NASA Astrophysics Data System (ADS)
Maidiawati, Tanjung, Jafril; Medriosa, Hamdeni
2017-10-01
Reinforced concrete (RC) frame structures with brick-masonry infills are commonly used in developing countries and high-risk seismic area, such as Indonesia. Significant researches have been carried out for studying the seismic performance of RC frame structures with brick-masonry infills. Only few of them focused on effects of the opening in the brick-masonry infill to the seismic performance of the RC frame structures. The presence of opening in brick-masonry infill is often used for placing doors and windows as well, however, it may reduce the seismic performance of the RC frame structure. In the current study, they influence of the opening in brick-masonry infills to the seismic performance RC frame structure will experimentally evaluated. Five of 1/4-scaled single story and single bay RC frame specimens were prepared, i.e. an RC bare frame, a clay brick-masonry infilled RC frame and three of clay brick-masonry infilled RC frame with openings in the brick-masonry infills. The last three specimens were clay brick infilled RC frame with a center opening, clay brick infilled RC frame with two openings used for placing the windows and clay brick infilled RC frame with opening for placing the door. The specimens pushed over by applying the static monotonic lateral load to the upper beam of the RC frame structures. The incremental of the lateral load and the lateral displacement of RC frame's column was recorded during test. The crack propagation and the major cracks were also observed to identify the mechanism failure of specimens. As the results, the opening in the brick-masonry wall controls the failure mechanism, the lateral strength and the stiffness of the overall of infilled RC frame structure. The diagonal shear crack pattern was found on brick-masonry wall without opening, on other hand the different crack patterns were observed on brick-masonry wall with openings. Although the opening in the brick masonry infill reduced the lateral strength and stiffness of the infilled RC frame, it was still stronger and stiffer than the bare frame.
NASA Astrophysics Data System (ADS)
Dubey, Shailendra Kumar Damodar; Kute, Sunil
2014-09-01
Due to earthquake, buildings are damaged partially or completely. Particularly structures with soft storey are mostly affected. In general, such damaged structures are repaired and reused. In this regard, an experimental investigation was planned and conducted on models of single-bay, single-storey of partial concrete infilled reinforced concrete (RC) frames up to collapse with corner, central and diagonal steel bracings. Such collapsed frames were repaired with epoxy resin and retested. The initiative was to identify the behaviour, extent of restored ultimate strength and deflection of epoxy-retrofitted frames in comparison to the braced RC frames. The performance of such frames has been considered only for lateral loads. In comparison to bare RC frames, epoxy repaired partial infilled frames have significant increase in the lateral load capacity. Central bracing is more effective than corner and diagonal bracing. For the same load, epoxy repaired frames have comparable deflection than similar braced frames.
NASA Astrophysics Data System (ADS)
Tanjung, Jafril; Maidiawati, Nugroho, Fajar
2017-10-01
Intensive studies regarding the investigation of seismic performance of reinforced concrete (R/C) frames which are infilled with brick masonry walls have been carried out by several researchers within the last three-decades. According to authors' field and experimentally experiences conclude that the unreinforced brick masonry infills significantly contributes to increase the seismic performance of the R/C frame structure. Unfortunately, the presence of brick masonry infill walls causes several undesirable effects such as short column, soft-storey, torsion and out of plane collapse. In this study, a strengthening technique for the brick masonry infills were experimentally investigated to improve the seismic performance of the R/C frame structures. For this purpose, four experimental specimens have been prepared, i.e. one of bare R/C frame (BF), one of R/C frame infilled with unreinforced brick-masonry wall (IFUM) and two of R/C frames were infilled with reinforced brick-masonry wall (IFRM-1 and IFRM-2). The bare frame and R/C frame infilled with unreinforced brick-masonry wall represents the typical R/C buildings' construction in Indonesia assuming the brick-masonry wall as the non-structural elements. The brick-masonry wall infills in specimens IFRM-1 and IFRM-2 were strengthened by using embedded ϕ4 plain steel bar on their diagonal and center of brick-masonry wall, respectively. All specimens were laterally pushed-over. The lateral loading and its lateral displacement, failure mechanism and their crack pattern were recorded during experimental works. Comparison of the experimental results of these four specimens conclude that the strengthening of the brick-masonry infills wall gave the significantly increasing of the seismic performance of the R/C frame. The seismic performance was evaluated based on the lateral strength of the R/C specimen. The embedded plain steel bar on brick-masonry also reduces the diagonal crack on the brick-masonry wall. It seems that the presence of the embedded plain bar may help reduce the vulnerability of the brick-masonry infill.
Study on the effect of the infill walls on the seismic performance of a reinforced concrete frame
NASA Astrophysics Data System (ADS)
Zhang, Cuiqiang; Zhou, Ying; Zhou, Deyuan; Lu, Xilin
2011-12-01
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenchuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.
Seismic performance evaluation of RC frame-shear wall structures using nonlinear analysis methods
NASA Astrophysics Data System (ADS)
Shi, Jialiang; Wang, Qiuwei
To further understand the seismic performance of reinforced concrete (RC) frame-shear wall structures, a 1/8 model structure is scaled from a main factory structure with seven stories and seven bays. The model with four-stories and two-bays was pseudo-dynamically tested under six earthquake actions whose peak ground accelerations (PGA) vary from 50gal to 400gal. The damage process and failure patterns were investigated. Furthermore, nonlinear dynamic analysis (NDA) and capacity spectrum method (CSM) were adopted to evaluate the seismic behavior of the model structure. The top displacement curve, story drift curve and distribution of hinges were obtained and discussed. It is shown that the model structure had the characteristics of beam-hinge failure mechanism. The two methods can be used to evaluate the seismic behavior of RC frame-shear wall structures well. What’s more, the NDA can be somewhat replaced by CSM for the seismic performance evaluation of RC structures.
Review of Research and Application of Reinforced Concrete Structures Strengthened by Braces
NASA Astrophysics Data System (ADS)
Gong, Jing; Zhu, Zezhong; Zeng, Cong
2017-06-01
Many of RC frame structures are urgently needed to be strengthened and maintained due to the increase of service life, the change of use function, and the impact of natural disasters. This paper reviews the research status of strengthening RC structures with braces; introduces the features and connection forms of joints connecting with braces; summarizes the engineering application of buckling-restrained braces, pointing out that buckling-restrained brace is an effective means to strengthen the RC frame structures with more reliable performance and broad application prospect.
NASA Astrophysics Data System (ADS)
Valente, Marco; Milani, Gabriele
2017-07-01
Many existing reinforced concrete buildings in Southern Europe were built (and hence designed) before the introduction of displacement based design in national seismic codes. They are obviously highly vulnerable to seismic actions. In such a situation, simplified methodologies for the seismic assessment and retrofitting of existing structures are required. In this study, a displacement based procedure using non-linear static analyses is applied to a four-story existing RC frame. The aim is to obtain an estimation of its overall structural inadequacy as well as the effectiveness of a specific retrofitting intervention by means of GFRP laminates and RC jacketing. Accurate numerical models are developed within a displacement based approach to reproduce the seismic response of the RC frame in the original configuration and after strengthening.
Bao, Yihai; Main, Joseph A; Noh, Sam-Young
2017-08-01
A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.
Damage source identification of reinforced concrete structure using acoustic emission technique.
Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein
2013-01-01
Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures.
Damage Source Identification of Reinforced Concrete Structure Using Acoustic Emission Technique
Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein
2013-01-01
Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures. PMID:23997681
Damage evaluation of reinforced concrete frame based on a combined fiber beam model
NASA Astrophysics Data System (ADS)
Shang, Bing; Liu, ZhanLi; Zhuang, Zhuo
2014-04-01
In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete (RC) structures, a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber. The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures. The stress-strain behavior of steel fiber is based on a model suggested by others. These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures. The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading. The damage evolution of a three-dimension frame subjected to impact loading is also investigated.
Bao, Yihai; Main, Joseph A.; Noh, Sam-Young
2017-01-01
A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness. PMID:28890599
Pushover analysis of reinforced concrete frames considering shear failure at beam-column joints
NASA Astrophysics Data System (ADS)
Sung, Y. C.; Lin, T. K.; Hsiao, C. C.; Lai, M. C.
2013-09-01
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched. PMID:24578667
Seismic damage to structures in the M s6.5 Ludian earthquake
NASA Astrophysics Data System (ADS)
Chen, Hao; Xie, Quancai; Dai, Boyang; Zhang, Haoyu; Chen, Hongfu
2016-03-01
On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion stations were located in the areas with intensity V, VI, VII and IX, near the epicentre. The characteristics of the ground motion are discussed herein, including 1) ground motion was strong at a period of less than 1.4 s, which covered the natural vibration period of a large number of structures; and 2) the release energy was concentrated geographically. Based on materials collected during emergency building inspections, the damage patterns of adobe, masonry, timber frame and reinforced concrete (RC) frame structures in areas with different intensities are summarised. Earthquake damage matrices of local buildings are also given for fragility evaluation and earthquake damage prediction. It is found that the collapse ratios of RC frame and confined masonry structures based on the new design code are significantly lower than non-seismic buildings. However, the RC frame structures still failed to achieve the `strong column, weak beam' design target. Traditional timber frame structures with a light infill wall showed good aseismic performance.
Kim, Sangyong; Moon, Joon-Ho; Shin, Yoonseok; Kim, Gwang-Hee; Seo, Deok-Seok
2013-01-01
The objective of this research is to quantitatively measure and compare the environmental load and construction cost of different structural frame types. Construction cost also accounts for the costs of CO₂ emissions of input materials. The choice of structural frame type is a major consideration in construction, as this element represents about 33% of total building construction costs. In this research, four constructed buildings were analyzed, with these having either reinforced concrete (RC) or steel (S) structures. An input-output framework analysis was used to measure energy consumption and CO₂ emissions of input materials for each structural frame type. In addition, the CO₂ emissions cost was measured using the trading price of CO₂ emissions on the International Commodity Exchange. This research revealed that both energy consumption and CO₂ emissions were, on average, 26% lower with the RC structure than with the S structure, and the construction costs (including the CO₂ emissions cost) of the RC structure were about 9.8% lower, compared to the S structure. This research provides insights through which the construction industry will be able to respond to the carbon market, which is expected to continue to grow in the future.
Non Linear Analyses for the Evaluation of Seismic Behavior of Mixed R.C.-Masonry Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liberatore, Laura; Tocci, Cesare; Masiani, Renato
2008-07-08
In this work the seismic behavior of masonry buildings with mixed structural system, consisting of perimeter masonry walls and internal r.c. frames, is studied by means of non linear static (pushover) analyses. Several aspects, like the distribution of seismic action between masonry and r.c. elements, the local and global behavior of the structure, the crisis of the connections and the attainment of the ultimate strength of the whole structure are examined. The influence of some parameters, such as the masonry compressive and tensile strength, on the structural behavior is investigated. The numerical analyses are also repeated on a building inmore » which the r.c. internal frames are replaced with masonry walls.« less
Asteris, Panagiotis G; Tsaris, Athanasios K; Cavaleri, Liborio; Repapis, Constantinos C; Papalou, Angeliki; Di Trapani, Fabio; Karypidis, Dimitrios F
2016-01-01
The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of these approaches do not take into account the presence of infill walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period. In the present paper, artificial neural networks (ANNs) are used to predict the fundamental period of infilled reinforced concrete (RC) structures. For the training and the validation of the ANN, a large data set is used based on a detailed investigation of the parameters that affect the fundamental period of RC structures. The comparison of the predicted values with analytical ones indicates the potential of using ANNs for the prediction of the fundamental period of infilled RC frame structures taking into account the crucial parameters that influence its value.
Asteris, Panagiotis G.; Tsaris, Athanasios K.; Cavaleri, Liborio; Repapis, Constantinos C.; Papalou, Angeliki; Di Trapani, Fabio; Karypidis, Dimitrios F.
2016-01-01
The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of these approaches do not take into account the presence of infill walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period. In the present paper, artificial neural networks (ANNs) are used to predict the fundamental period of infilled reinforced concrete (RC) structures. For the training and the validation of the ANN, a large data set is used based on a detailed investigation of the parameters that affect the fundamental period of RC structures. The comparison of the predicted values with analytical ones indicates the potential of using ANNs for the prediction of the fundamental period of infilled RC frame structures taking into account the crucial parameters that influence its value. PMID:27066069
Performance-based plastic design of earthquake resistant reinforced concrete moment frames
NASA Astrophysics Data System (ADS)
Liao, Wen-Cheng
Performance-Based Plastic Design (PBPD) method has been recently developed to achieve enhanced performance of earthquake resistant structures. The design concept uses pre-selected target drift and yield mechanism as performance criteria. The design base shear for selected hazard level is determined by equating the work needed to push the structure monotonically up to the target drift to the corresponding energy demand of an equivalent SDOF oscillator. This study presents development of the PBPD approach as applied to reinforced concrete special moment frame (RC SMF) structures. RC structures present special challenge because of their complex and degrading ("pinched") hysteretic behavior. In order to account for the degrading hysteretic behavior the 1-EMA 440 C2 factor approach was used in the process of determining the design base shear. Four baseline RC SMF (4, 8, 12 and 20-story) as used in the FEMA P695 were selected for this study. Those frames were redesigned by the PBPD approach. The baseline frames and the PBPD frames were subjected to extensive inelastic pushover and time-history analyses. The PBPD frames showed much improved response meeting all desired performance objectives, including the intended yield mechanisms and the target drifts. On the contrary, the baseline frames experienced large story drifts due to flexural yielding of the columns. The work-energy equation to determine design base shear can also be used to estimate seismic demands, called the energy spectrum method. In this approach the skeleton force-displacement (capacity) curve of the structure is converted into energy-displacement plot (Ec) which is superimposed over the corresponding energy demand plot ( Ed) for the specified hazard level to determine the expected peak displacement demands. In summary, this study shows that the PBPD approach can be successfully applied to RC moment frame structures as well, and that the responses of the example moment frames were much improved over those of the corresponding baseline frames. In addition, the drift demands of all study frames as computed by the energy spectrum method were in excellent agreement with those obtained from detailed inelastic dynamic analyses.
Kim, Sangyong; Moon, Joon-Ho; Shin, Yoonseok; Kim, Gwang-Hee; Seo, Deok-Seok
2013-01-01
The objective of this research is to quantitatively measure and compare the environmental load and construction cost of different structural frame types. Construction cost also accounts for the costs of CO2 emissions of input materials. The choice of structural frame type is a major consideration in construction, as this element represents about 33% of total building construction costs. In this research, four constructed buildings were analyzed, with these having either reinforced concrete (RC) or steel (S) structures. An input-output framework analysis was used to measure energy consumption and CO2 emissions of input materials for each structural frame type. In addition, the CO2 emissions cost was measured using the trading price of CO2 emissions on the International Commodity Exchange. This research revealed that both energy consumption and CO2 emissions were, on average, 26% lower with the RC structure than with the S structure, and the construction costs (including the CO2 emissions cost) of the RC structure were about 9.8% lower, compared to the S structure. This research provides insights through which the construction industry will be able to respond to the carbon market, which is expected to continue to grow in the future. PMID:24227998
Shake-table testing of a self-centering precast reinforced concrete frame with shear walls
NASA Astrophysics Data System (ADS)
Lu, Xilin; Yang, Boya; Zhao, Bin
2018-04-01
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.
NASA Astrophysics Data System (ADS)
Sun, Guohua; Chuang-Sheng, Walter Yang; Gu, Qiang; DesRoches, Reginald
2018-04-01
To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained (PR) steel frames with solid reinforced concrete (RC) infill walls, an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution, load transferring mechanism, and failure modes of RC infill walls filled in PR steel frame. The proposed composite compression struts model for the solid RC infill walls is composed of α inclined struts and main diagonal struts. The α inclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface, while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls. This study derives appropriate formulas for the effective widths of the α inclined strut and main diagonal strut, respectively. An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated. The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results, and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%. This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.
Seismic response of reinforced concrete frames at different damage levels
NASA Astrophysics Data System (ADS)
Morales-González, Merangeli; Vidot-Vega, Aidcer L.
2017-03-01
Performance-based seismic engineering is focused on the definition of limit states to represent different levels of damage, which can be described by material strains, drifts, displacements or even changes in dissipating properties and stiffness of the structure. This study presents a research plan to evaluate the behavior of reinforced concrete (RC) moment resistant frames at different performance levels established by the ASCE 41-06 seismic rehabilitation code. Sixteen RC plane moment frames with different span-to-depth ratios and three 3D RC frames were analyzed to evaluate their seismic behavior at different damage levels established by the ASCE 41-06. For each span-to-depth ratio, four different beam longitudinal reinforcement steel ratios were used that varied from 0.85 to 2.5% for the 2D frames. Nonlinear time history analyses of the frames were performed using scaled ground motions. The impact of different span-to-depth and reinforcement ratios on the damage levels was evaluated. Material strains, rotations and seismic hysteretic energy changes at different damage levels were studied.
Experiment study on RC frame retrofitted by the external structure
NASA Astrophysics Data System (ADS)
Liu, Chunyang; Shi, Junji; Hiroshi, Kuramoto; Taguchi, Takashi; Kamiya, Takashi
2016-09-01
A new retrofitting method is proposed herein for reinforced concrete (RC) structures through attachment of an external structure. The external structure consists of a fiber concrete encased steel frame, connection slab and transverse beams. The external structure is connected to the existing structure through a connection slab and transverse beams. Pseudostatic experiments were carried out on one unretrofitted specimen and three retrofitted frame specimens. The characteristics, including failure mode, crack pattern, hysteresis loops behavior, relationship of strain and displacement of the concrete slab, are demonstrated. The results show that the load carrying capacity is obviously increased, and the extension length of the slab and the number of columns within the external frame are important influence factors on the working performance of the existing structure. In addition, the displacement difference between the existing structure and the outer structure was caused mainly by three factors: shear deformation of the slab, extraction of transverse beams, and drift of the conjunction part between the slab and the existing frame. Furthermore, the total deformation determined by the first two factors accounted for approximately 80% of the damage, therefore these factors should be carefully considered in engineering practice to enhance the effects of this new retrofitting method.
Studies on effects of infills in seismic resistant R/C construction
NASA Astrophysics Data System (ADS)
Brokken, S. T.; Bertero, V. V.
1981-10-01
Experimental and analytical studies of the quantitative effects of infills in the seismic performance of buildings (particularly in buildings whose structural systems are based on the use of moment resisting frames alone are summarized); and the implications of these effects regarding the design of new buildings and retrofitting of existing R/C frame structures were evaluated. The first part is concerned with the infill problem and the experimental investigation conducted to study the effects of infill panels on seismic response of reinforced concrete frames. This investigation consisted of a series of quasi-static cyclic and monotonic load tests on 1/3-scale models of the lower 3-1/2 stories of an 11 story-three bay reinforced concrete frame infilled in the outer two bays. The reinforced concrete moment frame was designed for high rotational ductility and resistance to degradation under reversed cyclic shear loads.
NASA Astrophysics Data System (ADS)
Madheswaran, C. K.; Prakash vel, J.; Sathishkumar, K.; Rao, G. V. Rama
2017-06-01
A three-storey half scale reinforced concrete (RC) building is fixed with X-shaped metallic damper at the ground floor level, is designed and fabricated to study its seismic response characteristics. Experimental studies are carried out using the (4 m × 4 m) tri-axial shake-table facility to evaluate the seismic response of a retrofitted RC building with open ground storey (OGS) structure using yielding type X-shaped metallic dampers (also called as Added Damping and Stiffness-ADAS elements) and repairing the damaged ground storey columns using geopolymer concrete composites. This elasto-plastic device is normally incorporated within the frame structure between adjacent floors through chevron bracing, so that they efficiently enhance the overall energy dissipation ability of the seismically deficient frame structure under earthquake loading. Free vibration tests on RC building without and with yielding type X-shaped metallic damper is carried out. The natural frequencies and mode shapes of RC building without and with yielding type X-shaped metallic damper are determined. The retrofitted reinforced concrete building is subjected to earthquake excitations and the response from the structure is recorded. This work discusses the preparation of test specimen, experimental set-up, instrumentation, method of testing of RC building and the response of the structure. The metallic damper reduces the time period of the structure and displacement demands on the OGS columns of the structure. Nonlinear time history analysis is performed using structural analysis package, SAP2000.
Earthquake behavior of steel cushion-implemented reinforced concrete frames
NASA Astrophysics Data System (ADS)
Özkaynak, Hasan
2018-04-01
The earthquake performance of vulnerable structures can be increased by the implementation of supplementary energy-dissipative metallic elements. The main aim of this paper is to describe the earthquake behavior of steel cushion-implemented reinforced concrete frames (SCI-RCFR) in terms of displacement demands and energy components. Several quasi-static experiments were performed on steel cushions (SC) installed in reinforced concrete (RC) frames. The test results served as the basis of the analytical models of SCs and a bare reinforced concrete frame (B-RCFR). These models were integrated in order to obtain the resulting analytical model of the SCI-RCFR. Nonlinear-time history analyses (NTHA) were performed on the SCI-RCFR under the effects of the selected earthquake data set. According to the NTHA, SC application is an effective technique for increasing the seismic performance of RC structures. The main portion of the earthquake input energy was dissipated through SCs. SCs succeeded in decreasing the plastic energy demand on structural elements by almost 50% at distinct drift levels.
Research in structures, structural dynamics and materials, 1989
NASA Technical Reports Server (NTRS)
Hunter, William F. (Compiler); Noor, Ahmed K. (Compiler)
1989-01-01
Topics addressed include: composite plates; buckling predictions; missile launch tube modeling; structural/control systems design; optimization of nonlinear R/C frames; error analysis for semi-analytic displacement; crack acoustic emission; and structural dynamics.
Aftershock collapse vulnerability assessment of reinforced concrete frame structures
Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas
2015-01-01
In a seismically active region, structures may be subjected to multiple earthquakes, due to mainshock–aftershock phenomena or other sequences, leaving no time for repair or retrofit between the events. This study quantifies the aftershock vulnerability of four modern ductile reinforced concrete (RC) framed buildings in California by conducting incremental dynamic analysis of nonlinear MDOF analytical models. Based on the nonlinear dynamic analysis results, collapse and damage fragility curves are generated for intact and damaged buildings. If the building is not severely damaged in the mainshock, its collapse capacity is unaffected in the aftershock. However, if the building is extensively damaged in the mainshock, there is a significant reduction in its collapse capacity in the aftershock. For example, if an RC frame experiences 4% or more interstory drift in the mainshock, the median capacity to resist aftershock shaking is reduced by about 40%. The study also evaluates the effectiveness of different measures of physical damage observed in the mainshock-damaged buildings for predicting the reduction in collapse capacity of the damaged building in subsequent aftershocks. These physical damage indicators for the building are chosen such that they quantify the qualitative red tagging (unsafe for occupation) criteria employed in post-earthquake evaluation of RC frames. The results indicated that damage indicators related to the drift experienced by the damaged building best predicted the reduced aftershock collapse capacities for these ductile structures.
Prediction of strain values in reinforcements and concrete of a RC frame using neural networks
NASA Astrophysics Data System (ADS)
Vafaei, Mohammadreza; Alih, Sophia C.; Shad, Hossein; Falah, Ali; Halim, Nur Hajarul Falahi Abdul
2018-03-01
The level of strain in structural elements is an important indicator for the presence of damage and its intensity. Considering this fact, often structural health monitoring systems employ strain gauges to measure strains in critical elements. However, because of their sensitivity to the magnetic fields, inadequate long-term durability especially in harsh environments, difficulties in installation on existing structures, and maintenance cost, installation of strain gauges is not always possible for all structural components. Therefore, a reliable method that can accurately estimate strain values in critical structural elements is necessary for damage identification. In this study, a full-scale test was conducted on a planar RC frame to investigate the capability of neural networks for predicting the strain values. Two neural networks each of which having a single hidden layer was trained to relate the measured rotations and vertical displacements of the frame to the strain values measured at different locations of the frame. Results of trained neural networks indicated that they accurately estimated the strain values both in reinforcements and concrete. In addition, the trained neural networks were capable of predicting strains for the unseen input data set.
Masonry Infilling Effect On Seismic Vulnerability and Performance Level of High Ductility RC Frames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghalehnovi, M.; Shahraki, H.
2008-07-08
In last years researchers preferred behavior-based design of structure to force-based one for designing and construction of the earthquake-resistance structures, this method is named performance based designing. The main goal of this method is designing of structure members for a certain performance or behavior. On the other hand in most of buildings, load bearing frames are infilled with masonry materials which leads to considerable changes in mechanical properties of frames. But usually infilling wall's effect has been ignored in nonlinear analysis of structures because of complication of the problem and lack of simple logical solution. As a result lateral stiffness,more » strength, ductility and performance of the structure will be computed with less accuracy. In this paper by use of Smooth hysteretic model for masonry infillings, some high ductile RC frames (4, 8 stories including 1, 2 and 3 spans) designed according to Iranian code are considered. They have been analyzed by nonlinear dynamic method in two states, with and without infilling. Then their performance has been determined with criteria of ATC 40 and compared with recommended performance in Iranian seismic code (standard No. 2800)« less
NASA Astrophysics Data System (ADS)
Mazza, Mirko
2015-12-01
Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifications and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, the insertion of a base isolation system allows a considerable reduction of the seismic loads transmitted to the superstructure. However, strong near-fault ground motions, which are characterised by long-duration horizontal pulses, may amplify the inelastic response of the superstructure and induce a failure of the isolation system. The above considerations point out the importance of checking the effectiveness of different isolation systems for retrofitting a r.c. framed structure. For this purpose, a numerical investigation is carried out with reference to a six-storey r.c. framed building, which, primarily designed (as to be a fixed-base one) in compliance with the previous Italian code (DM96) for a medium-risk seismic zone, has to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by the current Italian code (NTC08) in a high-risk seismic zone. Besides the (fixed-base) original structure, three cases of base isolation are studied: elastomeric bearings acting alone (e.g. HDLRBs); in-parallel combination of elastomeric and friction bearings (e.g. high-damping-laminated-rubber bearings, HDLRBs and steel-PTFE sliding bearings, SBs); friction bearings acting alone (e.g. friction pendulum bearings, FPBs). The nonlinear analysis of the fixed-base and base-isolated structures subjected to horizontal components of near-fault ground motions is performed for checking plastic conditions at the potential critical (end) sections of the girders and columns as well as critical conditions of the isolation systems. Unexpected high values of ductility demand are highlighted at the lower floors of all base-isolated structures, while re-centring problems of the base isolation systems under near-fault earthquakes are expected in case of friction bearings acting alone (i.e. FPBs) or that in combination (i.e. SBs) with HDLRBs.
NASA Astrophysics Data System (ADS)
Chen, Linzhi; Lu, Xilin; Jiang, Huanjun; Zheng, Jianbo
2009-06-01
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests of ten column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.
Evaluation of Eco-Efficiency and Performance of Retrofit Materials
NASA Astrophysics Data System (ADS)
Gopinath, Smitha; Rama Chandra Murthy, A.; Iyer, Nagesh R.; Kokila, S.
2015-12-01
In this work three materials namely Fiber Reinforced Polymer (FRP), ferrocement and Textile Reinforced Concrete (TRC) have been evaluated towards their performance efficiency and eco-effectiveness for sustainable retrofitting applications. Investigations have been carried out for flexural strengthening of RC beams with FRP, ferrocement and TRC. It is observed that in the case of FRP, it is not possible to tailor the material according to design requirements and most of the time strengthened structure becomes over stiff. Eco-effectiveness of these retrofitting materials has been evaluated by computing the embodied energy. It is observed that the amount of CO2 emitted by TRC is less compared to other retrofit materials. Further, the performance point of retrofitted RC frames has been evaluated and damage index has been calculated to find out the effective retrofit material. It is concluded that, if RC frame is retrofitted with FRP and TRC, it undergoes less damage compared to ferrocement.
Field investigation on severely damaged aseismic buildings in 2014 Ludian earthquake
NASA Astrophysics Data System (ADS)
Lin, Xuchuan; Zhang, Haoyu; Chen, Hongfu; Chen, Hao; Lin, Junqi
2015-03-01
The 2014 magnitude 6.5 Ludian earthquake caused a death toll of 617, many landslides and tens of thousands of collapsed buildings. A field investigation to evaluate the damage to buildings was carried out immediately after the occurrence of the earthquake. Severely damaged aseismic buildings, which were basically observed in the downtown of Longtoushan Town, were carefully examined one by one with the aim to improve design codes. This paper summarizes the damage observed to the investigated aseismic buildings in both the structural and local levels. A common failure mode was observed that most of the aseismic buildings, such as RC frame structures and confined masonry structures, were similarly destroyed by severe damage or complete collapse of the first story. The related strong ground motion, which was recorded at the nearby station, had a short duration of less than 20 s but a very large PGA up to 1.0 g. The RC frames based on the new design codes still failed to achieve the design target for "strong column, weak beam". Typical local failure details, which were related to the interaction between RC columns and infill walls and between constructional columns and masonry walls, are summarized with preliminary analyses.
NASA Astrophysics Data System (ADS)
Chan, Chun-Kai; Loh, Chin-Hsiung; Wu, Tzu-Hsiu
2015-04-01
In civil engineering, health monitoring and damage detection are typically carry out by using a large amount of sensors. Typically, most methods require global measurements to extract the properties of the structure. However, some sensors, like LVDT, cannot be used due to in situ limitation so that the global deformation remains unknown. An experiment is used to demonstrate the proposed algorithms: a one-story 2-bay reinforce concrete frame under weak and strong seismic excitation. In this paper signal processing techniques and nonlinear identification are used and applied to the response measurements of seismic response of reinforced concrete structures subject to different level of earthquake excitations. Both modal-based and signal-based system identification and feature extraction techniques are used to study the nonlinear inelastic response of RC frame using both input and output response data or output only measurement. From the signal-based damage identification method, which include the enhancement of time-frequency analysis of acceleration responses and the estimation of permanent deformation using directly from acceleration response data. Finally, local deformation measurement from dense optical tractor is also use to quantify the damage of the RC frame structure.
NASA Astrophysics Data System (ADS)
Besoiu, Teodora; Popa, Anca
2017-10-01
This study investigates the effect of the autoclaved aerated concrete infill walls on the progressive collapse resistance of a typical RC framed structure. The 13-storey building located in Brăila (a zone with high seismic risk in Romania) was designed according to the former Romanian seismic code P13-70 (1970). Two models of the structure are generated in the Extreme Loading® for Structures computer software: a model with infill walls and a model without infill walls. Following GSA (2003) Guidelines, a nonlinear dynamic procedure is used to determine the progressive collapse risk of the building when a first-storey corner column is suddenly removed. It was found that, the structure is not expected to fail under the standard GSA loading: DL+0.25LL. Moreover, if the infill walls are introduced in the model, the maximum vertical displacement of the node above the removed column is reduced by about 48%.
NASA Astrophysics Data System (ADS)
Zafar, Adeel; Andrawes, Bassem
2012-02-01
Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA-FRP composite, which is sought in this research as reinforcing bars. SMA-FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA-FRP and glass-FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA-FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones.
Integrated optimization of nonlinear R/C frames with reliability constraints
NASA Technical Reports Server (NTRS)
Soeiro, Alfredo; Hoit, Marc
1989-01-01
A structural optimization algorithm was researched including global displacements as decision variables. The algorithm was applied to planar reinforced concrete frames with nonlinear material behavior submitted to static loading. The flexural performance of the elements was evaluated as a function of the actual stress-strain diagrams of the materials. Formation of rotational hinges with strain hardening were allowed and the equilibrium constraints were updated accordingly. The adequacy of the frames was guaranteed by imposing as constraints required reliability indices for the members, maximum global displacements for the structure and a maximum system probability of failure.
7 CFR 654.15 - Operation and maintenance.
Code of Federal Regulations, 2014 CFR
2014-01-01
... installed as set forth in the watershed or RC&D measure plan. (d) Compliance with the time frames and O&M... the schedule for withdrawal of water in water impounding structures as specified in the watershed or...
7 CFR 654.15 - Operation and maintenance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... installed as set forth in the watershed or RC&D measure plan. (d) Compliance with the time frames and O&M... the schedule for withdrawal of water in water impounding structures as specified in the watershed or...
Effectiveness of damped braces to mitigate seismic torsional response of unsymmetric-plan buildings
NASA Astrophysics Data System (ADS)
Mazza, Fabio; Pedace, Emilia; Favero, Francesco Del
2017-02-01
The seismic retrofitting of unsymmetric-plan reinforced concrete (r.c.) framed buildings can be carried out by the incorporation of damped braces (DBs). Yet most of the proposals to mitigate the seismic response of asymmetric framed buildings by DBs rest on the hypothesis of elastic (linear) structural response. The aim of the present work is to evaluate the effectiveness and reliability of a Displacement-Based Design procedure of hysteretic damped braces (HYDBs) based on the nonlinear behavior of the frame members, which adopts the extended N2 method considered by Eurocode 8 to evaluate the higher mode torsional effects. The Town Hall of Spilinga (Italy), a framed structure with an L-shaped plan built at the beginning of the 1960s, is supposed to be retrofitted with HYDBs to attain performance levels imposed by the Italian seismic code (NTC08) in a high-risk zone. Ten structural solutions are compared by considering two in-plan distributions of the HYDBs, to eliminate (elastic) torsional effects, and different design values of the frame ductility combined with a constant design value of the damper ductility. A computer code for the nonlinear dynamic analysis of r.c. spatial framed structures is adopted to evaluate the critical incident angle of bidirectional earthquakes. Beams and columns are simulated with a lumped plasticity model, including flat surface modeling of the axial load-biaxial bending moment elastic domain at the end sections, while a bilinear law is used to idealize the behavior of the HYDBs. Damage index domains are adopted to estimate the directions of least seismic capacity, considering artificial earthquakes whose response spectra match those adopted by NTC08 at serviceability and ultimate limit states.
NASA Astrophysics Data System (ADS)
Sil, Arjun; Longmailai, Thaihamdau
2017-09-01
The lateral displacement of Reinforced Concrete (RC) frame building during an earthquake has an important impact on the structural stability and integrity. However, seismic analysis and design of RC building needs more concern due to its complex behavior as the performance of the structure links to the features of the system having many influencing parameters and other inherent uncertainties. The reliability approach takes into account the factors and uncertainty in design influencing the performance or response of the structure in which the safety level or the probability of failure could be ascertained. This present study, aims to assess the reliability of seismic performance of a four storey residential RC building seismically located in Zone-V as per the code provisions given in the Indian Standards IS: 1893-2002. The reliability assessment performed by deriving an explicit expression for maximum roof-lateral displacement as a failure function by regression method. A total of 319, four storey RC buildings were analyzed by linear static method using SAP2000. However, the change in the lateral-roof displacement with the variation of the parameters (column dimension, beam dimension, grade of concrete, floor height and total weight of the structure) was observed. A generalized relation established by regression method which could be used to estimate the expected lateral displacement owing to those selected parameters. A comparison made between the displacements obtained from analysis with that of the equation so formed. However, it shows that the proposed relation could be used directly to determine the expected maximum lateral displacement. The data obtained from the statistical computations was then used to obtain the probability of failure and the reliability.
Effect of URM infills on seismic vulnerability of Indian code designed RC frame buildings
NASA Astrophysics Data System (ADS)
Haldar, Putul; Singh, Yogendra; Paul, D. K.
2012-03-01
Unreinforced Masonry (URM) is the most common partitioning material in framed buildings in India and many other countries. Although it is well-known that under lateral loading the behavior and modes of failure of the frame buildings change significantly due to infill-frame interaction, the general design practice is to treat infills as nonstructural elements and their stiffness, strength and interaction with the frame is often ignored, primarily because of difficulties in simulation and lack of modeling guidelines in design codes. The Indian Standard, like many other national codes, does not provide explicit insight into the anticipated performance and associated vulnerability of infilled frames. This paper presents an analytical study on the seismic performance and fragility analysis of Indian code-designed RC frame buildings with and without URM infills. Infills are modeled as diagonal struts as per ASCE 41 guidelines and various modes of failure are considered. HAZUS methodology along with nonlinear static analysis is used to compare the seismic vulnerability of bare and infilled frames. The comparative study suggests that URM infills result in a significant increase in the seismic vulnerability of RC frames and their effect needs to be properly incorporated in design codes.
Earthquake simulator tests and associated study of an 1/6-scale nine-story RC model
NASA Astrophysics Data System (ADS)
Sun, Jingjiang; Wang, Tao; Qi, Hu
2007-09-01
Earthquake simulator tests of a 1/6-scale nine-story reinforced concrete frame-wall model are described in the paper. The test results and associated numerical simulation are summarized and discussed. Based on the test data, a relationship between maximum inter-story drift and damage state is established. Equations of variation of structural characteristics (natural frequency and equivalent stiffness) with overall drifts are derived by data fitting, which can be used to estimate structural damage state if structural characteristics can be measured. A comparison of the analytical and experimental results show that both the commonly used equivalent beam and fiber element models can simulate the nonlinear seismic response of structures very well. Finally, conclusions associated with seismic design and damage evaluation of RC structures are presented.
Stiffness degradation-based damage model for RC members and structures using fiber-beam elements
NASA Astrophysics Data System (ADS)
Guo, Zongming; Zhang, Yaoting; Lu, Jiezhi; Fan, Jian
2016-12-01
To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating story damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.
Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames
NASA Astrophysics Data System (ADS)
Kamanli, Mehmet; Unal, Alptug
2017-10-01
After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.
Pros and cons of multistory RC tunnel-form (box-type) buildings
Kalkan, E.; Yuksel, S.B.
2008-01-01
Tunnel-form structural systems (i.e., box systems), having a load-carrying mechanism composed of reinforced concrete (RC) shear walls and slabs only, have been prevailingly utilized in the construction of multistory residential units. The superiority of tunnel-form buildings over their conventional counterparts stems from the enhanced earthquake resistance they provide, and the considerable speed and economy of their construction. During recent earthquakes in Turkey, they exhibited better seismic performance in contrast to the damaged condition of a number of RC frames and dual systems (i.e., RC frames with shear wall configurations). Thus the tunnel-form system has become a primary construction technique in many seismically active regions. In this paper, the strengths and weaknesses of tunnel-form buildings are addressed in terms of design considerations and construction applications. The impacts of shear wall reinforcement ratio and its detailing on system ductility, loadcarrying capacity and failure mechanism under seismic forces are evaluated at section and global system levels. Influences of tension/compression coupling and wall openings on the response are also discussed. Three-dimensional nonlinear finite element models, verified through comparisons with experimental results, were used for numerical assessments. Findings from this projection provide useful information on adequate vertical reinforcement ratio and boundary reinforcement to achieve enhanced performance of tunnel-form buildings under seismic actions. Copyright ?? 2007 John Wiley & Sons, Ltd.
Design of Visco-Elastic Dampers for RC Frame for Site-Specific Earthquake
NASA Astrophysics Data System (ADS)
Kamatchi, P.; Rama Raju, K.; Ravisankar, K.; Iyer, Nagesh R.
2016-12-01
Number of Reinforced Concrete (RC) framed buildings have got damaged at Ahmedabad city, India located at about 240 km away from epicenter during January 2001, 7.6 moment magnitude (Mw) Bhuj earthquake. In the present study, two dimensional nonlinear time history dynamic analyses of a typical 13 storey frame assumed to be located at Ahmedabad is carried out with the rock level and surface level site-specific ground motion for scenario earthquake of Mw 7.6 from Bhuj. Artificial ground motions are generated using extended finite source stochastic model with seismological parameters reported in literature for 2001 Bhuj earthquake. Surface level ground motions are obtained for a typical soil profile of 100 m depth reported in literature through one dimensional equivalent linear wave propagation analyses. From the analyses, failure of frame is observed for surface level ground motions which indicates that, in addition to the in-adequacy of the cross sections and reinforcement of the RC members of the frame chosen, the rich energy content of the surface level ground motion near the fundamental time period of the frame has also contributed for the failure of frame. As a part of retrofitting measure, five Visco-elastic Dampers (VED) in chevron bracing are added to frame. For the frame considered in the present study, provision of VED is found to be effective to mitigate damage for the soil site considered.
NASA Astrophysics Data System (ADS)
Beheshti Aval, Seyed Bahram; Kouhestani, Hamed Sadegh; Mottaghi, Lida
2017-07-01
This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation methods, concentric chevron bracing (CCB) and cylindrical friction damper (CFD) were selected. The performance assessment procedure of the frames is divided into two distinct phases. First, the limit state probabilities of the structures before and after rehabilitation are investigated. In the second phase, the seismic risk of structures in terms of life safety and financial losses (decision variables) using the recently published FEMA P58 methodology is evaluated. The results show that the proposed retrofitting methods improve the serviceability and life safety performance levels of steel and RC structures at different rates when subjected to earthquake loads. Moreover, these procedures reveal that financial losses are greatly decreased, and were more tangible by the application of CFD rather than using CCB. Although using both retrofitting methods reduced damage state probabilities, incorporation of a site-specific seismic hazard curve to evaluate mean annual occurrence frequency at the collapse prevention limit state caused unexpected results to be obtained. Contrary to CFD, the collapse probability of the structures retrofitted with CCB increased when compared with the primary structures.
An experimental investigation for external RC shear wall applications
NASA Astrophysics Data System (ADS)
Kaltakci, M. Y.; Ozturk, M.; Arslan, M. H.
2010-09-01
The strength and rigidity of most reinforced concrete (RC) buildings in Turkey, which are frequently hit by destructive earthquakes, is not at a sufficient level. Therefore, the result of earthquakes is a significant loss of life and property. The strengthening method most commonly preferred for these type of RC buildings is the application of RC infilled walls (shear walls) in the frame openings of the building. However, since the whole building has to be emptied and additional heavy costs arise during this type of strengthening, users prefer not to strengthen their buildings despite the heavy risk they are exposed to. Therefore, it is necessary to develop easier-to-apply and more effective methods for the rapid strengthening of housing and the heavily-used public buildings which cannot be emptied during the strengthening process (such as hospitals and schools). This study empirically analyses the different methods of a new system which can meet this need. In this new system, named "external shear wall application", RC shear walls are applied on the external surface of the building, along the frame plane rather than in the building. To this end, 7 test samples in 1/2 and 1/3 geometrical scale were designed to analyse the efficiency of the strengthening technique where the shear wall leans on the frame from outside of the building (external shear wall application) and of the strengthening technique where a specific space is left between the frame and the external shear wall by using a coupling beam to connect elements (application of external shear wall with coupling beam). Test results showed that the maximum lateral load capacity, initial rigidity and energy dissipation behaviours of the samples strengthened with external shear wall were much better than those of the bare frames.
Seasonal frost effects on the dynamic behavior of a twenty-story office building
Yang, Z.; Dutta, U.; Xiong, F.; Biswas, N.; Benz, H.
2008-01-01
Studies have shown that seasonal frost can significantly affect the seismic behavior of a bridge foundation system in cold regions. However, little information could be found regarding seasonal frost effects on the dynamic behavior of buildings. Based on the analysis of building vibration data recorded by a permanent strong-motion instrumentation system, the objective of this paper is to show that seasonal frost can impact the building dynamic behavior and the magnitude of impact may be different for different structures. Ambient noise and seismic data recorded on a twenty-story steel-frame building have been analyzed to examine the building dynamic characteristics in relationship to the seasonal frost and other variables including ground shaking intensity. Subsequently, Finite Element modeling of the foundation-soil system and the building superstructure was conducted to verify the seasonal frost effects. The Finite Element modeling was later extended to a reinforced-concrete (RC) type building assumed to exist at a similar site as the steel-frame building. Results show that the seasonal frost has great impact on the foundation stiffness in the horizontal direction and a clear influence on the building dynamic behavior. If other conditions remain the same, the effects of seasonal frost on structural dynamic behavior may be much more prominent for RC-type buildings than for steel-frame buildings. ?? 2007 Elsevier B.V. All rights reserved.
Analysis of "D" regions of RC structures based on example of frame corners
NASA Astrophysics Data System (ADS)
Michał, Szczecina; Andrzej, Winnicki
2018-01-01
Calculations of reinforcement of "D" regions of reinforced concrete structures is much difficult than for "B" regions and demands some specific approaches. Authors of the paper suggest to use both Strut-and-Tie (S&T) and Finite Element Method (FEM). The first of those methods allows to calculate required reinforcement and efficiency factor. In turn FEM can not only confirm S&T results but also gives information about crack width and pattern, strains and nodal displacement. Sample calculations were performed on example of frame corners under opening bending moment. Parameters of Concrete Damaged Plasticity model of concrete implemented in Abaqus were calibrated in tension and compressions test.
NASA Astrophysics Data System (ADS)
Tan, Chee Ghuan; Chia, Wei Ting; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Adiyanto, Mohd Irwan
2017-10-01
On 5th June 2015, a moderate earthquake with Mw 5.9 hit Ranau, resulted in damages of the existing non-seismically designed buildings, such that 61 buildings, including mosques, schools, hospitals and Ranau police headquarters were suffered from different level structural damages. Soft storey irregularity is one of the main reasons of the building damage. This study is to investigate the soft-story effect on the propagation path of plastic hinges RC building under seismic excitation. The plastic hinges formation and seismic performance of five moment resisting RC frames with different infill configurations are studied. The seismic performance of building is evaluated by Incremental Dynamic Analysis (IDA). Open ground soft storey structure shows the lowest seismic resistance, collapses at 0.55g pga. The maximum interstorey drift ratio (IDRmax) in soft storey buildings ranging from 0.53% to 2.96% which are far greater than bare frame ranging from 0.095% to 0.69%. The presence of infill walls creates stiffer upper stories causing moments concentrate at the soft storey, resulting the path of plastic hinge propagation is dominant at the soft storey columns. Hence, the buildings with soft storey are very susceptible under earthquake load.
Textile technology development
NASA Technical Reports Server (NTRS)
Shah, Bharat M.
1995-01-01
The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.
The FP4026 Research Database on the fundamental period of RC infilled frame structures.
Asteris, Panagiotis G
2016-12-01
The fundamental period of vibration appears to be one of the most critical parameters for the seismic design of buildings because it strongly affects the destructive impact of the seismic forces. In this article, important research data (entitled FP4026 Research Database (Fundamental Period-4026 cases of infilled frames) based on a detailed and in-depth analytical research on the fundamental period of reinforced concrete structures is presented. In particular, the values of the fundamental period which have been analytically determined are presented, taking into account the majority of the involved parameters. This database can be extremely valuable for the development of new code proposals for the estimation of the fundamental period of reinforced concrete structures fully or partially infilled with masonry walls.
NASA Astrophysics Data System (ADS)
Astroza, Rodrigo; Ebrahimian, Hamed; Conte, Joel P.
2015-03-01
This paper describes a novel framework that combines advanced mechanics-based nonlinear (hysteretic) finite element (FE) models and stochastic filtering techniques to estimate unknown time-invariant parameters of nonlinear inelastic material models used in the FE model. Using input-output data recorded during earthquake events, the proposed framework updates the nonlinear FE model of the structure. The updated FE model can be directly used for damage identification and further used for damage prognosis. To update the unknown time-invariant parameters of the FE model, two alternative stochastic filtering methods are used: the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). A three-dimensional, 5-story, 2-by-1 bay reinforced concrete (RC) frame is used to verify the proposed framework. The RC frame is modeled using fiber-section displacement-based beam-column elements with distributed plasticity and is subjected to the ground motion recorded at the Sylmar station during the 1994 Northridge earthquake. The results indicate that the proposed framework accurately estimate the unknown material parameters of the nonlinear FE model. The UKF outperforms the EKF when the relative root-mean-square error of the recorded responses are compared. In addition, the results suggest that the convergence of the estimate of modeling parameters is smoother and faster when the UKF is utilized.
VizieR Online Data Catalog: BV(RI)c light curves of FF Vul (Samec+, 2016)
NASA Astrophysics Data System (ADS)
Samec, R. G.; Nyaude, R.; Caton, D.; van Hamme, W.
2017-02-01
The present BVRcIc light curves were taken by DC, the Dark Sky Observatory 0.81m reflector at Phillips Gap, North Carolina. These were taken on 2015 September 12, 13, 14 and 15, and October 15, with a thermoelectrically cooled (-40°C) 2*2K Apogee Alta camera. Additional observations were obtained remotely with the SARA north 0.91m reflector at KPNO on 2015 September 20 and October 11, with the ARC 2*2K camera cooled to -110°C. Individual observations were taken at both sites with standard Johnson-Cousins filters, and included 444 field images in B, 451 in V, 443 in Rc, and 445 in Ic. The standard error was ~7mmag in each of B, V, Rc and Ic. Nightly images were calibrated with 25 bias frames, five flat frames in each filter, and ten 300s dark frames. The exposure times were 40-50s in B, 25-30s in V, 15-25s in Rc and Ic. Our observations are listed in Table1. (1 data file).
Seismic Rehabilitation of RC Frames by Using Steel Panels
NASA Astrophysics Data System (ADS)
Mowrtage, Waiel
2008-07-01
Every major earthquake in Turkey causes a large number of building suffer moderate damage due to poor construction. If a proper and fast retrofit is not applied, the aftershocks, which may sometimes come days or weeks after the main shock, can push a moderately damaged building into a major damage or even total collapse. This paper presents a practical retrofit method for moderately damaged buildings, which increases the seismic performance of the structural system by reducing the displacement demand. Fabricated steel panels are used for the retrofit. They are light-weight, easy to handle, and can be constructed very quickly. Moreover, they are cheap, and do not need formwork or skilled workers. They can be designed to compensate for the stiffness and strength degradation, and to fit easily inside a moderately damaged reinforced concrete frame. To test the concept, a half-scale, single-story 3D reinforced concrete frame specimen was constructed at the shake-table laboratories of the Kandilli Observatory and Earthquake Research Institute of Bogazici University, and subjected to recorded real earthquake base accelerations. The amplitudes of base accelerations were increased until a moderate damage level is reached. Then, the damaged RC frames was retrofitted by means of steel panels and tested under the same earthquake. The seismic performance of the specimen before and after the retrofit was evaluated using FEMA356 standards, and the results were compared in terms of stiffness, strength, and deformability. The results have confirmed effectiveness of the proposed retrofit scheme.
NASA Astrophysics Data System (ADS)
Wang, Yayong
2010-06-01
A large number of buildings were seriously damaged or collapsed in the “5.12” Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been updated. This paper briefly summarizes some of the major revisions that have been incorporated into the “Standard for classification of seismic protection of building constructions GB50223-2008” and “Code for Seismic Design of Buildings GB50011-2001.” The definition of seismic fortification class for buildings has been revisited, and as a result, the seismic classifications for schools, hospitals and other buildings that hold large populations such as evacuation shelters and information centers have been upgraded in the GB50223-2008 Code. The main aspects of the revised GB50011-2001 code include: (a) modification of the seismic intensity specified for the Provinces of Sichuan, Shanxi and Gansu; (b) basic conceptual design for retaining walls and building foundations in mountainous areas; (c) regularity of building configuration; (d) integration of masonry structures and pre-cast RC floors; (e) requirements for calculating and detailing stair shafts; and (f) limiting the use of single-bay RC frame structures. Some significant examples of damage in the epicenter areas are provided as a reference in the discussion on the consequences of collapse, the importance of duplicate structural systems, and the integration of RC and masonry structures.
Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.
Gao, Wei; Kwong, Sam; Jia, Yuheng
2017-08-25
In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.
Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo.
Xia, Jun; Chatni, Muhammad R; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V
2012-05-01
We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.
Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo
NASA Astrophysics Data System (ADS)
Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.
2012-05-01
We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.
In-Plane Behaviour of a Reinforcement Concrete Frame with a Dry Stack Masonry Panel
Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Guo, Tianyou
2016-01-01
In order to improve the energy dissipation of the masonry infilled frame structure while decreasing the stiffening and strengthening effects of the infill panels, a new dry stacked panel (DSP) semi-interlocking masonry (SIM) infill panel has been developed. In this paper, the material properties of DSP and a traditional unreinforced masonry (URM) panel have been evaluated experimentally. A series of cyclic tests were performed to investigate the cyclic behaviour of the reinforcement concrete (RC) frame with different infill panels. The failure modes, damage evolution, hysteretic behaviour, stiffness degradation and energy dissipation were compared and analysed. We concluded that DSP is capable of significantly improving the seismic energy dissipation due to its hysteretic behaviour when the frame is in elastic stage without increasing the stiffness of the frame. Therefore, DSP or SIM panels can be considered as frictional dampers. Based on the experimental results, the influence of DSP was examined. Using the parallel model, the hysteretic loops of DSP subjected to different load cases were achieved. The typical full hysteretic loop for DSP could be divided into three distinct stages of behaviour: packing stage, constant friction stage and equivalent strut stage. The connection between the panel and the frame had a great effect on the transferring of different mechanical stages. The constant friction stage was verified to provide substantial energy dissipation and benefits to the ductility of the structure, which, therefore, is suggested to be prolonged in reality. PMID:28787906
In-Plane Behaviour of a Reinforcement Concrete Frame with a Dry Stack Masonry Panel.
Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Guo, Tianyou
2016-02-11
In order to improve the energy dissipation of the masonry infilled frame structure while decreasing the stiffening and strengthening effects of the infill panels, a new dry stacked panel (DSP) semi-interlocking masonry (SIM) infill panel has been developed. In this paper, the material properties of DSP and a traditional unreinforced masonry (URM) panel have been evaluated experimentally. A series of cyclic tests were performed to investigate the cyclic behaviour of the reinforcement concrete (RC) frame with different infill panels. The failure modes, damage evolution, hysteretic behaviour, stiffness degradation and energy dissipation were compared and analysed. We concluded that DSP is capable of significantly improving the seismic energy dissipation due to its hysteretic behaviour when the frame is in elastic stage without increasing the stiffness of the frame. Therefore, DSP or SIM panels can be considered as frictional dampers. Based on the experimental results, the influence of DSP was examined. Using the parallel model, the hysteretic loops of DSP subjected to different load cases were achieved. The typical full hysteretic loop for DSP could be divided into three distinct stages of behaviour: packing stage, constant friction stage and equivalent strut stage. The connection between the panel and the frame had a great effect on the transferring of different mechanical stages. The constant friction stage was verified to provide substantial energy dissipation and benefits to the ductility of the structure, which, therefore, is suggested to be prolonged in reality.
Çelebi, Mehmet
2016-01-01
Responses of a dual core shear-wall and outrigger-framed 58-story building recorded during the Mw6.0 Napa earthquake of 24 August 2014 and the Mw3.8 Berkeley earthquake of 20 October 2011 are used to identify its dynamic characteristics and behavior. Fundamental frequencies are 0.28 Hz (NS), 0.25 Hz (EW), and 0.43 Hz (torsional). Rigid body motions due to rocking are not significant. Average drift ratios are small. Outrigger frames do not affect average drift ratios or mode shapes. Local site effects do not affect the response; however, response associated with deeper structure may be substantial. A beating effect is observed from data of both earthquakes but beating periods are not consistent. Low critical damping ratios may have contributed to the beating effect. Torsion is relatively larger above outriggers as indicated by the time-histories of motions at the roof, possibly due to the discontinuity of the stiffer shear walls above level 47.
Uphaus, R A; Fang, J Y; Picorel, R; Chumanov, G; Wang, J Y; Cotton, T M; Seibert, M
1997-04-01
The photosystem II (PSII) reaction center (RC) is a hydrophobic intrinsic protein complex that drives the water-oxidation process of photosynthesis. Unlike the bacterial RC complex, an X-ray crystal structure of the PSII RC is not available. In order to determine the physical dimensions of the isolated PSII RC complex, we applied Langmuir techniques to determine the cross-sectional area of an isolated RC in a condensed monolayer film. Low-angle X-ray diffraction results obtained by examining Langmuir-Blodgett multilayer films of alternating PSII RC/Cd stearate monolayers were used to determine the length (or height; z-direction, perpendicular to the plane of the original membrane) of the complex. The values obtained for a PSII RC monomer were 26 nm2 and 4.8 nm, respectively, and the structural integrity of the RC in the multilayer film was confirmed by several approaches. Assuming a cylindrical-type RC structure, the above dimensions lead to a predicted volume of about 125 nm3. This value is very close to the expected volume of 118 nm3, calculated from the known molecular weight and partial specific volume of the PSII RC proteins. This same type of comparison was also made with the Rhodobacter sphaeroides RC based on published data, and we conclude that the PSII RC is much shorter in length and has a more regular solid geometric structure than the bacterial RC. Furthermore, the above dimensions of the PSII RC and those of PSII core (RC plus proximal antenna) proteins protruding outside the plane of the PSII membrane into the lumenal space as imaged by scanning tunneling microscopy (Seibert, Aust. J. Pl. Physiol. 22, 161-166, 1995) fit easily into the known dimensions of the PSII core complex visualized by others as electron-density projection maps. From this we conclude that the in situ PSII core complex is a dimeric structure containing two copies of the PSII RC.
NASA Astrophysics Data System (ADS)
Fang, Sheng-En; Perera, Ricardo; De Roeck, Guido
2008-06-01
This paper develops a sensitivity-based updating method to identify the damage in a tested reinforced concrete (RC) frame modeled with a two-dimensional planar finite element (FE) by minimizing the discrepancies of modal frequencies and mode shapes. In order to reduce the number of unknown variables, a bidimensional damage (element) function is proposed, resulting in a considerable improvement of the optimization performance. For damage identification, a reference FE model of the undamaged frame divided into a few damage functions is firstly obtained and then a rough identification is carried out to detect possible damage locations, which are subsequently refined with new damage functions to accurately identify the damage. From a design point of view, it would be useful to evaluate, in a simplified way, the remaining bending stiffness of cracked beam sections or segments. Hence, an RC damage model based on a static mechanism is proposed to estimate the remnant stiffness of a cracked RC beam segment. The damage model is based on the assumption that the damage effect spreads over a region and the stiffness in the segment changes linearly. Furthermore, the stiffness reduction evaluated using this damage model is compared with the FE updating result. It is shown that the proposed bidimensional damage function is useful in producing a well-conditioned optimization problem and the aforementioned damage model can be used for an approximate stiffness estimation of a cracked beam segment.
NASA Astrophysics Data System (ADS)
Hirave, Vivek; Kalyanshetti, Mahesh
2018-02-01
Conventional fixed-base analysis ignoring the effect of soil-flexibility may result in unsafe design. Therefore, to evaluate the realistic behavior of structure the soil structure interaction (SSI) effect shall be incorporated in the analysis. In seismic analysis, provision of bracing system is one of the important option for the structure to have sufficient strength with adequate stiffness to resist lateral forces. The different configuration of these bracing systems alters the response of buildings, and therefore, it is important to evaluate the most effective bracing systems in view point of stability against SSI effect. In present study, three RC building frames, G+3, G+5 and G+7 and their respective scaled down steel model with two types of steel bracing system incorporating the effect of soil flexibility is considered for experimental and analytical study. The analytical study is carried out using Elastic continuum approach and the experimental study is carried out using Shake Table. The influence of SSI on various seismic parameters is presented. The study reveals that, steel bracing system is beneficial to control SSI effect and it is observed that V bracing is more effective, in resisting seismic load considering SSI.
