oxidizing gas in which they previously coexisted as separate grains. Possible locations for the chemical and mass dependent isotopic fractionation are considered to be in ejecta from the low temperature helium-burning zone of a supernova and in the locally oxidizing environment generated by evaporation of interstellar grains of near-chondritic chemical composition.

  8. Stable Isotopes of Sr and Pb as Tracers of Sources of Airborne Particulate Matter in Kyrgyzstan

    EPA Science Inventory

    ConclusionsElemental concentrations were higher at the LIDAR site compared to the Bishkek site. Also, concentrations were higher during dust than non-dust events at both sites.The Sr isotopic ratios suggest dust from another region, such as from Western China, Africa, or Middle E...

  9. Recoil distance method lifetime measurement of the 21+ state in 94Sr and implications for the structure of neutron-rich Sr isotopes

    NASA Astrophysics Data System (ADS)

    Chester, A.; Ball, G. C.; Caballero-Folch, R.; Cross, D. S.; Cruz, S.; Domingo, T.; Drake, T. E.; Garnsworthy, A. B.; Hackman, G.; Hallam, S.; Henderson, J.; Henderson, R.; Korten, W.; Krücken, R.; Moukaddam, M.; Olaizola, B.; Ruotsalainen, P.; Smallcombe, J.; Starosta, K.; Svensson, C. E.; Williams, J.; Wimmer, K.

    2017-07-01

    A high precision lifetime measurement of the 21+ state in 94Sr was performed at TRIUMF's ISAC-II facility by coupling the recoil distance method implemented via the TIGRESS integrated plunger with unsafe Coulomb excitation in inverse kinematics. Due to limited statistics imposed by the use of a radioactive 94Sr beam, a likelihood ratio χ2 method was derived and used to compare experimental data to Geant4 simulations. The B (E 2 ;21+→01+) value extracted from the lifetime measurement of 7 .80-0.40+0.50(stat.)±0.07 (sys.) ps is approximately 25% larger than previously reported while the relative error has been reduced by a factor of approximately 8. A baseline deformation has been established for Sr isotopes with N ≤58 which is a necessary condition for the quantum phase transition interpretation of the onset of deformation in this region. A comparison to existing theoretical models is presented.

  10. Carboniferous climate teleconnections archived in coupled bioapatite δ18OPO4 and 87Sr/86Sr records from the epicontinental Donets Basin, Ukraine

    NASA Astrophysics Data System (ADS)

    Montañez, Isabel P.; Osleger, Dillon J.; Chen, Jitao; Wortham, Barbara E.; Stamm, Robert G.; Nemyrovska, Tamara I.; Griffin, Julie M.; Poletaev, Vladislav I.; Wardlaw, Bruce R.

    2018-06-01

    Reconstructions of paleo-seawater chemistry are largely inferred from biogenic records of epicontinental seas. Recent studies provide considerable evidence for large-scale spatial and temporal variability in the environmental dynamics of these semi-restricted seas that leads to the decoupling of epicontinental isotopic records from those of the open ocean. We present conodont apatite δ18OPO4 and 87Sr/86Sr records spanning 24 Myr of the late Mississippian through Pennsylvanian derived from the U-Pb calibrated cyclothemic succession of the Donets Basin, eastern Ukraine. On a 2 to 6 Myr-scale, systematic fluctuations in bioapatite δ18OPO4 and 87Sr/86Sr broadly follow major shifts in the Donets onlap-offlap history and inferred regional climate, but are distinct from contemporaneous more open-water δ18OPO4 and global seawater Sr isotope trends. A -1 to -6‰ offset in Donets δ18OPO4 values from those of more open-water conodonts and greater temporal variability in δ18OPO4 and 87Sr/86Sr records are interpreted to primarily record climatically driven changes in local environmental processes in the Donets sea. Systematic isotopic shifts associated with Myr-scale sea-level fluctuations, however, indicate an extrabasinal driver. We propose a mechanistic link to glacioeustasy through a teleconnection between high-latitude ice changes and atmospheric pCO2 and regional monsoonal circulation in the Donets region. Inferred large-magnitude changes in Donets seawater salinity and temperature, not archived in the more open-water or global contemporaneous records, indicate a modification of the global climate signal in the epicontinental sea through amplification or dampening of the climate signal by local and regional environmental processes. This finding of global climate change filtered through local processes has implications for the use of conodont δ18OPO4 and 87Sr/86Sr values as proxies of paleo-seawater composition, mean temperature, and glacioeustasy.

