Science.gov

Sample records for re-entry

  1. GOCE Re-Entry Campaign

    NASA Astrophysics Data System (ADS)

    Bastida, B.; Flohrer, T.; Lemmens, S.; Krag, H.

    2015-03-01

    Every year ESA, through the Space Debris Office, participates to an Inter-Agency Space Debris Coordination Committee (IADC) Re-entry Test Campaign.. For the campaign of 2013, ESA’s proposal to select GOCE's re-entry was accepted. The campaign opened on the 21st October 2013 after fuel depletion of the drag-compensating ion propulsion. GOCE was expected to enter into a phase of attitude-controlled fine-pointing mode (FPM) until the attitude controllers would be unable to cope with the atmospheric torques and then the satellite would enter in a phase of fully uncontrolled flight. In this paper, we present the evolution of ESA’s daily predictions on the re-entry epoch using different sources of orbital information. The uncertainties on the spacecraft operability (i.e. the physical limits of the attitude controller) led to a non-standard re-entry scenario were different attitudes had to be considered (instead of the commonly assumed random tumbling mode case that is used whenever no information on the physical properties of a re-entering object is available). A daily assessment of the status, in coordination with the flight control team, was required and implied a continuous update on the predicted failure point of the attitude controller. This in turn imposed the need for considering an asymmetric re-entry window. These operation-bound uncertainties were simulated to predict the attitude evolution after failure at different altitudes and their effects evaluated to be taken into account for the re-entry predictions. We present ESA’s re-entry prediction activities for GOCE, internally, and within the IADC, and address specific technical aspects and challenges for re-entry predictions, which are related to the expected and occurred attitude of GOCE during the final re-entry phase.

  2. Re-entry Experiment Launch

    NASA Video Gallery

    On August 10, 2009, NASA successfully launched the Inflatable Re-entry Vehicle Experiment (IRVE) and proved that spacecraft can use inflatable heat shields to reduce speed and provide protection du...

  3. Re-entry residency training

    PubMed Central

    Jamieson, Jean L.; Webber, Eric M.; Sivertz, Kristin S.

    2010-01-01

    ABSTRACT OBJECTIVE To identify and quantify the reasons general practitioners and family physicians consider retraining and their reasons for not pursuing further training. DESIGN Population-based mailed survey. SETTING British Columbia. PARTICIPANTS Family physicians and general practitioners identified by the College of Physicians and Surgeons of British Columbia. MAIN OUTCOME MEASURES Practising physicians’ level of awareness of the University of British Columbia’s re-entry training program, the number and demographic characteristics of those who had considered retraining, their specialties of interest, and the barriers and possible inducements to retraining. RESULTS Only half of the survey respondents were aware of the re-entry training program at the University of British Columbia. A small but substantial number of practising general practitioners and family physicians were interested in taking specialty training from the Royal College of Physicians and Surgeons of Canada. While several training programs were particularly popular (ie, anesthesia and psychiatry—18.5% of respondents for each), almost every specialty training program was mentioned. Physicians identified the length and hours of training, financial issues, family issues, and the need for relocation as obstacles to retraining. The availability of part-time training, regional training, and return-of-service financial assistance were all identified as potential inducements. CONCLUSION To meet the needs of practising physicians, re-entry training programs will need to consider flexibility, where feasible, with regard to choice of specialty, intensity, and location of postgraduate training. PMID:20547505

  4. Preventing re-entry to foster care.

    PubMed

    Carnochan, Sarah; Rizik-Baer, Daniel; Austin, Michael J

    2013-01-01

    Re-entry to foster care generally refers to circumstances in which children who have been discharged from foster care to be reunified with their family of origin, adopted, or provided kinship guardianship are returned to foster care. In the context of the federal performance measurement system, re-entry refers specifically to a return to foster care following an unsuccessful reunification. The federal Children and Family Services Review measures re-entry to foster care with a single indicator, called the permanency of reunification indicator, one of four indicators comprising the reunification composite measure. This review focuses on research related to the re-entry indicator, including the characteristics of children, caregivers and families, as well as case and child welfare services that are associated with a higher or lower risk of re-entry to foster care. Promising post-reunification services designed to prevent re-entry to foster care are described.

  5. Well engineering for re-entry operations

    SciTech Connect

    1996-10-01

    Oil and gas operators are constantly looking at their existing assets for ways to increase their value. Several operators consider a re-entry program as the principle leveraging technology in strategic acquisitions. Much of the current re-entry operations effort targets the longer reach sidetrack and multilateral well markets. The key to this effort, whether it involves coiled tubing drilling, short radius drilling or multilateral well technologies, is re-entry well engineering. The engineer evaluating a re-entry prospect must apply significant levels of reservoir engineering, rock mechanics, completion engineering and drilling engineering to properly design the well and develop successful procedures. Re-entry drilling means that the operator is working with proven or probable reserves. Completion design and engineering are the most important aspects of well design once the target has been selected. Ultimately, the completion design selected will dictate the type of re-entry program: slot recovery, drilling out below the current casing shoe, or section milling and whipstock sidetracking. It can also dictate the principle aspects of the drilling program. The acceptable wellbore inclination build rates (dogleg severity), wellbore length, and drilling fluid selection are commonly influenced and even dictated by the completion design. These factors are discussed.

  6. Assessment of the ATV-1 Re-Entry Observation Campaign for Future Re-Entry Missions

    NASA Astrophysics Data System (ADS)

    Lips, T.; Lohle, S.; Marynowsky, T.; Rees, D.; Stenbeak-Nielsen, H. C.; Beks, M. L.; Hatton, J.

    2010-09-01

    This paper summarizes the midterm results of the currently ongoing ESA study “Assessment of the ATV-1 Reentry Observation Campaign for Future Re-entry Missions”. The primary objective of this study is to investigate the data obtained during a joint ESA/NASA airborne observation campaign of the destructive re-entry of ATV-1 Jules Verne which occurred on September 29, 2008. The presented results are focused on spectroscopic fragment characterization(material identification), frame-by-frame fragment tracking(manual and automatic) for various video recordings, 3D triangulation of the tracked fragments, and fragment propagation until complete demise or ground impact, including the actual size and location of the ATV-1 debris footprint. Fragment propagation analyses comprise also the derivation of aerodynamic fragment properties and potential delta velocities. These parameters are of high importance for the re-entry safety analysis for ATV-2 Johannes Kepler.

  7. Automated Re-Entry System using FNPEG

    NASA Technical Reports Server (NTRS)

    Johnson, Wyatt R.; Lu, Ping; Stachowiak, Susan J.

    2017-01-01

    This paper discusses the implementation and simulated performance of the FNPEG (Fully Numerical Predictor-corrector Entry Guidance) algorithm into GNC FSW (Guidance, Navigation, and Control Flight Software) for use in an autonomous re-entry vehicle. A few modifications to FNPEG are discussed that result in computational savings -- a change to the state propagator, and a modification to cross-range lateral logic. Finally, some Monte Carlo results are presented using a representative vehicle in both a high-fidelity 6-DOF (degree-of-freedom) sim as well as in a 3-DOF sim for independent validation.

  8. Orbit re-entry experiment vehicle development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masataka; Yamawaki, Kouji; Akimoto, Toshio; Murakami, Atsushi; Inaba, Motoyuki; Kaneko, Yutaka; Shimoda, Takayuki; Ishii, Yasuo; Izumi, Tatsushi; Kawano, Isao

    1992-08-01

    An overview of the Orbital Re-entry Experiment (OREX) vehicle development, including detail design, analyses on the overall system, guidance and control, propulsion, and data acquisition systems is presented. The outline of the experiment vehicle is shown. OREX flight is analyzed and the splash down point variance ellipse is shown. Vehicle body aerodynamic characteristics were analyzed and validated by supersonic wind tunnel and dynamically balanced wind tunnel tests. Analyses on onboard equipment environmental resistance, controllability from on orbit to re-entry phases and navigation and guidance of the space plane were conducted. It was confirmed that there was no problem on the guidance and control system. Review on the propellant volume and analyses on the propulsion system performance, propulsion system heat exchanger performance, and thruster and piping system temperature were conducted and possibility of hard starting of the 150 N hydrazine thruster was noticed. RF (Radio Frequency) link analyses were conducted around Tanegashima, Ogasawara, and the splash down area and prospect of continuously acquiring good link margin for 300 seconds was obtained. Semi unitized structure of truncated cone shape with main body made of aluminum alloy, which has application record for rockets, laid with skin, stringers, and frames was employed for the structure. Data acquisition systems for tracking and operation, including those at Tanegashima, Ogasawara, Christmas, down range ship, and airplane tracking stations were studied.

  9. Worldwide growth market forecast for re-entry drilling

    SciTech Connect

    1996-10-01

    Operators worldwide hail re-entry drilling as the fastest growing development technique in the business. With re-entry technology advancing on a number of fronts, the only question seems to be which re-entry technique is best to get optimum well productivity. Discussions now address how best to proceed: traditional re-entry (RED), coiled tubing drilling (CTD) or short radius (SRD). New technology is definitely fueling a methodology shift in favor of coiled tubing drilling and short radius drilling. Petroleum Engineer International explored the booming re-entry business with operators from the North Sea and North American markets. The paper contains the operators` thoughts on re-entry drilling.

  10. Re-Entry Mission Analysis of the Advanced Re-entry Vehicle (ARV)

    NASA Astrophysics Data System (ADS)

    Bonetti, D.; Haya Ramos, R.; Strauch, H.; Bottacini, M.

    2011-08-01

    This paper presents the results of the DEIMOS Space S.L.U. Re-entry Mission Analysis activities obtained in the frame of the Phase A up to PRR milestone of the Advanced Re-entry Vehicle (ARV) ESA project leaded by ASTRIUM. Results presented show how the trajectory and the vehicle design are strictly related and how a feasible and robust solution can be efficiently obtained by considering since the beginning several constraints limiting the design. The process implemented combines the design of key vehicle and trajectory parameters. Once the vehicle design parameters and the conditions at the EIP are fixed, the Mission Analysis is completed by the definition of the optimal trajectory from the deorbiting to the EIP that allow the correct targeting of the EIP conditions but also a safe separation of the different modules and the correct targeting of the desired landing site.

  11. Re-Entry Mission Analysis Of The Advanced Re-Entry Vehicle (ARV)

    NASA Astrophysics Data System (ADS)

    Bonetti, Davide; Haya Ramos, Rodrigo; Strauch, Hans; Bottacini, Massimiliano

    2011-05-01

    This paper presents the results of the DEIMOS Space S.L.U. Re-entry Mission Analysis activities obtained in the frame of the Phase A up to PRR milestone of the Advanced Re-entry Vehicle (ARV) ESA project leaded by ASTRIUM. Results presented show how the trajectory and the vehicle design are strictly related and how a feasible and robust solution can be efficiently obtained by considering since the beginning several constraints limiting the design. The process implemented combines the design of key vehicle and trajectory parameters. Once the vehicle design parameters and the conditions at the EIP are fixed, the Mission Analysis is completed by the definition of the optimal trajectory from the de- orbiting to the EIP that allow the correct targeting of the EIP conditions but also a safe separation of the different modules and the correct targeting of the desired landing site.

  12. Re-Entry Predictions for Uncontrolled Satellites: Results and Challenges

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen; Anselmo, Luciano

    2013-09-01

    Currently, approximately 70% of the re-entries of intact orbital objects are uncontrolled, corresponding to about 50% of the returning mass, i.e. ˜100 metric tons per year. On average, there is one spacecraft or rocket body uncontrolled re-entry every week, with an average mass around 2000 kg. Even though a detailed demise analysis is available only occasionally, in many cases the alert casualty expectancy threshold of 1:10,000 is probably violated.Re-entry predictions are affected by various sources of inevitable uncertainty and, in spite of decades of efforts, mean relative errors of 20% often occur. This means that even predictions issued 3 hours before re-entry may be affected by an along-track uncertainty of 40,000 km (corresponding to one orbital path), possibly halved during the last hour. However, specific methods and procedures have been developed to provide understandable and unambiguous information useful for civil protection planning and applications.

  13. ISS Update: ATV-3 ReEntry Breakup Recorder

    NASA Video Gallery

    ISS Update Commentator Pat Ryan talks with Dr. William Ailor, Principal Investigator for the ReEntry Breakup Recorder (REBR) for The Aerospace Corporation. Ailor talks about capturing data as Europ...

  14. The Secret of Guided Missile Re-Entry,

    DTIC Science & Technology

    1986-06-25

    Only a small portion survives and hits the earth’s surface as a meteorite . A meteor burns during its re-entry; then, what is the destiny of the...great sky. From launch to hitting the target their flight generally consists of three flight stages: propulsion flight, free flight and re-entry...sweat; (14) stage; (5) Earth ; (6) launch site; porous material; (5) solid (7) target, coolant; (6) liquid coolant; (7) solid wall shell; (8) catalyst

  15. Satellite Re-entry Modeling and Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Horsley, M.

    2012-09-01

    LEO trajectory modeling is a fundamental aerospace capability and has applications in many areas of aerospace, such as maneuver planning, sensor scheduling, re-entry prediction, collision avoidance, risk analysis, and formation flying. Somewhat surprisingly, modeling the trajectory of an object in low Earth orbit is still a challenging task. This is primarily due to the large uncertainty in the upper atmospheric density, about 15-20% (1-sigma) for most thermosphere models. Other contributions come from our inability to precisely model future solar and geomagnetic activities, the potentially unknown shape, material construction and attitude history of the satellite, and intermittent, noisy tracking data. Current methods to predict a satellite's re-entry trajectory typically involve making a single prediction, with the uncertainty dealt with in an ad-hoc manner, usually based on past experience. However, due to the extreme speed of a LEO satellite, even small uncertainties in the re-entry time translate into a very large uncertainty in the location of the re-entry event. Currently, most methods simply update the re-entry estimate on a regular basis. This results in a wide range of estimates that are literally spread over the entire globe. With no understanding of the underlying distribution of potential impact points, the sequence of impact points predicted by the current methodology are largely useless until just a few hours before re-entry. This paper will discuss the development of a set of the High Performance Computing (HPC)-based capabilities to support near real-time quantification of the uncertainty inherent in uncontrolled satellite re-entries. An appropriate management of the uncertainties is essential for a rigorous treatment of the re-entry/LEO trajectory problem. The development of HPC-based tools for re-entry analysis is important as it will allow a rigorous and robust approach to risk assessment by decision makers in an operational setting. Uncertainty

  16. Pesticides re-entry dermal exposure of workers in greenhouses.

    PubMed

    Caffarelli, V; Conte, E; Correnti, A; Gatti, R; Musmeci, F; Morali, G; Spagnoli, G; Tranfo, G; Triolo, L; Vita, M; Zappa, G

    2004-01-01

    This research has the aim to evaluate the risk of pesticide dermal exposure for workers in greenhouses. We considered the following crops: tomato, cucumber and strawberry, largely spread in Bracciano lake district. The pesticides monitored were: tetradifon on strawberry: metalaxyl, azoxystrobin and fenarimol on cucumber; acrinathrin, azoxystrobin and chlorpyrifos ethyl on tomato. The dermal exposure was evaluated by Dislodgeable Foliar Residue (DFR) measurements employing transfer coefficients got from literature. For risk evaluation, we have compared the dermal exposures with Acceptable Operator Exposure Levels (AOEL). The re-entry time were obtained intercepting the dose decay curves with AOEL values. The re-entry times result higher than two days in the cases of chlorpyrifos on tomato (re-entry time: 3 days), azoxystrobin on tomato (4 days), and tetradifon on strawberry (8 days). The need of measuring specific transfer coefficients is pointed out.

  17. Missile Aerodynamics for Ascent and Re-entry

    NASA Technical Reports Server (NTRS)

    Watts, Gaines L.; McCarter, James W.

    2012-01-01

    Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping.

  18. Calibration of Radar Based Re-Entry Predictions

    NASA Astrophysics Data System (ADS)

    Lemmens, S.; Bastida Virgili, B.; Flohrer, T.; Gini, F.; Krag, H.; Steiger, C.

    2015-03-01

    The availability of GPS observations via the telemetry during GOCE’s (Gravity Field and Steady-State Ocean Circulation Explorer) entire re-entry campaign enabled the generation of high quality orbit products which can be used as input to re-entry predictions. These high precision orbits can be used as reference to assess the quality of orbits generated from other sources. Here we verify the accuracy of orbits based on radar tracking data, obtained by dedicated observations with the Tracking & Imaging Radar system from the Fraunhofer High Frequency Physics and Radar Techniques institute, with respect to the a post-processed GPS based reference orbit. This leads to time-depended quantification of the orbit determination uncertainties on the re-entry predictions. Furthermore, the ballistic coefficient determined by the orbit determination and its time dependent evolution can be used to a priori estimate the attitude behaviour of GOCE, which can be compared to the telemetry. The attitude behaviour can be analysed by the use of inverse synthetic aperture radar (ISAR) images, also obtained by dedicated observation by TIRA. The effect of adding this knowledge on the attitude evolution to the re-entry predictions is evaluated.

  19. Control Surface Seals Investigated for Re- Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H.; Steinetz, Bruce M.

    2003-01-01

    Re-entry vehicles generally use control surfaces (e.g., rudders, body flaps, and elevons) to steer or guide them as they pass into and through the Earth s atmosphere. High temperature seals are required around control surfaces both along hinge lines and in areas where control surface edges seal against the vehicle body to limit hot gas ingestion and the transfer of heat to underlying low-temperature structures. Working with the NASA Johnson Space Center, the Seals Team at the NASA Glenn Research Center completed a series of tests on the baseline seal design for the rudder/fin control surface interfaces of the X-38 vehicle. This seal application was chosen as a case study to evaluate a currently available control surface seal design for applications in future re-entry vehicles. The structures of the rudder/fin assembly and its associated seals are shown in the following illustration.

  20. Inflatable Re-entry Vehicle Experiment (IRVE-4) Overview

    NASA Technical Reports Server (NTRS)

    Litton, Daniel K.; Bose, David M.; Cheatwood, F. McNeil; Hughes, Stephen; Wright, Henry S.; Lindell, Michael C.; Derry, Stephen D.; Olds, Aaron

    2011-01-01

    The suite of Inflatable Re-Entry Vehicle Experiments (IRVE) is designed to further our knowledge and understanding of Hypersonic Inflatable Aerodynamic Decelerators (HIADs). Before infusion into a future mission, three challenges need to be addressed: surviving the heat pulse during re-entry, demonstrating system performance at relevant scales, and demonstrating controllability in the atmosphere. IRVE-4 will contribute to a better understanding of controllability by characterizing how a HIAD responds to a set of controlled inputs. The ability to control a HIAD is vital for missions that are g-limited, require precision targeting and guidance for aerocapture or entry, descent, and landing. The IRVE-4 flight test will focus on taking a first look into controlling a HIAD. This paper will give an overview of the IRVE-4 mission including the control response portion of the flight test sequence, and will provide a review of the mission s development.

  1. High performance modeling of atmospheric re-entry vehicles

    NASA Astrophysics Data System (ADS)

    Martin, Alexandre; Scalabrin, Leonardo C.; Boyd, Iain D.

    2012-02-01

    Re-entry vehicles designed for space exploration are usually equipped with thermal protection systems made of ablative material. In order to properly model and predict the aerothermal environment of the vehicle, it is imperative to account for the gases produced by ablation processes. In the case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature, the composition of the gas expelled into the boundary layer is complex and may lead to thermal chemical reactions that cannot be captured with simple flow chemistry models. In order to obtain better predictions, an appropriate gas flow chemistry model needs to be included in the CFD calculations. Using a recently developed chemistry model for ablating carbon-phenolic-in-air species, a CFD calculation of the Stardust re-entry at 71 km is presented. The code used for that purpose has been designed to take advantage of the nature of the problem and therefore remains very efficient when a high number of chemical species are involved. The CFD result demonstrates the need for such chemistry model when modeling the flow field around an ablative material. Modeling of the nonequilibrium radiation spectra is also presented, and compared to the experimental data obtained during Stardust re-entry by the Echelle instrument. The predicted emission from the CN lines compares quite well with the experimental results, demonstrating the validity of the current approach.

  2. Coronas-F Orbit Monitoring and Re-Entry Prediction

    NASA Technical Reports Server (NTRS)

    Ivanov, N. M.; Kolyuka, Yu. F.; Afanasieva, T. I.; Gridchina, T. A.

    2007-01-01

    Russian scientific satellite CORONAS-F was launched on July, 31, 2001. The object was inserted in near-circular orbit with the inclination 82.5deg and a mean altitude approx. 520 km. Due to the upper atmosphere drag CORONAS-F was permanently descended and as a result on December, 6, 2005 it has finished the earth-orbital flight, having lifetime in space approx. 4.5 years. The satellite structural features and its flight attitude control led to the significant variations of its ballistic coefficient during the flight. It was a cause of some specific difficulties in the fulfillment of the ballistic and navigation support of this space vehicle flight. Besides the main mission objective CORONAS-F also has been selected by the Inter-Agency Space Debris Coordination Committee (IADC) as a target object for the next regular international re-entry test campaign on a program of surveillance and re-entry prediction for the hazard space objects within their de-orbiting phases. Spacecraft (S/C) CORONAS-F kept its working state right up to the end of the flight - down to the atmosphere entry. This fact enabled to realization of the additional research experiments, concerning with an estimation of the atmospheric density within the low earth orbits (LEO) of the artificial satellites, and made possible to continue track the S/C during final phase of its flight by means of Russian regular command & tracking system, used for it control. Thus there appeared a unique possibility of using for tracking S/C at its de-orbiting phase not only passive radar facilities, belonging to the space surveillance systems and traditionally used for support of the IADC re-entry test campaigns, but also more precise active trajectory radio-tracking facilities from the ground control complex (GCC) applied for this object. Under the corresponding decision of the Russian side such capability of additional high-precise tracking control of the CORONAS-F flight in this period of time has been implemented

  3. New tool allows selective multi-lateral re-entry

    SciTech Connect

    1997-05-01

    This article overviews the world`s first application of a downhole tool installed after the drilling and completion of a lateral borehole from a larger backbone casing, to allow future access to the lateral using through-tubing, coiled tubing operations. The system described is based on the Multi Lateral Selective Re-Entry System, or MLR (trademark), supplied by Pressure Control Engineering Ltd. (PCE) of Poole, Dorset, England. Primary equipment used in creating the lateral completion and its tieback to the backbone liner was supplied by Sperry Sun.

  4. Flap effectiveness appraisal for winged re-entry vehicles

    NASA Astrophysics Data System (ADS)

    de Rosa, Donato; Pezzella, Giuseppe; Donelli, Raffaele S.; Viviani, Antonio

    2016-05-01

    The interactions between shock waves and boundary layer are commonplace in hypersonic aerodynamics. They represent a very challenging design issue for hypersonic vehicle. A typical example of shock wave boundary layer interaction is the flowfield past aerodynamic surfaces during control. As a consequence, such flow interaction phenomena influence both vehicle aerodynamics and aerothermodynamics. In this framework, the present research effort describes the numerical activity performed to simulate the flowfield past a deflected flap in hypersonic flowfield conditions for a winged re-entry vehicle.

  5. Investigations of Control Surface Seals for Re-entry Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; DeMange, Jeffrey J.; Rivers, H. Kevin; Hsu, Su-Yuen

    2002-01-01

    Re-entry vehicles generally require control surfaces (e.g., rudders, body flaps) to steer them during flight. Control surface seals are installed along hinge lines and where control surface edges move close to the vehicle body. These seals must operate at high temperatures and limit heat transfer to underlying structures to prevent them from overheating and causing possible loss of vehicle structural integrity. This paper presents results for thermal analyses and mechanical testing conducted on the baseline rudder/fin seal design for the X-38 re-entry vehicle. Exposure of the seals in a compressed state at the predicted peak seal temperature of 1900 F resulted in loss of seal resiliency. The vertical Inconel rudder/fin rub surface was re-designed to account for this loss of resiliency. Room temperature compression tests revealed that seal unit loads and contact pressures were below limits set to protect Shuttle thermal tiles on the horizontal sealing surface. The seals survived an ambient temperature 1000 cycle scrub test over sanded Shuttle tiles and were able to disengage and re-engage the tile edges during testing. Arc jet tests confirmed the need for seals in the rudder/fin gap location because a single seal caused a large temperature drop (delta T = 1710 F) in the gap.

  6. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  7. Atomic and molecular data for spacecraft re-entry plasmas

    NASA Astrophysics Data System (ADS)

    Celiberto, R.; Armenise, I.; Cacciatore, M.; Capitelli, M.; Esposito, F.; Gamallo, P.; Janev, R. K.; Laganà, A.; Laporta, V.; Laricchiuta, A.; Lombardi, A.; Rutigliano, M.; Sayós, R.; Tennyson, J.; Wadehra, J. M.

    2016-06-01

    The modeling of atmospheric gas, interacting with the space vehicles in re-entry conditions in planetary exploration missions, requires a large set of scattering data for all those elementary processes occurring in the system. A fundamental aspect of re-entry problems is represented by the strong non-equilibrium conditions met in the atmospheric plasma close to the surface of the thermal shield, where numerous interconnected relaxation processes determine the evolution of the gaseous system towards equilibrium conditions. A central role is played by the vibrational exchanges of energy, so that collisional processes involving vibrationally excited molecules assume a particular importance. In the present paper, theoretical calculations of complete sets of vibrationally state-resolved cross sections and rate coefficients are reviewed, focusing on the relevant classes of collisional processes: resonant and non-resonant electron-impact excitation of molecules, atom-diatom and molecule-molecule collisions as well as gas-surface interaction. In particular, collisional processes involving atomic and molecular species, relevant to Earth (N2, O2, NO), Mars (CO2, CO, N2) and Jupiter (H2, He) atmospheres are considered.

  8. Re-Entry Guidance Using an Energy-State Equation

    NASA Astrophysics Data System (ADS)

    Abe, Akio; Shimada, Yuzo; Uchiyama, Kenji

    This paper presents a new guidance and control system for a re-entry vehicle. In the conventional drag acceleration control system employed for the present space shuttles, the velocity is an unobservable state variable and the associated pole tends to be unstable. Therefore, in this study, a condition which allows all the states to be observable is introduced using a state-space linearization method. It is also shown that energy and its rate are appropriate for the state variables. A guidance law is analytically derived on the basis of the obtained state equation with respect to the energy by solving a two-point boundary-value problem. Furthermore, a tracking control system is designed to make the position, velocity, and flight path angle of the vehicle track the reference states generated in the guidance system. Finally, numerical simulation is performed to verify the validity of the obtained plant expression, and the effectiveness of the proposed guidance and control system.

  9. MHD of Aircraft Re-entry: Limits and Perspectives

    NASA Astrophysics Data System (ADS)

    Seller, G.; Capitelli, M.; Longo, S.; Armenise, I.; Bruno, D.

    2005-05-01

    In the present work, starting from classical MHD scheme, based on Maxwell equations, Euler fluid dynamic equations and generalised Ohm law, a critical study of fluid dynamics, electromagnetism, chemical and physical behaviour of plasma is carried out, and then a aircraft re-entry MHD numerical scheme is implemented. This scheme is used for MHD calculations in different conditions, in the range of low magnetic force and intermediate electrical conductivity. Initial imposed magnetic fields are uniform, but also some cases with coil generated magnetic fields are considered. Calculations of magnetic field and induced currents are extended also inside the blunt body. Results show interesting physical and electromagnetic effects. Comparison with other methods shows possible development in keeping into account other physical and chemical effects.

  10. MHD of Aircraft Re-entry: Limits and Perspectives

    SciTech Connect

    Seller, G.; Capitelli, M.; Longo, S.; Armenise, I.; Bruno, D.

    2005-05-16

    In the present work, starting from classical MHD scheme, based on Maxwell equations, Euler fluid dynamic equations and generalised Ohm law, a critical study of fluid dynamics, electromagnetism, chemical and physical behaviour of plasma is carried out, and then a aircraft re-entry MHD numerical scheme is implemented. This scheme is used for MHD calculations in different conditions, in the range of low magnetic force and intermediate electrical conductivity. Initial imposed magnetic fields are uniform, but also some cases with coil generated magnetic fields are considered. Calculations of magnetic field and induced currents are extended also inside the blunt body. Results show interesting physical and electromagnetic effects. Comparison with other methods shows possible development in keeping into account other physical and chemical effects.

  11. FLPP IXV Re-Entry Vehicle, Hypersonic Aerodynamics Characterisation

    NASA Astrophysics Data System (ADS)

    Tran, Ph.; Dormieux, M.; Fontaine, J.; Gülhan, A.; Tribot, J.-P.; Binetti, P.; Walloschek, T.

    2009-01-01

    The general objective of the IXV project (Intermediate eXperimental Vehicle), led by NGL Prime in the framework of the ESA FLPP programme (Future Launchers Preparatory Programme), is to improve European capabilities in the strategic field of atmospheric re-entry for space transportation, exploration, and scientific applications. One of the key objectives and challenges of the IXV project is the vehicle re-entry guidance and control demonstration which requires an accurate determination of the aerodynamic characteristics. This paper deals with all the aerodynamic characterization in the hypersonic flow regime. Wind tunnel tests (WTT) and CFD matrices have been defined in order to provide good coverage of the foreseen flight domain, account for uncertainties, and exploit the synergy between experimental and computational activity. WTT have been performed in DLR-H2K (M=6 and 8.7) and ONERA-S4Ma (M=10) facilities, gathering forces and moment data, as well as pressure in key areas. Consistency of the two campaigns results will be addressed. These results have highlighted some flow peculiarities in the deflected flap region. Comparisons with CFD show good agreement with ground experimental results. For flight conditions, real gas and viscous effects play a significant role in the trim conditions that only CFD can currently address; this identification was supported by different partners involved in the project (CFS engineering, DLR, CIRA, and the University of Rome) providing a valuable description of key flow phenomena affecting aerodynamic characteristics. Moreover, at high altitude, limited DSMC computations have been performed for bridging function correction.

  12. Re-Entry of Women to the Labour Market After an Interruption in Employment.

    ERIC Educational Resources Information Center

    Seear, B. N.

    The problems involved in the re-entry of women into employment were studied, and the extent to which there exists a demand for employment for re-entry women was examined. A growing number of women are seeking re-entry in a wide range of income levels. The demand for part-time work appears to exceed supply. Official machinery for assisting re-entry…

  13. Effect of fibre rotation on the initiation of re-entry in cardiac tissue.

    PubMed

    Vigmond, E J; Leon, L J

    2001-07-01

    Transmural rotation of cardiac fibres can have a big influence on the initiation of re-entry in the heart. However, owing to computational demands, this has not been fully explored in a three-dimensional model of cardiac tissue that has a microscopic description of membrane currents, such as the Luo-Rudy model. Using a previously described model that is computationally fast, re-entry in three-dimensional blocks of cardiac tissue is induced by a cross-shock protocol, and the activity is examined. In the study, the effect of the transmural fibre rotation is ascertained by examining differences between a tissue block with no rotation and ones with 1, 2 and 3 degrees of rotation per fibre layer. The direction of the re-entry is significant in establishing whether or not re-entry can be induced, with clockwise re-entry being easier to initiate. Owing to the rotating anisotropy that results in preferential propagation along the fibre axis, the timing of the second stimulus in the cross-shock protocol has to be changed for different rates of fibre rotation. The fibre rotation either increases or decreases the window of opportunity for re-entry, depending on whether the activation front is perpendicular or parallel to the fibre direction. By varying the transmural extent of the S2, it is found that a deeper stimulus has to be applied to the blocks with fibre rotation to create re-entry. Increasing the transmural resistance also tends to reduce the extent of the S2 required to induce re-entry. Results suggest that increasing fibre rotation reduces the susceptibility of the tissue to re-entry, but that more complex spatiotemporal patterns are possible, e.g. stable figure-of-eight re-entries and transient rotors. Three mechanisms of re-entry annihilation are identified: front catchup, filling of the excitable gap and core wander.