Morandi, Paolo; Hak, Sanja; Magenes, Guido
2018-02-01
This article contains information related to a recent study "Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills" (Morandi et al., 2017 [1]). Motivated by the necessity to improve the knowledge of the in-plane seismic response of rigid strong masonry infills, a wide experimental campaign based on in-plane cyclic tests on full-scale RC infilled frame specimens, supplemented with a complete characterization of the materials, has been conducted at the laboratory of the Department of Civil Engineering and Architecture of the University of Pavia. The masonry is constituted by vertically perforated 35 cm thick clay units with tongue and groove and dry head-joints and general-purpose mortar bed-joints. The paper reports the results of the mechanical characterization and of the force-displacement hysteretic curves from the in-plane cyclic tests.
NASA Astrophysics Data System (ADS)
Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.
2017-06-01
During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.
NASA Astrophysics Data System (ADS)
Saiidi, M.
1982-07-01
The equivalent of a single degree of freedom (SDOF) nonlinear model, the Q-model-13, was examined. The study intended to: (1) determine the seismic response of a torsionally coupled building based on the multidegree of freedom (MDOF) and (SDOF) nonlinear models; and (2) develop a simple SDOF nonlinear model to calculate displacement history of structures with eccentric centers of mass and stiffness. It is shown that planar models are able to yield qualitative estimates of the response of the building. The model is used to estimate the response of a hypothetical six-story frame wall reinforced concrete building with torsional coupling, using two different earthquake intensities. It is shown that the Q-Model-13 can lead to a satisfactory estimate of the response of the structure in both cases.
"Shape function + memory mechanism"-based hysteresis modeling of magnetorheological fluid actuators
NASA Astrophysics Data System (ADS)
Qian, Li-Jun; Chen, Peng; Cai, Fei-Long; Bai, Xian-Xu
2018-03-01
A hysteresis model based on "shape function + memory mechanism" is presented and its feasibility is verified through modeling the hysteresis behavior of a magnetorheological (MR) damper. A hysteresis phenomenon in resistor-capacitor (RC) circuit is first presented and analyzed. In the hysteresis model, the "memory mechanism" originating from the charging and discharging processes of the RC circuit is constructed by adopting a virtual displacement variable and updating laws for the reference points. The "shape function" is achieved and generalized from analytical solutions of the simple semi-linear Duhem model. Using the approach, the memory mechanism reveals the essence of specific Duhem model and the general shape function provides a direct and clear means to fit the hysteresis loop. In the frame of the structure of a "Restructured phenomenological model", the original hysteresis operator, i.e., the Bouc-Wen operator, is replaced with the new hysteresis operator. The comparative work with the Bouc-Wen operator based model demonstrates superior performances of high computational efficiency and comparable accuracy of the new hysteresis operator-based model.
Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures
NASA Astrophysics Data System (ADS)
Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.
2018-03-01
Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.
NASA Astrophysics Data System (ADS)
Toprak, A. Emre; Gülay, F. Gülten; Ruge, Peter
2008-07-01
Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performed on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 m×7.80 m = 127.90 m2 with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is much higher than the requirements of the Turkish Earthquake Code while the selected ground conditions represent the same characteristics. The main reason is that the ordinate of the horizontal elastic response spectrum for Eurocode 8 is increased by the soil factor. In TEC'07 force-based linear assessment, the seismic demands at cross-sections are to be checked with residual moment capacities; however, the chord rotations of primary ductile elements must be checked for Eurocode safety verifications. On the other hand, the demand curvatures from linear methods of analysis of Eurocode 8 together with TEC'07 are almost similar.
EVALUATIONS ON ASR DAMAGE OF CONCRETE STRUCTURE AND ITS STRUCTURAL PERFORMANCE
NASA Astrophysics Data System (ADS)
Ueda, Naoshi; Nakamura, Hikaru; Kunieda, Minoru; Maeno, Hirofumi; Morishit, Noriaki; Asai, Hiroshi
In this paper, experiments and finite element analyses were conducted in order to evaluate effects of ASR on structural performance of RC and PC structures. From the experimental results, it was confirmed that the ASR expansion was affected by the restraint of reinforcement and the magnitude of prestress. The material properties of concrete damaged by ASR had anisotropic characteristics depending on the degree of ASR expansion. Therefore, when the structural performance of RC and PC structures were evaluated by using the material properties of core concrete, the direction and place where cylinder specimens were cored should be considered. On the other hand, by means of proposed analytical method, ASR expansion behaviors of RC and PC beams and changing of their structural performance were evaluated. As the results, it was confirmed that PC structure had much advantage comparing with RC structure regarding the structural performance under ASR damage because of restraint by prestress against the ASR.
Kaushik, Hemant; Bevington, John; Jaiswal, Kishor; Lizundia, Bret; Shrestha, Surya
2016-01-01
The most common building typologies in Nepal are reinforced concrete (RC) frame buildings with masonry infill walls, unreinforced masonry (URM) bearing wall buildings, and wood frame buildings (Figure 5-1). The RC frames with masonry infills are commonly constructed in urban and semi-urban areas. Most of these buildings are three to five stories high, and most privately owned buildings are non-engineered. High rise buildings (up to 17 stories high) are also found in Kathmandu, but their number is limited. Burnt clay bricks are widely used as masonry infill walls; external walls are generally one full brick thick (~ 230 mm), and internal walls are one half brick thick. URM bearing wall buildings are an obvious choice for the population in rural areas and the outskirts of cities, primarily to limit the material expenses. Such buildings are generally two to four stories high and constructed using burnt clay brick masonry or stone masonry with cement, lime, or mud mortar. In some of the older constructions, a different mortar known as Vajra (a mix of lime and brick dust) is also observed. These buildings have either wooden or reinforced concrete flooring. A hybrid type of construction also prevails in semi-urban and rural areas, where wood frames are used in the ground story front façade, and rest of the house is made of unreinforced masonry bearing walls. Wood frame houses (generally two to three stories high) are also observed in rural areas where the material for such construction is easily available.
NASA Astrophysics Data System (ADS)
Chen, Wang-Chao; Kong, Fan-Tai; Ghadari, Rahim; Li, Zhao-Qian; Guo, Fu-Ling; Liu, Xue-Peng; Huang, Yang; Yu, Ting; Hayat, Tasawar; Dai, Song-Yuan
2017-04-01
We report a systematic research to understand the structural-electronic impact of the arylamine electron-donating antennas on the performances of the ruthenium complexes for dye-sensitized solar cells. Three ruthenium complexes functionalized with different arylamine electron-donating antennas (N,N-diethyl-aniline in RC-31, julolidine in RC-32 and N,N-dibenzyl-aniline in RC-36) are designed and synthesized. The photoelectric properties of RC dyes exhibit apparent discrepancy, which are ascribed to different structural nature and electronic delocalization ability of these arylamine electron-donating system. In conjunction with TiO2 microspheres photoanode and a typical coadsorbent DPA, the devices sensitized by RC-36 achieve the best conversion efficiency of 10.23%. The UV-Vis absorption, electrochemical measurement, incident photon-to-current conversion efficiency and transient absorption spectra confirm that the excellent performance of RC-36 is induced by synergistically structural-electronic impacts from enhanced absorption capacity and well-tuned electronic characteristics. These observations provide valuable insights into the molecular engineering methodology based on fine tuning structural-electronic impact of electron-donating antenna in efficient ruthenium sensitizers.
NASA Astrophysics Data System (ADS)
Arslan, M. H.; Arslan, H. D.
2017-08-01
Shear walled (SW) reinforced concrete (RC) buildings are considered to be a type of high seismic safety building. Although this structural system has an important seismic advantage, it also has some disadvantages, especially in acoustic and thermal comfort. In this study, experimental studies have been conducted on RC members produced with plastic material having circular sections to determine structural performance. RC members have been produced with and without 6 cm diameter balls to analyze the structural behaviour under loading and to investigate the thermal performance and sound absorption behaviour of the members. In the study, structural parameters have been determined for RC members such as slabs and SWs produced with and without balls to discover the feasibility of the research and discuss the findings comparatively. The results obtained from the experimental studies show that PB used in RC with suitable positions do not significantly decrease strength but improve the thermal and acoustic features. It has been also seen that using plastic balls reduce the total concrete materials.
Fu, Xiao-Zhe; Shi, Cun-Bin; Li, Ning-Qiu; Pan, Hou-Jun; Chang, Ou-Qin; Wu, Shu-Qin
2007-09-01
The major capsid protein of lymphocystis disease virus isolated from Rachycentron canadum (LCDV-rc) was amplified and analysed. The 457bp DNA core fragment was amplified with the degenerate primers designed according to the conserved sequences of MCP gene of iridoviruses, then the flaking sequences adjacent to the core region were amplified by inverse PCR, and the complete sequence was obtained by combining all of them. The open reading frame of the gene is 1380bp in length, encoding a putative protein of 459 aa with molecular weight 51.12 kD and pI 6.87. Constructing the phylogenetic tree for comparing the MCP amino acid of iridoviruses, the results indicated that LCDV-rc is most homologous to the other Lymphocystis viruses and all of them constitute a branch. Accordingly LCDV-rc is identified as Lymphocystivirus.
2015-05-11
In this closest-yet view of Ceres, the brightest spots within a crater in the northern hemisphere are revealed to be composed of many smaller spots. This frame is from an animation of sequences taken by NASA Dawn spacecraft on May 4, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19547
NASA Astrophysics Data System (ADS)
Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung
2018-04-01
Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.
NASA Astrophysics Data System (ADS)
Ucar, Taner; Merter, Onur
2018-01-01
A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom (MDOF) system is approximated by using the modal energy-decomposition. Energy-based base shear coefficients are verified by means of both pushover analysis and nonlinear time history (NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.
NASA Astrophysics Data System (ADS)
Shibata, Akenori; Masuno, Hidemasa
2017-10-01
An eleven-story RC apartment building suffered medium damage in the 2011 East Japan earthquake and was retrofitted for re-use. Strong motion records were obtained near the building. This paper discusses the inelastic earthquake response analysis of the building using the equivalent single-degree-of-freedom (1-DOF) system to account for the features of damage. The method of converting the building frame into 1-DOF system with tri-linear reducing-stiffness restoring force characteristics was given. The inelastic response analysis of the building against the earthquake using the inelastic 1-DOF equivalent system could interpret well the level of actual damage.
Application and enhancements of MOVIE.BYU
NASA Technical Reports Server (NTRS)
Gates, R. L.; Vonofenheim, W. H.
1984-01-01
MOVIE.BYU (MOVIE.BRIGHAM YOUNG UNIVERSITY) is a system of programs for the display and manipulation of data representing mathematical, architectural, and topological models in which the geometry may be described in terms of panel (n-sided polygons) and solid elements or contour lines. The MOVIE.BYU system has been used in a series of applications of LaRC. One application has been the display, creation, and manipulation of finite element models in aeronautic/aerospace research. These models have been displayed on both vector and color raster devices, and the user has the option to modify color and shading parameters on these color raster devices. Another application involves the display of scalar functions (temperature, pressure, etc.) over the surface of a given model. This capability gives the researcher added flexibility in the analysis of the model and its accompanying data. Limited animation (frame-by-frame creation) has been another application of MOVIE.BYU in the modeling of kinematic processes in antenna structures.
Failure mechanism of shear-wall dominant multi-story buildings
Yuksel, S.B.; Kalkan, E.
2008-01-01
The recent trend in the building industry of Turkey as well as in many European countries is towards utilizing the tunnel form (shear-wall dominant) construction system for development of multi-story residential units. The tunnel form buildings diverge from other conventional reinforced concrete (RC) buildings due to the lack of beams and columns in their structural integrity. The vertical load-carrying members of these buildings are the structural-walls only, and the floor system is a flat plate. Besides the constructive advantages, tunnel form buildings provide superior seismic performance compared to conventional RC frame and dual systems as observed during the recent devastating earthquakes in Turkey (1999 Mw 7.4 Kocaeli, Mw 7.2 Duzce, and 2004 Mw 6.5 Bingol). With its proven earthquake performance, the tunnel form system is becoming the primary construction technique in many seismically active regions. In this study, a series of nonlinear analyses were conducted using finite element (FE) models to augment our understanding on their failure mechanism under lateral forces. In order to represent the nonlinear behavior adequately, The FE models were verified with the results of experimental studies performed on three dimensional (3D) scaled tunnel form building specimens. The results of this study indicate that the structural walls of tunnel form buildings may exhibit brittle flexural failure under lateral loading, if they are not properly reinforced. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in the outermost shear-walls.
NASA Astrophysics Data System (ADS)
Su, Chin-Kuo; Sung, Yu-Chi; Chang, Shuenn-Yih; Huang, Chao-Hsun
2007-09-01
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity-wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load-deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.
Klug, G; Cohen, S N
1990-01-01
Differential expression of the genes within the puf operon of Rhodobacter capsulatus is accomplished in part by differences in the rate of degradation of different segments of the puf transcript. We report here that decay of puf mRNA sequences specifying the light-harvesting I (LHI) and reaction center (RC) photosynthetic membrane peptides is initiated endoribonucleolytically within a discrete 1.4-kilobase segment of the RC-coding region. Deletion of this segment increased the half-life of the RC-coding region from 8 to 20 min while not affecting decay of LHI-coding sequences upstream from an intercistronic hairpin loop structure shown previously to impede 3'-to-5' degradation. Prolongation of RC segment half-life was dependent on the presence of other hairpin structures 3' to the RC region. Inserting the endonuclease-sensitive sites into the LHI-coding segment markedly accelerated its degradation. Our results suggest that differential degradation of the RC- and LHI-coding segments of puf mRNA is accomplished at least in part by the combined actions of RC region-specific endonuclease(s), one or more exonucleases, and several strategically located exonuclease-impeding hairpins. Images PMID:2394682
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toprak, A. Emre; Guelay, F. Guelten; Ruge, Peter
2008-07-08
Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performedmore » on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 mx7.80 m = 127.90 m{sup 2} with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is much higher than the requirements of the Turkish Earthquake Code while the selected ground conditions represent the same characteristics. The main reason is that the ordinate of the horizontal elastic response spectrum for Eurocode 8 is increased by the soil factor. In TEC'07 force-based linear assessment, the seismic demands at cross-sections are to be checked with residual moment capacities; however, the chord rotations of primary ductile elements must be checked for Eurocode safety verifications. On the other hand, the demand curvatures from linear methods of analysis of Eurocode 8 together with TEC'07 are almost similar.« less
Mapping the X-shaped Milky Way Bulge
NASA Astrophysics Data System (ADS)
Saito, R. K.; Zoccali, M.; McWilliam, A.; Minniti, D.; Gonzalez, O. A.; Hill, V.
2011-09-01
We analyzed the distribution of the red clump (RC) stars throughout the Galactic bulge using Two Micron All Sky Survey data. We mapped the position of the RC in 1 deg2 fields within the area |l| <= 8fdg5 and 3fdg5 <= |b| <= 8fdg5, for a total of 170 deg2. The single RC seen in the central area splits into two components at high Galactic longitudes in both hemispheres, produced by two structures at different distances along the same line of sight. The X-shape is clearly visible in the Z-X plane for longitudes close to the l = 0° axis. Crude measurements of the space densities of RC stars in the bright and faint RC populations are consistent with the adopted RC distances, providing further supporting evidence that the X-structure is real, and that there is approximate front-back symmetry in our bulge fields. We conclude that the Milky Way bulge has an X-shaped structure within |l| <~ 2°, seen almost edge-on with respect to the line of sight. Additional deep near-infrared photometry extending into the innermost bulge regions combined with spectroscopic data is needed in order to discriminate among the different possibilities that can cause the observed X-shaped structure.
Health monitoring of reinforced concrete structures based on PZT admittance signal
NASA Astrophysics Data System (ADS)
Wang, Dansheng; Zhu, Hongping; Shen, Danyan; Ge, Dongdong
2009-07-01
Reinforced concrete (RC) structure is one of most familiar engineering structure styles in the civil engineering community, which often suffer crack damage during their service life because of some factors such as overloading, excessive use, and bad environmental conditions. Thus early detection of crack damage is of special concern for RC structures. Piezoelectric materials have direct and converse piezoelectric effects and can serve as actuators or sensors. A health monitoring method based on PZT admittance signals is addressed in this paper, which use the electromechanical coupling property of piezoelectric materials. An experimental study on health monitoring of a RC beam is implemented based on the PZT admittance signals. In this experiment, the electrical admittances of distributed PZT sheets are measured when the host beams are suffering from variable loads. From the obtained PZT admittance curves one can find that the presence of incipient crack can be captured and the cracking load of the RC beam can also generally determined. By the experimental study it is concluded that the health monitoring technique is quite effective and sensitive for RC structures, which indicates its favorable application foreground in civil engineering field.
Evaluation of high temperature structural adhesives for extended service, phase 5
NASA Technical Reports Server (NTRS)
Hendricks, C. L.; Hill, S. G.; Hale, J. N.; Dumars, W. G.
1987-01-01
The evaluation of 3 experimental polymers from NASA-Langley and a commercially produced polymer from Mitsui Toatsu Chemicals as high temperature structural adhesives is presented. A polyphenylquinoxaline (PPQ), polyimide (STPI/LaRC-2), and a polyarylene ether (PAE-SO2) were evaluated as metal-to-metal adhesives. Lap shear, crack extension, and climbing drum peel specimens were fabricated from all three polymers and tested after thermal, combined thermal/humidity, and stressed hydraulic fluid (Skydrol) exposure. The fourth polymer, LARC-TPI was evaluated as an adhesive for titanium honeycomb sandwich structure. All three experimental polymers performed well as metal-to-metal adhesives from 219 K (-65 F) to 505 K (450 F), including humidity exposure. Structural adhesive strength was also maintained at 505 K for a minimum of 3000 hours. LaRC-TPI was evaluated as a high temperature (505 K) adhesive for titanium honeycomb sandwich structure. The LaRC-TPI bonding process development concentrated on improving the honeycomb core-to-skin bond. The most promising approach of those evaluated combined a LaRC-TPI polymer solution with a semi-crystalline LaRC-TPI powder for adhesive film fabrication and fillet formation.
Shaking table test and dynamic response prediction on an earthquake-damaged RC building
NASA Astrophysics Data System (ADS)
Xianguo, Ye; Jiaru, Qian; Kangning, Li
2004-12-01
This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model. The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthquake. The input ground excitation used during the test was from the records obtained near the site of the prototype building during the 1985 and 1995 Mexico earthquakes. The tests showed that the damage pattern of the test model agreed well with that of the prototype building. Analytical prediction of earthquake response has been conducted for the prototype building using a sophisticated 3-D frame model. The input motion used for the dynamic analysis was the shaking table test measurements with similarity transformation. The comparison of the analytical results and the shaking table test results indicates that the response of the RC building to minor and the moderate earthquakes can be predicated well. However, there is difference between the predication and the actual response to the major earthquake.
Failure Criteria for FRP Laminates in Plane Stress
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.
2003-01-01
A new set of six failure criteria for fiber reinforced polymer laminates is described. Derived from Dvorak's fracture mechanics analyses of cracked plies and from Puck's action plane concept, the physically-based criteria, denoted LaRC03, predict matrix and fiber failure accurately without requiring curve-fitting parameters. For matrix failure under transverse compression, the fracture plane is calculated by maximizing the Mohr-Coulomb effective stresses. A criterion for fiber kinking is obtained by calculating the fiber misalignment under load, and applying the matrix failure criterion in the coordinate frame of the misalignment. Fracture mechanics models of matrix cracks are used to develop a criterion for matrix in tension and to calculate the associated in-situ strengths. The LaRC03 criteria are applied to a few examples to predict failure load envelopes and to predict the failure mode for each region of the envelope. The analysis results are compared to the predictions using other available failure criteria and with experimental results. Predictions obtained with LaRC03 correlate well with the experimental results.
NASA Technical Reports Server (NTRS)
1990-01-01
Papers from the Aeropropulsion '87 Conference, held at the NASA Lewis Research Center (LeRC), are presented. Unclassified presentations by LeRC and NASA Headquarters senior management and many LeRC technical authors covered the philosophy and major directions of the LeRC aeropropulsion program, and presented a broad spectrum of recent research results in materials, structures, internal fluid mechanics, instrumentation and controls, and both subsonic and high-speed propulsion technology.
Evaluation of Sloped Bottom Tuned Liquid Damper for Reduction of Seismic Response of Tall Buildings
NASA Astrophysics Data System (ADS)
Patil, G. R.; Singh, K. D.
2016-12-01
Due to migration of people to urban area, high land costs and use of light weight materials modern buildings tend to be taller, lighter and flexible. These buildings possess low damping. This increases the possibility of failure during earthquake ground motion and also affect the serviceability during wind vibrations. Out of many available techniques today, to reduce the response of structure under dynamic loading, Tuned Liquid Damper (TLD) is a recent technique to mitigate seismic response. However TLD has been used to mitigate the wind induced structural vibrations. Flat bottom TLD gives energy back to the structure after event of dynamic loading and it is termed as beating. Beating affects the performance of TLD. Study attempts to analyze the effectiveness of sloped bottom TLD for reducing seismic vibrations of structure. Concept of equivalent flat bottom LD has been used to analyze sloped bottom TLD. Finite element method (EM) is used to model the structure and the liquid in the TLD. MATLAB code is developed to study the response of structure, the liquid sloshing in the tank and the coupled fluid-structure interaction. A ten storey two bay RC frame is analyzed for few inputs of ground motion. A sinusoidal ground motion corresponding to resonance condition with fundamental frequency of frame is analyzed. In the analysis the inherent damping of structure is not considered. Observations from the study shows that sloped bottom TLD uses less amount of liquid than flat bottom TLD. Also observed that efficiency of sloped bottom TLD can be improved if it is properly tuned.
Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties.
Raghunathan, Sreejesh Poikavila; Narayanan, Sona; Poulose, Aby Cheruvathur; Joseph, Rani
2017-02-10
Flexible regenerated cellulose/polypyrrole (RC-PPy) conductive composite films were prepared by insitu polymerization of pyrrole on regenerated cellulose (RC) matrix using ammonium persulphate as oxidant. FTIR, XPS and XRD analysis of RC-PPy composite films revealed strong interaction between polypyrrole (PPy) and RC matrix. XRD results indicated that crystalline structure of RC matrix remains intact even after composite formation. SEM micrographs revealed the formation of a continuous conductive network of PPy particles in the RC matrix, leading to significant improvement in electrical and dielectric properties. The electrical conductivity of RC-PPy composites with 12wt% of PPy was 3.2×10 -5 S/cm, which is approximately seven fold higher than that of RC. Composites showed high dielectric constant and low dielectric loss values, which is essential in capacitor application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.
2005-01-01
Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.
NASA Astrophysics Data System (ADS)
Furtado, André; Rodrigues, Hugo; Arêde, António
2015-06-01
Recent earthquakes show that masonry infill walls should be taken into account during the design and assessment process of structures, since this type of non-structural elements increase the in-plane stiffness of the structure and consequently the natural period. An overview of the past researches conducted on the modelling of masonry infilled frame issues has been done, with discussion of past analytical investigations and different modelling approaches that many authors have proposed, including micro- and macro-modelling strategies. After this, the present work presents an improved numerical model, based on the Rodrigues et al. (J Earthq Eng 14:390-416, 2010) approach, for simulating the masonry infill walls behaviour in the computer program OpenSees. The main results of the in-plane calibration analyses obtained with one experimental test are presented and discussed. For last, two reinforced concrete regular buildings were studied and subjected to several ground motions, with and without infills' walls.
Summary of LaRC 2-inch Erectable Joint Hardware Heritage Test Data
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Watson, Judith J.
2016-01-01
As the National Space Transportation System (STS, also known as the Space Shuttle) went into service during the early 1980's, NASA envisioned many missions of exploration and discovery that could take advantage of the STS capabilities. These missions included: large orbiting space stations, large space science telescopes and large spacecraft for manned missions to the Moon and Mars. The missions required structures that were significantly larger than the payload volume available on the STS. NASA Langley Research Center (LaRC) conducted studies to design and develop the technology needed to assemble the large space structures in orbit. LaRC focused on technology for erectable truss structures, in particular, the joint that connects the truss struts at the truss nodes. When the NASA research in large erectable space structures ended in the early 1990's, a significant amount of structural testing had been performed on the LaRC 2-inch erectable joint that was never published. An extensive set of historical information and data has been reviewed and the joint structural testing results from this historical data are compiled and summarized in this report.
A finite element formulation with combined loadings for shear dominant RC structures.
DOT National Transportation Integrated Search
2008-08-01
Inelastic failure of reinforced concrete (RC) structures under seismic loadings can be due either to loss of flexural, shear or bond : capacity. Specifically, the effect of combined loadings can lead to a complex failure mechanism that plays a vital ...
1991-05-01
ib qeocie. Thki document may not be rdeaed for open publicado. untit hu been deared by die appropriate military seavice or a veunent agency. AC /RC...A N/A N/A 11. TITLE (Include Security Classification) AC /RC Force Structure Integraticn 12. PERSONAL AUTHOR(S) Russell A. Eggers 13a. TYPE OF REPORT... AC ) and Reserve Components (RC) Force Integration is critical in today’s Total Army. The Army of soldiers, Active and Reserve, exists to play a key
LaRC-RP41: A Tough, High-Performance Composite Matrix
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Johnston, Norman J.; Smith, Ricky E.; Snoha, John J.; Gautreaux, Carol R.; Reddy, Rakasi M.
1991-01-01
New polymer exhibits increased toughness and resistance to microcracking. Cross-linking PMR-15 and linear LaRC-TPI combined to provide sequential semi-2-IPN designated as LaRC-RP41. Synthesized from PMR-15 imide prepolymer undergoing cross-linking in immediate presence of LaRC-TPI polyamic acid, also undergoing simultaneous imidization and linear chain extension. Potentially high-temperature matrix resin, adhesive, and molding resin. Applications include automobiles, electronics, aircraft, and aerospace structures.
NASA Astrophysics Data System (ADS)
Syed Mazlan, S. M. S.; Abdullah, S. R.; Shahidan, S.; Noor, S. R. Mohd
2017-11-01
Concrete durability may be affected by so many factors such as chemical attack and weathering action that reduce the performance and the service life of concrete structures. Low durability Reinforced concrete (RC) can be greatly improved by using Fiber Reinforce Polymer (FRP). FRP is a commonly used composite material for repairing and strengthening RC structures. A review on application of Acoustic Emission (AE) techniques of real time monitoring for various mechanical tests for RC strengthened with FRP involving four-point bending, three-point bending and cyclic loading was carried out and discussed in this paper. Correlations between each AE analyses namely b-value, sentry and intensity analysis on damage characterization also been critically reviewed. From the review, AE monitoring involving RC strengthened with FRP using b-value, sentry and intensity analysis are proven to be successful and efficient method in determining damage characterization. However, application of AE analysis using sentry analysis is still limited compared to b-value and intensity analysis in characterizing damages especially for RC strengthened with FRP specimen.
ISDN at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Bakes, Catherine Murphy; Goldberg, Fredric; Eubanks, Steven W.
1992-01-01
An expository investigation of the potential impact of the Integrated Services Digital Network (ISDN) at NASA Lewis Research Center is described. To properly frame the subject, the paper contains a detailed survey of the components of Narrowband ISDN. The principles and objectives are presented as decreed by the Consultative Committee for International Telephone and Telegraph (CCITT). The various channel types are delineated and their associated service combinations are described. The subscriber-access network functions are explained pictorially via the ISDN reference configuration. A section on switching techniques is presented to enable the reader to understand the emergence of the concept of fast packet switching. This new technology is designed to operate over the high bandwidth, low error rate transmission media that characterizes the LeRC environment. A brief introduction to the next generation of networks is covered with sections on Broadband ISDM (B-ISDN), Asynchronous Transfer Mode (ATM), and Synchronous Optical Networks (SONET). Applications at LeRC are presented, first in terms of targets of opportunity, then in light of compatibility constraints. In-place pilot projects and testing are described that demonstrate actual usage at LeRC.
2002-06-03
resonant-cavity light-emitting diodes (RC LEDs) and vertical-cavity surface-emitting lasers ( VCSELs )] fabricated from molecular beam epitaxy (MBE)-grown...grown 8470-631. by molecular beam epitaxy (MBE) using a Riber 32P E-mail address: muszal@ite.waw.pl (0. Muszalski). reactor. Details of the growth can be... molecular beams hit the center of a rotating sion features of RC LED and VCSEL structures, as well sample. However, due to the transversal distribution of as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia
Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (Qmore » X) absorption bands of the RC allow energy transfer via a Fo¨rster mechanism, with an efficiency of 40±10%. Finally, this proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis.« less
Rhinal-hippocampal interactions during déjà vu.
Bartolomei, Fabrice; Barbeau, Emmanuel J; Nguyen, Trung; McGonigal, Aileen; Régis, Jean; Chauvel, Patrick; Wendling, Fabrice
2012-03-01
The phenomenon of 'déjà vu' is caused by acute disturbance of mnemonic systems of the medial temporal lobe (MTL). In epileptic patients investigated with intracerebral electrodes, déjà vu can be more readily induced by stimulation of the rhinal cortices (RCs) than the hippocampus (H). Whether déjà vu results from acute dysfunction of the familiarity system alone (sustained by RC) or from more extensive involvement of the MTL region (including H) is debatable. We analysed the synchronisation of intracerebral electroencephalography (EEG) signals recorded from RC, H and amygdala (A) in epileptic patients in whom déjà vu was induced by electrical stimulation. EEG signal correlations (between signals from RC, A and H) were evaluated using a nonlinear regression. In comparison with RC stimulations that did not lead to déjà vu (DV-), stimulations triggering déjà vu (DV+) were associated with increased broadband EEG correlation (p=0.01). Changes in correlations were significantly different in the theta band for RC-A (p=0.007) and RC-H (p=0.01) and in the beta band for RC-H (p=0.001) interactions. Déjà vu is associated with increased EEG signal correlation between MTL structures. Results are in favour of a mechanism involving transient co-operation between various MTL structures, not limited to RC alone. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Experimental investigation of RC beams using BOTDA(R)-FRP-OF
NASA Astrophysics Data System (ADS)
Zhou, Zhi; He, Jianping; Huang, Ying; Ou, Jinping
2008-04-01
Brillouin based fiber optic sensing turns to be a promising technology for Structural Health Monitoring (SHM). However, the bare optical fiber is too fragile to act as a practical sensor, so high durability and large range (large strain) Brillouin distributed sensors are in great needs in field applications. For this reason, high durable and large range optical fiber Brillouin Optical Time Domain Analysis (Reflectometer) sensors packaged by Fiber Reinforcement Polymer (FRP), named BOTDA(R)-FRP-OF, have been studied and developed. Besides, in order to study the large strain, crack and slip between the rebar and concrete in reinforced concrete (RC) beams using BOTDR(A) technique, five RC Beams installed with BOTDA(R)-FRP-OF sensors have been set up. And the damage characteristics of the RC beams were investigated by comparing the strain measured by the BOTDA(R)-FRP-OF sensors and the strain from traditional electric strain gauges and Fiber Bragg Grating (FBG) sensors, respectively. The test results show that the BOTDA(R)-FRP-OF sensor can effectively detect the damage (including crack and slip) characteristic of RC beam, and it is suitable for the long-term structural health monitoring on concrete structures such as bridge, big dam and so on.
Study on RC beams using BOTDA(R)-FRP-OF technique
NASA Astrophysics Data System (ADS)
He, Jianping; Zhou, Zhi; Huang, Ying; Ou, Jinping
2008-03-01
Brillouin based fiber optic sensing turns to be a promising technology for Structural Health Monitoring (SHM). However, the bare optical fiber is too fragile to act as a practical sensor, so high durability and large range (large strain) Brillouin distributed sensors are in great needs in field applications. For this reason, high durable and large range optical fiber Brillouin Optical Time Domain Analysis sensors packaged by Fiber Reinforcement Polymer (FRP), named BOTDA(R)-FRP-OF, have been studied and developed. Besides, in order to study the large strain, crack and slip between the rebar and concrete in reinforced concrete (RC) beams using BOTDR(A) technique, two RC Beams installed with BOTDA(R)-FRP-OF sensors have been set up. And the damage characteristics of the RC beams were investigated by comparing the strain measured by the BOTDA(R)-FRP-OF sensors and the strain from traditional electric strain gauges. The test results show that the BOTDA(R)-FRP-OF sensor can effectively detect the damage (including crack and slip) characteristic of RC beam, and it is suitable for the long-term structural health monitoring on concrete structures such as bridge, big dam and so on.
NASA Astrophysics Data System (ADS)
Taghavipour, S.; Kharkovsky, S.; Kang, W.-H.; Samali, B.; Mirza, O.
2017-10-01
Previous studies have successfully demonstrated the capability and reliability of the use of Smart Aggregate (SA) transducers to monitor reinforced concrete (RC) structures. However, they mainly focused on the applications of embedded SAs to new structural members, while no major attention was paid to the monitoring of existing RC members using externally mounted SAs. In this paper, a mounted SA-based approach is proposed for a real-time health monitoring of existing RC beams. The proposed approach is verified through monitoring of RC beams under flexural loading, on each of which SA transducers are mounted as an actuator and sensors. The experimental results show that the proposed SA-based approach effectively evaluates the cracking status of RC beams in terms of the peak of power spectral density and damage indexes obtained at multiple sensor locations. It is also shown that the proposed sensor system can also capture a precautionary signal for major cracking.
Experimental and numerical investigation of a RC wall loaded by snow-like avalanche pressure signal
NASA Astrophysics Data System (ADS)
Ousset, Isabelle; Bertrand, David; Brun, Michaël; Limam, Ali; Naaïm, Mohamed
2013-04-01
Nowadays, civil engineering structures exposed to snow avalanches are mostly designed considering static loadings involving large safety factors. These latters highlight the lack of knowledge about the effects of the loading generated by a snow flow, and generally lead to oversize the civil structure. Indeed, the transient nature of the loading signal and also the composition of the snow flow can generate dynamic phenomena which cannot be taken into account considering only static loadings. The case of the avalanche of the Taconnaz (France), which occurred in 1999 and where important parts of the defense structure were destroyed, showed that static design approaches can lead to underestimate the potential effect of the snow flow. Thus, in order to give some new insights about this issue, the effect of the temporal variations of the snow loading on the mechanical behavior of an idealized defense structure is investigated. Therefore, a reinforced concrete (RC) wall with a L-like shape has been considered which is supposed to represent a part of the defense structure situated in Taconnaz. Static pushover tests, carried out in laboratory conditions on 1/6 scale physical model of the RC structure, allowed obtaining the capacity of the tested structure (Berthet-Rambaud et al. (2007)). Finite Element (FE) models have been developed and calibrated from the previous experimental data. The FE approach allows simulating the dynamic mechanical response of the structure. The effect of the transient nature of the loading of the avalanche has been explored applying out-of-plan dynamic loadings on the RC wall. In order to be as close as possible of a "field" snow avalanche, the imposed time evolution of the loading has been generated from in situ measurements recorded at the French experimental site "le col du Lautaret" (Thibert et al. (2008)). The RC mechanical behaviour has been described by four nonlinear constitutive laws. The four behaviour laws are compared and analyzed for specific loading situations. Next, the influences of typical parameters characterizing the avalanche loading signal are proposed. In particular, a special focused is presented on the effect of the loading rate. Finally, the vulnerability of the RC wall is studied in a reliability framework. Damage index are proposed and the probability of failure of the RC wall is derived. These relations might be useful for risk analysis.
AC Electric Field Activated Shape Memory Polymer Composite
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.
2011-01-01
Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.
Myers, Jennifer S; Vallega, Karin A; White, Jason; Yu, Kaixian; Yates, Clayton C; Sang, Qing-Xiang Amy
2017-07-11
While many factors may contribute to the higher prostate cancer incidence and mortality experienced by African-American men compared to their counterparts, the contribution of tumor biology is underexplored due to inadequate availability of African-American patient-derived cell lines and specimens. Here, we characterize the proteomes of non-malignant RC-77 N/E and malignant RC-77 T/E prostate epithelial cell lines previously established from prostate specimens from the same African-American patient with early stage primary prostate cancer. In this comparative proteomic analysis of RC-77 N/E and RC-77 T/E cells, differentially expressed proteins were identified and analyzed for overrepresentation of PANTHER protein classes, Gene Ontology annotations, and pathways. The enrichment of gene sets and pathway significance were assessed using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis, respectively. The gene and protein expression data of age- and stage-matched prostate cancer specimens from The Cancer Genome Atlas were analyzed. Structural and cytoskeletal proteins were differentially expressed and statistically overrepresented between RC-77 N/E and RC-77 T/E cells. Beta-catenin, alpha-actinin-1, and filamin-A were upregulated in the tumorigenic RC-77 T/E cells, while integrin beta-1, integrin alpha-6, caveolin-1, laminin subunit gamma-2, and CD44 antigen were downregulated. The increased protein level of beta-catenin and the reduction of caveolin-1 protein level in the tumorigenic RC-77 T/E cells mirrored the upregulation of beta-catenin mRNA and downregulation of caveolin-1 mRNA in African-American prostate cancer specimens compared to non-malignant controls. After subtracting race-specific non-malignant RNA expression, beta-catenin and caveolin-1 mRNA expression levels were higher in African-American prostate cancer specimens than in Caucasian-American specimens. The "ECM-Receptor Interaction" and "Cell Adhesion Molecules", and the "Tight Junction" and "Adherens Junction" pathways contained proteins are associated with RC-77 N/E and RC-77 T/E cells, respectively. Our results suggest RC-77 T/E and RC-77 N/E cell lines can be distinguished by differentially expressed structural and cytoskeletal proteins, which appeared in several pathways across multiple analyses. Our results indicate that the expression of beta-catenin and caveolin-1 may be prostate cancer- and race-specific. Although the RC-77 cell model may not be representative of all African-American prostate cancer due to tumor heterogeneity, it is a unique resource for studying prostate cancer initiation and progression.
Prediction Model for the Carbonation of Post-Repair Materials in Carbonated RC Structures
Lee, Hyung-Min; Lee, Han-Seung; Singh, Jitendra Kumar
2017-01-01
Concrete carbonation damages the passive film that surrounds reinforcement bars, resulting in their exposure to corrosion. Studies on the prediction of concrete carbonation are thus of great significance. The repair of pre-built reinforced concrete (RC) structures by methods such as remodeling was recently introduced. While many studies have been conducted on the progress of carbonation in newly constructed buildings and RC structures fitted with new repair materials, the prediction of post-repair carbonation has not been considered. In the present study, accelerated carbonation was carried out to investigate RC structures following surface layer repair, in order to determine the carbonation depth. To validate the obtained results, a second experiment was performed under the same conditions to determine the carbonation depth by the Finite Difference Method (FDM) and Finite Element Method (FEM). For the accelerated carbonation experiment, FDM and FEM analyses, produced very similar results, thus confirming that the carbonation depth in an RC structure after surface layer repair can be predicted with accuracy. The specimen repaired using inhibiting surface coating (ISC) had the highest carbonation penetration of 19.81, while this value was the lowest for the corrosion inhibiting mortar (IM) with 13.39 mm. In addition, the carbonation depth predicted by using the carbonation prediction formula after repair indicated that that the analytical and experimental values are almost identical if the initial concentration of Ca(OH)2 is assumed to be 52%. PMID:28772852
Structure of the Large Magellanic Cloud from near infrared magnitudes of red clump stars
NASA Astrophysics Data System (ADS)
Subramanian, S.; Subramaniam, A.
2013-04-01
Context. The structural parameters of the disk of the Large Magellanic Cloud (LMC) are estimated. Aims: We used the JH photometric data of red clump (RC) stars from the Magellanic Cloud Point Source Catalog (MCPSC) obtained from the InfraRed Survey Facility (IRSF) to estimate the structural parameters of the LMC disk, such as the inclination, i, and the position angle of the line of nodes (PAlon), φ. Methods: The observed LMC region is divided into several sub-regions, and stars in each region are cross-identified with the optically identified RC stars to obtain the near infrared magnitudes. The peak values of H magnitude and (J - H) colour of the observed RC distribution are obtained by fitting a profile to the distributions and by taking the average value of magnitude and colour of the RC stars in the bin with largest number. Then the dereddened peak H0 magnitude of the RC stars in each sub-region is obtained from the peak values of H magnitude and (J - H) colour of the observed RC distribution. The right ascension (RA), declination (Dec), and relative distance from the centre of each sub-region are converted into x,y, and z Cartesian coordinates. A weighted least square plane fitting method is applied to this x,y,z data to estimate the structural parameters of the LMC disk. Results: An intrinsic (J - H)0 colour of 0.40 ± 0.03 mag in the Simultaneous three-colour InfraRed Imager for Unbiased Survey (SIRIUS) IRSF filter system is estimated for the RC stars in the LMC and a reddening map based on (J - H) colour of the RC stars is presented. When the peaks of the RC distribution were identified by averaging, an inclination of 25°.7 ± 1°.6 and a PAlon = 141°.5 ± 4°.5 were obtained. We estimate a distance modulus, μ = 18.47 ± 0.1 mag to the LMC. Extra-planar features which are both in front and behind the fitted plane are identified. They match with the optically identified extra-planar features. The bar of the LMC is found to be part of the disk within 500 pc. Conclusions: The estimates of the structural parameters are found to be independent of the photometric bands used for the analysis. The radial variation of the structural parameters are also studied. We find that the inner disk, within ~3°.0, is less inclined and has a larger value of PAlon when compared to the outer disk. Our estimates are compared with the literature values, and the possible reasons for the small discrepancies found are discussed.
NASA Astrophysics Data System (ADS)
Klyashtorny, V. G.; Fufina, T. Yu.; Vasilieva, L. G.; Shuvalov, V. A.; Gabdulkhakov, A. G.
2014-07-01
Pigment-protein interactions are responsible for the high efficiency of the light-energy transfer and conversion in photosynthesis. The reaction center (RC) from the purple bacterium Rhodobacter sphaeroides is the most convenient model for studying the mechanisms of primary processes of photosynthesis. Site-directed mutagenesis can be used to study the effect of the protein environment of electron-transfer cofactors on the optical properties, stability, pigment composition, and functional activity of RC. The preliminary analysis of RC was performed by computer simulation of the amino acid substitutions L(M196)H + H(M202)L at the pigment-protein interface and by estimating the stability of the threedimensional structure of the mutant RC by the molecular dynamics method. The doubly mutated reaction center was overexpressed, purified, and crystallized. The three-dimensional structure of this mutant was determined by X-ray crystallography and compared with the molecular dynamics model.
Lan, Chunguang; Zhou, Zhi; Ou, Jinping
2012-01-01
For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams. PMID:22778590
Lan, Chunguang; Zhou, Zhi; Ou, Jinping
2012-01-01
For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams.
Oegema, Karen; Wiese, Christiane; Martin, Ona C.; Milligan, Ronald A.; Iwamatsu, Akihiro; Mitchison, Timothy J.; Zheng, Yixian
1999-01-01
γ-tubulin exists in two related complexes in Drosophila embryo extracts (Moritz, M., Y. Zheng, B.M. Alberts, and K. Oegema. 1998. J. Cell Biol. 142:1– 12). Here, we report the purification and characterization of both complexes that we name γ-tubulin small complex (γTuSC; ∼280,000 D) and Drosophila γTuRC (∼2,200,000 D). In addition to γ-tubulin, the γTuSC contains Dgrip84 and Dgrip91, two proteins homologous to the Spc97/98p protein family. The γTuSC is a structural subunit of the γTuRC, a larger complex containing about six additional polypeptides. Like the γTuRC isolated from Xenopus egg extracts (Zheng, Y., M.L. Wong, B. Alberts, and T. Mitchison. 1995. Nature. 378:578–583), the Drosophila γTuRC can nucleate microtubules in vitro and has an open ring structure with a diameter of 25 nm. Cryo-electron microscopy reveals a modular structure with ∼13 radially arranged structural repeats. The γTuSC also nucleates microtubules, but much less efficiently than the γTuRC, suggesting that assembly into a larger complex enhances nucleating activity. Analysis of the nucleotide content of the γTuSC reveals that γ-tubulin binds preferentially to GDP over GTP, rendering γ-tubulin an unusual member of the tubulin superfamily. PMID:10037793
Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures
Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem
2014-01-01
Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346
Monitoring corrosion of steel bars in reinforced concrete structures.
Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem
2014-01-01
Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.
Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia; ...
2017-01-05
Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (Qmore » X) absorption bands of the RC allow energy transfer via a Fo¨rster mechanism, with an efficiency of 40±10%. Finally, this proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis.« less
Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia; Qian, Pu; Dilbeck, Preston; Martin, Elizabeth C.; Hitchcock, Andrew; Vasilev, Cvetelin; Yuen, Jonathan M.; Niedzwiedzki, Dariusz M.; Leggett, Graham J.; Holten, Dewey; Kirmaier, Christine; Neil Hunter, C.
2017-01-01
Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (QX) absorption bands of the RC allow energy transfer via a Förster mechanism, with an efficiency of 40±10%. This proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis. PMID:28054547
NASA Astrophysics Data System (ADS)
Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia; Qian, Pu; Dilbeck, Preston; Martin, Elizabeth C.; Hitchcock, Andrew; Vasilev, Cvetelin; Yuen, Jonathan M.; Niedzwiedzki, Dariusz M.; Leggett, Graham J.; Holten, Dewey; Kirmaier, Christine; Neil Hunter, C.
2017-01-01
Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP-RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (QX) absorption bands of the RC allow energy transfer via a Förster mechanism, with an efficiency of 40+/-10%. This proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis.
Experimental Building Information Models
2011-09-01
ER D C/ CE RL C R- 11 -2 Experimental Building Information Models Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry...Foundations, floor slabs , framing, stairs and elevators. • Mechanical: Heating, ventilating, and air conditioning equipment, thermostats, ducts, and...Single Flush .rvt Other standards and considerations – In a traditional cad environment, drawing layers are used to organize drawing objects and
NASA Astrophysics Data System (ADS)
Li, Hui; Liu, Zhi-qiang; Ou, Jin-ping
2007-12-01
It has been proven that carbon-fiber-reinforced polymer (CFRP) sheets or plates are capable of improving the strength of reinforced concrete (RC) structures. However, residual deformation of RC structures in service reduces the effect of CFRP strengthening. SMA can be applied to potentially decrease residual deformation and even close concrete cracks because of its recovery forces imposed on the concrete when heated. Therefore, a method of a RC structure strengthened by CFRP plates in combination with SMA wires is proposed in this paper. The strengthening effect of this method is investigated through experiments and numerical study based on the nonlinear finite element software ABAQUS in simple RC beams. Parametric analysis and assessment of damage by defining a damage index are carried out. The results indicate that recovery forces of SMA wires can decrease deflections and even close cracks in the concrete. The recovery rate of deflection of the beam increases with increasing the ratio of SMA wires. The specimen strengthened with CFRP plates has a relatively large stiffness and smaller damage index value when the residual deformation of the beam is first reduced by activation of the SMA wires. The effectiveness of this strengthening method for RC beams is verified by experimental and numerical results.
NASA Astrophysics Data System (ADS)
Sun, Jingjiang; Tang, Yuhong; Zheng, Chao; Shi, Hongbin; Lin, Lin; Sun, Zhongxian
2009-04-01
The outline and typical characteristics of damages to building in Jiangyou city and Anxian county (intensity VIII), Mianyang city and Deyang city (intensity VII) are introduced in the paper. The damage ratios, based on the sample statistics of multi-story brick buildings together with multi-story brick buildings with RC frame at first story (BBF), are presented. Then some typical damages, such as horizontal cricks of brick masonry buildings, X-shaped cricks on the walls under windows, the damages to columns, beams and infill walls of frame buildings and the damage to half circle-shaped masonry walls, are discussed.
Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.
Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas
2016-12-16
In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.
Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection
Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas
2016-01-01
In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering. PMID:27999245
Analysis of cracked RC beams under vibration
NASA Astrophysics Data System (ADS)
Capozucca, R.; Magagnini, E.
2017-05-01
Among the methods of monitoring of integrity, vibration analysis is more convenient as non-destructive testing (NDT) method. Many aspects regarding the vibration monitoring of the structural integrity of damaged RC elements have not been completely analysed in literature. The correlation between the development of the crack pattern on concrete surface under bending loadings, as well as the width and depth of cracks, and the variation of dynamic parameters on a structural element is an important aspects that has to be more investigated. This paper deals with cracked RC beams controlled by NDT based on natural vibration, which may be correlated to damage degree due to cracking of concrete under severe state of loading. An experimental investigation on the assessment of RC beams in different scale under loading has been done through dynamic tests in different constraint conditions of edges measuring frequency values and frequency variation. Envelope of Frequency Response Functions (FRFs) are shown and the changes of natural frequency values are related to the damage degree of RC beams subjected to static tests. Finally, a comparison between data obtained by finite element analysis and experimental results is shown.
Distributed cable sensors with memory feature for post-disaster damage assessment
NASA Astrophysics Data System (ADS)
Chen, Genda; McDaniel, Ryan D.; Pommerenke, David J.; Sun, Shishuang
2005-05-01
A new design of distributed crack sensors is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is mainly focused on the performance of cable sensors under dynamic loading, particularly their ability to memorize the crack history of an RC member. This unique memory feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads and they are visually undetectable. Factors affecting the onset of the memory feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors were discussed. The sensors were proven to be fatigue resistant from the shake table tests of RC columns. They continued to show useful signal after the columns can no longer support additional loads.
Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion
NASA Astrophysics Data System (ADS)
Di Benedetti, M.; Loreto, G.; Nanni, A.; Matta, F.; Gonzalez-Nunez, M. A.
2011-04-01
The development of techniques capable of evaluating deterioration of reinforced concrete (RC) structures is instrumental to the advancement of techniques for the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. To assess the condition of damage in RC, a number of nondestructive methods have been recently studied. Acoustic emission (AE) is emerging as a nondestructive tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. The effectiveness of the setup in detecting and characterizing the initiation and progression of the corrosion phenomenon is discussed on the basis of preliminary results from small-scale, pre-cracked RC specimens, which are representative of areas near the clear cover in typical RC bridge members.
Dramatic and concerted conformational changes enable rhodocetin to block α2β1 integrin selectively
Orriss, George L.; Niland, Stephan; Johanningmeier, Benjamin; Pohlentz, Gottfried; Meier, Markus; Karrasch, Simone; Estevão-Costa, Maria Inacia; Martins Lima, Augusto; Stetefeld, Jörg
2017-01-01
The collagen binding integrin α2β1 plays a crucial role in hemostasis, fibrosis, and cancer progression amongst others. It is specifically inhibited by rhodocetin (RC), a C-type lectin-related protein (CLRP) found in Malayan pit viper (Calloselasma rhodostoma) venom. The structure of RC alone reveals a heterotetramer arranged as an αβ and γδ subunit in a cruciform shape. RC specifically binds to the collagen binding A-domain of the integrin α2 subunit, thereby blocking collagen-induced platelet aggregation. However, until now, the molecular basis for this interaction has remained unclear. Here, we present the molecular structure of the RCγδ-α2A complex solved to 3.0 Å resolution. Our findings show that RC undergoes a dramatic structural reorganization upon binding to α2β1 integrin. Besides the release of the nonbinding RCαβ tandem, the RCγ subunit interacts with loop 2 of the α2A domain as result of a dramatic conformational change. The RCδ subunit contacts the integrin α2A domain in the “closed” conformation through its helix C. Combined with epitope-mapped antibodies, conformationally locked α2A domain mutants, point mutations within the α2A loop 2, and chemical modifications of the purified toxin protein, this molecular structure of RCγδ-α2A complex explains the inhibitory mechanism and specificity of RC for α2β1 integrin. PMID:28704364
Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units.
Hasegawa, Yasuchika; Sato, Nao; Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Kobayashi, Atsushi; Kato, Masako; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji
2015-05-21
Enhanced luminescence of a lanthanide complex with dynamic polarization of the excited state and molecular motion is introduced. The luminescent lanthanide complex is composed of one Eu(hfa)3 (hfa, hexafluoroacetylacetonate) and two phosphine oxide ligands with ruthenocenyl units Rc, [Eu(hfa)3(RcPO)2] (RcPO = diphenylphosphorylruthenocene). The ruthenocenyl units in the phosphine oxide ligands play an important role of switching for dynamic molecular polarization and motion in liquid media. The oxidation states of the ruthenocenyl unit (Rc(1+)/Rc(1+)) are controlled by potentiostatic polarization. Eu(III) complexes attached with bidentate phosphine oxide ligands containing ruthenocenyl units, [Eu(hfa)3(RcBPO)] (RcBPO = 1,1'-bis(diphenylphosphoryl)ruthenocene), and with bidentate phosphine oxide ligands, [Eu(hfa)3(BIPHEPO)] (BIPHEPO =1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide), were also prepared as references. The coordination structures and electrochemical properties were analyzed using single crystal X-ray analysis, cyclic voltammetry, and absorption spectroscopy measurements. The luminescence properties were estimated using an optoelectrochemical cell. Under potentiostatic polarization, a significant enhancement of luminescence was successfully observed for [Eu(hfa)3(RcPO)2], while no spectral change was observed for [Eu(hfa)3(RcBPO)]. In this study, the remarkable enhanced luminescence phenomena of Eu(III) complex based on the dynamic molecular motion under potentiostatic polarization have been performed.
NASA Technical Reports Server (NTRS)
St. Clair, Terry L.; Chang, Alice C.
1995-01-01
Copolyimides modified versions of LaRC(TM)-IA thermoplastic polyimide formulated by incorporating moieties of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and, alternatively, isophthaloyldiphthalic anhydride (IDPA) into LaRC(TM)-IA polymer backbones. Exhibit higher glass-transition temperatures and retain greater fractions of lower-temperature shear moduli at higher temperatures. Copolyimides spun into fibers or used as adhesives, molding powders, or matrix resins in many applications, especially in fabrication of strong, lightweight structural components of aircraft.
Advanced thermoplastic resins, phase 1
NASA Technical Reports Server (NTRS)
Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.
1991-01-01
Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.
FRP : Strengthened RC Structures
NASA Astrophysics Data System (ADS)
Teng, J. G.; Chen, J. F.; Smith, S. T.; Lam, L.
2002-01-01
The strengthening of reinforced concrete (RC) structures using advanced fibre-reinforced polymer (FRP) composites, and in particular the behaviour of FRP-strengthened RC structures is a topic which has become very popular in recent years. This popularity has arisen due to the need to maintain and upgrade essential infrastructure in all parts of the world, combined with the well-known advantages of FRP composites, such as good corrosion resistance and ease for site handling due to their light weight. The continuous reduction in the material cost of FRP composites has also contributed to their popularity. While a great amount of research now exists in the published literature on this topic, it is scattered in various journals and conference proceedings. This book therefore provides the first ever comprehensive, state-of-the-art summary of the existing research on FRP strengthening of RC structures, with the emphasis being on structural behaviour and strength models. The main topics covered include: Bond behaviour Flexural and shear strengthening of beams Column strengthening Flexural strengthening of slabs. For each area, the methods of strengthening are discussed, followed by a description of behaviour and failure modes and then the presentation of rational design recommendations, for direct use in practical design of FRP strengthening measures. Researchers, practicing engineers, code writers and postgraduate students in structural engineering and construction materials, as well as consulting firms, government departments, professional bodies, contracting firms and FRP material suppliers will find this an invaluable resource.
Relief of reinforcing congestion in beams and bent caps of concrete bridges.
DOT National Transportation Integrated Search
2012-06-01
In order to determine how to resolve the issues involving steel congestion in reinforced concrete (RC) structures, three potential solutions to this problem were researched. In the first method, reinforced concrete (RC) was mixed with steel fibers. T...
Implementation Plan for the NASA Center of Excellence for Structures and Materials
NASA Technical Reports Server (NTRS)
Harris, Charles E. (Editor)
1998-01-01
This report presents the implementation plans of the Center of Excellence (COE) for Structures and Materials. The plan documented herein is the result of an Agencywide planning activity led by the Office of the Center of Excellence for Structures and Materials at Langley Research Center (LaRC). The COE Leadership Team, with a representative from each NASA Field Center, was established to assist LaRC in fulfilling the responsibilities of the COE. The Leadership Team developed the plan presented in this report.
NASA Astrophysics Data System (ADS)
Giurgiutiu, Victor; Harries, Kent; Petrou, Michael; Bost, Joel; Quattlebaum, Josh B.
2003-12-01
The capability of embedded piezoelectric wafer active sensors (PWAS) to perform in-situ nondestructive evaluation (NDE) for structural health monitoring (SHM) of reinforced concrete (RC) structures strengthened with fiber reinforced polymer (FRP) composite overlays is explored. First, the disbond detection method were developed on coupon specimens consisting of concrete blocks covered with an FRP composite layer. It was found that the presence of a disbond crack drastically changes the electromechanical (E/M) impedance spectrum measured at the PWAS terminals. The spectral changes depend on the distance between the PWAS and the crack tip. Second, large scale experiments were conducted on a RC beam strengthened with carbon fiber reinforced polymer (CFRP) composite overlay. The beam was subject to an accelerated fatigue load regime in a three-point bending configuration up to a total of 807,415 cycles. During these fatigue tests, the CFRP overlay experienced disbonding beginning at about 500,000 cycles. The PWAS were able to detect the disbonding before it could be reliably seen by visual inspection. Good correlation between the PWAS readings and the position and extent of disbond damage was observed. These preliminary results demonstrate the potential of PWAS technology for SHM of RC structures strengthened with FRP composite overlays.
Investigation on the thermographic detection of corrosion in RC structures
NASA Astrophysics Data System (ADS)
Tantele, Elia A.; Votsis, Renos A.; Kyriakides, Nicholas; Georgiou, Panagiota G.; Ioannou, Fotia G.
2017-09-01
Corrosion of the steel reinforcement is the main problem of reinforced concrete (RC) structures. Over the past decades, several methods have been developed aiming to detect the corrosion process early in order to minimise the structural damage and consequently the repairing costs. Emphasis was given in developing methods and techniques of non-destructive nature providing fast on-the-spot detection and covering large areas rather that concentrating on single locations. This study, investigates a non-destructive corrosion detection technique for reinforced concrete, which is based on infrared thermography and the difference in thermal characteristics of corroded and non-corroded steel rebars. The technique is based on the principle that corrosion products have poor heat conductivity, and they inhibit the diffusion of heat that is generated in the reinforcing bar due to heating. For the investigation RC specimens, have been constructed in the laboratory using embedded steel bars of different corrosion states. Afterward, one surface of the specimens was heated using an electric device while thermal images were captured at predefined time instants on the opposite surface with an IR camera. The test results showed a clear difference between the thermal characteristics of the corroded and the non-corroded samples, which demonstrates the potential of using thermography in corrosion detection in RC structures.
Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro
2013-01-01
In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse. PMID:28809343
NASA Astrophysics Data System (ADS)
Cimellaro, Gian Paolo; Reinhorn, Andrei M.; de Stefano, Alessandro
2011-03-01
The 2009 L'Aquila, Italy earthquake highlighted the seismic vulnerability of historic masonry building structures due to improper "strengthening" retrofit work that has been done in the last 50 years. Italian seismic standards recommend the use of traditional reinforcement techniques such as replacing the original wooden roof structure with new reinforced concrete (RC) or steel elements, inserting RC tie-beams in the masonry and new RC floors, and using RC jacketing on the shear walls. The L'Aquila earthquake revealed the numerous limitations of these interventions, because they led to increased seismic forces (due to greater additional weight) and to deformation incompatibilities of the incorporated elements with the existing masonry walls. This paper provides a discussion of technical issues pertaining to the seismic retrofit of the Santa Maria di Collemaggio Basilica and in particular, the limitations of the last (2000) retrofit intervention. Considerable damage was caused to the church because of questionable actions and incorrect and improper technical choices.
Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro
2013-03-06
In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions ( in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.
Zhang, Zhe; Tsukikawa, Mai; Peng, Min; Polyak, Erzsebet; Nakamaru-Ogiso, Eiko; Ostrovsky, Julian; McCormack, Shana; Place, Emily; Clarke, Colleen; Reiner, Gail; McCormick, Elizabeth; Rappaport, Eric; Haas, Richard; Baur, Joseph A.; Falk, Marni J.
2013-01-01
Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis extending across different molecular and biochemical etiologies of individual RC disorders that involves global transcriptome modifications. We further identify the integrated nutrient-sensing signaling network as a common cellular response that mediates, and may be amenable to targeted therapies for, tissue-specific sequelae of primary mitochondrial RC disease. PMID:23894440
Distributed sensing of RC beams with HCFRP sensors
NASA Astrophysics Data System (ADS)
Yang, Caiqian; Wu, Zhishen; Ye, Lieping
2005-05-01
This paper addresses a novel type of hybrid carbon fiber-reinforced polymer (HCFRP) sensors suitable for the structural health monitoring (SHM) of civil engineering structures. The HCFRP sensors are composed of different types of carbon tows, which are active materials due to their electrical conductivity, piezoresistivity, excellent mechanical properties and resistance to corrosion. The HCFRP sensors are designed to comprise three types of carbon tows-high strength (HS), high modulus (HM) and middle modulus (MM), in order to realize a distributed and broad-based sensing function. Two types of HCFRP sensors, with and without pretreatment, are fabricated and investigated. The HCFRP sensors are bonded with epoxy resins on the bottom concrete surface of RC beam specimens to monitor the average strain, the initiation and propagation of cracks. The experimental results indicate that such kinds of sensors are characterized with broad-based and distributed sensing feasibilities. As a result, the structural health of the RC beams can be monitored and evaluated through characterizing the relationships between the change in electrical resistance of the HCFRP sensors, the average strain and the crack width of the RC beams. In addition, it is also revealed that the damages can also be located by properly adding the number of electrodes.
Damage Assessment of Two-Way Bending RC Slabs Subjected to Blast Loadings
Jia, Haokai; Wu, Guiying
2014-01-01
Terrorist attacks on vulnerable structures and their individual structural members may cause considerable damage and loss of life. However, the research work on response and damage analysis of single structural components, for example, a slab to blast loadings, is limited in the literature and this is necessary for assessing its vulnerability. This study investigates the blast response and damage assessment of a two-way bending reinforced concrete (RC) slab subjected to blast loadings. Numerical modeling and analysis are carried out using the commercial finite element code LS-DYNA 971. A damage assessment criterion for the two-way bending RC slab is defined based on the original and residual uniformly distributed load-carrying capacity. Parametric studies are carried out to investigate the effects of explosive weight and explosive position on the damage mode of the two-way RC slab. Some design parameters, such as the boundary conditions and the negative reinforcement steel bar length, are also discussed. The illustrated results show that the proposed criterion can apply to all failure modes. The damage assessment results are more accurate than the ones due to the conventional deformation criterion. PMID:25121134
An Experimental Study on Strengthening of Reinforced Concrete Flexural Members using Steel Wire Mesh
NASA Astrophysics Data System (ADS)
Al Saadi, Hamza Salim Mohammed; Mohandas, Hoby P.; Namasivayam, Aravind
2017-01-01
One of the major challenges and contemporary research in the field of structural engineering is strengthening of existing structural elements using readily available materials in the market. Several investigations were conducted on strengthening of various structural components using traditional and advanced materials. Many researchers tried to enhance the reinforced concrete (RC) beams strength using steel plate, Glass and Carbon Fibre Reinforced Polymers (GFRP & CFRP). For the reason that high weight to the strength ratio and compatibility in strength between FRP composites and steel bars, steel plates and GFRP and CFRP composites are not used for strengthening works practically. Hence, in this present work the suitability of using wire mesh for the purpose of strengthening the RC flexural members is studied by conducting experimental works. New technique of strengthening system using wire mesh with a view to improve sectional properties and subsequently flexural strength of RC beams is adopted in this work. The results for experimental and theoretical analysis were compared and found that good correlation exists between them. The experimental results indicate that RC beams strengthened with steel wire mesh are easy technique for strengthening of existing flexural members.
Molecular Genetics of Mitochondrial Disorders
ERIC Educational Resources Information Center
Wong, Lee-Jun C.
2010-01-01
Mitochondrial respiratory chain (RC) disorders (RCDs) are a group of genetically and clinically heterogeneous diseases because of the fact that protein components of the RC are encoded by both mitochondrial and nuclear genomes and are essential in all cells. In addition, the biogenesis, structure, and function of mitochondria, including DNA…
Rotator Cuff Tendinopathy: Navigating the Diagnosis-Management Conundrum.
Lewis, Jeremy; McCreesh, Karen; Roy, Jean-Sébastien; Ginn, Karen
2015-11-01
Synopsis The hallmark characteristics of rotator cuff (RC) tendinopathy are pain and weakness, experienced most commonly during shoulder external rotation and elevation. Assessment is complicated by nonspecific clinical tests and the poor correlation between structural failure and symptoms. As such, diagnosis is best reached by exclusion of other potential sources of symptoms. Symptomatic incidence and prevalence data currently cannot be determined with confidence, primarily as a consequence of a lack of diagnostic accuracy, as well as the uncertainty as to the location of symptoms. People with symptoms of RC tendinopathy should derive considerable comfort from research that consistently demonstrates improvement in symptoms with a well-structured and graduated exercise program. This improvement is equivalent to outcomes reported in surgical trials, with the additional generalized benefits of exercise, less sick leave, a faster return to work, and reduced costs to the health care system. This evidence covers the spectrum of conditions that include symptomatic RC tendinopathy and atraumatic partial- and full-thickness RC tears. The principles guiding exercise treatment for RC tendinopathy include relative rest, modification of painful activities, an exercise strategy that initially does not exacerbate pain, controlled reloading, and gradual progression from simple to complex shoulder movements. Evidence also exists for a specific exercise program being beneficial for people with massive inoperable tears of the RC. Education is an essential component of rehabilitation, and attention to lifestyle factors (smoking cessation, nutrition, stress, and sleep management) may enhance outcomes. Outcomes may also be enhanced by subgrouping RC tendinopathy presentations and directing treatment strategies according to the clinical presentation and the patient's response to shoulder symptom modification procedures outlined herein. There are substantial deficits in our knowledge regarding RC tendinopathy that need to be addressed to further improve clinical outcomes. J Orthop Sports Phys Ther 2015;45(11):923-937. Epub 21 Sep 2015. doi:10.2519/jospt.2015.5941.
Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.
1992-01-01
Aeroelastic stability analyses were performed to insure structural integrity of two counterrotating propfan blade designs for a NAVY/Air Force/NASA cruise missile model wind tunnel test. This analysis predicted if the propfan designs would be flutter free at the operating conditions of the wind tunnel test. Calculated stability results are presented for the two blade designs with rotational speed and Mach number as the parameters. A aeroelastic analysis code ASTROP2 (Aeroelastic Stability and Response of Propulsion Systems - 2 Dimensional Analysis), developed at LeRC, was used in this project. The aeroelastic analysis is a modal method and uses the combination of a finite element structural model and two dimensional steady and unsteady cascade aerodynamic models. This code was developed to analyze single rotation propfans but was modified and applied to counterrotating propfans for the present work. Modifications were made to transform the geometry and rotation of the aft rotor to the same reference frame as the forward rotor, to input a non-uniform inflow into the rotor being analyzed, and to automatically converge to the least stable aeroelastic mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, D; Braunstein, S; Sneed, P
Purpose: This work aims to determine dose variability via a brain metastases resection cavity shrinkage model (RC-SM) with I-125 or Cs-131 LDR seed implantations. Methods: The RC-SM was developed to represent sequential volume changes of 95 consecutive brain metastases patients. All patients underwent serial surveillance MR and change in cavity volume was recorded for each patient. For the initial resection cavity, a prolate-ellipsoid cavity model was suggested and applied volume shrinkage rates to correspond to 1.7, 3.6, 5.9, 11.7, and 20.5 months after craniotomy. Extra-ring structure (6mm) was added on a surface of the resection volume and the same shrinkagemore » rates were applied. Total 31 LDR seeds were evenly distributed on the surface of the resection cavity. The Amersham 6711 I-125 seed model (Oncura, Arlington Heights, IL) and the Model Cs-1 Rev2 Cs-131 seed model (IsoRay, Richland, WA) were used for TG-43U1 dose calculation and in-house-programed 3D-volumetric dose calculation system was used for resection cavity rigid model (RC-RM) and the RC-SM dose calculation. Results: The initial resection cavity volume shrunk to 25±6%, 35±6.8%, 42±7.7%, 47±9.5%, and 60±11.6%, with respect to sequential MR images post craniotomy, and the shrinkage rate (SR) was calculated as SR=56.41Xexp(−0.2024Xt)+33.99 and R-square value was 0.98. The normal brain dose as assessed via the dose to the ring structure with the RC-SM showed 29.34% and 27.95% higher than the RC-RM, I-125 and Cs-131, respectively. The dose differences between I-125 and Cs-131 seeds within the same models, I-125 cases were 9.17% and 10.35% higher than Cs-131 cases, the RC-RM and the RC-SM, respectively. Conclusion: A realistic RC-SM should be considered during LDR brain seed implementation and post-implement planning to prevent potential overdose. The RC-SM calculation shows that Cs-131 is more advantageous in sparing normal brain as the resection cavity volume changes with the LDR seeds implementation.« less
Geometrically distributed one-dimensional photonic crystals for light-reflection in all angles.
Alagappan, G; Wu, P
2009-07-06
We demonstrate that a series of one-dimensional photonic crystals made of any dielectric materials, with the periods are distributed in a geometrical progression of a common ratio, r < rc (theta,P), where rc is a structural parameter that depends on the angle of incidence, theta, and polarization, P, is capable of blocking light of any spectral range. If an omni-directional reflection is desired for all polarizations and for all incident angles smaller than thetao, then r < rc (theta(o),p), where p is the polarization with the electric field parallel to the plane of incidence. We present simple and formula like expressions for rc, width of the bandgap, and minimum number of photonic crystals to achieve a perfect light reflection.
Adaptive quantization-parameter clip scheme for smooth quality in H.264/AVC.
Hu, Sudeng; Wang, Hanli; Kwong, Sam
2012-04-01
In this paper, we investigate the issues over the smooth quality and the smooth bit rate during rate control (RC) in H.264/AVC. An adaptive quantization-parameter (Q(p)) clip scheme is proposed to optimize the quality smoothness while keeping the bit-rate fluctuation at an acceptable level. First, the frame complexity variation is studied by defining a complexity ratio between two nearby frames. Second, the range of the generated bits is analyzed to prevent the encoder buffer from overflow and underflow. Third, based on the safe range of the generated bits, an optimal Q(p) clip range is developed to reduce the quality fluctuation. Experimental results demonstrate that the proposed Q(p) clip scheme can achieve excellent performance in quality smoothness and buffer regulation.
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Ran, Zhi-hong
2018-03-01
Extradossed Cable-stayed Bridge is both cable-stayed Bridge and Continuous rigid frame bridge mechanics feature, Beam is the main force components, cable is supplement.This article combined with a single tower and single cable plane Extradossed cable-stayed bridge in Yunnan, use different creep calculation models and analysis deflection caused by creep effects. The results showing that deflection caused by creep effect is smaller than the same span continuous rigid frame bridge, the value is about 2cm. On the other hand the deflection is increasing with ambient humidity decreases, therefore in the dry environment the calculation model is relatively large in the pre-camber. In the choice of RC creep model is significant in the dry areas.
Structural Analysis for the American Airlines Flight 587 Accident Investigation: Global Analysis
NASA Technical Reports Server (NTRS)
Young, Richard D.; Lovejoy, Andrew E.; Hilburger, Mark W.; Moore, David F.
2005-01-01
NASA Langley Research Center (LaRC) supported the National Transportation Safety Board (NTSB) in the American Airlines Flight 587 accident investigation due to LaRC's expertise in high-fidelity structural analysis and testing of composite structures and materials. A Global Analysis Team from LaRC reviewed the manufacturer s design and certification procedures, developed finite element models and conducted structural analyses, and participated jointly with the NTSB and Airbus in subcomponent tests conducted at Airbus in Hamburg, Germany. The Global Analysis Team identified no significant or obvious deficiencies in the Airbus certification and design methods. Analysis results from the LaRC team indicated that the most-likely failure scenario was failure initiation at the right rear main attachment fitting (lug), followed by an unstable progression of failure of all fin-to-fuselage attachments and separation of the VTP from the aircraft. Additionally, analysis results indicated that failure initiates at the final observed maximum fin loading condition in the accident, when the VTP was subjected to loads that were at minimum 1.92 times the design limit load condition for certification. For certification, the VTP is only required to support loads of 1.5 times design limit load without catastrophic failure. The maximum loading during the accident was shown to significantly exceed the certification requirement. Thus, the structure appeared to perform in a manner consistent with its design and certification, and failure is attributed to VTP loads greater than expected.
Centrifuge modeling of rocking-isolated inelastic RC bridge piers
Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George
2014-01-01
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd. PMID:26300573
Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields
NASA Astrophysics Data System (ADS)
Conrad, R.
2006-12-01
Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce and emit more methane than when inhabited by Methanomicrobiales, indicating that the methanogenic archaeal community is an important factor for methane emission from rice fields.
Behavior of Insulated Carbon-FRP-Strengthened RC Beams Exposed to Fire
NASA Astrophysics Data System (ADS)
Sayin, B.
2014-09-01
There are two main approaches to improving the fire resistance of fiber-reinforced polymer (FRP) systems. While the most common method is to protect or insulate the FRP system, an other way is to use fibers and resins with a better fire performance. This paper presents a numerical investigation into the five protection behavior of insulated carbon-fiber-reinforced-polymer (CFRP)-strengthened reinforced concrete (RC) beams. The effects of external loading and thermal expansion of materials at elevated temperatures are taken into consideration in a finite-element model. The validity of the numerical model is demonstrated with results from an existing experimental study on insulated CFRP-strengthened RC beams. Conclusions of this investigation are employed to predict the structural behavior of CFRP-strengthened concrete structures.
Structural damages of L'Aquila (Italy) earthquake
NASA Astrophysics Data System (ADS)
Kaplan, H.; Bilgin, H.; Yilmaz, S.; Binici, H.; Öztas, A.
2010-03-01
On 6 April 2009 an earthquake of magnitude 6.3 occurred in L'Aquila city, Italy. In the city center and surrounding villages many masonry and reinforced concrete (RC) buildings were heavily damaged or collapsed. After the earthquake, the inspection carried out in the region provided relevant results concerning the quality of the materials, method of construction and the performance of the structures. The region was initially inhabited in the 13th century and has many historic structures. The main structural materials are unreinforced masonry (URM) composed of rubble stone, brick, and hollow clay tile. Masonry units suffered the worst damage. Wood flooring systems and corrugated steel roofs are common in URM buildings. Moreover, unconfined gable walls, excessive wall thicknesses without connection with each other are among the most common deficiencies of poorly constructed masonry structures. These walls caused an increase in earthquake loads. The quality of the materials and the construction were not in accordance with the standards. On the other hand, several modern, non-ductile concrete frame buildings have collapsed. Poor concrete quality and poor reinforcement detailing caused damage in reinforced concrete structures. Furthermore, many structural deficiencies such as non-ductile detailing, strong beams-weak columns and were commonly observed. In this paper, reasons why the buildings were damaged in the 6 April 2009 earthquake in L'Aquila, Italy are given. Some suggestions are made to prevent such disasters in the future.
Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil.
Xu, Mengyuan; Yan, Jing; Geng, Yingsan; Zhang, Kun; Sun, Chao
2018-03-13
An innovative array of magnetic coils (the discrete Rogowski coil-RC) with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP) method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC's interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors.
Bayesian Model Comparison for the Order Restricted RC Association Model
ERIC Educational Resources Information Center
Iliopoulos, G.; Kateri, M.; Ntzoufras, I.
2009-01-01
Association models constitute an attractive alternative to the usual log-linear models for modeling the dependence between classification variables. They impose special structure on the underlying association by assigning scores on the levels of each classification variable, which can be fixed or parametric. Under the general row-column (RC)…
Evaluation of damage in reinforced concrete bridge beams using acoustic emission technique
NASA Astrophysics Data System (ADS)
Vidya Sagar, R.; Raghu Prasad, B. K.; Sharma, Reema
2012-06-01
Acoustic emission (AE) testing is a well-known method for damage identification of various concrete structures including bridges. This article presents a method to assess damage in reinforced concrete (RC) bridge beams subjected to incremental cyclic loading. The specifications in the standard NDIS-2421 were used to classify the damage in RC bridge beams. Earlier researchers classified the damage occurring in bridge beams by using crack mouth opening displacement (CMOD) and AE released and proposed a standard (NDIS-2421: the Japanese Society for NonDestructive Inspection). In general, multiple cracks take place in RC beams under bending; therefore, utilisation of CMOD for crack detection may not be appropriate. In the present study, the damage in RC beams is classified by using the AE released, deflection, strains in steel and concrete, because the measurement of the strains in steel and concrete is easy and the codes of practice are specified for different limit states (IS-456:2000). The observations made in the present experimental study have some important practical applications in assessing the state of damage of concrete structural members.
Vibration Based Wind Turbine Tower Foundation Design Utilizing Soil-Foundation-Structure Interaction
NASA Astrophysics Data System (ADS)
Al Satari, P. E. Mohamed; Hussain, S. E. Saif
2008-07-01
Wind turbines have been used to generate electricity as an alternative energy source to conventional fossil fuels. This case study is for multiple wind towers located at different villages in Alaska where severe arctic weather conditions exist. The towers are supported by two different types of foundations; large mat or deep piles foundations. Initially, a Reinforced Concrete (RC) mat foundation was utilized to provide the system with vertical and lateral support. Where soil conditions required it, a pile foundation solution was devised utilizing a 30″ thick RC mat containing an embedded steel grillage of W18 beams supported by 20″-24″ grouted or un-grouted piles. The mixing and casting of concrete in-situ has become the major source of cost and difficulty of construction at these remote Alaska sites. An all-steel foundation was proposed for faster installation and lower cost, but was found to impact the natural frequencies of the structural system by significantly softening the foundation system. The tower-foundation support structure thus became near-resonant with the operational frequencies of the wind turbine leading to a likelihood of structural instability or even collapse. A detailed 3D Finite-Element model of the original tower-foundation-pile system with RC foundation was created using SAP2000. Soil springs were included in the model based on soil properties obtained from the geotechnical consultant. The natural frequency from the model was verified against the tower manufacturer analytical and the experimental values. Where piles were used, numerous iterations were carried out to eliminate the need for the RC and optimize the design. An optimized design was achieved with enough separation between the natural and operational frequencies to prevent damage to the structural system eliminating the need for any RC encasement to the steel foundation or grouting to the piles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, M.A.; Zerner, M.C.
Photosynthetic electron transfer is arguably the most important series of chemical transformations for life on this planet. In recent years the structure of the reaction centers (RC) from the photosynthetic bacteria Rhodopseudomonas viridis and Rhodobacter sphaeroides have been presented. On the basis of these structures, several mechanisms have been proposed to explain the primary electron-transfer event with as yet no consensus. The authors report here INDO/S calculations of the excited states of a model of the RC of Rps. viridis in both the absence and presence of a polarizable medium.
Clustering behavior in microbial communities from acute endodontic infections.
Montagner, Francisco; Jacinto, Rogério C; Signoretti, Fernanda G C; Sanches, Paula F; Gomes, Brenda P F A
2012-02-01
Acute endodontic infections harbor heterogeneous microbial communities in both the root canal (RC) system and apical tissues. Data comparing the microbial structure and diversity in endodontic infections in related ecosystems, such as RC with necrotic pulp and acute apical abscess (AAA), are scarce in the literature. The aim of this study was to examine the presence of selected endodontic pathogens in paired samples from necrotic RC and AAA using polymerase chain reaction (PCR) followed by the construction of cluster profiles. Paired samples of RC and AAA exudates were collected from 20 subjects and analyzed by PCR for the presence of selected strict and facultative anaerobic strains. The frequency of species was compared between the RC and the AAA samples. A stringent neighboring clustering algorithm was applied to investigate the existence of similar high-order groups of samples. A dendrogram was constructed to show the arrangement of the sample groups produced by the hierarchical clustering. All samples harbored bacterial DNA. Porphyromonas endodontalis, Prevotella nigrescens, Filifactor alocis, and Tannerela forsythia were frequently detected in both RC and AAA samples. The selected anaerobic species were distributed in diverse small bacteria consortia. The samples of RC and AAA that presented at least one of the targeted microorganisms were grouped in small clusters. Anaerobic species were frequently detected in acute endodontic infections and heterogeneous microbial communities with low clustering behavior were observed in paired samples of RC and AAA. Copyright © 2012. Published by Elsevier Inc.
TNF-alpha induction of GM2 expression on renal cell carcinomas promotes T cell dysfunction.
Raval, Gira; Biswas, Soumika; Rayman, Patricia; Biswas, Kaushik; Sa, Gaurisankar; Ghosh, Sankar; Thornton, Mark; Hilston, Cynthia; Das, Tanya; Bukowski, Ronald; Finke, James; Tannenbaum, Charles S
2007-05-15
Previous studies from our laboratory demonstrated the role of tumor-derived gangliosides as important mediators of T cell apoptosis, and hence, as one mechanism by which tumors evade immune destruction. In this study, we report that TNF-alpha secreted by infiltrating inflammatory cells and/or genetically modified tumors augments tumor-associated GM2 levels, which leads to T cell death and immune dysfunction. The conversion of weakly apoptogenic renal cell carcinoma (RCC) clones to lines that can induce T cell death requires 3-5 days of TNF-alpha pretreatment, a time frame paralleling that needed for TNF-alpha to stimulate GM2 accumulation by SK-RC-45, SK-RC-54, and SK-RC-13. RCC tumor cell lines permanently transfected with the TNF-alpha transgene are similarly toxic for T lymphocytes, which correlates with their constitutively elevated levels of GM2. TNF-alpha increases GM2 ganglioside expression by enhancing the mRNA levels encoding its synthetic enzyme, GM2 synthase, as demonstrated by both RT-PCR and Southern analysis. The contribution of GM2 gangliosides to tumor-induced T cell death was supported by the finding that anti-GM2 Abs significantly blocked T cell apoptosis mediated by TNF-alpha-treated tumor cells, and by the observation that small interfering RNA directed against TNF-alpha abrogated GM2 synthase expression by TNF-transfected SK-RC-45, diminished its GM2 accumulation, and inhibited its apoptogenicity for T lymphocytes. Our results indicate that TNF-alpha signaling promotes RCC-induced killing of T cells by stimulating the acquisition of a distinct ganglioside assembly in RCC tumor cells.
Study of a reinforced concrete beam strengthened using a combination of SMA wire and CFRP plate
NASA Astrophysics Data System (ADS)
Liu, Zhi-qiang; Li, Hui
2006-03-01
Traditional methods used for strengthening of reinforced concrete (RC) structures, such as bonding of steel plates, suffer from inherent disadvantages. In recent years, strengthening of RC structures using carbon fiber reinforced polymer (CFRP) plates has attracted considerable attentions around the world. Most existing research on CFRP plate bonding for flexural strengthening of RC beams has been carried out for the strength enhancement. However, little research is focused on effect of residual deformations on the strengthening. The residual deformations have an important effect on the strengthening by CFRP plates. There exists a very significant challenge how the residual deformations are reduced. Shape memory alloy (SMA) has showed outstanding functional properties as an actuator. It is a possibility that SMA can be used to reduce the residual deformation and make cracks of concrete close by imposing the recovery forces on the concrete in the tensile zone. It is only an emergency damage repair since the SMA wires need to be heated continuously. So, an innovative method of a RC beam strengthened by CFRP plates in combination with SMA wires was first investigated experimentally in this paper. In addition, the nonlinear finite element software of ABAQUS was employed to further simulate the behavior of RC beams strengthened through the new strengthening method. It can be found that this is an excellent and effective strengthening method.
Preparation and Microcosmic Structural Analysis of Recording Coating on Inkjet Printing Media
Jiang, Bo; Liu, Weiyan; Bai, Yongping; Huang, Yudong; Liu, Li; Han, Jianping
2011-01-01
Preparation of recording coating on inkjet printing (RC-IJP) media was proposed. The microstructure and roughness of RC-IJP was analyzed by scanning electron microscopy (SEM) and atomic force microscope (AFM). The surface infiltration process of RC-IJP was studied by a liquid infiltration instrument. The distribution of C, O and Si composites on recording coating surface is analyzed by energy dispersive spectrum (EDS). The transmission electron microscopy (TEM) analysis showed that the nanoscale silica could be dissolved uniformly in water. Finally, the print color is shown clearly by the preparative recording coating. PMID:21954368
Papior, Peer; Arteaga-Salas, José M.; Günther, Thomas; Grundhoff, Adam
2012-01-01
Whether or not metazoan replication initiates at random or specific but flexible sites is an unsolved question. The lack of sequence specificity in origin recognition complex (ORC) DNA binding complicates genome-scale chromatin immunoprecipitation (ChIP)-based studies. Epstein-Barr virus (EBV) persists as chromatinized minichromosomes that are replicated by the host replication machinery. We used EBV to investigate the link between zones of pre-replication complex (pre-RC) assembly, replication initiation, and micrococcal nuclease (MNase) sensitivity at different cell cycle stages in a genome-wide fashion. The dyad symmetry element (DS) of EBV’s latent origin, a well-established and very efficient pre-RC assembly region, served as an internal control. We identified 64 pre-RC zones that correlate spatially with 57 short nascent strand (SNS) zones. MNase experiments revealed that pre-RC and SNS zones were linked to regions of increased MNase sensitivity, which is a marker of origin strength. Interestingly, although spatially correlated, pre-RC and SNS zones were characterized by different features. We propose that pre-RCs are formed at flexible but distinct sites, from which only a few are activated per single genome and cell cycle. PMID:22891264
Hidalgo, Paloma; Anzures, Lourdes; Hernández-Mendoza, Armando; Guerrero, Adán; Wood, Christopher D.; Valdés, Margarita; Dobner, Thomas
2016-01-01
ABSTRACT Adenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directed de novo synthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RC in vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses. IMPORTANCE RC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they direct de novo synthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle. PMID:26764008
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2002-01-01
A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.
Migliorini, Robyn; Moore, Eileen M.; Glass, Leila; Infante, M. Alejandra; Tapert, Susan F.; Jones, Kenneth Lyons; Mattson, Sarah N.; Riley, Edward P.
2015-01-01
Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12–17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure. PMID:26025509
Migliorini, Robyn; Moore, Eileen M; Glass, Leila; Infante, M Alejandra; Tapert, Susan F; Jones, Kenneth Lyons; Mattson, Sarah N; Riley, Edward P
2015-10-01
Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nor Amalini, A.; Melina Cheah, M. Y.; Wan Rosli, W. D.; Hayati, S.; Mohamad Haafiz, M. K.
2017-12-01
Development of regenerated cellulose (RC) derived from underutilized cellulosic biomass has recently gained attention as potential petroleum-based polymer replacers. The objective of this current work is to evaluate the properties of RC films obtained from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC) through environmental process. The RC films were fabricated by using different amounts of OPEFB-MCC (4, 6 and 8 %) and 1-butyl-3-methylimidazolium chloride (BMIMCl) was used as green OPEFB-MCC dissolving medium. The resultant RC films were then characterized by means of Fourier transform infrared (FTIR) spectroscopy, mechanical, thermal and morphological properties by using tensile test, differential scanning colorimetry (DSC), and scanning electron microscopy (SEM) respectively. Increase in OPEFB-MCC amounts from 4 to 8 % enhanced the tensile strength and elongation at break of RC by 101 and 78 %, respectively, indicating stronger and more flexible films were formed. It is interesting to note that the Tg (101-154 °C) and Tm(130-187 °C) were found shifted to higher temperature with higher proportions of OPEFB-MCC in RC films. Meanwhile, FTIR analysis showed no new peak presented in RC films, suggesting that BMIMCl is a non-derivatizing solvent to OPEFB-MCC. Conspicuous changes in the spectra of RC films compared to OPEFB-MCC at 3200-3600 cm-1, 1430 cm-1, 1162 cm-1, 1111 cm-1, 1020-1040 cm-1 and 896 cm-1 were associated with transformation of cellulose I to cellulose II structure or/and decrease in crystallinity occurred after regeneration process. SEM micrographs of the RC films revealed that higher OPEFB-MCC contents exhibited smoother and more homogeneous surfaces morphology. Overall, OPEFB-MCC exhibited good film forming ability for RC production and may offer potential application in various industries including food packaging, medical goods and electronic devices.
Centrifuge modeling of rocking-isolated inelastic RC bridge piers.
Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George
2014-12-01
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation , this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Chan, Angel; Yang, Wenchun; Chang, Franklin; Kidd, Evan
2018-01-01
We report on an eye-tracking study that investigated four-year-old Cantonese-speaking children's online processing of subject and object relative clauses (RCs). Children's eye-movements were recorded as they listened to RC structures identifying a unique referent (e.g. "Can you pick up the horse that pushed the pig?"). Two RC types,…
DISTRIBUTED RC NETWORKS WITH RATIONAL TRANSFER FUNCTIONS,
A distributed RC circuit analogous to a continuously tapped transmission line can be made to have a rational short-circuit transfer admittance and...one rational shortcircuit driving-point admittance. A subcircuit of the same structure has a rational open circuit transfer impedance and one rational ...open circuit driving-point impedance. Hence, rational transfer functions may be obtained while considering either generator impedance or load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utschig, L. M.; Dalosto, S. D.; Thurnauer, M. C.
Metal ion binding to a surface site on photosynthetic reaction centers (RCs) modulates light-induced electron and proton transfer events in the RC. Whereas many studies have elucidated aspects of metal ion modulation events in Rhodobacter sphaeroides RCs, much less is understood about the surface site in Blastochloris viridis (Blc. viridis) RCs. Interestingly, electron paramagnetic resonance studies revealed two spectroscopically distinct Cu{sup 2+} surface site environments in Blc. viridis RCs. Herein, Cu{sup 2+} has been used to spectroscopically probe the structure of these Cu{sup 2+} site(s) in response to freezing conditions, temperature, and charge separation. One Cu{sup 2+} environment in Blc.more » viridis RCs, termed CuA, exhibits temperature-dependent conformational flexibility. Different conformation states of the CuA{sup 2+} site are trapped when the RC is frozen in the dark either by fast-freeze or slow-freeze procedure. The second Cu{sup 2+} environment, termed CuB, is structurally invariant to different freezing conditions and shows resolved hyperfine coupling to three nitrogen atoms. Cu{sup 2+} is most likely binding at the same location on the RC, but in different coordination environments which may reflect two distinct conformational states of the isolated Blc. viridis RC protein.« less
Study on safety level of RC beam bridges under earthquake
NASA Astrophysics Data System (ADS)
Zhao, Jun; Lin, Junqi; Liu, Jinlong; Li, Jia
2017-08-01
This study considers uncertainties in material strengths and the modeling which have important effects on structural resistance force based on reliability theory. After analyzing the destruction mechanism of a RC bridge, structural functions and the reliability were given, then the safety level of the piers of a reinforced concrete continuous girder bridge with stochastic structural parameters against earthquake was analyzed. Using response surface method to calculate the failure probabilities of bridge piers under high-level earthquake, their seismic reliability for different damage states within the design reference period were calculated applying two-stage design, which describes seismic safety level of the built bridges to some extent.
CSI computer system/remote interface unit acceptance test results
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.
1992-01-01
The validation tests conducted on the Control/Structures Interaction (CSI) Computer System (CCS)/Remote Interface Unit (RIU) is discussed. The CCS/RIU consists of a commercially available, Langley Research Center (LaRC) programmed, space flight qualified computer and a flight data acquisition and filtering computer, developed at LaRC. The tests were performed in the Space Structures Research Laboratory (SSRL) and included open loop excitation, closed loop control, safing, RIU digital filtering, and RIU stand alone testing with the CSI Evolutionary Model (CEM) Phase-0 testbed. The test results indicated that the CCS/RIU system is comparable to ground based systems in performing real-time control-structure experiments.
Assembly considerations for large reflectors
NASA Technical Reports Server (NTRS)
Bush, H.
1988-01-01
The technologies developed at LaRC in the area of erectable instructures are discussed. The information is of direct value to the Large Deployable Reflector (LDR) because an option for the LDR backup structure is to assemble it in space. The efforts in this area, which include development of joints, underwater assembly simulation tests, flight assembly/disassembly tests, and fabrication of 5-meter trusses, led to the use of the LaRC concept as the baseline configuration for the Space Station Structure. The Space Station joint is linear in the load and displacement range of interest to Space Station; the ability to manually assemble and disassemble a 45-foot truss structure was demonstrated by astronauts in space as part of the ACCESS Shuttle Flight Experiment. The structure was built in 26 minutes 46 seconds, and involved a total of 500 manipulations of untethered hardware. Also, the correlation of the space experience with the neutral buoyancy simulation was very good. Sections of the proposed 5-meter bay Space Station truss have been built on the ground. Activities at LaRC have included the development of mobile remote manipulator systems (which can traverse the Space Station 5-meter structure), preliminary LDR sun shield concepts, LDR construction scenarios, and activities in robotic assembly of truss-type structures.
Analysis of an Irregular RC Multi-storeyed Building Subjected to Dynamic Loading
NASA Astrophysics Data System (ADS)
AkashRaut; Pachpor, Prabodh; Dautkhani, Sanket
2018-03-01
Many buildings in the present scenario have irregular configurations both in plan and elevation. This in future may subject to devastating earthquakes. So it is necessary to analyze the structure. The present paper is made to study three type of irregularity wiz vertical, mass and plan irregularity as per clause 7.1 of IS 1893 (part1)2002 code. The paper discusses the analysis of RC (Reinforced Concrete) Buildings with vertical irregularity. The study as a whole makes an effort to evaluate the effect of vertical irregularity on RC buildings for which comparison of three parameters namely shear force, bending moment and deflection are taken into account.
NASA Astrophysics Data System (ADS)
Wu, Sigang; Dai, Hongzhe; Wang, Wei
2007-12-01
This paper designs an innovative reinforced concrete (RC) beam strengthened with carbon fiber reinforced concrete (CFRC) composites. Six groups of test beams, five with different degrees of strengthening, achieved by changing the location and the thickness of the CFRC layer, and one virgin RC beam, were tested in four-point bending over a span of 3000 mm. We investigate the effect of the CFRC layer on the flexural performance and the electrical properties of the designed beams. The test results indicate that the CFRC strengthened RC beam exhibits improved electrical properties as well as better mechanical performance. Also, the location and the thickness of the CFRC layer affect the initial electrical resistance and other electrical properties of the beam. Relationships between electrical resistance, loading, deflection and cracks show that the increase in the electrical resistance can be used to monitor the extent of damage to the designed beam. Based on this discovery, a new health monitoring technique for RC structures is produced by means of electrical resistance measurements.
Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing
Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant
2016-01-01
Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876
Structural analysis of the role of TPX2 in branching microtubule nucleation
Thawani, Akanksha
2017-01-01
The mitotic spindle consists of microtubules (MTs), which are nucleated by the γ-tubulin ring complex (γ-TuRC). How the γ-TuRC gets activated at the right time and location remains elusive. Recently, it was uncovered that MTs nucleate from preexisting MTs within the mitotic spindle, which requires the protein TPX2, but the mechanism basis for TPX2 action is unknown. Here, we investigate the role of TPX2 in branching MT nucleation. We establish the domain organization of Xenopus laevis TPX2 and define the minimal TPX2 version that stimulates branching MT nucleation, which we find is unrelated to TPX2’s ability to nucleate MTs in vitro. Several domains of TPX2 contribute to its MT-binding and bundling activities. However, the property necessary for TPX2 to induce branching MT nucleation is contained within newly identified γ-TuRC nucleation activator motifs. Separation-of-function mutations leave the binding of TPX2 to γ-TuRC intact, whereas branching MT nucleation is abolished, suggesting that TPX2 may activate γ-TuRC to promote branching MT nucleation. PMID:28264915
NASA Astrophysics Data System (ADS)
Zhang, Hao; Harrington, Lucas B.; Lu, Yue; Prado, Mindy; Saer, Rafael; Rempel, Don; Blankenship, Robert E.; Gross, Michael L.
2017-01-01
Native mass spectrometry (MS) is an emerging approach to study protein complexes in their near-native states and to elucidate their stoichiometry and topology. Here, we report a native MS study of the membrane-embedded reaction center (RC) protein complex from the purple photosynthetic bacterium Rhodobacter sphaeroides. The membrane-embedded RC protein complex is stabilized by detergent micelles in aqueous solution, directly introduced into a mass spectrometer by nano-electrospray (nESI), and freed of detergents and dissociated in the gas phase by collisional activation. As the collision energy is increased, the chlorophyll pigments are gradually released from the RC complex, suggesting that native MS introduces a near-native structure that continues to bind pigments. Two bacteriochlorophyll a pigments remain tightly bound to the RC protein at the highest collision energy. The order of pigment release and their resistance to release by gas-phase activation indicates the strength of pigment interaction in the RC complex. This investigation sets the stage for future native MS studies of membrane-embedded photosynthetic pigment-protein and related complexes.
Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil †
Xu, Mengyuan; Yan, Jing; Geng, Yingsan; Zhang, Kun; Sun, Chao
2018-01-01
An innovative array of magnetic coils (the discrete Rogowski coil—RC) with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP) method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC’s interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors. PMID:29534006
Brock, Laura L; Nishida, Tracy K; Chiong, Cynthia; Grimm, Kevin J; Rimm-Kaufman, Sara E
2008-04-01
This study examines the contribution of the Responsive Classroom (RC) Approach, a set of teaching practices that integrate social and academic learning, to children's perceptions of their classroom, and children's academic and social performance over time. Three questions emerge: (a) What is the concurrent and cumulative relation between children's perceptions of the classroom and social and academic outcomes over time? (b) What is the contribution of teacher's use of RC practices to children's perceptions and social and academic outcomes? (c) Do children's perceptions of the classroom mediate the relation between RC teacher practices and child outcomes? Cross-lagged autoregressive structural equation models were used to analyze teacher and child-report questionnaire data, along with standardized test scores collected over 3 years from a sample of 520 children in grades 3-5. Results indicate a significant positive relation between RC teacher practices and child perceptions and outcomes over time. Further, children's perceptions partially mediated the relation between RC teacher practices and social competence. However, the models did not demonstrate that child perceptions mediated the relation between RC practices and achievement outcomes. Results are explained in terms of the contribution of teacher practices to children's perceptions and student performance.
NASA Astrophysics Data System (ADS)
Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon
2017-04-01
On August 24, 2016 an Mw 6.0 earthquake struck Central Apennines (Italy) resulting in 299 fatalities, 388 injuries and about 3000 homeless in Amatrice wider area. Normal faulting surface ruptures along the western slope of Mt Vettore along with provided focal mechanisms demonstrated a NW-SE striking and SE dipping causative normal fault. The dominant building types in the affected area are unreinforced masonry (URM) and reinforced concrete (RC) buildings. Based on our macroseismic survey in the affected area immediately after the earthquake, RC buildings suffered non-structural damage including horizontal cracking of infill and internal partition walls, detachment of infill walls from the surrounding RC frame and detachment of large plaster pieces from infill walls as well as structural damage comprising soft story failure, symmetrical buckling of rods, compression damage at midheight of columns and bursting of over-stressed columns resulting in partial or total collapse. Damage in RC buildings was due to poor quality of concrete, inadequacy of reinforcement, inappropriate foundation close to the edge of slopes leading to differential settlements, poor workmanship and the destructive effect of vertical ground motions. Damage in URM buildings ranged from cracks and detachment of large plaster pieces from load-bearing walls to destruction due to poor workmanship with randomly placed materials bound by low-strength mortars, the effect of the vertical ground motion, inadequate repair and/or strengthening after previous earthquakes as well as inadequate interventions, additions and extensions to older URM buildings. During field surveying, the authors had the opportunity to observe damage induced not only by the main shock but also by its largest aftershocks (Mw 4.5-5.3) during the first three days of the aftershock sequence (August 24-26). Bearing in mind that: (a) soil conditions in foundations of the affected villages were more or less similar, (b) building damage induced by the studied earthquakes indicated the predominant effect of the vertical ground motion on buildings based on already reported building damage induced by recent destructive events in the Mediterranean region, (c) the conventional dynamic parameters of buildings did not play a significant role in their seismic response against the vertical component, due to its impact type of loading, (d) structures and materials presented similar response to ground motions almost independent from type and existing quality, and carried memories from previous large shocks of this sequence, (e) the main shock and its largest aftershocks caused building damage including spatial homothetic motions that reached statistically significant levels, it is concluded that the main shock and its largest aftershocks had similar focal mechanism parameters (normal faulting), were shallow events and were near-field earthquakes with short duration but high amplitude and the vertical component of the earthquakes' ground motion has prevailed. The aforementioned approach based solely on macroseismic observations was applied in the case of the 1755 Great Lisbon earthquake in order to determine its mechanism and epicenter location. Thus, it is suggested that the aforementioned methodology can be applied either in past historic earthquakes or complementarily in cases when the available seismological data are insufficient.
Experimental research on the seismic behavior of CSPSWs connected to frame beams
NASA Astrophysics Data System (ADS)
Guo, Lanhui; Ma, Xinbo; Li, Ran; Zhang, Sumei
2011-03-01
The seismic performance of composite steel plate shear walls (CSPSWs) that consist of a steel plate shear wall (SPSW) with reinforced concrete (RC) panels attached to one or both sides by means of bolts or connectors is experimentally studied. The shear wall is connected to the frame beams but not to the columns. This arrangement restrains the possible out-of-plane buckling of the thin-walled steel plate, thus significantly increasing the bearing capacity and ductility of the overall wall, and prevents the premature overall or local buckling failure of the frame columns. From a practical viewpoint, these solutions can provide open space in a floor as this type of composite shear walls with a relatively small aspect ratio can be placed parallel along a bay. In this study, four CSPSWs and one SPSW were tested and the results showed that both CSPSWs and SPSW possessed good ductility. For SPSW alone, the buckling appeared and resulted in a decrease of bearing capacity and energy dissipation capacity. In addition, welding stiffeners at corners were shown to be an effective way to increase the energy dissipation capacity of CSPSWs.
NASA Astrophysics Data System (ADS)
Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.
2015-01-01
Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.
NASA Astrophysics Data System (ADS)
Yamaguchi, Keisuke; Ueda, Takao; Nanasawa, Akira
As a new rehabilitation technique for recovery both of loading ability and durability of concrete structures deteriorated by chloride attack, desalination (electrochemical chloride removal technique from concrete) using CFRP composite electrode bonding to concrete has been developed. In this study, basic application was tried using small RC specimens, and also application to the large-scale RC beams deteriorated by the chloride attack through the long-term exposure in the outdoors was investigated. As the result of bending test of treated specimens, the decrease of strengthening effect with the electrochemical treatment was observed in the case of small specimens using low absorption rate resin for bonding, on the other hand, in the case of large-scale RC beam using 20% absorption rate resin for bonding CFRP composite electrode, enough strengthening effect was obtained by the bending failure of RC beam with the fracture of CFRP board.
Using MOEA with Redistribution and Consensus Branches to Infer Phylogenies.
Min, Xiaoping; Zhang, Mouzhao; Yuan, Sisi; Ge, Shengxiang; Liu, Xiangrong; Zeng, Xiangxiang; Xia, Ningshao
2017-12-26
In recent years, to infer phylogenies, which are NP-hard problems, more and more research has focused on using metaheuristics. Maximum Parsimony and Maximum Likelihood are two effective ways to conduct inference. Based on these methods, which can also be considered as the optimal criteria for phylogenies, various kinds of multi-objective metaheuristics have been used to reconstruct phylogenies. However, combining these two time-consuming methods results in those multi-objective metaheuristics being slower than a single objective. Therefore, we propose a novel, multi-objective optimization algorithm, MOEA-RC, to accelerate the processes of rebuilding phylogenies using structural information of elites in current populations. We compare MOEA-RC with two representative multi-objective algorithms, MOEA/D and NAGA-II, and a non-consensus version of MOEA-RC on three real-world datasets. The result is, within a given number of iterations, MOEA-RC achieves better solutions than the other algorithms.
Functional and Evolutionary Characterization of a Gene Transfer Agent’s Multilocus “Genome”
Hynes, Alexander P.; Shakya, Migun; Mercer, Ryan G.; Grüll, Marc P.; Bown, Luke; Davidson, Fraser; Steffen, Ekaterina; Matchem, Heidi; Peach, Mandy E.; Berger, Tim; Grebe, Katherine; Zhaxybayeva, Olga; Lang, Andrew S.
2016-01-01
Gene transfer agents (GTAs) are phage-like particles that can package and transfer a random piece of the producing cell’s genome, but are unable to transfer all the genes required for their own production. As such, GTAs represent an evolutionary conundrum: are they selfish genetic elements propagating through an unknown mechanism, defective viruses, or viral structures “repurposed” by cells for gene exchange, as their name implies? In Rhodobacter capsulatus, production of the R. capsulatus GTA (RcGTA) particles is associated with a cluster of genes resembling a small prophage. Utilizing transcriptomic, genetic and biochemical approaches, we report that the RcGTA “genome” consists of at least 24 genes distributed across five distinct loci. We demonstrate that, of these additional loci, two are involved in cell recognition and binding and one in the production and maturation of RcGTA particles. The five RcGTA “genome” loci are widespread within Rhodobacterales, but not all loci have the same evolutionary histories. Specifically, two of the loci have been subject to frequent, probably virus-mediated, gene transfer events. We argue that it is unlikely that RcGTA is a selfish genetic element. Instead, our findings are compatible with the scenario that RcGTA is a virus-derived element maintained by the producing organism due to a selective advantage of within-population gene exchange. The modularity of the RcGTA “genome” is presumably a result of selection on the host organism to retain GTA functionality. PMID:27343288
The clinical anatomy of the insertion of the rotator cuff tendons.
Vosloo, M; Keough, N; De Beer, M A
2017-04-01
The rotator cuff (RC) insertions according to most anatomical texts are described as being separate from one another. However, clear fusion of the RC tendon fibres exists with prior studies showing this interdigitation forming a common, continuous insertion onto and around the lesser and greater tubercles (LT and GT) of the humerus. Current surgical repair methods (especially arthroscopic techniques) rarely mention or consider these connections during repair and suture anchor implantation. The general principles of RC surgery remain a controversial subject, due to various available techniques, surgeon experience and preference, and the contradicting success rates. This results from old-fashioned knowledge of the anatomy of the RC complex and its functional aspects. Therefore, the purpose of this project was to visualise and define the RC footprint and extension insertions with the aim of enhancing and improving knowledge of the basic anatomy in the hopes that this will be considered during orthopaedic repair. Twenty shoulders (16 cadaveric and 4 fresh) were used in the study. The fresh shoulders were received from the National Tissue Bank, and ethical clearance was obtained (239/2015). Reverse dissection was performed to better visualise the RC unit exposing the interdigitated rotator hood (extension insertions), as well as the complete RC unit (tendons + internal capsule) separated from the scapula and humerus. Once the insertions were exposed and documented, the RC muscle footprint (articular surface area) was measured and recorded, using AutoCAD 2016. No statistical significant difference between left and right (p = 0.424) was noted, but a significant difference between males and females (p = 0.000) was. Collectively, these findings indicate and strengthen evidence towards the notion that the RC muscles/tendons and the internal capsule are one complete and inseparable unit/complex. The fact that the RC unit is more complex in its structure and attachment places importance on the biomechanical stresses encountered after repair. Functions of one RC muscle are not necessarily isolated but instead can be influenced by surrounding muscles as well. In addition to providing greater understanding of the basic anatomy of the RC unit, these findings also provide clarity for surgeons with the goal of improving and enhancing surgical methods for better post-operative patient outcome.
NASA Technical Reports Server (NTRS)
Bhombal, B. D.; Wykes, D. H.; Hong, K. C.; Stenersen, A. A.
1982-01-01
The technology required to produce graphite-polyimide structural components with operational capability at 598 K (600 F) is considered. A series of polyimide adhesives was screened for mechanical and physical properties and processibility in fabricating large midplane bonded panels and honeycomb sandwich panels in an effort to fabricate a structural test component of the space shuttle aft body flap. From 41 formulations, LaRC-13, FM34B-18, and a modified LaRC-13 adhesive were selected for further evaluation. The LaRC-13 adhesive was rated as the best of the three adhesives in terms of availability, cost, processibility, properties, and ability to produce void fee large area (12" x 12") midplane bonds. Surface treatments and primers for the adhesives were evaluated and processes were developed for the fabrication of honeycomb sandwich panels of very good quality which was evidenced by rupture in the honeycomb core rather than in the facesheet bands on flatwise tensile strength testing. The fabrication of the adhesively bonded honeycomb sandwich cover panels, ribs, and leading edge covers of Celion graphite/LARC-160 polyimide laminates is described.
NASA Technical Reports Server (NTRS)
Amundsen, R. M.; Feldhaus, W. S.; Little, A. D.; Mitchum, M. V.
1995-01-01
Electronic integration of design and analysis processes was achieved and refined at Langley Research Center (LaRC) during the development of an optical bench for a laser-based aerospace experiment. Mechanical design has been integrated with thermal, structural and optical analyses. Electronic import of the model geometry eliminates the repetitive steps of geometry input to develop each analysis model, leading to faster and more accurate analyses. Guidelines for integrated model development are given. This integrated analysis process has been built around software that was already in use by designers and analysis at LaRC. The process as currently implemented used Pro/Engineer for design, Pro/Manufacturing for fabrication, PATRAN for solid modeling, NASTRAN for structural analysis, SINDA-85 and P/Thermal for thermal analysis, and Code V for optical analysis. Currently, the only analysis model to be built manually is the Code V model; all others can be imported for the Pro/E geometry. The translator from PATRAN results to Code V optical analysis (PATCOD) was developed and tested at LaRC. Directions for use of the translator or other models are given.
Design of SC walls and slabs for impulsive loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varma, Amit H.
2015-11-11
Reinforced concrete (RC) structures have historically been the preferred choice for blast resistant structures because of their mass and the ductility provided by steel reinforcement. Steel-plate composite (SC) walls are a viable alternative to RC for protecting the infrastructure against explosive threats. SC structures consist of two steel faceplates with a plain concrete core between them. The steel faceplates are anchored to the concrete using stud anchors and connected to each other using tie bars. SC structures provide mass from the concrete infill and ductility from the continuous external steel faceplates. This dissertation presents findings and recommendations from experimental andmore » analytical investigations of the performance of SC walls subjected to far-field blast loads.« less
Shrestha, Kushal; Jakubikova, Elena
2015-08-20
Light-harvesting antennas are protein-pigment complexes that play a crucial role in natural photosynthesis. The antenna complexes absorb light and transfer energy to photosynthetic reaction centers where charge separation occurs. This work focuses on computational studies of the electronic structure of the pigment networks of light-harvesting complex I (LH1), LH1 with the reaction center (RC-LH1), and light-harvesting complex II (LH2) found in purple bacteria. As the pigment networks of LH1, RC-LH1, and LH2 contain thousands of atoms, conventional density functional theory (DFT) and ab initio calculations of these systems are not computationally feasible. Therefore, we utilize DFT in conjunction with the energy-based fragmentation with molecular orbitals method and a semiempirical approach employing the extended Hückel model Hamiltonian to determine the electronic properties of these pigment assemblies. Our calculations provide a deeper understanding of the electronic structure of natural light-harvesting complexes, especially their pigment networks, which could assist in rational design of artificial photosynthetic devices.
NASA Astrophysics Data System (ADS)
Ting, Yuan-Sen; Hawkins, Keith; Rix, Hans-Walter
2018-05-01
Core helium-burning red clump (RC) stars are excellent standard candles in the Milky Way. These stars may have more precise distance estimates from spectrophotometry than from Gaia parallaxes beyond 3 kpc. However, RC stars have values of T eff and {log}g that are very similar to some red giant branch (RGB) stars. Especially for low-resolution spectroscopic studies where T eff, {log}g, and [Fe/H] can only be estimated with limited precision, separating RC stars from RGB through established methods can incur ∼20% contamination. Recently, Hawkins et al. demonstrated that the additional information in single-epoch spectra, such as the C/N ratio, can be exploited to cleanly differentiate RC and RGB stars. In this second paper of the series, we establish a data-driven mapping from spectral flux space to independently determined asteroseismic parameters, the frequency and the period spacing. From this, we identify 210,371 RC stars from the publicly available LAMOST DR3 and APOGEE DR14 data, with ∼9% of contamination. We provide an RC sample of 92249 stars with a contamination of only ∼3%, by restricting the combined analysis to LAMOST stars with S/Npix ≥ 75. This demonstrates that high-signal-to-noise ratio (S/N), low-resolution spectra covering a broad wavelength range can identify RC samples at least as pristine as their high-resolution counterparts. As coming and ongoing surveys such as TESS, DESI, and LAMOST will continue to improve the overlapping training spectroscopic-asteroseismic sample, the method presented in this study provides an efficient and straightforward way to derive a vast yet pristine sample of RC stars to reveal the three-dimensional (3D) structure of the Milky Way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Huang, Rong; Wei, Fenfen
2014-11-17
The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.
NASA Astrophysics Data System (ADS)
Mucciarelli, M.; Contri, P.; Monachesi, G.; Calvano, G.; Gallipoli, M.
- The seismic vulnerability of existing buildings is usually estimated according to procedures based on checklists of main structural features. The relationship with damage is then assessed using experience from past events. An approach used in seismology for the evaluation of site amplification, based on horizontal-to-vertical ratio of weak motion and microtremors, has been applied to the structural field. This methodology provides an alternative, promising tool towards a quick and reliable estimate of seismic vulnerability. The advantages are:• The measurements are quick, simple and stable. They are non-invasive and do not affect at all, even temporarily, the functions housed in the buildings studied.• The site effect and the soil structure interaction are explicitly accounted for in the vulnerability estimate, when they are excluded in the traditional approaches.• The relationship with damage is established using meaningful physical parameters related to the construction technology, instead of adimensional, normalised indexes. The procedure has been applied to several case histories of buildings damaged in the recent Umbria-Marche earthquake which occurred in Italy in 1997. The same model has been applied to different structures (brick/stone masonry and infilled r.c. frames), on different geological conditions and under very different seismic loads. Using this combined site/building approach, it was possible to explain very sharp variations in the damage pattern.
nRC: non-coding RNA Classifier based on structural features.
Fiannaca, Antonino; La Rosa, Massimo; La Paglia, Laura; Rizzo, Riccardo; Urso, Alfonso
2017-01-01
Non-coding RNA (ncRNA) are small non-coding sequences involved in gene expression regulation of many biological processes and diseases. The recent discovery of a large set of different ncRNAs with biologically relevant roles has opened the way to develop methods able to discriminate between the different ncRNA classes. Moreover, the lack of knowledge about the complete mechanisms in regulative processes, together with the development of high-throughput technologies, has required the help of bioinformatics tools in addressing biologists and clinicians with a deeper comprehension of the functional roles of ncRNAs. In this work, we introduce a new ncRNA classification tool, nRC (non-coding RNA Classifier). Our approach is based on features extraction from the ncRNA secondary structure together with a supervised classification algorithm implementing a deep learning architecture based on convolutional neural networks. We tested our approach for the classification of 13 different ncRNA classes. We obtained classification scores, using the most common statistical measures. In particular, we reach an accuracy and sensitivity score of about 74%. The proposed method outperforms other similar classification methods based on secondary structure features and machine learning algorithms, including the RNAcon tool that, to date, is the reference classifier. nRC tool is freely available as a docker image at https://hub.docker.com/r/tblab/nrc/. The source code of nRC tool is also available at https://github.com/IcarPA-TBlab/nrc.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)
2002-01-01
A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.
NASA Technical Reports Server (NTRS)
Pride, J. D.
1986-01-01
The testing conducted on LaRC-developed hardware for the controlled impact demonstration transport aircraft is discussed. To properly develop flight qualified crash systems, two environments were considered: the aircraft flight environment with the focus on vibration and temperature effects, and the crash environment with the long pulse shock effects. Also with the large quantity of fuel in the wing tanks the possibility of fire was considered to be a threat to data retrieval and thus fire tests were included in the development test process. The aircraft test successfully demonstrated the performance of the LaRC developed heat shields. Good telemetered data (S-band) was received during the impact and slide-out phase, and even after the aircraft came to rest. The two onboard DAS tape recorders were protected from the intense fire and high quality tape data was recovered. The complete photographic system performed as planned throughout the 40.0 sec of film supply. The four photo power distribution pallets remained in good condition and all ten onboard 16 mm high speed (400 frames/sec) cameras produced good film data.
Mizuno, Kouhei; Kihara, Takahiro; Tsuge, Takeharu; Lundgren, Benjamin R; Sarwar, Zaara; Pinto, Atahualpa; Nomura, Christopher T
2017-01-01
Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.
NASA Technical Reports Server (NTRS)
Evans, A. B.; Lee, L. L.
1985-01-01
This User Guide provides a general introduction to the structure, use, and handling of magnetic tapes at Langley Research Center (LaRC). The topics covered are tape terminology, physical characteristics, error prevention and detection, and creating, using, and maintaining tapes. Supplementary documentation is referenced where it might be helpful. The documentation is included for the tape utility programs, BLOCK, UNBLOCK, and TAPEDMP, which are available at the Central Scientific Computing Complex at LaRC.
Reaction of (carbonylimido)sulfur(IV) derivatives with TAS-fluoride, (Me2N)3S+Me3SiF2-.