  11. Carboniferous climate teleconnections archived in coupled bioapatite δ18OPO4 and 87Sr/86Sr records from the epicontinental Donets Basin, Ukraine

    USGS Publications Warehouse

    Montanez, Isabel P.; Osleger, Dillon J.; Chen, J.-H.; Wortham, Barbara E.; Stamm, Robert G.; Nemyrovska, Tamara I.; Griffin, Julie M.; Poletaev, Vladislav I.; Wardlaw, Bruce R.

    2018-01-01

    Reconstructions of paleo-seawater chemistry are largely inferred from biogenic records of epicontinental seas. Recent studies provide considerable evidence for large-scale spatial and temporal variability in the environmental dynamics of these semi-restricted seas that leads to the decoupling of epicontinental isotopic records from those of the open ocean. We present conodont apatite δ18OPO4 and 87Sr/86Sr records spanning 24 Myr of the late Mississippian through Pennsylvanian derived from the U–Pb calibrated cyclothemic succession of the Donets Basin, eastern Ukraine. On a 2 to 6 Myr-scale, systematic fluctuations in bioapatite δ18OPO4 and 87Sr/86Sr broadly follow major shifts in the Donets onlap–offlap history and inferred regional climate, but are distinct from contemporaneous more open-water δ18OPO4 and global seawater Sr isotope trends. A −1 to −6‰ offset in Donets δ18OPO4 values from those of more open-water conodonts and greater temporal variability in δ18OPO4 and 87Sr/86Sr records are interpreted to primarily record climatically driven changes in local environmental processes in the Donets sea. Systematic isotopic shifts associated with Myr-scale sea-level fluctuations, however, indicate an extrabasinal driver. We propose a mechanistic link to glacioeustasy through a teleconnection between high-latitude ice changes and atmospheric pCO2 and regional monsoonal circulation in the Donets region. Inferred large-magnitude changes in Donets seawater salinity and temperature, not archived in the more open-water or global contemporaneous records, indicate a modification of the global climate signal in the epicontinental sea through amplification or dampening of the climate signal by local and regional environmental processes. This finding of global climate change filtered through local processes has implications for the use of conodont δ18OPO4 and 87Sr/86Sr values as proxies of paleo-seawater composition, mean temperature, and glacioeustasy.

  12. The role of mantle-hybridization and crustal contamination in the petrogenesis of lithospheric mantle-derived alkaline rocks: constraints from Os and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Mayer, B.; Jung, S.; Brauns, M.; Münker, C.

    2018-06-01

    The Rhön area as part of the Central European Volcanic Province (CEVP) hosts an unusual suite of Tertiary 24-Ma old hornblende-bearing alkaline basalts that provide insights into melting and fractionation processes within the lithospheric mantle. These chemically primitive to slightly evolved and isotopically (Sr, Nd, Pb) depleted basalts have slightly lower Hf isotopic compositions than respective other CEVP basalts and Os isotope compositions more radiogenic than commonly observed for continental intraplate alkaline basalts. These highly radiogenic initial 187Os/188Os ratios (0.268-0.892) together with their respective Sr-Nd-Pb isotopic compositions are unlikely to result from crustal contamination alone, although a lack of Os data for lower crustal rocks from the area and limited data for CEVP basalts or mantle xenoliths preclude a detailed evaluation. Similarly, melting of the same metasomatized subcontinental lithospheric mantle as inferred for other CEVP basalts alone is also unlikely, based on only moderately radiogenic Os isotope compositions obtained for upper mantle xenoliths from elsewhere in the province. Another explanation for the combined Nd, Sr and Os isotope data is that the lavas gained their highly radiogenic Os isotope composition through a mantle "hybridization", metasomatism process. This model involves a mafic lithospheric component, such as an intrusion of a sublithospheric primary alkaline melt or a melt derived from subducted oceanic material, sometime in the past into the lithospheric mantle where it metasomatized the ambient mantle. Later at 24 Ma, thermal perturbations during rifting forced the isotopically evolved parts of the mantle together with the peridotitic ambient mantle to melt. This yielded a package of melts with highly correlated Re/Os ratios and radiogenic Os isotope compositions. Subsequent movement through the crust may have further altered the Os isotope composition although this effect is probably minor for the

  13. The Mantle Isotopic Array: A Tale of Two FOZOs

    NASA Astrophysics Data System (ADS)

    Apen, F. E.; Mukhopadhyay, S.; Williams, C. D.