  14. Precise Orbit Determination of the GOCE Re-Entry Phase

    NASA Astrophysics Data System (ADS)

    Gini, Francesco; Otten, Michiel; Springer, Tim; Enderle, Werner; Lemmens, Stijn; Flohrer, Tim

    2015-03-01

    During the last days of the GOCE mission, after the GOCE spacecraft ran out of fuel, it slowly decayed before finally re-entering the atmosphere on the 11th November 2013. As an integrated part of the AOCS, GOCE carried a GPS receiver that was in operations during the re-entry phase. This feature provided a unique opportunity for Precise Orbit Determination (POD) analysis. As part of the activities carried out by the Navigation Support Office (HSO-GN) at ESOC, precise ephemerides of the GOCE satellite have been reconstructed for the entire re-entry phase based on the available GPS observations of the onboard LAGRANGE receiver. All the data available from the moment the thruster was switched off on the 21st of October 2013 to the last available telemetry downlink on the 10th November 2013 have been processed, for a total of 21 daily arcs. For this period a dedicated processing sequence has been defined and implemented within the ESA/ESOC NAvigation Package for Earth Observation Satellites (NAPEOS) software. The computed results show a post-fit RMS of the GPS undifferenced carrier phase residuals (ionospheric-free linear combination) between 6 and 14 mm for the first 16 days which then progressively increases up to about 80 mm for the last available days. An orbit comparison with the Precise Science Orbits (PSO) generated at the Astronomical Institute of the University of Bern (AIUB, Bern, Switzerland) shows an average difference around 9 cm for the first 8 daily arcs and progressively increasing up to 17 cm for the following days. During this reentry phase (21st of October - 10th November 2013) a substantial drop in the GOCE altitude is observed, starting from about 230 km to 130 km where the last GPS measurements were taken. During this orbital decay an increment of a factor of 100 in the aerodynamic acceleration profile is observed. In order to limit the mis-modelling of the non-gravitational forces (radiation pressure and aerodynamic effects) the newly developed

  15. Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter

    2011-01-01

    On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where

  16. GPK-2 re-entry and deepening -- a technical report

    SciTech Connect

    Baumgartner, J.; Gerard, A.; Barla, R.; Socomine, S.A.

    1999-01-01

    Between mid February to end of May 1999 (in 104 days) the well GPK2 at the Soultz HDR site was successfully re-entered and deepened from 3876 m to a final depth of 5084 m and fully completed. Re-entry included the pulling of the existing 321 1 m long internal 9 5/8-inch by 7-inch casing string, fishing of a submersible pump and some 150 m of 2 3/8-inch tubing, sealing of a major loss zone and opening of a 6 1/4-inch well section in granite (3211-3876 m) to 8 1/2-inch hole size. The well was extended to 5048 m in 8 1/2'' hole size and again completed with a floating 9 5/8-inch by 7-inch casing string. The casing shoe is at 4431 m. A bottom hole core was taken in the depth range 5048-5051 m. The core recovery was app. 40%. A pilot hole in 6 1/4-inch was drilled from 5051-5084 m for in situ stress measurements using the hydraulic fracturing technique. The re-entry and deepening of the well GPK2 was accompanied by several technical developments. New casing packer elements based on inflatable metal shells were developed in a close cooperation between SOCOMINE and MeSy GmbH (patent pending). These packer elements were successfully integrated into the completion of the well. The full weight of the casing string is supported by these elements which are filled with and imbedded in cement. High temperature cementing strategies (up to 170-190 C) for the complex saline fluids encountered in Soultz (High Magnesium Resistant Cements) were developed in a cooperation between Schlumberger Dowell (Vechta), SOCOMINE, SII of Houston, Ruhr-University Bochum, BGR Hannover and IFP Paris. The development of several high temperature logging tools (200 C range, 6-arm caliper, PTF probe) was initiated with CSMA (Cornwall) during the preparation of the deepening of GPK2. Initial scientific investigations included borehole logging (NGS, CLIPER, ARI, UBI, TEMPERATURE), geological investigations (cuttings, core) and seismic monitoring while drilling. During the first temperature log performed

  17. Exploring Career Decision-Making Experiences of Mexican American Re-Entry Community College Women

    ERIC Educational Resources Information Center

    Dominguez, Cecilia Sophia

    2010-01-01

    The purpose of this phenomenological investigation was to increase understanding of the career perspectives of 12 Mexican American, re-entry women who were attending a community college. The questions guiding this investigation were: (a) How do Mexican American re-entry college women describe their career decision-making experiences, (b) What do…

  18. Re-entry aerodynamics derived from space debris trajectory analysis

    NASA Astrophysics Data System (ADS)

    Crowther, R.

    1992-05-01

    This paper considers the technique of orbital analysis as a means of determining the ill-defined gas-surface interaction between spacecraft and atmospheric molecules in low earth orbit. The interaction is a major uncertainty in trajectory predictions for a body moving within an atmosphere. The rate of change of the orbital period of a debris object, the uncontrolled Salyut 7/Kosmos 1686 space station, is analyzed in order to determine the free molecular drag coefficient. The results are compared with theoretical values for the drag coefficient calculated using a complex representation of the vehicle configuration and motion and applying the Monte Carlo Test Particle method. Results suggest a nature of re-emission very close to the classical diffuse, totally accommodated case was occurring at the surface of the debris object as it approached re-entry. However, the determined drag coefficient and therefore the derived interaction are found to be very sensitive to the neutral density and therefore the atmospheric model used in the analysis.

  19. Spacecraft Re-Entry Impact Point Targeting Using Aerodynamic Drag

    NASA Technical Reports Server (NTRS)

    Omar, Sanny R.; Bevilacqua, Riccardo

    2017-01-01

    The ability to re-enter the atmosphere at a desired location is important for spacecraft containing components that may survive re-entry. While impact point targeting has traditionally been initiated through impulsive burns with chemical thrusters on large vehicles such as the Space Shuttle, and the Soyuz and Apollo capsules, many small spacecraft do not host thrusters and require an alternative means of impact point targeting to ensure that falling debris do not cause harm to persons or property. This paper discusses the use of solely aerodynamic drag force to perform this targeting. It is shown that by deploying and retracting a drag device to vary the ballistic coefficient of the spacecraft, any desired longitude and latitude on the ground can be targeted provided that the maneuvering begins early enough and the latitude is less than the inclination of the orbit. An analytical solution based on perturbations from a numerically propagated trajectory is developed to map the initial state and ballistic coefficient profile of a spacecraft to its impact point. This allows the ballistic coefficient profile necessary to reach a given target point to be rapidly calculated, making it feasible to generate the guidance for the decay trajectory onboard the spacecraft. The ability to target an impact point using aerodynamic drag will enhance the capabilities of small spacecraft and will enable larger space vehicles containing thrusters to save fuel by more effectively leveraging the available aerodynamic drag.

  20. DEBRISK, a Tool for Re-Entry Risk Analysis

    NASA Astrophysics Data System (ADS)

    Omaly, P.; Spel, M.

    2012-01-01

    An act of French parliament, adopted in 2008, imposes satellite constructors to evaluate the end-of-life operations in order to assure the risk mitigation of their satellites. One important element in this evaluation is the estimation of the mass and impact energy of the satellite debris after atmospheric re-entry. For this purpose, CNES has developed the tool DEBRISK which allows the operator to simulate the re-entry phase and to study the demise altitudes or impact energy of the individual fragments of the original satellite. DEBRISK is based on the so called object based approach. Using this approach, a breakup altitude is assumed where the satellite disintegrates due to the pressure loads. This altitude is typically around 78 km. After breakup, the satellite structure is modelled by a parent-child approach, where each child has its birth criterion. In the simplest approach the child is born after demise of the parent object. This could be the case of an object A containing an object B which is in the interior of object A and thus not exposed to the atmosphere. Each object is defined by: - its shape, attitude and dimensions, - the material along with their physical properties - the state and velocity vectors. The shape, attitude and dimensions define the aerodynamic drag of the object which is input to the 3DOF trajectory modelling. The aerodynamic mass used in the equation of motion is defined as the sum of the object's own mass and the mass of the object's offspring. A new born object inherits the state vector of the parent object. The shape, attitude and dimensions also define the heating rates experienced by the object. The heating rate is integrated in time up to the point where the melting temperature is reached. The mass of melted material is computed from the excess heat and the material properties. After each step the amount of ablated material is determined using the lumped mass approach and is peeled off from the object, updating mass and shape of the

  1. Passivity analysis for a winged re-entry vehicle

    SciTech Connect

    Mooij, E.

    2014-12-10

    Application of simple adaptive control (SAC) theory to the design of guidance and control systems for winged re-entry vehicles has been proven successful. To apply SAC to these non-linear and non-stationary systems, it needs to be Almost Strictly Passive (ASP), which is an extension of the Almost Strictly Positive Real (ASPR) condition for linear, time-invariant systems. To fulfill the ASP condition, the controlled, non-linear system has to be minimum-phase (i.e., the zero dynamics is stable), and there is a specific condition for the product of output and input matrix. Earlier studies indicate that even the linearised system is not ASPR. The two problems at hand are: 1) the system is non-minimum phase when flying with zero bank angle, and 2) whenever there is hybrid control, e.g., yaw control is established by combined reaction and aerodynamic control for the major part of flight, the second ASPR condition cannot be met. In this paper we look at both issues, the former related to the guidance system and the latter to the attitude-control system. It is concluded that whenever the nominal bank angle is zero, the passivity conditions can never be met, and guidance should be based on nominal commands and a redefinition of those whenever the error becomes too large. For the remaining part of the trajectory, the passivity conditions are marginally met, but it is proposed to add feedforward compensators to alleviate these conditions. The issue of hybrid control is avoided by redefining the controls with total control moments and adding a so-called control allocator. Deriving the passivity conditions for rotational motion, and evaluating these conditions along the trajectory shows that the (non-linear) winged entry vehicle is ASP. The sufficient conditions to apply SAC for attitude control are thus met.

  2. On Re-Entry Prediction of Near Earth Objects with Genetic Algorithm Using KS Elements

    NASA Astrophysics Data System (ADS)

    Sharma, R. K.; Anilkumar, A. K.; Xavier James Raj, M.; Sabarinath, A.

    2009-03-01

    The accurate orbit prediction of the near-Earth objects is an important requirement for the re-entry and the life time estimation. The method of Kustaanheimo and Stiefel (KS) total energy element equations is one of the powerful methods for orbit prediction. Recently, due to the reentries of large number of risk objects, which posses threat to the human life and property, a great concern is developed in the space scientific community. Consequently, the prediction of risk objects re-entry time and location has got much importance for the proper planning of mitigation strategies and hazard assessment. This paper discusses an integrated procedure for orbit life time prediction combining the KS elements and genetic algorithm (GA). The orbit prediction is carried out by numerically integrating the KS element equations. In this methodology, the ballistic coefficient is estimated from a set of observed orbital parameters in terms of the Two Line Elements (TLE) by minimizing the variance of the predicted re-entry time from different TLE using GA. A software, KSGEN, systematically developed in-house using KS elements and genetic algorithm is utilized for predicting the re-entry time of the risk objects. This software has been effectively used for the prediction of the re-entry time in the past seven re-entry exercise campaigns conducted by the Inter Agency Space Debris Coordination Committee (IADC). The predicted re-entry time matched quite well with the actual re-entry time for all the seven IADC re-entry campaigns. A detailed analysis is carried out with two case studies.

  3. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil

    2005-01-01

    Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural

  4. Re-entry into the true lumen from the subintimal space.

    PubMed

    Schneider, Peter A; Caps, Michael T; Nelken, Nicolas

    2013-08-01

    Endovascular reconstruction of the femoral and popliteal arteries is replacing femoral-popliteal bypass. This is made possible by subintimal recanalization to manage long chronic total occlusions. Re-entry into the true lumen is the most challenging step in this process. This article summarizes the techniques for re-entry into the true lumen in the superficial femoral and above- and below-the-knee popliteal arteries.

  5. Longitudinal stability analysis of a suborbital re-entry demonstrator for a deployable capsule

    NASA Astrophysics Data System (ADS)

    Iacovazzo, Michele; Carandente, Valerio; Savino, Raffaele; Zuppardi, Gennaro

    2015-01-01

    In the field of atmospheric re-entry technology several research and industrial projects are based on the design of deployable, umbrella-like Thermal Protection Systems (TPSs) and aero-brakes. These systems are made of flexible, high temperature resistant fabrics, folded at launch and deployed in space for de-orbit and re-entry operations. This technology is very promising for low cost research and industrial applications, but requires to be validated by experimental flight tests. The University of Naples "Federico II" is currently working on the development of different down-scaled technological demonstrators for this kind of capsule to be launched by different classes of sounding rockets. In the present work an aerodynamic longitudinal stability analysis for a possible, suborbital re-entry demonstrator, has been performed in continuum and rarefied regimes. The longitudinal stability behavior of the capsule, along the entire re-entry path, has been investigated in the whole range of angle of attack and, in particular, around the nominal and the reverse equilibrium re-entry attitudes (i.e. around 0° and 180°, respectively) to implement a proper re-entry strategy able not to compromise the effectiveness of the flying system.

  6. Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM

    NASA Technical Reports Server (NTRS)

    Jullien, Pierre

    2008-01-01

    During re-entry, spacecrafts are subjected to extreme thermal loads. On mars, they may go through dust storms. These external heat loads are leading the design of re-entry vehicles or are affecting it for spacecraft facing solid propellant jet stream. Sizing the Thermal Protection System require a good knowledge of such solicitations and means to model and reproduce them on earth. Through its work on European projects, ASTRIUM has developed the full range of competences to deal with such issues. For instance, we have designed and tested the heat-shield of the Huygens probe which landed on Titan. In particular, our plasma generators aim to reproduce a wide variety of re-entry conditions. Heat loads are generated by the huge speed of the probes. Such conditions cannot be fully reproduced. Ground tests focus on reproducing local aerothermal loads by using slower but hotter flows. Our inductive plasma torch enables to test little samples at low TRL. Amongst the arc-jets, one was design to test architecture design of ISS crew return system and others fit more severe re-entry such as sample returns or Venus re-entry. The last developments aimed in testing samples in seeded flows. First step was to design and test the seeding device. Special diagnostics characterizing the resulting flow enabled us to fit it to the requirements.

  7. Trajectory Design and Control for the Compton Gamma Ray Observatory Re-Entry

    NASA Technical Reports Server (NTRS)

    Hoge, Susan; Vaughn, Frank; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Compton Gamma Ray Observatory (CGRO) controlled re-entry operation was successfully conducted in June of 2000. The surviving parts of the spacecraft landed in the Pacific Ocean within the predicted footprint. The design of the maneuvers to control the trajectory to accomplish this re-entry presented several challenges. These challenges included timing and duration of the maneuvers, fuel management, post maneuver position knowledge, collision avoidance with other spacecraft, accounting for the break-up of the spacecraft into several pieces with a wide range of ballistic coefficients, and ensuring that the impact footprint would remain within the desired landing area in the event of contingencies. This paper presents the initial re-entry trajectory design and the evolution of the design into the maneuver sequence used for the re-entry. The paper discusses the constraints on the trajectory design, the modifications made to the initial design and the reasons behind these modifications. Data from the re-entry operation are presented.

  8. Risk Assessment During the Final Phase of an Uncontrolled Re-Entry

    NASA Astrophysics Data System (ADS)

    Gaudel, A.; Hourtolle, C.; Goester, J. F.; Fuentes, N.

    2013-09-01

    As French National Space Agency, CNES is empowered to monitor compliance with technical regulations of the French Space Operation Act, FSOA, and to take all necessary measures to ensure the safety of people, property, public health and environment for all space operations involving French responsibility at international level.Therefore, CNES developed ELECTRA that calculates the risk for ground population involved in three types of events: rocket launching, controlled re-entry and uncontrolled re-entry. For the first two cases, ELECTRA takes into account degraded cases due to a premature stop of propulsion.Major evolutions were implemented recently on ELECTRA to meet new users' requirements, like the risk assessment during the final phase of uncontrolled re-entry, that can be combined with the computed risk for each country involved by impacts.The purpose of this paper is to provide an overview of the ELECTRA method and main functionalities, and then to highlight these recent improvements.

  9. Application of the FADS system on the Re-entry Module

    NASA Astrophysics Data System (ADS)

    Zhen, Huang

    2016-07-01

    The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.

  10. Re-Entry Point Targeting for LEO Spacecraft using Aerodynamic Drag

    NASA Technical Reports Server (NTRS)

    Omar, Sanny; Bevilacqua, Riccardo; Fineberg, Laurence; Treptow, Justin; Johnson, Yusef; Clark, Scott

    2016-01-01

    Most Low Earth Orbit (LEO) spacecraft do not have thrusters and re-enter atmosphere in random locations at uncertain times. Objects pose a risk to persons, property, or other satellites. Has become a larger concern with the recent increase in small satellites. Working on a NASA funded project to design a retractable drag device to expedite de-orbit and target a re-entry location through modulation of the drag area. Will be discussing the re-entry point targeting algorithm here.

  11. Exploring Efficacy in Negotiating Support: Women Re-Entry Students in Higher Education

    ERIC Educational Resources Information Center

    Filipponi-Berardinelli, Josephine Oriana

    2013-01-01

    The existing literature on women re-entry students reveals that women students concurrently struggle with family, work, and sometimes health issues. Women students often do not receive adequate support from their partners or from other sources in helping manage the multiple roles that compete for their time, and often face constraints that affect…

  12. Re-entry Flight Experiments Lessons Learned - The Atmospheric Reentry Demonstrator ARD

    DTIC Science & Technology

    2007-06-01

    the complete calorimeter has been developped from which an inverse method has been derived [R7]. The Thermal Mathematical Model accounts for external...re-entry vehicle that in spite of its similitude with a simple axisymetrical Apollo shape, was found to be rather complex to identify; its large

  13. Optimization of Observation Strategy to Improve Re-entry Prediction of Objects in HEO

    NASA Astrophysics Data System (ADS)

    Rasotto, M.; Di Mauro, G.; Massari, M.; Di Lizia, P.; Armellin, R.; Funke, Q.; Flohrer, T.

    2016-09-01

    During the last decade the number of space debris moving on high elliptical orbit (HEO) has grown fast. Many of these resident space objects (RSO) consist of medium and large spent upper stages of launch vehicles, whose atmosphere re-entry might violate on-ground casualty risk constraints. Increasing the accuracy of re-entry predictions for this class of RSO is therefore a key issue to limit the hazards on the Earth assets. Traditional computational methods are mainly based on the exploitation of Two Line Elements (TLEs), provided by the United States Strategic Command (USSTRATCOM) and currently the only public data source available for these kind of analyses. TLE data however, are characterized by low accuracies, and in general come without any uncertainty information, thus limiting the achievable precision of the re-entry estimates. Better results on the other hand, can be obtained through the exploitation of observational data provided by one or more Earth sensors. Despite the benefits, this approach introduces a whole new set of complexities, mainly related with the design of proper observation campaigns. This paper presents a method based on evolutionary algorithms, for the optimization of observation strategies. The effectiveness of the proposed approach is demonstrated through dedicated examples, in which re-entry predictions, attainable with existing and ideal sensor architectures, are compared with corresponding results derived from TLE data.

  14. ENTRYSAT: A 3U Cubesat to Study the Re-Entry Atmospheric Environment

    NASA Astrophysics Data System (ADS)

    Garcia, R. F.; Chaix, J.; Mimoun, D.; EntrySat student Team

    2014-04-01

    The EntrySat is a 3U CubeSat designed to study the uncontrolled atmospheric re-entry. The project, developed by ISAE in collaboration with ONERA, is funded by CNES and is intended to be launched in January 2016, in the context of the QB50 network. The scientific goal is to relate the kinematics of the satellite with the aerothermodynamic environment during re-entry. In particular, data will be compared with the computations of MUSIC/FAST, a new 6-degree of freedom code developed by ONERA to predict the trajectory of space debris. According to these requirements, the satellite will measure the temperature, pressure, heat flux, and drag force during re-entry, as well as the trajectory and attitude of the satellite. One of the major technological challenges is the retrieval of data during the re-entry phase, which will be based on the Iridium satellite network. The system design is based on the use of commercial COTS components, and is mostly developed by students from ISAE. As such, the EntrySat has an important educational value in the formation of young engineers.

  15. Trajectory Design and Control for the Compton Gamma Ray Observatory Re-Entry

    NASA Technical Reports Server (NTRS)

    Hoge, Susan; Vaughn, Frank J., Jr.

    2001-01-01

    The Compton Gamma Ray Observatory (CGRO) controlled re-entry operation was successfully conducted in June of 2000. The surviving parts of the spacecraft landed in the Pacific Ocean within the nominal impact target zone. The design of the maneuvers to control the trajectory to accomplish this re-entry presented several challenges. These challenges included the timing and duration of the maneuvers, propellant management, post-maneuver state determination, collision avoidance with other spacecraft, accounting for the break-up of the spacecraft into several pieces with a wide range of ballistic coefficients, and ensuring that the impact footprint would remain within the desired impact target zone in the event of contingencies. This paper presents the initial re-entry trajectory design and traces the evolution of that design into the maneuver sequence used for the re-entry. The paper also discusses the spacecraft systems and operational constraints imposed on the trajectory design and the required modifications to the initial design based on those constraints. Data from the reentry operation are also presented.

  16. International Space Station as an Observation Platform for Hypersonic Re-Entry of its Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2001-01-01

    The International Space Station (ISS) will receive an armada of visiting supply vehicles during its life in orbit. Over 500 tons of material will be destroyed in targeted re-entries of these vehicles. Because all such re-entries lie in the same orbital plane of the station, and because the visiting vehicles typically deorbit within a few hours of departure, the ISS will usually be within sight of the re-entry process, at a range of only 300-600 kilometers. This vantage point offers an unprecedented opportunity for systematically measuring hypersonic destructive processes. This paper examines the integrated operational constraints of the ISS, its supply vehicles, and candidate sensors which can be employed in the scientific observation of the re-entry process. It is asserted the ISS program has the potential to reduce the worldwide risks from future deorbiting spacecraft, through systematic experimental characterization of the factors which affect the rupture, debris survival, and footprint size of its visiting vehicle fleet.

  17. Procedural and Early Outcomes of Two Re-entry Devices for Subintimal Recanalization of Aortoiliac and Femoropopliteal Chronic Total Occlusions

    PubMed Central

    Vuruskan, Ertan

    2017-01-01

    Background and Objectives Subintimal angioplasty is a common treatment choice for chronic total occlusions (CTO) in the iliac and femoropopliteal arteries. This article describes the technical aspects and early outcomes of two different re-entry devices and comparison with manual re-entry technique. Subjects and Methods A retrospective review of 61 patients (re-entry group) treated with Outback or Pioneer Plus catheters was carried out. A matched cohort of patients (n=62) who underwent lower extremity interventions without the use of re-entry devices (manual re-entry group) were also analyzed (overall 123 patients were analyzed). Procedural success, procedural durations, patency estimates, ankle-brachial indices, and complications were analyzed. Results Sixty-one patients underwent Outback or Pioneer Plus guided subintimal recanalization. After the procedure, ankle-brachial indices significantly increased in all patients during follow-up. Primary patency for the entire cohort was 83% in the first month. When the re-entry device group was compared with manual re-entry group, no difference was found with respect to success, complication, and patencies between the two groups during follow-up. However, procedure duration and the amount of contrast agent used was significantly decreased in re-entry groups (p<0.001). Also, re-entry time was significantly decreased in Pioneer plus group according to Outback group (p<0.001) Conclusion Recanalization of CTO using re-entry devices for aortoiliac or femoropopliteal arteries is safe and effective. These devices shorten the procedure time, the re-entry time, reduce radiation risk, and reduce the amount of contrast agent employed. PMID:28154596

  18. Airborne Observation of the Hayabusa Sample Return Capsule Re-Entry

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Jenniskens, Peter M.; Cassell, Alan M.; Albers, Jim; Winterm Michael

    2011-01-01

    The Japan Aerospace Exploration Agency (JAXA) recently completed their Hayabusa asteroid exploration mission. Launched in 2003, Hayabusa made contact with, and retrieved a sample from, the near-Earth asteroid Itokawa in 2005. The sample return capsule (SRC) re-entered over the Woomera Test Range (WTR) in southern Australia on June 13, 2010, at approximately 11:21 pm local time (09:51 UTC). The SRC re-entry velocity was 12.2 km/s, making it the second-fastest Earth return velocity behind NASA s Stardust sample return capsule re-entry in 2006. From a space technology development perspective, Hayabusa s re-entry functioned as a rare flight experiment of an entry vehicle and its thermal protection system. In collaboration with the SETI Institute, NASA deployed its DC-8 airborne laboratory and a team of international researchers to Australia to observe the re-entry of the SRC. The use of an airborne platform enables observation above most clouds and weather and greatly diminishes atmospheric absorption of the optical signals. The DC-8 s flight path was engineered and flown to provide a view of the spacecraft that bracketed the heat pulse to the capsule. A suite of imaging instruments on board the DC-8 successfully recorded the luminous portion of the re-entry event. For approximately 70 seconds, the spectroscopic and radiometric instruments acquired images and spectra of the capsule, its wake, and destructive re-entry of the spacecraft bus. Figure 1 shows a perspective view of the WTR, the SRC re-entry trajectory, and the flight path of the DC-8. The SRC was jettisoned from the spacecraft bus approximately 3 hours prior to entry interface. Due to thruster failures on the spacecraft, it could not be diverted from the entry path and followed the trajectory of the SRC, where it burned up in the atmosphere between approximately 100 and 50 km altitude. Fortuitously, the separation distance between the spacecraft and SRC was sufficient to clearly resolve the SRC from the

  19. Aerothermodynamics of generic re-entry vehicle with a series of aerospikes at nose

    NASA Astrophysics Data System (ADS)

    Yadav, Rajesh; Velidi, Gurunadh; Guven, Ugur

    2014-03-01

    Re-entry of a blunt nosed vehicle is one of the most intriguing problems in any space programme. Especially in light of various space tourism possibilities, there are many works concerning re-entry of commercial blunt nosed space vehicles. In this paper, a generic blunt body re-entry model represented by a hemisphere-cylinder, fitted axisymmetrically with an aerodisk aerospike at the nose is investigated numerically with commercially available control volume based axisymmetric flow solver. The scaled down re-entry model has a base diameter of 40 mm and an overall length of 100 mm. A 6 mm diameter aerospike fitted axisymmetrically at the nose has a hemispherical cap from which another aerospike of 4 mm diameter protrudes which again has a hemispherical cap. Two dimensional compressible, axisymmetric Navier Stokes Equations are solved for a turbulent hypersonic flow of a 5 species, chemically reacting air in thermal equilibrium with free stream conditions of Mach no., static pressure and temperature of 10.1, 16,066 Pa and 216.65 K, respectively. The results are compared with that of re-entry model without any aerospike. Among the cases investigated, the spiked blunt body having two aerospikes in series with lengths l1 and l2 equal to 30 and 20 respectively and overall length-to-diameter ratio of 1.5 showed a favourable reduction in the peak reattachment heat flux along with high reduction in aerodynamic drag and thus stands as a prospective case for blunt body nose configuration for hypersonic flight.

  20. IXV re-entry demonstrator: Mission overview, system challenges and flight reward

    NASA Astrophysics Data System (ADS)

    Angelini, Roberto; Denaro, Angelo

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an advanced re-entry demonstrator vehicle aimed to perform in-flight experimentation of atmospheric re-entry enabling systems and technologies. The IXV integrates key technologies at the system level, with significant advancements on Europe's previous flying test-beds. The project builds on previous achievements at system and technology levels, and provides a unique and concrete way of establishing and consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention is paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight. Following the extensive detailed design, manufacturing, qualification, integration and testing of the flight segment and ground segment elements, IXV has performed a full successful flight on February 11th 2015. After the launch with the VEGA launcher form the CSG spaceport in French Guyana, IXV has performed a full nominal mission ending with a successful splashdown in the Pacific Ocean. During Flight Phase, the IXV space and ground segments worked perfectly, implementing the whole flight program in line with the commanded maneuvers and trajectory prediction, performing an overall flight of 34.400 km including 7.600 km with hot atmospheric re-entry in automatic guidance, concluding with successful precision landing at a distance of ~1

  1. State Policies Affecting the "Adult Re-Entry Pipeline" in Postsecondary Education: Results of a Fifty-State Inventory

    ERIC Educational Resources Information Center

    Boeke, Marianne; Zis, Stacey; Ewell, Peter

    2011-01-01

    With support from the Bill and Melinda Gates Foundation, the National Center for Higher Education Management Systems (NCHEMS) is engaged in a two year project centered on state policies that foster student progression and success in the "adult re-entry pipeline." The adult re-entry pipeline consists of the many alternative pathways to…

  2. Recovery, Transportation and Acceptance to the Curation Facility of the Hayabusa Re-Entry Capsule

    NASA Technical Reports Server (NTRS)

    Abe, M.; Fujimura, A.; Yano, H.; Okamoto, C.; Okada, T.; Yada, T.; Ishibashi, Y.; Shirai, K.; Nakamura, T.; Noguchi, T.; Okazaki, R.; Zolensky, M.; Sandford, S.; Ireland, T.; Ueno, M.; Mukai, T.; Yoshikawa, M.; Yamada, T.; Kuninaka, H.; Kawaguchi, J.

    2011-01-01

    The "Hayabusa" re-entry capsule was safely carried into the clean room of Sagamihara Planetary Sample Curation Facility in JAXA on June 18, 2010. After executing computed tomographic (CT) scanning, removal of heat shield, and surface cleaning of sample container, the sample container was enclosed into the clean chamber. After opening the sample container and residual gas sampling in the clean chamber, optical observation, sample recovery, sample separation for initial analysis will be performed. This curation work is continuing for several manths with some selected member of Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). We report here on the 'Hayabusa' capsule recovery operation, and transportation and acceptance at the curation facility of the Hayabusa re-entry capsule.

  3. Optimal Re-Entry Trajectory Terminal State Due to Variations in Waypoint Locations

    DTIC Science & Technology

    2008-12-01

    of path constraints or vehicle mass n number of states p number of event constraints (boundary conditions) λ costate Lagrange multiplier H...OPENPOCS Open Pseudospectral Optimal Control Software PSCOL Pseudospectral Collocation RLV Reusable Launch Vehicle RV Re-entry Vehicle RPM Radau ...0 0, , , 0f fx t t x t tφ = (2.3) and the path constraints ( ) ( )( ), , 0C x t u t t ≤ (2.4) 7 where ( ) ( ) n p m x C C C φ

  4. Test of Re-Entry Systems at Estrange Using Sounding Rockets and Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Lockowandt, C.; Abrahamsson, M.; Florin, G.