Lork, E; Viets, D; Mews, R; Oberhammer, H
2000-10-16
In the reaction of TAS-fluoride, (Me2N)3S+Me3SiF2-, with carbonyl sulfur difluoride imides RC(O)NSF2 (R = F, CF3), C-N bond, cleavage is observed, and TAS+RC(O)F2- and NSF are the final products. From TASF and RC(O)NS(CF3)F, the salts TAS+RC(O)NS(CF3)F2- (R = F (14), CF3 (15)), with psi-pentacoordinate sulfur centers in the anions, are formed. An X-ray structure investigation of 14 shows that the fluorine atoms occupy axial positions and CF3, NC(O)F, and the sulfur lone pair occupy equatorial positions of the trigonal bipyramid. The -C(O)F group lies in the equatorial plane with the CO bond synperiplanar to the SN bond. According to B3LYP calculations, this structure corresponds to a global minimum and the expected axial orientation of the -C(O)F group represents a transition state. Calculations for the unstable FC(O)NSF3- anion show a different geometry. The -C(O)F group deviates 40 degrees from axial orientation, and the equatorially bonded fluorine is, in contrast to the -CF3 group in 14, syn positioned.
Jackson, Philip J; Hitchcock, Andrew; Swainsbury, David J K; Qian, Pu; Martin, Elizabeth C; Farmer, David A; Dickman, Mark J; Canniffe, Daniel P; Hunter, C Neil
2018-02-01
The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure of the LH1 ring, possibly to allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc 1 complex in analogous fashion to the well-studied PufX protein from Rhodobacter sphaeroides. The identity and function of helix W have remained unknown for over 13years; here we use a combination of biochemistry, mass spectrometry, molecular genetics and electron microscopy to identify this protein as RPA4402 in Rps. palustris CGA009. Protein W shares key conserved sequence features with PufX homologs, and although a deletion mutant was able to grow under photosynthetic conditions with no discernible phenotype, we show that a tagged version of protein W pulls down the RC-LH1 complex. Protein W is not encoded in the photosynthesis gene cluster and our data indicate that only approximately 10% of wild-type Rps. palustris core complexes contain this non-essential subunit; functional and evolutionary consequences of this observation are discussed. The ability to purify uniform RC-LH1 and RC-LH1-protein W preparations will also be beneficial for future structural studies of these bacterial core complexes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Abry, Tashia; Rimm-Kaufman, Sara E; Larsen, Ross A; Brewer, Alexis J
2013-08-01
This study examined the direct and indirect effects between training in the Responsive Classroom® (RC) approach, teachers' uptake of RC practices, and teacher-student interaction quality, using a structural equation modeling framework. A total of 24 schools were randomly assigned to experimental or control conditions. Third- and fourth-grade teachers in treatment schools (n=132) received training in the RC approach, whereas teachers in control schools (n=107) continued "business as usual." Observers rated teachers' fidelity of implementation (FOI) of RC practices 5 times throughout the year using the Classroom Practices Observation Measure. In addition, teachers completed self-report measures of FOI, the Classroom Practices Teacher Survey and Classroom Practices Frequency Survey, at the end of the school year. Teacher-student interactions were rated during classroom observations using the Classroom Assessment Scoring System. Controlling for teachers' grade level and teacher-student interaction quality at pretest, RC training was expected to predict posttest teacher-student interaction quality directly and indirectly through FOI. Results supported only a significant indirect effect, β=0.85, p=.002. Specifically, RC teachers had higher levels of FOI of RC practices, β=1.62, p<.001, R2=.69. In turn, FOI related to greater improvement in teacher-student interaction quality, β=0.52, p=.001, R2=.32. Discussion highlights factors contributing to variability in FOI and school administrators roles in supporting FOI. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Kluczynski, Melissa A; Isenburg, Maureen M; Marzo, John M; Bisson, Leslie J
2016-03-01
The timing of passive range of motion (ROM) after surgical repair of the rotator cuff (RC) has been shown to affect healing. However, it is unknown if early or delayed active ROM affects healing. To determine whether early versus delayed active ROM affects structural results of RC repair surgery. Systematic review and meta-analysis. A systematic review of articles published between January 2004 and April 2014 was conducted. Structural results were compared for early (<6 weeks after surgery) versus delayed (≥6 weeks after surgery) active ROM using chi-square and Fisher exact tests, as well as relative risks (RRs) and 95% CIs. The analyses were stratified by tear size and repair method. A total of 37 studies (2251 repairs) were included in the analysis, with 10 (649 repairs) in the early group and 27 (1602 repairs) in the delayed group. For tears ≤3 cm, the risk of a structural tendon defect was higher in the early versus delayed group for transosseous plus single-row suture anchor repairs (39.7% vs 24.3%; RR, 1.63 [95% CI, 1.28-2.08]). For tears >3 cm, the risk of a structural tendon defect was higher in the early versus delayed group for suture bridge repairs (48% vs 17.5%; RR, 2.74 [95% CI, 1.59-4.73]) and all repair methods combined (40.5% vs 26.7%; RR, 1.52 [95% CI, 1.17-1.97]). For tears >5 cm, the risk of structural tendon defect was higher in the early versus delayed group for suture bridge repairs (100% vs 16.7%; RR, 6.00 [95% CI, 1.69-21.26]). There were no statistically significant associations for tears measuring ≤1, 1-3, or 3-5 cm. Early active ROM was associated with increased risk of a structural defect for small and large RC tears, and thus might not be advisable after RC repair. © 2015 The Author(s).
The Dynamics of a Viscous Gas Ring around a Kerr Black Hole
NASA Astrophysics Data System (ADS)
Riffert, H.
2000-01-01
The dynamics of a rotationally symmetric viscous gas ring around a Kerr black hole is calculated in the thin-disk approximation. An evolution equation for the surface density Σ(t,r) is derived, which is the relativistic extension of a classical equation obtained by R. Lüst. A singular point appears at the radius of the last stable circular orbit r=rc. The nature of this point is investigated, and it turns out that the solution is always bounded at rc, and no boundary condition can be obtained at this radius. A unique solution of an initial value problem requires a matching condition at rc which follows from the flow structure between rc and the horizon. In the model presented here, the density in this domain is zero, and the resulting boundary condition leads to a vanishing shear stress at r=rc, which is the condition used in the standard stationary thin-disk model of Novikov & Thorne. Numerical solutions of the evolution equation are presented for two different angular momenta of the black hole. The time evolution of the resulting accretion rate depends strongly on this angular momentum.
Young, April M.; Halgin, Daniel S.; DiClemente, Ralph J.; Sterk, Claire E.; Havens, Jennifer R.
2014-01-01
Background An HIV vaccine could substantially impact the epidemic. However, risk compensation (RC), or post-vaccination increase in risk behavior, could present a major challenge. The methodology used in previous studies of risk compensation has been almost exclusively individual-level in focus, and has not explored how increased risk behavior could affect the connectivity of risk networks. This study examined the impact of anticipated HIV vaccine-related RC on the structure of high-risk drug users' sexual and injection risk network. Methods A sample of 433 rural drug users in the US provided data on their risk relationships (i.e., those involving recent unprotected sex and/or injection equipment sharing). Dyad-specific data were collected on likelihood of increasing/initiating risk behavior if they, their partner, or they and their partner received an HIV vaccine. Using these data and social network analysis, a "post-vaccination network" was constructed and compared to the current network on measures relevant to HIV transmission, including network size, cohesiveness (e.g., diameter, component structure, density), and centrality. Results Participants reported 488 risk relationships. Few reported an intention to decrease condom use or increase equipment sharing (4% and 1%, respectively). RC intent was reported in 30 existing risk relationships and vaccination was anticipated to elicit the formation of five new relationships. RC resulted in a 5% increase in risk network size (n = 142 to n = 149) and a significant increase in network density. The initiation of risk relationships resulted in the connection of otherwise disconnected network components, with the largest doubling in size from five to ten. Conclusions This study demonstrates a new methodological approach to studying RC and reveals that behavior change following HIV vaccination could potentially impact risk network connectivity. These data will be valuable in parameterizing future network models that can determine if network-level change precipitated by RC would appreciably impact the vaccine's population-level effectiveness. PMID:24992659
Influence of the bond-slip relationship on the flexural capacity of R.C. joints damaged by corrosion
NASA Astrophysics Data System (ADS)
Imperatore, Stefania
2016-06-01
In moderate and aggressive environmental condition, old reinforced concrete structures are often subjected to corrosive phenomena. Corrosion causes cracking, loss of diameter in reinforcement and variation of the bond behavior between steel and concrete. Then, in presence of cyclic actions like the seismic ones, old R.C. elements vary their ultimate drift, ductility, plastic rotation capacity and energy dissipation with the corrosion level. The problem is of current interest: the issue has been introduced in some paragraph of the Model Code 2010 and a committee is now drafting a new document on assessment strategies on existing concrete structures also damaged by corrosion. In this work, a first step on the analysis of the impact of the corrosion on the seismic behavior of R.C. elements is assessed: by mean FEM analyses, of a poor detailed column/foundation joint is analyzed in a parametric way in order to evaluate the influence of the bond-slip degradation by corrosion on the element flexural capacity.
The Wettability of LaRC Colorless Polyimide Resins on Casting Surfaces
NASA Technical Reports Server (NTRS)
Miner, Gilda A.; Stoakley, Diane M.; St.Clair, Anne K.; Gierow, Paul A.; Bates, Kevin
1997-01-01
Two colorless polyimides developed at NASA Langley Research Center, LaRC -CP1 and LaRC -CP2, are noted for being optically transparent, resistant to radiation, and soluble in the imide form. These materials may be used to make transparent, thin polymer films for building large space reflector/collector inflatable antennas, solar arrays, radiometers, etc. Structures such as these require large area, seamless films produced via spin casting or spray coating the soluble imide on a variety of substrates. The ability of the soluble imide to wet and spread over the mandrel or casting substrate is needed information for processing these structures with minimum waste and reprocessing, thereby, reducing the production costs. The wettability of a liquid is reported as the contact angle of the solid/liquid system. This fairly simple measurement is complicated by the porosity and the amount of contamination of the solid substrate. This work investigates the effect of inherent viscosity, concentration of polyimide solids, and solvent type on the wettability of various curing surfaces.
The Mysterious Bar of the Large Magellanic Cloud: What Is It?
NASA Astrophysics Data System (ADS)
Subramaniam, Annapurni; Subramanian, Smitha
2009-09-01
The bar of the Large Magellanic Cloud (LMC) is one of the prominent, but controversial, features regarding its location with respect to the disk of the LMC. In order to study the relative location of the bar with respect to the disk, we present the high-resolution map of the structure across the LMC. We used the reddening corrected mean magnitudes (I 0) of red clump (RC) stars from the OGLE III catalog to map the relative variation in distance (vertical structure) or variation in RC population across the LMC. The bar does not appear as an identifiable vertical feature in the map, as there is no difference in I 0 values between the bar and the disk regions. We conclude that the LMC bar is very much part of the disk (within 0.02 mag), located in the plane of the disk and not a separate component. We identify warps or variation in RC population with increase in radial distance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumino, Ayumi; Dewa, Takehisa; Takeuchi, Toshikazu
2011-07-11
The construction and structural analysis of a tethered planar lipid bilayer containing bacterial photosynthetic membrane proteins, light-harvesting complex 2 (LH2), and light-harvesting core complex (LH1-RC) is described and establishes this system as an experimental platform for their functional analysis. The planar lipid bilayer containing LH2 and/or LH1-RC complexes was successfully formed on an avidin-immobilized coverglass via an avidin-biotin linkage. Atomic force microscopy (AFM) showed that a smooth continuous membrane was formed there. Lateral diffusion of these membrane proteins, observed by a fluorescence recovery after photobleaching (FRAY), is discussed in terms of the membrane architecture. Energy transfer from LH2 to LH1-RCmore » within the tethered membrane architecture. Energy transfer from LH2 to LH1-RC within the tethered membrane was observed by steady-state fluorescence spectroscopy, indicating that the tethered membrane can mimic the natural situation.« less
2014-01-01
Background To address the growing problem of epilepsy among aging Veterans and younger Veterans who have experienced a traumatic brain injury (TBI), the Veterans Health Administration (VA) has implemented 16 Epilepsy Centers of Excellence (ECOE) to assure increased access to high quality of care for Veterans with epilepsy. Each ECOE consists of a network of regional hubs to which spoke facilities refer Veterans for subspecialty treatment. The ECOEs are expected to improve access to and quality of epilepsy care through patient care, consultation and education. This study aims to: evaluate the effectiveness of the ECOE structure by describing changes in the quality of and access to care for epilepsy before and after the ECOE initiative using QUality Indicators in Epilepsy Treatment (QUIET Indicators); describe associations between changes in the structure and processes of care and Relational Coordination (RC), a model of task-oriented communication that has been shown to play a role in implementation science; and determine if variations in care are related to levels of RC. Methods This four-year comparative case study uses a mixed-methods approach. We will use VA inpatient, outpatient, pharmacy, and chart abstraction data to identify changes in the quality of and access to epilepsy care in the VA between Fiscal Year 2008 and Fiscal Year 2014. Qualitative and survey methods will be used to identify changes in the structure and processes of epilepsy care and RC over the course of the study. We will then link data from the first two objectives to determine the extent to which quality of and access to epilepsy care is associated with RC using multivariable models. Discussion This innovative study has the potential to improve understanding of hub-and-spoke model effectiveness, VA epilepsy care, and models of epilepsy specialty care more globally. Moreover, it contributes to implementation science by advancing understanding of the role of RC in the context of a major transformation in the structure of care delivery in a national integrated healthcare system. PMID:24712733
Sugibayashi, Yuji; Hayashi, Satoko; Nakanishi, Waro
2016-08-18
The nature of halogen bonds of the Y-X-✶-π(C6 H6 ) type (X, Y=F, Cl, Br, and I) have been elucidated by using the quantum theory of atoms in molecules (QTAIM) dual-functional analysis (QTAIM-DFA), which we proposed recently. Asterisks (✶) emphasize the presence of bond-critical points (BCPs) in the interactions in question. Total electron energy densities, Hb (rc ), are plotted versus Hb (rc )-Vb (rc )/2 [=(ħ(2) /8m)∇(2) ρb (rc )] for the interactions in QTAIM-DFA, in which Vb (rc ) are potential energy densities at the BCPs. Data for perturbed structures around fully optimized structures were used for the plots, in addition to those of the fully optimized ones. The plots were analyzed by using the polar (R, θ) coordinate for the data of fully optimized structures with (θp , κp ) for those that contained the perturbed structures; θp corresponds to the tangent line of the plot and κp is the curvature. Whereas (R, θ) corresponds to the static nature, (θp , κp ) represents the dynamic nature of the interactions. All interactions in Y-X-✶-π(C6 H6 ) are classified by pure closed-shell interactions and characterized to have vdW nature, except for Y-I-✶-π(C6 H6 ) (Y=F, Cl, Br) and F-Br-✶-π(C6 H6 ), which have typical hydrogen-bond nature without covalency. I-I-✶-π(C6 H6 ) has a borderline nature between the two. Y-F-✶-π(C6 H6 ) (Y=Br, I) were optimized as bent forms, in which Y-✶-π interactions were detected. The Y-✶-π interactions in the bent forms are predicted to be substantially weaker than those in the linear F-Y-✶-π(C6 H6 ) forms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Test and Analysis of an Inflatable Parabolic Dish Antenna
NASA Technical Reports Server (NTRS)
Gaspar, james L.; Sreekantamurthy, Tham; Mann, Troy; Behun, Vaughn; Romanofsky, Robert; Lambert, Kevin; Pearson, James
2006-01-01
NASA is developing ultra-lightweight structures technology for large communication antennas for application to space missions. With these goals in mind, SRS Technologies has been funded by NASA Glenn Research Center (GRC) to undertake the development of a subscale ultra-thin membrane inflatable antenna for deep-space applications. One of the research goals is to develop approaches for prediction of the radio frequency and structural characteristics of inflatable and rigidizable membrane antenna structures. GRC has teamed with NASA Langley Research Center (LaRC) to evaluate inflatable and rigidizable antenna concepts for potential space missions. GRC has completed tests to evaluate RF performance, while LaRC completed structural tests and analysis to evaluate the static shape and structural dynamic responses of a laboratory model of a 0.3 meter antenna. This paper presents the details of the tests and analysis completed to evaluate the radio frequency and structural characteristics of the antenna.
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.
2009-01-01
Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.
Damage assessment in reinforced concrete using nonlinear vibration techniques
NASA Astrophysics Data System (ADS)
Van Den Abeele, K.; De Visscher, J.
2000-07-01
Reinforced concrete (RC) structures are subject to microcrack initiation and propagation at load levels far below the actual failure load. In this paper, nonlinear vibration techniques are applied to investigate stages of progressive damage in RC beams induced by static loading tests. At different levels of damage, a modal analysis is carried out, assuming the structure to behave linearly. At the same time, measurement of resonant frequencies and damping ratios as function of vibration amplitude are performed using a frequency domain technique as well as a time domain technique. We compare the results of the linear and nonlinear techniques, and value them against the visual damage evaluation.
NASA Astrophysics Data System (ADS)
Ksenafontov, Denis N.; Moiseeva, Natalia F.; Khristenko, Lyudmila V.; Karasev, Nikolai M.; Shishkov, Igor F.; Vilkov, Lev V.
2010-12-01
The geometric structure of piracetam was studied by quantum chemical calculations (DFT and ab initio), gas electron diffraction (GED), and FTIR spectroscopy. Two stable mirror symmetric isomers of piracetam were found. The conformation of pyrrolidine ring is an envelope in which the C4 atom deviates from the ring plane, the angle between the planes (C3 sbnd C4 sbnd C5) and (C2 sbnd C3 sbnd C5) is 154.1°. The direction of the deviation is the same as that of the side acetamide group. The piracetam molecule is stabilized in the gas phase by an intramolecular hydrogen bond between the N9H 2 group and the oxygen O6, bonded to C2. The principal structural parameters ( re, Å and ∠e, degrees; uncertainties are 3 σLS values) were found to be: r(С3 sbnd С4) = 1.533(1), r(C4 sbnd C5) = 1.540(1), r(N1 sbnd C5) = 1.456(1), r(C2 sbnd C3) = 1.520(1), r(N1 sbnd C7) = 1.452(1), r(C7 sbnd C8) = 1.537(1), r(N1 sbnd C2) = 1.365(2), r(C8 sbnd N9) = 1.360(2), r(C2 dbnd O6) = 1.229(1), r(C8 dbnd O10) = 1.221(1), ∠C2 sbnd N1 sbnd C5 = 113.4(6), ∠N1 sbnd C2 sbnd C3 = 106.9(6), ∠N1 sbnd C7 sbnd C8 = 111.9(6), ∠C7 sbnd C8 sbnd N9 = 112.5(6), ∠N1 sbnd C2 sbnd O6 = 123.0(4), ∠C3 sbnd N1 sbnd C7 = 120.4(4), ∠C7 sbnd C8 sbnd O10 = 120.2(4), ∠C5 sbnd N1 sbnd C2 sbnd O6 = 170(6), ∠C3 sbnd C2 sbnd N1 sbnd C7 = 178(6), ∠C2 sbnd N1 sbnd C7 sbnd C8 = 84.2, ∠N1 sbnd C7 sbnd C8 sbnd O10 = 111.9.
The NASA Lewis Research Center: An Economic Impact Study
NASA Technical Reports Server (NTRS)
Austrian, Ziona
1996-01-01
The NASA Lewis Research Center (LeRC), established in 1941, is one of ten NASA research centers in the country. It is situated on 350 acres of land in Cuyahoga County and occupies more than 140 buildings and over 500 specialized research and test facilities. Most of LeRC's facilities are located in the City of Cleveland; some are located within the boundaries of the cities of Fairview Park and Brookpark. LeRC is a lead center for NASA's research, technology, and development in the areas of aeropropulsion and selected space applications. It is a center of excellence for turbomachinery, microgravity fluid and combustion research, and commercial communication. The base research and technology disciplines which serve both aeronautics and space areas include materials and structures, instrumentation and controls, fluid physics, electronics, and computational fluid dynamics. This study investigates LeRC's economic impact on Northeast Ohio's economy. It was conducted by The Urban Center's Economic Development Program in Cleveland State University's Levin College of Urban Affairs. The study measures LeRC's direct impact on the local economy in terms of jobs, output, payroll, and taxes, as well as the indirect impact of these economic activities when they 'ripple' throughout the economy. To fully explain LeRC's overall impact on the region, its contributions in the areas of technology transfer and education are also examined. The study uses a highly credible and widely accepted research methodology. First, regional economic multipliers based on input-output models were used to estimate the effect of LERC spending on the Northeast Ohio economy. Second, the economic models were complemented by interviews with industrial, civic, and university leaders to qualitatively assess LeRC's impact in the areas of technology transfer and education.
Woronowicz, Kamil; Sha, Daniel; Frese, Raoul N; Sturgis, James N; Nanda, Vikas; Niederman, Robert A
2011-08-01
Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.
NASA Astrophysics Data System (ADS)
Hawkins, Keith; Leistedt, Boris; Bovy, Jo; Hogg, David W.
2017-10-01
Distances to individual stars in our own Galaxy are critical in order to piece together the nature of its velocity and spatial structure. Core helium burning red clump (RC) stars have similar luminosities, are abundant throughout the Galaxy and thus constitute good standard candles. We build a hierarchical probabilistic model to quantify the quality of RC stars as standard candles using parallax measurements from the first Gaia data release. A unique aspect of our methodology is to fully account for (and marginalize over) parallax, photometry and dust correction uncertainties, which lead to more robust results than standard approaches. We determine the absolute magnitude and intrinsic dispersion of the RC in 2MASS bands J, H, Ks, Gaia G band and WISE bands W1, W2, W3 and W4. We find that the absolute magnitude of the RC is -1.61 ± 0.01 (in Ks), +0.44 ± 0.01 (in G), -0.93 ± 0.01 (in J), -1.46 ± 0.01 (in H), -1.68 ± 0.02 (in W1), -1.69 ± 0.02 (in W2), -1.67 ± 0.02 (in W3) and -1.76 ± 0.01 mag (in W4). The mean intrinsic dispersion is ˜0.17 ± 0.03 mag across all bands (yielding a typical distance precision of ˜8 per cent). Thus RC stars are reliable and precise standard candles. In addition, we have also re-calibrated the zero-point of the absolute magnitude of the RC in each band, which provides a benchmark for future studies to estimate distances to RC stars. Finally, the parallax error shrinkage in the hierarchical model outlined in this work can be used to obtain more precise parallaxes than Gaia for the most distant RC stars across the Galaxy.
NASA Technical Reports Server (NTRS)
Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.
2010-01-01
We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.
Electronic structure and intersubband magnetoabsorption spectra of CdSe/CdS core-shell nanowires
NASA Astrophysics Data System (ADS)
Xiong, Wen
2016-10-01
The electronic structures of CdSe/CdS core-shell nanowires are calculated based on the effective-mass theory, and it is found that the hole states in CdSe/CdS core-shell nanowires are strongly mixed, which are very different from the hole states in CdSe or CdS nanowires. In addition, we find the three highest hole states at the Γ point are almost localized in the CdSe core and the energies of the hole states in CdSe/CdS core-shell nanowires can be enhanced greatly when the core radius Rc increases and the total radius R is fixed. The degenerate hole states are split by the magnetic field, and the split energies will increase when |Jh | increases from 1/2 to 7/2, while they are almost not influenced by the change of the core radius Rc. The absorption spectra of CdSe/CdS core-shell nanowires at the Γ point are also studied in the magnetic field when the temperature T is considered, and we find there are only two peaks will arise if the core radius Rc and the temperature T increase. The intensity of each optical absorption can be considerably enhanced by increasing the core radius Rc when the temperature T is fixed, it is due to the increase of their optical transition matrix element. Meanwhile, the intensity of each optical absorption can be decreased when the temperature T increases and the core radius Rc is fixed, and this is because the Fermi-Dirac distribution function of the corresponding hole states will increase as the increase of the temperature T.
Han, Yu; Tang, Aoying; Wan, Huihua; Zhang, Tengxun; Cheng, Tangren; Wang, Jia; Yang, Weiru; Pan, Huitang; Zhang, Qixiang
2018-01-01
Rosa chinensis, which is a famous traditional flower in China, is a major ornamental plant worldwide. Long-term cultivation and breeding have resulted in considerable changes in the number of rose petals, while most wild Rosaceae plants have only one whorl consisting of five petals. The petals of double flowers reportedly originate from stamens, but the underlying molecular mechanism has not been fully characterized. In this study, we observed that the number of petals of R. chinensis ‘Old Blush’ flowers increased and decreased in response to low- and high-temperature treatments, respectively, similar to previous reports. We characterized these variations in further detail and found that the number of stamens exhibited the opposite trend. We cloned an APETALA2 homolog, RcAP2. A detailed analysis of gene structure and promoter cis-acting elements as well as RcAP2 temporospatial expression patterns and responses to temperature changes suggested that RcAP2 expression may be related to the number of petals from stamen origin. The overexpression of RcAP2 in Arabidopsis thaliana transgenic plants may induce the transformation of stamens to petals, thereby increasing the number of petals. Moreover, silencing RcAP2 in ‘Old Blush’ plants decreased the number of petals. Our results may be useful for clarifying the temperature-responsive mechanism involved in petaloid stamen production, which may be relevant for the breeding of new rose varieties with enhanced flower traits. PMID:29706982
Evaluation of seismic performance of reinforced concrete (RC) buildings under near-field earthquakes
NASA Astrophysics Data System (ADS)
Moniri, Hassan
2017-03-01
Near-field ground motions are significantly severely affected on seismic response of structure compared with far-field ground motions, and the reason is that the near-source forward directivity ground motions contain pulse-long periods. Therefore, the cumulative effects of far-fault records are minor. The damage and collapse of engineering structures observed in the last decades' earthquakes show the potential of damage in existing structures under near-field ground motions. One important subject studied by earthquake engineers as part of a performance-based approach is the determination of demand and collapse capacity under near-field earthquake. Different methods for evaluating seismic structural performance have been suggested along with and as part of the development of performance-based earthquake engineering. This study investigated the results of illustrious characteristics of near-fault ground motions on the seismic response of reinforced concrete (RC) structures, by the use of Incremental Nonlinear Dynamic Analysis (IDA) method. Due to the fact that various ground motions result in different intensity-versus-response plots, this analysis is done again under various ground motions in order to achieve significant statistical averages. The OpenSees software was used to conduct nonlinear structural evaluations. Numerical modelling showed that near-source outcomes cause most of the seismic energy from the rupture to arrive in a single coherent long-period pulse of motion and permanent ground displacements. Finally, a vulnerability of RC building can be evaluated against pulse-like near-fault ground motions effects.
Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui
2016-01-01
WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.
Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading
Shukri, Ahmad Azim; Visintin, Phillip; Oehlers, Deric J.; Jumaat, Mohd Zamin
2016-01-01
Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed. PMID:28773430
Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading.
Shukri, Ahmad Azim; Visintin, Phillip; Oehlers, Deric J; Jumaat, Mohd Zamin
2016-04-22
Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed.
NASA Astrophysics Data System (ADS)
Wu, Sheng-xing; Liu, Guan-guo; Bian, Han-bing; Lv, Wei-bo; Jiang, Jian-hua
2016-04-01
An experimental research was conducted to determine the corrosion and bearing capacity of a reinforced concrete (RC) slab at different ages in a marine environment. Results show that the development of corrosion-induced cracks on a slab in a marine environment can be divided into three stages according to crack morphology at the bottom of the slab. In the first stage, cracks appear. In the second stage, cracks develop from the edges to the middle of the slab. In the third stage, longitudinal and transverse corrosion-induced cracks coexist. The corrosion ratio of reinforcements nonlinearly increases with the age, and the relationship between the corrosion ratio of the reinforcements and the corrosion-induced crack width of the concrete is established. The flexural capacity of the corroded RC slab nonlinearly decreases with the age, and the model for the bearing capacity factor of the corroded RC slab is established. The mid-span deflection of the corroded RC slab that corresponds to the yield of the reinforcements linearly increases with the increase in corrosion ratio. Finally, the mechanisms of corrosion morphology and the degradation of the mechanical properties of an RC slab in a marine environment are discussed on the basis of the basic theories of steel corrosion in concrete and concrete structure design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkabbani, Ossama; Chang, Chonghwan; Tiede, D.
Photosynthetic reaction centers (RCs) from the photosynthetic bacteria Rhodobacter sphaeroides and Rhodopseudomonas viridis are protein complexes closely related in both structure and function. The structure of the Rps. viridis RC was used to determine the structure of the RC from Rb. sphaeroides. Small but meaningful differences between the positions of the helices and the cofactors in the two complexes were identified. The distances between helices A{sub L} adn A{sub M}, between B{sub L} and B{sub M}, and between bacteriopheophytins BP{sub L} and BP{sub M} are significantly shorter in Rps. viridis than they are in Rb. sphaeroides RCs. There are amore » number of differences in the amino acid residues that surround the cofactors; some of these residues form hydrogen bonds with the cofactors. Differences in chemical properties of the two RCs.« less
A 500-600 MHz GaN power amplifier with RC-LC stability network
NASA Astrophysics Data System (ADS)
Ma, Xinyu; Duan, Baoxing; Yang, Yintang
2017-08-01
A 500-600 MHz high-efficiency, high-power GaN power amplifier is designed and realized on the basis of the push-pull structure. The RC-LC stability network is proposed and applied to the power amplifier circuit for the first time. The RC-LC stability network can significantly reduce the high gain out the band, which eliminates the instability of the power amplifier circuit. The developed power amplifier exhibits 58.5 dBm (700 W) output power with a 17 dB gain and 85% PAE at 500-600 MHz, 300 μs, 20% duty cycle. It has the highest PAE in P-band among the products at home and abroad. Project supported by the National Key Basic Research Program of China (No. 2014CB339901).
NASA Lewis Research Center Workshop on Forced Response in Turbomachinery
NASA Technical Reports Server (NTRS)
Stefko, George L. (Compiler); Murthy, Durbha V. (Compiler); Morel, Michael (Compiler); Hoyniak, Dan (Compiler); Gauntner, Jim W. (Compiler)
1994-01-01
A summary of the NASA Lewis Research Center (LeRC) Workshop on Forced Response in Turbomachinery in August, 1993 is presented. It was sponsored by the following NASA organizations: Structures, Space Propulsion Technology, and Propulsion Systems Divisions of NASA LeRC and the Aeronautics and Advanced Concepts & Technology Offices of NASA Headquarters. In addition, the workshop was held in conjunction with the GUIde (Government/Industry/Universities) Consortium on Forced Response. The workshop was specifically designed to receive suggestions and comments from industry on current research at NASA LeRC in the area of forced vibratory response of turbomachinery blades which includes both computational and experimental approaches. There were eight presentations and a code demonstration. Major areas of research included aeroelastic response, steady and unsteady fluid dynamics, mistuning, and corresponding experimental work.
NASA Astrophysics Data System (ADS)
Siswantyo, Sepha; Susanti, Bety Hayat
2016-02-01
Preneel-Govaerts-Vandewalle (PGV) schemes consist of 64 possible single-block-length schemes that can be used to build a hash function based on block ciphers. For those 64 schemes, Preneel claimed that 4 schemes are secure. In this paper, we apply length extension attack on those 4 secure PGV schemes which use RC5 algorithm in its basic construction to test their collision resistance property. The attack result shows that the collision occurred on those 4 secure PGV schemes. Based on the analysis, we indicate that Feistel structure and data dependent rotation operation in RC5 algorithm, XOR operations on the scheme, along with selection of additional message block value also give impact on the collision to occur.
NASA Astrophysics Data System (ADS)
Chen, Genda; Mu, Huimin; Pommerenke, David; Drewniak, James L.
2003-08-01
This study was aimed at developing and validating a new type of coaxial cable sensors that can be used to detect cracks or measure strains in reinforced concrete (RC) structures. The new sensors were designed based on the change in outer conductor configuration under strain effects in contrast to the geometry-based design in conventional coaxial cable sensors. Both numerical simulations and calibration tests with strain gauges of a specific design of the proposed cables were conducted to study the cables' sensitivity. Four designs of the proposed type of sensors were then respectively mounted near the surface of six 3-foot-long RC beams. They were tested in bending to further validate the cables' sensitivity in concrete members. The calibration test results generally agree with the numerical simulations. They showed that the proposed sensors are over 10~50 times more sensitive than conventional cable sensors. The test results of the beams not only validate the sensitivity of the new sensors but also indicate a good correlation with the measured crack width.
Anosova, Irina; Melnik, Svitlana; Tripsianes, Konstantinos; Kateb, Fatiha; Grummt, Ingrid; Sattler, Michael
2015-05-26
The chromatin remodeling complex NoRC, comprising the subunits SNF2h and TIP5/BAZ2A, mediates heterochromatin formation at major clusters of repetitive elements, including rRNA genes, centromeres and telomeres. Association with chromatin requires the interaction of the TAM (TIP5/ARBP/MBD) domain of TIP5 with noncoding RNA, which targets NoRC to specific genomic loci. Here, we show that the NMR structure of the TAM domain of TIP5 resembles the fold of the MBD domain, found in methyl-CpG binding proteins. However, the TAM domain exhibits an extended MBD fold with unique C-terminal extensions that constitute a novel surface for RNA binding. Mutation of critical amino acids within this surface abolishes RNA binding in vitro and in vivo. Our results explain the distinct binding specificities of TAM and MBD domains to RNA and methylated DNA, respectively, and reveal structural features for the interaction of NoRC with non-coding RNA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Conformational dependence of a protein kinase phosphate transfer reaction.
Henkelman, Graeme; LaBute, Montiago X; Tung, Chang-Shung; Fenimore, P W; McMahon, Benjamin H
2005-10-25
Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase are calculated by plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In TC, we calculate that the reactants and products are nearly isoenergetic with a 20-kJ/mol barrier, whereas phosphate transfer is unfavorable by 120 kJ/mol in the RC, with an even higher barrier. With the protein in TC, the motions involved in reaction are small, with only P(gamma) and the catalytic proton moving >0.5 A. Examination of the structures reveals that in the RC the active site cleft is not completely closed and there is insufficient space for the phosphorylated serine residue in the product state. Together, these observations imply that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by changes of a few tenths of an angstrom in the catalytic site.
Effect of strong-column weak-beam design provision on the seismic fragility of RC frame buildings
NASA Astrophysics Data System (ADS)
Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.
2018-04-01
Incremental dynamic analyses are conducted for a suite of low- and mid-rise reinforced-concrete special moment-resisting frame buildings. Buildings non-conforming and conforming to the strong-column weak-beam (SCWB) design criterion are considered. These buildings are designed for the two most severe seismic zones in India (i.e., zone IV and zone V) following the provisions of Indian Standards. It is observed that buildings non-conforming to the SCWB design criterion lead to an undesirable column failure collapse mechanism. Although yielding of columns cannot be avoided, even for buildings conforming to a SCWB ratio of 1.4, the observed collapse mechanism changes to a beam failure mechanism. This change in collapse mechanism leads to a significant increase in the building's global ductility capacity, and thereby in collapse capacity. The fragility analysis study of the considered buildings suggests that considering the SCWB design criterion leads to a significant reduction in collapse probability, particularly in the case of mid-rise buildings.
Thermodynamic properties of pressurized PH3 superconductor
NASA Astrophysics Data System (ADS)
Koka, S.; Rao, G. Venugopal
2018-05-01
The paper presents the superconducting thermodynamic functions determined for pressurized phosphorus trihydride (PH3). In particular, free energy difference ΔF, thermodynamic critical field Hc, specific heat etc. have been calculated using analytical expressions. The calculations were performed in the frame work of the strong-coupling formalism. The obtained dimensionless parameters: RΔ ≡ 2Δ(0)/kBTc, RC ≡ ΔC(Tc)/CN(Tc) and RH≡TcCN(Tc)/Hc2(0) are 4.05, 1.96 and 0.156 respectively, which significantly differ from the values arising from the BCS theory of superconductivity. The thermodynamic properties strongly depend on the depairing electron correlations and retardation effects.
Predicting the seismic performance of typical R/C healthcare facilities: emphasis on hospitals
NASA Astrophysics Data System (ADS)
Bilgin, Huseyin; Frangu, Idlir
2017-09-01
Reinforced concrete (RC) type of buildings constitutes an important part of the current building stock in earthquake prone countries such as Albania. Seismic response of structures during a severe earthquake plays a vital role in the extent of structural damage and resulting injuries and losses. In this context, this study evaluates the expected performance of a five-story RC healthcare facility, representative of common practice in Albania, designed according to older codes. The design was based on the code requirements used in this region during the mid-1980s. Non-linear static and dynamic time history analyses were conducted on the structural model using the Zeus NL computer program. The dynamic time history analysis was conducted with a set of ground motions from real earthquakes. The building responses were estimated in global levels. FEMA 356 criteria were used to predict the seismic performance of the building. The structural response measures such as capacity curve and inter-story drift under the set of ground motions and pushover analyses results were compared and detailed seismic performance assessment was done. The main aim of this study is considering the application and methodology for the earthquake performance assessment of existing buildings. The seismic performance of the structural model varied significantly under different ground motions. Results indicate that case study building exhibit inadequate seismic performance under different seismic excitations. In addition, reasons for the poor performance of the building is discussed.
Effect of Response Reduction Factor on Peak Floor Acceleration Demand in Mid-Rise RC Buildings
NASA Astrophysics Data System (ADS)
Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.
2017-06-01
Estimation of Peak Floor Acceleration (PFA) demand along the height of a building is crucial for the seismic safety of nonstructural components. The effect of the level of inelasticity, controlled by the response reduction factor (strength ratio), is studied using incremental dynamic analysis. A total of 1120 nonlinear dynamic analyses, using a suite of 30 recorded ground motion time histories, are performed on mid-rise reinforced-concrete (RC) moment-resisting frame buildings covering a wide range in terms of their periods of vibration. The obtained PFA demands are compared with some of the major national seismic design and retrofit codes (IS 1893 draft version, ASCE 41, EN 1998, and NZS 1170.4). It is observed that the PFA demand at the building's roof level decreases with increasing period of vibration as well as with strength ratio. However, current seismic building codes do not account for these effects thereby producing very conservative estimates of PFA demands. Based on the identified parameters affecting the PFA demand, a model to obtain the PFA distribution along the height of a building is proposed. The proposed model is validated with spectrum-compatible time history analyses of the considered buildings with different strength ratios.
Combined tension and bending testing of tapered composite laminates
NASA Astrophysics Data System (ADS)
O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles
1994-11-01
A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.
Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel
2015-01-01
Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904
Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G; Alver, Ninel
2015-08-05
Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.
Computer codes developed and under development at Lewis
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1992-01-01
The objective of this summary is to provide a brief description of: (1) codes developed or under development at LeRC; and (2) the development status of IPACS with some typical early results. The computer codes that have been developed and/or are under development at LeRC are listed in the accompanying charts. This list includes: (1) the code acronym; (2) select physics descriptors; (3) current enhancements; and (4) present (9/91) code status with respect to its availability and documentation. The computer codes list is grouped by related functions such as: (1) composite mechanics; (2) composite structures; (3) integrated and 3-D analysis; (4) structural tailoring; and (5) probabilistic structural analysis. These codes provide a broad computational simulation infrastructure (technology base-readiness) for assessing the structural integrity/durability/reliability of propulsion systems. These codes serve two other very important functions: they provide an effective means of technology transfer; and they constitute a depository of corporate memory.
Identification and expression profiles of the WRKY transcription factor family in Ricinus communis.
Li, Hui-Liang; Zhang, Liang-Bo; Guo, Dong; Li, Chang-Zhu; Peng, Shi-Qing
2012-07-25
In plants, WRKY proteins constitute a large family of transcription factors. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. A large number of WRKY transcription factors have been reported from Arabidopsis, rice, and other higher plants. The recent publication of the draft genome sequence of castor bean (Ricinus communis) has allowed a genome-wide search for R. communis WRKY (RcWRKY) transcription factors and the comparison of these positively identified proteins with their homologs in model plants. A total of 47 WRKY genes were identified in the castor bean genome. According to the structural features of the WRKY domain, the RcWRKY are classified into seven main phylogenetic groups. Furthermore, putative orthologs of RcWRKY proteins in Arabidopsis and rice could now be assigned. An analysis of expression profiles of RcWRKY genes indicates that 47 WRKY genes display differential expressions either in their transcript abundance or expression patterns under normal growth conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
Strengthening Performance of PALF-Epoxy Composite Plate on Reinforced Concrete Beams
NASA Astrophysics Data System (ADS)
Chin, Siew C.; Tong, Foo S.; Doh, Shu I.; Gimbun, Jolius; Ong, Huey R.; Serigar, Januar P.
2018-03-01
This paper presents the effective strengthening potential of pineapple leaves fiber (PALF)-epoxy composite plate on reinforced concrete (RC) beam. At first the PALF is treated with alkali (NaOH) and its morphology is observed via scanning electron microscope (SEM). The composite plates made of PALF and epoxy with fiber loading ranging from 0.1 to 0.4 v/v was tested for its flexural behaviour. The composite was then used for external RC beam strengthening. The structural properties of RC beams were evaluated and all the beams were tested under four-point bending. It was found that the flexural strength increased as the fiber volume ratio increases. The maximum flexural strength (301.94 MPa) was obtained at the fiber volume ratio of 40%. The beam strengthened with PALF-epoxy composite plate has a 7% higher beam capacity compared to the control beam. Cracks formed at the edge of the plate of PALF-strengthened beams resulted in diagonal cracking. Result from this work shows that the PALF-epoxy composite plate has the potential to be used as external strengthening material for RC beam.
Switching control of an R/C hovercraft: stabilization and smooth switching.
Tanaka, K; Iwasaki, M; Wang, H O
2001-01-01
This paper presents stable switching control of an radio-controlled (R/C) hovercraft that is a nonholonomic (nonlinear) system. To exactly represent its nonlinear dynamics, more importantly, to maintain controllability of the system, we newly propose a switching fuzzy model that has locally Takagi-Sugeno (T-S) fuzzy models and switches them according to states, external variables, and/or time. A switching fuzzy controller is constructed by mirroring the rule structure of the switching fuzzy model of an R/C hovercraft. We derive linear matrix inequality (LMI) conditions for ensuring the stability of the closed-loop system consisting of a switching fuzzy model and controller. Furthermore, to guarantee smooth switching of control input at switching boundaries, we also derive a smooth switching condition represented in terms of LMIs. A stable switching fuzzy controller satisfying the smooth switching condition is designed by simultaneously solving both of the LMIs. The simulation and experimental results for the trajectory control of an R/C hovercraft show the validity of the switching fuzzy model and controller design, particularly, the smooth switching condition.
NASA Astrophysics Data System (ADS)
Çakır, D.; Gülseren, O.; Mete, E.; Ellialtıoǧlu, Ş.
2009-07-01
Using the first-principles plane-wave pseudopotential method within density functional theory, we systematically investigated the interaction of perylenediimide (PDI)-based dye compounds (BrPDI, BrGly, and BrAsp) with both unreconstructed (UR) and reconstructed (RC) anatase TiO2(001) surfaces. All dye molecules form strong chemical bonds with surface in the most favorable adsorption structures. In UR-BrGly, RC-BrGly, and RC-BrAsp cases, we have observed that highest occupied molecular orbital and lowest unoccupied molecular orbital levels of molecules appear within band gap and conduction-band region, respectively. Moreover, we have obtained a gap narrowing upon adsorption of BrPDI on the RC surface. Because of the reduction in effective band gap of surface-dye system and possibly achieving the visible-light activity, these results are valuable for photovoltaic and photocatalytic applications. We have also considered the effects of hydration of surface to the binding of BrPDI. It has been found that the binding energy drops significantly for the completely hydrated surfaces.
Barz, W P; Verméglio, A; Francia, F; Venturoli, G; Melandri, B A; Oesterhelt, D
1995-11-21
The PufX membrane protein is essential for photosynthetic growth of Rhodobacter sphaeroides because it is required for multiple-turnover electron transfer under anaerobic conditions [see accompanying article; Barz, W. P., Francia, F., Venturoli, G., Melandri, B. A., Verméglio, A., & Oesterhelt, D. (1995) Biochemistry 34, 15235-15247]. In order to understand the molecular role of PufX, light-induced absorption spectroscopy was performed using a pufX- mutant, a pufX+ strain, and two suppressor mutants. We show that the reaction center (RC) requires PufX for its functionality under different redox conditions than the cytochrome bc1 complex: When the kinetics of flash-induced reduction of cytochrome b561 were monitored in chromatophores, we observed a requirement of PufX for turnover of the cytochrome bc1 complex only at high redox potential (Eh > 140 mV), suggesting a function of PufX in lateral ubiquinol transfer from the RC. In contrast, PufX is required for multiple turnover of the RC only under reducing conditions: When the Q pool was partially oxidized in vivo using oxygen or electron acceptors like dimethyl sulfoxide or trimethylamine N-oxide, the deletion of PufX had no effect on light-driven electron flow through the RC. Flash train experiments under anaerobic in vivo conditions revealed that RC photochemistry does not depend on PufX for the first two flash excitations. Following the third and subsequent flashes, however, efficient charge separation requires PufX, indicating an important role of PufX for fast Q/QH2 exchange at the QB site of the RC. We show that the Q/QH2 exchange rate is reduced approximately 500-fold by the deletion of PufX when the Q pool is nearly completely reduced, demonstrating an essential role of PufX for the access of ubiquinone to the QB site. The fast ubiquinone/ubiquinol exchange is partially restored by suppressor mutations altering the macromolecular antenna structure. These results suggest an indirect role of PufX in structurally organizing a functional photosynthetic apparatus.
Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise
NASA Technical Reports Server (NTRS)
Meredith, Barry D.
2000-01-01
Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.
Bacchi, Atais; Spazzin, Aloisio Oro; de Oliveira, Gabriel Rodrigues; Pfeifer, Carmem; Cesar, Paulo Francisco
2018-06-01
The use of thio-urethane oligomers has been shown to significantly improve the mechanical properties of resin cements (RCs). The aim of this study was to use thio-urethane-modified RC to potentially reinforce the porcelain-RC structure and to improve the bond strength to zirconia and lithium disilicate. Six oligomers were synthesized by combining thiols - pentaerythritol tetra-3-mercaptopropionate (PETMP, P) or trimethylol-tris-3-mercaptopropionate (TMP, T) - with di-functional isocyanates - 1,6-Hexanediol-diissocyante (HDDI) (aliphatic, AL) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (BDI) (aromatic, AR) or Dicyclohexylmethane 4,4'-Diisocyanate (HMDI) (cyclic, CC). Thio-urethanes (20 wt%) were added to a BisGMA/UDMA/TEGDMA organic matrix. Filler was introduced at 60 wt%. The microshear bond strength (μSBS), Weibull modulus (m), and failure pattern of RCs bonded to zirconia (ZR) and lithium disilicate (LD) ceramics was evaluated. Biaxial flexural test and fractographic analysis of porcelain discs bonded to RCs were also performed. The biaxial flexural strength (σ bf ) and m were calculated in the tensile surfaces of porcelain and RC structures (Z = 0 and Z = -t 2 , respectively). The μSBS was improved with RCs formulated with oligomers P_AL or T_AL bonded to LD and P_AL, P_AR or T_CC bonded to zirconia in comparison to controls. Mixed failures predominated in all groups. σ bf had superior values at Z = 0 with RCs formulated with oligomers P_AL, P_AR, T_AL, or T_CC in comparison to control; σ bf increased with all RCs composed by thio-urethanes at Z = -t 2 . Fractographic analysis revealed all fracture origins at Z = 0. The use of specific thio-urethane oligomers as components of RCs increased both the biaxial flexural strength of the porcelain-RC structure and the μSBS to LD and ZR. The current investigation suggests that it is possible to reinforce the porcelain-RC pair and obtain higher bond strength to LD and ZR with RCs formulated with selected types of thio-urethane oligomers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Differential Chromatin Structure Encompassing Replication Origins in Transformed and Normal Cells
Di Paola, Domenic; Rampakakis, Emmanouil; Chan, Man Kid
2012-01-01
This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator proteins, thus allowing increased origin activity. PMID:23050047
The Three-dimensional Structure of the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Subramanian, Smitha; Subramaniam, Annapurni
2012-01-01
The three-dimensional structure of the inner Small Magellanic Cloud (SMC) is investigated using the red clump (RC) stars and the RR Lyrae stars (RRLS), which represent the intermediate-age and the old stellar populations of a galaxy. The V- and I-band photometric data from the OGLE III catalog are used for our study. The mean dereddened I 0 magnitude of the RC stars and the RRLS are used to study the relative positions of the different regions in the SMC with respect to the mean SMC distance. This shows that the northeastern part of the SMC is closer to us. The line-of-sight depth (front to back distance) across the SMC is estimated using the dispersion in the I 0 magnitudes of both the RC stars and the RRLS and found to be large (~14 kpc) for both populations. The similarity in their depth distribution suggests that both of these populations occupy a similar volume of the SMC. The surface density distribution and the radial density profile of the RC stars suggest that they are more likely to be distributed in a nearly spheroidal system. The tidal radius estimated for the SMC system is ~7-12 kpc. An elongation along the NE-SW direction is seen in the surface density map of the RC stars. The surface density distribution of the RRLS in the SMC is nearly circular. Based on all of the above results the observed structure of the SMC, in which both the RC stars and RRLS are distributed, is approximated as a triaxial ellipsoid. The parameters of the ellipsoid are obtained using the inertia tensor analysis. We estimated the axes ratio, inclination of the longest axis with the line of sight (i), and the position angle (phi) of the longest axis of the ellipsoid on the sky from the analysis of the RRLS. The analysis of the RC stars with the assumption that they are extended up to a depth of 3.5 times the sigma (width of dereddened I 0 magnitude distribution, corrected for intrinsic spread and observational errors) was also found to give similar axes ratio and orientation angles. The above estimated parameters depend on the data coverage of the SMC. Using the RRLS with equal coverage in all three axes (data within 3° in X-, Y-, and Z-axes), we estimated an axes ratio of 1:1.33:1.61 with i = 2fdg6 and phi = 70fdg2. Our tidal radius estimates and the recent observational studies suggest that the full extent of the SMC in the XY plane is of the order of the front to back distance estimated along the line of sight. These results suggest that the structure of the SMC is spheroidal or slightly ellipsoidal. We propose that the SMC experienced a merger with another dwarf galaxy at ~4-5 Gyr ago, and the merger process was completed in another 2-3 Gyr. This resulted in a spheroidal distribution comprising stars older than 2 Gyr.
Meta-analysis of the relationship between TQM and Business Performance
NASA Astrophysics Data System (ADS)
F, Ahmad M.; N, Zakuan; A, Jusoh; Z, Tasir; J, Takala
2013-06-01
Meta-analysis has been conducted based on 20 previous works from 4,040 firms at 16 countries from Asia, Europe and America. Throughout this paper a meta-analysis, this paper reviews the relationships between TQM and business performance amongst the regions. Meta-analysis result concludes that the average of rc is 0.47; Asia (rc=0.54), America (rc=0.43) and Europe (rc=0.38). The analysis also shows that Asia developed countries have greatest impact of TQM (rc=0.56). However, the analysis of ANOVA and t-test show that there is no significant difference amongst type of country (developed and developing countries) and regions at p=0.05. In addition, the average result of rc2 is 0.24; Asia (rc2=0.33), America (rc2=0.22) and Europe (rc2=0.15). Meanwhile, rc2 in developing countries (rc2=0.28) are higher than developed countries (rc2=0.21).
Large Magellanic Cloud Distance and Structure from Near-Infrared Red Clump Observations
NASA Astrophysics Data System (ADS)
Koerwer, Joel F.
2009-07-01
We have applied the Infrared Survey Facility Magellanic Clouds Point-Source Catalog to the mapping of the red clump (RC) distance modulus across the Large Magellanic Cloud (LMC). Using the J- (1.25 μm) and H- (1.63 μm) band data to derive a reddening free luminosity function and a theoretical RC absolute magnitude from stellar evolution libraries, we estimate a distance modulus to the LMC of μ = 18.54 ± 0.06. The best fitting plane inclination, i, and the position angle of the line of nodes, phi, have little dependence on the assumed RC absolute magnitude; we find i = 23fdg5 ± 0fdg4 and phi = 154fdg6 ± 1fdg2. It was also noted that many fields included a significant asymptotic giant branch bump population that must be accounted for.
Troika partnership model for licensing NASA-LaRC technologies
NASA Technical Reports Server (NTRS)
Maclin, Arlene P.
1995-01-01
The Technology Applications (TAG) Group at NASA Langley Research Center has currently more than 100 technologies that are ripe for commercialization. These technologies are categorized by various sectors including: Energy and the Environment; Materials and Structures; Manufacturing; Information and Communications; Transportation, and Medical/Sensor/ Instrumentation. A requirement that TAG has placed on all technologies ready for licensing is that there will be some university involvement in the technology transfer or knowledge transfer process. This model involves the troika of government (LaRC), industry and university. A number of variations on the Troika Partnership Model (TPM) were developed as a part of this ASEE Fellowship. Furthermore, five technologies were identified - three of which industrial interests have been matched: LaRC-SI, a thermoplastic that can be used as a coating; Variable Geometry Truss Manipulator Arm that can be used for nuclear waste clean -up and as scaffolding; and ADAPT (Approach to Data Management, Archive Protection, and Transmission) is a technology that could be used for a variety of multi-tasking operations over the Internet. The aim of this work was to initiate a Space Act Agreement (SAA) for at least one of these technologies using one of the options of the TPM. A preliminary partnership agreement using the SAA is currently being negotiated with NASA-LaRC, VPI and Virginia Power for the LaRC-SI thermoplastic that will be used as a coating.
NASA Astrophysics Data System (ADS)
Nataf, David M.; Gould, Andrew; Fouqué, Pascal; Gonzalez, Oscar A.; Johnson, Jennifer A.; Skowron, Jan; Udalski, Andrzej; Szymański, Michał K.; Kubiak, Marcin; Pietrzyński, Grzegorz; Soszyński, Igor; Ulaczyk, Krzysztof; Wyrzykowski, Łukasz; Poleski, Radosław
2013-06-01
We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J - Ks ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation AI = 0.7465 × E(V - I) + 1.3700 × E(J - Ks ), or, equivalently, AI = 1.217 × E(V - I)(1 + 1.126 × (E(J - Ks )/E(V - I) - 0.3433)). The optical and near-IR reddening law toward the inner Galaxy approximately follows an RV ≈ 2.5 extinction curve with a dispersion {\\sigma }_{R_{V}} \\approx 0.2, consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be (M_{I,RC}, \\sigma _{I,RC,0}, (V-I)_{RC,0}, \\sigma _{(V-I)_{RC}}, (J-K_{s})_{RC,0}) = (-0.12, 0.09, 1.06, 0.121, 0.66). Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20 kpc. We measure an upper bound on the tilt α ≈ 40° between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at α ≈ 25°. The number of RC stars suggests a total stellar mass for the Galactic bulge of ~2.3 × 1010 M ⊙ if one assumes a canonical Salpeter initial mass function (IMF), or ~1.6 × 1010 M ⊙ if one assumes a bottom-light Zoccali IMF. Based on observations obtained with the 1.3 m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution for Science.
Report on 2005 Defense Base Closure and Realignment Implementation
2007-04-01
Marcos 559 ARNG RC Seguin 560 ARNG RC Snyder 561 ARNG RC Taylor 562 ARNG RC Terrell 563 ARNG RC Texarkana 564 ARNG RC Tyler 565 Benavidez USARC, El...realignment actions: Sep 1 2011 563 ARNG RC Texarkana , TX Commission recommendation(s) affected by this installation: Number Title 44 Reserve Component...AL421382002700 State: Alabama Sites Sites RC Total 51 38 Phase Beg. End <=2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Dasgupta, Piyali; Singh, Anu; Mukherjee, Rama
2002-01-01
The anti-proliferative activity of the somatostatin analog RC-160 is limited by its short serum half life. To circumvent this limitation, fatty acids of chain lengths ranging from 4 to 18 were individually conjugated to the N-terminal residue of RC-160. The lipophilized derivatives of RC-160 were synthesized, purified and characterized. The anti-proliferative activity of lipophilized-RC-160 on the human breast carcinoma cell line MCF-7, was evaluated in vitro. The long chain lipopeptides like pamitoyl-RC-160 exhibited significantly higher anti-proliferative activity on MCF-7 cells (p<0.001), relative to RC-160. The affinity of RC-160 towards somatostatin receptors remained unaltered by pamitoylation. However, the observed increase in bioactivity was manifested within an optimum range of chain length of the lipoppetide. Increasing the peptide hydrophobicity beyond this range reduced the bioactivity of lipophilized-RC-160. Accordingly, stearoyl-RC-160, manifested lower anti-neoplastic activity and receptor affinity relative to pamitoyl-RC-160 and RC-160 itself. The signaling pathways underlying the antineoplastic activity of these lipopeptides were found to be similar to RC-160. Pamitoyl-RC-160 displayed enhanced inhibition of protein tyrosine kinase activity and intracellular cAMP levels in MCF-7 cells, relative to butanoyl-RC-160 or RC-160 itself. Pamitoyl-RC-160 also displayed greater resistance towards trypsin and serum degradation than RC-160. Lipophilization of RC-160 with long chain fatty acids like pamitic acid improves its stability and anti-proliferative activity, thereby improving the scope of enhancing its therapeutic index. However, the optimization of peptide hydrophobicity seems to be a crucial factor governing the efficacy of bioactive lipopeptides.
NASA Astrophysics Data System (ADS)
Lin, Y. Q.; Ren, W. X.; Fang, S. E.
2011-11-01
Although most vibration-based damage detection methods can acquire satisfactory verification on analytical or numerical structures, most of them may encounter problems when applied to real-world structures under varying environments. The damage detection methods that directly extract damage features from the periodically sampled dynamic time history response measurements are desirable but relevant research and field application verification are still lacking. In this second part of a two-part paper, the robustness and performance of the statistics-based damage index using the forward innovation model by stochastic subspace identification of a vibrating structure proposed in the first part have been investigated against two prestressed reinforced concrete (RC) beams tested in the laboratory and a full-scale RC arch bridge tested in the field under varying environments. Experimental verification is focused on temperature effects. It is demonstrated that the proposed statistics-based damage index is insensitive to temperature variations but sensitive to the structural deterioration or state alteration. This makes it possible to detect the structural damage for the real-scale structures experiencing ambient excitations and varying environmental conditions.
Development of stitched/RTM composite primary structures
NASA Technical Reports Server (NTRS)
Kullerd, Susan M.; Dow, Marvin B.
1992-01-01
The goal of the NASA Advanced Composites Technology (ACT) Program is to provide the technology required to gain the full benefit of weight savings and performance offered by composite primary structures. Achieving the goal is dependent on developing composite materials and structures which are damage tolerant and economical to manufacture. Researchers at NASA LaRC and Douglas Aircraft Company are investigating stitching reinforcement combined with resin transfer molding (RTM) to create structures meeting the ACT program goals. The Douglas work is being performed under a NASA contract entitled Innovative Composites Aircraft Primary Structures (ICAPS). The research is aimed at materials, processes and structural concepts for application in both transport wings and fuselages. Empirical guidelines are being established for stitching reinforcement in primary structures. New data are presented in this paper for evaluation tests of thick (90-ply) and thin (16-ply) stitched laminates, and from selection tests of RTM composite resins. Tension strength, compression strength and post-impact compression strength data are reported. Elements of a NASA LaRC program to expand the science base for stitched/RTM composites are discussed.