    2017-12-01

    Oceanic basalts display isotopic arrays that suggest mixing between a depleted component, several enriched components, and a primitive component. The topology of the arrays provides information on mantle mixing, the distribution of heterogeneities, and information on mantle structure. Here we use a global compilation of mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) He-Sr-Nd-Pb isotopic data to further analyze the topology of these arrays. Previous work indicated that OIB isotopic arrays converge to a common component [1-3] referred to as the focus zone, or FOZO. Our analyses suggest that while all OIBs do point to a common component with unradiogenic 4He/3He ratios relative to MORBs, this component has to be quite variable in its He, Sr, Nd and Pb isotopic compositions. FOZO cannot be a pure component but must represent a heterogeneous mixture of primitive and recycled material. Our analyses of the MORB and OIB isotopic compositions also indicate that while MORBs and OIBs sample the same components, the topology of their mixing arrays are quite distinct. Different MOR segments show quasi-linear isotopic arrays that all converge to a common component. This component is distinctive from the OIB FOZO being more depleted and more restrictive in its He, Sr, Nd and Pb composition. We suggest two common but distinguishable components are present in the mantle arrays: one common to MORBs and the other to OIBs, and we refer to them as MORB-FOZO and OIB-FOZO, respectively. We interpret the two FOZOs to represent the average composition of small-scale heterogeneities that make up the background matrix in the sources of MORBs and OIBs. The depleted and enriched components that are sampled in MORBs and OIBs reflect relatively large-scale heterogeneities distributed within the matrix, material that have yet to be deformed into the smaller length scales of the matrix material. Differences between the two FOZO compositions reflects the inclusion of a component with

  14. Anatexis of mafic and felsic lower crust: Geochemistry and Nd, Sr and Pb isotopes of late-orogenic granodiorites and leucogranites (Damara orogen, Namibia)

    NASA Astrophysics Data System (ADS)

    Osterhus, Lennart; Jung, Stefan

    2010-05-01

    The Damara orogen (Namibia) represents a well-exposed and deeply eroded orogenic mobile belt consisting of the north-south trending Kaoko belt and the northeast-southwest trending intracontinental Damara belt. The latter has been subdivided into a Northern, a Central and a Southern Zone based on stratigraphy, metamorphic grade, structure and geochronology. The late-orogenic granodioritic to leucogranitic Gawib pluton is a cross-cutting, pear-shaped post-tectonic stock within the southern Central Zone which is elsewhere dominated by basement rocks, high-grade metasedimentary rocks of the Tinkas Formation and syn-orogenic granites (Salem-type). The non-foliated granodiorites consist of plagioclase, quartz, microcline, hornblende and biotite whereas the leucogranites consist of microcline, quartz, plagioclase and biotite. Major element variation of the granodiorites show two distinct magma types were some samples have high TiO2, MgO and Fe2O3 and low Al2O3 and others have low TiO2, MgO and Fe2O3 and high Al2O3. Based on high REE, Nb, Zr and Y concentrations some granodiorites can be classified as A-type granitoids. Strontium concentrations are high in the granodiorites (up to 939 ppm) and decrease to < 200 ppm in the leucogranites. Rb/Sr ratios are low (1) in the leucogranites. Granodiorites have moderately radiogenic initial 87Sr/86Sr ratios (0.7088-0.7132), strongly negative initial ɛ Nd values (ca. -12) and comparatively unradiogenic Pb isotope data, the latter obtained on acid-leached feldspar separates. Leucogranites have more radiogenic initial 87Sr/86Sr ratios (0.7223-0.7336) and more negative initial ɛ Nd values (ca. -18). Pb isotopes tend to be less radiogenic than in the granodiorites. The mean crustal residence ages of the granodiorites, expressed as depleted mantle Nd model ages, are ca. 2.0 Ga but the leucogranites tend to have older Nd model ages (2.5 Ga). Therefore, a likely source for the granodiorites and leucogranites is a sequence of mafic to

  15. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    PubMed

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  16. Mechanisms controlling the silicon isotopic compositions of river waters

    NASA Astrophysics Data System (ADS)

    Georg, R. B.; Reynolds, B. C.; Frank, M.; Halliday, A. N.