    2015-09-01

    Stratospheric balloons and sounding rockets can provide an ideal in-flight platform for performing re-entry and other high speed tests off different types of vehicles and techniques. They are also ideal platforms for testing different types of recovery systems such as airbrakes and parachutes. This paper expands on some examples of platforms and missions for drop tests from balloons as well as sounding rockets launched from Esrange Space Center, a facility run by Swedish Space Corporation SSC in northern Sweden.

  5. Predictors of re-entry into the child protection system in Singapore: a cumulative ecological-transactional risk model.

    PubMed

    Li, Dongdong; Chu, Chi Meng; Ng, Wei Chern; Leong, Wai

    2014-11-01

    This study examines the risk factors of re-entry for 1,750 child protection cases in Singapore using a cumulative ecological-transactional risk model. Using administrative data, the present study found that the overall percentage of Child Protection Service (CPS) re-entry in Singapore is 10.5% based on 1,750 cases, with a range from 3.9% (within 1 year) to 16.5% (within 8 years after case closure). One quarter of the re-entry cases were observed to occur within 9 months from case closure. Seventeen risk factors, as identified from the extant literature, were tested for their utility to predict CPS re-entry in this study using a series of Cox regression analyses. A final list of seven risk factors (i.e., children's age at entry, case type, case closure result, duration of case, household income, family size, and mother's employment status) was used to create a cumulative risk score. The results supported the cumulative risk model in that higher risk score is related to higher risk of CPS re-entry. Understanding the prevalence of CPS re-entry and the risk factors associated with re-entry is the key to informing practice and policy in a culturally relevant way. The results from this study could then be used to facilitate critical case management decisions in order to enhance positive outcomes of families and children in Singapore's care system.

  6. Study on Mini Re-Entry System Using Deployable Membrane Aeroshell

    NASA Astrophysics Data System (ADS)

    Koyama, Masashi; Suzuki, Kojiro; Imamura, Osamu; Yamada, Kazuhiko

    An aeroshell made from membrane material have an advantage of reduction in the aerodynamic heating, because its small mass and large area enable us to make the low-ballistic-coefficient flight, in which the vehicle decelerates at very high altitude with low atmospheric density. In this paper, we propose a new concept of mini re-entry system for small satellites. This vehicle is called "FEATHER" (Flexible Expanded Aeroshell with Tiny payload Harness for Entry and Recovery). "FEATHER" is a novel re-entry and recovery system, featuring the autonomous aeroshell deployment, the low-ballistic-coefficient re-entry with less severe aerodynamicc heating and so on. FEATHER is composed of the membrane aeroshell made from the high-temperature cloth called ZYLON®, an outer frame made of Shape Memory Alloy (SMA) and a payload. When the aeroshell receives the aerodynamic heating, the temperature of SMA frame rises and restores the circular shape as memorized beforehand. Then the membrane aeroshell is automatically deployed. Therefore the vehicle can achieve the low-ballistic-coefficient flight with a drastic reduction in the aerodynamic heating without any additional sensors, controllers and actuators. The preliminary studies made on FEATHER system so far including the hypersonic wind tunnel experiments are presented in this paper.

  7. TRMM Re-Entry Planning: Attitude Determination and Control During Thruster Modes

    NASA Technical Reports Server (NTRS)

    DeWeese, Keith

    2005-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft has been undergoing design for a controlled re-entry to Earth. During simulation of the re-entry plan, there was evidence of errors in the attitude determination algorithms during thruster modes. These errors affected the bum efficiency, and thus planning, during re-entry. During thruster modes, the spacecraft attitude is controlled off of integrated Gyro Error Angles that were designed to closely follow the nominal spacecraft pointing frame (Tip Frame). These angles, however, were not exactly mapped to the Tip Frame from the Body Frame. Additionally, in the initial formulation of the thruster mode attitude determination algorithms, several assumptions and approximations were made to conserve processor speed. These errors became noticeable and significant when simulating bums of much longer duration (-10 times) than had been produced in flight. A solution is proposed that uses attitude determination information from a propagated extended Kalman filter that already exists in the TRMM thruster modes. This attitude information is then used to rotate the Gyro Error Angles into the Tip Frame. An error analysis is presented that compares the two formulations. The new algorithm is tested using the TRMM High-Fidelity Simulator and verified with the TRMM Software Testing and Training Facility. Simulation results for both configurations are also presented.

  8. Spectroscopic Observation of the Re-Entry Capsule of HAYABUSA Spacecraft

    NASA Astrophysics Data System (ADS)

    Ohnishi, Kouji; Watanabe, Jun-Ichi; Sato, Mikiya; Ohkawa, Takuya; Ebizuka, Noboru

    2011-10-01

    We performed low-resolution spectroscopic observations of the capsule of the HAYABUSA spacecraft during re-entry into the Earth's atmosphere on 2010 June 13 UT as an artificial meteor. We obtained the photometric magnitude of the HAYABUSA capsule using zeroth-order spectra. The efficiency of the zeroth-order spectra was too low for us to measure the magnitude of the capsule without any saturation at all times. The altitude at the maximal flux of the capsule was at around 56 km (13h52m19s.81 UT), which is almost similar to the case GENESIS, i.e., the maximal flux at around 55 km. We examined the change in the spectrum shape of the capsule as a function of its altitude, and investigated the emission from the shock layer and the blackbody radiation from the surface of the capsule. It is found that the shock-layer emission was dominant, and/or on the same order of the blackbody radiation at the early phase of re-entry; also, the emission from blackbody radiation was dominant during the last phase of re-entry. We measured the surface temperature of the capsule along the trajectory; during the last phase before dark flight, we found that the blackbody temperature of the capsule was 3100 ± 300 K at an altitude of around 50 km, and 2400 ± 300 K at an altitude of around 40 km.

  9. Airborne Observation of the Hayabusa Sample Return Capsule Re-Entry

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Jenniskens, Peter; Cassell, Alan M.; Albers, James; Winter, Michael W.

    2011-01-01

    NASA Ames Research Center and the SETI Institute collaborated on an effort to observe the Earth re-entry of the Japan Aerospace Exploration Agency's Hayabusa sample return capsule. Hayabusa was an asteroid exploration mission that retrieved a sample from the near-Earth asteroid Itokawa. Its sample return capsule re-entered over the Woomera Prohibited Area in southern Australia on June 13, 2010. Being only the third sample return mission following NASA's Genesis and Stardust missions, Hayabusa's return was a rare opportunity to collect aerothermal data from an atmospheric entry capsule returning at superorbital speeds. NASA deployed its DC-8 airborne laboratory and a team of international researchers to Australia for the re-entry. For approximately 70 seconds, spectroscopic and radiometric imaging instruments acquired images and spectra of the capsule, its wake, and destructive re-entry of the spacecraft bus. Once calibrated, spectra of the capsule will be interpreted to yield data for comparison with and validation of high fidelity and engineering simulation tools used for design and development of future atmospheric entry system technologies. A brief summary of the Hayabusa mission, the preflight preparations and observation mission planning, mission execution, and preliminary spectral data are documented.

  10. A constant gain Kalman filter approach for the prediction of re-entry of risk objects

    NASA Astrophysics Data System (ADS)

    Anilkumar, A. K.; Ananthasayanam, M. R.; Subba Rao, P. V.

    2007-11-01

    The accurate estimation of the predicted re-entry time of decaying space debris objects is very important for proper planning of mitigation strategies and hazard assessment. This paper highlights the implementation strategies adopted for the online re-entry prediction using Kalman filter approach with constant gains with the states being the semi-major axis, eccentricity and ballistic coefficient and using the measurements of the apogee height and perigee height derived from the Two Line Elements provided by agencies like USSPACECOM. Only a very simple model is utilised for the orbit propagation and a basic feature of the present approach is that any unmodellable state and measurement errors can be accounted for by adjusting the Kalman gains which are chosen based on a suitable cost function. In this paper we provide the details of validating this approach by utilising three re-entries of debris objects, namely, US Sat. No. 25947, SROSS-C2 Satellite and COSMOS 1043 rocket body. These three objects re-entered the Earth's atmosphere on 4th March 2000, 12th July 2001 and 19th January 2002, respectively.

  11. Study and Development of a Sub-Orbital Re-Entry Demonstrator

    NASA Astrophysics Data System (ADS)

    Savino, R.

    The Italian and European Space Agencies are supporting a research programme, developed in Campania region by a cluster of industries, research institutes and universities, on a low-cost re-entry capsule, able to return payloads from the ISS to Earth and/or to perform short-duration scientific missions in Low Earth Orbit (LEO). The ballistic capsule is characterized by a deployable, disposable "umbrella-like" heat shield that allows relatively small dimensions at launch and a sufficient exposed surface area in re-entry conditions, reducing the ballistic coefficient and leading to acceptable heat fluxes, mechanical loads and final descent velocity. ESA is supporting a preliminary study to develop a flight demonstrator of the capsule to be embarked as a secondary payload onboard a sub-orbital sounding rocket. The deployable thermal protection system concept may be applied to future science and robotic exploration mission requiring planetary entry and, possibly also to missions in the framework of Human Space flight, requiring planetary entry or re-entry. The technology offers also an interesting potential for aerobraking, aerocapture and for de-orbiting. This paper summarizes the results of these activities, which are being more and more refined as the work proceeds, including the definition and analysis of the mission scenario, the aerodynamic, aerothermodynamic, mechanical and structural analyses and the technical definition of avionics, instrumentation and main subsystems.

  12. Targeting of cytosolic phospholipase A2α impedes cell cycle re-entry of quiescent prostate cancer cells.

    PubMed

    Yao, Mu; Xie, Chanlu; Kiang, Mei-Yee; Teng, Ying; Harman, David; Tiffen, Jessamy; Wang, Qian; Sved, Paul; Bao, Shisan; Witting, Paul; Holst, Jeff; Dong, Qihan

    2015-10-27

    Cell cycle re-entry of quiescent cancer cells has been proposed to be involved in cancer progression and recurrence. Cytosolic phospholipase A2α (cPLA2α) is an enzyme that hydrolyzes membrane glycerophospholipids to release arachidonic acid and lysophospholipids that are implicated in cancer cell proliferation. The aim of this study was to determine the role of cPLA2α in cell cycle re-entry of quiescent prostate cancer cells. When PC-3 and LNCaP cells were rendered to a quiescent state, the active form of cPLA2α with a phosphorylation at Ser505 was lower compared to their proliferating state. Conversely, the phospho-cPLA2α levels were resurgent during the induction of cell cycle re-entry. Pharmacological inhibition of cPLA2α with Efipladib upon induction of cell cycle re-entry inhibited the re-entry process, as manifested by refrained DNA synthesis, persistent high proportion of cells in G0/G1 and low percentage of cells in S and G2/M phases, together with a stagnant recovery of Ki-67 expression. Simultaneously, Efipladib prohibited the emergence of Skp2 while maintained p27 at a high level in the nuclear compartment during cell cycle re-entry. Inhibition of cPLA2α also prevented an accumulation of cyclin D1/CDK4, cyclin E/CDK2, phospho-pRb, pre-replicative complex proteins CDC6, MCM7, ORC6 and DNA synthesis-related protein PCNA during induction of cell cycle re-entry. Moreover, a pre-treatment of the prostate cancer cells with Efipladib during induction of cell cycle re-entry subsequently compromised their tumorigenic capacity in vivo. Hence, cPLA2α plays an important role in cell cycle re-entry by quiescent prostate cancer cells.

  13. Sensitivity analysis and probabilistic re-entry modeling for debris using high dimensional model representation based uncertainty treatment

    NASA Astrophysics Data System (ADS)

    Mehta, Piyush M.; Kubicek, Martin; Minisci, Edmondo; Vasile, Massimiliano

    2017-01-01

    Well-known tools developed for satellite and debris re-entry perform break-up and trajectory simulations in a deterministic sense and do not perform any uncertainty treatment. The treatment of uncertainties associated with the re-entry of a space object requires a probabilistic approach. A Monte Carlo campaign is the intuitive approach to performing a probabilistic analysis, however, it is computationally very expensive. In this work, we use a recently developed approach based on a new derivation of the high dimensional model representation method for implementing a computationally efficient probabilistic analysis approach for re-entry. Both aleatoric and epistemic uncertainties that affect aerodynamic trajectory and ground impact location are considered. The method is applicable to both controlled and un-controlled re-entry scenarios. The resulting ground impact distributions are far from the typically used Gaussian or ellipsoid distributions.

  14. Scarab -a Multi-Disciplinary Code for Destruction Analysis of Space-Craft during Re-Entry

    NASA Astrophysics Data System (ADS)

    Koppenwallner, G.; Fritsche, B.; Lips, T.; Klinkrad, H.

    2005-02-01

    The uncontrolled, destructive re-entry of satellites and the related ground risk due to fragments reaching the ground have become of increased interest during the past years. The software system SCARAB (Spacecraft Atmospheric Re-entry and Aerothermal Break-up) is designed to calculate the destruction of a spacecraft during re-entry. Development of this code system started in 1995 and was conducted by HTG within the frame of various ESOC contracts with ITAM in Novosibirsk as continuous partner. The modular software system provide modules for satellite modelling and re-entry analysis The analysis modules combine aerodynamic/aero-thermal loads, 6-D flight dynamic, heat conduction, destruction by melting or fracture and the fragment tracking till ground impact SCARAB has been applied to many projects like ARIANE 5, ATV, ROSAT, Beppo SAX and Terrasar.

  15. Canal switch and re-entry phenomenon in benign paroxysmal positional vertigo: difference between immediate and delayed occurrence.

    PubMed

    Dispenza, F; DE Stefano, A; Costantino, C; Rando, D; Giglione, M; Stagno, R; Bennici, E

    2015-04-01

    This prospective study was designed to evaluate the differences between immediate and delayed canal re-entry of otoliths after therapeutic manoeuvres in patients with benign paroxysmal positional vertigo (BPPV). A total of 196 patients with BPPV were visited and 127 matched our inclusion criteria. The mean age was 54.74 years. The horizontal semicircular canal (HSC) was involved in 30 cases and the posterior semicircular canal (PSC) in 97 patients. Patients with hearing loss in the ear affected by BPPV have a more recurrent form, compared to those with normal hearing. An immediate canal re-entry was recorded in 3 patients with HSC BPPV, all with geotropic nystagmus. In 7 patients with PSC BPPV, the immediate canal re-entry was detected and the delayed form was noted in 5 patients. The patients with the delayed canal re-entry underwent more than 2 previous manoeuvres. The canal re-entry was not related to the manoeuvre performed. The timing of the Dix-Hallpike test to verify the resolution of the BPPV had a significant role in immediate canal re-entry. A recurrence in the follow-up at least one month after treatment was recorded in 20 patients and was more frequent in patients that had canal re-entry. The canal re-entry or canal switch is a clinical entity that should be kept in mind of the neurotologist when approaching BPPV patients. It is important to distinguish it from recurrence when delayed and from manoeuvre failure when immediate. The timing of manoeuvre performing, in particular the final verification test after therapeutic sessions, is important to prevent the immediate reflux of particles into canals.

  16. First-Order Simulation of Strewn Debris Fields Accompanying Exoatmospheric Re-entry Vehicle Fragmentation by Hypervelocity Impact

    DTIC Science & Technology

    1994-09-01

    1961). 21. Passey, Quinn R., H.J. Melosh , Effects of Atmospheric Breakup on Crater Field Formation, Icarus 42, 211-253 (1980). 22. CRC Handbook...ORDER SIMULATION OF STREWN DEBRIS FIELDS ACCO:MPANYING EXOATMOSPHERIC RE-ENTRY VEillCLE FRAGMENTATION BY HYPERVELOCITY IMPACT by Dr. Gregory W...STREWN DEBRIS FIELDS ACCOMPANYING EXOATMOSPHERIC RE-ENTRY VEHICLE FRAGMENTATION BY HYPERVELOCITY IMPACT by Dr. Gregory W. Frank Recommended By

  17. Development of Non-Uniform Radiation Solution Methods for Atmospheric Re-entry Using Detailed Thermal Modeling

    DTIC Science & Technology

    2009-03-01

    DEVELOPMENT OF NON-UNIFORM RADIATION SOLUTION METHODS FOR ATMOSPHERIC RE-ENTRY USING DETAILED THERMAL MODELING THESIS Jeffrey R. Komives, Captain...of the United States Air Force, Department of Defense, or the United States Government. AFIT/GAE/ENY/09-M13 DEVELOPMENT OF NON-UNIFORM RADIATION ...public release; distribution unlimited AFIT/GAE/ENY/ 09-M13 DEVELOPMENT OF NON-UNIFORM RADIATION SOLUTION METHODS FOR ATMOSPHERIC RE-ENTRY USING

  18. Flow Redistribution Between Legs and Brain During STS 93 Re-Entry and Landing

    NASA Technical Reports Server (NTRS)

    Arbeille, P.; Meck, J.; Porcher, M.; Benavides, E.; Martin, D. S.; South, D. A.; Ribeiro, C.; Westover, A.

    2003-01-01

    The objective was to quantify bit by bit the arterial hemodynamic response to the successive acceleration induced fluid shifts during re-entry and landing. Method: The astronaut instrumented himself with a flat Doppler probe fixed on the skin, a blood pressure arm cuff, and 3 ECG electrodes. The ICMS (integrated cardiovascular monitoring system, 15x15x25 cu cm, battery powered) designed to monitor Blood pressure, ECG, cerebral and femoral flows was fixed below the astronaut sit in the middeck. Recordings started 5 minutes before de-orbiting (TIG) and stopped 5 min after wheels stop. Results. During re-entry blood pressure increased by 20% at TIG, and then by 25 to 30% during the highest Gz accelerations (approx 1 S g ) . The cerebral flow remained decreased by 10 to 15% below inflight value all during the Entry and landing phases. Conversely the femoral flow increased at TIG and entry ( + l0 to 20%), recovered at 0.lg, and then decreased in proportion with the Gz acceleration (-10% to -40% from 0.5g to 1.5g). The reduction in Femoral flow was associated with an opposite variation in lower limb vascular resistance. Consequently the cerebral flow/femoral flow ratio decreased at TIG and entry (-20%), and then increased according to the Gz acceleration level ( + l0 to +40% from 0.5 to 1.5g). Conclusion: During orthostatic tests (Stand LBNP tests) the cerebral to femoral flow ratio allowed to quantify the efficiency of the flow redistribution between these 2 areas and predicted orthostatic intolerance. In the present case the astronaut was found orthostatically tolerant at postflight tilt tests, but we suggest that during re-entry this parameter could predict the occurrence of syncope in severely disadapted astronauts.

  19. Thermal Analysis of the X-38 Aft Fin During Re-Entry

    NASA Technical Reports Server (NTRS)

    Hong, Andrew E.

    1999-01-01

    This document contains the details of the thermal analysis of the X-38 aft fin during re-entry. This analysis was performed in order to calculate temperature response of the aft fin components. This would be provided as input to a structural analysis and would also define the operating environment for the electromechanical actuator (EMA). The calculated structural temperature response would verify the performance of the thermal protection system (TPS). The geometric representation of the aft fin was derived from an I-DEAS finite element model that was used for structural analysis. The thermal mass network model was derived from the geometric representation.

  20. Re-entry simulation chamber for thermo-mechanical characterisation of space materials

    NASA Astrophysics Data System (ADS)

    Liedtke, Volker

    2003-09-01

    During re-entry, materials and components are subject to very high thermal and mechanical loads. Any failure may cause loss of mission. Therefore, materials and components have to be tested under most rigid conditions to verify the suitability of the material and to verify the design of the components. The Re-Entry Simulation Chamber (RESiC) at ARC Seibersdorf research (ARCS) allows simulating the high thermal loads as well as complex mechanical load profiles that may occur during a re-entry; additionally, the influence of chemical reactions of materials with gaseous components of the atmosphere can be studied. The high vacuum chamber (better than 1×10-6 mbar) has a diameter of 650 mm and allows a sample height of 500 mm, or 1000 mm with extension flange. The gas dosing system is designed to emulate the increasing atmospheric pressure during the re-entry trajectory of a vehicle. Heating is performed by a 30 kW induction generator that allows a sufficiently rapid heating of larger components; electrically conductive materials such as metals or carbon fibre reinforced ceramics are directly heated, while for electrical insulators, susceptor plates or tubes will be employed. The uniaxial servo-hydraulic testing machine has a maximum load of 70 kN, either static or with a frequency of up to 70 Hz, with any given load profile (sinus, rectangular, triangular, ...). Strain measurements will be done by non-contacting laser speckle system for maximum flexibility and minimum instrumentation time effort (currently under application testing), or by strain gauges. All relevant process parameters are controlled and recorded by microcomputer. The highly sophisticated control software allows a convenient and reliable multi-channel data acquisition, e.g. temperatures at various positions of the test piece, pressure, loads, strains, and any other test data according to customer specifications; the data format is suitable for any further data processing. During the set-up and

  1. Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase

    PubMed Central

    Lu, Kelin; Zhou, Rui

    2016-01-01

    A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications. PMID:27537883

  2. Optimal control approach to termination of re-entry waves in cardiac electrophysiology

    PubMed Central

    Nagaiah, Chamakuri; Kunisch, Karl; Plank, Gernot

    2014-01-01

    This work proposes an optimal control approach for the termination of re-entry waves in cardiac electrophysiology. The control enters as an extracellular current density into the bidomain equations which are well established model equations in the literature to describe the electrical behavior of the cardiac tissue. The optimal control formulation is inspired, in part, by the dynamical systems behavior of the underlying system of differential equations. Existence of optimal controls is established and the optimality system is derived formally. The numerical realization is described in detail and numerical experiments, which demonstrate the capability of influencing and terminating reentry phenomena, are presented. PMID:22684847

  3. Collisional-radiative model in air for earth re-entry problems

    SciTech Connect

    Bultel, Arnaud; Cheron, Bruno G.; Bourdon, Anne; Motapon, Ousmanou; Schneider, Ioan F.

    2006-04-15

    A nonlinear time-dependent two-temperature collisional-radiative model for air plasma has been developed for pressures between 1 kPa and atmospheric pressure to be applied to the flow conditions of space vehicle re-entry into the Earth's atmosphere. The model consists of 13 species: N{sub 2}, O{sub 2}, N, O, NO, N{sub 2}{sup +}, O{sub 2}{sup +}, N{sup +}, O{sup +}, NO{sup +}, O{sub 2}{sup -}, O{sup -} in their ground state and major electronic excited states and of electrons. Many elementary processes are considered given the temperatures involved (up to 10 000 K). Time scales to reach the final nonequilibrium or equilibrium steady states are derived. Then we apply our model to two typical re-entry situations and show that O{sub 2}{sup -} and O{sup -} play an important role during the ionization phase. Finally, a comparison with existing reduced kinetic mechanisms puts forward significant discrepancies for high velocity flows when the flow is in chemical nonequilibrium and smaller discrepancies when the flow is close to chemical equilibrium. This comparison illustrates the interest of using a time-dependent collisional-radiative model to validate reduced kinetic schemes for the relevant time scales of the flows studied.

  4. A Study on Earth Re-entry Capsules with Deployable Aerobrakes for Recoverable Microgravity Experiments

    NASA Astrophysics Data System (ADS)

    Carandente, Valerio; Savino, Raffaele; D'Oriano, Vera; Fortezza, Raimondo

    2015-06-01

    Deployable aerobrakes for Earth re-entry capsules may offer many advantages in the near future, including the opportunity to recover on Earth scientific payloads from the Space with reduced risks and costs with respect to conventional systems. Such capsules can be accommodated in the selected launcher in folded configuration optimizing the available volume and, when planned by the mission profile, the aerobrake can be deployed in order to increase the surface exposed to the hypersonic flow and therefore to reduce the ballistic parameter. This can offer as main advantage the opportunity to perform an aerodynamic de-orbit of the system without the need of a dedicated propulsive subsystem and an atmospheric re-entry with reduced aerothermal and mechanical loads making possible the use of relatively lightweight and cheap thermal protection system materials. To ensure the recovery of the capsule, the deployable surface can be modulated to obtain the aerodynamic control of the de-orbit trajectory in order to correctly target the capsule towards the selected landing site for post-flight analyses and operations. The main objective of the work is to present a number of feasible mission profiles for orbital platforms to/from Low Earth Orbit aimed in particular at scientific experiments in microgravity conditions. In addition, a suborbital scenario for a technological demonstrator, useful to experimentally verify the system applicability before the design of orbital missions, is also presented and discussed.

  5. Thermographic Imaging of the Space Shuttle During Re-Entry Using a Near Infrared Sensor

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Horvath, Thomas J.; Kerns, Robbie V.; Burke, Eric R.; Taylor, Jeff C.; Spisz, Tom; Gibson, David M.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.; Tack, Steve; Bush, Brett C.; Dantowitz, Ronald F.; Kozubal, Marek J.

    2012-01-01

    High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter s hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA s next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness. Keywords: HYTHIRM, Space Shuttle thermography, hypersonic imaging, near infrared imaging, histogram analysis, singular value decomposition, eigenvalue image sharpness

  6. SHEFEX II - Aerodynamic Re-Entry Controlled Sharp Edge Flight Experiment

    NASA Astrophysics Data System (ADS)

    Longo, J. M. A.; Turner, J.; Weihs, H.

    2009-01-01

    In this paper the basic goals and architecture of the SHEFEX II mission is presented. Also launched by a two staged sounding rocket system SHEFEX II is a consequent next step in technology test and demonstration. Considering all experience and collected flight data obtained during the SHEFEX I Mission, the test vehicle has been re-designed and extended by an active control system, which allows active aerodynamic control during the re-entry phase. Thus, ceramic based aerodynamic control elements like rudders, ailerons and flaps, mechanical actuators and an automatic electronic control unit has been implemented. Special focus is taken on improved GNC Elements. In addition, some other experiments including an actively cooled thermal protection element, advanced sensor equipment, high temperature antenna inserts etc. are part of the SHEFEX II experimental payload. A final 2 stage configuration has been selected considering Brazilian solid rocket boosters derived from the S 40 family. During the experiment phase a maximum entry velocity of Mach around 10 is expected for 50 seconds. Considering these flight conditions, the heat loads are not representative for a RLV re-entry, however, it allows to investigate the principal behaviour of such a facetted ceramic TPS, a sharp leading edge at the canards and fins and all associated gas flow effects and their structural response.

  7. Near-Optimal Re-Entry Trajectories for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Chou, H.-C.; Ardema, M. D.; Bowles, J. V.

    1997-01-01

    A near-optimal guidance law for the descent trajectory for earth orbit re-entry of a fully reusable single-stage-to-orbit pure rocket launch vehicle is derived. A methodology is developed to investigate using both bank angle and altitude as control variables and selecting parameters that maximize various performance functions. The method is based on the energy-state model of the aircraft equations of motion. The major task of this paper is to obtain optimal re-entry trajectories under a variety of performance goals: minimum time, minimum surface temperature, minimum heating, and maximum heading change; four classes of trajectories were investigated: no banking, optimal left turn banking, optimal right turn banking, and optimal bank chattering. The cost function is in general a weighted sum of all performance goals. In particular, the trade-off between minimizing heat load into the vehicle and maximizing cross range distance is investigated. The results show that the optimization methodology can be used to derive a wide variety of near-optimal trajectories.

  8. Casualty Risk Assessment Controlled Re-Entry of EPS - Ariane 5ES - ATV Mission

    NASA Astrophysics Data System (ADS)

    Arnal, M.-H.; Laine, N.; Aussilhou, C.

    2012-01-01

    To fulfil its mission of compliance check to the French Space Operations Act, CNES has developed ELECTRA© tool in order to estimate casualty risk induced by a space activity (like rocket launch, controlled or un-controlled re-entry on Earth of a space object). This article describes the application of such a tool for the EPS controlled re-entry during the second Ariane 5E/S flight (Johannes Kepler mission has been launched in February 2011). EPS is the Ariane 5E/S upper composite which is de-orbited from a 260 km circular orbit after its main mission (release of the Automated Transfer Vehicle - ATV). After a brief description of the launcher, the ATV-mission and a description of all the failure cases taken into account in the mission design (which leads to "back-up scenarios" into the flight software program), the article will describe the steps which lead to the casualty risk assessment (in case of failure) with ELECTRA©. In particular, the presence on board of two propulsive means of de-orbiting (main engine of EPS, and 4 ACS longitudinal nozzles in case of main engine failure or exhaustion) leads to a low remaining casualty risk.

  9. Structural Analysis and Testing of the Inflatable Re-entry Vehicle Experiment (IRVE)

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.; Hughes, Stephen J.; Dixon, Megan; Wiley, Cliff E.

    2006-01-01

    The Inflatable Re-entry Vehicle Experiment (IRVE) is a 3.0 meter, 60 degree half-angle sphere cone, inflatable aeroshell experiment designed to demonstrate various aspects of inflatable technology during Earth re-entry. IRVE will be launched on a Terrier-Improved Orion sounding rocket from NASA s Wallops Flight Facility in the fall of 2006 to an altitude of approximately 164 kilometers and re-enter the Earth s atmosphere. The experiment will demonstrate exo-atmospheric inflation, inflatable structure leak performance throughout the flight regime, structural integrity under aerodynamic pressure and associated deceleration loads, thermal protection system performance, and aerodynamic stability. Structural integrity and dynamic response of the inflatable will be monitored with photogrammetric measurements of the leeward side of the aeroshell during flight. Aerodynamic stability and drag performance will be verified with on-board inertial measurements and radar tracking from multiple ground radar stations. In addition to demonstrating inflatable technology, IRVE will help validate structural, aerothermal, and trajectory modeling and analysis techniques for the inflatable aeroshell system. This paper discusses the structural analysis and testing of the IRVE inflatable structure. Equations are presented for calculating fabric loads in sphere cone aeroshells, and finite element results are presented which validate the equations. Fabric material properties and testing are discussed along with aeroshell fabrication techniques. Stiffness and dynamics tests conducted on a small-scale development unit and a full-scale prototype unit are presented along with correlated finite element models to predict the in-flight fundamental mod

  10. Simulation of launch and re-entry acceleration profiles for testing of shuttle and unmanned microgravity research payloads

    NASA Astrophysics Data System (ADS)

    Cassanto, J. M.; Ziserman, H. I.; Chapman, D. K.; Korszun, Z. R.; Todd, P.