NASA Astrophysics Data System (ADS)
Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.
2017-12-01
This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic displacements. Another earthquake comparable to the Pawnee earthquake should be well recorded by the system. Recordings of ambient vibration data collected to date describing noise characteristics and measurement error levels will be presented. Any recordings of seismic motions will be discussed, should a significant event occur.
Stellar Stream and Halo Structure in the Andromeda Galaxy from a Subaru/Hyper Suprime-Cam Survey
NASA Astrophysics Data System (ADS)
Komiyama, Yutaka; Chiba, Masashi; Tanaka, Mikito; Tanaka, Masayuki; Kirihara, Takanobu; Miki, Yohei; Mori, Masao; Lupton, Robert H.; Guhathakurta, Puragra; Kalirai, Jason S.; Gilbert, Karoline; Kirby, Evan; Lee, Myun Gyoon; Jang, In Sung; Sharma, Sanjib; Hayashi, Kohei
2018-01-01
We present wide and deep photometry of the northwestern part of the halo of the Andromeda galaxy (M31) using Hyper Suprime-Cam on the Subaru Telescope. The survey covers a 9.2 deg2 field in the g, i, and NB515 bands and shows a clear red giant branch (RGB) of M31's halo stars and a pronounced red clump (RC) feature. The spatial distribution of RC stars shows a prominent stream feature, the Northwestern (NW) Stream, and a diffuse substructure in the southern part of our survey field. We estimate the distances based on the RC method and obtain (m{--}M) = 24.63 ± 0.191 (random) ± 0.057 (systematic) and 24.29 ± 0.211 (random) ± 0.057 (systematic) mag for the NW Stream and diffuse substructure, respectively, implying that the NW Stream is located behind M31, whereas the diffuse substructure is located in front of it. We also estimate line-of-sight distances along the NW Stream and find that the southern part of the stream is ∼20 kpc closer to us relative to the northern part. The distance to the NW Stream inferred from the isochrone fitting to the color–magnitude diagram favors the RC-based distance, but the tip of the RGB (TRGB)-based distance estimated for NB515-selected RGB stars does not agree with it. The surface number density distribution of RC stars across the NW Stream is found to be approximately Gaussian with an FWHM of ∼25 arcmin (5.7 kpc), with a slight skew to the southwest side. That along the NW Stream shows a complicated structure, including variations in number density and a significant gap in the stream. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Tian, Kuang-da; Qiu, Kai-xian; Li, Zu-hong; Lü, Ya-qiong; Zhang, Qiu-ju; Xiong, Yan-mei; Min, Shun-geng
2014-12-01
The purpose of the present paper is to determine calcium and magnesium in tobacco using NIR combined with least squares-support vector machine (LS-SVM). Five hundred ground and dried tobacco samples from Qujing city, Yunnan province, China, were surveyed by a MATRIX-I spectrometer (Bruker Optics, Bremen, Germany). At the beginning of data processing, outliers of samples were eliminated for stability of the model. The rest 487 samples were divided into several calibration sets and validation sets according to a hybrid modeling strategy. Monte-Carlo cross validation was used to choose the best spectral preprocess method from multiplicative scatter correction (MSC), standard normal variate transformation (SNV), S-G smoothing, 1st derivative, etc., and their combinations. To optimize parameters of LS-SVM model, the multilayer grid search and 10-fold cross validation were applied. The final LS-SVM models with the optimizing parameters were trained by the calibration set and accessed by 287 validation samples picked by Kennard-Stone method. For the quantitative model of calcium in tobacco, Savitzky-Golay FIR smoothing with frame size 21 showed the best performance. The regularization parameter λ of LS-SVM was e16.11, while the bandwidth of the RBF kernel σ2 was e8.42. The determination coefficient for prediction (Rc(2)) was 0.9755 and the determination coefficient for prediction (Rp(2)) was 0.9422, better than the performance of PLS model (Rc(2)=0.9593, Rp(2)=0.9344). For the quantitative analysis of magnesium, SNV made the regression model more precise than other preprocess. The optimized λ was e15.25 and σ2 was e6.32. Rc(2) and Rp(2) were 0.9961 and 0.9301, respectively, better than PLS model (Rc(2)=0.9716, Rp(2)=0.8924). After modeling, the whole progress of NIR scan and data analysis for one sample was within tens of seconds. The overall results show that NIR spectroscopy combined with LS-SVM can be efficiently utilized for rapid and accurate analysis of calcium and magnesium in tobacco.
Micro-mechanics of micro-composites
NASA Technical Reports Server (NTRS)
Donovan, Richard P.
1995-01-01
The Structural Dynamics branch at NASA LaRC is working on developing an active passive mount system for vibration control. Toward this end a system utilizing piezoelectric actuators is currently being utilized. There are limitations to the current system related to space applications under which it is desired to eliminate deformations in the actuators associated with thermal effects. In addition, a material that is readily formable into complex shapes and whose mechanical properties can be optimized with regards to vibration control would be highly desirable. Microcomposite material are currently under study to service these needs. Microcomposite materials are essentially materials in which particles on the scale of microns are bound together with a polyimide (LaRC Si) that has been developed at LaRC. In particular a micro-composite consisting of LaRC Si binder and piezoelectric ceramic particles shows promise in satisfying the needs of the active passive mount project. The LaRC/ Si microcomposite has a unique combination of piezoelectric properties combined with a near zero coefficient of thermal expansion and easy machinability. The goal of this ASEE project is to develop techniques to analytically determine important material properties necessary to characterize the dynamic properties of actuators and mounts made from the LaRC Si / ceramic microcomposite. In particular, a generalized method of cells micromechanics originally developed at NASA Lewis is employed to analyze the microstructural geometry of the microcomposites and predict the overall mechanical properties of the material. A testing program has been established to evaluate and refine the GMC approach to these materials. In addition, a theory of mixtures analysis is being developed that utilizes the GMC micromechanics information to analyze complex behavior of the microcomposite material which has a near zero CTE.
NASA Astrophysics Data System (ADS)
Nejad, S.; Gladwin, D. T.; Stone, D. A.
2016-06-01
This paper presents a systematic review for the most commonly used lumped-parameter equivalent circuit model structures in lithium-ion battery energy storage applications. These models include the Combined model, Rint model, two hysteresis models, Randles' model, a modified Randles' model and two resistor-capacitor (RC) network models with and without hysteresis included. Two variations of the lithium-ion cell chemistry, namely the lithium-ion iron phosphate (LiFePO4) and lithium nickel-manganese-cobalt oxide (LiNMC) are used for testing purposes. The model parameters and states are recursively estimated using a nonlinear system identification technique based on the dual Extended Kalman Filter (dual-EKF) algorithm. The dynamic performance of the model structures are verified using the results obtained from a self-designed pulsed-current test and an electric vehicle (EV) drive cycle based on the New European Drive Cycle (NEDC) profile over a range of operating temperatures. Analysis on the ten model structures are conducted with respect to state-of-charge (SOC) and state-of-power (SOP) estimation with erroneous initial conditions. Comparatively, both RC model structures provide the best dynamic performance, with an outstanding SOC estimation accuracy. For those cell chemistries with large inherent hysteresis levels (e.g. LiFePO4), the RC model with only one time constant is combined with a dynamic hysteresis model to further enhance the performance of the SOC estimator.
DOT National Transportation Integrated Search
2014-03-01
Chloride ion ingress is an important parameter that helps estimate the durability and service life of reinforced concrete (RC) and : prestress concrete (PC) structures, especially in those structures exposed to marine environments and salts applied d...
An overview of computational simulation methods for composite structures failure and life analysis
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1993-01-01
Three parallel computational simulation methods are being developed at the LeRC Structural Mechanics Branch (SMB) for composite structures failure and life analysis: progressive fracture CODSTRAN; hierarchical methods for high-temperature composites; and probabilistic evaluation. Results to date demonstrate that these methods are effective in simulating composite structures failure/life/reliability.
The nonlinear interaction of convection modes in a box of a saturated porous medium
NASA Astrophysics Data System (ADS)
Florio, Brendan J.; Bassom, Andrew P.; Fowkes, Neville; Judd, Kevin; Stemler, Thomas
2015-05-01
A plethora of convection modes may occur within a confined box of porous medium when the associated dimensionless Rayleigh number R is above some critical value dependent on the geometry. In many cases the crucial Rayleigh number Rc for onset is different for each mode, and in practice the mode with the lowest associated Rc is likely to be the dominant one. For particular sizes of box, however, it is possible for multiple modes (typically three) to share a common Rc. For box shapes close to these special geometries the modes interact and compete nonlinearly near the onset of convection. Here this mechanism is explored and it is shown that generically the dynamics of the competition takes on one of two possible structures. A specific example of each is described, while the general properties of the system enables us to compare our results with some previous calculations for particular box dimensions.
Aeroelasticity at the NASA Langley Research Center Recent progress, new challenges
NASA Technical Reports Server (NTRS)
Hanson, P. W.
1985-01-01
Recent progress in aeroelasticity, particularly at the NASA Langley Research Center is reviewed to look at the questions answered and questions raised, and to attempt to define appropriate research emphasis needed in the near future and beyond. The paper is focused primarily on the NASA Langley Research Center (LaRC) Program because Langley is the lead NASA center for aerospace structures research, and essentially is the only one working in depth in the area of aeroelasticity. Historical trends in aeroelasticity are reviewed broadly in terms of technology and staffing particularly at the LaRC. Then, selected studies of the Loads and Aeroelasticity Division at LaRC and others over the past three years are presented with attention paid to unresolved questions. Finally, based on the results of these studies and on perceptions of design trends and aircraft operational requirements, future research needs in aeroelasticity are discussed.
Rawat, Pallavi; Eapen, Charu; Seema, Kulathuran Pillai
Randomized controlled trial. To study the effect of adding rotator cuff (RC) muscles strengthening to joint mobilization and transcutaneous electrical nerve stimulation (TENS) in patients with adhesive capsulitis. A prospective, parallel-group, randomised clinical trial was conducted on 42 patients. One group received TENS and joint mobilization and in the other group RC muscles strengthening was added. Treatment was given for 12 sessions within 4 weeks. When compared between the groups statistically significant changes were seen in all the outcome measures in the group that received RC muscle strengthening exercises vs TENS and mobilization. VAS 12.76 ± 1.04 vs 4.05 ± 1.32; SPADI 34.66 ± 6.69 vs 54.29 ± 12.17; PFPS 3.06 ± 0.80 vs 4.70 ± 0.81; and ROM (elevation >125 vs >110 degrees and rotations >70 vs >48 degrees). Addition of a structured RC strengthening program to TENS and joint mobilization in the treatment of adhesive capsulitis resulted in improvement in pain, ROM and function. 1b. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Mohamed, Mohamad Azuwa; Salleh, W N W; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Jamil, Siti Munira
2015-11-20
In this work, an environmental friendly RC/N-TiO2 nanocomposite thin film was designed as a green portable photocatalyst by utilizing recycled newspaper as sustainable cellulose resource. Investigations on the influence of N-doped TiO2 nanorods incorporation on the structural and morphological properties of RC/N-TiO2 nanocomposite thin film are presented. The resulting nanocomposite thin film was characterized by FESEM, AFM, FTIR, UV-vis-NIR spectroscopy, and XPS analysis. The results suggested that there was a remarkable compatibility between cellulose and N-doped TiO2 nanorods anchored onto the surface of the RC/N-TiO2 nanocomposite thin film. Under UV and visible irradiation, the RC/N-TiO2 nanocomposite thin film showed remarkable photocatalytic activity for the degradation of methylene blue solution with degradation percentage of 96% and 78.8%, respectively. It is crucial to note that the resulting portable photocatalyst produced via an environmental and green technique in its fabrication process has good potential in the field of water and wastewater treatment application. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun
2013-03-01
The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.
Built-in active sensing diagnostic system for civil infrastructure systems
NASA Astrophysics Data System (ADS)
Wu, Fan; Chang, Fu-Kuo
2001-07-01
A reliable, robust monitoring system can improve the maintenance of and provide safety protection for civil structures and therefore prolong their service lives. A built-in, active sensing diagnostic technique for civil structures has been under investigation. In this technique, piezoelectric materials are used as sensors/actuators to receive and generate signals. The transducers are embedded in reinforced concrete (RC) beams and are designed to detect damage, particularly debonding damage between the reinforcing bars and concrete. This paper presents preliminary results from a feasibility study of the technology. Laboratory experiments performed on RC beams, with piezo-electric sensors and actuators mounted on reinforced steel bars, have clearly demonstrated that the proposed technique could detect debonding damage. Analytical work, using a special purpose finite-element software, PZFlex, was also conducted to interpret the relationship between the measured data and actual debonding damage. Effectiveness of the proposed technique for detecting debonding damage in civil structures has been demonstrated.
NASA Astrophysics Data System (ADS)
Visalakshi, Talakokula; Bhalla, Suresh; Gupta, Ashok; Bhattacharjee, Bishwajit
2014-03-01
Reinforced concrete (RC) is an economical, versatile and successful construction material as it can be moulded into a variety of shapes and finishes. In most cases, it is durable and strong, performing well throughout its service life. However, in some cases, it does not perform adequately due to various reasons, one of which is the corrosion of the embedded steel bars used as reinforcement. . Although the electro-mechanical impedance (EMI) technique is well established for damage detection and quantification of civil, mechanical and aerospace structures, only limited studies have been reported of its application for rebar corrosion detection in RC structures. This paper presents the recent trends in corrosion assessment based on the model derived from the equivalent structural parameters extracted from the impedance spectrum of concrete-rebar system using the lead zirconate titanate (PZT) sensors via EMI technique.
Kirjavainen, Minna; Kidd, Evan; Lieven, Elena
2017-01-01
We report three studies (one corpus, two experimental) that investigated the acquisition of relative clauses (RCs) in Finnish-speaking children. Study 1 found that Finnish children's naturalistic exposure to RCs predominantly consists of non-subject relatives (i.e. oblique, object) which typically have inanimate head nouns. Study 2 tested children's comprehension of subject, object, and two types of oblique relatives. No difference was found in the children's performance on different structures, including a lack of previously widely reported asymmetry between subject and object relatives. However, children's comprehension was modulated by animacy of the head referent. Study 3 tested children's production of the same RC structures using sentence repetition. Again we found no subject-object asymmetry. The pattern of results suggested that distributional frequency patterns and the relative complexity of the relativizer contribute to the difficulty associated with particular RC structures.
NASA Astrophysics Data System (ADS)
Noorsuhada, M. N.; Abdul Hakeem, Z.; Soffian Noor, M. S.; Noor Syafeekha, M. S.; Azmi, I.
2017-12-01
Health monitoring of structures during their service life become a vital thing as it provides crucial information regarding the performance and condition of the structures. Acoustic emission (AE) is one of the non-destructive techniques (NDTs) that could be used to monitor the performance of the structures. Reinforced concrete (RC) beam associated with AE monitoring was monotonically loaded to failure under three-point loading. Correlation between average frequency and RA value (rise time / amplitude) was computed. The relationship was established to classify the crack types that propagated in the RC beam. The crack was classified as tensile crack and shear crack. It was found that the relationship is well matched with the actual crack pattern that appeared on the beam surface. Hence, this relationship is useful for prediction of the crack occurrence in the beam and its performance can be determined.
Concept Definition Study for In-Space Structural Characterization of a Lightweight Solar Array
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica A.; Pappa, Richard S.; Jones, Thomas W.; Spellman, Regina; Scott, Willis; Mockensturm, Eric M.; Liddle, Donn; Oshel, Ed; Snyder, Michael
2002-01-01
A Concept Definition Study (CDS) was conducted to develop a proposed "Lightweight High-Voltage Stretched-Lens Concentrator Solar Array Experiment" under NASA's New Millennium Program Space Technology-6 (NMP ST-6) activity. As part of a multi-organizational team, NASA Langley Research Center's role in this proposed experiment was to lead Structural Characterization of the solar array during the flight experiment. In support of this role, NASA LaRC participated in the CDS to de.ne an experiment for static, dynamic, and deployment characterization of the array. In this study, NASA LaRC traded state-of-the-art measurement approaches appropriate for an in-space, STS-based flight experiment, provided initial analysis and testing of the lightweight solar array and lens elements, performed a lighting and photogrammetric simulation in conjunction with JSC, and produced an experiment concept definition to meet structural characterization requirements.
Structural dynamics branch research and accomplishments to FY 1992
NASA Technical Reports Server (NTRS)
Lawrence, Charles
1992-01-01
This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications.
Involvement of Two Plasmids in the Degradation of Carbaryl by Arthrobacter sp. Strain RC100
Hayatsu, Masahito; Hirano, Motoko; Nagata, Tadahiro
1999-01-01
A bacterium capable of utilizing carbaryl (1-naphthyl N-methylcarbamate) as the sole carbon source was isolated from carbaryl-treated soil. This bacterium was characterized taxonomically as Arthrobacter and was designated strain RC100. RC100 hydrolyzes the N-methylcarbamate linkage to 1-naphthol, which was further metabolized via salicylate and gentisate. Strain RC100 harbored three plasmids (designated pRC1, pRC2, and pRC3). Mutants unable to degrade carbaryl arose at a high frequency after treating the culture with mitomycin C. All carbaryl-hydrolysis-deficient mutants (Cah−) lacked pRC1, and all 1-naphthol-utilization-deficient mutants (Nat−) lacked pRC2. The plasmid-free strain RC107 grew on gentisate as a carbon source. These two plasmids could be transferred to Cah− mutants or Nat− mutants by conjugation, resulting in the restoration of the Cah and Nah phenotypes. PMID:10049857
Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Farhoosh, R; Frank, H A
1997-03-01
As a step towards the structural analysis of the carotenoid spheroidene in the Rhodobacter sphaeroides reaction centre, we present the resonance Raman spectra of 14-2H, 15-2H, 15'-2H, 14'-2H, 14,15'-2H2 and 15-15'-2H2 spheroidenes in petroleum ether and, except for 14,15'-2H2 spheroidene, in the Rb. sphaeroides R26 reaction center (RC). Analysis of the spectral changes upon isotopic substitution allows a qualitative assignment of most of the vibrational bands to be made. For the all-trans spheroidenes in solution the resonance enhancement of the Raman bands is determined by the participation of carbon carbon stretching modes in the centre of the conjugated chain, the C9 to C15' region. For the RC-bound 15,15'-cis spheroidenes, enhancement is determined by the participation of carbon-carbon stretching modes in the centre of the molecule, the C13 to C13' region. Comparison of the spectra in solution and in the RC reveals evidence for an out-of-plane distortion of the RC-bound spheroidene in the central C14 to C14' region of the carotenoid. The characteristic 1240 cm-1 band in the spectrum of the RC-bound spheroidene has been assigned to a normal mode that contains the coupled C12-C13 and C13'-C12' stretch vibrations.
Computational Analysis and Characterization of RC-135 External Aerodynamics
2012-03-22
date date date AFIT/GAE/ENY/12-M06 Abstract Both the RC-135V/W Rivet Joint (RJ) and the RC-135U Combat Sent (CS) aircraft are United States Air...Page 1.1. RC-135V/W Rivet Joint [1] . . . . . . . . . . . . . . . . . . . . 2 1.2. RC-135U Combat Sent [1] . . . . . . . . . . . . . . . . . . . . . 2...1.3. RC-135V/W Rivet Joint BL9 antenna locations [2] . . . . . . . 3 1.4. RC-135U Combat Sent showing LCS with louver installed over exhaust [1
Effect of a Near Fault on the Seismic Response of a Base-Isolated Structure with a Soft Storey
NASA Astrophysics Data System (ADS)
Athamnia, B.; Ounis, A.; Abdeddaim, M.
2017-12-01
This study focuses on the soft-storey behavior of RC structures with lead core rubber bearing (LRB) isolation systems under near and far-fault motions. Under near-fault ground motions, seismic isolation devices might perform poorly because of large isolator displacements caused by large velocity and displacement pulses associated with such strong motions. In this study, four different structural models have been designed to study the effect of soft-storey behavior under near-fault and far-fault motions. The seismic analysis for isolated reinforced concrete buildings is carried out using a nonlinear time history analysis method. Inter-story drifts, absolute acceleration, displacement, base shear forces, hysteretic loops and the distribution of plastic hinges are examined as a result of the analysis. These results show that the performance of a base isolated RC structure is more affected by increasing the height of a story under nearfault motion than under far-fault motion.
Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface.
He, Meng; Xu, Min; Zhang, Lina
2013-02-01
A novel, highly hydrophobic cellulose composite film (RCS) with biodegradability was fabricated via solvent-vaporized controllable crystallization of stearic acid in the porous structure of cellulose films (RC). The interface structure and properties of the composite films were investigated with wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, solid-state (13)C NMR, water uptake, tensile testing, water contact angle, and biodegradation tests. The results indicated that the RCS films exhibited high hydrophobicity (water contact angle achieved to 145°), better mechanical properties in the humid state and lower water uptake ratio than RC. Interestingly, the stearic acid crystallization was induced by the pore wall of the cellulose matrix to form a micronano binary structure, resulting in a rough surface. The rough surface with a hierarchical structure containing micronanospace on the RCS film surface could trap abundant air, leading to the high hydrophobicity. Moreover, the RCS films were flexible, biodegradable, and low-cost, showing potential applications in biodegradable water-proof packaging.
Dasgupta, P; Mukherjee, R
2000-01-01
The therapeutic potential of the somatostatin analogue RC-160 having antiproliferative activity, is limited by its short serum half life. To overcome this limitation, fatty acids namely butanoic acid and myristic acid were conjugated to the N-terminal residue of RC-160. The lipophilized derivatives of RC-160 were synthesized, purified by reverse phase HPLC and characterized by ES-mass spectroscopy. The antiproliferative activity of lipophilized derivatives of RC-160 on the growth of MIA-PaCa2 (human pancreatic carcinoma), DU145 (human prostate carcinoma), ECV304 (human umbilical chord endothelioma), as well as their antiangiogenic activity was evaluated in vitro. The relative stability of myristoyl-RC-160 towards degradation by proteases and serum was also determined. Myristoyl-RC-160 exhibited significantly higher antiproliferative efficacy than RC-160, on the above cell lines (P<0.01). Receptor binding assays, demonstrated that the affinity of RC-160 towards somatostatin receptors remains unaltered by myristoylation. Unlike RC-160, the myristoylated derivative was found to have significantly greater resistance to protease and serum degradation (P<0.01). Myristoyl-RC-160 exhibited significantly greater antiproliferative activity on ECV304, than RC-160 (P<0.01). Myristoyl RC-160 could also inhibit capillary tube formation more efficiently than RC-160 in a dose dependent manner, suggesting that it possessed enhanced antiangiogenic activity in vitro (P<0.001). Lipophilization of RC-160 with long chain fatty acids like myristic acid endows it with improved antiproliferative and antiangiogenic activity, stability and therapeutic index. British Journal of Pharmacology (2000) 109, 101 - 109
Dasgupta, P; Mukherjee, R
2000-01-01
The therapeutic potential of the somatostatin analogue RC-160 having antiproliferative activity, is limited by its short serum half life. To overcome this limitation, fatty acids namely butanoic acid and myristic acid were conjugated to the N-terminal residue of RC-160. The lipophilized derivatives of RC-160 were synthesized, purified by reverse phase HPLC and characterized by ES-mass spectroscopy. The antiproliferative activity of lipophilized derivatives of RC-160 on the growth of MIA-PaCa2 (human pancreatic carcinoma), DU145 (human prostate carcinoma), ECV304 (human umbilical chord endothelioma), as well as their antiangiogenic activity was evaluated in vitro. The relative stability of myristoyl-RC-160 towards degradation by proteases and serum was also determined. Myristoyl-RC-160 exhibited significantly higher antiproliferative efficacy than RC-160, on the above cell lines (P<0.01). Receptor binding assays, demonstrated that the affinity of RC-160 towards somatostatin receptors remains unaltered by myristoylation. Unlike RC-160, the myristoylated derivative was found to have significantly greater resistance to protease and serum degradation (P<0.01). Myristoyl-RC-160 exhibited significantly greater antiproliferative activity on ECV304, than RC-160 (P<0.01). Myristoyl RC-160 could also inhibit capillary tube formation more efficiently than RC-160 in a dose dependent manner, suggesting that it possessed enhanced antiangiogenic activity in vitro (P<0.001). Lipophilization of RC-160 with long chain fatty acids like myristic acid endows it with improved antiproliferative and antiangiogenic activity, stability and therapeutic index. PMID:10694208
Kou, Yaping; Yuan, Cunquan; Zhao, Qingcui; Liu, Guoqin; Nie, Jing; Ma, Zhimin; Cheng, Chenxia; Teixeira da Silva, Jaime A; Zhao, Liangjun
2016-01-01
Thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs) induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1) and auxin transport proteins (RcPIN2, RcPIN3) decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa.
An Overview-NASA LeRC Structures Program
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1997-01-01
The Structures and Acoustics Division of the NASA Lewis Research Center has its genesis dating back to 1943. It has been an independent Division at Lewis since 1979. Its two primary capabilities are performance and life analysis of static and dynamic systems such as those found in aircraft and spacecraft propulsion systems and experimental verification of these analyses. Research is conducted in-house, through university grants and contracts, and through cooperative programs with industry. Our work directly supports NASA's Advanced Subsonic Technology (AST), Smart Green Engine, Fast Quiet Engine, High-Temperature Materials and Processing (HiTEMP), Hybrid Hyperspeed Propulsion, Rotorcraft, High-Speed Research (HSR), and Aviation Safety Program (AvSP). A general overview is given discussing these programs and other technologies that are being developed at NASA LeRC.
NASA Astrophysics Data System (ADS)
Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.
2016-12-01
This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic displacements. Another earthquake comparable to the Pawnee earthquake should be well recorded by the system. Recordings of ambient vibration data collected to date describing noise characteristics and measurement error levels will be presented. Any recordings of seismic motions will be discussed, should a significant event occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macías, C., E-mail: carlosmacias@nanoquimia.com; Lavela, P.; Rasines, G.
2016-10-15
The combined effect of resorcinol/catalyst (100≤R/C≤800) and resorcinol/water (0.04≤R/W≤0.13) molar ratio on the textural and capacitive properties of carbon aerogels with potential application for capacitive deionization has been evaluated. Activated and pyrolyzed aerogels were synthesized by the sol-gel polymerization of resorcinol-formaldehyde mixtures and dried in supercritical conditions. Data show that high R/C and R/W molar ratios lead to materials with large pores in the mesopore range, whereas the surface area and micropore volumes remain somewhat the same. The activation of the aerogels increased the differences in the specific surface and micropore volumes due to the development of microporosity. This effectmore » was more remarkable for the samples with low R/C whatever the R/W ratio, indicating that the carbon aerogel obtained using high amounts of catalyst are more prone to be activated. Regarding the electrochemical features of the aerogels, low capacitance values were measured in aerogels combining low R/W and high R/C and reciprocally low R/C and high R/W molar ratios, due to their higher resistance. Polarization resistances were found to be slightly higher for the pyrolyzed than for activated aerogels, and followed a decreasing trend with the mesoporosity, indicating the outstanding contribution of the mesoporous network to provide a good kinetic response. The desalting capacity of monolithic aerogels showed a simultaneous dependence with the surface area and the resistivity of the electrodes, pointing out the importance of performing electrochemical measurements in adequate cell configurations (i.e., desalting units) upon the intended application. - Graphical abstract: The textural properties of carbon aerogels are strongly influenced by the synthesis parameters precursor to catalyst (R/C) and water (R/C) ratios. The volumetric capacitance measured in a symmetric cell with monolithic electrodes of carbon aerogel strongly correlates with both surface area and electrical resistivity. - Highlights: • Influence of the synthesis conditions on the properties of carbon aerogels is reported. • Specific surface decreases in the activated samples when either R/C or R/W increase. • An enhanced decrease of the capacitance was observed when R/C and R/W increase. • Ohmic resistance of the electrodes that strongly depends on the R/W and R/C. • Electrosorption capacity is successfully correlated to surface area and resistivity.« less
A response surface methodology based damage identification technique
NASA Astrophysics Data System (ADS)
Fang, S. E.; Perera, R.
2009-06-01
Response surface methodology (RSM) is a combination of statistical and mathematical techniques to represent the relationship between the inputs and outputs of a physical system by explicit functions. This methodology has been widely employed in many applications such as design optimization, response prediction and model validation. But so far the literature related to its application in structural damage identification (SDI) is scarce. Therefore this study attempts to present a systematic SDI procedure comprising four sequential steps of feature selection, parameter screening, primary response surface (RS) modeling and updating, and reference-state RS modeling with SDI realization using the factorial design (FD) and the central composite design (CCD). The last two steps imply the implementation of inverse problems by model updating in which the RS models substitute the FE models. The proposed method was verified against a numerical beam, a tested reinforced concrete (RC) frame and an experimental full-scale bridge with the modal frequency being the output responses. It was found that the proposed RSM-based method performs well in predicting the damage of both numerical and experimental structures having single and multiple damage scenarios. The screening capacity of the FD can provide quantitative estimation of the significance levels of updating parameters. Meanwhile, the second-order polynomial model established by the CCD provides adequate accuracy in expressing the dynamic behavior of a physical system.
Confinement Effect on Material Properties of RC Beams Under Flexure
NASA Astrophysics Data System (ADS)
Kulkarni, Sumant; Shiyekar, Mukund Ramchandra; Shiyekar, Sandip Mukund
2017-12-01
In structural analysis, especially in indeterminate structures, it becomes essential to know the material and geometrical properties of members. The codal provisions recommend elastic properties of concrete and steel and these are fairly accurate enough. The stress-strain curve for concrete cylinder or a cube specimen is plotted. The slope of this curve is modulus of elasticity of plain concrete. Another method of determining modulus of elasticity of concrete is by flexural test of a beam specimen. The modulus of elasticity most commonly used for concrete is secant modulus. The modulus of elasticity of steel is obtained by performing a tension test of steel bar. While performing analysis by any software for high rise building, cross area of plain concrete is taken into consideration whereas effects of reinforcement bars and concrete confined by stirrups are neglected. Present aim of study is to determine elastic properties of reinforced cement concrete beam. Two important stiffness properties such as AE and EI play important role in analysis of high rise RCC building idealized as plane frame. The experimental program consists of testing of beams (model size 150 × 150 × 700 mm) with percentage of reinforcement varying from 0.54 to 1.63% which commensurate with existing Codal provisions of IS:456-2000 for flexural member. The effect of confinement is considered in this study. The experimental results are verified by using 3D finite element techniques.
CDUCT-LaRC Status - Shear Layer Refraction and Noise Radiation
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Farassat, F.
2006-01-01
A proposed boundary condition accounting for shear layer effects within the Ffowcs Williams-Hawkings radiation module of the CDUCT-LaRC code is investigated. The development and numerical justification of the boundary condition formulation are reviewed. An initial assessment of the effectiveness of the shear layer correction is conducted through comparison with experimental data. Preliminary results indicate that the correction provides physically meaningful modifications of the baseline predicted directivity patterns. Trends of peak directivity steepening and shifting that appeared in predicted patterns were found to follow similar structures in measured data, particularly at higher radiation angles.
Polyphosphazene toughened high performance thermosets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Shanab, O.L.; Duygulu, M.; Soucek, M.D.
1995-12-31
Two modified polyphosphazenes were synthesized and characterized via FT-IR, {sup 1}H and {sup 31}P NMR, and DSC. Semi-Interpenetrating networks based on phenyl imide substituted polyphosphazene and polyimide thermoset resin designated LaRC{trademark} RP46 were prepared. Grafted copolymers were formed by grafting the backbone of maleimide substituted polyphosphazene into LaRC{trademark} RP46 thermoset resin. Thin films with a 0 to 40 Wt% range of polyphosphazene to polyimide ratio were prepared. A structure-property relationships of these inorganic/organic polymeric matrices were studied and evaluated in terms of fracture toughness, thermo-oxidative stability, thermal, and tensile properties.
Human cerebral cortex Cajal-Retzius neuron: development, structure and function. A Golgi study.
Marín-Padilla, Miguel
2015-01-01
The development, morphology and possible functional activity of the Cajal-Retzius cell of the developing human cerebral cortex are explored herein. The C-RC, of extracortical origin, is the essential neuron of the neocortex first lamina. It receives inputs from afferent fibers that reach the first lamina early in development. Although the origin and function of these original afferent fibers remain unknown, their target is the first lamina sole neuron: the C-RC. This neuron orchestrates the arrival, size and stratification of all pyramidal neurons (of ependymal origin) of the neocortex gray matter. Its axonic terminals spread radially and horizontally throughout the entirety of the first lamina establishing contacts with the dendritic terminals of all gray matter pyramidal cells regardless of size, location and/or eventual functional roles. While the neuron axonic terminals spread radially and horizontally throughout the first lamina, the neuronal' body undergoes progressive developmental dilution and locating any of them in the adult brain become quite difficult. The neuron bodies are probably retained in the older regions of the neocortex while their axonic collaterals will spread throughout its more recent ones and eventually will extend to great majority of the cortical surface. The neocortex first lamina evolution and composition and that of the C-RC are intertwined and mutually interdependent. It is not possible to understand the C-RC evolving morphology without understanding that of the first lamina. The first lamina composition and its structural and functional organizations obtained with different staining methods may be utterly different. These differences have added unnecessary confusion about its nature. The essential emptiness observed in hematoxylin and eosin preparations (most commonly used) contrast sharply with the concentration of dendrites (the cortex' largest) obtained using special (MAP-2) stain for dendrites. Only Golgi preparations demonstrate the numerous dendritic and axonic terminals that compose the first lamina basic structure. High power microscopic views of Golgi preparations demonstrate the intimate anatomical and functional interrelationships among dendritic and axonic terminals as well as synaptic contacts between them. The C-RC' essential morphology does not changes but it is progressively modified by the first lamina increase in thickness and in number of terminal dendrites and their subsequent maturation. This neuron variable morphologic appearance has been the source of controversy. Its morphology depends on the first lamina thickness that may be quite variable among different mammals. In rodents (most commonly used experimental mammal), the first lamina thickness, number and horizontal expansion of dendrites is but a fraction of those in humans. This differences are reflected in the C-RC' morphology among mammals (including humans) and should not be thought as representing new types of neurons.
Status of DSMT research program
NASA Technical Reports Server (NTRS)
Mcgowan, Paul E.; Javeed, Mehzad; Edighoffer, Harold H.
1991-01-01
The status of the Dynamic Scale Model Technology (DSMT) research program is presented. DSMT is developing scale model technology for large space structures as part of the Control Structure Interaction (CSI) program at NASA Langley Research Center (LaRC). Under DSMT a hybrid-scale structural dynamics model of Space Station Freedom was developed. Space Station Freedom was selected as the focus structure for DSMT since the station represents the first opportunity to obtain flight data on a complex, three-dimensional space structure. Included is an overview of DSMT including the development of the space station scale model and the resulting hardware. Scaling technology was developed for this model to achieve a ground test article which existing test facilities can accommodate while employing realistically scaled hardware. The model was designed and fabricated by the Lockheed Missile and Space Co., and is assembled at LaRc for dynamic testing. Also, results from ground tests and analyses of the various model components are presented along with plans for future subassembly and matted model tests. Finally, utilization of the scale model for enhancing analysis verification of the full-scale space station is also considered.
Study and Analyses on the Structural Performance of a Balance
NASA Technical Reports Server (NTRS)
Karkehabadi, R.; Rhew, R. D.; Hope, D. J.
2004-01-01
Strain-gauge balances for use in wind tunnels have been designed at Langley Research Center (LaRC) since its inception. Currently Langley has more than 300 balances available for its researchers. A force balance is inherently a critically stressed component due to the requirements of measurement sensitivity. The strain-gauge balances have been used in Langley s wind tunnels for a wide variety of aerodynamic tests, and the designs encompass a large array of sizes, loads, and environmental effects. There are six degrees of freedom that a balance has to measure. The balance s task to measure these six degrees of freedom has introduced challenging work in transducer development technology areas. As the emphasis increases on improving aerodynamic performance of all types of aircraft and spacecraft, the demand for improved balances is at the forefront. Force balance stress analysis and acceptance criteria are under review due to LaRC wind tunnel operational safety requirements. This paper presents some of the analyses and research done at LaRC that influence structural integrity of the balances. The analyses are helpful in understanding the overall behavior of existing balances and can be used in the design of new balances to enhance performance. Initially, a maximum load combination was used for a linear structural analysis. When nonlinear effects were encountered, the analysis was extended to include nonlinearities using MSC.Nastran . Because most of the balances are designed using Pro/Mechanica , it is desirable and efficient to use Pro/Mechanica for stress analysis. However, Pro/Mechanica is limited to linear analysis. Both Pro/Mechanica and MSC.Nastran are used for analyses in the present work. The structural integrity of balances and the possibility of modifying existing balances to enhance structural integrity are investigated.
NDT evaluation of long-term bond durability of CFRP-structural systems applied to RC highway bridges
NASA Astrophysics Data System (ADS)
Crawford, Kenneth C.
2016-06-01
The long-term durability of CFRP structural systems applied to reinforced-concrete (RC) highway bridges is a function of the system bond behavior over time. The sustained structural load performance of strengthened bridges depends on the carbon fiber-reinforced polymer (CFRP) laminates remaining 100 % bonded to concrete bridge members. Periodic testing of the CFRP-concrete bond condition is necessary to sustain load performance. The objective of this paper is to present a non-destructive testing (NDT) method designed to evaluate the bond condition and long-term durability of CFRP laminate (plate) systems applied to RC highway bridges. Using the impact-echo principle, a mobile mechanical device using light impact hammers moving along the length of a bonded CFRP plate produces unique acoustic frequencies which are a function of existing CFRP plate-concrete bond conditions. The purpose of this method is to test and locate CFRP plates de-bonded from bridge structural members to identify associated deterioration in bridge load performance. Laboratory tests of this NDT device on a CFRP plate bonded to concrete with staged voids (de-laminations) produced different frequencies for bonded and de-bonded areas of the plate. The spectra (bands) of frequencies obtained in these tests show a correlation to the CFRP-concrete bond condition and identify bonded and de-bonded areas of the plate. The results of these tests indicate that this NDT impact machine, with design improvements, can potentially provide bridge engineers a means to rapidly evaluate long lengths of CFRP laminates applied to multiple highway bridges within a national transportation infrastructure.
Drepper, F; Mathis, P
1997-02-11
The photosynthetic reaction center (RC) and its secondary electron donor the water-soluble cytochrome (cyt) c2 from the purple bacterium Rhodobacter sphaeroides have been used in cross-linked and non-cross-linked complexes, oriented in compressed gels or partially dried multilayers, to study the respective orientation of the primary donor P (BChl dimer) and of cyt c2. Three methods were used: (i) Polarized optical absorption spectra at 295 and 10 K were measured and the linear dichroism of the two individual transitions (Qx, Qy), which are nearly degenerate within the alpha-band of reduced cyt c2, was determined. Attribution of the polarization directions to the molecular axes within the heme plane yielded the average cyt orientation in the complexes. (ii) Time-resolved flash absorption measurements using polarized light allowed determination of the orientation of cyt c2 in complexes which differ in their kinetics of electron transfer. (iii) EPR spectroscopy of ferricyt c2 in cross-linked RC-cyt c2 complexes was used to determine the angle between the heme and the membrane plane. The results suggest the following structural properties for the docking of cyt c2 to the RC: (i) In cross-linked complexes, the two cytochromes displaying half-lives of 0.7 and 60 micros for electron transfer to P+ are similarly oriented (difference < 10 degrees). (ii) For cross-linked cyt c2 the heme plane is parallel to the symmetry axis of the RC (0 degrees +/- 10 degrees). Moreover, the Qy transition, which is assumed to be polarized within the ring III-ring I direction of the heme plane, makes an angle of 56 degrees +/- 1 degree with the symmetry axis. (iii) The dichroism spectrum for the fast phase (0.7 micros) for the non-cross-linked cyt c2-RC complex suggests an orientation similar to that of cross-linked cyt c2, but the heme plane is tilted about 20 degrees closer to the membrane. An alternative model is that two or more bound states of cyt c2 with heme plane tilt angles between 0 degrees and 30 degrees allow the fast electron transfer. Zero-length cross-linking of cyt c2 may take place in one of these bound states. These orientations of cyt c2 are compared to different structural models of RC-cyt c2 complexes proposed previously. The relation of the two kinetic phases observed in cross-linked cyt c2 complexes to biphasic kinetics of the mobile reaction partners is discussed with respect to the dynamic electrostatic interactions during the formation of a docking complex and its dissociation. A mechanism is proposed in which a pre-orientation of cyt c2 relative to the membrane plane occurs by interaction of its strong electrostatic dipole with the negative surface charges of the RC. The optimal matching of the oppositely charged surfaces of the two proteins necessitates further rotation of the cyt around its dipole axis.
Kou, Yaping; Yuan, Cunquan; Zhao, Qingcui; Liu, Guoqin; Nie, Jing; Ma, Zhimin; Cheng, Chenxia; Teixeira da Silva, Jaime A.; Zhao, Liangjun
2016-01-01
Thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs) induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1) and auxin transport proteins (RcPIN2, RcPIN3) decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa. PMID:27200031
Quinone reduction via secondary B-branch electron transfer in mutant bacterial reaction centers.
Laible, Philip D; Kirmaier, Christine; Udawatte, Chandani S M; Hofman, Samuel J; Holten, Dewey; Hanson, Deborah K
2003-02-18
Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional asymmetry of the two cofactor branches.
NASA Astrophysics Data System (ADS)
Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore
2013-04-01
Reinforced Concrete (RC) has been widely used in construction of infrastructures for many decades. The cracking behavior in concrete is crucial due to the harmful effects on structural performance such as serviceability and durability requirements. In general, in loading such structures until failure, tensile cracks develop at the initial stages of loading, while shear cracks dominate later. Therefore, monitoring the cracking modes is of paramount importance as it can lead to the prediction of the structural performance. In the past two decades, significant efforts have been made toward the development of automated structural health monitoring (SHM) systems. Among them, a technique that shows promises for monitoring RC structures is the acoustic emission (AE). This paper introduces a novel probabilistic approach based on Gaussian Mixture Modeling (GMM) to classify AE signals related to each crack mode. The system provides an early warning by recognizing nucleation of numerous critical shear cracks. The algorithm is validated through an experimental study on a full-scale reinforced concrete shear wall subjected to a reversed cyclic loading. A modified conventional classification scheme and a new criterion for crack classification are also proposed.
Assisted living and nursing homes: apples and oranges?
Zimmerman, Sheryl; Gruber-Baldini, Ann L; Sloane, Philip D; Eckert, J Kevin; Hebel, J Richard; Morgan, Leslie A; Stearns, Sally C; Wildfire, Judith; Magaziner, Jay; Chen, Cory; Konrad, Thomas R
2003-04-01
The goals of this study are to describe the current state of residential care/assisted living (RC/AL) care and residents in comparison with nursing home (NH) care and residents, identify different types of RC/AL care and residents, and consider how variation in RC/AL case-mix reflects differences in care provision and/or consumer preference. Data were derived from the Collaborative Studies of Long-Term Care, a four-state study of 193 RC/AL facilities and 40 NHs. Multivariate analyses examined differences in ten process of care measures between RC/AL facilities with less than 16 beds; traditional RC/AL with 16 or more beds; new-model RC/AL; and NHs. Generalized estimating equation models determined differences in resident case-mix across RC/AL facilities using data for 2,078 residents. NHs report provision of significantly more health services and have significantly more lenient admission policies than RC/AL facilities, but provide less privacy. They do not differ from larger RC/AL facilities in policy clarity or resident control. Differences within RC/AL types are evident, with smaller and for-profit facilities scoring lower than other facilities across multiple process measures, including those related to individual freedom and institutional order. Resident impairment is substantial in both NHs and RC/AL settings, but differs by RC/AL facility characteristics. Differences in process of care and resident characteristics by facility type highlight the importance of considering: (1) the adequacy of existing process measures for evaluating smaller facilities; (2) resident case-mix when comparing facility types and outcomes; and (3) the complexity of understanding the implication of the process of care, given the importance of person-environment fit. Work is continuing to clarify the role of RC/AL vis-à-vis NHs in our nation's system of residential long-term care.
Minimum complexity echo state network.
Rodan, Ali; Tino, Peter
2011-01-01
Reservoir computing (RC) refers to a new class of state-space models with a fixed state transition structure (the reservoir) and an adaptable readout form the state space. The reservoir is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be exploited by the reservoir-to-output readout mapping. The field of RC has been growing rapidly with many successful applications. However, RC has been criticized for not being principled enough. Reservoir construction is largely driven by a series of randomized model-building stages, with both researchers and practitioners having to rely on a series of trials and errors. To initialize a systematic study of the field, we concentrate on one of the most popular classes of RC methods, namely echo state network, and ask: What is the minimal complexity of reservoir construction for obtaining competitive models and what is the memory capacity (MC) of such simplified reservoirs? On a number of widely used time series benchmarks of different origin and characteristics, as well as by conducting a theoretical analysis we show that a simple deterministically constructed cycle reservoir is comparable to the standard echo state network methodology. The (short-term) MC of linear cyclic reservoirs can be made arbitrarily close to the proved optimal value.
SPARC's Stratospheric Sulfur and its Role in Climate Activity (SSiRC)
NASA Technical Reports Server (NTRS)
Thomason, Larry
2015-01-01
The stratospheric aerosol layer is a key component in the climate system. It affects the radiative balance of the atmosphere directly through interactions with solar and terrestrial radiation, and indirectly through its effect on stratospheric ozone. Because the stratospheric aerosol layer is prescribed in many climate models and Chemistry-Climate Models (CCMs), model simulations of future atmospheric conditions and climate generally do not account for the interaction between the aerosol-sulfur cycle and changes in the climate system. The present understanding of how the stratospheric aerosol layer may be affected by future climate change and how the stratospheric aerosol layer may drive climate change is, therefore, very limited. The purposes of SSiRC (Stratospheric Sulfur and its Role in Climate) include: (i) providing a coordinating structure for the various individual activities already underway in different research centers; (ii) encouraging and supporting new instrumentation and measurements of sulfur containing compounds, such as COS, DMS, and non-volcanic SO2 in the UT/LS globally; and (iii) initiating new model/data inter-comparisons. SSiRC is developing collaborations with a number of other SPARC activities including CCMI and ACAM. This presentation will highlight the scientific goals of this project and on-going activities and propose potential interactions between SSiRC and ACAM.
NASA Astrophysics Data System (ADS)
Mu, Huimin
Coaxial cables are mainly composed of inner and outer conductors, and a dielectric layer in between. In this study they are proposed as continuous sensors for monitoring of civil infrastructures. Due to small deformation and minor cracks of engineering interest, coaxial cables have never been applied into reinforced concrete (RC) structures until the late 1990s. The state of the art in design of a cable sensor is to replace the polyethylene pipe of a commercial cable with a rubber tube as a dielectric layer to increase the cable's sensitivity up to 10 times. In this dissertation a new design of prototype cable sensor is proposed. The new sensors not only respond to the cable's elongation directly but, more significantly, to the topology change in the outer conductor associated with the cable elongation. The latter effect is first proposed and investigated in this study. An analytical model of the proposed sensor design was developed in this study to establish the relation between the directly measurable quantities with design parameters. Four types of the sensors with various parameters were also numerically simulated to confirm the analytical results. Both analytical and numerical results were validated through experimentation. After having calibrated with the strain applied on them, the sensors were embedded into twelve RC beams to understand how sensitive they are to stressing and cracking in RC beams. The results from the flexural tests indicated that the sensitivity of the newly designed sensors is 50˜100 times higher than that of commercial cables to the longitudinal elongation. The new sensors can be used to successfully detect both the location and width of a crack in RC members.
The gammaTuRC Nanomachine Mechanism and Future Applications
NASA Astrophysics Data System (ADS)
Riehlman, Timothy D.
The complexity and precision of the eukaryotic cell's cytoskeletal network is unrivaled by any man-made systems, perfected by billions of years of evolution, mastering elegant processes of self-assembly, error correction, and self-repair. Understanding the capabilities of these networks will have important and far reaching applications in human medicine by aiding our understanding of developmental processes, cellular division, and disease mechanisms, and through biomimicry will provide insights for biosynthetic manufacturing at the nanoscale and across scales. My research utilizes cross species techniques from Human to the model organism of Fission Yeast to investigate the structure and mechanisms of the g-tubulin ring complex (gTuRC). The gTuRC is a highly conserved eukaryotic multiprotein complex serving as a microtubule organizing center (MTOC) responsible for microtubule nucleation through templating, regulation of dynamics, and establishment of microtubule polarity. Microtubules are 25 nm diameter dynamic flexible polymers of a/b-tubulin heterodimers that function as scaffolds, force generators, distributors, and intracellular highways. The microtubule cytoskeleton is essential for numerous fundamental cellular processes such as mitotic division of chromosomes and cell division, organelle distribution within the cell, cell signaling, and cell shape. This incredible diversity in functions is made possible in part due to molecular motor Kinesin-like proteins (Klps), which allow expansion into more specialized neural, immune, and ciliated cell functions. Combined, the MTOC, microtubules, and Klps represent ideal microtubule cytoskeleton protein (MCP) modular components for in vitro biomimicry towards generation of adaptable patterned networks for human designed applications. My research investigates the hypothesis that a mechanistic understanding of conserved MTOC gTuRC mechanisms will help us understand dynamic cellular nanomachines and their ability to self-assemble complex structures for applications in biomedicine and new roles in biomimetic nanotechnologies.
The Big Picture: Imaging of the Global Geospace Environment by the TWINS Mission
NASA Astrophysics Data System (ADS)
Goldstein, J.; McComas, D. J.
2018-03-01
Encircling our planet at distances of 2.5 to 8 Earth radii is a dynamic plasma population known as the ring current (RC). During geomagnetic storms, the solar wind's interaction with Earth's magnetic field pumps petaJoules of energy into the RC, energizing and transporting particles. To measure the global geospace response, RC imaging is performed by capturing energetic neutral atoms (ENAs) created by charge exchange between geospace ions and the neutral exosphere. The H exosphere is itself imaged via its geocoronal Lyman-α glow. Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a stereoscopic ENA and Lyman-α imaging mission that has recorded the deep minimum of solar cycle (SC) 23 and the moderate maximum of SC 24, observing geospace conditions ranging from utterly quiet to major storms. This review covers TWINS studies of the geospace response published during 2013 to 2017. Stereo ENA imaging has revealed new dimensionality and structure of RC ions. Continuous coverage by two imagers has allowed monitoring storms from start to finish. Deconvolution of the low-altitude signal has extended ENA analysis and revealed causal connections between the trapped and precipitating ion populations. ENA-based temperature and composition analyses have been refined, validated, and applied to an unprecedented sequence of solar activity changes in SC 23 and SC 24. Geocoronal imaging has revealed a surprising amount of time variability and structure in the neutral H exosphere, driven by both Sun and solar wind. Global models have been measurably improved. Routine availability of simultaneous in situ measurements has fostered huge leaps forward in the areas of ENA validation and cross-scale studies.
Crack detection and fatigue related delamination in FRP composites applied to concrete
NASA Astrophysics Data System (ADS)
Brown, Jeff; Baker, Rebecca; Kallemeyn, Lisa; Zendler, Andrew
2008-03-01
Reinforced concrete beams are designed to allow minor concrete cracking in the tension zone. The severity of cracking in a beam element is a good indicator of how well a structure is performing and whether or not repairs are needed to prevent structural failure. FRP composites are commonly used to increase the flexural and shear capacity of RC beam elements, but one potential disadvantage of this method is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for detecting load induced cracking in the concrete substrate and delamination of FRP strengthening systems applied to reinforced concrete (RC). One small-scale RC beam (5 in. x 6 in. x 60 in.) was strengthened with FRP and loaded to failure monotonically. An infrared thermography inspection was performed after failure. A second strengthened beam was loaded cyclically for 1,750,000 cycles to investigate how fatigue might affect substrate cracking and delamination growth throughout the service-life of a repaired element. No changes were observed in the FRP bond during/after the cyclic loading. The thermal imaging component of this research included pixel normalization to enhance detectability and characterization of this specific type of damage.
NASA Astrophysics Data System (ADS)
Havu, Vile; Blum, Volker; Scheffler, Matthias
2007-03-01
Numeric atom-centered local orbitals (NAO) are efficient basis sets for all-electron electronic structure theory. The locality of NAO's can be exploited to render (in principle) all operations of the self-consistency cycle O(N). This is straightforward for 3D integrals using domain decomposition into spatially close subsets of integration points, enabling critical computational savings that are effective from ˜tens of atoms (no significant overhead for smaller systems) and make large systems (100s of atoms) computationally feasible. Using a new all-electron NAO-based code,^1 we investigate the quantitative impact of exploiting this locality on two distinct classes of systems: Large light-element molecules [Alanine-based polypeptide chains (Ala)n], and compact transition metal clusters. Strict NAO locality is achieved by imposing a cutoff potential with an onset radius rc, and exploited by appropriately shaped integration domains (subsets of integration points). Conventional tight rc<= 3å have no measurable accuracy impact in (Ala)n, but introduce inaccuracies of 20-30 meV/atom in Cun. The domain shape impacts the computational effort by only 10-20 % for reasonable rc. ^1 V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, The FHI Ab Initio Molecular Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).
A low-power small-area ADC array for IRFPA readout
NASA Astrophysics Data System (ADS)
Zhong, Shengyou; Yao, Libin
2013-09-01
The readout integrated circuit (ROIC) is a bridge between the infrared focal plane array (IRFPA) and image processing circuit in an infrared imaging system. The ROIC is the first part of signal processing circuit and connected to detectors directly, so its performance will greatly affect the detector or even the whole imaging system performance. With the development of CMOS technologies, it's possible to digitalize the signal inside the ROIC and develop the digital ROIC. Digital ROIC can reduce complexity of the whole system and improve the system reliability. More importantly, it can accommodate variety of digital signal processing techniques which the traditional analog ROIC cannot achieve. The analog to digital converter (ADC) is the most important building block in the digital ROIC. The requirements for ADCs inside the ROIC are low power, high dynamic range and small area. In this paper we propose an RC hybrid Successive Approximation Register (SAR) ADC as the column ADC for digital ROIC. In our proposed ADC structure, a resistor ladder is used to generate several voltages. The proposed RC hybrid structure not only reduces the area of capacitor array but also releases requirement for capacitor array matching. Theory analysis and simulation show RC hybrid SAR ADC is suitable for ADC array applications
Semchonok, Dmitry A.; Chauvin, Jean-Paul; Frese, Raoul N.; Jungas, Colette; Boekema, Egbert J.
2012-01-01
Electron microscopy and single-particle averaging were performed on isolated reaction centre (RC)—antenna complexes (RC–LH1–PufX complexes) of Rhodobaca bogoriensis strain LBB1, with the aim of establishing the LH1 antenna conformation, and, in particular, the structural role of the PufX protein. Projection maps of dimeric complexes were obtained at 13 Å resolution and show the positions of the 2 × 14 LH1 α- and β-subunits. This new dimeric complex displays two open, C-shaped LH1 aggregates of 13 αβ polypeptides partially surrounding the RCs plus two LH1 units forming the dimer interface in the centre. Between the interface and the two half rings are two openings on each side. Next to the openings, there are four additional densities present per dimer, considered to be occupied by four copies of PufX. The position of the RC in our model was verified by comparison with RC–LH1–PufX complexes in membranes. Our model differs from previously proposed configurations for Rhodobacter species in which the LH1 ribbon is continuous in the shape of an S, and the stoichiometry is of one PufX per RC. PMID:23148268
Arentson, Benjamin W; Hayes, Erin L; Zhu, Weidong; Singh, Harkewal; Tanner, John J; Becker, Donald F
2016-12-01
Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ 1 -pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon-helix-helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membrane-associated enzyme in response to cellular nutritional needs and proline availability. In the present study, we attempt to construct a trifunctional PutA by fusing the RHH domain of Escherichia coli PutA (EcRHH) to the bifunctional Rhodobacter capsulatus PutA (RcPutA) in order to explore the modular design of functional switching in trifunctional PutAs. The EcRHH-RcPutA chimaera retains the catalytic properties of RcPutA while acquiring the oligomeric state, quaternary structure and DNA-binding properties of EcPutA. Furthermore, the EcRHH-RcPutA chimaera exhibits proline-induced lipid association, which is a fundamental characteristic of functional switching. Unexpectedly, RcPutA lipid binding is also activated by proline, which shows for the first time that bifunctional PutAs exhibit a limited form of functional switching. Altogether, these results suggest that the C-terminal domain (CTD), which is conserved by trifunctional PutAs and certain bifunctional PutAs, is essential for functional switching in trifunctional PutAs. © 2016 The Author(s).
Arentson, Benjamin W.; Hayes, Erin L.; Zhu, Weidong; Singh, Harkewal; Tanner, John J.; Becker, Donald F.
2016-01-01
Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon–helix–helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membrane-associated enzyme in response to cellular nutritional needs and proline availability. In the present study, we attempt to construct a trifunctional PutA by fusing the RHH domain of Escherichia coli PutA (EcRHH) to the bifunctional Rhodobacter capsulatus PutA (RcPutA) in order to explore the modular design of functional switching in trifunctional PutAs. The EcRHH–RcPutA chimaera retains the catalytic properties of RcPutA while acquiring the oligomeric state, quaternary structure and DNA-binding properties of EcPutA. Furthermore, the EcRHH–RcPutA chimaera exhibits proline-induced lipid association, which is a fundamental characteristic of functional switching. Unexpectedly, RcPutA lipid binding is also activated by proline, which shows for the first time that bifunctional PutAs exhibit a limited form of functional switching. Altogether, these results suggest that the C-terminal domain (CTD), which is conserved by trifunctional PutAs and certain bifunctional PutAs, is essential for functional switching in trifunctional PutAs. PMID:27742866
47 CFR 95.201 - (R/C Rule 1) What is the Radio Control (R/C) Radio Service?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false (R/C Rule 1) What is the Radio Control (R/C) Radio Service? 95.201 Section 95.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service General...