    2006-09-01

    It has been proposed that silicon (Si) isotopes are fractionated during weathering and biological activity leading to heavy dissolved riverine compositions. In this study, the first seasonal variations of stable isotope compositions of dissolved riverine Si are reported and compared with concomitant changes in water chemistry. Four different rivers in Switzerland were sampled between March 2004 and July 2005. The unique high-resolution multi-collector ICP-MS Nu1700, has been used to provide simultaneous interference-free measurements of 28Si, 29Si and 30Si abundances with an average limiting precision of ± 0.04‰ on δ 30Si. This precision facilitates the clarification of small temporal variations in isotope composition. The average of all the data for the 40 samples is δ 30Si = + 0.84 ± 0.19‰ (± 1σ SD). Despite significant differences in catchment lithologies, biomass, climate, total dissolved solids and weathering fluxes the averaged isotopic composition of dissolved Si in each river is strikingly similar with means of + 0.70 ± 0.12‰ for the Birs,+ 0.95 ± 0.22‰ for the Saane,+ 0.93 ± 0.12‰ for the Ticino and + 0.79 ± 0.19‰ for the Verzasca. However, the δ 30Si undergoes seasonal variations of up to 0.6‰. Comparisons between δ 30Si and physico-chemical parameters, such as the concentration of dissolved Si and other cations, the discharge of the rivers, and the resulting weathering fluxes, permits an understanding of the processes that control the Si budget and the fate of dissolved Si within these rivers. The main mechanism controlling the Si isotope composition of the mountainous Verzasca River appears to be a two component mixing between the seepage of soil/ground waters, with heavier Si produced by clay formation and superficial runoff associated with lighter Si during high discharge events. A biologically-mediated fractionation can be excluded in this particular river system. The other rivers display increasing complexity with increases

  17. OIB signatures in basin-related lithosphere-derived alkaline basalts from the Batain basin (Oman) - Constraints from 40Ar/39Ar ages and Nd-Sr-Pb-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Witte, M.; Jung, S.; Pfänder, J. A.; Romer, R. L.; Mayer, B.; Garbe-Schönberg, D.

    2017-08-01

    Tertiary rift-related intraplate basanites from the Batain basin of northeastern Oman have low SiO2 (< 45.6 wt.%), high MgO (> 9.73 wt.%) and moderate to high Cr and Ni contents (Cr > 261 ppm, Ni > 181 ppm), representing near primary magmas that have undergone fractionation of mainly olivine and magnetite. Rare earth element systematics and p-T estimates suggest that the alkaline rocks are generated by different degrees of partial melting (4-13%) of a spinel-peridotite lithospheric mantle containing residual amphibole. The alkaline rocks show restricted variations of 87Sr/86Sr and 143Nd/144Nd ranging from 0.70340 to 0.70405 and 0.51275 to 0.51284, respectively. Variations in Pb isotopes (206Pb/204Pb: 18.59-18.82, 207Pb/204Pb: 15.54-15.56, 208Pb/204Pb: 38.65-38.98) of the alkaline rocks fall in the range of most OIB. Trace element constraints together with Sr-Nd-Pb isotope composition indicate that assimilation through crustal material did not affect the lavas. Instead, trace element variations can be explained by melting of a lithospheric mantle source that was metasomatized by an OIB-type magma that was accumulated at the base of the lithosphere sometimes in the past. Although only an area of less than 1000 km2 was sampled, magmatic activity lasted for about 5.5 Ma with a virtually continuous activity from 40.7 ± 0.7 to 35.3 ± 0.6 Ma. During this period magma composition was nearly constant, i.e. the degree of melting and the nature of the tapped source did not change significantly over time.

  18. Grain-scale Sr isotope heterogeneity in amphibolite (retrograded UHP eclogite, Dabie terrane): Implications for the origin and flow behavior of retrograde fluids during slab exhumation

    NASA Astrophysics Data System (ADS)

    Guo, Shun; Yang, Yueheng; Chen, Yi; Su, Bin; Gao, Yijie; Zhang, Lingmin; Liu, Jingbo; Mao, Qian