    Microgravity experiments designed for execution in Get-Away Special canisters, Hitchhiker modules, and Reusable Re-entry Satellites will be subjected to launch and re-entry accelerations. Crew-dependent provisions for preventing acceleration damage to equipment or products will not be available for these payloads during flight; therefore, the effects of launch and re-entry accelerations on all aspects of such payloads must be evaluated prior to flight. A procedure was developed for conveniently simulating the launch and re-entry acceleration profiles of the Space Shuttle (3.3 and 1.7 × g maximum, respectively) and of two versions of NASA's proposed materials research Re-usable Re-entry Satellite (8 × g maximum in one case and 4 × g in the other). By using the 7 m centrifuge of the Gravitational Plant Physiology Laboratory in Philadelphia it was found possible to simulate the time dependence of these 5 different acceleration episodes for payload masses up to 59 kg. A commercial low-cost payload device, the “Materials Dispersion Apparatus” of Instrumentation Technology Associates was tested for (1) integrity of mechanical function, (2) retention of fluid in its compartments, and (3) integrity of products under simulated re-entry g-loads. In particular, the sharp rise from 1 g to maximum g-loading that occurs during re-entry in various unmanned vehicles was successfully simulated, conditions were established for reliable functioning of the MDA, and crystals of 5 proteins suspended in compartments filled with mother liquor were subjected to this acceleration load.

  11. Dynamic and Static High Temperature Resistant Ceramic Seals for X- 38 re-Entry Vehicle

    NASA Astrophysics Data System (ADS)

    Handrick, Karin E.; Curry, Donald M.

    2002-01-01

    In a highly successful partnership, NAS A, ESA, DLR (German Space Agency) and European industry are building the X-38, V201 re-entry spacecraft, the prototype of the International Space Station's Crew Return Vehicle (CRV). This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. The development of essential systems and technologies for a reusable re-entry vehicle is a first for Europe, and sharing the development of an advanced re-entry spacecraft with foreign partners is a first for NASA. NASA, in addition to its subsystem responsibilities, is performing overall X-38 vehicle system engineering and integration, will launch V201 on the Space Shuttle, deliver flight data for post-flight analysis and assessment and is responsible for development and manufacture of structural vehicle components and thermal protection (TPS) tiles. The major European objective for cooperation with NASA on X-38 was to establish a clear path through which key technologies needed for future space transportation systems could be developed and validated at affordable cost and with controlled risk. Europe has taken the responsibility to design and manufacture hot control surfaces like metallic rudders and ceramic matrix composites (CMC) body flaps, thermal protection systems such as CMC leading edges, the CMC nose cap and -skirt, insulation, landing gears and elements of the V201 primary structure. Especially hot control surfaces require extremely high temperature resistant seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent overheating of these structures and possible loss of the vehicle. Complex seal interfaces, which have to fulfill various, tight mission- and vehicle-related requirements exist between the moveable ceramic body flaps and the bottom surface of the vehicle, between the rudder and fin structure and the ceramic leading edge panel and TPS tiles. While NASA

  12. Cyclic re-entry of germinal center B cells in dealing with switching antigen

    NASA Astrophysics Data System (ADS)

    He, Chaoyang

    1999-08-01

    Germinal center spatial compartmentalization may help immune cells to optimize their mutation schedule so that affinity maturation through somatic hypermutation achieves higher efficiency. Some pathogens can alter their antigen expression (surface glycoprotein) by evolution of antigen or antigen switching or drifting to counteract the immune defense. We examine the switching antigen situation by introducing a prey-predator model in the string space representation of B cells and antigen, using Pontryagin's maximum principle to seek out the optimal mutation schedule, The optimal mutation schedule is still phase like. We conclude that re-entry of germinal center B cells is still crucial to affinity maturation. We further speculate a model of diffusing B cells coupling with pair correlation function may provide the underlying mechanism for the phasic like mutation schedule.

  13. Advanced Key Technologies for Hot Control Surfaces in Space Re- Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Dogigli, Michael; Pradier, Alain; Tumino, Giorgio

    2002-01-01

    (1)MAN Technologie AG, D- 86153 Augsburg, Germany (2,3) ESA, 2200 Noordwijk ZH, The Netherlands Current space re-entry vehicles (e.g. X-38 vehicle 201, the prototype of the International Space Station's Crew Return Vehicle (CRV)) require advanced control surfaces (so called body flaps). Such control surfaces allow the design of smaller and lighter vehicles as well as faster re-entries (compared to the US Shuttle). They are designed as light-weight structures that need no metallic parts, need no mass or volume consuming heat sinks to protect critical components (e.g. bearings) and that can be operated at temperatures of more than 1600 "C in air transferring high mechanical loads (dynamic 40 kN, static 70 kN) at the same time. Because there is a need for CRV and also for Reusable Launch Vehicles (RLV) in future, the European Space Agency (ESA) felt compelled to establish a "Future European Space Transportation and Investigation Program,, (FESTIP) and a "General Support for Technology Program,, (GSTP). One of the main goals of these programs was to develop and qualify key-technologies that are able to master the above mentioned challenging requirements for advanced hot control surfaces and that can be applied for different vehicles. In 1996 MAN Technologie has started the development of hot control surfaces for small lifting bodies in the national program "Heiü Strukturen,,. One of the main results of this program was that especially the following CMC (Ceramic Matrix Composite) key technologies need to be brought up to space flight standard: Complex CMC Structures, CMC Bearings, Metal-to-CMC Joining Technologies, CMC Fasteners, Oxidation Protection Systems and Static and Dynamic Seals. MAN Technologie was contracted by ESA to continue the development and qualification of these key technologies in the frame of the FESTIP and the GSTP program. Development and qualification have successfully been carried out. The key technologies have been applied for the X-38 vehicle

  14. Radiative Transfer in Earth Re-entry: Application to the Project Fire II Experiments

    NASA Astrophysics Data System (ADS)

    Lamet, J.-M.; Babou, Y.; Riviere, Ph.; Soufiani, A.; Perrin, M.-Y.

    2006-11-01

    The aim of this paper is to contribute to the test case 6 by computing the radiative heat intensities at the stagnation point for four points of Fire II re-entry trajectory. The prescribed flow-fields provided in the test case booklet are used. The radiative heat flux computations are based on a line by line approach combined with the exhaustive database which has been developed previously [1, 2]. The previous benchmarking of air radiative properties on a LTE air plasma have shown the quality of this database [3]. Since then, the use of this database has been extended to non LTE applications. In addition to the radiation computations defined in test case 6, the spectral distribution of the different intensities is predicted on a wide spectral range from far UV to IR. This will be important for further flow/radiation coupling studies. Different modelling levels are tested: pure emission, absorption effects, and chemical nonequilibrium effects.

  15. Characteristics of the GOCE Orbit in the Re-Entry Phase

    NASA Astrophysics Data System (ADS)

    Hamm, Johann; Lengsfeld, Alexander; Kekce, Ugur; Pape, Werner; Shabanloui, Akbar; Naeimi, Majid; Flury, Jakob

    2015-03-01

    The GOCE de-orbiting phase was started as the Ion thruster was switched off on 21st October 2013. Beginning with this, the transition from the Drag-Free and Attitude Control System (DFACS) to Fine Pointing Mode (FPM) started, so the Gradiometer was no longer in the attitude control loop. On 11th of November 2013, the de-orbiting phase ended with the re-entry of GOCE in the Earth’s atmosphere, near to the Falkland Islands. As a part of a research project, we analyzed the 20 days of the GOCE data during de-orbiting phase. We investigate: Electrostatic Gravity Gradiometer (EGG), DFACS Accelerometer data, Magneto-Torques Currents (MTR) data, Precise Science Orbits (PSO) data, Satellite to Satellite Tracking (SST) data and Atmospheric Models (MSISE-90, NRMSISE-00).

  16. Dust particles in high-speed flows: calculations of small-particle re-entry hydrodynamics

    SciTech Connect

    Sandford, M.T. II

    1984-02-01

    Numerical hydrodynamic calculations are used to model the dispersion of dust injected into a supersonic flow by the explosive disruption of a re-entry vehicle. The particles constitute an initial dustball that expands into the existing velocity field after the detonation. Dust grains subsequently form a plume along the vehicle path. The importance of aerodynamic and radiative heating of the dust is considered but not included in the calculations. Particles in the bow shock heat to the vaporization temperature because of drag and radiative heating, but particles in the dustball are shielded and consequently suffer only a small amount of vaporization. About 20% of the initial dust mass will be vaporized. Application of the results to dust grains entrained in the air blast of a near-surface nuclear explosion is briefly considered. 4 references, 6 figures, 1 table.

  17. The Advanced Re-Entry Vehicle (ARV) a Development Step from ATV Toward Manned Transportation Systems

    NASA Astrophysics Data System (ADS)

    Bottacini, M.; Berthe, P.; Vo, X.; Pietsch, K.

    2011-08-01

    The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of un-pressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU's); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and deorbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat- hield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on a

  18. The Advanced Re-Entry Vehicle (ARV) A Development Step From ATV Toward Manned Transportation Systems

    NASA Astrophysics Data System (ADS)

    Bottacini, Massimiliano; Berthe, Philippe; Vo, Xavier; Pietsch, Klaus

    2011-05-01

    The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of unpressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU’s); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and de-orbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat-shield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on

  19. Numerical Flight Mechanics Analysis Of The SHEFEX I Ascent And Re-Entry Phases

    NASA Astrophysics Data System (ADS)

    Bartolome Calvo, Javier; Eggers, Thino

    2011-08-01

    The SHarp Edge Flight EXperiment (SHEFEX) I provides a huge amount of scientific data to validate numerical tools in hypersonic flows. These data allow the direct comparison of flight measurements with the current numerical tools available at DLR. Therefore, this paper is devoted to apply a recently developed direct coupling between aerodynamics and flight dynamics to the SHEFEX I flight. In a first step, mission analyses are carried out using the trajectory optimization program REENT 6D coupled to missile DATCOM. In a second step, the direct coupling between the trajectory program and the DLR TAU code, in which the unsteady Euler equations including rigid body motion are solved, is applied to analyze some interesting parts of ascent and re-entry phases of the flight experiment. The agreement of the numerical predictions with the obtained flight data is satisfactory assuming a variable fin deflection angle.

  20. European Experimental Re-Entry Testbed EXPERT: Qualification of Payloads for Flight

    NASA Astrophysics Data System (ADS)

    Ratti, F.; Gavira, J.; Thirkettle, A. C.; Erba, F.; Muylaert, J.-M.; Walpot, L.; Rembiasz, J. M.

    2009-01-01

    The European Experimental Re-entry Test-bed EXPERT is developed by the European Space Agency (ESA) as part of its General Technological Research Program (GSTP). The aim of EXPERT is to improve the understanding of critical aero-thermodynamic phenomena associated with hypersonic re-entry flights. The EXPERT project provides an opportunity to the scientific community and industries throughout Europe to propose and perform experiments in order to obtain aero-thermodynamic data for the validation of numerical models and of ground to flight extrapolation methodologies. During the last years an intense activity has been performed at ESA in order to select the most suitable experiments, bring them to a mature design, manufacture the qualification model and qualify the experiments for flight. ESA staffs coordinated and supported the work of the principal investigators of the experiments from European institutions and industrial organizations in order to maximize the scientific output in compliance with the budget resources made available to the EXPERT project and the programmatic constraints. EXPERT is a re-entry capsule having the shape of a blunted cone. The front part consists of a nose made of ceramic material developed at DLR Stuttgart. No ablative material is implemented so as not to contaminate the specific measurements of Payloads on board. The ceramic nose hosts a set of experiments: the Flush Air Data System (FADS) developed by HTG aiming at collecting free flow data required for post flight analysis, the pyrometer PYREX developed at IRS in Stuttgart collecting data on the temperature and heat flux of the ceramic nose, and the IRS spectrometer RESPECT aiming at resolving the different species generated in the plasma region during re-entry. The sides of the blunted cone are protected by a metallic thermal protection system in which several experiments are located. Two Payloads developed by IRS and VKI are dedicated to the measurement of catalytic effects. One aims

  1. The use of inflatable structures for re-entry of orbiting vehicles

    NASA Astrophysics Data System (ADS)

    Kendall, Robert T.; Maddox, Arthur R.

    1990-10-01

    Inflatable recovery systems offer the unique advantage that a large high-drag shape can be stored initially in a relatively small package. The resulting shapes decelerate rapidly with lower heating inputs than other types of re-entry vehicles. Recent developments have led to some light-weight materials, with little thermal protection, can withstand the heating inputs to such vehicles. As a result, inflatable recovery vehicles offer a simple, reliable and economical way to return various vehicles from orbit. This paper examines the application of this concept to a large and a small vehicle with the accompanying dynamics that might be expected. More complex systems could extend the concept to emergency personnel escape systems, payload abort and satellite recovery systems.

  2. Rudder/Fin Seals Investigated for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2002-01-01

    NASA is developing the X-38 vehicle that will demonstrate the technologies required for a potential crew return vehicle for the International Space Station. This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the space station. Control surfaces on the X-38 (body flaps and rudder/fin assemblies) require high temperature seals to limit hot gas ingestion and the transfer of heat to underlying low temperature structures. Working with the NASA Johnson Space Center, the Seals Team at the NASA Glenn Research Center completed a series of tests to further characterize baseline seal designs for the rudder/fin interfaces of the X-38. The structures of the rudder/fin assembly and its associated seals are shown in the the preceding illustration. Tests performed at Glenn indicated that exposure of the seals in a compressed state at simulated seal re-entry temperatures resulted in a large permanent set and loss of seal resiliency. This could be of concern because the seals are required to maintain contact with the sealing surfaces while the vehicle goes through the maximum re-entry heating cycle to prevent hot gases from leaking past the seals and damaging interior low-temperature structures. To simulate conditions in which the seals may become unloaded during use, such as when they take on a large permanent set, Glenn researchers performed room temperature flow and compression tests to determine seal flow rates, resiliency, and unit loads under minimal loads. Flow rates through an unloaded (i.e., 0-percent compression) double seal arrangement were twice those of a double seal compressed to the 20-percent design compression level. These flow rates are being used in thermal analyses to predict the effect of flow through the seals on over-all seal temperatures. Compression test results showed that seal unit loads and contact pressures were below the limits that Johnson had set as goals for the seals. In the rudder/fin seal location

  3. Interaction of the LDEF spacecraft with SRM re-entry firings

    NASA Astrophysics Data System (ADS)

    Stabroth, Sebastian; Flegel, Sven Kevin; Wiedemann, Carsten; Krag, Holger; Klinkrad, Heiner; Vörsmann, Peter

    The ESA space debris population model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) shows a highly dynamic sub-millimetre size particle environment. The dust population released during firings of solid rocket motors (SRM) in space is a major contributor to the debris flux imposed to orbiting spacecraft. Flux predictions of the current model version MASTER-2005 agree with recent impact data from returned spacecraft surfaces like the Hubble Space Telescope solar arrays orbiting the Earth between 1993 and 2002. However, it was found during validation of MASTER-2005 that the flux level for dust is underpredicted by the model for some of the analysed surfaces of the Long-Duration Exposure Facility (LDEF) in orbit between 1984 and 1990. Since the release of MASTER-2005, it has been recognised that this historical model difference is most likely the result of a large number of Russian SRM retroburns with return capsules not included in the MASTER-2005 event database. The extension of the firing list with the re-entry firings and the re-simulation of the debris environment based on the gathered information closes the gap between measurements and model predictions. In this paper, the identification of previously unknown signatures of the re-entry firings in the impact records of the Interplanetary Dust Experiment (IDE) carried by LDEF will be outlined. The direct confirmation of the simulated firings in the measured data supports the assumptions taken in the database generation and underlines the quality of the particle release models of MASTER. The interaction of LDEF with the simulated particle clouds will be discussed.

  4. FLPP IXV Re-Entry Vehicle, Supersonic Charectisation Based on DNW SST Wind Tunnel Tests and CFD

    NASA Astrophysics Data System (ADS)

    Kapteijn, C.; Maseland, H.; Chiarelli, C.; Mareschi, V.; Tribot, J.-P.; Binetti, P.; Walloscheck, T.

    2009-01-01

    The European Space Agency ESA, has engaged in 2004, the IXV project (Intermediate eXperimental Vehicle) which is part of the FLPP (Future Launcher Preparatory Programme) aiming at answering to critical technological issues for controlled re-entry, while supporting the future generation launchers and to improve in general European capabilities in the strategic field of atmospheric re-entry for future space transportation, exploration and scientific applications. The IXV key mission and system objectives are the design, development, manufacturing, assembling and on- ground to in-flight verification of an autonomous European lifting and aerodynamically controlled re- entry system, integrating the critical re- entry technologies at the system level. In particular, the IXV shall demonstrate system integrated key technologies such as lifting flight control by means of aerodynamic surfaces that are one of the main primary objectives of the experimental investigation. Lifting and aerodynamic controlled re-entry represents a significant capability advancement with respect to the ballistic re-entry of capsules like the ARD. Since hypersonic aerodynamics is essentially different from supersonic aerodynamics, the current mission is to perform an atmospheric re-entry in combination with a safe recovery the in supersonic flight regime. However, mission extension to trimmed transonic flight is under consideration based on a preliminary analysis of the aerodynamic characteristics of the IXV configuration. Since the beginning of the IXV project, an aerodynamic data base (AEDB) has been built up and continuously updated integrating the additional information mainly provided by means of CFD (ie: Euler and Navier-Stokes) and lately also by means of WTTs. This AEDB serves for flying qualities analysis and for re-entry simulations. During the development phase B2/C1, the effectiveness of the control surfaces and their impact on te vehicle's aerodynamic forces in the supersonic regime is

  5. Development and application of an empirical probability distribution for the prediction error of re-entry body maximum dynamic pressure

    NASA Technical Reports Server (NTRS)

    Lanzi, R. James; Vincent, Brett T.

    1993-01-01

    The relationship between actual and predicted re-entry maximum dynamic pressure is characterized using a probability density function and a cumulative distribution function derived from sounding rocket flight data. This paper explores the properties of this distribution and demonstrates applications of this data with observed sounding rocket re-entry body damage characteristics to assess probabilities of sustaining various levels of heating damage. The results from this paper effectively bridge the gap existing in sounding rocket reentry analysis between the known damage level/flight environment relationships and the predicted flight environment.

  6. Does Offender Gambling on the inside Continue on the outside? Insights from Correctional Professionals on Gambling and Re-Entry

    ERIC Educational Resources Information Center

    Williams, D. J.; Walker, Gordon J.

    2009-01-01

    This study brings to light a neglected topic of particular importance--offender gambling issues within the context of re-entry into the community. Fifteen correctional professionals from Nevada (high gambling availability) and Utah (no legalized gambling) participated in semi-structured interviews to provide insights into how gambling may impact…

  7. An Exploration of Factors Reducing Recidivism Rates of Formerly Incarcerated Youth with Disabilities Participating in a Re-Entry Intervention

    ERIC Educational Resources Information Center

    Unruh, Deanne K.; Gau, Jeff M.; Waintrup, Miriam G.

    2009-01-01

    Juvenile offenders are costly to our society in terms of the monetary and social expenditures from the legal system, victims' person costs, and incarceration. The re-entry and community reintegration outcomes for formerly incarcerated youth with a disabling condition are bleak compared to peers without disabilities. In this study, we examined the…

  8. The Role of Counselling and Parental Encouragement on Re-Entry of Adolescents into Secondary Schools in Abia State, Nigeria

    ERIC Educational Resources Information Center

    Alika, Henrietta Ijeoma; Ohanaka, Blessing Ijeoma

    2013-01-01

    This paper examined the role of counselling, and parental encouragement on re-entry of adolescents into secondary school in Abia State, Nigeria. A total of 353 adolescents who re-entered school were selected from six secondary schools in the State through a simple random sampling technique. A validated questionnaire was used for data analysis.…

  9. Career Assessment, Remediation, Education, Employment, and Re-entry Program (CAREER). El Paso Community College Career Grant. Final Report.

    ERIC Educational Resources Information Center

    LaFleur, Carol A.

    Objectives of the Career Assessment, Remediation, Education, Employment, and Re-entry (CAREER) project were to establish a series of intensive, short-term job training programs using competency-based instruction to serve Hispanic persons who were economically disadvantaged, displaced, unemployed, or underemployed, as well as Hispanic females who…

  10. Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry

    NASA Technical Reports Server (NTRS)

    Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.

    2010-01-01

    High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next

  11. FLPP IXV Re-entry Vehicle, Transonic Characterisation Based on FOI T1500 Wind Tunnel Tests and CFD

    NASA Astrophysics Data System (ADS)

    Torngren, L.; Chiarelli, C.; Mareschi, V.; Tribot, J.-P.; Binetti, P.; Walloschek, T.

    2009-01-01

    The European Space Agency ESA, has engaged in 2004, the IXV project (Intermediate eXperimental Vehicle) which is part of the FLPP (Future Launcher Preparatory Programme) aiming at answering to critical technological issues, while supporting the future generation launchers and to improve in general European capabilities in the strategic field of atmospheric re-entry for space transportation, exploration and scientific applications. The IXV key mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled re-entry system, integrating the critical re-entry technologies at the system level. The current IXV vehicle is a slender body type exhibiting rounded shape, thick body controlled by means of two control surfaces. The current mission is to perform an atmospheric re- entry ended by a safe recovery in supersonic regime. A potential extension of the flight domain down to the transonic regime was proposed to be analyzed. The objectives were to study the capability of the IXV for flying autonomously enabling a recovery of the vehicle by means of a subsonic parachute based DRS. The vehicle designed for the hypersonic speeds integrating a large base with only two control surfaces located close to the plane of symmetry is definitively not tuned for transonic ones. CFD done by Thales Alenia Space and wind tunnel activities involving FOI T1500 facility contributed to built up an Aerodynamic Data Base (AEDB) to be used as inputs for flying qualities analysis and re-entry simulations. The paper presents the main objectives of the transonic activities with emphasis on CFD and WTT including a description of the different prediction tools and discussing the main outcomes of the current data comparisons.

  12. Landing Characteristics of a Re-entry Vehicle with a Passive Landing System for Impact Alleviation

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Landing Characteristics of a Re-entry Vehicle with a Passive Landing System for Impact Alleviation. An experimental investigation was made to determine the landing characteristics of a 1/8-scale dynamic model of a reentry vehicle using a passive landing system to alleviate the landing-impact loads. The passive landing system consisted of a flexible heat shield with a small section of aluminum honeycomb placed between the heat shield and the crew compartment at the point that would be the first to contact the landing surface. The model was landed on concrete and sand landing surfaces at parachute letdown velocities. The investigations simulated a vertical velocity of 30 ft/sec (full scale), horizontal velocities of 0, 15, 30, 40, and 50 ft/sec (full scale), and landing attitudes ranging from -30 degrees to 20 degrees. The model investigation indicated that stable landings could be made on a concrete surface at horizontal velocities up to about 30 ft/sec, but the stable landing-attitude range at these speeds was small. The aluminum honeycomb bottomed occasionally during landings on concrete. When bottoming did not occur, maximum normal and longitudinal accelerations at the center of gravity of the vehicle were approximately 50g and 30g, respectively. [Entire movie available on DVD from CASI as Doc ID 20070030981. Contact help@sti.nasa.gov

  13. Landing Characteristics of a Re-entry Vehicle with Canted Multiple Air Bag Load Alleviation System

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Investigation of the Landing Characteristics of a Re-entry Vehicle Having a Canted Multiple Air Bag Load Alleviation System. An investigation was made to determine the landing-impact characteristics of a reentry vehicle having a multiple-air-bag load-alleviation system. A 1/16-scale dynamic model having four canted air bags was tested at flight-path angles of 90 degrees (vertical), 45 degrees, and 27 degrees for a parachute or paraglider vertical letdown velocity of 30 feet per second (full scale). Landings were made on concrete at attitudes ranging from -l5 degrees to 20 degrees. The friction coefficient between the model heat shield and the concrete was approximately 0.4. An aluminum diaphragm, designed to rupture at 10.8 pounds per square inch gage, was used to maintain initial pressure in the air bags for a short time period. [Entire movie available on DVD from CASI as Doc ID 20070030986. Contact help@sti.nasa.gov

  14. Neutral composition measurements by the Pioneer Venus Neutral Mass Spectrometer during Orbiter re-entry

    NASA Astrophysics Data System (ADS)

    Kasprzak, W. T.; Niemann, H. B.; Hedin, A. E.; Bougher, S. W.; Hunten, D. M.

    1993-12-01

    Measurements by the Pioneer Venus Orbiter Neutral Mass Spectrometer (ONMS) instrument during Orbiter re-entry have been made from 18-24 hours local solar time, above 170 km, of He, and from midnight to 4.5 hours below 200 km of He, N, O, CO, N2, and CO2. Preliminary results indicate that in the post-midnight sector He is the dominant species above 170 km, O the dominant species from 140-170 km and CO2 the dominant species below 140 km. Estimated scale height temperatures for He, O and CO2 of about 105-120 K are similar to those observed in 1978-80 at higher solar activity. The densities at 1 am local solar time and at 150 km are within 35% of those measured earlier. The He bulge is also similar to that observed in 1978-80 confirming that thermosphere superrotation is still present. Comparison with the results of a Venus Thermosphere General Circulation Model suggests the nightside is not sensitive to changes in solar activity due to the isolation of the day and night thermospheres. Apparently, the relatively small changes in the dayside thermosphere with solar activity have little impact on the nightside thermosphere.

  15. Novel Hybrid Ablative/Ceramic Heatshield for Earth Atmospheric Re-Entry

    NASA Astrophysics Data System (ADS)

    Barcena, J.; Florez, S.; Perez, B.; Pinaud, G.; Bouilly, J.-M.; Fischer, W. P. P.; de Montburn, A.; Descomps, M.; Zuber, C.; Rotaermel, W.; Hald, H.; Pereira, C.; Mergia, K.; Triantou, K.; Marinou, A.; Vekinis, G.; Ionescu, G.; Ban, C.; Stefan, A.; Leroy, V.; Bernard, D.; Massuti, B.; Herdrich, G.

    2014-06-01

    Original approaches based on ablative materials and novel TPS solutions are required for space applications, where resistance to extreme oxidative environments and high temperatures are required. For future space exploration the demands for the thermal shield go beyond the current state-of-the-art. Therefore, the development of new thermal protection materials and systems at a reasonable mass budget is absolutely essential to ensure European non-dependence on corresponding restricted technologies. The three year long FP7 project HYDRA aims at the development of a novel thermal protection system through the integration of a low density ablative outer-shield on top of an advanced thermo-structural ceramic composite layer and will provide an innovative technology solution consistent with the capabilities of European technologies and material providers. This paper summarizes the current status of the scientific activities carried out after two years of progress in terms of design, integration and verification of a robust and lightweight thermal shield solution for atmospheric earth re-entry.

  16. Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry

    PubMed Central

    Kim, Sehyun; Zaghloul, Norann A.; Bubenshchikova, Ekaterina; Oh, Edwin C.; Rankin, Susannah; Katsanis, Nicholas; Obara, Tomoko; Tsiokas, Leonidas

    2011-01-01

    The primary cilium is an antenna-like organelle that is dynamically regulated during the cell cycle. Ciliogenesis is initiated as cells enter quiescence, while cilium resorption precedes mitosis. The mechanisms coordinating ciliogenesis with the cell cycle are unknown. Here we identify the centrosomal protein, Nde1, as a negative regulator of ciliary length. Nde1 is expressed at high levels in mitosis, low levels in quiescence and localizes at the mother centriole, which nucleates the primary cilium. Cells depleted of Nde1 show longer cilia and a delay in cell cycle re-entry that correlates with ciliary length. Knockdown of Nde1 in zebrafish embryos results in increased ciliary length, suppression of cell division, reduction of the number of cells forming the Kupffer’s vesicle, and left-right patterning defects. These data suggest that Nde1 is an integral component of a network coordinating ciliary length with cell cycle progression and have implications in the transition from quiescence to a proliferative state. PMID:21394081

  17. Re-Entry Aeroheating Analysis of Tile-Repair Augers for the Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Wood, William A.

    2007-01-01

    Computational re-entry aerothermodynamic analysis of the Space Shuttle Orbiter s tile overlay repair (TOR) sub-assembly is presented. Entry aeroheating analyses are conducted to characterize the aerothermodynamic environment of the TOR and to provide necessary inputs for future TOR thermal and structural analyses. The TOR sub-assembly consists of a thin plate and several augers and spacers that serve as the TOR fasteners. For the computational analysis, the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is used. A 5-species non-equilibrium chemistry model with a finite rate catalytic recombination model and a radiation equilibrium wall condition are used. It is assumed that wall properties are the same as reaction cured glass (RCG) properties with a surface emissivity of epsilon = 0.89. Surface heat transfer rates for the TOR and tile repair augers (TRA) are computed at a STS-107 trajectory point corresponding to Mach 18 free stream conditions. Computational results show that the average heating bump factor (BF), which is a ratio of local heat transfer rate to a design reference point located at the damage site, for the auger head alone is about 1.9. It is also shown that the average BF for the combined auger and washer heads is about 2.0.

  18. Mathematical Interpretation of Observational Data of the Stardust SRC Re-Entry

    NASA Astrophysics Data System (ADS)

    Gritsevich, M. I.

    2009-01-01

    STARDUST spacecraft was launched on February 7, 1999. STARDUST is the first U.S. Space mission dedicated solely to the exploration of a comet, and the first robotic mission designed to return extraterrestrial material from outside the orbit of the Moon. But studying of observational data of the STARDUST Sample Return Capsule's (SRC) entry into Earth's atmosphere on January 15, 2006, also represent a big interest. At a velocity of 12.8 km/s (assumed to be at an altitude of 125 km) SRC was the fastest ever attempted re-entry of a human made space vehicle. The return trajectory of the SRC is very similar to that of natural cosmic bodies. Entry begins when the spacecraft reorients for SRC release from the spacecraft bus and ends with parachute deployment. In the present report, an analytical model of the atmospheric entry is calculated using the data of actual observations, by selecting the parameters describing rate of deceleration of the body during its hypersonic flight. Model was applied to the observational data of STARDUST Sample Return Capsule (a hypersonic phase). The estimate of mass of SRC obtained using the data of actual observations is quite close to its real value of 45.8 kg.

  19. A multiblock analysis for shuttle orbiter re-entry heating from Mach 24 to Mach 12

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. J.; Alter, Stephen J.

    1993-01-01

    A multiblock, laminar heating analysis for the shuttle orbiter at three trajectory points ranging from Mach 24.3 to Mach 12.86 on re-entry is described. The analysis is performed using the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) with both a seven species chemical nonequilibrium model and an equilibrium model. A finite-catalytic-wall model appropriate for shuttle tiles at a radiative equilibrium wall temperature is applied. Computed heating levels are generally in good agreement with the flight data though a few rather large discrepancies remain unexplained. The multiblock relaxation strategy partitions the flowfield into manageable blocks requiring a fraction of the computational resources (time and memory) required by a full domain approach. In hot, the computational cost for a solution at even a single trajectory point would be prohibitively expensive at the given resolution without the multiblock approach. Converged blocks are reassembled to enable a fully coupled converged solution over the entire vehicle, starting from a nearly converged initial condition.

  20. Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Riedell, James A.; Easler, Timothy E.