St-Pierre, Corinne; Desmeules, François; Dionne, Clermont E; Frémont, Pierre; MacDermid, Joy C; Roy, Jean-Sébastien
2016-01-01
To conduct a systematic review of the psychometric properties (reliability, validity and responsiveness) of self-report questionnaires used to assess symptoms and functional limitations of individuals with rotator cuff (RC) disorders. A systematic search in three databases (Cinahl, Medline and Embase) was conducted. Data extraction and critical methodological appraisal were performed independently by three raters using structured tools, and agreement was achieved by consensus. A descriptive synthesis was performed. One-hundred and twenty articles reporting on 11 questionnaires were included. All questionnaires were highly reliable and responsive to change, and showed construct validity; seven questionnaires also shown known-group validity. The minimal detectable change ranged from 6.4% to 20.8% of total score; only two questionnaires (American Shoulder and Elbow Surgeon questionnaire [ASES] and Upper Limb Functional Index [ULFI]) had a measurement error below 10% of global score. Minimal clinically important differences were established for eight questionnaires, and ranged from 8% to 20% of total score. Overall, included questionnaires showed acceptable psychometric properties for individuals with RC disorders. The ASES and ULFI have the smallest absolute error of measurement, while the Western Ontario RC Index is one of the most responsive questionnaires for individuals suffering from RC disorders. All included questionnaires are reliable, valid and responsive for the evaluation of individuals with RC disorders. As all included questionnaires showed good psychometric properties for the targeted population, the choice should be made according to the purpose of the evaluation and to the construct being evaluated by the questionnaire. The WORC, a RC-specific questionnaire, appeared to be more responsive. It should therefore be used to evaluate change in time. If the evaluation is time-limited, shorter questionnaires or short versions should be considered (such as Quick DASH or SST).
Jankowiak, Ryszard; Rancova, Olga; Chen, Jinhai; Kell, Adam; Saer, Rafael G; Beatty, J Thomas; Abramavicius, Darius
2016-08-18
This work focuses on the low-temperature (5 K) photochemical (transient) hole-burned (HB) spectra within the P870 absorption band, and their theoretical analysis, for the (M)L214G mutant of the photosynthetic Rhodobacter sphaeroides bacterial reaction center (bRC). To provide insight into system-bath interactions of the bacteriochlorophyll a (BChl a) special pair, i.e., P870, in the mutated bRC, the optical line shape function for the P870 band is calculated numerically. On the basis of the modeling studies, we demonstrate that (M)L214G mutation leads to a heterogeneous population of bRCs with modified (increased) total electron-phonon coupling strength of the special pair BChl a and larger inhomogeneous broadening. Specifically, we show that after mutation in the (M)L214G bRC a large fraction (∼50%) of the bacteriopheophytin (HA) chromophores shifts red and the 800 nm absorption band broadens, while the remaining fraction of HA cofactors retains nearly the same site energy as HA in the wild-type bRC. Modeling using these two subpopulations allowed for fits of the absorption and nonresonant (transient) HB spectra of the mutant bRC in the charge neutral, oxidized, and charge-separated states using the Frenkel exciton Hamiltonian, providing new insight into the mutant's complex electronic structure. Although the average (M)L214G mutant quantum efficiency of P(+)QA(-) state formation seems to be altered in comparison with the wild-type bRC, the average electron transfer time (measured via resonant transient HB spectra within the P870 band) was not affected. Thus, mutation in the vicinity of the electron acceptor (HA) does not tune the charge separation dynamics. Finally, quenching of the (M)L214G mutant excited states by P(+) is addressed by persistent HB spectra burned within the B band in chemically oxidized samples.
NASA Technical Reports Server (NTRS)
Moore, Thomas C., Sr.
2004-01-01
The character of force and strain measurement testing at LaRC is such that the types of strain gauge installations, the materials upon which the strain gauges are applied, and the test environments encountered, require many varied approaches. In 1997, a NASA Technical Memorandum (NASA TM 110327) was generated to provide the strain gauge application specialist with a listing of recommended procedures for strain gauging various transducers and test articles at LaRC. The technical memorandum offered here is an effort to keep the strain gauge user informed of new technological enhancements in strain-gauging methodology while preserving the strain-gauging guidelines set forth in the 1997 TM. This document provides detailed recommendations for strain gauging LaRC-designed balances and custom transducers, composite materials, cryogenic and high-temperature test articles, and selected non-typical or unique materials or test conditions. Additionally, one section offers details for installing Bragg-Grating type fiber-optic strain sensors for non-typical test scenarios.
Three kinds of particles on a single rationally parameterized world line
NASA Astrophysics Data System (ADS)
Kassandrov, V. V.; Markova, N. V.
2016-10-01
We consider the light cone (`retardation') equation (LCE) of an inertially moving observer and a single worldline parameterized by arbitrary rational functions. Then a set of apparent copies, R- or C-particles, defined by the (real or complex conjugate) roots of the LCE will be detected by the observer. For any rational worldline the collective R-C dynamics is manifestly Lorentz-invariant and conservative; the latter property follows directly from the structure of Vieta formulas for the LCE roots. In particular, two Lorentz invariants, the square of total 4-momentum and total rest mass, are distinct and both integer-valued. Asymptotically, at large values of the observer's proper time, one distinguishes three types of the LCE roots and associated R-C particles, with specific locations and evolutions; each of three kinds of particles can assemble into compact large groups - clusters. Throughout the paper, we make no use of differential equations of motion, field equations, etc.: the collective R-C dynamics is purely algebraic
Semi-Active Control of Precast RC Columns under Seismic Action
NASA Astrophysics Data System (ADS)
Caterino, Nicola; Spizzuoco, Mariacristina
2017-10-01
This work is inspired by the idea of dissipating seismic energy at the base of prefabricated RC columns via semi-active (SA) variable dampers exploiting the base rocking. It was performed a wide numerical campaign to investigate the seismic behaviour of a pre-cast RC column with a variable base restraint. The latter is based on the combined use of a hinge, elastic springs, and magnetorheological (MR) dampers remotely controlled according to the instantaneous response of the structural component. The MR devices are driven by a SA control algorithm purposely written to modulate the dissipative capability so as to reduce base bending moment without causing excessive displacement at the top. The proposed strategy results to be really promising, since the base restraint relaxation, that favours the base moment demand reduction, is accompanied by a high enhancement of the dissipated energy due to rocking that can be even able to reduce top displacement in respect to the “fixed base rotation” conditions.
Multivariate Analyses of Rotator Cuff Pathologies in Shoulder Disability
Henseler, Jan F.; Raz, Yotam; Nagels, Jochem; van Zwet, Erik W.; Raz, Vered; Nelissen, Rob G. H. H.
2015-01-01
Background Disability of the shoulder joint is often caused by a tear in the rotator cuff (RC) muscles. Four RC muscles coordinate shoulder movement and stability, among them the supraspinatus and infraspinatus muscle which are predominantly torn. The contribution of each RC muscle to tear pathology is not fully understood. We hypothesized that muscle atrophy and fatty infiltration, features of RC muscle degeneration, are predictive of superior humeral head translation and shoulder functional disability. Methods Shoulder features, including RC muscle surface area and fatty infiltration, superior humeral translation and RC tear size were obtained from a consecutive series of Magnetic Resonance Imaging with arthrography (MRA). We investigated patients with superior (supraspinatus, n = 39) and posterosuperior (supraspinatus and infraspinatus, n = 30) RC tears, and patients with an intact RC (n = 52) as controls. The individual or combinatorial contribution of RC measures to superior humeral translation, as a sign of RC dysfunction, was investigated with univariate or multivariate models, respectively. Results Using the univariate model the infraspinatus surface area and fatty infiltration in both the supraspinatus and infraspinatus had a significant contribution to RC dysfunction. With the multivariate model, however, the infraspinatus surface area only affected superior humeral translation (p<0.001) and discriminated between superior and posterosuperior tears. In contrast neither tear size nor fatty infiltration of the supraspinatus or infraspinatus contributed to superior humeral translation. Conclusion Our study reveals that infraspinatus atrophy has the strongest contribution to RC tear pathologies. This suggests a pivotal role for the infraspinatus in preventing shoulder disability. PMID:25710703
Lipophilization of somatostatin analog RC-160 improves its bioactivity and stability.
Dasgupta, P; Singh, A T; Mukherjee, R
1999-07-01
Acromegaly is a symptomatically disabling condition, resulting from a growth hormone (GH) secreting pituitary tumor. The somatostatin analog RC- 160 is known to potently inhibit hypersecretion of GH, from pituitary adenomas. However, the therapeutic potential of RC-160, is limited by its short serum half life. To overcome this limitation, fatty acids with carbon chain lengths ranging from 4 to 18 were conjugated to RC-160. The GH-inhibitory activity of these lipopeptides, as well as their binding profile to somatostatin receptors, on the rat pituitary adenoma cell line GH3 was studied in vitro. The relative stability of lipophilized RC-160 towards degradation by crude papaya protease was also determined. The long chain lipopeptides, like myristoyl-RC-160 (carbon chain length = 14) were found to exhibit greater receptor affinity and GH-inhibitory activity, as compared to their counterparts of lower chain lengths. However, the receptor affinity and GH-inhibitory activity of stearoyl-RC-160 (carbon chain length = 18), was found to lower than RC-160 and its lipophilized derivatives. Unlike RC-160, the myristoylated derivative was found to have significantly greater resistance to protease and serum degradation (p < 0.01). Lipophilization of RC-160 with long chain fatty acids improves its stability and GH-inhibitory activity. The activity of lipophilized RC-160 seems to increase with increasing hydrophobicity of the lipopeptide, and reaches a maxima at myristoyl-RC-160 for GH3. Hence, optimizing the hydrophobicity should be an important consideration governing the design and synthesis of bioactive lipopeptides.
Viral Replication Complexes Are Targeted by LC3-Guided Interferon-Inducible GTPases.
Biering, Scott B; Choi, Jayoung; Halstrom, Rachel A; Brown, Hailey M; Beatty, Wandy L; Lee, Sanghyun; McCune, Broc T; Dominici, Erin; Williams, Lelia E; Orchard, Robert C; Wilen, Craig B; Yamamoto, Masahiro; Coers, Jörn; Taylor, Gregory A; Hwang, Seungmin
2017-07-12
All viruses with positive-sense RNA genomes replicate on membranous structures in the cytoplasm called replication complexes (RCs). RCs provide an advantageous microenvironment for viral replication, but it is unknown how the host immune system counteracts these structures. Here we show that interferon-gamma (IFNG) disrupts the RC of murine norovirus (MNV) via evolutionarily conserved autophagy proteins and the induction of IFN-inducible GTPases, which are known to destroy the membrane of vacuoles containing bacteria, protists, or fungi. The MNV RC was marked by the microtubule-associated-protein-1-light-chain-3 (LC3) conjugation system of autophagy and then targeted by immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs) upon their induction by IFNG. Further, the LC3 conjugation system and the IFN-inducible GTPases were necessary to inhibit MNV replication in mice and human cells. These data suggest that viral RCs can be marked and antagonized by a universal immune defense mechanism targeting diverse pathogens replicating in cytosolic membrane structures. Copyright © 2017 Elsevier Inc. All rights reserved.
Role of endoscopic ultrasonography in the loco-regional staging of patients with rectal cancer
Marone, Pietro; de Bellis, Mario; D’Angelo, Valentina; Delrio, Paolo; Passananti, Valentina; Di Girolamo, Elena; Rossi, Giovanni Battista; Rega, Daniela; Tracey, Maura Claire; Tempesta, Alfonso Mario
2015-01-01
The prognosis of rectal cancer (RC) is strictly related to both T and N stage of the disease at the time of diagnosis. RC staging is crucial for choosing the best multimodal therapy: patients with high risk locally advanced RC (LARC) undergo surgery after neoadjuvant chemotherapy and radiotherapy (NAT); those with low risk LARC are operated on after a preoperative short-course radiation therapy; finally, surgery alone is recommended only for early RC. Several imaging methods are used for staging patients with RC: computerized tomography, magnetic resonance imaging, positron emission tomography, and endoscopic ultrasound (EUS). EUS is highly accurate for the loco-regional staging of RC, since it is capable to evaluate precisely the mural infiltration of the tumor (T), especially in early RC. On the other hand, EUS is less accurate in restaging RC after NAT and before surgery. Finally, EUS is indicated for follow-up of patients operated on for RC, where there is a need for the surveillance of the anastomosis. The aim of this review is to highlight the impact of EUS on the management of patients with RC, evaluating its role in both preoperative staging and follow-up of patients after surgery. PMID:26140096
Liu, Jun-hua; Zhang, Meng-ling; Zhang, Rui-yang; Zhu, Wei-yun; Mao, Sheng-yong
2016-03-01
The objective of this research was to compare the composition of bacterial microbiota associated with the ruminal content (RC), ruminal epithelium (RE) and faeces of Holstein dairy cows. The RC, RE and faecal samples were collected from six Holstein dairy cows when the animals were slaughtered. Community compositions of bacterial 16S rRNA genes from RC, RE and faeces were determined using a MiSeq sequencing platform with bacterial-targeting universal primers 338F and 806R. UniFrac analysis revealed that the bacterial communities of RC, RE and faeces were clearly separated from each other. Statistically significant dissimilarities were observed between RC and faeces (P = 0.002), between RC and RE (P = 0.003), and between RE and faeces (P = 0.001). A assignment of sequences to taxa showed that the abundance of the predominant phyla Bacteroidetes was lower in RE than in RC, while a significant higher (P < 0.01) abundance of Proteobacteria was present in RE than in RC. When compared with the RC, the abundance of Firmicutes and Verrucomicrobia was higher in faeces, and RC contained a greater abundance of Bacteroidetes and Tenericutes. A higher proportions of Butyrivibrio and Campylobacter dominated RE as compared to RC. The faecal microbiota was less diverse than RC and dominated by genera Turicibacter and Clostridium. In general, these findings clearly demonstrated the striking compositional differences among RC, RE and faeces, indicating that bacterial communities are specific and adapted to the harbouring environment. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Quantitative and qualitative analyses of subacromial impingement by kinematic open MRI.
Tasaki, Atsushi; Nimura, Akimoto; Nozaki, Taiki; Yamakawa, Akira; Niitsu, Mamoru; Morita, Wataru; Hoshikawa, Yoshimitsu; Akita, Keiichi
2015-05-01
Quantitative and qualitative kinematic analyses of subacromial impingement by 1.2T open MRI were performed to determine the location of impingement and the involvement of the acromioclavicular joint. In 20 healthy shoulders, 10 sequential images in the scapular plane were taken in a 10-s pause at equal intervals from 30° to maximum abduction in neutral and internal rotation. The distances between the rotator cuff (RC) and the acromion and the acromioclavicular joint were measured. To comprehend the positional relationships, cadaveric specimens were also observed. Although asymptomatic, the RC came into contact with the acromion and the acromioclavicular joint in six and five cases, respectively. The superior RC acted as a depressor for the humeral head against the acromion as the shoulder elevated. The mean elevation angle and distance at the closest position between the RC and the acromion in neutral rotation were 93.5° and 1.6 mm, respectively, while those between the RC and the acromioclavicular joint were 86.7° and 2.0 mm. When comparing this distance and angle, there was no significant difference between the RC to the acromion and to the acromioclavicular joint. The minimum distance between the RC and the acromion was significantly shorter than that between the greater tuberosity and the acromion. The location of RC closest to the acromion and the acromioclavicular joint differed significantly. Although asymptomatic, contact was found between the RC and the acromion and the acromioclavicular joint. The important role of the RC to prevent impingement was observed, and hence, dysfunction of the RC could lead to impingement that could result in a RC lesion. The RC lesions may differ when they are caused by impingement from either the acromion or the acromioclavicular joint.
Species differences in unlocking B-side electron transfer in bacterial reaction centers
Dylla, Nicholas P.; Faries, Kaitlyn M.; Wyllie, Ryan M.; ...
2016-06-21
The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. Finally, the overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.
Species differences in unlocking B-side electron transfer in bacterial reaction centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dylla, Nicholas P.; Faries, Kaitlyn M.; Wyllie, Ryan M.
The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. Finally, the overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.
Research notes : shear capacity of corrosion-damaged RC beams.
DOT National Transportation Integrated Search
2004-01-01
Bridges on Oregons coast must withstand a corrosive marine environment. Concrete in reinforced concrete structures offers temporary protection to the reinforcing steel against the environment; but eventually the embedded steel succumbs to the inex...
Fatigue and post-fatigue performance of Fabry-Perot FOS installed on CFRP-strengthened RC-beams
NASA Astrophysics Data System (ADS)
Gheorghiu, Catalin; Labossiere, Pierre; Proulx, Jean
2004-07-01
There is a growing need for built-in monitoring systems for civil engineering infrastructures, due to problems such as increasing traffic loads and rising costs of maintenance and repair. Fibre optic sensors (FOS), capable of reading various parameters are promising candidates for life-long health monitoring of these structures. However, since FOS have only been introduced recently into the field of structural monitoring, their acceptance and widespread implementation will be conditioned by their durability under severe climatic and loading conditions. This paper reports on the performance of strain extrinsic FOS attached to carbon fibre reinforced polymer (CFRP) plates used to strengthen concrete structures. The specimens tested in this project are reinforced concrete (RC) beams with an additional external CFRP reinforcement. The FOS-instrumented beams were first subjected to fatigue loading for various numbers of cycles and load amplitudes. Then, they were tested monotonically to failure under four-point-bending. The test results provide an insight on the fatigue and post-fatigue behaviour of FOS used for monitoring reinforced concrete structures.
New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Sang Gyu, E-mail: sg.ju@samsung.com; Kim, Min Kyu; Hong, Chae-Seon
2014-02-01
Purpose: A new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC{sub 3}DP) were compared with those of a conventional RC (RC{sub C}MM) manufactured by a computerized milling machine (CMM). Methods and Materials: An RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC{sub 3}DP was printed with ultraviolet curable acrylic plastic, and an RC{submore » C}MM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1 mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2 RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency. Results: The pass rates for the CA test were 99.5% and 92.5% for RC{sub 3}DP and RC{sub C}MM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC{sub 3}DP and RC{sub C}MM were about 18 and 3 hours, respectively. Conclusions: The physical accuracy and dosimetric characteristics of RC{sub 3}DP were comparable with those of the conventional RC{sub C}MM, and significant system minimization was provided.« less
Dasgupta, P; Singh, A T; Mukherjee, R
2000-03-01
Oral cancer which comprises about 40% of total cancers in India, has one of the lowest relative survival rates of all cancers. Epidermal growth factor (EGF) has been known to play a role in the proliferation/malignant transformation of oral neoplasms. Since, the somatostatin analog RC-160 is reported to be a potent inhibitor of EGF stimulated cell proliferation, its anti-proliferative activity in the human oral carcinoma cell line KB was investigated, in this study. RC-160 was found to potently inhibit EGF-induced proliferation in KB cells in vitro, suggesting a therapeutic potential of the same in oral carcinoma. However, the therapeutic potential of RC-160 is limited by its short serum half life. To overcome this limitation, fatty acids namely butanoic acid and myristic acid individually were coupled to RC-160. The lipophilized derivatives of RC-160 were synthesized, purified and characterized. The anti-proliferative activity of lipophilized derivatives of RC-160 on KB cells was evaluated in vitro. Myristoyl-RC-160 (0.75 nM) inhibited the growth of KB cells at a 10-fold lower concentration relative to RC-160 (8.8 nM) and at a 100-fold lower concentration relative to butanoyl-RC-160 (0.83 microM) (p<0.001). The affinity of RC-160 towards somatostatin receptors remains unaltered by lipophilization. The signaling pathways underlying the antineoplastic activity of these lipopeptides are similar to RC-160, and do not involve the stimulation of a protein tyrosine phosphatase or a serine threonine phosphatase 1A and 2A. The anti-proliferative activity of the lipopeptides was found to be mediated by somatostatin receptors and correlates with the inhibition of protein tyrosine kinase activity and decrease in intracellular cAMP levels. Myristoyl-RC-160 displayed significantly greater resistance towards trypsin and serum degradation than RC-160 (p<0.01). These findings demonstrate that RC-160 can inhibit the growth of oral cancer cells in vitro. Lipophilization of RC-160 with long chain fatty acids like myristic acid improves its stability and anti-proliferative activity, in human oral carcinoma cells in vitro, thereby enhancing the scope of improving its therapeutic index.
X-ray diffraction study of A- plane non-polar InN epilayer grown by MOCVD
NASA Astrophysics Data System (ADS)
Moret, Matthieu; Briot, Olivier; Gil, Bernard
2015-03-01
Strong polarisation-induced electric fields in C-plane oriented nitrides semiconductor layers reduce the performance of devices. Eliminating the polarization fields can be achieved by growing nitrides along non polar direction. We have grown non polar A-plane oriented InN on R-plane (1‾102) nitridated sapphire substrate by MOCVD. We have studied the structural anisotropy observed in these layers by analyzing High Resolution XRay Diffraction rocking curve (RC) experiments as a function of the in-plane beam orientation. A-plane InN epilayer have a unique epitaxial relationship on R-Plane sapphire and show a strong structural anisotropy. Full width at half maximum (FWHM) of the InN(11‾20) XRD RC values are contained between 44 and 81 Arcmin. FWHM is smaller when the diffraction occurs along the [0001] and the largest FWHM values, of the (11‾20) RC, are obtained when the diffraction occurs along the [1‾100] in-plane direction. Atomic Force Microscopy imaging revealed morphologies with well organized crystallites. The grains are structured along a unique crystallographic orientation of InN, leading to larger domains in this direction. This structural anisotropy can be, in first approximation, attributed to the difference in the domain sizes observed. XRD reciprocal space mappings (RSM) were performed in asymmetrical configuration on (13‾40) and (2‾202) diffraction plane. RSM are measured with a beam orientation corresponding to a maximal and a minimal width of the (11‾20) Rocking curves, respectively. A simple theoretical model is exposed to interpret the RSM. We concluded that the dominant contribution to the anisotropy is due to the scattering coherence length anisotropy present in our samples.
Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607
NASA Astrophysics Data System (ADS)
Schiering, N.; Kabsch, W.; Moore, M. J.; Distefano, M. D.; Walsh, C. T.; Pai, E. F.
1991-07-01
SEVERAL hundred million tons of toxic mercurials are dispersed in the biosphere1. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase2 and mercuric ion reductase (MerA) 3-5. The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases6, catalyses the reaction NADPH + Hg(II) --> NADP+ + H+Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase7,8 serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure9 and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), pI258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved10,11. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn5Ol and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon11. These domains can be proteolytically cleaved off without changing the catalytic efficiency3. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.
Kim, Kyeongjin; Park, Sangmin; Jeong, Yoseok; Lee, Jaeha
2017-01-01
With the recent development of 3D printing technology, concrete materials are sometimes used in 3D printing. Concrete structures based on 3D printing have been characterized to have the form of multiple layer build-up. Unlike general concrete structures, therefore, the 3D-printed concrete can be regarded as an orthotropic material. The material property of the 3D-printed concrete’s interface between layers is expected to be far different from that of general concrete bodies since there are no aggregate interlocks and weak chemical bonding. Such a difference finally affects the structural performance of concrete structures even though the interfaces are formed before initial setting of the concrete. The current study mainly reviewed the changes in fracture energy (toughness) with respect to various environmental conditions of such interface. Changes in fracture energies of interfaces between concrete layers were measured using low-speed Crack Mouth Opening Displacement (CMOD) closed loop concrete fracture test. The experimental results indicated reduction in fracture energy as well as tensile strengths. To improve the tensile strength of interfaces, the use of bridging materials is suggested. Since it was assumed that reduction in fracture energy could be a cause of shear strength, to evaluate the reduced structural performance of concrete structure constructed with multiple interfaces by 3D printing technology, the shear strength of RC beam by 3D printing technology was predicted and compared with that of plain RC beam. Based on the fracture energy measured in this study, Modified Compression Field Theory (MCFT) theory-applied Vector 2 program was employed to predict the degree of reduction in shear strength without considering stirrups. Reduction factors were presented based on the obtained results to predict the reduction in shear strength due to interfaces before initial setting of the concrete.
Behavior of Frame-Stiffened Composite Panels with Damage
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
2013-01-01
NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept, a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. Stitching and the use of thin skins with rod-stiffeners to move loading away from the morevulnerable outer surface produces a structurally efficient, damage tolerant design. This study focuses on the behavior of PRSEUS panels loaded in the frame direction and subjected to severe damage in the form of a severed central frame in a three-frame panel. Experimental results for a pristine two-frame panel and analytical predictions for pristine two-frame and three-frame panels as well as damaged three-frame panels are described.
HL-20 structural design comparison - Conformal shell versus cylindrical crew compartment
NASA Technical Reports Server (NTRS)
Bush, Lance B.; Wahls, Deborah M.; Robinson, James C.
1993-01-01
Extensive studies have been performed at NASA Langley Research Center (LaRC) on personnel launch systems (PLS) concepts. The primary mission of a PLS is the transport of Space Station crew members from Earth to the Space Station and return. The NASA LaRC PLS studies have led to the design of a lifting body configuration named the HL-20. In this study, two different HL-20 structural configurations are evaluated. The two configurations are deemed the conformal shell and the cylindrical crew compartment. The configurations are based on two different concerns for maintenance and operations. One configuration allows for access to subsystems while on-orbit from the interior, while the other allows for easy access to the subsystems during ground maintenance and operations. For each concept, the total structural weight required to sustain the applied loads is quantified through a structural evaluation. Structural weight for both configurations is compared along with the particular attributes of each. Analyses of both configurations indicate no appreciable weight or load relief advantage of one concept over the other. Maintainability and operability, therefore become the primary discriminator, leading to a choice of a crew compartment configuration.
Königer, Christian; Wingert, Ida; Marsmann, Moritz; Rösler, Christine; Beck, Jürgen; Nassal, Michael
2014-10-07
Hepatitis B virus (HBV), the causative agent of chronic hepatitis B and prototypic hepadnavirus, is a small DNA virus that replicates by protein-primed reverse transcription. The product is a 3-kb relaxed circular DNA (RC-DNA) in which one strand is linked to the viral polymerase (P protein) through a tyrosyl-DNA phosphodiester bond. Upon infection, the incoming RC-DNA is converted into covalently closed circular (ccc) DNA, which serves as a viral persistence reservoir that is refractory to current anti-HBV treatments. The mechanism of cccDNA formation is unknown, but the release of P protein is one mandatory step. Structural similarities between RC-DNA and cellular topoisomerase-DNA adducts and their known repair by tyrosyl-DNA-phosphodiesterase (TDP) 1 or TDP2 suggested that HBV may usurp these enzymes for its own purpose. Here we demonstrate that human and chicken TDP2, but only the yeast ortholog of TDP1, can specifically cleave the Tyr-DNA bond in virus-adapted model substrates and release P protein from authentic HBV and duck HBV (DHBV) RC-DNA in vitro, without prior proteolysis of the large P proteins. Consistent with TPD2's having a physiological role in cccDNA formation, RNAi-mediated TDP2 depletion in human cells significantly slowed the conversion of RC-DNA to cccDNA. Ectopic TDP2 expression in the same cells restored faster conversion kinetics. These data strongly suggest that TDP2 is a first, although likely not the only, host DNA-repair factor involved in HBV cccDNA biogenesis. In addition to establishing a functional link between hepadnaviruses and DNA repair, our results open new prospects for directly targeting HBV persistence.
Triple helical polynucleotidic structures: an FTIR study of the C+ .G. Ctriplet.
Akhebat, A; Dagneaux, C; Liquier, J; Taillandier, E
1992-12-01
Triple helixes containing one homopurine poly dG or poly rG strand and two homopyrimidine poly dC or poly rC strands have been prepared and studied by FTIR spectroscopy in H2O and D2O solutions. The spectra are discussed by comparison with those of the corresponding third strands (auto associated or not) and of double stranded poly dG.poly dC and poly rG.poly rC in the same concentration range and salt conditions. The triplex formation is characterized by the study of the base-base interactions reflected by changes in the spectral domain involving the in-plane double bond vibrations of the bases. Modifications of the initial duplex conformation (A family form for poly rG.poly rC, B family form for poly dG.poly dC) when the triplex is formed have been investigated. Two spectral domains (950-800 and 1450-1350 cm-1) containing absorption bands markers of the N and S type sugar geometries have been extensively studied. The spectra of the triplexes prepared starting with a double helix containing only riboses (poly rC+.poly rG.poly rC and poly dC+.poly rG.poly rC) as well as that of poly rC+.poly dG.poly dC present exclusively markers of the North type geometry of the sugars. On the contrary in the case of the poly dC+.poly dG.poly dC triplex both N and S type sugars are shown to coexist. The FTIR spectra allow us to propose that in this case the sugars of the purine (poly dG) strand adopt the S type geometry.
Metasurfaced Reverberation Chamber.
Sun, Hengyi; Li, Zhuo; Gu, Changqing; Xu, Qian; Chen, Xinlei; Sun, Yunhe; Lu, Shengchen; Martin, Ferran
2018-01-25
The concept of metasurfaced reverberation chamber (RC) is introduced in this paper. It is shown that by coating the chamber wall with a rotating 1-bit random coding metasurface, it is possible to enlarge the test zone of the RC while maintaining the field uniformity as good as that in a traditional RC with mechanical stirrers. A 1-bit random coding diffusion metasurface is designed to obtain all-direction backscattering under normal incidence. Three specific cases are studied for comparisons, including a (traditional) mechanical stirrer RC, a mechanical stirrer RC with a fixed diffusion metasurface, and a RC with a rotating diffusion metasurface. Simulation results show that the compact rotating diffusion metasurface can act as a stirrer with good stirring efficiency. By using such rotating diffusion metasurface, the test region of the RC can be greatly extended.
Contact geometry at the undersurface of the acromion with and without a rotator cuff tear.
Lee, S B; Itoi, E; O'Driscoll, S W; An, K N
2001-04-01
The purpose of this study was to investigate the difference in contact geometry at the undersurface of acromion in shoulders with and without a rotator cuff (RC) tear. Case-control study. Forty fresh cadaveric shoulders (average age at death, 61 years) without gross osteoarthritic changes were divided into the intact RC group (n = 20) and the RC tear group (n = 20). Clinical impingement was simulated by compressing the humeral head and the intact portion of the RC against the coracoacromial arch with an axial compressive force of 25 kg while the humerus was held abducted 20 degrees in the scapular plane. The contact pattern between the acromion and the RC was measured with Fuji Prescale super low-pressure-sensitive film (Fuji Photo Film Co, Ltd, Tokyo, Japan). The imprint image was analyzed using Global Lab image software (Automatix, Marlboro, MA). The percentage of the maximum anteroposterior dimension of the imprint on Fuji film to the anteroposterior diameter of the acromial undersurface was 29% +/- 9% in intact RC shoulders, and 39% +/- 13% in shoulders with an RC tear (P >.05). The percentage of the maximum mediolateral dimension of the imprint to the mediolateral diameter of the corresponding part of the acromial undersurface was 27% +/- 12% in intact RC shoulders, and 48% +/- 11% in shoulders with an RC tear. This difference was statistically significant (P <.005). The contact geometry of the acromial undersurface with the underlying RC in the anteroposterior dimension, which might be related to the appearance in supraspinatus outlet view, was not significantly different between shoulders with and without an RC tear. These findings suggest that factors other than acromial shape play a significant role in the pathogenesis of RC tears. The implication regarding the role of acromioplasty remains to be clarified.
Test Frame for Gravity Offload Systems
NASA Technical Reports Server (NTRS)
Murray, Alexander R.
2005-01-01
Advances in space telescope and aperture technology have created a need to launch larger structures into space. Traditional truss structures will be too heavy and bulky to be effectively used in the next generation of space-based structures. Large deployable structures are a possible solution. By packaging deployable trusses, the cargo volume of these large structures greatly decreases. The ultimate goal is to three dimensionally measure a boom's deployment in simulated microgravity. This project outlines the construction of the test frame that supports a gravity offload system. The test frame is stable enough to hold the gravity offload system and does not interfere with deployment of, or vibrations in, the deployable test boom. The natural frequencies and stability of the frame were engineered in FEMAP. The test frame was developed to have natural frequencies that would not match the first two modes of the deployable beam. The frame was then modeled in Solidworks and constructed. The test frame constructed is a stable base to perform studies on deployable structures.
NASA Astrophysics Data System (ADS)
Nie, Yihua; Tang, Saiqian; Xu, Yang; Mao, Kunli
2018-04-01
In order to obtain mechanical response distribution of herringbone frame structure for highway subgrade slopes protection and select the best structure type, 3D numerical models of three types herringbone frame structure were established and analyzed in finite element software ANSYS. Indoor physical model of soil slope protected by herringbone frame structure was built and mechanical response of the frame structure was measured by loading tests. Numerical results indicate slope foot is the stress most disadvantageous location. Comparative analysis shows that structure composed of mortar rubble base layer and precast concrete blocks paving layer is the best one for resisting deformation and structure with cement mortar base layer and precast concrete blocks paving layer is the best one for being of low stress.
DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization
NASA Technical Reports Server (NTRS)
Williams, C. H.; Spurlock, O. F.
2014-01-01
From the late 1960's through 1997, the leadership of NASA's Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRC's primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the code's operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960's is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the Atlas/Centaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUP's many major impacts on launches are discussed including Intelsat, Voyager, Pioneer Venus, HEAO, Galileo, and Cassini.
Mechanisms of Diagonal-Shear Failure in Reinforced Concrete Beams analyzed by AE-SiGMA
NASA Astrophysics Data System (ADS)
Ohno, Kentaro; Shimozono, Shinichiro; Sawada, Yosuke; Ohtsu, Masayasu
Serious shear failures in reinforced concrete (RC) structures were reported in the Hanshin-Awaji Earthquake. In particular, it was demonstrated that a diagonal-shear failure could lead to disastrous damage. However, mechanisms of the diagonal-shear failure in RC beams have not been completely clarified yet. In this study, the diagonal-shear failure in RC beams is investigated, applying acoustic emission (AE) method. To identify source mechanisms of AE signals, SiGMA (Simplified Green's functions for Moment tensor Analysis) procedure was applied. Prior to four-point bending tests of RC beams, theoretical waveforms were calculated to determine the optimal arrangement of AE sensors. Then, cracking mechanisms in experiments were investigated by applying the SiGMA procedure to AE waveforms. From results of the SiGMA analysis, dominant motions of micro-cracks are found to be of shear crack in all the loading stages. As the load increased, the number of tensile cracks increased and eventually the diagonal-shear failure occurred in the shear span. Prior to final failure, AE cluster of micro-cracks was intensely observed in the shear span. To classify AE sources into tensile and shear cracks, AE parameter analysis was also applied. As a result, most of AE hits are classified into tensile cracks. The difference between results obtained by the AE parameter analysis and by the SiGMA analysis is investigated and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Liang; Nachtergaele, Sigrid; Seddon, Annela M.
This paper utilizes cyclodextrin-based host-guest chemistry in a microfluidic device to modulate the crystallization of membrane proteins and the process of concentration of membrane protein samples. Methyl-{beta}-cyclodextrin (MBCD) can efficiently capture a wide variety of detergents commonly used for the stabilization of membrane proteins by sequestering detergent monomers. Reaction Center (RC) from Blastochloris viridis was used here as a model system. In the process of concentrating membrane protein samples, MBCD was shown to break up free detergent micelles and prevent them from being concentrated. The addition of an optimal amount of MBCD to the RC sample captured loosely bound detergentmore » from the protein-detergent complex and improved sample homogeneity, as characterized by dynamic light scattering. Using plug-based microfluidics, RC crystals were grown in the presence of MBCD, giving a different morphology and space group than crystals grown without MBCD. The crystal structure of RC crystallized in the presence of MBCD was consistent with the changes in packing and crystal contacts hypothesized for removal of loosely bound detergent. The incorporation of MBCD into a plug-based microfluidic crystallization method allows efficient use of limited membrane protein sample by reducing the amount of protein required and combining sparse matrix screening and optimization in one experiment. The use of MBCD for detergent capture can be expanded to develop cyclodextrin-derived molecules for fine-tuned detergent capture and thus modulate membrane protein crystallization in an even more controllable way.« less
Kondo, Toru; Matsuoka, Masahiro; Azai, Chihiro; Itoh, Shigeru; Oh-Oka, Hirozo
2016-05-12
Orientations of the FA and FB iron-sulfur (FeS) clusters in a structure-unknown type-I homodimeric heriobacterial reaction center (hRC) were studied in oriented membranes of the thermophilic anaerobic photosynthetic bacterium Heliobacterium modesticaldum by electron paramagnetic resonance (EPR), and compared with those in heterodimeric photosystem I (PS I). The Rieske-type FeS center in the cytochrome b/c complex showed a well-oriented EPR signal. Illumination at 14 K induced an FB(-) signal with g-axes of gz = 2.066, gy = 1.937, and gx = 1.890, tilted at angles of 60°, 60°, and 45°, respectively, with respect to the membrane normal. Chemical reduction with dithionite produced an additional signal of FA(-), which magnetically interacted with FB(-), with gz = 2.046, gy = 1.942, and gx = 1.911 at 30°, 60°, and 90°, respectively. The angles and redox properties of FA(-) and FB(-) in hRC resemble those of FB(-) and FA(-), respectively, in PS I. Therefore, FA and FB in hRC, named after their g-value similarities, seem to be located like FB and FA, not like FA and FB, respectively, in PS I. The reducing side of hRC could resemble those in PS I, if the names of FA and FB are interchanged with each other.
Choules, Mary P; Klein, Larry L; Lankin, David C; McAlpine, James B; Cho, Sang-Hyun; Cheng, Jinhua; Lee, Hanki; Suh, Joo-Won; Jaki, Birgit U; Franzblau, Scott G; Pauli, Guido F
2018-05-24
Residual complexity (RC) involves the impact of subtle but critical structural and biological features on drug lead validation, including unexplained effects related to unidentified impurities. RC commonly plagues drug discovery efforts due to the inherent imperfections of chromatographic separation methods. The new diketopiperazine, rufomyazine (6), and the previously known antibiotic, rufomycin (7), represent a prototypical case of RC that (almost) resulted in the misassignment of biological activity. The case exemplifies that impurities well below the natural abundance of 13 C (1.1%) can be highly relevant and calls for advanced analytical characterization of drug leads with extended molar dynamic ranges of >1:1,000 using qNMR and LC-MS. Isolated from an actinomycete strain, 6 was originally found to be active against Mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) of 2 μg/mL and high selectivity. As a part of lead validation, the dipeptide was synthesized and surprisingly found to be inactive. The initially observed activity was eventually attributed to a very minor contamination (0.24% [m/m]) with a highly active cyclic peptide (MIC ∼ 0.02 μM), subsequently identified as an analogue of 7. This study illustrates the serious implications RC can exert on organic chemistry and drug discovery, and what efforts are vital to improve lead validation and efficiency, especially in NP-related drug discovery programs.
Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco
2017-11-07
Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.
Modified LaRC(TM)-IA Polyimides
NASA Technical Reports Server (NTRS)
St. Clair, Terry L.; Chang, Alice C.; Hou, Tan H.; Working, Dennis C.
1994-01-01
Modified versions of thermoplastic polyimide LaRC(TM)-IA incorporate various amounts of additional, rigid moieties into backbones of LaRC(TM)-IA molecules. Modified versions more resistant to solvents and exhibit higher glass-transition temperatures, yet retain melt-flow processability of unmodified LaRC(TM)-IA.
47 CFR 95.221 - (R/C Rule 21) How do I have my R/C transmitter serviced?
Code of Federal Regulations, 2010 CFR
2010-10-01
... FCC certificated R/C transmitter (see R/C Rule 9) must be made in accord with the Technical... in order to: (1) Adjust a transmitter to an antenna; (2) Detect or measure radiation of energy other...
Vossen, Els; Utrera, Mariana; De Smet, Stefaan; Morcuende, David; Estévez, Mario
2012-12-01
The effect of dog rose (Rosa canina L.; RC), rich in polyphenols and ascorbic acid, on lipid and protein oxidation, colour stability and texture of frankfurters was investigated. Four treatments were prepared: with 5 or 30 g/kg RC extract and without sodium ascorbate and sodium nitrite (5RC and 30RC, respectively), a positive control (with sodium ascorbate and sodium nitrite; PC) and a negative control (without sodium ascorbate, sodium nitrite or RC extract; NC). Hexanal values were much higher throughout storage in NC compared to RC and PC frankfurters (P<0.001). The RC extracts protected against protein oxidation, but not as efficiently as PC (P<0.05). In the RC treated frankfurters, lower a* values were measured compared to PC due to the lack of sodium nitrite. In conclusion, dog rose can act as a natural antioxidant in frankfurters, but not as full replacer for sodium nitrite. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, David M.; Gould, Andrew; Johnson, Jennifer A.
We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J - K{sub s} ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation A{sub I} = 0.7465 Multiplication-Sign E(V - I) + 1.3700 Multiplication-Sign E(J - K{sub s} ), or, equivalently, A{sub I} = 1.217 Multiplication-Sign E(V - I)(1 + 1.126 Multiplication-Sign (E(J - K{sub s} )/E(V - I) - 0.3433)). The optical and near-IR reddening law toward the inner Galaxymore » approximately follows an R{sub V} Almost-Equal-To 2.5 extinction curve with a dispersion {sigma}{sub R{sub V}}{approx}0.2, consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be (M{sub I,RC},{sigma}{sub I,RC,0}, (V-I){sub RC,0},{sigma}{sub (V-I){sub R{sub C}}}, (J-K{sub s}){sub RC,0}) = (-0.12, 0.09, 1.06, 0.121, 0.66). Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20 kpc. We measure an upper bound on the tilt {alpha} Almost-Equal-To 40 Degree-Sign between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at {alpha} Almost-Equal-To 25 Degree-Sign . The number of RC stars suggests a total stellar mass for the Galactic bulge of {approx}2.3 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a canonical Salpeter initial mass function (IMF), or {approx}1.6 Multiplication-Sign 10{sup 10} M{sub Sun} if one assumes a bottom-light Zoccali IMF.« less
CENTRIFUGAL VIBRATION TEST OF RC PILE FOUNDATION
NASA Astrophysics Data System (ADS)
Higuchi, Shunichi; Tsutsumiuchi, Takahiro; Otsuka, Rinna; Ito, Koji; Ejiri, Joji
It is necessary that nonlinear responses of structures are clarified by soil-structure interaction analysis for the purpose of evaluating the seismic performances of underground structure or foundation structure. In this research, centrifuge shake table tests of reinforced concrete pile foundation installed in the liquefied ground were conducted. Then, finite element analyses for the tests were conducted to confirm an applicability of the analytical method by comparing the experimental results and analytical results.
Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao
2014-12-10
In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be suitable/ideal as efficient supports for high-density and reusable enzyme immobilization.
Majewski, Matthäus; Combs, Stephanie E; Trott, Klaus-Rüdiger; Abend, Michael; Port, Matthias
2018-07-01
In 2015, the Bundeswehr Institute of Radiobiology organized a North Atlantic Treaty Organization exercise to examine the significance of clinical signs and symptoms for the prediction of late-occurring acute radiation syndrome. Cases were generated using either the Medical Treatment Protocols for Radiation Accident Victims (METREPOL, n = 167) system or using real-case descriptions extracted from a database system for evaluation and archiving of radiation accidents based on case histories (SEARCH, n = 24). The cases ranged from unexposed [response category 0 (RC 0, n = 89)] to mild (RC 1, n = 45), moderate (RC 2, n = 19), severe (RC 3, n = 20), and lethal (RC 4, n = 18) acute radiation syndrome. During the previous exercise, expert teams successfully predicted hematological acute radiation syndrome severity, determined whether hospitalization was required, and gave treatment recommendations, taking advantage of different software tools developed by the North Atlantic Treaty Organization teams. The authors provided the same data set to radiobiology students who were introduced to the medical management of acute effects after radiation exposure and the software tools during a class lasting 15 h. Corresponding to the previous results, difficulties in the discrimination between RC 0/RC 1 and RC 3/RC 4, as well as a systematic underestimation of RC 1 and RC 2, were observed. Nevertheless, after merging reported response categories into clinically relevant groups (RC 0-1, RC 2-3, and RC 3-4), it was found that the majority of cases (95.2% ± 2.2 standard deviations) were correctly identified and that 94.7% (±2.6 standard deviations) developing acute radiation syndrome and z96.4% (±1.6 standard deviations) requiring hospitalization were identified correctly. Two out of three student teams also provided a dose estimate. These results are comparable to the best-performing team of the 2015 North Atlantic Treaty Organization exercise (response category: 92.5%; acute radiation syndrome: 95.8%; hospitalization: 96.3%).
Code of Federal Regulations, 2010 CFR
2010-10-01
... hull barge with internal framing 1 Double hull barge with external framing 2 Single hull barge with..., ends, and bottoms) when the structural framing is on the internal tank surface. 2 Applicable to double hull tank barges (double sides, ends, and bottoms) when the structural framing is on the external tank...
2015-11-30
Membrane Liner FEA Model ........................................................15 Rectangular PCQS with Embedded Air Beams FEA Model...2 2 Component Air Volumes of the Rectangular PCQS Concept with Inner Membrane Liner ...GCR Galactic cosmic rays or radiation HPF High-performance fibers IML Inner membrane liner K Degree Kelvin LaRC Langley Research Center m Mass
Research on seismic behavior and filling effect of a new CFT column-CFT beam frame structure
NASA Astrophysics Data System (ADS)
Wang, Ying; Shima, Hiroshi
2009-12-01
Concrete filled-steel tube (CFT) structure is popularly used in practical structures nowadays. Self-compacting concrete (SCC) was employed to construct a new CFT column-CFT beam frame structure (hereinafter cited as new CFT frame structure) in this research. Three specimens, two CFT column-CFT beam joints and one hollow steel column-I beam joint were tested to investigate seismic behavior of the new CFT frame structure. The experimental results showed that SCC can be successfully compacted into the new CFT frame structure joints in the lab, and the joints provided adequate seismic behavior. In order to further assess filling effect of SCC in the long steel tube, scale column-beam subassembly made of acrylics plate was employed and concrete visual model experiment was done. The results showed that the concrete was able to be successfully cast into the subassembly which indicated that the new CFT frame structure is possible to be constructed in the real building.
Research on seismic behavior and filling effect of a new CFT column-CFT beam frame structure
NASA Astrophysics Data System (ADS)
Wang, Ying; Shima, Hiroshi
2010-03-01
Concrete filled-steel tube (CFT) structure is popularly used in practical structures nowadays. Self-compacting concrete (SCC) was employed to construct a new CFT column-CFT beam frame structure (hereinafter cited as new CFT frame structure) in this research. Three specimens, two CFT column-CFT beam joints and one hollow steel column-I beam joint were tested to investigate seismic behavior of the new CFT frame structure. The experimental results showed that SCC can be successfully compacted into the new CFT frame structure joints in the lab, and the joints provided adequate seismic behavior. In order to further assess filling effect of SCC in the long steel tube, scale column-beam subassembly made of acrylics plate was employed and concrete visual model experiment was done. The results showed that the concrete was able to be successfully cast into the subassembly which indicated that the new CFT frame structure is possible to be constructed in the real building.
Kang, Su Jin; Choi, Beom Rak; Kim, Seung Hee; Yi, Hae Yeon; Park, Hye Rim; Song, Chang Hyun; Ku, Sae Kwang; Lee, Young Joon
2016-07-23
This study aimed to ascertain the optimal range of red clover dry extracts (RC) and dried pomegranate concentrate powder (PCP) to induce anti-climacteric effects. Thus, the dose ranges showing protective effect of mixed formulae consisting of RC and PCP were examined in ovariectomized mice. At 28 days after bilateral ovariectomy (OVX), mixed herbal compositions (RC:PCP = 1:1, 1:2, 1:4, 1:8, 2:1, 4:1, and 8:1) were administered orally, at 120 mg/kg once daily for 84 days. We evaluated that RC and PCP mixture attenuate OVX-caused obesity, hyperlipidemia, hepatic steatosis, and osteoporosis. Compared to OVX-induced control mice, body weight and abdominal fat weight in OVX-induced mice were significantly decreased, concomitantly with increase of uterus weight by RC:PCP mixture. Additionally, significant increases in serum estradiol levels were observed in all RC:PCP-treated mice. RC:PCP mixture also showed protective effect against OVX-induced hyperlipidemia, hepatic steatosis. Total body and femur mean bone mineral density (BMD), osteocalcin, bALP contents were effectively increased by RC:PCP mixture. Taken together, RC:PCP mixture (2:1, 1:1, and 4:1) has remarkable protective effects against the changes induced by OVX. In particular, RC:PCP mixture (2:1) shows the strongest effect and may be considered as a potential protective agent against climacteric symptoms.
Current Role of Minimally Invasive Radical Cholecystectomy for Gallbladder Cancer
Manzoni, Alberto; Guerini, Francesca; Ramera, Marco; Aroldi, Francesca; Zaniboni, Alberto; Rosso, Edoardo
2016-01-01
Background. For Tis and T1a gallbladder cancer (GbC), laparoscopic cholecystectomy can provide similar survival outcomes compared to open cholecystectomy. However, for patients affected by resectable T1b or more advanced GbC, open approach radical cholecystectomy (RC), consisting in gallbladder liver bed resection or segment 4b-5 bisegmentectomy, with locoregional lymphadenectomy, is considered the gold standard while minimally invasive RC (MiRC) is skeptically considered. Aim. To analyze current literature on perioperative and oncologic outcomes of MiRC for patients affected by GbC. Methods. A Medline review of published articles until June 2016 concerning MiRC for GbC was performed. Results. Data relevant for this review were presented in 13 articles, including 152 patients undergoing an attempt of MiRC for GbC. No randomized clinical trial was found. The approach was laparoscopic in 147 patients and robotic in five. Conversion was required in 15 (10%) patients. Postoperative complications rate was 10% with no mortality. Long-term survival outcomes were reported by 11 studies, two of them showing similar oncologic results when comparing MiRC with matched open RC. Conclusions. Although randomized clinical trials are still lacking and only descriptive studies reporting on limited number of patients are available, current literature seems suggesting that when performed at highly specialized centers, MiRC for GbC is safe and feasible and has oncologic outcomes comparable to open RC. PMID:27885325
Current Role of Minimally Invasive Radical Cholecystectomy for Gallbladder Cancer.
Zimmitti, Giuseppe; Manzoni, Alberto; Guerini, Francesca; Ramera, Marco; Bertocchi, Paola; Aroldi, Francesca; Zaniboni, Alberto; Rosso, Edoardo
2016-01-01
Background . For Tis and T1a gallbladder cancer (GbC), laparoscopic cholecystectomy can provide similar survival outcomes compared to open cholecystectomy. However, for patients affected by resectable T1b or more advanced GbC, open approach radical cholecystectomy (RC), consisting in gallbladder liver bed resection or segment 4b-5 bisegmentectomy, with locoregional lymphadenectomy, is considered the gold standard while minimally invasive RC (MiRC) is skeptically considered. Aim . To analyze current literature on perioperative and oncologic outcomes of MiRC for patients affected by GbC. Methods . A Medline review of published articles until June 2016 concerning MiRC for GbC was performed. Results . Data relevant for this review were presented in 13 articles, including 152 patients undergoing an attempt of MiRC for GbC. No randomized clinical trial was found. The approach was laparoscopic in 147 patients and robotic in five. Conversion was required in 15 (10%) patients. Postoperative complications rate was 10% with no mortality. Long-term survival outcomes were reported by 11 studies, two of them showing similar oncologic results when comparing MiRC with matched open RC. Conclusions . Although randomized clinical trials are still lacking and only descriptive studies reporting on limited number of patients are available, current literature seems suggesting that when performed at highly specialized centers, MiRC for GbC is safe and feasible and has oncologic outcomes comparable to open RC.
Kang, Su Jin; Choi, Beom Rak; Kim, Seung Hee; Yi, Hae Yeon; Park, Hye Rim; Song, Chang Hyun; Ku, Sae Kwang; Lee, Young Joon
2016-01-01
This study aimed to ascertain the optimal range of red clover dry extracts (RC) and dried pomegranate concentrate powder (PCP) to induce anti-climacteric effects. Thus, the dose ranges showing protective effect of mixed formulae consisting of RC and PCP were examined in ovariectomized mice. At 28 days after bilateral ovariectomy (OVX), mixed herbal compositions (RC:PCP = 1:1, 1:2, 1:4, 1:8, 2:1, 4:1, and 8:1) were administered orally, at 120 mg/kg once daily for 84 days. We evaluated that RC and PCP mixture attenuate OVX-caused obesity, hyperlipidemia, hepatic steatosis, and osteoporosis. Compared to OVX-induced control mice, body weight and abdominal fat weight in OVX-induced mice were significantly decreased, concomitantly with increase of uterus weight by RC:PCP mixture. Additionally, significant increases in serum estradiol levels were observed in all RC:PCP-treated mice. RC:PCP mixture also showed protective effect against OVX-induced hyperlipidemia, hepatic steatosis. Total body and femur mean bone mineral density (BMD), osteocalcin, bALP contents were effectively increased by RC:PCP mixture. Taken together, RC:PCP mixture (2:1, 1:1, and 4:1) has remarkable protective effects against the changes induced by OVX. In particular, RC:PCP mixture (2:1) shows the strongest effect and may be considered as a potential protective agent against climacteric symptoms. PMID:27455321
Quintero Ruiz, Nathalia; Córdoba Campo, Yuri; Stashenko, Elena E; Fuentes, Jorge Luis
2017-07-01
The antigenotoxicity against ultraviolet radiation (UV)-induced DNA damage of essential oils (EO) from Lippia species was studied using SOS Chromotest. Based on the minimum concentration that significantly inhibits genotoxicity, the genoprotective potential of EO from highest to lowest was Lippia graveolens, thymol-RC ≈ Lippia origanoides, carvacrol-RC ≈ L. origanoides, thymol-RC > Lippia alba, citral-RC ≈ Lippia citriodora, citral-RC ≈ Lippia micromera, thymol-RC > L. alba, myrcenone-RC. EO from L. alba, carvone/limonene-RC, L. origanoides, α-phellandrene-RC and L. dulcis, trans-β-caryophyllene-RC did not reduce the UV genotoxicity at any of the doses tested. A gas chromatography with flame ionization detection analysis (GC-FID) was conducted to evaluate the solubility of the major EO constituents under our experimental conditions. GC-FID analysis showed that, at least partially, major EO constituents were water-soluble and therefore, they were related with the antigenotoxicity detected for EO. Constituents such as p-cymene, geraniol, carvacrol, thymol, citral and 1,8-cineole showed antigenotoxicity. The antioxidant activity of EO constituents was also determined using the oxygen radical antioxidant capacity (ORAC) assay. The results showed that the antigenotoxicity of the EO constituents was unconnected with their antioxidant activity. The antigenotoxicity to different constituent binary mixtures suggests that synergistic effects can occur in some of the studied EO. © 2017 The American Society of Photobiology.
Strong motion instrumentation of an RC building structure
Li, H.-J.; Celebi, M.
2001-01-01
The strong-motion instrumentation scheme of a reinforced concrete building observed by California Strong-Motion Instrumentation Program (CSMIP) is introduced in this paper. The instrumented building is also described and the recorded responses during 1994 Northridge earthquake are provided.
Acoustic emission techniques applied to conventionally reinforced concrete bridge girders.
DOT National Transportation Integrated Search
2008-09-01
Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete overload events that can reduce the integrity of the structure by initiating concrete cracks, widening or extending of existing concrete cracks, as well ...
Cheng, Guanghuan; Sun, Mingyang; Yao, Lingdan; Wang, Lixiao; Sorial, George A; Xu, Xinhua; Lou, Liping
2015-11-01
The binding order of sorbent, sediment and organic compounds, as well as binding time is important factors determining the potential success of sorbent amendment, which should be considered when the practicability of sorbents was assessed. But until now, relevant research was rare. In this study, desorption in three practical conditions were simulated, by three mixing spiking orders among nonylphenol (NP), rice straw black carbon (RC) and sediment (the order of mixing spiking is (RC+Sediment)+NP, (Sediment+NP)+RC and (RC+NP)+Sediment, for situation I, II and III, respectively), to discuss the feasibility of using RC to remedy NP pollution. Results demonstrated that amendment of RC into sediment decreased desorption fractions of NP, and increased the resistant desorption fraction (Fr), implying strong affinity of NP to RC and efficient sequestration by RC. No significant differences were observed for desorption among the three fresh situations, meaning NP may be adsorbed on RC exterior surface sites and inter-phase diffusion is faster than desorption. However, Fr for three aged situations was in the order: situation I
NASA Technical Reports Server (NTRS)
1991-01-01
The Mars Mission Research Center (M2RC) is one of nine University Space Engineering Research Centers established by NASA in June 1988. It is a cooperative effort between NCSU and A&T in Greensboro. The goal of the Center is to focus on research and educational technologies for planetary exploration with particular emphasis on Mars. The research combines Mission Analysis and Design, Hypersonic Aerodynamics and Propulsion, Structures and Controls, Composite Materials, and Fabrication Methods in a cross-disciplined program directed towards the development of space transportation systems for lunar and planetary travel. The activities of the students and faculty in the M2RC for the period 1 Jul. 1990 to 30 Jun. 1991 are described.
Time reverse modeling of acoustic emissions in a reinforced concrete beam.
Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas
2016-02-01
The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images. Copyright © 2015 Elsevier B.V. All rights reserved.
Minimum stiffness criteria for ring frame stiffeners of space launch vehicles
NASA Astrophysics Data System (ADS)
Friedrich, Linus; Schröder, Kai-Uwe
2016-12-01
Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.
Frame junction vibration transmission with a modified frame deformation model.
Moore, J A
1990-12-01
A previous paper dealt with vibration transmission through junctions of connected frame members where the allowed frame deformations included bending, torsion, and longitudinal motions [J.A. Moore, J. Acoust. Soc. Am. 88, 2766-2776 (1990)]. In helicopter and aircraft structures the skin panels can constitute a high impedance connection along the length of the frames that effectively prohibits in-plane motion at the elevation of the skin panels. This has the effect of coupling in-plane bending and torsional motions within the frame. This paper discusses the transmission behavior through frame junctions that accounts for the in-plane constraint in idealized form by assuming that the attached skin panels completely prohibit inplane motion in the frames. Also, transverse shear deformation is accounted for in describing the relatively deep web frame constructions common in aircraft structures. Longitudinal motion in the frames is not included in the model. Transmission coefficient predictions again show the importance of out-of-plane bending deformation to the transmission of vibratory energy in an aircraft structure. Comparisons are shown with measured vibration transmission data along the framing in the overhead of a helicopter airframe, with good agreement. The frame junction description has been implemented within a general purpose statistical energy analysis (SEA) computer code in modeling the entire airframe structure including skin panels.
2015-04-24
for designing blast-resistant structures [16]. The failure mechanisms in unidirectional fiber -reinforced composites of delamination, fiber -matrix...Batra, R.C., and Hassan, N.M., “Blast resistance of unidirectional fiber reinforced composites ,” Composites Part B: Engineering, 2008 18. Liu, X...feature a lighter weight structure, because this enables faster transport, higher mobility, greater fuel conservation, higher payload capacity, and
Analysis of frame structure of medium and small truck crane
NASA Astrophysics Data System (ADS)
Cao, Fuyi; Li, Jinlong; Cui, Mengkai
2018-03-01
Truck crane is an important part of hoisting machinery. Frame, as the support component of the quality of truck crane, determines the safety of crane jib load and the rationality of structural design. In this paper, the truck crane frame is a box structure, the three-dimensional model is established in CATIA software, and imported into Hyperworks software for finite element analysis. On the base of doing constraints and loads for the finite element model of the frame, the finite element static analysis is carried out. And the static stress test verifies whether the finite element model and the frame structure design are reasonable; then the free modal analysis of the frame and the analysis of the first 8 - order modal vibration deformation are carried out. The analysis results show that the maximum stress value of the frame is greater than the yield limit value of the material, and the low-order modal value is close to the excitation frequency value, which needs to be improved to provide theoretical reference for the structural design of the truck crane frame.