    2016-12-01

    To constrain the origin and flow behavior of amphibolite-facies retrograde fluids during slab exhumation, we investigate the textures, trace element contents, and in situ strontium (Sr) isotopic compositions (using LA-MC-ICP-MS) of multiple types of epidote and apatite in the UHP eclogite and amphibolites from the Hualiangting area (Dabie terrane, China). The UHP epidote porphyroblasts in the eclogite (Ep-E), which formed at 28-30 kbar and 660-720 °C, contain high amounts of Sr, Pb, Th, Ba, and light rare earth elements (LREEs) and have a narrow range of initial 87Sr/86Sr ratios (0.70431 ± 0.00012 to 0.70454 ± 0.00010). Two types of amphibolite-facies epidote were recognized in the amphibolites. The first type of epidote (Ep-AI) developed in all the amphibolites and has slightly lower trace element contents than Ep-E. The Ep-AI has a same initial 87Sr/86Sr ratio range as the Ep-E and represents the primary amphibolite-facies retrograde product that is associated with an internally buffered fluid at 8.0-10.3 kbar and 646-674 °C. The other type of epidote (Ep-AII) occurs as irregular fragments, veins/veinlets, or reaction rims on the Ep-AI in certain amphibolites. Elemental X-ray maps reveal the presence of Ep-AI relics in the Ep-AII domains (appearing as a patchy texture), which indicates that Ep-AII most likely formed by the partial replacement of the Ep-AI in the presence of an infiltrating fluid. The distinctly lower trace element contents of Ep-AII are ascribed to element scavenging by a mechanism of dissolution-transport-precipitation during replacement. The Ep-AII in an individual amphibolite exhibits large intra- and inter-grain variations in the initial 87Sr/86Sr ratios (0.70493 ± 0.00030 to 0.70907 ± 0.00022), which are between those of the Ep-AI and granitic gneisses (wall rock of the amphibolites, 0.7097-0.7108). These results verify that the infiltrating fluid was externally derived from granitic gneisses. The matrix apatite in the amphibolites has

  19. Ar-Ar and Rb-Sr dating of very low-/low-grade metamorphism along the main Iapetus suture, Newfoundland

    NASA Astrophysics Data System (ADS)

    Willner, Arne P.; Glodny, Johannes; Massonne, Hans-Joachim; Romer, Rolf L.; Sudo, Masafumi; Van Staal, Cees R.; Zagorevski, Alexandre

    2013-04-01

    The Late Ordovician closure of the main tract of Iapetus resulted in juxtaposition of the leading edge of the peri-Gondwanan microplate Ganderia and the composite Laurentian margin. The suture is the Red Indian Line, which separates the Iapetan realm into peri-Gondwanan and peri-Laurentian arc-backarc complexes. The discrete Red Indian Line forms part of a wider collision zone that has a protracted and complicated tectonic history starting with underplating of oceanic terranes beneath the composite margin of Laurentia at ca. 471 Ma during the early stages of the Taconic orogeny. Final collision along the Red Indian Line and closure of the Iapetus ocean occurred at 455 Ma with the underthrusting of the peri-Gondwanan Victoria arc and its Ganderian basement beneath the composite Laurentian margin. The accreted Iapetan realm terranes were progressively deformed during the closure of a remaining Iapetan marginal basin, resulting locally in significant overprint and reactivation during the Silurian (Salinic orogeny). Metamorphic overprint in the deformed Laurentia margin (Notre Dame Zone) above the Red Indian Line is mainly of very low grade to low grade and very heterogeneous. PT-conditions cluster at 3-5 kbar, 300-400°C and 6-7 kbar, 270-330°C. Medium grade conditions are related to local contact metamorphism. Ages of the local peak metamorphism in the peri-Laurentian Iapetan realm were determined by dating white mica with the Ar-Ar system and white mica-bearing assemblages with the Rb-Sr mineral isochron method. Both methods yielded ages that postdate the closure of the main tract of Iapetus. These generally belong to two age ranges: 418-430 Ma (Salinic events) and 350-390 Ma Neoacadian events). Partly two overprints can be detected in one and the same sample. Metamorphism is related to (1) reactivation of deformation in shear zones which partly cause further crustal thickening or strike slip-related deformation, (2) to external fluid influx, (3) to advective

  20. Laser cooling and imaging of individual radioactive +90Sr ions

    NASA Astrophysics Data System (ADS)

    Jung, Kyunghun; Iwata, Yoshihiro; Miyabe, Masabumi; Yamamoto, Kazuhiro; Yonezu, Tomohisa; Wakaida, Ikuo; Hasegawa, Shuichi

    2017-10-01

    We have developed an apparatus integrating resonance-ionization, ion-trap, and laser-cooling techniques for an ultratrace radioactive isotope 90Sr analysis. Trapped +90Sr isotope ions were laser cooled, and their 4 d 3/2 2D →5 p 1/2 2P transition isotope shift was experimentally measured to be -281 (17 ) MHz by comparing individual spectra of +88Sr and +90Sr ions. Crystallization of +90Sr was carried out using the resonance frequency value confirmed in our experiment, and then +90Sr individual ions were successfully observed.