    2013-01-01

    This adhesive is capable of repairing damaged leading edge components of reentry vehicles while in space, and is novel with regard to its ability to be applied in the vacuum of space, and in a microgravity environment. Once applied, the adhesive provides thermal and oxidation protection to the substrate (in this case, reinforced carbon/carbon composites, RCCs) during re-entry of a space vehicle. Although there may be many formulations for repair adhesives, at the time of this reporting, this is the first known adhesive capable of an on-orbit repair. The adhesive is an engineered ceramic material composed of a pre-ceramic polymer and refractory powders in the form of a paste or putty that can be applied to a scratched, cracked, or fractured composite surface, covering and protecting the damaged area. The adhesive is then "cured" with a heat cycle, thereby cross-linking the polymer into a hardened material and bonding it to the substrate. During the heat of reentry, the material is converted to a ceramic coating that provides thermal and oxidative stability to the repaired area, thus allowing the vehicle to pass safely from space into the upper atmosphere. Ceramic powders such as SiC, ZrB2 and Y2O3 are combined with allylhydridopolycarbosilane (AHPCS) resin, and are mixed to form a paste adhesive. The material is then applied to the damaged area by brush, spatula, trowel, or other means to fill cracks, gaps, and holes, or used to bond patches onto the damaged area. The material is then cured, in a vacuum, preferably at 250F (approximately equal to 121C) for two hours. The re-entry heating of the vehicle at temperatures in excess of 3,000F (approximately equal to 1,650C) then converts this material into a ceramic coating. This invention has demonstrated advantages in resistance to high temperatures, as was demonstrated in more than 100 arc-jet tests in representative environments at NASA. Extensive testing verified oxidation protection for the repaired substrate (RCC

  1. An Automated Method to Compute Orbital Re-entry Trajectories with Heating Constraints

    NASA Technical Reports Server (NTRS)

    Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the 'best' solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre- determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be converted to do the job. Non-convergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantiaL This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to Earth. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.

  2. Benchmark Shock Tube Experiments for Radiative Heating Relevant to Earth Re-Entry

    NASA Technical Reports Server (NTRS)

    Brandis, A. M.; Cruden, B. A.

    2017-01-01

    Detailed spectrally and spatially resolved radiance has been measured in the Electric Arc Shock Tube (EAST) facility for conditions relevant to high speed entry into a variety of atmospheres, including Earth, Venus, Titan, Mars and the Outer Planets. The tests that measured radiation relevant for Earth re-entry are the focus of this work and are taken from campaigns 47, 50, 52 and 57. These tests covered conditions from 8 km/s to 15.5 km/s at initial pressures ranging from 0.05 Torr to 1 Torr, of which shots at 0.1 and 0.2 Torr are analyzed in this paper. These conditions cover a range of points of interest for potential fight missions, including return from Low Earth Orbit, the Moon and Mars. The large volume of testing available from EAST is useful for statistical analysis of radiation data, but is problematic for identifying representative experiments for performing detailed analysis. Therefore, the intent of this paper is to select a subset of benchmark test data that can be considered for further detailed study. These benchmark shots are intended to provide more accessible data sets for future code validation studies and facility-to-facility comparisons. The shots that have been selected as benchmark data are the ones in closest agreement to a line of best fit through all of the EAST results, whilst also showing the best experimental characteristics, such as test time and convergence to equilibrium. The EAST data are presented in different formats for analysis. These data include the spectral radiance at equilibrium, the spatial dependence of radiance over defined wavelength ranges and the mean non-equilibrium spectral radiance (so-called 'spectral non-equilibrium metric'). All the information needed to simulate each experimental trace, including free-stream conditions, shock time of arrival (i.e. x-t) relation, and the spectral and spatial resolution functions, are provided.

  3. An Automated Method to Compute Orbital Re-Entry Trajectories with Heating Constraints

    NASA Technical Reports Server (NTRS)

    Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the "best" solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre-determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be made to do the job. Nonconvergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantial. This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to a Terminal Area Energy Management (TAEM) region. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.

  4. Assessment Of The Aerodynamic And Aerothermodynamic Performance Of The USV-3 High-Lift Re-Entry Vehicle

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe; Richiello, Camillo; Russo, Gennaro

    2011-05-01

    This paper deals with the aerodynamic and aerothermodynamic trade-off analysis carried out with the aim to design a hypersonic flying test bed (FTB), namely USV3. Such vehicle will have to be launched with a small expendable launcher and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry phenomena. The demonstrator under study is a re-entry space glider characterized by a relatively simple vehicle architecture able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures. Then, a summary review of the aerodynamic characteristics of two FTB concepts, compliant with a phase-A design level, has been provided hereinafter. Indeed, several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper.

  5. Romance, recovery & community re-entry for criminal justice involved women: Conceptualizing and measuring intimate relationship factors and power.

    PubMed

    Walt, Lisa C; Hunter, Bronwyn; Salina, Doreen; Jason, Leonard

    Researchers have suggested that interpersonal relationships, particularly romantic relationships, may influence women's attempts at substance abuse recovery and community re-entry after criminal justice system involvement. The present paper evaluates relational and power theories to conceptualize the influence of romantic partner and romantic relationship qualities on pathways in and out of substance abuse and crime. The paper then combines these conceptualizations with a complementary empirical analysis to describe an ongoing research project that longitudinally investigates these relational and power driven factors on women's substance abuse recovery and community re-entry success among former substance abusing, recently criminally involved women. This paper is designed to encourage the integration of theory and empirical analysis by detailing how each of these concepts are operationalized and measured. Future research and clinical implications are also discussed.

  6. Analysis of Electromagnetic Wave Propagation in a Magnetized Re-Entry Plasma Sheath Via the Kinetic Equation

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2009-01-01

    Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that is experienced during atmospheric reentry can be mitigated through the appropriate control of an external magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and involves an analytical solution for the electric and magnetic fields within the plasma allowing for a description of the attendant transmission, reflection and absorption coefficients. The ability to transmit through the magnetized plasma is due to the magnetic windows that are created within the plasma via the well-known whistler modes of propagation. The case of 2 GHz transmission through a re-entry plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves through the re-entry phase.

  7. Pre-X Experimental Re-Entry Lifting Body: Design of Flight Test Experiments for Critical Aerothermal Phenomena

    DTIC Science & Technology

    2007-06-01

    hypersonic domain has never been explored with a controlled glider . BOR 4 BOR 5 The hypersonic glider HYFLEX The main concrete...the most critical phenomena concerning the design and sizing of a re- entry vehicle. Pre-X hypersonic glider • Improving the flight measurement...laws of a gliding body with body flaps. • Performing the first design and development end to end of the hypersonic glider . • To reduce risk for

  8. Putting principals back into practice: an evaluation of a re-entry course for vocationally trained doctors.

    PubMed Central

    Baker, M; Williams, J; Petchey, R

    1997-01-01

    BACKGROUND: Current recruitment difficulties in general practice have sharpened the interest of the profession in non-principals. No re-entry course for general practice has previously been run in the UK. AIM: To design and evaluate a re-entry course for general practice. METHOD: A re-entry course was developed to help doctors return to general practice as principals. A telephone interview was carried out with each delegate prior to their attendance on the course and was repeated one month and six months after the course to measure any change in career intentions and the perceived benefit of attending the course. RESULTS: Six months after the course, 11 out of 14 delegates had taken positive steps to return to general practice or had increased their time commitment to medicine. This contrasts with only one of the control group having made any steps to change career. CONCLUSION: The course was evaluated and found to be beneficial, particularly in terms of increasing the confidence of the delegates. PMID:9463984

  9. Aerothermodynamic performance and thermal protection design for blunt re-entry bodies at L/D = 0.3

    NASA Technical Reports Server (NTRS)

    Caram, Jose M.; Kowal, T. J.

    1993-01-01

    Aerodynamic heating and thermal protection design analyses were performed for three blunt re-entry bodies at an L/D = 0.3 returning from low earth orbit. These configurations consisted of a scaled up Apollo command module, a Viking re-entry vehicle, and an Aeroassist Flight Experiment (AFE) aerobrake, each with a maximum diameter of 4.42 m. The aerothermodynamic analysis determined the equilibrium stagnation point heating rate and heat load for nominal and 3-sigma re-entry trajectories and the distribution of heating along the pitch and yaw planes for each of the vehicles at the time of highest heat flux. Using the predicted heating rates and heating distributions, a Thermal Protection System (TPS) design with flight certified materials was tailored for each of the configurations. Results indicated that the heating to the corner of the Viking aeroshell would exceed current limits of reusable tile material. Also, the maximum heating for the AFE would be 15 percent greater than the maximum heating for the Apollo flying the same trajectory. TPS designs showed no significant advantage in TPS weight between the different vehicles; however, heat-shield areal density comparisons showed the Apollo configuration to be the most efficient in terms of TPS weight.

  10. Potential dermal exposure in greenhouses for manual sprayers: analysis of the mix/load, application and re-entry stages.

    PubMed

    Ramos, Laura M; Querejeta, Giselle A; Flores, Andrea P; Hughes, Enrique A; Zalts, Anita; Montserrat, Javier M

    2010-09-01

    An evaluation of the Potential Dermal Exposure for the mix/load, application and re-entry stages, associated with procymidone and deltamethrin usage, was carried out for tomatoes grown in greenhouses of small production units in Argentina. Eight experiments were done with four different operators, under typical field conditions with a lever operated backpack sprayer. The methodology applied was based on the Whole Body Dosimetry technique, evaluating a set of different data for the mix and load, application and re-entry operations. These results indicated that the Potential Dermal Exposure of the application step was (38+/-17)mLh(-1) with the highest proportion on torso, head and arms. When the three stages were compared, re-entry was found to contribute least towards the total Potential Dermal Exposure; meanwhile in all cases, except one, the mix/load operation was the stage with highest exposure. The Margin of Safety for each different operation was also calculated and the proportion of pesticide drift from the greenhouse to the environment is presented. These results emphasize the importance of improving the personal protection measures in the mix and load stage, an operation that is not usually associated with high-risk in small production units.

  11. The characteristics of registered nurses whose licenses expire: why they leave nursing and implications for retention and re-entry.

    PubMed

    Skillman, Susan M; Palazzo, Lorella; Hart, L Gary; Keepnews, David

    2010-01-01

    Little is known about RNs who drop their licenses and their potential re-entry into the nursing workforce. The results of this study provide insight into reasons nurses leave their careers and the barriers to re-entry, all important indicators of the current professional climate for nursing. While representing only one state, these findings suggest that RNs who allow their licenses to expire do so because they have reached retirement age or, among those who do not cite age as a factor, because many are unable or unwilling to work in the field. Inactive nurses who might otherwise appear to be likely candidates for re-entry into the profession may not be easily encouraged to practice nursing again without significant changes in their personal circumstances or the health care work environment. Effective ways to address current and pending RN workforce shortages include expanding RN education capacity to produce more RNs who can contribute to the workforce across the coming decades, and promote work environments in which RNs want to, and are able to, practice across a long nursing career.

  12. Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing

    NASA Technical Reports Server (NTRS)

    Perez, Sondra A.; Charles, John B.; Fortner, G. William; Hurst, Victor 4th; Meck, Janice V.

    2003-01-01

    BACKGROUND: Many cardiovascular changes associated with spaceflight reduce the ability of the cardiovascular system to oppose gravity on return to Earth, leaving astronauts susceptible to orthostatic hypotension during re-entry and landing. Consequently, an anti-G suit was developed to protect arterial pressure during re-entry. A liquid cooling garment (LCG) was then needed to alleviate the thermal stress resulting from use of the launch and entry suit. METHODS: We studied 34 astronauts on 22 flights (4-16 d). Subjects were studied 10 d before launch and on landing day. Preflight, crewmembers were suited with their anti-G suits set to the intended inflation for re-entry. Three consecutive measurements of heart rate and arterial pressure were obtained while seated and then again while standing. Three subjects who inflated the anti-G suits also donned the LCG for landing. Arterial pressure and heart rate were measured every 5 min during the de-orbit maneuver, through maximum G-loading (max-G) and touch down (TD). After TD, crew-members again initiated three seated measurements followed by three standing measurements. RESULTS: Astronauts with inflated anti-G suits had higher arterial pressure than those who did not have inflated anti-G suits during re-entry and landing (133.1 +/- 2.5/76.1 +/- 2.1 vs. 128.3 +/- 4.2/79.3 +/- 2.9, de-orbit; 157.3 +/- 4.5/102.1 +/- 3.6 vs. 145.2 +/- 10.5/95.7 + 5.5, max-G; 159.6 +/- 3.9/103.7 +/- 3.3 vs. 134.1 +/- 5.1/85.7 +/- 3.1, TD). In the group with inflated anti-G suits, those who also wore the LCG exhibited significantly lower heart rates than those who did not (75.7 +/- 11.5 vs. 86.5 +/- 6.2, de-orbit; 79.5 +/- 24.8 vs. 112.1 +/- 8.7, max-G; 84.7 +/- 8.0 vs. 110.5 +/- 7.9, TD). CONCLUSIONS: The anti-G suit is effective in supporting arterial pressure. The addition of the LCG lowers heart rate during re-entry.

  13. An integrated approach for risk object re-entry predictions in terms of KS elements and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sharma, R. K.; Anil Kumar, A. K.; Xavier James Raj, M.

    The accurate estimation of the orbital lifetime of decaying near-Earth objects is of considerable importance for prediction of risk object re-entry time and proper planning of mitigation strategies and hazard assessment. It has become necessary to use extremely complex force models to match with the present operational requirements and observational techniques. The problem becomes all the more complicated in the near-Earth environment due to the fact that the object is influenced by the non-spherical effects of the Earth's gravitational field as well as the dissipative effects of the Earth's atmosphere. The database available for the re-entry time or orbital lifetime prediction of the debris objects is based on the set of Two Line Elements (TLEs) provided by the agencies like NORAD. These TLEs provide information regarding the orbital parameters together with rate of mean motion decay and an equivalent ballistic coefficient B*. The objects physical parameters like mass, area of cross section, shape and dimensions are not available accurately and the modelling of the atmosphere in which objects decay takes place is also uncertain. Besides, the tumbling effect of the body and gas molecular interaction, further makes the prediction of re-entry time a very complicated exercise. The method of the K-S total-energy element equations (Stiefel & Scheifele 1971) is a powerful method for numerical solution with respect to any type of perturbing forces, as the equations are less sensitive to round-off and truncation errors in the numerical algorithm. The equations are everywhere regular in contrast with the classical Newtonian equations, which are singular at the collision of the two bodies. The equations are smoothed for eccentric orbits because eccentric anomaly is the independent variable. Genetic Algorithms (Deb 1995) has received a great deal of attention regarding their potential as an optimisation technique for complex functions. This paper highlights the implementation

  14. A case study of non-traditional students re-entry into college physics and engineering

    NASA Astrophysics Data System (ADS)

    Langton, Stewart Gordon

    Two groups of students in introductory physics courses of an Access Program for engineering technologies were the subjects of this study. Students with a wide range of academic histories and abilities were enrolled in the program; many of the students were re-entry and academically unprepared for post-secondary education. Five years of historical data were evaluated to use as a benchmark for revised instruction. Data were gathered to describe the pre-course academic state of the students and their academic progress during two physics courses. Additional information was used to search for factors that might constrain academic success and as feedback for the instructional methods. The data were interpreted to regulate constructivist design features for the physics courses. The Engineering Technology Access Program was introduced to meet the demand from non-traditional students for admission to two-year engineering' technology programs, but who did not meet normal academic requirements. The duration of the Access Program was two terms for electronic and computer engineering students and three terms for civil and mechanical engineering students. The sequence of mathematics and physics courses was different for the two groups. The Civil/Mechanical students enrolled in their first mathematics course before undertaking their first physics course. The first mathematics and physics courses for the Electronics students were concurrent. Academic success in the two groups was affected by this difference. Over a five-year period the success rate of students graduating with a technology diploma was approximately twenty-five percent. Results from this study indicate that it was possible to reduce the very high attrition in the combined Access/Technology Programs. While the success rate for the Electronics students increased to 38% the rate for the Civil/Mechanical students increased dramatically to 77%. It is likely that several factors, related to the extra term in the Access

  15. Further Investigations of Control Surface Seals for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; Newquist, Charles W.; Verzemnieks, Juris

    2001-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a potential crew return vehicle (CRV) for the International Space Station. This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. Control surfaces on the X-38 (body flaps and rudder/fin assemblies) require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. NASAs Johnson Space Center (JSC) and Glenn Research Center (GRC) are working together to develop and evaluate seals for these control surfaces. This paper presents results for compression. flow, scrub, and arc jet tests conducted on the baseline X-38 rudder/fin seal design. Room temperature seal compression tests were performed at low compression levels to determine load versus linear compression, preload. contact area, stiffness. and resiliency characteristics under low load conditions. For all compression levels that were tested, unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits required to limit the loads on the adjoining Shuttle thermal tiles that the seals will contact. Flow rates through an unloaded (i.e. 0% compression) double arrangement were twice those of a double seal compressed to the 20% design compression level. The seals survived an ambient temperature 1000 cycle scrub test over relatively rough Shuttle tile surfaces. The seals were able to disengage and re-engage the edges of the rub surface tiles while being scrubbed over them. Arc jet tests were performed to experimentally determine anticipated seal temperatures for representative flow boundary conditions (pressures and temperatures) under simulated vehicle re-entry conditions. Installation of a single seat in the gap of the test fixture caused a large temperature drop (1710 F) across the seal

  16. Aero-thermo-dynamic analysis of a low ballistic coefficient deployable capsule in Earth re-entry

    NASA Astrophysics Data System (ADS)

    Zuppardi, G.; Savino, R.; Mongelluzzo, G.

    2016-10-01

    The paper deals with a microsatellite and the related deployable recovery capsule. The aero-brake is folded at launch and deployed in space and is able to perform a de-orbiting controlled re-entry. This kind of capsule, with a flexible, high temperature resistant fabric, thanks to its lightness and modulating capability, can be an alternative to the current "conventional" recovery capsules. The present authors already analyzed the trajectory and the aerodynamic behavior of low ballistic coefficient capsules during Earth re-entry and Mars entry. In previous studies, aerodynamic longitudinal stability analysis and evaluation of thermal and aerodynamic loads for a possible suborbital re-entry demonstrator were carried out in both continuum and rarefied regimes. The present study is aimed at providing preliminary information about thermal and aerodynamic loads and longitudinal stability for a similar deployable capsule, as well as information about the electronic composition of the plasma sheet and its possible influence on radio communications at the altitudes where GPS black-out could occur. Since the computer tests were carried out at high altitudes, therefore in rarefied flow fields, use of Direct Simulation Monte Carlo codes was mandatory. The computations involved both global aerodynamic quantities (drag and longitudinal moment coefficients) and local aerodynamic quantities (heat flux and pressure distributions along the capsule surface). The results verified that the capsule at high altitude (150 km) is self-stabilizing; it is stable around the nominal attitude or at zero angle of attack and unstable around the reverse attitude or at 180° angle of attack. The analysis also pointed out the presence of extra statically stable equilibrium trim points.

  17. Cardiac tamponade arising from a venous source following anterograde dissection re-entry coronary angioplasty to a chronic total occlusion.

    PubMed

    Danson, E; Arena, F; Sapontis, J; Ward, M; Bhindi, R

    2016-10-01

    Cardiac tamponade is a rare complication of coronary intervention to chronic total occlusions (CTO PCI). We report a case of persistent bleeding from a venous source following successful anterograde dissection-reentry (ADR) CTO PCI. Pericardiocentesis was performed 1 h post-procedure for tamponade. Persistent bleeding was investigated with contrast transesophageal echocardiography, pericardial manometry and blood analysis. Coronary venography revealed subtle extravasation from a cardiac vein adjacent to the site of luminal re-entry. Coronary venous perforation using ADR CTO PCI has not previously been described; however, the volume of blood loss may be significant and surgical exploration may be appropriate.

  18. Surgical Re-entry of an Intentionally Replanted Periodontally Compromised Tooth Treated with Platelet Rich Fibrin (PRF): Hopeless to Hopeful

    PubMed Central

    Srinath, Rashmi; Prakash, Shobha

    2016-01-01

    Intentional replantation is generally contraindicated in periodontally compromised teeth however, there are reports suggesting that it can be a successful treatment alternative for periodontally involved hopeless teeth. Currently there is dearth of evidence regarding the success of this therapy, especially evidence for the effectiveness of autologous platelet rich fibrin is lacking. We present a case report of a 23-year-old male patient with periodontally hopeless left maxillary central incisor having bone loss extending beyond root apex. The tooth was gently extracted and replanted utilizing root conditioning and combined regenerative therapy (Xenograft, PRF and Type I Collagen Membrane). Surgical re-entry at nine months revealed bone formation in the apical third of the tooth. At one year, 87% radiographic bone gain was accomplished. The improvement in the clinical and radiographic parameters reinforced by the re-entry surgery findings strongly suggest that intentional replantation may be a cost-effective substitute to implants and tooth supported prosthesis in situations where conventional periodontal therapy would yield compromised outcomes. PMID:27504421

  19. Is the time dimension of the cell cycle re-entry in AD regulated by centromere cohesion dynamics?

    PubMed

    Bajić, Vladan P; Spremo-Potparević, Biljana; Zivković, Lada; Djelić, Ninoslav; Smith, Mark A

    2008-01-01

    Chromosomal involvement is a legitimate, yet not well understood, feature of Alzheimer disease (AD). Firstly, AD affects more women than men. Secondly, the amyloid-β protein precursor genetic mutations, responsible for a cohort of familial AD cases, reside on chromosome 21, the same chromosome responsible for the developmental disorder Down's syndrome. Thirdly, lymphocytes from AD patients display a novel chromosomal phenotype, namely premature centromere separation (PCS). Other documented morphological phenomena associated with AD include the occurrence of micronuclei, aneuploidy, binucleation, telomere instability, and cell cycle re-entry protein expression. Based on these events, here we present a novel hypothesis that the time dimension of cell cycle re-entry in AD is highly regulated by centromere cohesion dynamics. In view of the fact that neurons can re-enter the cell division cycle, our hypothesis predicts that alterations in the signaling pathway leading to premature cell death in neurons is a consequence of altered regulation of the separation of centromeres as a function of time. It is well known that centromeres in the metaphase-anaphase transition separate in a non-random, sequential order. This sequence has been shown to be deregulated in aging cells, various tumors, syndromes of chromosome instability, following certain chemical inductions, as well as in AD. Over time, premature chromosome separation is both a result of, and a driving force behind, further cohesion impairment, activation of cyclin dependent kinases, and mitotic catastrophe, a vicious circle resulting in cellular degeneration and death.

  20. Evaluation of the Positive Re-Entry in Corrections Program: A Positive Psychology Intervention With Prison Inmates.

    PubMed

    Huynh, Kim H; Hall, Brittany; Hurst, Mark A; Bikos, Lynette H

    2015-08-01

    Two groups of male inmates (n = 31, n = 31) participated in the Positive Re-Entry in Corrections Program (PRCP). This positive psychology intervention focused on teaching offenders skills that facilitate re-entry into the community. Offenders participated in weekly lectures, discussions, and homework assignments focused on positive psychology principles. The two groups differed in duration of treatment (8 weeks and 12 weeks). Participants completed pre- and post-intervention measures of gratitude, hope, and life satisfaction. Using a 2 × 2 mixed design ANOVA, we hypothesized that the intervention (with two between-subjects levels of 8 and 12 weeks) and duration (with two repeated measures levels of pre and post) of treatment would moderate pre- to post-intervention change. Results indicated significant differences on pre- and post-intervention scores for both groups of offenders on all measures. The analysis did not yield statistically significant differences between groups, demonstrating no additive benefits from the inclusion of four additional sessions, thus saving time and money for correctional programming and funding. This research supports the use of positive psychology in prison interventions.

  1. A flexible-segment-model-based dynamics calculation method for free hanging marine risers in re-entry

    NASA Astrophysics Data System (ADS)

    Xu, Xue-song; Wang, Sheng-wei

    2012-03-01

    In re-entry, the drilling riser hanging to the holding vessel takes on a free hanging state, waiting to be moved from the initial random position to the wellhead. For the re-entry, dynamics calculation is often done to predict the riser motion or evaluate the structural safety. A dynamics calculation method based on Flexible Segment Model (FSM) is proposed for free hanging marine risers. In FSM, a riser is discretized into a series of flexible segments. For each flexible segment, its deflection feature and external forces are analyzed independently. For the whole riser, the nonlinear governing equations are listed according to the moment equilibrium at nodes. For the solution of the nonlinear equations, a linearization iteration scheme is provided in the paper. Owing to its flexibility, each segment can match a long part of the riser body, which enables that good results can be obtained even with a small number of segments. Moreover, the linearization iteration scheme can avoid widely used Newton-Rapson iteration scheme in which the calculation stability is influenced by the initial points. The FSM-based dynamics calculation is timesaving and stable, so suitable for the shape prediction or real-time control of free hanging marine risers.

  2. Advanced Models for Prediction of High Altitude Aero-Thermal Loads of a Space Re-entry Vehicle

    NASA Astrophysics Data System (ADS)

    Votta, R.; Schettino, A.; Bonfiglioli, A.

    2011-05-01

    The analysis of the rarefaction effects in predicting the main aero-thermal loads of a Space re-entry vehicle is presented. It is well known that the Navier-Stokes equations fail in rarefied regimes and other approaches must be used. In the present paper different configurations have been simulated by using the Direct Simulation Monte Carlo method. Moreover, slip flow boundary conditions have been implemented in a Navier-Stokes code in order to extend the validity of the continuum approach to the transitional flow regime. Finally, bridging formulas for high altitude aerodynamics of winged bodies have been used. Firstly, two simple geometries have been analysed, specifically designed to study the phenomenon of shock wave boundary layer interaction: a hollow cylinder flare, for which some experiments are available; and a blunt-nosed flat plate/flap model designed and tested at the Italian Aerospace Research Centre. The other configurations taken into account are, respectively, an experimental winged re-entry vehicle and a capsule, for which global aerodynamic coefficients and local wall heating have been determined with different approaches. The Navier-Stokes code with slip flow boundary conditions has shown good predicting capabilities compared with experiments in the hollow cylinder flare case; however, for the winged vehicle and capsule cases, the CFD results are not fully satisfactory and the Monte Carlo method remains the most reliable approach, together with the bridging formula, that provides good results for the aerodynamic coefficients.

  3. Analytical solutions for the equations of motion of a space vehicle during the atmospheric re-entry phase on a 2-D trajectory

    NASA Astrophysics Data System (ADS)

    Mititelu, Gabriel

    2009-04-01

    A practical and important problem encountered during the atmospheric re-entry phase is to determine analytical solutions for the space vehicle dynamical equations of motion. The author proposes new solutions for the equations of trajectory and flight-path angle of the space vehicle during the re-entry phase in Earth’s atmosphere. Explicit analytical solutions for the aerodynamic equations of motion can be effectively applied to investigate and control the rocket flight characteristics. Setting the initial conditions for the speed, re-entering flight-path angle, altitude, atmosphere density, lift and drag coefficients, the nonlinear differential equations of motion are linearized by a proper choice of the re-entry range angles. After integration, the solutions are expressed with the Exponential Integral, and Generalized Exponential Integral functions. Theoretical frameworks for proposed solutions as well as, several numerical examples, are presented.

  4. Novel Hybrid Ablative/Ceramic Layered Composite for Earth Re-entry Thermal Protection: Microstructural and Mechanical Performance

    NASA Astrophysics Data System (ADS)

    Triantou, K.; Mergia, K.; Marinou, A.; Vekinis, G.; Barcena, J.; Florez, S.; Perez, B.; Pinaud, G.; Bouilly, J.-M.; Fischer, W. P. P.

    2015-04-01

    In view of spacecraft re-entry applications into planetary atmospheres, hybrid thermal protection systems based on layered composites of ablative materials and ceramic matrix composites are investigated. Joints of ASTERM™ lightweight ablative material with Cf/SiC (SICARBON™) were fabricated using commercial high temperature inorganic adhesives. Sound joints without defects are produced and very good bonding of the adhesive with both base materials is observed. Mechanical shear tests under ambient conditions and in liquid nitrogen show that mechanical failure always takes place inside the ablative material with no decohesion of the interface of the adhesive layer with the bonded materials. Surface treatment of the ablative surface prior to bonding enhances both the shear strength and the ultimate shear strain by up to about 60%.

  5. Development of an innovative validation strategy of gas-surface interaction modelling for re-entry applications

    NASA Astrophysics Data System (ADS)

    Joiner, N.; Esser, B.; Fertig, M.; Gülhan, A.; Herdrich, G.; Massuti-Ballester, B.

    2016-12-01

    This paper summarises the final synthesis of an ESA technology research programme entitled "Development of an Innovative Validation Strategy of Gas Surface Interaction Modelling for Re-entry Applications". The focus of the project was to demonstrate the correct pressure dependency of catalytic surface recombination, with an emphasis on Low Earth Orbit (LEO) re-entry conditions and thermal protection system materials. A physics-based model describing the prevalent recombination mechanisms was proposed for implementation into two CFD codes, TINA and TAU. A dedicated experimental campaign was performed to calibrate and validate the CFD model on TPS materials pertinent to the EXPERT space vehicle at a wide range of temperatures and pressures relevant to LEO. A new set of catalytic recombination data was produced that was able to improve the chosen model calibration for CVD-SiC and provide the first model calibration for the Nickel-Chromium super-alloy PM1000. The experimentally observed pressure dependency of catalytic recombination can only be reproduced by the Langmuir-Hinshelwood recombination mechanism. Due to decreasing degrees of (enthalpy and hence) dissociation with facility stagnation pressure, it was not possible to obtain catalytic recombination coefficients from the measurements at high experimental stagnation pressures. Therefore, the CFD model calibration has been improved by this activity based on the low pressure results. The results of the model calibration were applied to the existing EXPERT mission profile to examine the impact of the experimentally calibrated model at flight relevant conditions. The heat flux overshoot at the CVD-SiC/PM1000 junction on EXPERT is confirmed to produce radiative equilibrium temperatures in close proximity to the PM1000 melt temperature.This was anticipated within the margins of the vehicle design; however, due to the measurements made here for the first time at relevant temperatures for the junction, an increased

  6. An Investigation of the Re-Entry Adjustment of Indians Who Studied in the U.S.A. Occasional Papers in Intercultural Learning, Number 17.

    ERIC Educational Resources Information Center

    Hansel, Bettina

    This study explored the readjustment experience of 49 Indians who came to the United States to study and then returned to their home country. Interviews revealed that most experienced some stress or difficulty after their re-entry, with problems ranging from initial anxiety about getting a job or shock at the crowded conditions, pollution, or the…

  7. A Novel Device for True Lumen Re-Entry After Subintimal Recanalization of Superficial Femoral Arteries: First-in-Man Experience and Technical Description

    SciTech Connect

    Airoldi, Flavio Faglia, Ezio Losa, Sergio Tavano, Davide; Latib, Azeem; Mantero, Manuela Lanza, Gaetano Clerici, Giacomo

    2011-02-15

    Subintimal angioplasty (SAP) is frequently performed for the treatment of critical limb ischemia (CLI) and has been recognized as an effective technique for these patients. Nevertheless, this approach is limited by the lack of controlled re-entry into the true lumen of the target vessel. We describe a novel device for true lumen re-entry after subintimal recanalization of superficial femoral arteries (SFA). We report our experience with six patients treated between April 2009 and January 2010 with a novel system designed to facilitate true lumen re-entry. The device was advanced by ipsilateral antegrade approach through a 6-French sheath. Successful reaccess into the true lumen was obtained in five of six patients without complications. The patient in whom the reaccess to the true lumen was not possible underwent successful bypass surgery. At 30 days follow-up, the SFA was patent in all patients according to echo-Doppler examination. Our preliminary experience indicates that this novel re-entry device increases the success rate of percutaneous revascularization of chronically occluded SFA.