NASA Technical Reports Server (NTRS)
Durkin, John; Schlegelmilch, Richard; Tallo, Donald
1992-01-01
LeRC has recently completed the design of a Ka-band satellite transponder system, as part of the Advanced Communication Technology Satellite (ACTS) System. To enhance the reliability of this satellite, NASA funded the University of Akron to explore the application of an expert system to provide the transponder with an autonomous diagnosis capability. The results of this research was the development of a prototype diagnosis expert system called FIDEX (fault-isolation and diagnosis expert). FIDEX is a frame-based expert system that was developed in the NEXPERT Object development environment by Neuron Data, Inc. It is a MicroSoft Windows version 3.0 application, and was designed to operate on an Intel i80386 based personal computer system.
Transport dynamics in membranes of photosynthetic purple bacteria
NASA Astrophysics Data System (ADS)
Caycedo, Felipe; Rodriguez, Ferney; Quiroga, Luis; Fassioli, Francesca; Johnson, Neil
2007-03-01
Photo-Syntethic Unit (PSU) of purple bacteria is conformed by three basic constituents: Light Harvesting Complex 2 (LH2) antenna complexes, where chromophores are distributed in a ring in close contact with caroteniods with a function of collecting light; LH1s, ring shaped structures of chromophores which harvest and funnel excitations to the Reaction Centre (RC), where phtosynthesis takes place. Studies concerning a single PSU have been capable of reproducing experimental transfer times, but incapable of explaining the fact that architecture LH2-LH1-RC of phototosynthetic membranes changes as light intensity conditions vary. The organization of antenna complexes in the membranes that support PSU seems to have its own functionality. A hopping model where excitations are transferred within a membrane is used, and populations of RC, LH1 and LH2 are investigated. Different statistics concerning arrival times of excitations that excite a single PSU are considered and compared with the global model where coordinates of a great portion of a membrane are included. The model permits in a classical basis to understand which parameters make photosynthesis in purple bateria efficient and reliable.
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Loos, Alfred C.; Jensen, Brian J.; Britton, Sean M.; Tuncol, Goker; Long, Kai
2010-01-01
Recent work at NASA Langley Research Center (LaRC) has concentrated on developing new polyimide resin systems for advanced aerospace applications that can be processed without the use of an autoclave. Polyimide composites are very attractive for applications that require a high strength to weight ratio and thermal stability. Vacuum assisted resin transfer molding (VARTM) has shown the potential to reduce the manufacturing cost of composite structures. Fiber metal laminates (FML) made via this process with aluminum, glass fabric, and epoxy resins have been previously fabricated at LaRC. In this work, the VARTM process has been refined for epoxy/glass FMLs and extended to the fabrication of FM Ls with titanium/carbon fabric layers and a polyimide system developed at NASA, LARC(TradeMark) PETI-8. Resin flow pathways were introduced into the titanium foils to aid the infiltration of the polyimide resin. Injection temperatures in the range of 250-280 C were required to achieve the necessary VARTM viscosities (<10 Poise). Laminate quality and initial mechanical properties will be presented.
RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite
NASA Astrophysics Data System (ADS)
Loreto, Giovanni; Babaeidarabad, Saman; Leardini, Lorenzo; Nanni, Antonio
2015-12-01
The interest in retrofit/rehabilitation of existing concrete structures has increased due to degradation and/or introduction of more stringent design requirements. Among the externally-bonded strengthening systems fiber-reinforced polymers is the most widely known technology. Despite its effectiveness as a material system, the presence of an organic binder has some drawbacks that could be addressed by using in its place a cementitious binder as in fabric-reinforced cementitious matrix (FRCM) systems. The purpose of this paper is to evaluate the behavior of reinforced concrete (RC) beams strengthened in shear with U-wraps made of FRCM. An extensive experimental program was undertaken in order to understand and characterize this composite when used as a strengthening system. The laboratory results demonstrate the technical viability of FRCM for shear strengthening of RC beams. Based on the experimental and analytical results, FRCM increases shear strength but not proportionally to the number of fabric plies installed. On the other hand, FRCM failure modes are related with a high consistency to the amount of external reinforcement applied. Design considerations based on the algorithms proposed by ACI guidelines are also provided.
75 FR 1356 - RC2 Corporation, Provisional Acceptance of a Settlement Agreement and Order
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... primarily at toy stores and various retailers nationwide, and secondarily through RC2's e-commerce websites... various retailers nationwide, and secondarily through RC2's e-commerce Web sites or as `sub-components' of...(e). Published below is a provisionally-accepted Settlement Agreement with RC2 Corporation...
Gan, Hui; Zhou, Yong; Sun, Ping; Zhu, Xiao-Xia; Wang, Quan-Li; Zhan, Lin-Sheng
2007-08-01
This study was purposed to verify the binding part of human complement C3 to complement receptor III (CRIII) in monocytes, the peptide rC3B, including the binding-site, was expressed, purified and identified. rC3B, the binding part of human complement C3 to CRIII, was selected by computer-aided modeling and summarizing researches published. Then, rC3B gene fragment was amplified by PCR, and cloned into prokaryotic vector pQE30a. The fusion protein rC3B was expressed in E.coli M15 and purified by Ni(2+)-chelating affinity chromatography. The activity of rC3B was identified by Western blot and adherence assay with monocytes. The results showed that rC3B fragment was obtained, and a prokaryotic expression vector pQE30-rC3B was constructed. rC3B was efficiently expressed and purified. In Western blot, the target protein showed the activity of binding with C3 antibody, while the purified protein showed the activity of adherence with monocytes. It is concluded that the recombinant C3B was obtained and identified, and this study lay the basis for the further functional analysis of C3.
NASA Astrophysics Data System (ADS)
Dai, Yan
2018-04-01
With the increasing development of urban scale, the application of the underground frame structure is becoming more and more extensive. But because of the unreasonable setup, it hinders public transportation. Therefore, it is an effective solution to reinforce the underground frame structure and make it bear the traffic load. The simulation calculation of the reinforced underground frame structure is carried out in this paper. The conclusion is obtained that the structure satisfies the load of vehicle and the load of the crowd.
DOT National Transportation Integrated Search
2015-12-01
Externally bonded carbon fiber reinforced polymer composites (CFRPs) are increasingly used to : repair concrete bridges. CFRP design techniques are a proven approach for enhancing the strength : of existing structures. This project investigated the d...
18. Photocopy of photograph (original in the Langley Research Center ...
18. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (LAL 5169) AERIAL VIEW OF THE SEAPLANE TOWING CHANNEL STRUCTURE. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA
19. Photocopy of photograph (original in the Langley Research Center ...
19. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L81-05967) AERIAL VIEW OF THE SEAPLANE TOWING CHANNEL STRUCTURE. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA
DOT National Transportation Integrated Search
2008-09-01
Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete overload events that can reduce the integrity of the structure by initiating concrete cracks, widening or extending of existing concrete cracks, as well ...
NASA Astrophysics Data System (ADS)
Sarafopoulos, D. V.
2010-02-01
For the first time we identify a bi-layer structure of energetic electron fluxes in the Earth's magnetotail and establish (using datasets mainly obtained by the Geotail Energetic Particles and Ion Composition (EPIC/ICS) instrument) that it actually provides strong evidence for a purely spatial structure. Each bi-layer event is composed of two distinct layers with counterstreaming energetic electron fluxes, parallel and antiparallel to the local ambient magnetic field lines; in particular, the tailward directed fluxes always occur in a region adjacent to the lobes. Adopting the X-line as a standard reconnection model, we determine the occurrence of bi-layer events relatively to the neutral point, in the substorm frame; four (out of the shown seven) events are observed earthward and three tailward, a result implying that four events probably occurred with the substorm's local recovery phase. We discuss the bi-layer events in terms of the X-line model; they add more constraints for any candidate electron acceleration mechanism. It should be stressed that until this time, none proposed electron acceleration mechanism has discussed or predicted these layered structures with all their properties. Then we discuss the bi-layer events in terms of the much promising "akis model", as introduced by Sarafopoulos (2008). The akis magnetic field topology is embedded in a thinned plasma sheet and is potentially causing charge separation. We assume that as the Rc curvature radius of the magnetic field line tends to become equal to the ion gyroradius rg, then the ions become non-adiabatic. At the limit Rc=rg the demagnetization process is also under way and the frozen-in magnetic field condition is violated by strong wave turbulence; hence, the ion particles in this geometry are stochastically scattered. In addition, ion diffusion probably takes place across the magnetic field, since an intense pressure gradient is directed earthward; hence, ions are ejected tailward of akis. This way, in front of akis an "ion capsule region" is formed with net positive charge. In between them a distinct region with an electric field E⊥ orthogonal to the magnetic field is emerged; E⊥ in front of akis is directed earthward. The field-aligned and highly anisotropic energetic electron populations have probably resulted via spatially separated antiparallel and field-aligned electric fields being the very heart of the acceleration source. We assume that the ultimate cause for the field-aligned electric fields are the net positive capsule charge and the net negative charge trapped at the tip of akis; both charges will be eventually neutralized through field aligned currents, but they remain unshielded for sufficient time to produce the observed events.
Knudsen, T; Kristensen, A T; Nichols, T C; Agersø, H; Jensen, A L; Kjalke, M; Ezban, M; Tranholm, M
2011-11-01
Recombinant human FVIIa (rhFVIIa) corrects the coagulopathy in hemophilia A and B as well as FVII deficiency. This is also the case in dogs until canine anti-human FVIIa antibodies develop (~2 weeks). Recombinant canine factor VIIa (rcFVIIa), successfully over-expressed by gene transfer in haemophilia dogs, has provided long-term haemostasis (>2 years). However, pharmacokinetics (PK), pharmacodynamics (PD) and safety of rcFVIIa after pharmacological administration have not been reported. We therefore wanted to explore the safety, PK and PD of rcFVIIa in dogs. A pilot study was set up to evaluate the safety as well as PK and PD of rcFVIIa after a single intravenous dose of 270 μg kg(-1) to one HA and one haemostatically normal dog and to directly compare rcFVIIa with rhFVIIa in these two dogs. Single doses of rcFVIIa and rhFVIIa were well tolerated. No adverse events were observed. Pharmacokinetic characteristics including half-life (FVIIa activity: 1.2-1.8 h; FVIIa antigen 2.8-3.7 h) and clearance were comparable for rcFVIIa and rhFVIIa. Kaolin-activated thromboelastography approached normal in the HA dog with the improvement being most pronounced after rcFVIIa. This study provided the first evidence that administering rcFVIIa intravenously is feasible, safe, well tolerated and efficacious in correcting the haemophilic coagulopathy in canine HA and that rcFVIIa exhibits pharmacokinetic characteristics comparable to rhFVIIa in haemophilic and haemostatically competent dogs. This strengthens the hypothesis that rcFVIIa can be administered to dogs to mimic the administration of rhFVIIa to humans. © 2011 Blackwell Publishing Ltd.
Nyrop, Kirsten A; Zimmerman, Sheryl; Sloane, Philip D; Bangdiwala, Srikant
2012-06-01
Explore physician perspectives on their involvement in fall prevention and monitoring for residential care/assisted living (RC/AL) residents. Exploratory cross-sectional study; mailed questionnaire. Four RC/AL communities, North Carolina. Primary physicians for RC/AL residents. Past Behavior and future Intentions of physicians with regard to (1) fall risk assessment and (2) collaboration with RC/AL staff to reduce falls and fall risks among RC/AL residents were explored using Theory of Planned Behavior (TPB) constructs. Predictor variables examined (1) physicians' views on their own responsibilities (Attitude), (2) their views of expectations from important referent groups (Subjective Norms), and (3) perceived constraints on engaging in fall prevention and monitoring (Perceived Behavioral Control). Physicians reported conducting fall risk assessments of 47% of RC/AL patients and collaborating with RC/AL staff to reduce fall risks for 36% of RC/AL patients (Behavior). These proportions increased to 75% and 62%, respectively, for future Intentions. TPB-based models explained approximately 60% of the variance in self-reported Behavior and Intentions. Physician's involvement in fall prevention and monitoring was significantly associated (P < .05) with their perceptions of barriers and facilitators-ease, time, reimbursement, and expertise. This study provides first data on physician beliefs regarding their involvement in fall risk assessment of RC/AL patients and collaboration with RC/AL staff to reduce fall risks of individual patients. Challenges to physician involvement identified in our study are not unique or specific to the RC/AL setting, and instead relate to clinical practice and reimbursement constraints in general. Copyright © 2012 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
Chandrashekar, BS; Prabhakara, S; Mohan, T; Shabeer, D; Bhandare, Basavaraj; Nalini, M; Sharmila, PS; Meghana, DL; Reddy, Basanth Kumar; Hanumantha Rao, HM; Sahajananda, H; Anbazhagan, K
2018-01-01
OBJECTIVES: Rubia cordifolia L. (RC) is a well-known and highly valuable medicinal plant in the Ayurvedic system. The present study involves evaluating antioxidant and cardioprotective property of RC root extract. MATERIALS AND METHODS: The characterization of RC root extract was carried out using standard phytochemical and biochemical analysis. The functional groups were analyzed by Fourier transform infrared (FTIR) spectroscopy and phytotherapeutic compounds were identified using high-resolution mass spectrometry (HR-MS). Cardioprotective activity of RC root extract was investigated against cyclophosphamide (CP; 100 mg/kg, i.p)-induced cardiotoxicity in male albino Wistar rats. RC (100, 200, and 400 mg/kg, p.o) or silymarin (100 mg/kg, p.o) was administered immediately after CP on the 1st day and the next consecutive 10 days. Biochemical and histopathological analysis was performed to observe the cardioprotective effects of RC root extract. RESULTS: Phytochemical analysis revealed the presence of secondary metabolites that include alkaloids, flavonoids, saponins, and anthraquinones in RC root extract. FTIR analysis revealed the presence of several functional groups. Based on HR-MS analysis, eight major phytotherapeutic compounds were identified in methanol root extract of RC. Biochemical analysis in CP-induced rat model administered with RC extract revealed significantly enhanced levels of antioxidant markers such as superoxide dismutase, catalase, and glutathione S-transferase. Histopathological study showed that the rat model treated with the root extract had reduced the cardiac injury. CONCLUSION: Our results have shown that the RC extract contains various antioxidant compounds with cardioprotective effect. Treatment with RC root extract could significantly protect CP-induced rats from cardiac tissue injury by restoring the antioxidant markers. PMID:29861523
Variable Accuracy of Wearable Heart Rate Monitors during Aerobic Exercise.
Gillinov, Stephen; Etiwy, Muhammad; Wang, Robert; Blackburn, Gordon; Phelan, Dermot; Gillinov, A Marc; Houghtaling, Penny; Javadikasgari, Hoda; Desai, Milind Y
2017-08-01
Athletes and members of the public increasingly rely on wearable HR monitors to guide physical activity and training. The accuracy of newer, optically based monitors is unconfirmed. We sought to assess the accuracy of five optically based HR monitors during various types of aerobic exercise. Fifty healthy adult volunteers (mean ± SD age = 38 ± 12 yr, 54% female) completed exercise protocols on a treadmill, a stationary bicycle, and an elliptical trainer (±arm movement). Each participant underwent HR monitoring with an electrocardiogaphic chest strap monitor (Polar H7), forearm monitor (Scosche Rhythm+), and two randomly assigned wrist-worn HR monitors (Apple Watch, Fitbit Blaze, Garmin Forerunner 235, and TomTom Spark Cardio), one on each wrist. For each exercise type, HR was recorded at rest, light, moderate, and vigorous intensity. Agreement between HR measurements was assessed using Lin's concordance correlation coefficient (rc). Across all exercise conditions, the chest strap monitor (Polar H7) had the best agreement with ECG (rc = 0.996) followed by the Apple Watch (rc = 0.92), the TomTom Spark (rc = 0.83), and the Garmin Forerunner (rc = 0.81). Scosche Rhythm+ and Fitbit Blaze were less accurate (rc = 0.75 and rc = 0.67, respectively). On treadmill, all devices performed well (rc = 0.88-0.93) except the Fitbit Blaze (rc = 0.76). While bicycling, only the Garmin, Apple Watch, and Scosche Rhythm+ had acceptable agreement (rc > 0.80). On the elliptical trainer without arm levers, only the Apple Watch was accurate (rc = 0.94). None of the devices was accurate during elliptical trainer use with arm levers (all rc < 0.80). The accuracy of wearable, optically based HR monitors varies with exercise type and is greatest on the treadmill and lowest on elliptical trainer. Electrode-containing chest monitors should be used when accurate HR measurement is imperative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriikku, E. M.; Hera, K. R.; Marzolf, A. D.
The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler.more » PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections and would require significant maintenance to become inspection ready. The RC traveled approximately 660 feet in the tunnel and viewed the tunnel and ceiling wall surfaces that were not blocked by existing ducts. This deployment also documented the tunnel obstacles for future inspections. Overall, the RC deployment was a success.« less
A novel high performance ESD power clamp circuit with a small area
NASA Astrophysics Data System (ADS)
Zhaonian, Yang; Hongxia, Liu; Li, Li; Qingqing, Zhuo
2012-09-01
A MOSFET-based electrostatic discharge (ESD) power clamp circuit with only a 10 ns RC time constant for a 0.18-μm process is proposed. A diode-connected NMOSFET is used to maintain a long delay time and save area. The special structure overcomes other shortcomings in this clamp circuit. Under fast power-up events, the gate voltage of the clamp MOSFET does not rise as quickly as under ESD events, the special structure can keep the clamp MOSFET thoroughly off. Under a falsely triggered event, the special structure can turn off the clamp MOSFET in a short time. The clamp circuit can also reject the power supply noise effectively. Simulation results show that the clamp circuit avoids fast false triggering events such as a 30 ns/1.8 V power-up, maintains a 1.2 μs delay time and a 2.14 μs turn-off time, and reduces to about 70% of the RC time constant. It is believed that the proposed clamp circuit can be widely used in high-speed integrated circuits.
Phase transformations in the reaction cell of TiNi-based sintered systems
NASA Astrophysics Data System (ADS)
Artyukhova, Nadezhda; Anikeev, Sergey; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kaftaranova, Maria; Kang, Ji-Hoon; Kim, Ji-Soon
2018-05-01
The present work addresses the structural-phase state changes of porous TiNi-based compounds fabricated by reaction sintering (RS) of Ti and Ni powders with Co, Mo, and no additives introduced. The study also emphasizes the features of a reaction cell (RC) during the transition from the solid- to liquid-phase sintering. Mechanisms of phase transformations occurring in the solid phase, involving the low-melting Ti2Ni phase within the RC, have been highlighted. Also, the intermediate Ti2Ni phase had a crucial role to provide both the required RS behavior and modified phase composition of RS samples, and besides, it is found to be responsible for the near-equiatomic TiNi saturation of the melt. Both cobalt and molybdenum additives are shown to cause additional structuring of the transition zone (TZ) at the Ti2Ni‑TiNi interface and broadening of this zone. The impact of Co and Mo on the Ti2Ni phase is evident through fissuring of this phase layer, which is referred to solidified stresses increased in the layer due to post-alloying defects in the structure.
Damage assessment of RC buildings subjected to the different strong motion duration
NASA Astrophysics Data System (ADS)
Mortezaei, Alireza; mohajer Tabrizi, Mohsen
2015-07-01
An earthquake has three important characteristics; namely, amplitude, frequency content and duration. Amplitude and frequency content have a direct impact but not necessarily the sole cause of structural damage. Regarding the duration, some researchers show a high correlation between strong motion duration and structural damage whereas some others find no relation. This paper focuses on the ground motion durations characterized by Arias Intensity (AI). High duration may increase the damage state of structure for the damage accumulation. This paper investigates the response time histories (acceleration, velocity and displacement) of RC buildings under the different strong motion durations. Generally, eight earthquake records were selected from different soil type, and these records were grouped according to their PGA and frequency ranges. Maximum plastic rotation and drift response was chosen as damage indicator. In general, there was a positive correlation between strong motion duration and damage; however, in some PGA and frequency ranges input motions with shorter durations might cause more damage than the input motions with longer durations. In soft soils, input motions with longer durations caused more damage than the input motions with shorter durations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benzine, Tiffany; Brandt, Ryan; Lovell, William C.
We synthesized the Hepatitis C virus (HCV) RNA by the replicase complex (RC), a macromolecular assembly composed of viral non-structural proteins and cellular co-factors. Inhibitors of the HCV NS5A protein block formation of new RCs but do not affect RNA synthesis by preformed RCs. Without new RC formation, existing RCs turn over and are eventually lost from the cell. We aimed to use NS5A inhibitors to estimate the half-life of the functional RC of HCV. We compared different cell culture-infectious strains of HCV that may be grouped based on their sensitivity to lipid peroxidation: robustly replicating, lipid peroxidation resistant (LPOmore » R) viruses (e.g. JFH-1 or H77D) and more slowly replicating, lipid peroxidation sensitive (LPO S) viruses (e.g. H77S.3 and N.2). Furthermore, in luciferase assays, LPO S HCV strains declined under NS5A inhibitor therapy with much slower kinetics compared to LPO R HCV strains. This difference in rate of decline was not observed for inhibitors of the NS5B RNAdependent RNA polymerase suggesting that the difference was not simply a consequence of differences in RNA stability. In further analyses, we compared two isoclonal HCV variants: the LPO S H77S.3 and the LPO R H77D that differ only by 12 amino acids. Differences in rate of decline between H77S.3 and H77D following NS5A inhibitor addition were not due to amino acid sequences in NS5A but rather due to a combination of amino acid differences in the non-structural proteins that make up the HCV RC. The mathematical modeling of intracellular HCV RNA dynamics suggested that differences in RC stability (half-lives of 3.5 and 9.9 hours, for H77D and H77S.3, respectively) are responsible for the different kinetics of antiviral suppression between LPO S and LPO R viruses. In nascent RNA capture assays, the rate of RNA synthesis decline following NS5A inhibitor addition was significantly faster for H77D compared to H77S.3 indicating different half-lives of functional RCs.« less
Benzine, Tiffany; Brandt, Ryan; Lovell, William C.; ...
2017-06-08
We synthesized the Hepatitis C virus (HCV) RNA by the replicase complex (RC), a macromolecular assembly composed of viral non-structural proteins and cellular co-factors. Inhibitors of the HCV NS5A protein block formation of new RCs but do not affect RNA synthesis by preformed RCs. Without new RC formation, existing RCs turn over and are eventually lost from the cell. We aimed to use NS5A inhibitors to estimate the half-life of the functional RC of HCV. We compared different cell culture-infectious strains of HCV that may be grouped based on their sensitivity to lipid peroxidation: robustly replicating, lipid peroxidation resistant (LPOmore » R) viruses (e.g. JFH-1 or H77D) and more slowly replicating, lipid peroxidation sensitive (LPO S) viruses (e.g. H77S.3 and N.2). Furthermore, in luciferase assays, LPO S HCV strains declined under NS5A inhibitor therapy with much slower kinetics compared to LPO R HCV strains. This difference in rate of decline was not observed for inhibitors of the NS5B RNAdependent RNA polymerase suggesting that the difference was not simply a consequence of differences in RNA stability. In further analyses, we compared two isoclonal HCV variants: the LPO S H77S.3 and the LPO R H77D that differ only by 12 amino acids. Differences in rate of decline between H77S.3 and H77D following NS5A inhibitor addition were not due to amino acid sequences in NS5A but rather due to a combination of amino acid differences in the non-structural proteins that make up the HCV RC. The mathematical modeling of intracellular HCV RNA dynamics suggested that differences in RC stability (half-lives of 3.5 and 9.9 hours, for H77D and H77S.3, respectively) are responsible for the different kinetics of antiviral suppression between LPO S and LPO R viruses. In nascent RNA capture assays, the rate of RNA synthesis decline following NS5A inhibitor addition was significantly faster for H77D compared to H77S.3 indicating different half-lives of functional RCs.« less
Telemetry Standards, RCC Standard 106-17, Chapter 4, Pulse Code Modulation Standards
2017-07-01
Frame Structure .............................................................................................. 4-6 4.3.3 Cyclic Redundancy Check (Class...Spectral and BEP Comparisons for NRZ and Bi-phase............................................ A-3 A.4. PCM Frame Structure Examples...4-4 Figure 4-3. PCM Frame Structure .......................................................................................... 4-6
Syntactic priming in Chinese sentence comprehension: evidence from event-related potentials.
Chen, Qingrong; Xu, Xiaodong; Tan, Dingliang; Zhang, Jingjing; Zhong, Yuan
2013-10-01
Using the event-related potential (ERP) technique, this study examined the nature of syntactic priming effects in Chinese. Participants were required to read prime-target sentence pairs each embedding an ambiguous relative clause (RC) containing either the same verb or a synonymous verb. In Chinese, the word de serves as a relative clause marker. During reading a potential Chinese RC structure (either the prime or the target sentence), Chinese readers initially expect to read an subject-verb-object (SVO) structure but the encounter of a relative clause marker de would make readers abandon the initial strategy and reanalyze the structure as a relative clause. A reduced P600 effect was elicited by the critical word de in the target sentence containing the same initial verb as in the prime sentence. No significant reduction of the P600 was observed in the target sentences in the synonymous condition. The results demonstrated that verb repetition but not similarity in meaning produced a syntactic priming effect in Chinese. The constraint-based lexicalist hypothesis and the argument structure theory were adopted to explain the syntactic priming effect obtained in the current study. Copyright © 2013 Elsevier Inc. All rights reserved.
Energy-dissipating and self-repairing SMA-ECC composite material system
NASA Astrophysics Data System (ADS)
Li, Xiaopeng; Li, Mo; Song, Gangbing
2015-02-01
Structural component ductility and energy dissipation capacity are crucial factors for achieving reinforced concrete structures more resistant to dynamic loading such as earthquakes. Furthermore, limiting post-event residual damage and deformation allows for immediate re-operation or minimal repairs. These desirable characteristics for structural ‘resilience’, however, present significant challenges due to the brittle nature of concrete, its deformation incompatibility with ductile steel, and the plastic yielding of steel reinforcement. Here, we developed a new composite material system that integrates the unique ductile feature of engineered cementitious composites (ECC) with superelastic shape memory alloy (SMA). In contrast to steel reinforced concrete (RC) and SMA reinforced concrete (SMA-RC), the SMA-ECC beams studied in this research exhibited extraordinary energy dissipation capacity, minimal residual deformation, and full self-recovery of damage under cyclic flexural loading. We found that the tensile strain capacity of ECC, tailored up to 5.5% in this study, allows it to work compatibly with superelastic SMA. Furthermore, the distributed microcracking damage mechanism in ECC is critical for sufficient and reliable recovery of damage upon unloading. This research demonstrates the potential of SMA-ECC for improving resilience of concrete structures under extreme hazard events.
Hwang, Kyojung; Kwon, Gu-Joong; Yang, Jiwook; Kim, Minyoung; Hwang, Won Joung; Youe, Wonjae; Kim, Dae-Young
2018-01-01
This study presents composite aerogel beads prepared by mixing dissolved cellulose with Chlamydomonas angulosa and Nostoc commune cells, respectively, at 0.1, 0.3, and 0.5% (w/w). The manufactured composites (termed regenerated cellulose (RC)), with C. angulosa (RCCA-(1, 3, and 5)), and with N. commune (RCNC-(1, 3, and 5)) were analyzed. Both RCCA-5 and RCNC-5 showed the high specific surface area to be about 261.3 and 332.8 m2·g−1. In the microstructure analysis, network structures were observed in the cross-sections of RC, RCCA-5, and RCNC-5. The pyrolysis temperature of the RCCA-5 and RCNC-5 composite aerogel beads was rapidly increased about 250 °C during the mixing of cellulose with C. angulosa and N. commune. The chemical analysis of RC, RCCA-5, and RCNC-5 showed peaks corresponding to various functional groups, such as amide, carboxyl, and hydroxyl groups from protein, lipid, and carbohydrate. RCNC-5 at pH 6 demonstrated highest Cd2+ removal rate about 90.3%, 82.1%, and 63.1% at 10, 25, and 50 ppm Cd2+, respectively. At pH 6, Cd2+ adsorption rates per unit weight of the RCNC-5 were about 0.9025, 2.0514, and 3.1547 mg/g at 10, 25, and 50 ppm, respectively. The peaks assigned to the amide, carboxyl, and hydroxyl groups in RCCA-5, RCNC-5, and RC were shifted or disappeared immediately after adsorption of Cd2+. The specific surface area, total pore volume, and mean pore diameter of composites was decreased due to adsorption of Cd2+ on the developed materials. As can be seen in the X-ray powder diffraction (XRD) spectrum, significant changes in the molecular structure of the composite aerogel beads were not observed even after adsorption of Cd2+. PMID:29621190
Non-traditional shape GFRP rebars for concrete reinforcement
NASA Astrophysics Data System (ADS)
Claure, Guillermo G.
The use of glass-fiber-reinforced-polymer (GFRP) composites as internal reinforcement (rebars) for concrete structures has proven to be an alternative to traditional steel reinforcement due to significant advantages such as magnetic transparency and, most importantly, corrosion resistance equating to durability and structural life extension. In recent years, the number of projects specifying GFRP reinforcement has increased dramatically leading the construction industry towards more sustainable practices. Typically, GFRP rebars are similar to their steel counterparts having external deformations or surface enhancements designed to develop bond to concrete, as well as having solid circular cross-sections; but lately, the worldwide composites industry has taken advantage of the pultrusion process developing GFRP rebars with non-traditional cross-sectional shapes destined to optimize their mechanical, physical, and environmental attributes. Recently, circular GFRP rebars with a hollow-core have also become available. They offer advantages such as a larger surface area for improved bond, and the use of the effective cross-sectional area that is engaged to carry load since fibers at the center of a solid cross-section are generally not fully engaged. For a complete understanding of GFRP rebar physical properties, a study on material characterization regarding a quantitative cross-sectional area analysis of different GFRP rebars was undertaken with a sample population of 190 GFRP specimens with rebar denomination ranging from #2 to #6 and with different cross-sectional shapes and surface deformations manufactured by five pultruders from around the world. The water displacement method was applied as a feasible and reliable way to conduct the investigation. In addition to developing a repeatable protocol for measuring cross-sectional area, the objectives of establishing critical statistical information related to the test methodology and recommending improvements to existing provisions and standards allowing for a consistent universal norm for all GFRP rebars were reached. This dissertation also presents an evaluation of the structural behavior of reinforced concrete (RC) beams and slabs using the new type of GFRP rebar consisting of a non-traditional hollow-core shape compared to "traditional" solid round rebars with equivalent cross-sectional areas within the framework of two studies, respectively. To validate the design assumptions following ACI 440.1R design guidelines, two conditions were investigated: under-reinforced (failure controlled by rupture of GFRP rebar); and, over-reinforced (failure controlled by crushing of concrete). For comparison, a cyclic three-point bending load test matrix was developed: for beams, 3 under-reinforced and 3 over-reinforced with hollow-core and solid GFRP rebars, respectively, making a total of 12 RC specimens; for slabs, 3 under-reinforced and 3 over-reinforced with hollow-core and 2 types of solid GFRP rebars, respectively, making a total of 18 RC slabs. The studies on GFRP RC beams and slabs concluded that the hollow-core GFRP rebars were as effective as their solid counterpart and ACI 440.1R design guidelines were applicable to predict their performance. It was shown that final design may be controlled by the permissible deflections as governing parameter for elements under service conditions. Also, a final study with a test matrix containing six extra specimens was generated for post-fire residual strength evaluation of fire-exposed GFRP RC slabs along with temperature gradient in the slabs and dynamic mechanical analysis (DMA) investigation on GFRP samples extracted from the fire-exposed slabs. In this study, the ability of GFRP RC slabs to retain structural integrity during a standards fire exposure as well as determining the residual structural capacity were investigated. The residual strength evaluation of the fire-exposed slabs showed a range of results varying between +/- 10%, of the virgin slabs. And, 19 mm (0.75 in.) cover with normal weight concrete was shown to be adequate to provide the necessary fire protection to the GFRP rebars preventing irreversible damage for two-hour fire rated GFRP RC slabs subjected to service loads; also, from the DMA and glass transition temperature of samples extracted from the GFRP rebars, it is inferred that the resin had undergone a post curing phase.
Study on Detailing Design of Precast Concrete Frame Structure
NASA Astrophysics Data System (ADS)
Lida, Tian; Liming, Li; Kang, Liu; Jiao, Geng; Ming, Li
2018-03-01
Taking a certain precast concrete frame structure as an example, this paper introduces the general procedures and key points in detailing design of emulative cast-in-place prefabricated structure from the aspects of structural scheme, precast element layout, shop drawing design and BIM 3D modelling. This paper gives a practical solution for the detailing design of precast concrete frame structure under structural design codes in China.
Duffy, A; Dow, S; Ogilvie, G; Rao, S; Hackett, T
2010-08-01
Previously, dogs with canine parvovirus-induced neutropenia have not responded to treatment with recombinant human granulocyte-colony stimulating factor (rhG-CSF). However, recombinant canine G-CSF (rcG-CSF) has not been previously evaluated for treatment of parvovirus-induced neutropenia in dogs. We assessed the effectiveness of rcG-CSF in dogs with parvovirus-induced neutropenia with a prospective, open-label, nonrandomized clinical trial. Endpoints of our study were time to recovery of WBC and neutrophil counts, and duration of hospitalization. 28 dogs with parvovirus and neutropenia were treated with rcG-CSF and outcomes were compared to those of 34 dogs with parvovirus and neutropenia not treated with rcG-CSF. We found that mean WBC and neutrophil counts were significantly higher (P < 0.05) in the 28 dogs treated with rcG-CSF compared to disease-matched dogs not treated with rcG-CSF. In addition, the mean duration of hospitalization was reduced (P = 0.01) in rcG-CSF treated dogs compared to untreated dogs. However, survival times were decreased in dogs treated with rcG-CSF compared to untreated dogs. These results suggest that treatment with rcG-CSF was effective in stimulating neutrophil recovery and shortening the duration of hospitalization in dogs with parvovirus infection, but indicate the need for additional studies to evaluate overall safety of the treatment.
NASA Astrophysics Data System (ADS)
Mathias, Gerald; Egwolf, Bernhard; Nonella, Marco; Tavan, Paul
2003-06-01
We present a combination of the structure adapted multipole method with a reaction field (RF) correction for the efficient evaluation of electrostatic interactions in molecular dynamics simulations under periodic boundary conditions. The algorithm switches from an explicit electrostatics evaluation to a continuum description at the maximal distance that is consistent with the minimum image convention, and, thus, avoids the use of a periodic electrostatic potential. A physically motivated switching function enables charge clusters interacting with a given charge to smoothly move into the solvent continuum by passing through the spherical dielectric boundary surrounding this charge. This transition is complete as soon as the cluster has reached the so-called truncation radius Rc. The algorithm is used to examine the dependence of thermodynamic properties and correlation functions on Rc in the three point transferable intermolecular potential water model. Our test simulations on pure liquid water used either the RF correction or a straight cutoff and values of Rc ranging from 14 Å to 40 Å. In the RF setting, the thermodynamic properties and the correlation functions show convergence for Rc increasing towards 40 Å. In the straight cutoff case no such convergence is found. Here, in particular, the dipole-dipole correlation functions become completely artificial. The RF description of the long-range electrostatics is verified by comparison with the results of a particle-mesh Ewald simulation at identical conditions.
Enhanced magneto-caloric effect upon Co substitution in Ni-Mn-Sn thin films
NASA Astrophysics Data System (ADS)
Modak, Rajkumar; Raja, M. Manivel; Srinivasan, A.
2018-02-01
Mn rich Ni-Mn-Sn and Ni-Mn-Co-Sn alloy films were deposited on Si (1 0 0) substrate by dc magnetron sputtering from Ni50Mn37Sn13 alloy target at 1.8 Pa Ar pressure with 70 W dc power. Co was introduced by placing Co chips on the Ni-Mn-Sn target. As-deposited films were vacuum annealed at 823 K for 1 h. X-ray diffraction patterns of the films revealed modulated 14 M structure of the martensite phase at room temperature. Magnetic entropy change (ΔSm) across the Curie temperature of the ferromagnetic films was estimated from initial isothermal magnetization curves using Maxwell's equation. ΔSm and refrigeration capacity (RC) of Ni-Mn-Sn and Ni-Mn-Co-Sn films increased with increasing film thickness. Upon Co substitution in Mn/Sn site(s), ΔSm and RC increased more remarkably. The change is more prominent in the case of 360 nm films, wherein a 3.8-fold increase in ΔSM and 8.9-fold increase in RC was observed. Introduction of Co increased the magnetic moment and broadened the magnetic transition. These factors increased ΔSm and RC in Co substituted Ni-Mn-Sn alloy. Since TC shifted to higher temperatures with Co substitution, operating temperature of these magnetic refrigerants also shifted to higher temperature. This study indicates the possibility of developing high temperature cooling devices and waste energy harvesters using these films.
The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae
Chen, Zhiqiang; Speck, Christian; Wendel, Patricia; Tang, Chunyan; Stillman, Bruce; Li, Huilin
2008-01-01
The origin recognition complex (ORC) is conserved in all eukaryotes. The six proteins of the Saccharomyces cerevisiae ORC that form a stable complex bind to origins of DNA replication and recruit prereplicative complex (pre-RC) proteins, one of which is Cdc6. To further understand the function of ORC we recently determined by single-particle reconstruction of electron micrographs a low-resolution, 3D structure of S. cerevisiae ORC and the ORC–Cdc6 complex. In this article, the spatial arrangement of the ORC subunits within the ORC structure is described. In one approach, a maltose binding protein (MBP) was systematically fused to the N or the C termini of the five largest ORC subunits, one subunit at a time, generating 10 MBP-fused ORCs, and the MBP density was localized in the averaged, 2D EM images of the MBP-fused ORC particles. Determining the Orc1–5 structure and comparing it with the native ORC structure localized the Orc6 subunit near Orc2 and Orc3. Finally, subunit–subunit interactions were determined by immunoprecipitation of ORC subunits synthesized in vitro. Based on the derived ORC architecture and existing structures of archaeal Orc1–DNA structures, we propose a model for ORC and suggest how ORC interacts with origin DNA and Cdc6. The studies provide a basis for understanding the overall structure of the pre-RC. PMID:18647841
Role of serum fibrinogen levels in patients with rotator cuff tears.
Longo, Umile Giuseppe; Petrillo, Stefano; Berton, Alessandra; Spiezia, Filippo; Loppini, Mattia; Maffulli, Nicola; Denaro, Vincenzo
2014-01-01
Although rotator cuff (RC) tendinopathy is a frequent pathology of the shoulder, the real understanding of its aetiopathogenesis is still unclear. Several studies showed that RC tendinopathy is more frequent in patients with hyperglycemia, diabetes, obesity, or metabolic syndrome. This paper aims to evaluate the serum concentration of fibrinogen in patients with RC tears. Metabolic disorders have been related to high concentration of serum fibrinogen and the activity of fibrinogen has been proven to be crucial in the development of microvascular damage. Thus, it may produce progression of RC degeneration by reducing the vascular supply of tendons. We report the results of a cross-sectional frequency-matched case-control study comparing the serum concentration of fibrinogen of patients with RC tears with that of a control group of patients without history of RC tears who underwent arthroscopic meniscectomy. We choose to enrol in the control group patients with pathology of the lower limb with a likely mechanic, not metabolic, cause, different from tendon pathology. We found no statistically significant differences in serum concentration of fibrinogen when comparing patients with RC tears and patients who underwent arthroscopic meniscectomy (P = 0.5). Further studies are necessary to clarify the role of fibrinogen in RC disease.
Bagis, Bora; Tüzüner, Tamer; Turgut, Sedanur; Korkmaz, Fatih Mehmet; Baygın, Özgül; Bağış, Yıldırım Hakan
2014-01-01
The aim of this study was to evaluate the effects of nanofilled protective resin coating (RC) on the surface roughness (Ra) and color stability (ΔE) of resin-based restorative materials (RM) (compomer (C), nanofilled composite (NF), and microhybrid composite (MH)) after being submitted to the ultraviolet aging (UV) method. Thirty-six specimens were prepared (n = 6 for each group). The Ra and (ΔE) values and SEM images were obtained before and after UV. Significant interactions were found among the RM-RC-UV procedures for Ra (P < 0.001). After the specimens were submitted to UV, the Ra values were significantly increased, regardless of the RC procedure (with RC; P < 0.01 for all, without RC; C (P < 0.01), NF (P < 0.001), and MH (P < 0.001)) for each RM. Significant interactions were found between the RM-RC (P < 0.001) procedures for the ΔE values. The ΔE values were increased in each group after applying the RC procedures (P < 0.001). Protective RC usage for RM could result in material-related differences in Ra and ΔE as with used UV method.
Tüzüner, Tamer; Korkmaz, Fatih Mehmet; Baygın, Özgül; Bağış, Yıldırım Hakan
2014-01-01
The aim of this study was to evaluate the effects of nanofilled protective resin coating (RC) on the surface roughness (Ra) and color stability (ΔE) of resin-based restorative materials (RM) (compomer (C), nanofilled composite (NF), and microhybrid composite (MH)) after being submitted to the ultraviolet aging (UV) method. Thirty-six specimens were prepared (n = 6 for each group). The Ra and (ΔE) values and SEM images were obtained before and after UV. Significant interactions were found among the RM-RC-UV procedures for Ra (P < 0.001). After the specimens were submitted to UV, the Ra values were significantly increased, regardless of the RC procedure (with RC; P < 0.01 for all, without RC; C (P < 0.01), NF (P < 0.001), and MH (P < 0.001)) for each RM. Significant interactions were found between the RM-RC (P < 0.001) procedures for the ΔE values. The ΔE values were increased in each group after applying the RC procedures (P < 0.001). Protective RC usage for RM could result in material-related differences in Ra and ΔE as with used UV method. PMID:25162066
Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico
2017-01-01
Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions. PMID:29112128
Fitting modular reconnaissance systems into modern high-performance aircraft
NASA Astrophysics Data System (ADS)
Stroot, Jacquelyn R.; Pingel, Leslie L.
1990-11-01
The installation of the Advanced Tactical Air Reconnaissance System (ATARS) in the F/A-18D(RC) presented a complex set of design challenges. At the time of the F/A-18D(RC) ATARS option exercise, the design and development of the ATARS subsystems and the parameters of the F/A-18D(RC) were essentially fixed. ATARS is to be installed in the gun bay of the F/A-18D(RC), taking up no additional room, nor adding any more weight than what was removed. The F/A-18D(RC) installation solution required innovations in mounting, cooling, and fit techniques, which made constant trade study essential. The successful installation in the F/A-18D(RC) is the result of coupling fundamental design engineering with brainstorming and nonstandard approaches to every situation. ATARS is sponsored by the Aeronautical Systems Division, Wright-Patterson AFB, Ohio. The F/A-18D(RC) installation is being funded to the Air Force by the Naval Air Systems Command, Washington, D.C.
NASA Astrophysics Data System (ADS)
Hahary, Farah Norain; Husseinsyah, Salmah; Mostapha@Zakaria, Marliza
2016-07-01
In this study, coconut shell (CS) regenerated cellulose (RC) biocomposite films was prepared using dimethylacetamide/lithium chloride (DMAc/LiCl) solvent system. The effect of anti-solvents such as water and methanol for regeneration of cellulose and coconut shell content on properties of CS-RC biocomposite films was investigated. The used of water as anti-solvent for cellulose regeneration was found to have higher tensile properties compared to regenerated cellulose using methanol. Besides, the X-Ray diffraction (XRD) analysis also revealed that RC using water as anti-solvent have higher crystallinity index (CrI) than CS-RC biocomposite film using methanol. The tensile strength and modulus elasticity of CS-RC biocomposite films increased up to 3 wt% CS and decreased with further addition of CS. The elongation at break of CS-RC biocomposite films decreased with the increment of CS. The CrI of CS-RC bioocmposite films up to 3 wt% and decreased with at higher content of CS.
Responsive behavior of regenerated cellulose in hydrolysis under microwave radiation.
Ni, Jinping; Na, Haining; She, Zhen; Wang, Jinggang; Xue, Wenwen; Zhu, Jin
2014-09-01
This work studied the responsive behavior of regenerated cellulose (RC) in hydrolysis under microwave radiation. Four types of RC with different crystallinity (Cr) and degree of polymerization (DP) are produced to evaluate the reactivity of RC by step-by-step hydrolysis. Results show Cr is the key factor to affect the reactivity of RCs. With hydrolysis of amorphous region and the formation of recrystallization, the Cr of RC reaches a high value and thus weakens the reactivity. As a result, the increment of cellulose conversion and sugar yield gradually reduces. Decrease of the DP of RC is helpful to increase the speed at the onset of hydrolysis and produce high sugar yield. But, there is no direct influence with the reactivity of RC to prolong the time of pretreatment. This research provides an accurate understanding to guide the RC preparation for sugar formation with relative high efficiency under mild reaction conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hayashi, Satoko; Matsuiwa, Kohei; Nishizawa, Nozomu; Nakanishi, Waro
2015-12-18
The nature of the transannular E-∗-E' interactions in neutral, radical cationic, and dicationic forms of cyclo-E(CH2CH2CH2)2E' (1) (E, E' = S, Se, Te, and O) (1, 1(•+), and 1(2+), respectively) is elucidated by applying QTAIM dual functional analysis (QTAIM-DFA). Hb(rc) are plotted versus Hb(rc) - Vb(rc)/2 for the data of E-∗-E' at BCPs in QTAIM-DFA, where ∗ emphasizes the existence of BCP. Plots for the fully optimized structures are analyzed by the polar coordinate (R, θ) representation. Those containing the perturbed structures are by (θp, κp): θp corresponds to the tangent line of the plot, and κp is the curvature. While (R, θ) describes the static nature, (θp, κp) represents the dynamic nature of interactions. The nature is well-specified by (R, θ) and (θp, κp). E-∗-E' becomes stronger in the order of 1 < 1(•+) < 1(2+), except for O-∗-O. While E-∗-E' (E, E' = S, Se, and Te) in 1(2+) are characterized as weak covalent bonds, except for S-∗-Te (MC nature through CT) and Se-∗-Te (TBP nature through CT), O-∗-E' seems more complex. The behavior of E-∗-E' in 1(2+) is very close to that of cyclo-E(CH2CH2CH2)E' (E, E' = S, Se, Te, and O), except for O-∗-O.
Cadillo-Quiroz, Hinsby; Yavitt, Joseph B; Zinder, Stephen H; Thies, Janice E
2010-05-01
Plant root exudates increase nutrient availability and influence microbial communities including archaeal members. We examined the archaeal community inhabiting the rhizoplane of two contrasting vascular plants, Dulichium arundinaceum and Sarracenia purpurea, from an acidic bog in upstate NY. Multiple archaeal 16S rRNA gene libraries showed that methanogenic Archaea were dominant in the rhizoplane of both plants. In addition, the community structure (evenness) of the rhizoplane was found markedly different from the bulk peat. The archaeal community in peat from the same site has been found dominated by the E2 group, meanwhile the rhizoplane communities on both plants were co-dominated by Methanosarcinaceae (MS), rice cluster (RC)-I, and E2. Complementary T-RFLP analysis confirmed the difference between bulk peat and rhizoplane, and further characterized the dominance pattern of MS, RC-I, and E2. In the rhizoplane, MS was dominant on both plants although as a less variable fraction in S. purpurea. RC-I was significantly more abundant than E2 on S. purpurea, while the opposite was observed on D. arundinaceum, suggesting a plant-specific enrichment. Also, the statistical analyses of T-RFLP data showed that although both plants overlap in their community structure, factors such as plant type, patch location, and time could explain nearly a third of the variability in the dataset. Other factors such as water table, plant replicate, and root depth had a low contribution to the observed variance. The results of this study illustrate the general effects of roots and the specific effects of plant types on their nearby archaeal communities which in bog-inhabiting plants were mainly composed by methanogenic groups.
Sturgis, James N; Niederman, Robert A
2008-01-01
Recent topographs of the intracytoplasmic membrane (ICM) of purple bacteria obtained by atomic force microscopy (AFM) have provided the first surface views of the native architecture of a multicomponent biological membrane at submolecular resolution, representing an important landmark in structural biology. A variety of species-dependent, closely packed arrangements of light-harvesting (LH) complexes was revealed: the most highly organized was found in Rhodobacter sphaeroides in which the peripheral LH2 antenna was seen either in large clusters or in fixed rows interspersed among ordered arrays of dimeric LH1-reaction center (RC) core complexes. A more random organization was observed in other species containing both the LH1 and LH2 complexes, as typified by Rhododspirillum photometricum with randomly packed monomeric LH1-RC core complexes intermingled with large, paracrystalline domains of LH2 antenna. Surprisingly, no structures that could be identified as the ATP synthase or cytochrome bc (1) complexes were observed, which may reflect their localization at ICM vesicle poles or in curved membrane areas, out of view from the flat regions imaged by AFM. This possible arrangement of energy transducing complexes has required a reassessment of energy tranduction mechanisms which place the cytochrome bc (1) complex in close association with the RC. Instead, more plausible proposals must account for the movement of quinone redox species over considerable membrane distances on appropriate time scales. AFM, together with atomic resolution structures are also providing the basis for molecular modeling of the ICM that is leading to an improved picture of the supramolecular organization of photosynthetic complexes, as well as the forces that drive their segregation into distinct domains.
A parametric description of the 3D structure of the Galactic bar/bulge using the VVV survey
NASA Astrophysics Data System (ADS)
Simion, I. T.; Belokurov, V.; Irwin, M.; Koposov, S. E.; Gonzalez-Fernandez, C.; Robin, A. C.; Shen, J.; Li, Z.-Y.
2017-11-01
We study the structure of the inner Milky Way using the latest data release of the VISTA Variables in the Via Lactea (VVV) survey. The VVV is a deep near-infrared, multi-colour photometric survey with a coverage of 300 square degrees towards the bulge/bar. We use red clump (RC) stars to produce a high-resolution dust map of the VVV's field of view. From de-reddened colour-magnitude diagrams, we select red giant branch stars to investigate their 3D density distribution within the central 4 kpc. We demonstrate that our best-fitting parametric model of the bulge density provides a good description of the VVV data, with a median percentage residual of 5 per cent over the fitted region. The strongest of the otherwise low-level residuals are overdensities associated with a low-latitude structure as well as the so-called X-shape previously identified using the split RC. These additional components contribute only ˜5 per cent and ˜7 per cent respectively to the bulge mass budget. The best-fitting bulge is `boxy' with an axial ratio of [1:0.44:0.31] and is rotated with respect to the Sun-Galactic Centre line by at least 20°. We provide an estimate of the total, full sky, mass of the bulge of M_bulge^{Chabrier} = 2.36 × 10^{10} M_{⊙} for a Chabrier initial mass function. We show that there exists a strong degeneracy between the viewing angle and the dispersion of the RC absolute magnitude distribution. The value of the latter is strongly dependent on the assumptions made about the intrinsic luminosity function of the bulge.
Condition assessment of corroded steel rebar in free space using synthetic aperture radar images
NASA Astrophysics Data System (ADS)
Ingemi, Christopher M.; Owusu Twumasi, Jones; Litt, Swinderjit; Yu, Tzuyang
2017-04-01
Synthetic aperture radar (SAR) imaging of construction materials offers civil engineers an opportunity to better assess the condition of aging civil infrastructures such as reinforced concrete (RC) structures. Corrosion of steel rebar in RC structures is a major problem responsible for their premature failure and unexpected collapse. In this paper, SAR imaging is applied to the quantitative assessment of corroded steel rebar in free space as the first step toward the use of SAR imaging for subsurface sensing of aging RC structures. A 10 GHz stripmap SAR system was used inside an anechoic chamber. The bandwidth of the radar system was 1.5 GHz. Steel rebar specimens were artificially corroded to different levels by regularly applying a mist of 5% NaCl solution for different durations of time in order to simulate the condition of natural corrosion. Two sizes (No. 3 and No. 4) of steel rebar were used in this research. Different orientations of steel rebar were considered. Corrosion level was determined by measuring the mass loss of corroded steel rebar specimens. From our results, feasibility of SAR images for the condition assessment of corroded steel rebar was experimentally demonstrated. It was found that the presence of surface rust on corroded steel rebar reduces the amplitude in SAR images. The SAR image of corroded steel rebar also exhibited a distribution of SAR amplitudes different from the one of intact steel rebar. In addition, it was also found that there is an optimal range for the condition assessment of corroded steel rebar in free space. In our experiment, the optimal range was determined to be 30.4 cm.
2006-02-01
6. Hanson, M. A., and Stevens, R. C. (2000) Cocrystal structure of synaptobrevin-ll bound to botulinum neurotoxin type B at 2.0 A resolution, Nature...Hanson, R.C. Stevens, Cocrystal structure of synaptobre- vin-ll bound to botulinum neurotoxin type B at 2.0 Å resolution, Nat. Struct. Biol. 7 (2000...of the Glu212 carboxylate in the catalytic pathway, Biochemistry 43, 6637-6644. 4. Hanson, M. A., and Stevens, R. C. (2000) Cocrystal structure of
Marketing NASA Langley Polymeric Materials
NASA Technical Reports Server (NTRS)
Flynn, Diane M.
1995-01-01
A marketing tool was created to expand the knowledge of LaRC developed polymeric materials, in order to facilitate the technology transfer process and increase technology commercialization awareness among a non-technical audience. The created brochure features four materials, LaRC-CP, LaRC-RP46, LaRC-SI, and LaRC-IA, and highlights their competitive strengths in potential commercial applications. Excellent opportunities exist in the $40 million per year microelectronics market and the $6 billion adhesives market. It is hoped that the created brochure will generate inquiries regarding the use of the above materials in markets such as these.
Regulation of Flavivirus RNA synthesis and replication
Selisko, Barbara; Wang, Chunling; Harris, Eva; Canard, Bruno
2014-01-01
RNA synthesis and replication of the members of the Flavivirus genus (including dengue, West Nile and Japanese encephalitis viruses) is regulated by a wide variety of mechanisms and actors. These include the sequestration of the RNA-dependent RNA polymerase (RdRp) for functions other than RNA synthesis, regulatory interactions with other viral and host proteins within the replication complex (RC), and regulatory elements within the RNA genome itself. In this review, we discuss our current knowledge of the multiple levels at which Flavivirus RNA synthesis is controlled. We aim to bring together two active research fields: the structural and functional biology of individual proteins of the RC and the impressive wealth of knowledge acquired regarding the viral genomic RNA. PMID:25462437
NASA Astrophysics Data System (ADS)
Bajoria, Kamal M.; Kaduskar, Shreya S.
2016-04-01
In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.
Kuchinski, Kevin S; Brimacombe, Cedric A; Westbye, Alexander B; Ding, Hao; Beatty, J Thomas
2016-02-01
The gene transfer agent of Rhodobacter capsulatus (RcGTA) is a genetic exchange element that combines central aspects of bacteriophage-mediated transduction and natural transformation. RcGTA particles resemble a small double-stranded DNA bacteriophage, package random ∼4-kb fragments of the producing cell genome, and are released from a subpopulation (<1%) of cells in a stationary-phase culture. RcGTA particles deliver this DNA to surrounding R. capsulatus cells, and the DNA is integrated into the recipient genome though a process that requires homologs of natural transformation genes and RecA-mediated homologous recombination. Here, we report the identification of the LexA repressor, the master regulator of the SOS response in many bacteria, as a regulator of RcGTA activity. Deletion of the lexA gene resulted in the abolition of detectable RcGTA production and an ∼10-fold reduction in recipient capability. A search for SOS box sequences in the R. capsulatus genome sequence identified a number of putative binding sites located 5' of typical SOS response coding sequences and also 5' of the RcGTA regulatory gene cckA, which encodes a hybrid histidine kinase homolog. Expression of cckA was increased >5-fold in the lexA mutant, and a lexA cckA double mutant was found to have the same phenotype as a ΔcckA single mutant in terms of RcGTA production. The data indicate that LexA is required for RcGTA production and maximal recipient capability and that the RcGTA-deficient phenotype of the lexA mutant is largely due to the overexpression of cckA. This work describes an unusual phenotype of a lexA mutant of the alphaproteobacterium Rhodobacter capsulatus in respect to the phage transduction-like genetic exchange carried out by the R. capsulatus gene transfer agent (RcGTA). Instead of the expected SOS response characteristic of prophage induction, this lexA mutation not only abolishes the production of RcGTA particles but also impairs the ability of cells to receive RcGTA-borne genes. The data show that, despite an apparent evolutionary relationship to lambdoid phages, the regulation of RcGTA gene expression differs radically. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Xie, Xiubo; Pang, Yu; Kikuchi, Hiroaki; Liu, Tong
2016-11-09
25 nm carbon-coated microporous Co/CoO nanoparticles (NPs) were synthesized by integrating chemical de-alloying and chemical vapor deposition (CVD) methods. The NPs possess micropores of 0.8-1.5 nm and display a homogeneous carbon shell of about 4 nm in thickness with a low graphitization degree. The saturation magnetization (M S ) and coercivity (H C ) of the NPs were 70.3 emu g -1 and 398.4 Oe, respectively. The microporous Co/CoO/C NPs exhibited enhanced microwave absorption performance with a minimum reflection coefficient (RC) of -78.4 dB and a wide absorption bandwidth of 8.1 GHz (RC ≤ -10 dB), larger than those of the nonporous counterparts of -68.3 dB and 5.8 GHz. The minimum RC values of the microporous Co/CoO/C NPs at different thicknesses were much smaller than the nonporous counterparts. The high microwave absorption mechanism of the microporous Co/CoO/C nanocomposite can be interpreted in terms of the interfacial polarization relaxation of the core/shell and micropore structures, the effective permittivity modification of the air in the micropores and the polarization relaxation of the defects in the low-graphitization carbon shell and the porous Co NPs. Our study demonstrates that the microporous Co/CoO/C nanocomposite is an efficient microwave absorber with high absorption intensity and wide absorption bandwidth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koll, Daniel D. B.; Abbot, Dorian S., E-mail: dkoll@uchicago.edu
Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with gray radiative transfer and test them using a general circulation model (GCM). First, we develop a radiative-convective (RC) model that captures surface temperatures of slowly rotating and cool atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine, which places strong constraints on large-scale wind speeds. Third, we develop an RC-subsiding modelmore » which extends our RC model to hot and thin atmospheres. We find that rocky planets develop large day–night temperature gradients at a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value suggested by work on hot Jupiters. The small ratio is due to the heat engine inefficiency and asymmetry between updrafts and subsidence in convecting atmospheres. Fourth, we show, using GCM simulations, that rotation only has a strong effect on temperature structure if the atmosphere is hot or thin. Our models let us map out atmospheric scenarios for planets such as GJ 1132b, and show how thermal phase curves could constrain them. Measuring phase curves of short-period planets will require similar amounts of time on the James Webb Space Telescope as detecting molecules via transit spectroscopy, so future observations should pursue both techniques.« less
Pharmacokinetics and RC Circuit Concepts
NASA Astrophysics Data System (ADS)
Cock, Mieke De; Janssen, Paul
2013-11-01
Most introductory physics courses include a chapter on RC circuits in which the differential equations for the charging and discharging of a capacitor are derived. A number of papers in this journal describe lab experiments dealing with the measurement of different parameters in such RC circuits. In this contribution, we report on a lab experiment we developed for students majoring in pharmacy, using RC circuits to simulate a pharmacokinetic process.
Holliday, Charvonne N; McCauley, Heather L; Silverman, Jay G; Ricci, Edmund; Decker, Michele R; Tancredi, Daniel J; Burke, Jessica G; Documét, Patricia; Borrero, Sonya; Miller, Elizabeth
2017-08-01
To explore racial/ethnic differences in reproductive coercion (RC), intimate partner violence (IPV), and unintended pregnancy (UIP). We analyzed cross-sectional, baseline data from an intervention that was conducted between August 2008 and March 2009 in five family planning clinics in the San Francisco, California area, to examine the association of race/ethnicity with RC, IPV, and UIP among female patients aged 16-29 (n = 1234). RC was significantly associated with race/ethnicity, p < 0.001, [prevalence estimates: Black (37.1%), multiracial (29.2%), White (18.0%), Hispanic/Latina (24.0%), and Asian/Pacific Islander/other (API/other) (18.4%)]. Race/ethnicity was not associated with IPV. UIP was more prevalent among Black (50.3%) and multiracial (47.2%) women, with an overall range of 37.1%-50.3% among all racial/ethnic groups (p < 0.001). In adjusted analyses, factors associated with UIP were RC [adjusted odds ratio (AOR) = 1.59, 95% confidence interval (95% CI) = 1.26-2.01] and Black (AOR = 1.63, 95% CI = 1.02-2.60) and API/other (AOR = 1.41, 95% CI = 1.15-1.73) race/ethnicity, which remained significant in the presence of RC. Race-stratified models revealed that RC increased odds of UIP for White (AOR = 2.06, 95% CI = 1.45-2.93) and Black women (AOR = 1.72, 95% CI = 1.14-2.60). Black and multiracial women seeking care in family planning clinics have a disproportionately high prevalence of RC and UIP. RC may partially explain differences in UIP prevalence, with the effect of race/ethnicity slightly attenuated in RC-adjusted models. However, the impact of RC on risk for UIP was similar for White and Black women. Findings from this study support the need to understand and prevent RC, particularly among women of color. Results are foundational in understanding disparities in RC and UIP that may have implications for refinement of clinical care.
Malferrari, Marco; Francia, Francesco; Venturoli, Giovanni
2015-10-29
Conformational protein dynamics is known to be hampered in amorphous matrixes upon dehydration, both in the absence and in the presence of glass forming disaccharides, like trehalose, resulting in enhanced protein thermal stability. To shed light on such matrix effects, we have compared the retardation of protein dynamics in photosynthetic bacterial reaction centers (RC) dehydrated at controlled relative humidity in the absence (RC films) or in the presence of trehalose (RC-trehalose glasses). Small scale RC dynamics, associated with the relaxation from the dark-adapted to the light-adapted conformation, have been probed up to the second time scale by analyzing the kinetics of electron transfer from the photoreduced quinone acceptor (QA(-)) to the photoxidized primary donor (P(+)) as a function of the duration of photoexcitation from 7 ns (laser pulse) to 20 s. A more severe inhibition of dynamics is found in RC-trehalose glasses than in RC films: only in the latter system does a complete relaxation to the light-adapted conformation occur even at extreme dehydration, although strongly retarded. To gain insight into the large scale RC dynamics up to the time scale of days, the kinetics of thermal denaturation have been studied at 44 °C by spectral analysis of the Qx and Qy bands of the RC bacteriochlorin cofactors, as a function of the sugar/protein molar ratio, m, varied between 0 and 10(4). Upon increasing m, denaturation is slowed progressively, and above m ∼ 500 the RC is stable at least for several days. The stronger retardation of RC relaxation and dynamics induced by trehalose is discussed in the light of a recent molecular dynamics simulation study performed in matrixes of the model protein lysozyme with and without trehalose. We suggest that the efficiency of trehalose in retarding RC dynamics and preventing thermal denaturation stems mainly from its propensity to form and stabilize extended networks of hydrogen bonds involving sugar, residual water, and surface residues of the RC complex and from its ability of reducing the free volume fraction of protein alone matrixes.
Zeng, Rui-Xiang; Li, Sha; Zhang, Min-Zhou; Li, Xiao-Lin; Zhu, Cheng-Gang; Guo, Yuan-Lin; Zhang, Yan; Li, Jian-Jun
2017-08-01
Remnant cholesterol (RC) is receiving increasing attention regarding its relation to cardiovascular risk. Whether RC is associated with periprocedural myocardial injury (PMI) following percutaneous coronary intervention (PCI) in type 2 diabetes (T2D) is currently unknown. We prospectively enrolled 1182 consecutive T2D patients who were scheduled for PCI but with baseline normal preprocedural cardiac troponin I (cTnI). Patients were divided according to their glycemic control status: group A [glycated hemoglobin (HbA1c)<7%, n=563] and group B (HbA1c≥7%, n=619). PMI was evaluated by cTnI analysis within 24h. The associations of preprocedural RC and the RC to high-density lipoprotein cholesterol ratio (RC/HDL-C) with PMI were investigated. The associations of RC and RC/HDL-C with PMI were observed in group B (both p<0.05) but not in group A (both p>0.05). Patients in group B, a 1-SD increase of RC produced 30% and 32% increased risk for postprocedural cTnI>3× upper limit of normal (ULN) and >5×ULN, respectively. The odds ratios for RC/HDL-C were the highest compared with any cholesterol fractions including total cholesterol (TC)/HDL-C, low density lipoprotein cholesterol (LDL-C)/HDL-C, nonHDL-C/HDL-C, and triglyceride/HDL-C with 1.43 [95% confidence interval (CI): 1.10-1.88] for >3× ULN and 1.49 (95% CI: 1.13-1.97) for >5× ULN. However, no such associations were found in group A. Furthermore, patients with RC >27.46mg/dL (third tertile) [RC≤14.15mg/dL (first tertile) as reference] were associated with a 1.57-fold and 2-fold increased risk for >3× ULN and >5× ULN in group B, respectively. RC and RC/HDL-C might be valuable, independent predictors for PMI in poorly-controlled diabetic patients undergoing PCI. Copyright © 2017. Published by Elsevier Ltd.
Code of Federal Regulations, 2010 CFR
2010-01-01
... improvement. (d) RC&D measure plan. A plan document for a land area, directly controlled or under the... area. (f) Watershed works of improvement. Structural, nonstructural, and land treatment measures... costs of installing WS works of improvement or RCD measures by the Federal Government and by sponsoring...
Code of Federal Regulations, 2011 CFR
2011-01-01
... improvement. (d) RC&D measure plan. A plan document for a land area, directly controlled or under the... area. (f) Watershed works of improvement. Structural, nonstructural, and land treatment measures... costs of installing WS works of improvement or RCD measures by the Federal Government and by sponsoring...
Palazzini, J M; Torres, A M; Chulze, S N
2018-05-01
Fusarium head blight (FHB) caused by Fusarium graminearum species complex is a devastating disease that causes extensive yield and quality losses to wheat around the world. Fungicide application and breeding for resistance are among the most important tools to counteract FHB. Biological control is an additional tool that can be used as part of an integrated management of FHB. Bacillus velezensisRC 218, Brevibacillus sp. RC 263 and Streptomyces sp. RC 87B were selected by their potential to control FHB and deoxynivalenol production. The aim of this work was to test the tolerance of these biocontrol agents to triazole-based fungicides such as prothioconazole, tebuconazole and metconazole. Bacterial growth was evaluated in Petri dishes using the spread plating technique containing the different fungicides. Bacillus velezensisRC 218 and Streptomyces sp. RC 87B showed better tolerance to fungicides than Brevibacillus sp. RC 263. Complete growth inhibition was observed at concentrations of 20 μg ml -1 for metconazole, 40 μg ml -1 for tebuconazole and 80 μg ml -1 for prothioconazole. The results obtained indicate the possibility of using these biocontrol agents in combination with fungicides as part of an integrated management to control FHB of wheat. This study evaluates the possibility to use biocontrol agents (Bacillus velezensisRC 218, Brevibacillus sp. RC 263 and Streptomyces sp. RC 87B) in combination with triazole-based fungicides to control Fusarium head blight in wheat. The evaluation of biocontrol agents' growth under in vitro conditions was carried out in Petri dishes containing either prothioconazole, tebuconazole or metconazole. Viability studies demonstrated that B. velezensisRC 218 and Streptomyces sp. RC 87B were more tolerant to the fungicides evaluated. Results obtained reflect the possibility to use fungicides at low doses combined with biocontrol agents. © 2018 The Society for Applied Microbiology.
Milovanovic, S R; Radulovic, S; Groot, K; Schally, A V
1992-01-01
The effects of treatment with a bombesin receptor antagonist [D-Tpi6, Leu13 psi (CH2NH) Leu14]BN(6-14)(RC-3095) and the combination of an agonist of luteinizing hormone-releasing hormone [D-Trp6]-LH-RH and somatostatin analog D-Phe-Cys-Tyr-D-Trp-Lys-Val- Cys-Trp-NH2 (RC-160) were studied in nude mice bearing xenografts of the hormone-dependent human prostate tumor PC-82. During the 5 weeks of treatment, tumor growth was decreased in all treated groups compared with controls. Bombesin antagonist RC-3095 and the combination of [D-Trp6]-LH-RH and RC-160 caused a greater inhibition of tumor growth than [D-Trp6]-LH-RH or RC-160 alone as based on measurement of tumor volume and percentage change in tumor volume. The largest decrease in tumor weight was also seen in the groups treated with the bombesin antagonist and with the combination of RC-160 and [D-Trp6]-LH-RH. Serum prostatic-specific antigen levels were greatly decreased, and insulin-like growth factor I (IGF-I) as well as growth hormone levels were reduced in all treated groups. Specific binding sites for [D-Trp6]-LH-RH, epidermal growth factor (EGF), IGF-I, and somatostatin (SS-14) were found in the tumor membranes. Receptors for EGF were significantly down-regulated by treatment with the bombesin antagonist or RC-160. Combination of LH-RH agonists with somatostatin analog RC-160 might be considered for improvement of hormonal therapy for prostate cancer. The finding that bombesin antagonist RC-3095 inhibits the growth of PC-82 prostate cancer suggests the merit of further studies to evaluate the possible usefulness of antagonists of bombesin in the management of prostatic carcinoma.
Malferrari, Marco; Savitsky, Anton; Lubitz, Wolfgang; Möbius, Klaus; Venturoli, Giovanni
2016-12-01
Disaccharide glasses are increasingly used to immobilize proteins at room temperature for structural/functional studies and long-term preservation. To unravel the molecular basis of protein immobilization, we studied the effect of sugar/protein concentration ratios in trehalose or sucrose matrixes, in which the bacterial photosynthetic reaction center (RC) was embedded as a model protein. The structural, dynamical, and H-bonding characteristics of the sugar-protein systems were probed by high-field W-band EPR of a matrix-dissolved nitroxide radical. We discovered that RC immobilization and thermal stabilization, being independent of the protein concentration in trehalose, occur in sucrose only at sufficiently low sugar/protein ratios. EPR reveals that only under such conditions does sucrose form a microscopically homogeneous matrix that immobilizes, via H-bonds, the nitroxide probe. We conclude that the protein immobilization capability depends critically on the propensity of the glass-forming sugar to create intermolecular H-bond networks, thus establishing long-range, homogeneous connectivity within the matrix.
Mouse RC/BTB2, a Member of the RCC1 Superfamily, Localizes to Spermatid Acrosomal Vesicles
Shen, Xuening; Nagarkatti-Gude, David R.; Hess, Rex A.; Henderson, Scott C.; Strauss, Jerome F.; Zhang, Zhibing
2012-01-01
Mouse RC/BTB2 is an unstudied protein of the RCC1 (Regulator of Chromosome Condensation) superfamily. Because of the significant remodeling of chromatin that occurs during spermiogenesis, we characterized the expression and localization of mouse RC/BTB2 in the testis and male germ cells. The Rc/btb2 gene yields two major transcripts: 2.3 kb Rc/btb2-s, present in most somatic tissues examined; and 2.5 kb Rc/btb2-t, which contains a unique non-translated exon in its 5′-UTR that is only detected in the testis. During the first wave of spermatogenesis, Rc/btb2-t mRNA is expressed from day 8 after birth, reaching highest levels of expression at day 30 after birth. The full-length protein contains three RCC1 domains in the N-terminus, and a BTB domain in the C-terminus. In the testis, the protein is detectable from day 12, but is progressively up-regulated to day 30 and day 42 after birth. In spermatids, some of the protein co-localizes with acrosomal markers sp56 and peanut lectin, indicating that it is an acrosomal protein. A GFP-tagged RCC1 domain is present throughout the cytoplasm of transfected CHO cells. However, both GFP-tagged, full-length RC/BTB2 and a GFP-tagged BTB domain localize to vesicles in close proximity to the nuclear membrane, suggesting that the BTB domain might play a role in mediating full-length RC/BTB2 localization. Since RCC1 domains associate with Ran, a small GTPase that regulates molecular trafficking, it is possible that RC/BTB2 plays a role in transporting proteins during acrosome formation. PMID:22768142
Formulation development of retrocyclin 1 analog RC-101 as an anti-HIV vaginal microbicide product.
Sassi, A B; Cost, M R; Cole, A L; Cole, A M; Patton, D L; Gupta, P; Rohan, L C
2011-05-01
RC-101 is a synthetic microbicide analog of retrocyclin, which has shown in vitro activity against X4 and R5 HIV-1. In an effort to develop a safe and effective RC-101 vaginal microbicide product, we assessed safety in ex vivo macaque and human models and efficacy using in vitro and ex vivo models. A polyvinyl-alcohol vaginal film containing RC-101 (100 μg/film) was developed. Formulation assessment was conducted by evaluating disintegration, drug content, mechanical properties, and stability. Efficacy was evaluated by in vitro peripheral blood mononuclear cells (PBMC) assay and ex vivo human ectocervical tissue explant model. Ex vivo safety studies were conducted by exposing RC-101 to an excised monkey reproductive tract and excised human ectocervical tissue. RC-101 100 μg films were shown to be safe to human and monkey tissue and effective against HIV-1 in vitro and ex vivo in human ectocervical tissue. The 90% inhibitory concentration (IC90) for RC-101 films at 2,000 μg (IC90=57.5 μM) using an ex vivo model was 10-fold higher than the IC90 observed using an in vitro model (IC90=5.0 μM). RC-101 films were stable for 1 month at 25°C, with in vitro bioactivity maintained for up to 6 months. RC-101 was developed in a quick-dissolve film formulation that was shown to be safe in an ex vivo model and effective in in vitro and ex vivo models. RC-101 film formulations were shown to maintain bioactivity for a period of 6 months. Findings from the present study contribute to the development of a safe and effective topical microbicide product.
Gao, Bin; Fan, Lusheng; Li, Xingxing; Yang, Huifang; Liu, Fengluan; Wang, Ling; Xi, Lin; Ma, Nan; Zhao, Liangjun
2013-01-01
In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs) induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina.
Li, Xingxing; Yang, Huifang; Liu, Fengluan; Wang, Ling; Xi, Lin; Ma, Nan; Zhao, Liangjun
2013-01-01
In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs) induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina. PMID:24009713
NASA Astrophysics Data System (ADS)
Smyczynski, Mark S.; Gifford, Howard C.; Dey, Joyoni; Lehovich, Andre; McNamara, Joseph E.; Segars, W. Paul; King, Michael A.
2016-02-01
The objective of this investigation was to determine the effectiveness of three motion reducing strategies in diminishing the degrading impact of respiratory motion on the detection of small solitary pulmonary nodules (SPNs) in single-photon emission computed tomographic (SPECT) imaging in comparison to a standard clinical acquisition and the ideal case of imaging in the absence of respiratory motion. To do this nonuniform rational B-spline cardiac-torso (NCAT) phantoms based on human-volunteer CT studies were generated spanning the respiratory cycle for a normal background distribution of Tc-99 m NeoTect. Similarly, spherical phantoms of 1.0-cm diameter were generated to model small SPN for each of the 150 uniquely located sites within the lungs whose respiratory motion was based on the motion of normal structures in the volunteer CT studies. The SIMIND Monte Carlo program was used to produce SPECT projection data from these. Normal and single-lesion containing SPECT projection sets with a clinically realistic Poisson noise level were created for the cases of 1) the end-expiration (EE) frame with all counts, 2) respiration-averaged motion with all counts, 3) one fourth of the 32 frames centered around EE (Quarter Binning), 4) one half of the 32 frames centered around EE (Half Binning), and 5) eight temporally binned frames spanning the respiratory cycle. Each of the sets of combined projection data were reconstructed with RBI-EM with system spatial-resolution compensation (RC). Based on the known motion for each of the 150 different lesions, the reconstructed volumes of respiratory bins were shifted so as to superimpose the locations of the SPN onto that in the first bin (Reconstruct and Shift). Five human observers performed localization receiver operating characteristics (LROC) studies of SPN detection. The observer results were analyzed for statistical significance differences in SPN detection accuracy among the three correction strategies, the standard acquisition, and the ideal case of the absence of respiratory motion. Our human-observer LROC determined that Quarter Binning and Half Binning strategies resulted in SPN detection accuracy statistically significantly below ( ) that of standard clinical acquisition, whereas the Reconstruct and Shift strategy resulted in a detection accuracy not statistically significantly different from that of the ideal case. This investigation demonstrates that tumor detection based on acquisitions associated with less than all the counts which could potentially be employed may result in poorer detection despite limiting the motion of the lesion. The Reconstruct and Shift method results in tumor detection that is equivalent to ideal motion correction.
Structural optimization of framed structures using generalized optimality criteria
NASA Technical Reports Server (NTRS)
Kolonay, R. M.; Venkayya, Vipperla B.; Tischler, V. A.; Canfield, R. A.
1989-01-01
The application of a generalized optimality criteria to framed structures is presented. The optimality conditions, Lagrangian multipliers, resizing algorithm, and scaling procedures are all represented as a function of the objective and constraint functions along with their respective gradients. The optimization of two plane frames under multiple loading conditions subject to stress, displacement, generalized stiffness, and side constraints is presented. These results are compared to those found by optimizing the frames using a nonlinear mathematical programming technique.
Report on 2005 Defense Base Closure and Realignment Implementation
2006-03-01
ARNG RC Terrell ..................................................................................................... 561 ARNG RC Texarkana ...594 Walts-Guillot USARC, Texarkana ............................................................................ 595 Utah... Texarkana Commission recommendation number(s): 44 Recommendation title(s): RC Transformation in Texas Closure or realignment actions taken
Research on the Fatigue Flexural Performance of RC Beams Attacked by Salt Spray
NASA Astrophysics Data System (ADS)
Mao, Jiang-hong; Xu, Fang-yuan; Jin, Wei-liang; Zhang, Jun; Wu, Xi-xi; Chen, Cai-sheng
2018-04-01
The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.
Kulawonganunchai, Supasak; Wilantho, Alisa; Koonyosying, Pongpisid; Uthaipibull, Chairat
2017-01-01
Background The current first line drugs for treating uncomplicated malaria are artemisinin (ART) combination therapies. However, Plasmodium falciparum parasites resistant to ART and partner drugs are spreading, which threatens malaria control efforts. Rodent malaria species are useful models for understanding antimalarial resistance, in particular genetic variants responsible for cross resistance to different compounds. Methods The Plasmodium berghei RC strain (PbRC) is described as resistant to different antimalarials, including chloroquine (CQ) and ART. In an attempt to identify the genetic basis for the antimalarial resistance trait in PbRC, its genome was sequenced and compared with five other previously sequenced P. berghei strains. Results We found that PbRC is eight-fold less sensitive to the ART derivative artesunate than the reference strain PbANKA. The genome of PbRC is markedly different from other strains, and 6,974 single nucleotide variants private to PbRC were identified. Among these PbRC private variants, non-synonymous changes were identified in genes known to modulate antimalarial sensitivity in rodent malaria species, including notably the ubiquitin carboxyl-terminal hydrolase 1 gene. However, no variants were found in some genes with strong evidence of association with ART resistance in P. falciparum such as K13 propeller protein. Discussion The variants identified in PbRC provide insight into P. berghei genome diversity and genetic factors that could modulate CQ and ART resistance in Plasmodium spp. PMID:29018598
A Hierarchy of Homodesmotic Reactions for Thermochemistry
Schleyer, Paul v. R.
2009-01-01
Chemical equations that balance bond types and atom hybridization to different degrees are often used in computational thermochemistry, for example, to increase accuracy when lower levels of theory are employed. We expose the widespread confusion over such classes of equations and demonstrate that the two most widely used definitions of “homodesmotic” reactions are not equivalent. New definitions are introduced and a consistent hierarchy of reaction classes (RC1 – RC5) for hydrocarbons is constructed: isogyric (RC1) ⊇ isodesmic (RC2) ⊇ hypohomodesmotic (RC3) ⊇ homodesmotic (RC4) ⊇ hyperhomodesmotic (RC5). Each of these successively conserves larger molecular fragments. The concept of isodesmic bond separation reactions is generalized to all classes in this hierarchy, providing a unique sectioning of a given molecule for each reaction type. Several ab initio and density functional methods are applied to the bond separation reactions of 38 hydrocarbons containing five or six carbon atoms. RC4 and RC5 reactions provide bond separation enthalpies with errors consistently less than 0.4 kcal mol−1 across a wide range of theoretical levels, performing significantly better than the other reaction types and far superior to atomization routes. Our recommended bond separation reactions were demonstrated by determining the enthalpies of formation (at 298 K) of 1,3,5-hexatriyne (163.7 ± 0.4 kcal mol−1), 1,3,5,7-octatetrayne (217.6 ± 0.6 kcal mol−1), the larger polyynes C10H2 through C26H2, and an infinite acetylenic carbon chain. PMID:19182999
1992-06-01
and may be better suited for knowledge representation. Frames Researcher Marvin Minsky developed the concept of Frames to describe how humans organize...knowledge about common concepts and situations.’ Minsky hypothesized that people do not construct new knowledge structures from scratch when they...to store new information. Minsky called these knowledge structures frames. Frames can be viewed as complex semantic nets. Frame diagrams show the
Rahaman, Siti Nurulnabila A; Mat Yusop, Jastina; Mohamed-Hussein, Zeti-Azura; Ho, Kok Lian; Teh, Aik-Hong; Waterman, Jitka; Ng, Chyan Leong
2016-03-01
C1ORF123 is a human hypothetical protein found in open reading frame 123 of chromosome 1. The protein belongs to the DUF866 protein family comprising eukaryote-conserved proteins with unknown function. Recent proteomic and bioinformatic analyses identified the presence of C1ORF123 in brain, frontal cortex and synapses, as well as its involvement in endocrine function and polycystic ovary syndrome (PCOS), indicating the importance of its biological role. In order to provide a better understanding of the biological function of the human C1ORF123 protein, the characterization and analysis of recombinant C1ORF123 (rC1ORF123), including overexpression and purification, verification by mass spectrometry and a Western blot using anti-C1ORF123 antibodies, crystallization and X-ray diffraction analysis of the protein crystals, are reported here. The rC1ORF123 protein was crystallized by the hanging-drop vapor-diffusion method with a reservoir solution comprised of 20% PEG 3350, 0.2 M magnesium chloride hexahydrate, 0.1 M sodium citrate pH 6.5. The crystals diffracted to 1.9 Å resolution and belonged to an orthorhombic space group with unit-cell parameters a = 59.32, b = 65.35, c = 95.05 Å. The calculated Matthews coefficient (VM) value of 2.27 Å(3) Da(-1) suggests that there are two molecules per asymmetric unit, with an estimated solvent content of 45.7%.
Ultrafast Primary Reactions in the Photosystems of Oxygen-Evolving Organisms
NASA Astrophysics Data System (ADS)
Holzwarth, A. R.
In oxygen-evolving photosynthetic organisms (plants, green algae, cyanobacteria), the primary steps of photosynthesis occur in two membrane-bound protein supercomplexes, Photosystem I (PS I) and Photosystem II (PS II), located in the thylakoid membrane (c.f. Fig. 7.1) along with two other important protein complexes, the cytochrome b6/f complex and the ATP-synthase [1]. Each of the photosystems consists of a reaction center (RC) where the photoinduced early electron transfer processes occur, of a so-called core antenna consisting of chlorophyll (Chl) protein complexes responsible for light absorption and ultrafast energy transfer to the RC pigments, and additional peripheral antenna complexes of various kinds that increase the absorption cross-section. The peripheral complexes are Chl a/b-protein complexes in higher plants and green algae (LHC I or LHC II for PS I or PS II, respectively) and so-called phycobilisomes in cyanobacteria and red algae [2-4]. The structures and light-harvesting functions of these antenna systems have been extensively reviewed [2, 5-9]. Recently, X-ray structures of both PS I and PS II antenna/RC complexes have been determined, some to atomic resolution. Although many details of the pigment content and organization of the RCs and antenna systems of PS I and PS II have been known before, the high resolution structures of the integral complexes allow us for the first time to try to understand structure/function relationships in detail. This article covers our present understanding of the ultrafast energy transfer and early electron transfer processes occurring in the photosystems of oxygen-evolving organisms. The main emphasis will be on the electron transfer processes. However, in both photosystems the kinetics of the energy transfer processes in the core antennae is intimately interwoven with the kinetics of the electron transfer steps. Since both types of processes occur on a similar time scale, their kinetics cannot be considered separately in any experiment and consequently they have to be discussed together.
NASA Astrophysics Data System (ADS)
Diama, A.; Matthies, B.; Herwig, K. W.; Hansen, F. Y.; Criswell, L.; Mo, H.; Bai, M.; Taub, H.
2009-08-01
We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C24H50 denoted as C24) and dotriacontane (n-C32H66 denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 Å=√3 ag, where ag=2.46 Å is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by ˜10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.
Diama, A; Matthies, B; Herwig, K W; Hansen, F Y; Criswell, L; Mo, H; Bai, M; Taub, H
2009-08-28
We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C(24)H(50) denoted as C24) and dotriacontane (n-C(32)H(66) denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 A=sqrt[3a(g)], where a(g)=2.46 A is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by approximately 10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.
A Rosa canina WUSCHEL-related homeobox gene, RcWOX1, is involved in auxin-induced rhizoid formation.
Gao, Bin; Wen, Chao; Fan, Lusheng; Kou, Yaping; Ma, Nan; Zhao, Liangjun
2014-12-01
Homeobox (HB) proteins are important transcription factors that regulate the developmental decisions of eukaryotes. WUSCHEL-related homeobox (WOX) transcription factors, known as a plant-specific HB family, play a key role in plant developmental processes. Our previous work has indicated that rhizoids are induced by auxin in rose (Rosa spp.), which acts as critical part of an efficient plant regeneration system. However, the function of WOX genes in auxin-induced rhizoid formation remains unclear. Here, we isolated and characterized a WUSCHEL-related homeobox gene from Rosa canina, RcWOX1, containing a typical homeodomain with 65 amino acid residues. Real-time reverse transcription PCR (qRT-PCR) analysis revealed that RcWOX1 was expressed in the whole process of callus formation and in the early stage of rhizoid formation. Moreover, its expression was induced by auxin treatment. In Arabidopsis transgenic lines expressing the RcWOX1pro::GUS and 35S::GFP-RcWOX1, RcWOX1 was specifically expressed in roots and localized to the nucleus. Overexpression of RcWOX1 in Arabidopsis increased lateral root density and induced upregulation of PIN1 and PIN7 genes. Therefore, we postulated that RcWOX1 is a functional transcription factor that plays an essential role in auxin-induced rhizoid formation.
Rigid and flexible control of eating behavior in a college population.
Timko, C Alix; Perone, Julie
2005-02-01
The objective of this study was to explore the relationship between rigid control (RC) and flexible control (FC) of eating behavior and their relationship to traditional weight, eating, and affective measurements in a large heterogeneous population. Participants were 639 underweight to obese male and female college students. Multiple regression analyses (MRA) revealed that high RC was associated with high Body Mass Index (BMI) and high Disinhibition (DIS), and high FC was associated with low BMI and low DIS in women. In men, high RC was associated with high BMI and high DIS, whereas FC was not related to BMI or DIS. Multiple regression analyses of BMI on RC and FC in the female subsample revealed that the control variables interact in such a way that the relationship between RC and BMI is stronger when FC is lower. In men, there was no interaction between these variables. This study is the first full replication of Westenhoefer's Gezugeltes Essen und Storbarkeit des Ebetaverhaltens: 2. Auflage. Gottingen: Verlag fur Psychologie () findings regarding RC and FC and their relationship to weight (BMI) and Disinhibition (DIS) in women. This is also the only second study to use the expanded, more reliable versions of the RC and FC scales. Overall, high RC in women and men was associated with greater eating and affective pathology.
Structural dynamics and control of large space structures. [conference
NASA Technical Reports Server (NTRS)
Lightner, E. B. (Compiler)
1981-01-01
The focus of the workshop was the basic research program assembled by LaRC to address the fundamental technology deficiencies that were identified in several studies on large space systems (LSS) conducted by NASA in the last several years. The staffs of the respective participants were assembled at the workshop to review the current state of research in the control technology for large structural systems and to plan the efforts that would be pursued by their respective organizations.
A proposal for seismic evaluation index of mid-rise existing RC buildings in Afghanistan
NASA Astrophysics Data System (ADS)
Naqi, Ahmad; Saito, Taiki
2017-10-01
Mid-rise RC buildings gradually rise in Kabul and entire Afghanistan since 2001 due to rapid increase of population. To protect the safety of resident, Afghan Structure Code was issued in 2012. But the building constructed before 2012 failed to conform the code requirements. In Japan, new sets of rules and law for seismic design of buildings had been issued in 1981 and severe earthquake damage was disclosed for the buildings designed before 1981. Hence, the Standard for Seismic Evaluation of RC Building published in 1977 has been widely used in Japan to evaluate the seismic capacity of existing buildings designed before 1981. Currently similar problem existed in Afghanistan, therefore, this research examined the seismic capacity of six RC buildings which were built before 2012 in Kabul by applying the seismic screening procedure presented by Japanese standard. Among three screening procedures with different capability, the less detailed screening procedure, the first level of screening, is applied. The study founds an average seismic index (IS-average=0.21) of target buildings. Then, the results were compared with those of more accurate seismic evaluation procedures of Capacity Spectrum Method (CSM) and Time History Analysis (THA). The results for CSM and THA show poor seismic performance of target buildings not able to satisfy the safety design limit (1/100) of the maximum story drift. The target buildings are then improved by installing RC shear walls. The seismic indices of these retrofitted buildings were recalculated and the maximum story drifts were analyzed by CSM and THA. The seismic indices and CSM and THA results are compared and found that building with seismic index larger than (IS-average =0.4) are able to satisfy the safety design limit. Finally, to screen and minimize the earthquake damage over the existing buildings, the judgement seismic index (IS-Judgment=0.5) for the first level of screening is proposed.
Automated Tow Placed LaRC(TM)-PETI-5 Composites
NASA Technical Reports Server (NTRS)
Hou, T. H.; Belvin, H. L.; Johnston, N. J.
2001-01-01
LaRC(TM)-PETI-5 is a PhenylEthynyl-Terminated Imide resin developed at NASA Langley Research Center (LaRC) during the 1990s. It offers a combination of attractive composite and adhesive properties. IM7/LaRC(TM)-PETI-5 composites exhibit thermal and thermo-oxidative stability typical of polyimides, superior chemical resistance and processability, excellent mechanical properties, toughness and damage tolerance. It was selected for study in the High Speed Research program aimed at developing technologies for a future supersonic aircraft, the High Speed Civil Transport, with a projected life span of 60 000 h at a cruise speed up to Mach 2.4. Robust autoclave processing cycles for LaRC(TM)-PETI-5 composites have been thoroughly designed and demonstrated, which involved hand lay-up of solvent-ladened 'wet' prepregs. However, this type of processing is not only costly but also environmentally unfriendly. Volatile management and shrinkage could become serious problems in the fabrication of large complex airframe structural subcomponents. Robotic tow placement technology utilizing 'dry' material forms represents a new fabrication process which overcomes these deficiencies. This work evaluates and compares mechanical properties of composites fabricated by heated head automated tow placement (dry process) with those obtained by hand lay-up/autoclave fabrication (wet process). Thermal and rheological properties of the robotically as-placed uncured composites were measured. A post-cure cycle was designed due to the requirement of the PETI-5 resin for a 370 C/1 h hold to reach full cure, conditions which cannot be duplicated during heated head robotic placement. Mechanical properties such as 0 degree flexural strength and modulus, open hole tensile and compressive strength and moduli, reduced section compression dogbone compressive strength, and modified zippora-medium small (MZ-MS) tensile and compressive properties were obtained on the post-cured panels. These properties compared favourably with those obtained from the wet process.
Development of a rocking R/C shear wall system implementing repairable structural fuses
NASA Astrophysics Data System (ADS)
Parsafar, Saeed; Moghadam, Abdolreza S.
2017-09-01
In the last decades, the concept of earthquake resilient structural systems is becoming popular in which the rocking structure is considered as a viable option for buildings in regions of high seismicity. To this end, a novel wall-base connection based on the " repairable structure" approach is proposed and evaluated. The proposed system is made of several steel plates and high strength bolts act as a friction connection. To achieve the desired rocking motion in the proposed system, short-slotted holes are used in vertical directions for connecting the steel plates to the shear wall (SW). The experimental and numerical studies were performed using a series of displacement control quasi-static cyclic tests on a reference model and four different configurations of the proposed connection installed at the wall corners. The seismic response of the proposed system is compared to the conventional SW in terms of energy dissipation and damage accumulation. In terms of energy dissipation, the proposed system depicted better performance with 95% more energy dissipation capability compared to conventional SW. In terms of damage accumulation, the proposed SW system is nearly undamaged compared to the conventional wall system, which was severely damaged at the wall-base region. Overall, the introduced concept presents a feasible solution for R/C structures when a low-damage design is targeted, which can improve the seismic performance of the structural system significantly.
Characterization of steel rebar spacing using synthetic aperture radar imaging
NASA Astrophysics Data System (ADS)
Hu, Jie; Tang, Qixiang; Twumasi, Jones Owusu; Yu, Tzuyang
2018-03-01
Steel rebars is a vital component in reinforced concrete (RC) and prestressed concrete structures since they provide mechanical functions to those structures. Damages occurred to steel rebars can lead to the premature failure of concrete structures. Characterization of steel rebars using nondestructive evaluation (NDE) offers engineers and decision makers important information for effective/good repair of aging concrete structures. Among existing NDE techniques, microwave/radar NDE has been proven to be a promising technique for surface and subsurface sensing of concrete structures. The objective of this paper is to use microwave/radar NDE to characterize steel rebar grids in free space, as a basis for the subsurface sensing of steel rebars inside RC structures. A portable 10-GHz radar system based on synthetic aperture radar (SAR) imaging was used in this paper. Effect of rebar grid spacing was considered and used to define subsurface steel rebar grids. Five rebar grid spacings were used; 12.7 cm (5 in.), 17.78 cm (7 in.), 22.86 cm (9 in.), 27.94 cm (11 in.), and 33.02 cm (13 in.) # 3 rebars were used in all grid specimens. All SAR images were collected inside an anechoic chamber. It was found that SAR images can successfully capture the change of rebar grid spacing and used for quantifying the spacing of rebar grids. Empirical models were proposed to estimate actual rebar spacing and contour area using SAR images.
Design, Fabrication and Test of Composite Curved Frames for Helicopter Fuselage Structure
NASA Technical Reports Server (NTRS)
Lowry, D. W.; Krebs, N. E.; Dobyns, A. L.
1984-01-01
Aspects of curved beam effects and their importance in designing composite frame structures are discussed. The curved beam effect induces radial flange loadings which in turn causes flange curling. This curling increases the axial flange stresses and induces transverse bending. These effects are more important in composite structures due to their general inability to redistribute stresses by general yielding, such as in metal structures. A detailed finite element analysis was conducted and used in the design of composite curved frame specimens. Five specimens were statically tested and compared with predicted and test strains. The curved frame effects must be accurately accounted for to avoid premature fracture; finite element methods can accurately predict most of the stresses and no elastic relief from curved beam effects occurred in the composite frames tested. Finite element studies are presented for comparative curved beam effects on composite and metal frames.
Covariance and the hierarchy of frame bundles
NASA Technical Reports Server (NTRS)
Estabrook, Frank B.
1987-01-01
This is an essay on the general concept of covariance, and its connection with the structure of the nested set of higher frame bundles over a differentiable manifold. Examples of covariant geometric objects include not only linear tensor fields, densities and forms, but affinity fields, sectors and sector forms, higher order frame fields, etc., often having nonlinear transformation rules and Lie derivatives. The intrinsic, or invariant, sets of forms that arise on frame bundles satisfy the graded Cartan-Maurer structure equations of an infinite Lie algebra. Reduction of these gives invariant structure equations for Lie pseudogroups, and for G-structures of various orders. Some new results are introduced for prolongation of structure equations, and for treatment of Riemannian geometry with higher-order moving frames. The use of invariant form equations for nonlinear field physics is implicitly advocated.
Yu, Tao; Yang, Yanyan; Kwak, Yi-Seong; Song, Gwan Gyu; Kim, Mi-Yeon; Rhee, Man Hee; Cho, Jae Youl
2017-04-01
Ginsenoside Rc (G-Rc) is one of the major protopanaxadiol-type saponins isolated from Panax ginseng , a well-known medicinal herb with many beneficial properties including anticancer, anti-inflammatory, antiobesity, and antidiabetic effects. In this study, we investigated the effects of G-Rc on inflammatory responses in vitro and examined the mechanisms of these effects. The in vitro inflammation system used lipopolysaccharide-treated macrophages, tumor necrosis factor-α/interferon-γ-treated synovial cells, and HEK293 cells transfected with various inducers of inflammation. G-Rc significantly inhibited the expression of macrophage-derived cytokines, such as tumor necrosis factor-α and interleukin-1β. G-Rc also markedly suppressed the activation of TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling in activated RAW264.7 macrophages, human synovial cells, and HEK293 cells. G-Rc exerts its anti-inflammatory actions by suppressing TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling.
Su, Youlu; Guo, Zhixun; Xu, Liwen; Jiang, Jingzhe; Wang, Jiangyong; Feng, Juan
2012-01-01
The chemokines regulate immune cell migration under inflammatory and physiological conditions. We investigated a CC chemokine gene (RcCC1) from cobia (Rachycentron canadum). The full-length RcCC1 cDNA is comprised 673 nucleotides and encodes a four-cysteine arrangement 99-amino-acid protein typical of known CC chemokines. The genomic DNA of RcCC1 consists of three exons and two introns. Phylogenetic analysis showed that RcCC1 was closest to the MIP group of CC chemokines. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed RcCC1 was constitutively expressed in all tissues examined, with relative strong expression in gill, blood, kidney, spleen, and head kidney. The RcCC1 transcripts in the head kidney, spleen, and liver were quickly up-regulated after stimulation with formalin-inactivated Vibrio carchariae (bacterial vaccine) or polyriboinosinic polyribocytidylic acid (poly I:C). These results indicate RcCC1 not only plays a role in homeostasis, but also may be involved in inflammatory responses to bacterial and viral infection. Copyright © 2011 Elsevier Ltd. All rights reserved.
Development Directions for Various Types of the Light Wood-Framed Structures
NASA Astrophysics Data System (ADS)
Malesza, J.; Baszeń, M.; Miedziałowski, Cz
2017-11-01
The paper presents current trends in the development of the wood-framed structures. Authors describe the evolution of the technology of implementation, the production process of precast elements of buildings as well as selected realization on the site of these kinds of structures. The attention has been paid to the effect of implementation phases on construction and erecting technology of the wood-framed structures. The paper draws attention to the importance and enhancement of structural analysis of structures in individual phases of building realization.
On Browne's Solution for Oblique Procrustes Rotation
ERIC Educational Resources Information Center
Cramer, Elliot M.
1974-01-01
A form of Browne's (1967) solution of finding a least squares fit to a specified factor structure is given which does not involve solution of an eigenvalue problem. It suggests the possible existence of a singularity, and a simple modification of Browne's computational procedure is proposed. (Author/RC)
Feminist and Family Systems Therapy: Are They Irreconcilable?
ERIC Educational Resources Information Center
Libow, Judith A.; And Others
1982-01-01
Urges more dialog between and integration of feminist and family systems theories in order to expand clinicians' flexibility and effectiveness. Considers points of conceptual and pragmatic convergence as well as divergence between the two perspectives. Highlights issues for development of a structural/strategic family systems model. (RC)
ERIC Educational Resources Information Center
Kerber, Robert C.; Fernando, Marian S.
2010-01-01
Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…
47 CFR 95.215 - (R/C Rule 15) Do I have to limit the length of my communications?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false (R/C Rule 15) Do I have to limit the length of... to Operate An R/c Station § 95.215 (R/C Rule 15) Do I have to limit the length of my communications... signal to insure the immediate safety of life of property, the FCC may make an exception to the...
Morton, L L
1994-08-01
Identifying disabilities in word-attack, word-recognition, or reading comprehension, allowed for four categories of reading disability: (1) reading comprehension only (RC), (2) word-attack plus comprehension (WA+RC), (3) word-attack, word-recognition, and comprehension (WA+WR+RC), and (4) word-attack but not comprehension (WA-RC). Along with age-matched controls (AMC) and developmental-delay controls (DDC), the disabled were tested on a directed-attention dichotic task using consonant-vowel combinations. Laterality results for each place of articulation (i.e., bilabial, alveolar, and velar) selectively attested to greater left hemisphere involvement or engagement for the RC group and greater right hemisphere involvement or engagement for the WA+RC group. Performance of the other two disabled groups was consistent with less efficient right hemisphere involvement or callosal transfer. Implications for theory, research, and remediation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Timothy C.; Zigan, James A.
A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuitmore » into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.« less
NASA Astrophysics Data System (ADS)
Mazza, Fabio
2017-08-01
The curved surface sliding (CSS) system is one of the most in-demand techniques for the seismic isolation of buildings; yet there are still important aspects of its behaviour that need further attention. The CSS system presents variation of friction coefficient, depending on the sliding velocity of the CSS bearings, while friction force and lateral stiffness during the sliding phase are proportional to the axial load. Lateral-torsional response needs to be better understood for base-isolated structures located in near-fault areas, where fling-step and forward-directivity effects can produce long-period (horizontal) velocity pulses. To analyse these aspects, a six-storey reinforced concrete (r.c.) office framed building, with an L-shaped plan and setbacks in elevation, is designed assuming three values of the radius of curvature for the CSS system. Seven in-plan distributions of dynamic-fast friction coefficient for the CSS bearings, ranging from a constant value for all isolators to a different value for each, are considered in the case of low- and medium-type friction properties. The seismic analysis of the test structures is carried out considering an elastic-linear behaviour of the superstructure, while a nonlinear force-displacement law of the CSS bearings is considered in the horizontal direction, depending on sliding velocity and axial load. Given the lack of knowledge of the horizontal direction at which near-fault ground motions occur, the maximum torsional effects and residual displacements are evaluated with reference to different incidence angles, while the orientation of the strongest observed pulses is considered to obtain average values.
Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing
2017-01-01
Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato.
Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing
2017-01-01
Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato. PMID:28824665
Kang, Su Jin; Choi, Beom Rak; Kim, Seung Hee; Yi, Hae Yeon; Park, Hye Rim; Kim, Dong Chul; Choi, Seong Hun; Han, Chang Hyun; Park, Soo Jin; Song, Chang Hyun; Ku, Sae Kwang; Lee, Young Joon
2015-01-01
Red clover (RC) shows potential activity against menopausal symptoms and pomegranates have antioxidative and beneficial effects on postmenopausal symptoms; thus, we investigated whether the anti-climacteric activity of RC could be enhanced by the addition of dried pomegranate concentrate powder (PCP) extracts in ovariectomized (OVX) rats. Regarding the anti-osteoporotic effects, bone mineral density increased significantly in OVX induced rats treated with 60 and 120 mg/kg of an RC:PCP 2:1 mixture, respectively, compared with OVX control rats. Additionally, femoral, tibia, and L4 bone resorption was decreased in OVX induced control rats treated with the RC:PCP 2:1 mixture (60 and 120 mg/kg), respectively, compared with OVX control rats. Regarding anti-obesity effects, the OVX induced rats treated with 60 and 120 mg/kg of the RC:PCP 2:1 mixture showed a decrease in total fat pad thickness, the mean diameters of adipocytes and the body weights gain compared with OVX induced control rats. The estradiol and bone-specific alkaline phosphatase levels were significantly increased in OVX induced rats treated with the RC:PCP 2:1 mixture (120 mg/kg) compared with OVX induced control rats, also, the uterine atrophy was significantly inhibited in 60 and 120 mg/kg of the RC:PCP 2:1 mixture treatment compared with OVX control rats. In conclusion, our results indicate that PCP enhanced the anti-climacteric effects of RC in OVX rats. The RC:PCP 2:1 mixture used in this study may be a promising new potent and protective agent for relieving climacteric symptoms. PMID:25912038
The Shock and Vibration Digest. Volume 12, Number 2,
1980-02-01
Malfunction Diagnosis Key Words: Design techniques, Equipment, Balancing tech- R.C. Eisenmann niques, Alignment Mech. Engrg. Services, North American...260 Edil, T.B ................. 362 Hignett, H.J.............. 379 Castro, G............... 409 Eisenmann , R.C ........... 395 Hill, R.C
Expected damages of retrofitted bridges with RC jacketing
NASA Astrophysics Data System (ADS)
Montes, O.; Jara, J. M.; Jara, M.; Olmos, B. A.
2015-07-01
The bridge infrastructure in many countries of the world consists of medium span length structures built several decades ago and designed for very low seismic forces. Many of them are reinforced concrete structures that according to the current code regulations have to be rehabilitated to increase their seismic capacity. One way to reduce the vulnerability of the bridges is by using retrofitting techniques that increase the strength of the structure or by incorporating devices to reduce the seismic demand. One of the most common retrofit techniques of the bridges substructures is the use of RC jacketing; this research assesses the expected damages of seismically deficient medium length highway bridges retrofitted with reinforced concrete jacketing, by conducting a parametric study. We select a suite of twenty accelerograms of subduction earthquakes recorded close to the Pacific Coast in Mexico. The original structures consist of five 30 m span simple supported bridges with five pier heights of 5 m, 10 m, 15 m 20 and 25 m and the analyses include three different jacket thickness and three steel ratios. The bridges were subjected to the seismic records and non-linear time history analyses were carried out by using the OpenSEEs Plataform. Results allow selecting the reinforced concrete jacketing that better improves the expected seismic behavior of the bridge models.
Ren, Qian; Au, Hilda H.T.; Wang, Qing S.; Lee, Seonghoon; Jan, Eric
2014-01-01
The dicistrovirus intergenic internal ribosome entry site (IGR IRES) directly recruits the ribosome and initiates translation using a non-AUG codon. A subset of IGR IRESs initiates translation in either of two overlapping open reading frames (ORFs), resulting in expression of the 0 frame viral structural polyprotein and an overlapping +1 frame ORFx. A U–G base pair adjacent to the anticodon-like pseudoknot of the IRES directs +1 frame translation. Here, we show that the U-G base pair is not absolutely required for +1 frame translation. Extensive mutagenesis demonstrates that 0 and +1 frame translation can be uncoupled. Ribonucleic acid (RNA) structural probing analyses reveal that the mutant IRESs adopt distinct conformations. Toeprinting analysis suggests that the reading frame is selected at a step downstream of ribosome assembly. We propose a model whereby the IRES adopts conformations to occlude the 0 frame aminoacyl-tRNA thereby allowing delivery of the +1 frame aminoacyl-tRNA to the A site to initiate translation of ORFx. This study provides a new paradigm for programmed recoding mechanisms that increase the coding capacity of a viral genome. PMID:25038250
Huang, Xuan; Wang, Jian; Du, Zhen; Zhang, Chen; Li, Lan; Xu, Ziqin
2013-10-01
Stripe rust is a devastating fungal disease of wheat worldwide which is primarily caused by Puccinia striiformis f. sp tritici. Transgenic wheat (Triticum aestivum L.) expressing rice class chitinase gene RC24 were developed by particle bombardment of immature embryos and tested for resistance to Puccinia striiformis f.sp tritici. under greenhouse and field conditions. Putative transformants were selected on kanamycin-containing media. Polymease chain reaction indicated that RC24 was transferred into 17 transformants obtained from bombardment of 1,684 immature embryos. Integration of RC24 was confirmed by Southern blot with a RC24-labeled probe and expression of RC24 was verified by RT-PCR. Nine transgenic T1 lines exhibited enhanced resistance to stripe rust infection with lines XN8 and BF4 showing the highest level of resistance. Southern blot hybridization confirmed the stable inheritance of RC24 in transgenic T1 plants. Resistance to stripe rust in transgenic T2 and T3 XN8 and BF4 plants was confirmed over two consecutive years in the field. Increased yield (27-36 %) was recorded for transgenic T2 and T3 XN8 and BF4 plants compared to controls. These results suggest that rice class I chitinase RC24 can be used to engineer stripe rust resistance in wheat.
Consumption of new psychoactive substances in a Spanish sample of research chemical users.
González, Débora; Ventura, Mireia; Caudevilla, Fernando; Torrens, Marta; Farre, Magi
2013-07-01
To know the pattern of use of new psychoactive substances (NPSs) in a Spanish sample of research chemical (RC) users and to deepen the RC user profile and risk reduction strategies employed. This study is a cross-sectional survey by means of a specific questionnaire. Recruitment was carried out at music festivals, at non-governmental organizations (NGOs), and through announcements on an online forum. Two RC user profiles were defined, according to whether they search information through online forums. A total of 230 users participated. The most frequent RCs were hallucinogenic phenethylamines (2C-B 80.0%, 2C-I 39.6%) and cathinones (methylone 40.1%, mephedrone 35.2%). The most frequent combination of RC with other illegal drugs was with cannabis (68.6%) and 2C-B with MDMA (28.3%). Subjects who are consulting drug forums (group 1) use more RC, obtain RC by Internet, and use more frequently risk prevention strategies. Regarding the risk-reduction strategies in this group, users sought information concerning RC before consuming them (100%), used precision scales to calculate dosage (72.3%), and analyzed the contents before consumption (68.8%). There is a specific RC user profile with extensive knowledge and consumption of substances, using different strategies to reduce risks associated to its consumption. Copyright © 2013 John Wiley & Sons, Ltd.
Cazelles, R; Lalaoui, N; Hartmann, T; Leimkühler, S; Wollenberger, U; Antonietti, M; Cosnier, S
2016-11-15
Direct electron transfer (DET) to proteins is of considerable interest for the development of biosensors and bioelectrocatalysts. While protein structure is mainly used as a method of attaching the protein to the electrode surface, we employed bioinformatics analysis to predict the suitable orientation of the enzymes to promote DET. Structure similarity and secondary structure prediction were combined underlying localized amino-acids able to direct one of the enzyme's electron relays toward the electrode surface by creating a suitable bioelectrocatalytic nanostructure. The electro-polymerization of pyrene pyrrole onto a fluorine-doped tin oxide (FTO) electrode allowed the targeted orientation of the formate dehydrogenase enzyme from Rhodobacter capsulatus (RcFDH) by means of hydrophobic interactions. Its electron relays were directed to the FTO surface, thus promoting DET. The reduction of nicotinamide adenine dinucleotide (NAD(+)) generating a maximum current density of 1μAcm(-2) with 10mM NAD(+) leads to a turnover number of 0.09electron/s/molRcFDH. This work represents a practical approach to evaluate electrode surface modification strategies in order to create valuable bioelectrocatalysts. Copyright © 2016 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
2009-11-01
The objectives of this study are to pre-test analyze a decommissioned reinforced concrete (RC) bridge that is selected in consultation with the New York State Department of Transportation (NYSDOT), and design and plan the field tests of the bridge fo...
12. Photocopy of photograph (original in Langley Research Center Archives, ...
12. Photocopy of photograph (original in Langley Research Center Archives, Hampton, VA LaRC) (L4496) AERIAL VIEW OF FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION; c. 1930. NOTE SEAPLANE TOWING CHANNEL STRUCTURE IN BACKGROUND. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA
Toward a Factor Analytic Definition of Academic Relevance
ERIC Educational Resources Information Center
Permut, Steven E.
1974-01-01
Underlying factor structure of 10 concepts rated by 67 students in an introductory advertising course was examined. Dimensions of relevance were found to conform to results reported by Menges and Trumpeter (1971) suggesting the potential for a university of basic dimensions of educational relevance across diverse fields of learning. (Author/RC)
NASA Technical Reports Server (NTRS)
Pater, Ruth H.
1988-01-01
A synthesis scheme was developed for a host of nonclassical addition-type thermoplastics (ATT) that can be cured by an addition reaction, leading to a linear polymer structure. The synthesis involves the reaction of an acetylene-terminated prepolymer with either a bismaleimide (BMI) or a biscitraconimide. A new polymer, designated LaRC-RP80, synthesized using this scheme, was found to exhibit several significantly improved properties over the commercial BMI, Kerimid 601, including an eight-fold increase in toughness while maintaining a high Tg, a higher (by 167 C) heat stability, and a 50-percent increase in moisture resistance. In addition, LaRC-RP80 has good hot/wet lap shear strength and processes easily at 288 C without voids in the finished product.
10.2 Thermal-Structural Testing
NASA Technical Reports Server (NTRS)
Hudson, Larry D.
2008-01-01
Objective: Test a C/SiC Ruddervator Subcomponent under relevant thermal, mechanical & dynamic loading a) Thermal-structural mission cycling for re-entry and hypersonic cruise conditions; b) High-temperature modal survey to study the effect of heating on mode shapes, natural frequencies and damping. Supports NASA ARMD Hypersonics Material & Structures Program. Partners: NASA Dryden / Langley / Glenn, Lockheed-Martin, Materials Research & Design, GE CCP Test Phases - Phase 1: Acoustic-Vibration Testing (LaRC) completed - Phase 2: Thermal-Mechanical Testing (DFRC) in assembly - Phase 3: Mechanical Testing (DFRC) in assembly
2016-08-08
structure for RC-2117, the Liko Nā Pilina project. Table 2. List of sites where plant traits were collected. Table 3. Master list of species with... structure and ecosystem services. The Hawaiian name, Liko Nā Pilina, translates to growing/budding new relationships, and reflects the species...carbon (C) storage and minimize C turnover, provide the most benefits for native plant biodiversity, and allow for open understory structure with high
System requirements specification for SMART structures mode
NASA Technical Reports Server (NTRS)
1992-01-01
Specified here are the functional and informational requirements for software modules which address the geometric and data modeling needs of the aerospace structural engineer. The modules are to be included as part of the Solid Modeling Aerospace Research Tool (SMART) package developed for the Vehicle Analysis Branch (VAB) at the NASA Langley Research Center (LaRC). The purpose is to precisely state what the SMART Structures modules will do, without consideration of how it will be done. Each requirement is numbered for reference in development and testing.
Effective pore size and radius of capture for K(+) ions in K-channels.
Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David
2016-02-02
Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structures. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 Å and r(E) = 4.5-5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 Å) and the Shaker Kv-channel (r(C) = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 Å and 3.6-4.4 Å for hydrated K(+) ions. These hydrated K(+) estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.
24 CFR 3280.306 - Windstorm protection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction... frame structure to be used as the points for connection of diagonal ties, no specific connecting devices need be provided on the main frame structure. (b) Contents of instructions. (1) The manufacturer must...
24 CFR 3280.306 - Windstorm protection.
Code of Federal Regulations, 2010 CFR
2010-04-01
... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction... frame structure to be used as the points for connection of diagonal ties, no specific connecting devices need be provided on the main frame structure. (b) Contents of instructions. (1) The manufacturer must...
In situ damage detection in frame structures through coupled response measurements
NASA Astrophysics Data System (ADS)
Liu, D.; Gurgenci, H.; Veidt, M.
2004-05-01
Due to the existence of global modes and local modes of the neighbouring members, damage detection on a structure is more challenging than damage on isolated beams. Detection of an artificial circumferential crack on a joint in a frame-like welded structure is studied in this paper using coupled response measurements. Similarity to real engineering structures is maintained in the fabrication of the test frame. Both the chords and the branch members have hollow sections and the branch members have smaller sizes. The crack is created by a hacksaw on a joint where a branch meets the chord. The methodology is first demonstrated on a single hollow section beam. The test results are then presented for the damaged and undamaged frame. The existence of the damage is clearly observable from the experimental results. It is suggested that this approach offers the potential to detect damage in welded structures such as cranes, mining equipment, steel-frame bridges, naval and offshore structures.
Research on the Best Root Span of 500kV Substation Frame Based on Finite Element
NASA Astrophysics Data System (ADS)
Chen, Hao; Fang, Qing; Chen, Haoyuan
2018-01-01
A-shaped and steel tube structures have been widely applied when designing 500kV substation frame in China. While, compared with steel tube, angle steels have an advantage of easy-transporting, especially in oversea projects. However, researches on substation frame with angle steel were not enough. In order to find out the best root span of 500kV substation frame under similar engineering conditions, using the overseas project substation frame as an example, the substation frames with different root span have been detailed calculated, to find the best root span according to the cost of it. When the height of column is about 30m, the root suggestion value is 6.1m×3.1m. And then, the buckling analysis of the overall structure has been carried out by ANSYS, to find out that the weak part of the structure is in the middle of it. The structural adjustment is carried out for the weak part, including adjusting the web members and the chord members, to obtain a higher bearing capacity of the structure.
Influence of resin cement shade on the color and translucency of ceramic veneers
HERNANDES, Daiana Kelly Lopes; ARRAIS, Cesar Augusto Galvão; de LIMA, Erick; CESAR, Paulo Francisco; RODRIGUES, José Augusto
2016-01-01
ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C* ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable. PMID:27556211
Influence of resin cement shade on the color and translucency of ceramic veneers.
Hernandes, Daiana Kelly Lopes; Arrais, Cesar Augusto Galvão; Lima, Erick de; Cesar, Paulo Francisco; Rodrigues, José Augusto
2016-01-01
This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.