  8. Development, Implementation, and Validation of Supported Employment Model(s) for Traumatically Brain Injured Persons. Head Injury Re-entry Project (Project HIRe). Final Report.

    ERIC Educational Resources Information Center

    Thomas, Dale F.; Menz, Fredrick E.

    The final report of the Head Injury Re-entry Project (Project HIRe) describes activities of this 3-year (1987 to 1990) project, which used a "best practices" model approach and a community-based employment strategy with persons having traumatic brain injury (TBI) in nonurban areas. Among 15 project accomplishments are the following: (1)…

  9. Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation.

    PubMed

    Xi, Z; Yao, M; Li, Y; Xie, C; Holst, J; Liu, T; Cai, S; Lao, Y; Tan, H; Xu, H-X; Dong, Q

    2016-06-02

    Cell cycle re-entry by quiescent cancer cells is an important mechanism for cancer progression. While high levels of c-MYC expression are sufficient for cell cycle re-entry, the modality to block c-MYC expression, and subsequent cell cycle re-entry, is limited. Using reversible quiescence rendered by serum withdrawal or contact inhibition in PTEN(null)/p53(WT) (LNCaP) or PTEN(null)/p53(mut) (PC-3) prostate cancer cells, we have identified a compound that is able to impede cell cycle re-entry through c-MYC. Guttiferone K (GUTK) blocked resumption of DNA synthesis and preserved the cell cycle phase characteristics of quiescent cells after release from the quiescence. In vehicle-treated cells, there was a rapid increase in c-MYC protein levels upon release from the quiescence. However, this increase was inhibited in the presence of GUTK with an associated acceleration in c-MYC protein degradation. The inhibitory effect of GUTK on cell cycle re-entry was significantly reduced in cells overexpressing c-MYC. The protein level of FBXW7, a subunit of E3 ubiquitin ligase responsible for degradation of c-MYC, was reduced upon the release from the quiescence. In contrast, GUTK stabilized FBXW7 protein levels during release from the quiescence. The critical role of FBXW7 was confirmed using siRNA knockdown, which impaired the inhibitory effect of GUTK on c-MYC protein levels and cell cycle re-entry. Administration of GUTK, either in vitro prior to transplantation or in vivo, suppressed the growth of quiescent prostate cancer cell xenografts. Furthermore, elevation of FBXW7 protein levels and reduction of c-MYC protein levels were found in the xenografts of GUTK-treated compared with vehicle-treated mice. Hence, we have identified a compound that is capable of impeding cell cycle re-entry by quiescent PTEN(null)/p53(WT) and PTEN(null)/p53(mut) prostate cancer cells likely by promoting c-MYC protein degradation through stabilization of FBXW7. Its usage as a clinical modality to

  10. Application of a Near Infrared Imaging System for Thermographic Imaging of the Space Shuttle during Hypersonic Re-Entry

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Tietjen, Alan B.; Horvath, Thomas J.; Tomek, Deborah M.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Bush, Brett C.; Mercer, C. David; Shea, Edward J.

    2010-01-01

    observations confirmed the challenge of a long-range acquisition during re-entry. These challenges are due to unknown atmospheric conditions, image saturation, vibration etc. This provides the motivation for the use of a digital NIR sensor. The characterizations performed on the digital NIR sensor included radiometric, spatial, and spectral measurements using blackbody radiation sources and known targets. An assessment of the collected data for three Space Shuttle atmospheric re-entries, STS-119, STS-125, and STS-128, are provided along with a description of various events of interest captured using the digital NIR imaging system such as RCS firings and boundary layer transitions. Lastly the process used to convert the raw image counts to quantitative temperatures is presented along with comparisons to the Space Shuttle's onboard thermocouples.

  11. OPERA- A CNES Tool to Monitor Short and Middle Term Uncontrolled Re-Entries Using Mean Theories

    NASA Astrophysics Data System (ADS)

    Dolado, J. C.; Agueda, A.; Aivar, L.; Tirado, J.

    2013-09-01

    Objects in Low-Earth Orbits (LEO) and Highly Elliptical Orbits (HEO) are subjected to decay and re- entry into the atmosphere due mainly to the drag force. While being this process the best solution to avoid the proliferation of debris in space and ensure the sustainability of future space activities, it implies a threat to the population on ground. Thus, the prediction of the in-orbit lifetime of an object and the evaluation of the risk on population and ground assets constitutes a crucial task. This paper will concentrate on the first of these tasks.Unfortunately the lifetime of an object in space is remarkably difficult to predict. This is mainly due to the dependence of the atmospheric drag on a number of uncertain elements such as the density profile and its dependence on the solar activity, the atmospheric conditions, the mass and surface area of the object (very difficult to evaluate), its uncontrolled attitude, etc.In this paper we will present a method for the prediction of this lifetime based on publicly available Two-Line Elements (TLEs) from the American USSTRATCOM's Joint Space Operations Center (JSpOC). TLEs constitute an excellent source to access routinely orbital information for thousands of objects even though of their reduced and unpredictable accuracy.Additionally, the implementation of the method on a CNES's Java-based tool will be presented. This tool (OPERA) is executed routinely at CNES to predict the orbital lifetime of a whole catalogue of objects.

  12. Specific Plasma Ionospheric Excitations Modes in the Ionosphere Produced by Space Vehicle Launch and RE Entry and Natural Phenomena

    NASA Astrophysics Data System (ADS)

    Rauscher, E. A.; van Bise, W. L.

    2001-10-01

    SPECIFIC PLASMA IONOSPHERIC EXCITATIONS MODES IN THE IONOSPHERE PRODUCED BY SPACE VEHICLE LAUNCH AND RE ENTRY AND NATURAL PHENOMENA We have examined both experimentally and theoretically the formation and excitation of highly well defined specific wave forms of plasma excitation in the D, E, F(1) and F(2) and sometimes G layers of the earth?s ionosphere. In our formal study period from October 1989 until December 1996, we measured 41 distinct events out of a possible 73 events utilizing ground based sensitive T1050 magnetometers. In five cases more than two to three stations were displayed and detected the same ionospheric excitations. Sometimes background noise was high and dominated the signals, but under good measurement conditions signals appeared to be 50 to 70 dbm over the background noise floor. Specific frequencies of the D-layer appeared around 5.2 to 6.52 Hz and E layer excitations were from 10.48 to 12.8 Hz. Sometimes an F double peak appeared around 15 to 17 Hz as excited by space shuttle activity and delta rockets and in several cases, large scale volcanism. A theoretical model has been developed which describes sustained long duration and long range coherent plasma excitation modes which occur when the ionospheric layers are shock excited. Alfven-like velocities of propogation are calculated in these ionospheric layer. Some Schumann resonates were observed from 7 to 8 Hz.

  13. An evaluation of a resorbable (semirigid) GTR membrane in human periodontal intraosseous defects: A clinicoradiological re-entry study

    PubMed Central

    Gowda, Vinayak S.; Chava, Vijay; Kumara, Ajeya E. G.

    2011-01-01

    Aim: To evaluate the effectiveness of a resorbable, semi rigid guided tissue regeneration (GTR) membrane in the treatment of periodontal intraosseous defects. Settings and Design: Randomized controlled clinicoradiological re-entry study. Materials and Methods: Eight patients with bilateral, identical intraosseous defects were selected. The sides for test and control group were randomly allocated to treat either with bioresorbable semi rigid membrane (test group) or open flap debridement (control group). Radiographic analysis was done by comparing intraoral peri apical radiographs taken at baseline and at six months. Extended cone paralleling device with grid was used to standardize radiographs. Auto CAD software was used for the analysis. Statistical Analysis Used: Paired-t test. Results: On surgical reentry at six months, the mean reduction in depth of the defect at the test site was 2.63 mm. The mean gain in Relative attachment level was 1.75 mm. The control sites showed a statistically insignificant gain. The mean percentage defect fill assessed on radiographs using auto CAD software was 15.54%. Conclusion: The resorbable, semi-rigid GTR membrane can be effectively used for the treatment of human one-walled angular defects. PMID:22368366

  14. The application of quaternions and other spatial representations to the reconstruction of re-entry vehicle motion.

    SciTech Connect

    De Sapio, Vincent

    2010-09-01

    The analysis of spacecraft kinematics and dynamics requires an efficient scheme for spatial representation. While the representation of displacement in three dimensional Euclidean space is straightforward, orientation in three dimensions poses particular challenges. The unit quaternion provides an approach that mitigates many of the problems intrinsic in other representation approaches, including the ill-conditioning that arises from computing many successive rotations. This report focuses on the computational utility of unit quaternions and their application to the reconstruction of re-entry vehicle (RV) motion history from sensor data. To this end they will be used in conjunction with other kinematic and data processing techniques. We will present a numerical implementation for the reconstruction of RV motion solely from gyroscope and accelerometer data. This will make use of unit quaternions due to their numerical efficacy in dealing with the composition of many incremental rotations over a time series. In addition to signal processing and data conditioning procedures, algorithms for numerical quaternion-based integration of gyroscope data will be addressed, as well as accelerometer triangulation and integration to yield RV trajectory. Actual processed flight data will be presented to demonstrate the implementation of these methods.

  15. A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars)

    NASA Technical Reports Server (NTRS)

    Davoodi, Faranak

    2013-01-01

    Future missions to Mars that would need a sophisticated lander, hopper, or rover could benefit from the REARM Architecture. The mission concept REARM Architecture is designed to provide unprecedented capabilities for future Mars exploration missions, including human exploration and possible sample-return missions, as a reusable lander, ascend/descend vehicle, refuelable hopper, multiple-location sample-return collector, laboratory, and a cargo system for assets and humans. These could all be possible by adding just a single customized Re-Entry-Hopper-Aero-Space-Craft System, called REARM-spacecraft, and a docking station at the Martian orbit, called REARM-dock. REARM could dramatically decrease the time and the expense required to launch new exploratory missions on Mars by making them less dependent on Earth and by reusing the assets already designed, built, and sent to Mars. REARM would introduce a new class of Mars exploration missions, which could explore much larger expanses of Mars in a much faster fashion and with much more sophisticated lab instruments. The proposed REARM architecture consists of the following subsystems: REARM-dock, REARM-spacecraft, sky-crane, secure-attached-compartment, sample-return container, agile rover, scalable orbital lab, and on-the-road robotic handymen.

  16. Use of a stent-graft and vascular occlude to treat primary and re-entry tears in a patient with a Stanford type B aortic dissection

    PubMed Central

    Shi, Huihua; Lu, Min; Jiang, Mier

    2013-01-01

    Thoracic endovascular aortic repair for aortic dissections is recognized as an effective treatment. We herein report the case of a 72-year-old male with a Stanford type B aortic dissection. A stent-graft and double-disk vascular occluder was used to repair the primary and re-entry tears, respectively. At 3 month postoperatively, computed tomographic angiography revealed no endoleaks, the stent-graft and vascular occluder to be in optimal positions, the false lumen was almost completely thrombosed, and the visceral arteries were patent. This case illustrates that it is feasible to treat re-entry tears with a vascular occluder after primary proximal stent-graft repairs. PMID:24598963

  17. ARTD1 regulates cyclin E expression and consequently cell-cycle re-entry and G1/S progression in T24 bladder carcinoma cells.

    PubMed

    Léger, Karolin; Hopp, Ann-Katrin; Fey, Monika; Hottiger, Michael O

    2016-08-02

    ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27(Kip 1) protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27(Kip 1) stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.

  18. Protective Effects of the Launch/Entry Suit (LES) and the Liquid Cooling Garment(LCG) During Re-entry and Landing After Spaceflight

    NASA Technical Reports Server (NTRS)

    Perez, Sondra A.; Charles, John B.; Fortner, G. William; Hurst, Victor, IV; Meck, Janice V.

    2002-01-01

    Heart rate and arterial pressure were measured during shuttle re-entry, landing and initial standing in crewmembers with and without inflated anti-g suits and with and without liquid cooling garments (LCG). Preflight, three measurements were obtained seated, then standing. Prior to and during re-entry, arterial pressure and heart rate were measured every five minutes until wheels stop (WS). Then crewmembers initiated three seated and three standing measurements. In subjects without inflated anti-g suits, SBP and DBP were significantly lower during preflight standing (P = 0.006; P = 0.001 respectively) and at touchdown (TD) (P = 0.001; P = 0.003 respectively); standing SBP was significantly lower after WS. on-LeG users developed significantly higher heart rates during re-entry (P = 0.029, maxG; P = 0.05, TD; P = 0.02, post-WS seated; P = 0.01, post-WS standing) than LCG users. Our data suggest that the anti-g suit is effective, but the combined anti-g suit with LCG is more effective.

  19. The ESA/NASA Multi-Aircraft ATV-1 Re-Entry Campaign: Analysis of Airborne Intensified Video Observations from the NASA/JSC Experiment

    NASA Technical Reports Server (NTRS)

    Barker, Ed; Maley, Paul; Mulrooney, Mark; Beaulieu, Kevin

    2009-01-01

    In September 2008, a joint ESA/NASA multi-instrument airborne observing campaign was conducted over the Southern Pacific ocean. The objective was the acquisition of data to support detailed atmospheric re-entry analysis for the first flight of the European Automated Transfer Vehicle (ATV)-1. Skilled observers were deployed aboard two aircraft which were flown at 12.8 km altitude within visible range of the ATV-1 re-entry zone. The observers operated a suite of instruments with low-light-level detection sensitivity including still cameras, high speed and 30 fps video cameras, and spectrographs. The collected data has provided valuable information regarding the dynamic time evolution of the ATV-1 re-entry fragmentation. Specifically, the data has satisfied the primary mission objective of recording the explosion of ATV-1's primary fuel tank and thereby validating predictions regarding the tanks demise and the altitude of its occurrence. Furthermore, the data contains the brightness and trajectories of several hundred ATV-1 fragments. It is the analysis of these properties, as recorded by the particular instrument set sponsored by NASA/Johnson Space Center, which we present here.

  20. Angular and Linear Velocity Estimation for a Re-Entry Vehicle Using Six Distributed Accelerometers: Theory, Simulation and Feasibility

    SciTech Connect

    Clark, G

    2003-04-28

    This report describes a feasibility study. We are interested in calculating the angular and linear velocities of a re-entry vehicle using six acceleration signals from a distributed accelerometer inertial measurement unit (DAIMU). Earlier work showed that angular and linear velocity calculation using classic nonlinear ordinary differential equation (ODE) solvers is not practically feasible, due to mathematical and numerical difficulties. This report demonstrates the theoretical feasibility of using model-based nonlinear state estimation techniques to obtain the angular and linear velocities in this problem. Practical numerical and calibration issues require additional work to resolve. We show that the six accelerometers in the DAIMU are not sufficient to provide observability, so additional measurements of the system states are required (e.g. from a Global Positioning System (GPS) unit). Given the constraint that our system cannot use GPS, we propose using the existing on-board 3-axis magnetometer to measure angular velocity. We further show that the six nonlinear ODE's for the vehicle kinematics can be decoupled into three ODE's in the angular velocity and three ODE's in the linear velocity. This allows us to formulate a three-state Gauss-Markov system model for the angular velocities, using the magnetometer signals in the measurement model. This re-formulated model is observable, allowing us to build an Extended Kalman Filter (EKF) for estimating the angular velocities. Given the angular velocity estimates from the EKF, the three ODE's for the linear velocity become algebraic, and the linear velocity can be calculated by numerical integration. Thus, we do not need direct measurements of the linear velocity to provide observability, and the technique is mathematically feasible. Using a simulation example, we show that the estimator adds value over the numerical ODE solver in the presence of measurement noise. Calculating the velocities in the presence of

  1. Attenuation of low-frequency electromagnetic wave in the thin sheath enveloping a high-speed vehicle upon re-entry

    NASA Astrophysics Data System (ADS)

    Liu, DongLin; Li, XiaoPing; Liu, YanMing; Xie, Kai; Bai, BoWen

    2017-02-01

    Low-frequency (LF) electromagnetic (EM) waves are suggested as potentially solving "radio blackout" caused by a plasma sheath enveloping a high-speed vehicle on re-entry. However, the traditional plasma absorption theory neglects the fact that the plasma sheath is electrically small compared to LF EM wavelengths. To understand clearly the attenuation of such waves through the plasma sheath, different attenuation mechanisms for the electric field (SE) and magnetic field (SH) were studied using the equivalent circuit approach. Analytical expressions were derived by modeling the plasma sheath as a spherical shell, and numerical simulations were performed to validate the effectiveness of the expressions. SE and SH are calculated for various plasma parameter settings; the EM wave attenuations obtained from plasma absorption theory are used for comparison. Results show that, instead of SE and SH being equal in the plasma absorption theory, SE and SH are no longer the same for electrically small sizes. Whereas |SH| is close to that from plasma absorption theory, |SE| is much higher. Further analysis shows that |SH| is a function of the ratio of electron density (ne) and collision frequency (ve) and increases with increasing ne/ve. Numerical simulations with radio-attenuation-measurement-C-like vehicle's plasma sheath parameters are performed and the results show that the magnetic field attenuation in the front part of the vehicle is much lower than in the rear. So it is suggested to place the magnetic loop antenna in the very front part of the vehicle. Finally, SH at different frequencies are calculated using plasma sheath parameter values simulating the re-entry phase of a radio-attenuation measurement-C vehicle and results show that such a vehicle might overcome radio blackout during the entire re-entry phase if systems operating below 3 MHz and above the L-band are combined with a lower-frequency system working below Earth's ionosphere and a higher-frequency system

  2. Numerical and experimental study of the thermal degradation process during the atmospheric re-entry of a TiAl6V4 tank

    NASA Astrophysics Data System (ADS)

    Prévereaud, Y.; Vérant, J.-L.; Balat-Pichelin, M.; Moschetta, J.-M.

    2016-05-01

    To answer the question of space debris survivability during atmospheric entry ONERA uses its software named MUSIC/FAST. So, the first part of this paper is dedicated to the presentation of the ONERA tool and its validation by comparison with flight data and CFD computations. However, the influence of oxidation on the thermal degradation process and material properties in atmospheric entry conditions is still unknown. A second step is then devoted to the presentation of an experimental campaign investigating TA6V oxidation in atmospheric entry conditions, as the most of the debris found on ground are made of this material. Experiments have been realized using the MESOX facility implemented at the 6 kW solar furnace in PROMES-CNRS laboratory. Finally, an application of MUSIC/FAST is proposed on the atmospheric re-entry of a generic TA6V tank. Aiming at degradation assessment, a sensitive study to initial conditions is conducted. To complete computational analysis regarding degradation process by melting, a numerical analysis of the influence of oxidation on the thermal wall degradation during the tank atmospheric re-entry is presented as well.

  3. African American Female Offender’s Use of Alternative and Traditional Health Services After Re-Entry: Examining the Behavioral Model for Vulnerable Populations

    PubMed Central

    Oser, Carrie B.; Bunting, Amanda M.; Pullen, Erin; Stevens-Watkins, Danelle

    2016-01-01

    This is the first known study to use the Gelberg-Andersen Behavioral Model for Vulnerable Populations to predict African American women’s use of three types of health services (alternative, hospitalization, and ambulatory) in the 18 months after release from prison. In the multivariate models, the most robust predictors of all three types of service utilization were in the vulnerable theoretical domains. Alternative health services were predicted by ethnic community membership, higher religiosity, and HIV/HCV. Hospitalizations were predicted by the lack of barriers to health care and disability. Ambulatory office visits were predicted by more experiences of gendered racism, a greater number of physical health problems, and HIV/HCV. Findings highlight the importance of cultural factors and HIV/HCV in obtaining both alternative and formal health care during community re-entry. Clinicians and policy makers should consider the salient role that the vulnerable domain plays in offender’s accessing health services. PMID:27133515

  4. Surgical re-entry evaluation of regenerative efficacy of bioactive Gengigel® and platelet-rich fibrin in the treatment of grade II furcation: A novel approach

    PubMed Central

    Sandhu, Gurkirat Kaur; Khinda, Paramjit Kaur; Gill, Amarjit Singh; Kalra, Harveen Singh

    2015-01-01

    The furcation area creates situations in which routine periodontal procedures are somewhat limited, and surgical procedures are generally required. The introduction of bioactive agents, such as platelet concentrates, enamel matrix derivatives, bone morphogenic proteins, and matrix macromolecules such as hyaluronic acid has expanded the scope for better outcomes in furcation treatment. Hyaluronic acid is a naturally occurring nonsulfated high molecular weight glycosaminoglycan that forms a critical component of the extracellular matrix and contributes significantly to tissue hydrodynamics, cell migration, and proliferation. Platelet-rich fibrin (PRF) is an immune and platelet concentrate containing all the constituents of a blood sample, which are favorable for healing and immunity. The purpose of the present case report was to assess through surgical re-entry, the regenerative capacity of Gengigel® in conjunction with PRF in a patient with grade II furcation defect. It was observed that the combined approach resulted in significant furcation defect fill on re-evaluation at 6 months. PMID:26681869

  5. Time Since Release from Incarceration and HIV Risk Behaviors Among Women: The Potential Protective Role of Committed Partners During Re-entry.

    PubMed

    Hearn, Lauren E; Whitehead, Nicole Ennis; Khan, Maria R; Latimer, William W

    2015-06-01

    After release from incarceration, former female inmates face considerable stressors, which may influence drug use and other risk behaviors that increase risk for HIV infection. Involvement in a committed partnership may protect women against re-entry stressors that may lead to risky behaviors. This study measured the association between time since release from incarceration (1-6 months ago, and >6 months ago versus never incarcerated) and HIV risk behaviors and evaluated whether these associations differed by involvement in a committed partnership. Women released within the past 6 months were significantly more likely to have smoked crack cocaine, used injection drugs and engaged in transactional sex in the past month compared to never-incarcerated women and women released more distally. Stratified analyses indicated that incarceration within the past 6 months was associated with crack cocaine smoking, injection drug use and transactional sex among women without a committed partner yet unassociated with these risk behaviors among those with a committed partner.

  6. Financial Aid: Helping Re-entry Women Pay College Costs: What Institutions Can Do to Provide Financial Resources to Women Re-entering the Educational System. Field Evaluation Draft.

    ERIC Educational Resources Information Center

    Dunkle, Margaret C.

    Problems and barriers to financial aid that commonly face women re-entering the educational system are identified, and ways in which higher education institutions can be more responsive to the financial needs of re-entry women students are suggested. A wide range of possible actions are identified so that institutions can pursue those most…

  7. Treatment of a large periradicular defect using guided tissue regeneration: A case report of 2 years follow-up and surgical re-entry.

    PubMed

    Gurav, Abhijit Ningappa; Shete, Abhijeet Rajendra; Naiktari, Ritam

    2015-01-01

    Periradicular (PR) bone defects are common sequelae of chronic endodontic lesions. Sometimes, conventional root canal therapy is not adequate for complete resolution of the lesion. PR surgeries may be warranted in such selected cases. PR surgery provides a ready access for the removal of pathologic tissue from the periapical region, assisting in healing. Recently, the regeneration of the destroyed PR tissues has gained more attention rather than repair. In order to promote regeneration after apical surgery, the principle of guided tissue regeneration (GTR) has proved to be useful. This case presents the management of a large PR lesion in a 42-year-old male subject. The PR lesion associated with 21, 11 and 12 was treated using GTR membrane, fixated with titanium minipins. The case was followed up for 2 years radiographically, and a surgical re-entry confirmed the re-establishment of the lost labial plate. Thus, the principle of GTR may immensely improve the clinical outcome and prognosis of an endodontically involved tooth with a large PR defect.

  8. Implications of the Turing completeness of reaction-diffusion models, informed by GPGPU simulations on an XBox 360: cardiac arrhythmias, re-entry and the Halting problem.

    PubMed

    Scarle, Simon

    2009-08-01

    In the arsenal of tools that a computational modeller can bring to bare on the study of cardiac arrhythmias, the most widely used and arguably the most successful is that of an excitable medium, a special case of a reaction-diffusion model. These are used to simulate the internal chemical reactions of a cardiac cell and the diffusion of their membrane voltages. Via a number of different methodologies it has previously been shown that reaction-diffusion systems are at multiple levels Turing complete. That is, they are capable of computation in the same manner as a universal Turing machine. However, all such computational systems are subject to a limitation known as the Halting problem. By constructing a universal logic gate using a cardiac cell model, we highlight how the Halting problem therefore could limit what it is possible to predict about cardiac tissue, arrhythmias and re-entry. All simulations for this work were carried out on the GPU of an XBox 360 development console, and we also highlight the great gains in computational power and efficiency produced by such general purpose processing on a GPU for cardiac simulations.

  9. Treatment of a large periradicular defect using guided tissue regeneration: A case report of 2 years follow-up and surgical re-entry

    PubMed Central

    Gurav, Abhijit Ningappa; Shete, Abhijeet Rajendra; Naiktari, Ritam

    2015-01-01

    Periradicular (PR) bone defects are common sequelae of chronic endodontic lesions. Sometimes, conventional root canal therapy is not adequate for complete resolution of the lesion. PR surgeries may be warranted in such selected cases. PR surgery provides a ready access for the removal of pathologic tissue from the periapical region, assisting in healing. Recently, the regeneration of the destroyed PR tissues has gained more attention rather than repair. In order to promote regeneration after apical surgery, the principle of guided tissue regeneration (GTR) has proved to be useful. This case presents the management of a large PR lesion in a 42-year-old male subject. The PR lesion associated with 21, 11 and 12 was treated using GTR membrane, fixated with titanium minipins. The case was followed up for 2 years radiographically, and a surgical re-entry confirmed the re-establishment of the lost labial plate. Thus, the principle of GTR may immensely improve the clinical outcome and prognosis of an endodontically involved tooth with a large PR defect. PMID:26941526

  10. Evaluation of Gengigel® Application in the Management of Furcation with Coronally Advanced Flap through Surgical Re-Entry-A Split Mouth Clinical Study

    PubMed Central

    Gupta, Sugandha; Kediege, Suresh D; Gupta, Akanksha

    2017-01-01

    Introduction One of the challenging and unique periodontal problem of Grade II furcation defect has been managed through different treatment modalities in the past. A successful approach is based on complete closure of the defect. Different regenerative approaches have been tried. Aim This study was carried out with an aim to evaluate the role of Gengigel® (0.8% hyaluronic acid) as a potential material for regeneration of lost attachment apparatus. Materials and Methods A total of 20 sites with Grade II furcation defects from 10 patients were selected using random sampling technique. These were divided into Group A (placement of hyaluronic acid) and Group B (without placement of hyaluronic acid) according to treatment modality. Furcation defect assessment was done in vertical and horizontal depth preoperatively and postoperatively at six months through surgical re-entry. Recorded data was subjected to the statistical analysis unpaired and paired t-tests for intergroup and intragroup comparisons respectively. Results Mean plaque index, gingival index and bleeding index score showed statistically highly significant and significant results respectively, for both the groups at baseline and six months. Mean difference in probing pocket depth and Relative Attachment Level (RAL) were statistically highly significant, whereas, mean difference of gingival position margin was non significant for both the groups, at baseline and six months. Mean difference in horizontal component at baseline and six months was statistically highly significant for both the groups. Mean difference in vertical component at baseline and six months was statistically significant for both the groups. On comparison, the mean difference in vertical and horizontal component of Group A and Group B at six months was statistically not significant. conclusion Both Gengigel® with coronally positioned flap and coronally positioned flap alone are effective in the treatment of Grade II furcation defects. The

  11. Spectroscopic Observation of the Stardust Re-Entry in the Near UV with SLIT: Deduction of Surface Temperatures and Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; Trumble, Kerry A.

    2010-01-01

    Thermal radiation of the heat-shield and the emission of the post-shock layer around the Stardust capsule, during its re-entry, were detected by a NASA-led observation campaign aboard NASA's DC-8 airborne observatory involving teams from several nations. The German SLIT experiment used a conventional spectrometer, in a Czerny-Turner configuration (300 mm focal length and a 600 lines/mm grating), fed by fiber optics, to cover a wavelength range from 324 nm to 456 nm with a pixel resolution of 0.08 nm. The reentering spacecraft was tracked m uansuinaglly a camera with a view angle of 20 degrees, and light from the capsule was collected using a small mirror telescope with a view angle of only 0.45 degrees. Data were gathered with a measurement frequency of 5 Hz in a 30-second time interval around the point of maximum heating until the capsule left the field of view. The emission of CN (as a major ablation product), N2(+) and different atoms were monitored successfully during that time. Due to the nature of the experimental set up, spatial resolution of the radiation field was not possible. Therefore, all measured values represent an integration of radiation from the visible part of the glowing heat shield, and from the plasma in the post-shock region. Further, due to challenges in tracking not every spectrum gathered contained data. The measured spectra can be split up into two parts: (i) continuum spectra which represent a superposition of the heat shield radiation and the continuum radiation of potential dust particles in the plasma, and (ii) line spectra from the plasma in the shock layer. Planck temperatures (interpreted as the surface temperatures of the Stardust heat shield) were determined assuming either a constant surface temperature, or a temperature distribution deduced from numerical simulation. The constant surface temperatures are in good agreement with numerical simulations, but the peak values at the stagnation point are significantly lower than those

  12. Fad24, a Positive Regulator of Adipogenesis, Is Required for S Phase Re-entry of C2C12 Myoblasts Arrested in G0 Phase and Involved in p27(Kip1) Expression at the Protein Level.

    PubMed

    Ochiai, Natsuki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2016-05-01

    Factor for adipocyte differentiation 24 (fad24) is a positive regulator of adipogenesis. We previously found that human fad24 is abundantly expressed in skeletal muscle. However, the function of fad24 in skeletal muscle remains largely unknown. Because skeletal muscle is a highly regenerative tissue, we focused on the function of fad24 in skeletal muscle regeneration. In this paper, we investigated the role of fad24 in the cell cycle re-entry of quiescent C2C12 myoblasts-mimicked satellite cells. The expression levels of fad24 and histone acetyltransferase binding to ORC1 (hbo1), a FAD24-interacting factor, were elevated at the early phase of the regeneration process in response to cardiotoxin-induced muscle injury. The knockdown of fad24 inhibited the proliferation of quiescent myoblasts, whereas fad24 knockdown did not affect differentiation. S phase entry following serum activation is abrogated by fad24 knockdown in quiescent cells. Furthermore, fad24 knockdown cells show a marked accumulation of p27(Kip1) protein. These results suggest that fad24 may have an important role in the S phase re-entry of quiescent C2C12 cells through the regulation of p27(Kip1) at the protein level.

  13. Initial Experience and Feasibility of the New Low-Profile Stingray Catheter as Part of the Antegrade Dissection and Re-Entry Revascularization Strategy for Coronary Chronic Total Occlusions

    PubMed Central

    Maeremans, Joren; Palmers, Pieter-Jan; Dens, Joseph

    2017-01-01

    Case series Patient: Male, 77 • Male, 57 • Male, 73 Final Diagnosis: Coronary chronic total occlusion Symptoms: Angina pectoris Medication: — Clinical Procedure: Percutaneous coronary intervention of coronary chronic total occlusions Specialty: Cardiology Objective: Unusual setting of medical care Background: During antegrade dissection re-entry (ADR) of chronic total occlusions (CTO), the first-generation Stingray catheter requires the use of large-bore guides (sheathless 7.5 Fr or 8 Fr), which increases the risk for access site-related complications and compromises radial approaches. Smaller guiding sizes necessitate long guidewires (e.g., 300 cm) or guidewire extensions for catheter advancement or removal. However, friction between guides and the Stingray catheter can result in unstable guidewire position or unintentional removal. Furthermore, failure to deliver the catheter at the distal re-entry zone is a common problem. To overcome issues of deliverability and reduce the need for pre-dilatations, with its inherent risk of creating subintimal hematomas, the Stingray low-profile (LP) balloon catheter was developed. Case Report: We describe 3 cases of successful application of the novel Stingray LP catheter during ADR. In all cases, 7 Fr guiding catheters were successfully used in combination with the device. The lower profile facilitated a good exchange and delivery of the device, without the need for balloon pre-dilatations in 2 cases. This resulted in a limited subintimal plane, enabling a smooth puncture into the true lumen. One case presented with extreme levels of calcification and tortuosity, resulting in a high degree of friction, despite the lower catheter profile. No in-hospital coronary or access site-related complications occurred. Conclusions: This case report illustrates the feasibility of the Stingray LP catheter for the treatment of CTOs via the ADR technique. The lower profile of the catheter potentially increases the deliverability

  14. Clinical evaluation of regenerative potential of type I collagen membrane along with xenogenic bone graft in the treatment of periodontal intrabony defects assessed with surgical re-entry and radiographic linear and densitometric analysis

    PubMed Central

    Sowmya, N. K.; Tarun Kumar, A. B.; Mehta, D. S.

    2010-01-01

    Background and Objectives: The primary goal of periodontal therapy is to restore the tooth supporting tissues lost due to periodontal disease. The aim of the present study was to compare the efficacy of combination of type I collagen (GTR membrane) and xenogenic bone graft with open flap debridement (OFD) in treatment of periodontal intrabony defects. Materials and Methods: Twenty paired intrabony defects were surgically treated using split mouth design. The defects were randomly assigned to treatment with OFD + collagen membrane + bone graft (Test) or OFD alone (Control). The clinical efficacy of two treatment modalities was evaluated at 9 month postoperatively by clinical, radiographical, and intrasurgical (re-entry) parameters. The measurements included probing pocket depth (PD), clinical attachment level (CAL), gingival recession (GR), bone fill (BF), bone density (BD) and intra bony component (INTRA). Results: The mean reduction in PD at 0–9 month was 3.3±0.82 mm and CAL gain of 3.40±1.51 mm occurred in the collagen membrane + bone graft (Test) group; corresponding values for OFD (Control) were 2.20±0.63 mm and 1.90±0.57 mm. Similar pattern of improvement was observed when radiographical and intra-surgical (re-entry) post operative evaluation was made. All improvement in different parameters was statistically significant (P< 0.01). Interpretation and Conclusion: Treatment with a combination of collagen membrane and bone graft led to a significantly more favorable clinical outcome in intrabony defects as compared to OFD alone. PMID:20922075

  15. Initial Experience and Feasibility of the New Low-Profile Stingray Catheter as Part of the Antegrade Dissection and Re-Entry Revascularization Strategy for Coronary Chronic Total Occlusions.

    PubMed

    Maeremans, Joren; Palmers, Pieter-Jan; Dens, Joseph

    2017-01-31

    BACKGROUND During antegrade dissection re-entry (ADR) of chronic total occlusions (CTO), the first-generation Stingray catheter requires the use of large-bore guides (sheathless 7.5 Fr or 8 Fr), which increases the risk for access site-related complications and compromises radial approaches. Smaller guiding sizes necessitate long guidewires (e.g., 300 cm) or guidewire extensions for catheter advancement or removal. However, friction between guides and the Stingray catheter can result in unstable guidewire position or unintentional removal. Furthermore, failure to deliver the catheter at the distal re-entry zone is a common problem. To overcome issues of deliverability and reduce the need for pre-dilatations, with its inherent risk of creating subintimal hematomas, the Stingray low-profile (LP) balloon catheter was developed. CASE REPORT We describe 3 cases of successful application of the novel Stingray LP catheter during ADR. In all cases, 7 Fr guiding catheters were successfully used in combination with the device. The lower profile facilitated a good exchange and delivery of the device, without the need for balloon pre-dilatations in 2 cases. This resulted in a limited subintimal plane, enabling a smooth puncture into the true lumen. One case presented with extreme levels of calcification and tortuosity, resulting in a high degree of friction, despite the lower catheter profile. No in-hospital coronary or access site-related complications occurred. CONCLUSIONS This case report illustrates the feasibility of the Stingray LP catheter for the treatment of CTOs via the ADR technique. The lower profile of the catheter potentially increases the deliverability, safety, and exchangeability of the device.

  16. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease.

    PubMed

    Atwood, Craig S; Bowen, Richard L

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and

  17. UARS Re-Entry Prediction and Analysis

    NASA Technical Reports Server (NTRS)

    Stansbery, Eugene G.; Johnson, N. L.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) deployed the Upper Atmosphere Research Satellite (UARS) from the Space Shuttle payload bay during the STS-48 mission in September, 1991. The 5700 kg satellite was decommissioned in December, 2005 and was maneuvered into a lower altitude orbit to shorten its on-orbit lifetime to reduce the probability of a debris producing accidental collision. The satellite reentered the Earth s atmosphere over the Pacific Ocean on September 24, 2011. Analysis by NASA s Orbital Debris Program Office using the ORSAT software predicted that approximately two dozen fragments from UARS would survive reentry to reach the ground. This presentation will discuss the reentry predictions made in the days prior to the reentry and compare the UARS reentry with other historical reentries. It will also present the results of the ORSAT analysis showing predicted surviving reentry objects

  18. A new Green's function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson–Boltzmann equation: Application to the modeling of the communication breakdown problem in space vehicles during re-entry

    SciTech Connect

    Chatterjee, Kausik; Roadcap, John R.; Singh, Surendra

    2014-11-01

    The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.

  19. Re-Entry Simulation and Landing Area for YES2

    NASA Technical Reports Server (NTRS)

    Calzada, Silvia

    2005-01-01

    The REST simulator includes many parameters: a) Inertial <-> Fix to Earth reference system; b) Geodetic <-> Geocentric coordinates; c) Rotational velocity of the Atmosphere; d) Effect of the rotation of the Earth; e) Bulge effect of the Earth; f) Spherical harmonic expansion for the Earth s gravitational potential, J2 (zonal); g) Heat flux, temperature in the wall; h) Drag coefficient for different regimes; i) Flow regime status; j) Density model NRLMSISE-00; k) Wind model HWM-93; l) G2S atmospheric model with the latest meteorological conditions and m) Landing area (Monte Carlo Simulations)

  20. Coiled tubing used for slim hole re-entry

    SciTech Connect

    Traonmilin, E. ); Newman, K. )

    1992-02-17

    A coiled tubing unit with slim hole tools successfully re-entered and cored an existing Elf Aquitaine vertical well in the Paris basin in France. This experiment proved that coiled tubing could be used to drill, core, and test a slim hole well. Elf Aquitaine studied the use of coiled tubing for drilling inexpensive exploration wells in the Paris basin. As a result of this study, Elf believed that coiled tubing exploration drilling could significantly reduce exploration costs. This paper reports on a number of questions raised by this study: Can coiled tubing be used effectively to drill slim open hole How would the drilling rate compare with that of a conventional drilling rig If the rate were too slow, coiled tubing might not be economical. Can a straight vertical well be drilled Coiled tubing pipe has a residual curvature from bending over the reel and gooseneck. Will this curvature make it impossible to drill straight Can the coiled tubing also be used to take cores Once the hole is drilled, can it be tested with coiled tubing

  1. Secondary Level Re-Entry of Young Canadian Adult Learners

    ERIC Educational Resources Information Center

    MacGregor, Cassandra; Ryan, Thomas G.

    2011-01-01

    This paper illuminates and details some of the traits, pressures and semi-autonomy of the young adult between the ages of 18 and 24 who must confront the barriers and challenges upon returning to secondary school within the high school and the adult education centre context. Focusing on these young adults is fundamentally important to begin to…

  2. Second-order analytic solutions for re-entry trajectories

    NASA Astrophysics Data System (ADS)

    Vinh, Nguyen X.; Kim, Eun-Kyou; Greenwood, Donald T.

    With the development of aeroassist technology, either for near-earth operations or for planetary aero-capture, it is of interest to have accurate analytic solutions for the speed, flight path angle and altitude during the atmospheric passage. For a future aerospace plane which uses the accumulated kinetic energy to glide for a long range, explicit relations among the main state variables are also useful for guidance purposes. In this paper we have used normalization to put the equations of motion for planar entry around a non-rotating planet into a form which is suitable for an analytic integration. Explicit and accurate solutions are then obtained for ballistic fly-through trajectories, lifting skip trajectories and equilibrium glide trajectories.

  3. Re-entry vehicle shape for enhanced performance

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor); Garcia, Joseph A. (Inventor); Prabhu, Dinesh K. (Inventor)

    2008-01-01

    A convex shell structure for enhanced aerodynamic performance and/or reduced heat transfer requirements for a space vehicle that re-enters an atmosphere. The structure has a fore-body, an aft-body, a longitudinal axis and a transverse cross sectional shape, projected on a plane containing the longitudinal axis, that includes: first and second linear segments, smoothly joined at a first end of each the first and second linear segments to an end of a third linear segment by respective first and second curvilinear segments; and a fourth linear segment, joined to a second end of each of the first and second segments by curvilinear segments, including first and second ellipses having unequal ellipse parameters. The cross sectional shape is non-symmetric about the longitudinal axis. The fourth linear segment can be replaced by a sum of one or more polynomials, trigonometric functions or other functions satisfying certain constraints.

  4. Thermal Analysis of Small Re-Entry Probe

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Prabhu, Dinesh K.; Chen, Y. K.

    2012-01-01

    The Small Probe Reentry Investigation for TPS Engineering (SPRITE) concept was developed at NASA Ames Research Center to facilitate arc-jet testing of a fully instrumented prototype probe at flight scale. Besides demonstrating the feasibility of testing a flight-scale model and the capability of an on-board data acquisition system, another objective for this project was to investigate the capability of simulation tools to predict thermal environments of the probe/test article and its interior. This paper focuses on finite-element thermal analyses of the SPRITE probe during the arcjet tests. Several iterations were performed during the early design phase to provide critical design parameters and guidelines for testing. The thermal effects of ablation and pyrolysis were incorporated into the final higher-fidelity modeling approach by coupling the finite-element analyses with a two-dimensional thermal protection materials response code. Model predictions show good agreement with thermocouple data obtained during the arcjet test.

  5. Investigation of the Performance Characteristics of Re-Entry Vehicles

    DTIC Science & Technology

    2005-09-01

    uicontrol ...8217,... ’Visible’,’on’,... ’HorizontalAlignment’, ’center’); edit4 = uicontrol (’Style’,’Edit’,’Units’,’Normalized’,... 53...8217,’on’,... ’HorizontalAlignment’, ’center’); edit5 = uicontrol (’Style’,’Edit’,’Units’,’Normalized’,...

  6. Aerodynamics of the EXPERT Re-Entry Ballistic Vehicle

    NASA Astrophysics Data System (ADS)

    Kharitonov, A. M.; Adamov, N. P.; Mazhul, I. I.; Vasenyov, L. G.; Zvegintsev, V. I.; Muylaert, J. M.

    2009-01-01

    Since 2002 till now, experimental studies of the EXPERT reentry capsule have been performed in ITAM SB RAS wind tunnels. These studies have been performed in consecutive ISTC project No. 2109, 3151, and currently ongoing project No. 3550. The results of earlier studies in ITAM wind tunnels can be found in [1-4]. The present paper describes new data obtained for the EXPERT model.

  7. STS-107 Debris Characterization Using Re-entry Imaging

    NASA Technical Reports Server (NTRS)

    Raiche, George A.

    2009-01-01

    Analysis of amateur video of the early reentry phases of the Columbia accident is discussed. With poor video quality and little theoretical guidance, the analysis team estimated mass and acceleration ranges for the debris shedding events observed in the video. Camera calibration and optical performance issues are also described.

  8. Asset and prime - Gliding re-entry test vehicles

    NASA Astrophysics Data System (ADS)

    Powell, J. W.; Hengeveld, E.

    1983-08-01

    The history of the USAF development programs for winged controlled-reentry vehicles based on a dynamic-gliding principle, ASSET (1957-1965) and PRIME (1964-1967), is recounted. The ASSET program, developed from the initial Dyna-Soar project, comprised three aerothermodynamic-structural vehicles and three aerothermoelastic vehicles, all utilizing exotic refractory metal structures partially coated with silicon-boron, zirconia-ceramic nose caps, and LV-2C Thor launchers. The three PRIME SV-5D vehicles employed elastomeric-blanket ablative heat shields and molded carbon-phenolic-composite nose caps and were launched by SLV-3 Atlas rockets. It is noted that these projects, although successful, did not lead directly to the production of lifting-body or winged reentry vehicles, but rather provided data useful in the later Shuttle development program.

  9. ARV Re-Entry Module Aerodynmics And Aerothermodynamics

    NASA Astrophysics Data System (ADS)

    Scheer, Heloise; Tran, Philippe; Berthe, Philippe

    2011-05-01

    Astrium-ST is the prime contractor of ARV phase A and is especially in charge of designing the Reentry Module (RM). The RM aeroshape has been defined following a trade-off. High level system requirements were derived with particular attention paid on minimum lift-over-drag ratio, trim incidence, centre-of-gravity lateral off-set and box size, volumetric efficiency, attitude at parachute deployment, flight heritage and aeroheating. Since moderate cross-range and thus L/D ratio were required, the aeroshape trade-off has been performed among blunt capsule candidates. Two front- shield families were considered: spherical (Apollo/ARD/Soyuz type) and sphero-conical (CTV type) segment front-shield. The rear-cone angle was set to 20° for internal pressurized volume and accommodation purposes. Figures of merit were assessed and a spherical front- shield of ARD type with a 20° rear-cone section was selected and proposed for further investigations. Maximum benefits will be taken from ARD flight heritage. CFD and WTT campaigns plans will be presented including preliminary results.

  10. An uncommon case of spontaneous conversion from AV re-entry tachycardia to AV nodal re-entry tachycardia in a patient with dual tachycardia.

    PubMed

    Zeljković, Ivan; Benko, Ivica; Manola, Šime; Radeljić, Vjekoslav; Pavlović, Nikola

    2015-01-01

    We report the case of a 46-year old patient in whom an electrophysiology study (EP) was performed due to paroxysmal supraventricular tachycardia documented in 12-lead ECG. During the EP study, supraventricular tachycardia was induced easily and it corresponded to orthodromic AV reentry tachycardia (AVRT) using a concealed left free wall accessory pathway. However, during the study AVRT spontaneously and repeatedly converted to the typical slow-fast AV node reentry tachycardia (AVNRT). Both accessory and AV nodal slow pathways were ablated, due to the finding that both AVRT and AVNRT were independently inducible during the EP study.

  11. Astronaut Thermal Exposure: Re-Entry After Low Earth Orbit Rescue Mission

    NASA Technical Reports Server (NTRS)

    Gillis, David B.; Hamilton, Douglas; Ilcus, Stana; Stepaniak, Phil; Son, Chang; Bue, Grant

    2009-01-01

    The STS-125 mission, launched May 11, 2009, is the final servicing mission to the Hubble Space Telescope. The repair mission's EVA tasks are described, including: installing a new wide field camera; installing the Cosmic Origins Spectrograph; repairing the Space Telescope Imaging Spectrograph; installing a new outer blanket layer; adding a Soft Capture and Rendezvous System for eventual controlled deorbit in about 2014; replacing the 'A' side Science Instrument Command and Data Handling module; repairing the Advanced Camera for surveys; and, replacing the rate sensor unit gyroscopes, fine guidance sensors and 3 batteries. Additionally, the Shuttle crew cabin thermal environment is described. A CFD model of per person CO2 demonstrates a discrepancy between crew breathing volume and general mid-deck levels of CO2. A follow-on CFD analysis of the mid-deck temperature distribution is provided. Procedural and engineering mitigation plans are presented to counteract thermal exposure upon reentry to the Earth atmosphere. Some of the procedures include: full cold soak the night prior to deorbit; modifying deck stowage to reduce interference with air flow; and early securing of avionics post-landing to reduce cabin thermal load prior to hatch opening. Engineering mitigation activities include modifying the location of the aft starboard ICUs, eliminating the X3 stack and eliminating ICU exhaust air directed onto astronauts; improved engineering data of ICU performance; and, verifying the adequacy of mid-deck temperature control using CFD models in addition to lumped parameter models. Post-mitigation CFD models of mid-deck temperature profiles and distribution are provided.

  12. Re-Entry Trauma: Asian Re-Integration after Study in the West

    ERIC Educational Resources Information Center

    Pritchard, Rosalind

    2011-01-01

    Many students who re-locate from host to home country are said to undergo a process of reverse culture shock akin to bereavement, involving stages of a grieving process. This has been likened to a "W-curve" in which feelings fluctuate before reaching a more balanced state. The present study examined the re-acculturation of Taiwanese and…

  13. Evaluation of non-intrusive flow measurement techniques for a re-entry flight experiment

    NASA Technical Reports Server (NTRS)

    Miles, R. B.; Santavicca, D. A.; Zimmermann, M.

    1983-01-01

    This study evaluates various non-intrusive techniques for the measurement of the flow field on the windward side of the Space Shuttle orbiter or a similar reentry vehicle. Included are linear (Rayleigh, Raman, Mie, Laser Doppler Velocimetry, Resonant Doppler Velocimetry) and nonlinear (Coherent Anti-Stokes Raman, Laser-Induced Fluorescence) light scattering, electron-beam fluorescence, thermal emission, and mass spectroscopy. Flow-field properties were taken from a nonequilibrium flow model by Shinn, Moss, and Simmonds at the NASA Langley Research Center. Conclusions are, when possible, based on quantitative scaling of known laboratory results to the conditions projected. Detailed discussion with researchers in the field contributed further to these conclusions and provided valuable insights regarding the experimental feasibility of each of the techniques.

  14. Entry, Descent, and Landing Operations Analysis for the Stardust Re-Entry Capsule

    NASA Technical Reports Server (NTRS)

    Desao, Prasun N.; Lyons, Dan T.; Tooley, Jeff; Kangas, Julie

    2006-01-01

    On the morning of January 15, 2006, the Stardust capsule successfully landed at the Utah Test and Training range in northwest Utah returning cometary samples from the comet Wild-2. An overview of the entry, descent, and landing (EDL) trajectory analysis that was performed for targeting during the Stardust Mission Navigation Operations Phase upon final approach to Earth is described. In addition, how the predicted landing location and the resulting overall 99 percentile landing footprint ellipse obtained from a Monte Carlo analysis changed over the final days and hours prior to entry is also presented. The navigation and EDL operations effort accurately delivered the entry capsule to the desired landing site. The final landing location was 8.1 km from the target, which was well within the allowable landing area.

  15. Analysis of the Aerodynamic Orbital Transfer Capabilities of a Winged Re-Entry Vehicle

    DTIC Science & Technology

    2002-09-01

    of the spacecraft ( Freidberger , pg. 797). 0 ri r r r V r r t ϖ ν   ∂  = + × = + ∂    & && (8) 0 r r V V V a V V V t iV ν ν ν ν ϖ ν...Academic Publishers, 2001. 14. Freidberger , W.F., ed. International Dictionary of Applied Mathematics, Princeton, NJ: Van Nostrand Co. Inc., 1960

  16. Assessment of the Need for a Re-Entry/Career Change Program for Pharmacists.

    ERIC Educational Resources Information Center

    Bilger, Rhonda L.; Chereson, Rasma S.

    1994-01-01

    A survey of 603 licensed Missouri pharmacists investigated the need for an update/refresher course for pharmacists changing fields within the profession or returning to full-time practice. Pharmacology/new drugs was the most frequently mentioned topic for such a course, and correspondence study was the preferred format. (Author/MSE)

  17. Improving Career Re-entry Outcomes for People with Multiple Sclerosis: A Comparison of Two Approaches.

    ERIC Educational Resources Information Center

    Rumrill, Phillip D.; Roessler, Richard T.; Cook, Bryan G.

    1998-01-01

    Reentry workers with multiple sclerosis (n=23) participated with employers and rehabilitation counselors in training seminars; 14 received traditional job search intervention. After 16 weeks, 11 of the 37 had reentered the labor force. Most already had high self-efficacy and career maturity. (SK)

  18. SHARK-MAXUS 8 Experiment: A Technology Demonstrator for Re-Entry Drop Capsule

    NASA Astrophysics Data System (ADS)

    Gardi, R.; del Vecchio, A.; Russo, G.; Weikert, S.; Cremaschi, F.; Ortega, G.; Rinalducci, A.; Martinez Barrio, A.

    2012-01-01

    SHARK (Sounding Hypersonic Atmospheric Re- entering 'Kapsule') is a small capsule designed and realized at CIRA under ESA contract. The aim of the project is to prove the feasibility to set up a low cost experimental space platform and execute a reentry test flight by dropping a capsule from a sounding rocket. The main payload of SHARK is a UHTC (Ultra High Temperature Ceramic) component, machined from scraps of previous ground tests executed in the CIRA Plasma Wind Tunnel SCIROCCO. SHARK was successfully launched on March the 26th 2010, by the European sounding rocket MAXUS 8. The separation occurred nominally during the ascent parabola and successfully executed its 15 minutes ballistic flight (achieving more than 700 km altitude) and then re-entered the atmosphere and landed. The capsule was recovered on the 1st of July 2010 and the data retrieved from the memory unit. This paper will present a mission overview, with particular details on the safety and operational aspects.

  19. NASA Upper Atmosphere Research Satellite (UARS) Re-Entry Prediction and Analysis

    NASA Technical Reports Server (NTRS)

    Stansbery, Eugene; Johnson, Nick L.

    2012-01-01

    No NASA or USG human casualty reentry risk limits existed when UARS was designed, built, and launched. Time of reentry estimates were within normal limits NASA, the USG, and some foreign space agencies now seek to limit human casualty risks from reentering space objects to less than 1 in 10,000. UARS was a moderate-sized space object. Uncontrolled reentries of objects more massive than UARS are not frequent, but neither are they unusual. Since the beginning of the space age, there has been no confirmed report of an injury resulting from reentering space objects.

  20. The Effect of Child Support on Welfare Exits and Re-Entries

    ERIC Educational Resources Information Center

    Huang, Chien-Chung; Kunz, James; Garfinkel, Irwin

    2002-01-01

    Much of the literature on welfare dynamics has focused on the effects of recipient characteristics and state-level characteristics such as welfare benefits and economic conditions; there has been very little analysis on the effects of child support. This paper, using the 1979-1996 National Longitudinal Survey of Youth, examines whether child…

  1. Model surface conductivity effect for the electromagnetic heat shield in re-entry flight

    SciTech Connect

    Matsuda, Atsushi; Kawamura, Masaaki; Konigorski, Detlev; Takizawa, Yuji; Abe, Takashi

    2008-12-15

    Effects of model surface conductivity on shock layer enhancement by an applied magnetic field in weakly ionized supersonic plasma flow with a large Hall parameter ({beta}{approx}300) was investigated experimentally. The shock layer structures of test models of two kinds were measured using laser absorption spectroscopy, in the large Hall parameter situation. One was an insulated model; the other was a conductive spherical blunt model. The shock layer enhancement phenomenon by the applied magnetic field was more pronounced for the insulated model than for the conductive model. This tendency agrees with the computational fluid dynamics result, at least qualitatively.

  2. Preparing Communities for Re-Entry of Offenders with Mental Illness: The ACTION Approach

    ERIC Educational Resources Information Center

    Vogel, Wendy M.; Noether, Chan D.; Steadman, Henry J.

    2007-01-01

    Approximately 900,000 people with active symptoms of serious mental illness are booked annually into U.S. jails. Of these, about three quarters have a co-occurring substance use disorder. When these people return to the community they have multiple, complex and interrelated treatment needs, which are often exacerbated by release into the…

  3. A New York City Jail-Community Re-Entry Collaboration.

    ERIC Educational Resources Information Center

    Lisante, Timothy F.; Navon, Beth

    2000-01-01

    The progressive Austin H. MacCormick school is located on Rikers Island, New York City's corrections complex. This school issues the most General Educational Development diplomas, with the highest passing rate, of any program within the 14-jail system that has custody of over 140,000 inmates annually. (Author)

  4. Parallel, Gradient-Based Anisotropic Mesh Adaptation for Re-entry Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Gnoffo, Peter A.; Park, Michael A.; Jones, William T.

    2006-01-01

    Two gradient-based adaptation methodologies have been implemented into the Fun3d refine GridEx infrastructure. A spring-analogy adaptation which provides for nodal movement to cluster mesh nodes in the vicinity of strong shocks has been extended for general use within Fun3d, and is demonstrated for a 70 sphere cone at Mach 2. A more general feature-based adaptation metric has been developed for use with the adaptation mechanics available in Fun3d, and is applicable to any unstructured, tetrahedral, flow solver. The basic functionality of general adaptation is explored through a case of flow over the forebody of a 70 sphere cone at Mach 6. A practical application of Mach 10 flow over an Apollo capsule, computed with the Felisa flow solver, is given to compare the adaptive mesh refinement with uniform mesh refinement. The examples of the paper demonstrate that the gradient-based adaptation capability as implemented can give an improvement in solution quality.

  5. Adult Re-Entry Students: Experiences Preceding Entry into a Rural Appalachian Community College

    ERIC Educational Resources Information Center

    Genco, Jessica T.

    2007-01-01

    Mountain Empire Community College (MECC)'s service region covers the extreme southwestern corner of Virginia and includes four counties and one city: Dickenson, Lee, Scott, and Wise Counties, and the city of Norton. With a service region population of 93,000 residents, MECC currently serves over 5,000 students annually (Mountain Empire Community…

  6. Social Barriers to Successful Re-entry into Mainstream Organizational Culture: Perceptions of People with Disabilities.

    ERIC Educational Resources Information Center

    Boyle, Mike A.

    1997-01-01

    Case studies of seven workers with physical impairments identified four categories of barriers: negative social image, a rehabilitation system that controlled career options, job completion methods that denied access to occupations, and image campaigns making organizations appear to be responsive to disabilities. The Americans with Disabilities…

  7. Nonlinear gain of a millimetre wave antenna array mounted on a re-entry vehicle

    NASA Astrophysics Data System (ADS)

    Sharma, Ashok Kumar; Kumar, Ashok

    2007-04-01

    A millimetre wave antenna array, mounted on a space vehicle re-entering the Earth's atmosphere, encounters a high density plasma around it. At high antenna power, the millimetre wave field heats the electrons nonuniformly. The electron temperature, Te, follows the antenna pattern, being maximum along the direction of the principal maximum (z-axis) and falling off rapidly across it. The ambipolar plasma diffusion under the pressure gradient force creates a refractive index profile with maximum on the z-axis, leading to self-convergence of the millimetre wave and enhancement in the effective gain of the antenna.

  8. A New Guidance Method for a Delta V and Re-entry Constrained Orbit Transfer Problem

    DTIC Science & Technology

    2005-06-01

    velocity, and time for these paths was first determined by Johannes Kepler in the year 1619. Rendezvous is a similar class of problem. Instead of a...orbit defined by these values would satisfy the boundary conditions if two-body ( Kepler ) propagation of the state (r1,v1) for ∆t results in a final 34...It was first characterized by Johannes Lambert in 1761. Lambert discovered a relationship between the geometry of the orbit transfer and the transfer

  9. Social Support Reciprocity and Occupational Self-Efficacy Beliefs during Mothers' Organizational Re-Entry

    ERIC Educational Resources Information Center

    Jaeckel, Dalit; Seiger, Christine P.; Orth, Ulrich; Wiese, Bettina S.

    2012-01-01

    The present study assesses the effects of a lack of social support reciprocity at work on employees' occupational self-efficacy beliefs. We assume that the self-efficacy effects of received support and support reciprocity depend on the specific work context (e.g., phase in the process of organizational socialization). 297 women who returned to…

  10. Ares I-X First Stage Internal Aft Skirt Re-Entry Heating Data and Modeling

    NASA Technical Reports Server (NTRS)

    Schmitz, Craig P.; Tashakkor, Scott B.

    2011-01-01

    The CLVSTATE engineering code is being used to predict Ares-I launch vehicle first stage reentry aerodynamic heating. An engineering analysis is developed which yields reasonable predictions for the timing of the first stage aft skirt thermal curtain failure and the resulting internal gas temperatures. The analysis is based on correlations of the Ares I-X internal aft skirt gas temperatures and has been implemented into CLVSTATE. Validation of the thermal curtain opening models has been accomplished using additional Ares I-X thermocouple, calorimeter and pressure flight data. In addition, a technique which accounts for radiation losses at high altitudes has been developed which improves the gas temperature measurements obtained by the gas temperature probes (GTP). Updates to the CLVSTATE models are shown to improve the accuracy of the internal aft skirt heating predictions which will result in increased confidence in future vehicle designs

  11. What drives hydrophobic polymer collapse and re-entry transitions in miscible good solvents?

    NASA Astrophysics Data System (ADS)

    Rodriguez Ropero, Francisco; Hajari, Timir; van der Vegt, Nico F. A.

    Herein, we study co-nonsolvency of poly(N-isopropylacrylamide) (PNiPAM) in methanol aqueous solutions. Our results show that both the coil-to-globule transition at low methanol concentrations and the globule-to-coil re-entrance at high methanol concentrations are entropy driven. At low alcohol content, methanol preferentially binds to the PNiPAM globule and drives polymer collapse. Rather than being driven by electrostatic, hydrogen bonding or bridging-type interactions with the globule, preferential methanol binding is found to result from a significant increase of the chain configurational entropy, stabilizing methanol-enriched globular structures over wet globular structures in neat water. The globule-to-coil re-entrance at high methanol concentrations is instead driven by changes in solvent-excluded volume of the coil and globular states imparted by a decrease in solvent density with increasing methanol content of the solution. The co-nonsolvency mechanism proposed in this contribution provides a new angle on how to develop Coarse Grained simulation models for responsive soft matter systems. Moreover, several of the solvation effects described in this contribution can be incorporated in theories for cosolvent-induced conformational transitions in dilute polymer solutions. This research was supported by the German Research Foundation (DFG) within the Collaborative Research Center ``Multiscale Simulation Methods for Soft Matter Systems'' (SFB-TRR146).

  12. The Re-Entry Safety of H-II Transfer Vehicle(HTV)

    NASA Astrophysics Data System (ADS)

    Ozawa, Masayuki; Sasaki, Hiroshi; Yoshihara, Toru

    2010-09-01

    JAXA has recently established own regulation for the controlled reentry in addition to the existing requirements applicable to the natural reentry. This regulation added the requirements which addresses the safety control philosophy, the definition of the control system, the trajectory deviation to be considered, the criterion of the expected number of casualties(Ec) and other related requirements / processes. This paper introduces the contents of this regulation and the first application result to the HTV-1 reentry. The safety evaluation result for the HTV-1 reentry is also summarized.

  13. Coming Home: An Exploration of Re-Entry Tension in Outdoor Experiential Education.

    ERIC Educational Resources Information Center

    Meens, Jen; Henderson, Bob

    2000-01-01

    Interviews with seven individuals who took part in travel and wilderness experiences confirm that travelers experience reentry tensions similar to those discussed in research on culture shock among Peace Corp workers, overseas employees, and the military. Stages of reentry and the need for outdoor educators to work with the challenges of reentry…

  14. Facilitating Successful Re-Entries in the United States: Training and Development for Women Returners

    ERIC Educational Resources Information Center

    Greer, Tomika W.

    2013-01-01

    Women returners are women who leave the paid workforce for a period of time following the birth of their child(ren) and subsequently seek to return to paid employment. As women returners attempt to re-enter the workforce, many of them are in need of updating their skills or re-training in a new set of skills. In this study, the training and…

  15. A Nonequilibrium Finite-Rate Carbon Ablation Model for Radiating Earth Re-entry Flows

    DTIC Science & Technology

    2015-09-17

    that CO was the primary product. Ong [85] used transition-state theory to deduce a set of controlling kinetic steps, calculating required transition...assumed one type of active site on the carbon surface. A contrasting feature from the Blyholder and Strickland-Constable models was that Ong ...Fluids, 7:17641776, 1995. 85. Ong , Jr., J. N. On the Kinetics of Oxidation of Graphite. Carbon, 2(3):281 297, December 1964. 86. Pagoda, C. J. and D

  16. Data re-entry overload: time for a paradigm shift in maternity IT?

    PubMed Central

    Fawdry, Rupert; Bewley, Susan; Cumming, Grant; Perry, Helga

    2011-01-01

    This paper provides an overview of maternity information technology (IT) in Britain, questioning the usability, effectiveness and cost efficiency of the current models of implementation of electronic maternity records. UK experience of hand-held paper obstetric notes and computerized records reveals fundamental problems in the relationship between the two complementary methods of recording maternity data. The assumption that paper records would inevitably be replaced by electronic substitutes has proven false; the rigidity of analysable electronic records has led to immense incompatibility problems. The flexibility of paper records has distinct advantages that have so far not been sufficiently acknowledged. It is suggested that continuing work is needed to encourage the standardization of electronic maternity records, via a new co-creative, co-development approach and continuing international electronic community debate. PMID:21969478

  17. Effecting Successful Community Re-Entry: Systems of Care Community Based Mental Health Services

    ERIC Educational Resources Information Center

    Estes, Rebecca I.; Fette, Claudette; Scaffa, Marjorie E.

    2005-01-01

    The need for system reform for child and adolescent mental health services, long recognized as a vital issue, continues to challenge mental health professionals. While past legislation has not adequately addressed the issues, the 2003 President's New Freedom Commission may begin to reorient mental health systems toward recovery. Supported by this…

  18. Social Hostility and the "Dropout" Syndrome: Leadership Assisting Youths' Re-Entry into School?

    ERIC Educational Resources Information Center

    Brown, Byron A.

    2010-01-01

    The study investigated experiences of dropouts in schools in rural secondary schools in the Eastern Cape, South Africa. Ten learners who previously dropped out of school described their experiences in school subsequent to re-enrolling. The implications of these experiences for educational leadership were explored. Using a qualitative approach,…

  19. Numerical Study of Flow Augmented Thermal Management for Entry and Re-Entry Environments

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Neroorkar, Kshitij D.; Chen, Yen-Sen; Wang, Ten-See; Daso, Endwell O.

    2007-01-01

    The use of a flow augmented thermal management system for entry and re-entr environments is one method for reducing heat and drag loads. This concept relies on jet penetration from supersonic and hypersonic counterflowing jets that could significantly weaken and disperse the shock-wave system of the spacecraft flow field. The objective of this research effort is to conduct parametric studies of the supersonic flow over a 2.6% scale model of the Apollo capsule, with and without the counterflowing jet, using time-accurate and steady-state computational fluid dynamics simulations. The numerical studies, including different freestream Mach number angle of attack counterflowing jet mass flow rate, and nozzle configurations, were performed to examine their effect on the drag and beat loads and to explore the counternowing jet condition. The numerical results were compared with the test data obtained from transonic blow-down wind-tunnel experiments conducted independently at NASA MSFC.

  20. Re-entry: online virtual worlds as a healing space for veterans

    NASA Astrophysics Data System (ADS)

    Morie, Jacquelyn Ford

    2009-02-01

    We describe a project designed to use the power of online virtual worlds as a place of camaraderie and healing for returning United States military veterans-a virtual space that can help them deal with problems related to their time of service and also assist in their reintegration into society. This veterans' space is being built in Second Life®, a popular immersive world, under consultation with medical experts and psychologists, with several types of both social and healing activities planned. In addition, we address several barrier issues with virtual worlds, including lack of guides or helpers to ensure the participants have a quality experience. To solve some of these issues, we are porting the advanced intelligence of the ICT's virtual human characters to avatars in Second Life®, so they will be able to greet the veterans, converse with them, guide them to relevant activities, and serve as informational agents for healing options. In this way such "avatar agents" will serve as autonomous intelligent characters that bring maximum engagement and functionality to the veterans' space. This part of the effort expands online worlds beyond their existing capabilities, as currently a human being must operate each avatar in the virtual world; few autonomous characters exist. As this project progresses we will engage in an iterative design process with veteran participants who will be able to advise us, along with the medical community, on what efforts are well suited to, and most effective within, the virtual world.

  1. School Re-Entry of the Brain Injured Student: A Case Study of Peer Inservicing.

    ERIC Educational Resources Information Center

    Abbot, Nan; Wilkinson, Laurie

    1992-01-01

    This case study describes the development of a model peer support program during the school reintegration of an adolescent girl who sustained a traumatic brain injury. A series of meetings was held with the girl's social network to provide information, guidance, acknowledgement of friends' feelings, interventions for behavior problems, and…

  2. Review of ESOC re-entry prediction results of Salyut-7/Kosmos-1686

    NASA Technical Reports Server (NTRS)

    Klinkrad, H.

    1991-01-01

    An overview of activities at ESA/ESOC during the followup of the Salyut-7/Kosmos-1686 decay, and of related cooperations with space agencies, research institutes, and national bodies within the ESA Member States, within the U.S. and within the USSR, is presented. A postflight analysis indicated areas for improvement in the forecast procedures, especially during the last day of the orbital lifetime. Corresponding revised decay predictions are presented for Salyut-7/Kosmos-1686, and the improved procedures are verified by an analysis of the reentries of Kosmos-1402A and Kosmos-1402C.

  3. NASA's DC-8 Lab Heads to Record Hayabusa Re-entry

    NASA Video Gallery

    A planeload of scientists plan to catch a glimpse of the fiery return to Earth of the Japanese spacecraft Hayabusa over Australia from NASA's DC-8 flying laboratory on June 13, 2010. Scientists and...

  4. CFD Analysis of Tile-Repair Augers for the Shuttle Orbiter Re-Entry Aeroheating

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.

    2007-01-01

    A three-dimensional aerothermodynamic model of the shuttle orbiter's tile overlay repair (TOR) sub-assembly is presented. This sub-assembly, which is an overlay that covers the damaged tiles, is modeled as a protuberance with a constant thickness. The washers and augers that serve as the overlay fasteners are modeled as cylindrical protuberances with constant thicknesses. Entry aerothermodynamic cases are studied to provide necessary inputs for future thermal analyses and to support the space-shuttle return-to-flight effort. The NASA Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is used to calculate heat transfer rate on the surfaces of the tile overlay repair and augers. Gas flow is modeled as non-equilibrium, five species air in thermal equilibrium. Heat transfer rate and surface temperatures are analyzed and studied for a shuttle orbiter trajectory point at Mach 17.85. Computational results show that the average heat transfer rate normalized with respect to its value at body point 1800 is about BF=1.9 for the auger head. It is also shown that the average BF for the auger and washer heads is about BF=2.0.

  5. COmbustion- and Re-Entry-PLasma research Using the ion Storage facility DESIREE (COREPLUS)

    DTIC Science & Technology

    2013-10-01

    curves for the [by definition infinite number of] molecular Rydberg states which play a role in this reaction, but also by the fact that these...possible direct electron transfer (i.e. long range processes without forming intermediate transient states) product channels are endothermic . Taking...the first of these reactions in a little more detail, and looking at the first two exothermic channels: Na+ + PO3- → Na + PO2 + O -0.4 eV 5a1

  6. The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve

    2010-01-01

    This report describes a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. A background and an overview of several multidisciplinary efforts that culminated in the acquisition of high resolution calibrated infrared imagery of the Space Shuttle during hypervelocity atmospheric entry is presented. The successful collection of thermal data has demonstrated the feasibility of obtaining remote high-resolution infrared imagery during hypersonic flight for the accurate measurement of surface temperature. To maximize science and engineering return, the acquisition of quantitative thermal imagery and capability demonstration was targeted towards three recent Shuttle flights - two of which involved flight experiments flown on Discovery. In coordination with these two Shuttle flight experiments, a US Navy NP-3D aircraft was flown between 26-41 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 (STS-119) and Mach 14.7 (STS-128) using a long-range infrared optical package referred to as Cast Glance. This same Navy aircraft successfully monitored the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission (STS-125). The purpose of this paper is to describe the systematic approach used by the Hypersonic Thermodynamic Infrared Measurements team to develop and implement a set of mission planning tools designed to establish confidence in the ability of an imaging platform to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. The mission planning tools included a pre-flight capability to predict the infrared signature of the Shuttle. Such tools permitted optimization of the hardware configuration to increase signal-to-noise and to maximize the available dynamic range while mitigating the potential for saturation. Post flight, analysis tools were used to assess atmospheric effects and to convert the 2-D intensity images to 3-D temperature maps of the windward surface. Comparison of the spatially resolved global thermal measurements to surface thermocouples and CFD prediction is made. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the Shuttle suggests future applications towards hypersonic flight test programs within NASA, DoD and DARPA along with flight test opportunities supporting NASA's project Constellation.

  7. Atrioventricular Nodal Re-entry Tachycardia in Identical Twins: A Case Report and Literature Review

    PubMed Central

    Barake, Walid; Caldwell, Jane; Baranchuk, Adrian

    2013-01-01

    This report details the case of 17 year old identical twins who both presented with paroxysmal supraventricular tachycardia (PSVT). Electrophysiological studies revealed atrioventricular nodal reentry tachycardia (AVNRT) in both twins. Successful but technically challenging slow pathway ablation was performed in both twins. This is the first reported case of confirmed AVNRT in identical twins which adds strong evidence to heritability of the dual AV node physiology and AVNRT. A review of the current literature regarding PSVT in monozygotic twins is provided. PMID:23329875

  8. GOCE Re-Entry Predictions for the Italian Civil Protection Authorities

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen; Anselmo, Luciano

    2015-03-01

    The uncommon nature of the GOCE reentry campaign, sharing an uncontrolled orbital decay with a finely controlled attitude along the atmospheric drag direction, made the reentry predictions for this satellite an interesting case study, especially because nobody was able to say a priori if and when the attitude control would have failed, leading to an unrestrained tumbling and a sudden variation of the orbital decay rate. As in previous cases, ISTI/CNR was in charge of reentry predictions for the Italian civil protection authorities, monitoring also the satellite decay in the frame of an international reentry campaign promoted by the Inter-Agency Space Debris Coordination Committee (IADC). Due to the peculiar nature of the GOCE reentry, the definition of reliable uncertainty windows was not easy, especially considering the critical use of this information for civil protection evaluations. However, after an initial period of test and analysis, reasonable and conservative criteria were elaborated and applied, with good and consistent results through the end of the reentry campaign. In the last three days of flight, reentries were simulated over Italy to obtain quite accurate ground tracks, debris swaths and air space crossing time windows associated with the critical passes over the national territory still included in the global uncertainty windows.

  9. Megan's Law and its impact on community re-entry for sex offenders.

    PubMed

    Levenson, Jill S; D'Amora, David A; Hern, Andrea L

    2007-01-01

    Community notification, known as "Megan's Law," provides the public with information about known sex offenders in an effort to assist parents and potential victims to protect themselves from dangerous predators. The purpose of this study was to explore the impact of community notification on the lives of registered sex offenders. Two hundred and thirty-nine sex offenders in Connecticut and Indiana were surveyed. The negative consequences that occurred with the greatest frequency included job loss, threats and harassment, property damage, and suffering of household members. A minority of sex offenders reported housing disruption or physical violence following community notification. The majority experienced psychosocial distress such as depression, shame, and hopelessness. Recommendations are made for community notification policies that rely on empirically derived risk assessment classification systems in order to better inform the public about sex offenders' danger while minimizing the obstacles that interfere with successful community reintegration.

  10. Current Status on Radiation Modeling for the Hayabusa Re-entry

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; McDaniel, Ryan D.; Chen, Yih-Kang; Liu, Yen; Saunders, David

    2011-01-01

    On June 13, 2010 the Japanese Hayabusa capsule performed its reentry into the Earths atmosphere over Australia after a seven year journey to the asteroid Itokawa. The reentry was studied by numerous imaging and spectroscopic instruments onboard NASA's DC-8 Airborne Laboratory and from three sites on the ground, in order to measure surface and plasma radiation generated by the Hayabusa Sample Return Capsule (SRC). Post flight, the flow solutions were recomputed to include the whole flow field around the capsule at 11 points along the reentry trajectory using updated trajectory information. Again, material response was taken into account to obtain most reliable surface temperature information. These data will be used to compute thermal radiation of the glowing heat shield and plasma radiation by the shock/post-shock layer system to support analysis of the experimental observation data. For this purpose, lines of sight data are being extracted from the flow field volume grids and plasma radiation will be computed using NEQAIR [4] which is a line-by-line spectroscopic code with one-dimensional transport of radiation intensity. The procedures being used were already successfully applied to the analysis of the observation of the Stardust reentry [5].

  11. Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry.

    PubMed

    Komarevskiy, Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Lawson, John

    2012-06-18

    During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range.

  12. Re-Entry Analysis Comparison with Different Solar Activity Models of Spent Upper Stage Using ESA's DRAMA Tool

    NASA Astrophysics Data System (ADS)

    David, Emmanuelle; Braun, Vitali

    2013-09-01

    The goal of the paper is to investigate the influence of different methods for solar activity forecasts on the simulation of residual lifetime of upper stages in GTO. For this study the OSCAR software from the ESA DRAMA tool suite was used to perform an orbital decay simulation for an Ariane 4 upper stage (1997-016-C) from 1997 to 2012. As a reference, the orbital decay of the rocket body has been compared to TLE data available from Space-Track. For the simulation, it was possible to select between a best-guess scenario (including best case and worst case scenarios), constant equivalent solar activity, ECSS standard cycle or any user-selected historic cycle and solar activity sampled through a Monte Carlo approach. In addition, the evolution of the orbit has been analysed taking orbit perturbation into account (Drag, Geopotential, Third Bodies effect). Finally a sensitivity on the mass and cross-section area of the upper-stage have been performed in order to understand which parameter may influence the residual life in GTO.

  13. Prediction of electron concentration reductions in re-entry flow fields due to electrophilic liquid and water injection.

    NASA Technical Reports Server (NTRS)

    Pergament, H. S.; Mikatarian, R. R.; Kurzius, S. C.

    1972-01-01

    Discussion of an analytical model which leads to predictions of reductions in electron concentrations in reentry flow fields due to the injection of electrophilic liquids and water. The processes incorporated into the model are: penetration and breakup of the liquid jet, droplet acceleration and vaporization, expansion of the liquid spray due to droplet vaporization, electrophilic vapor diffusion, heterogeneous and homogeneous charged species recombination kinetics and homogeneous electron attachment kinetics. Spray boundary calculations are shown to be in good agreement with photographic observations of water and Freon E-3 sprays in wind tunnel tests of a scale model RAM C-III flight vehicle. Fixed-bias electrostatic probe data taken during the RAM C-III flight are interpreted in terms of effective jet penetration distances - which are shown to be consistent with calculations using the present model.

  14. Yeast spore germination: a requirement for Ras protein activity during re-entry into the cell cycle.

    PubMed Central

    Herman, P K; Rine, J

    1997-01-01

    Saccharomyces cerevisiae spore germination is a process in which quiescent, non-dividing spores become competent for mitotic cell division. Using a novel assay for spore uncoating, we found that spore germination was a multi-step process whose nutritional requirements differed from those for mitotic division. Although both processes were controlled by nutrient availability, efficient spore germination occurred in conditions that did not support cell division. In addition, germination did not require many key regulators of cell cycle progression including the cyclin-dependent kinase, Cdc28p. However, two processes essential for cell growth, protein synthesis and signaling through the Ras protein pathway, were required for spore germination. Moreover, increasing Ras protein activity in spores resulted in an accelerated rate of germination and suggested that activation of the Ras pathway was rate-limiting for entry into the germination program. An early step in germination, commitment, was identified as the point at which spores became irreversibly destined to complete the uncoating process even if the original stimulus for germination was removed. Spore commitment to germination required protein synthesis and Ras protein activity; in contrast, post-commitment events did not require ongoing protein synthesis. Altogether, these data suggested a model for Ras function during transitions between periods of quiescence and cell cycle progression. PMID:9321396

  15. Heber D. Curtis: The Re-entry Graduate Student at UVa Who Became an Outstanding Dynamical Astronomer

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1998-09-01

    Heber D. Curtis, the great pioneer of nebular and galactic research, later observatory director at Allegheny and then at the University of Michigan, was a dynamical astronomer in the earliest days of photographic radial-velocity measurements. He did his undergraduate work in classical languages at Michigan, where as a student he showed no apparent interest in astronomy. Curtis's first jobs were teaching Latin and Greek at Napa College, then at the College of the Pacific. Both had small Clark refractors and he began observing, then measuring, visual double stars. He decided to become an astronomer, and spent the summers of 1897 and 1898 as a special student at Lick Observatory, and of 1899 at Ann Arbor. In 1900, at the age of 28, married and with two small children, Curtis entered the University of Virginia as a full-time graduate student. Both Yerkes and Lick Observatories had declined to accept him. At Charlottesville Curtis did his Ph.D. thesis on the orbit of Comet 1898 I, received his degree in 1902, and immediately joined the Lick staff. His work on spectroscopic binaries and high-velocity stars at Mount Hamilton and at the Lick Southern Hemisphere Observatory, will be described in this paper. W. W. Campbell and Curtis published the First Catalogue of Spectroscopic Binaries in 1905; it listed all 140 of these objects then known. In 1909, Curtis was recalled to Lick to take over the Crossley reflector and thus left the field of dynamical astronomy. At Santiago, his assistant was George F. Paddock, a UVa M.A. in astronomy who based his Ph.D. thesis on Chile observational data. When Ormond Stone, UVa professor of astronomy and Leander McCormick Observatory director, retired in 1912, Curtis was the first choice to succeed him, but declined the post to remain at Lick.

  16. A Grounded Theory Study of the Re-Entry Process of Teen Parents' Return to School after Dropping Out

    ERIC Educational Resources Information Center

    Melton, Brenda L.

    2013-01-01

    Without the rich stories of the experiences of teen parents who drop out of school and then re-enter, we do not have a total picture of the dropout phenomenon and how best to address the issues for this marginalized group. Using the research strategies of Charmaz' social constructivist grounded theory, Melton has gathered detailed stories about…

  17. Histone acetyltransferase HAT4 modulates navigation across G2/M and re-entry into G1 in Leishmania donovani

    PubMed Central

    Yadav, Aarti; Chandra, Udita; Saha, Swati

    2016-01-01

    Histone acetyltransferases impact multiple processes. This study investigates the role of histone acetyltransferase HAT4 in Leishmania donovani. Though HAT4 was dispensable for survival, its elimination decreased cell viability and caused cell cycle defects, with HAT4-nulls experiencing an unusually long G2/M. Survival of HAT4-nulls in macrophages was also substantially compromised. DNA microarray analysis revealed that HAT4 modestly regulated the expression of only a select number of genes, thus not being a major modulator of global gene expression. Significantly, cdc20 was among the downregulated genes. To ascertain if decreased expression of cdc20 was responsible for HAT4-null growth and cell cycle defects we expressed LdCdc20 ectopically in HAT4-nulls. We found this to alleviate the aberrant growth and cell cycle progression patterns displayed by HAT4-nulls, with cells navigating G2/M phase and re-entering G1 phase smoothly. HAT4-nulls expressing LdCdc20 ectopically showed survival rates comparable to wild type within macrophages, suggesting that G2/M defects were responsible for poor survival of HAT4-nulls within host cells also. These are the first data analyzing the in vivo functional role of HAT4 in any trypanosomatid. Our results directly demonstrate for the first time a role for Cdc20 in regulating trypanosomatid G2/M events, opening avenues for further research in this area. PMID:27272906

  18. Quantum Scattering Study of Ro-Vibrational Excitations in N+N(sub 2) Collisions under Re-entry Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Dateo, Christopher E.; Schwenke, David W.; Huo, Winifred M.

    2004-01-01

    A three-dimensional time-dependent quantum dynamics approach using a recently developed ab initio potential energy surface is applied to study ro-vibrational excitation in N+N2 exchange scattering for collision energies in the range 2.1- 3.2 eV. State-to-state integral exchange cross sections are examined to determine the distribution of excited rotational states of N(sub 2). The results demonstrate that highly-excited rotational states are produced by exchange scattering and furthermore, that the maximum value of (Delta)j increases rapidly with increasing collision energies. Integral exchange cross sections and exchange rate constants for excitation to the lower (upsilon = 0-3) vibrational energy levels are presented as a function of the collision energy. Excited-vibrational-state distributions for temperatures at 2,000 K and 10,000 K are included.

  19. Design and Calibration of a Flush Air Data System (FADS) for Prediction of the Atmospheric Properties During Re-Entry

    DTIC Science & Technology

    2013-01-01

    be necessary for the development of hypersonic flight on Earth. Atmospheric density profiles have been obtained by lidars, balloon drop tests... tracking ejected spheres or in-situ from sounding rocket flights or derived from classical air data systems. These methods have their limits and/or require...determined in- flight , the uncertainty on the calculated density is conflated with that on the vehicle aerodynamics. Fig. 2 Uncertainty on density

  20. Potential of Glassy Carbon and Silicon Carbide Photonic Structures as Electromagnetic Radiation Shields for Atmospheric Re-entry

    NASA Technical Reports Server (NTRS)

    Komarevskiy,Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Lawson, John W.

    2012-01-01

    During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range.

  1. An electromagnetic method for removing the communication blackout with a space vehicle upon re-entry into the atmosphere

    NASA Astrophysics Data System (ADS)

    Cheng, Jianjun; Jin, Ke; Kou, Yong; Hu, Ruifeng; Zheng, Xiaojing

    2017-03-01

    When a hypersonic vehicle travels in the Earth and Mars atmosphere, the surface of the vehicle is surrounded by a plasma layer, which is an envelope of ionized air, created from the compression and heat of the atmosphere by the shock wave. The vehicles will lose contact with ground stations known as the reentry communication blackout. Based on the magnetohydrodynamic framework and electromagnetic wave propagation theory, an analytical model is proposed to describe the effect of the effectiveness of electromagnetic mitigation scheme on removing the reentry communication blackout. C and Global Positioning System (GPS) bands, two commonly used radio bands for communication, are taken as the cases to discuss the effectiveness of the electromagnetic field mitigation scheme. The results show that the electron density near the antenna of vehicles can be reduced by the electromagnetic field, and the required external magnetic field strength is far below the one in the magnetic window method. The directions of the external electric field and magnetic field have a significant impact on the effectiveness of the mitigation scheme. Furthermore, the effect of electron collisions on the required applied electromagnetic field is discussed, and the result indicates that electron collisions are a key factor to analyze the electromagnetic mitigation scheme. Finally, the feasible regions of the applied electromagnetic field for eliminating blackout are given. These investigations could have a significant benefit on the design and optimization of electromagnetic mitigation scheme for the blackout problem.

  2. Experiment lithopanspermia: test of interplanetary transfer and re-entry process of epi- and endolithic microbial communities in the FOTON-M3 Mission

    NASA Astrophysics Data System (ADS)

    de La Torre Noetzel, Rosa

    The Lithopanspermia hypothesis assumes that impact-expelled rocks serve as interplanetary transfer vehicles for microorganisms colonizing those rocks. It requires that the microorganisms survive (1) the impact ejection process from the planet of origin; (2) travelling through space; (3) capture and landing on another planet. In the experiment "Lithopanspermia" on board of the FOTON-M3 satellite (14.09.07) steps 2 and 3 of this scenario have been experimentally tested. Assay systems for step 2 were the bipolar epilithic lichen species Rhizocarpon geographicum and Xanthoria elegans on their natural rock substrate as well as their reproduction structures, microbial communities from atacamás halites Chroococcidiopsiss, endolithic communities of Anabaena and Nostoc, and the vagrant lichen species Aspicilia fruticulosa. The samples were exposed to outer space conditions within the BIOPAN-6 facility of ESA. Preparatory space simulation studies (UV solar spectrum radiation and vacuum at 10-2 Pa) performed at the Spasolab-Laboratory of INTA (March-April 2007), have demonstrated the suitability of those lichen species. After flight (10 days exposure to harsh space conditions in low Earth orbit at about 300 km altitude) and recovery, the survival capacity of the microbial communities has been assayed. First analyses have confirmed a fast recovery of the biological activity (chlorophyll a- fluorescence) of the lichens, similar to the high survival rates observed in the experiment LICHENS onboard of the Foton-M2 mission (de la Torre et al., 2007; Sancho et al., 2007). There were no significant changes in relation with the pre-flight values of the epilithic-, endolithicand vagrant lichen samples. First results of Confocal Scanning Laser Microscopy have demonstrated a high vitality of epilithic samples. Ultrastructural changes are being analyzed by Transmission Electron Microscopy and Cryoscanning. Furthermore, concerning the germination capacity of ascospores of Xanthoria elegans up to now no differences were detected between the controls (90 References: De la Torre et al. (2007) BIOPAN experiment LICHENS on the Foton-M2 mission: pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem, Adv. Space Res. 40, 1665-1671, doi:10.1016/jasr.2007.02.022. Sancho L. et al. (2007) Lichens survive in space. Astrobiology, 7, 443-454. St¨ffler D, et al. (2007) Experimental evidence for the o potential impact ejection of viable microorganisms from Mars and Mars-like planets Icarus, 186, 585-588. Horneck et al. (2007) Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: First phase of Lithopanspermia experimentally tested, Astrobiology, in press.

  3. Biomaterial bridges enable regeneration and re-entry of corticospinal tract axons into the caudal spinal cord after SCI: Association with recovery of forelimb function.

    PubMed

    Pawar, Kiran; Cummings, Brian J; Thomas, Aline; Shea, Lonnie D; Levine, Ariel; Pfaff, Sam; Anderson, Aileen J

    2015-10-01

    Severed axon tracts fail to exhibit robust or spontaneous regeneration after spinal cord injury (SCI). Regeneration failure reflects a combination of factors, including the growth state of neuronal cell bodies and the regeneration-inhibitory environment of the central nervous system. However, while spared circuitry can be retrained, target reinnervation depends on longitudinally directed regeneration of transected axons. This study describes a biodegradable implant using poly(lactide-co-glycolide) (PLG) bridges as a carrier scaffold to support regeneration after injury. In order to detect regeneration of descending neuronal tracts into the bridge, and beyond into intact caudal parenchyma, we developed a mouse cervical implantation model and employed Crym:GFP transgenic mice. Characterization of Crym:GFP mice revealed that descending tracts, including the corticospinal tract, were labeled by green fluorescent protein (GFP), while ascending sensory neurons and fibers were not. Robust co-localization between GFP and neurofilament-200 (NF-200) as well as GFP and GAP-43 was observed at both the rostral and caudal bridge/tissue interface. No evidence of similar regeneration was observed in mice that received gelfoam at the lesion site as controls. Minimal co-localization between GFP reporter labeling and macrophage markers was observed. Taken together, these data suggest that axons originating from descending fiber tracts regenerated, entered into the PLG bridge at the rostral margin, continued through the bridge site, and exited to re-enter host tissue at the caudal edge of the intact bridge. Finally, regeneration through implanted bridges was associated with a reduction in ipsilateral forelimb errors on a horizontal ladder task.

  4. Women's Perception of Their Psychological and Practical Needs Upon Re-entry to a Community College: Implications for Restructuring the Learning Environment.

    ERIC Educational Resources Information Center

    Richards, Lillian S.

    This study describes the special needs of women returning to school after an interruption for marriage or employment. One hundred-fifty questionnaires were distributed during 1975 at Fresno City College in California; 90 were returned, of which 82 were usable. Eight problems, in order of importance, identified by returning women were: shortage of…

  5. Correctional Education and the Reduction of Recidivism: A Quantitative Study of Offenders' Educational Attainment and Success upon Re-Entry into Society

    ERIC Educational Resources Information Center

    Tanguay, Daniel T.

    2014-01-01

    Research has shown correctional education has always been associated with prison reform from the early years of Pennsylvania's Eastern State Penitentiary to the modern correctional systems of today. However, as a result of increased prison populations and costs, correctional education leadership has been challenged to validate the need for these…

  6. Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study

    PubMed Central

    Langley, Philip

    2017-01-01

    Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to our previously developed algorithms to predict the AF origins in association with focal activities. PMID:28253254

  7. Where is Merlin When I Need Him? The Barriers to Higher Education are Still in Place: Recent Re-Entry Experience

    ERIC Educational Resources Information Center

    Colvin, Benie B.

    2013-01-01

    While the GI bill after WWII encouraged education for the older students, the combination of baby boomers and the rise of feminism have prompted a new wave of returning students to academia. The nontraditional student since the 1970s has often been an older female returning for a graduate degree. Making the decision to return has not been easy,…

  8. Side-Branch and Coaxial Intravascular Ultrasound Guided Wire Re-Entry after Failed Retrograde Approach of Chronic Total Occlusion Intervention

    PubMed Central

    Chou, Ruey-Hsing; Lai, Chih-Hung; Lu, Tse-Min

    2016-01-01

    Intravascular ultrasound (IVUS) can provide valuable information during the intervention of difficult chronic total occlusion (CTO) lesion. Stumpless CTO lesions with an adjacent side branch are associated with a significantly lower success rate because the proper entry point is not always clearly identified and the guidewires easily slip into the side branch. Herein we presented a case of a stumpless middle left circumflex (LCX) artery CTO lesion with auto-collateral from obtuse marginal branch. Initially, we positioned the IVUS into the side-branch to find the entry point of LCX-CTO lesion. However, the punctured wire went into the false lumen. A retrograde approach was tried but later failed. Therefore, we used IVUS to find the entry point where the true lumen transited to the false lumen, and used a stiff guidewire to puncture the entry point. After we confirmed with IVUS that the whole guidewire was in the true lumen, we deployed 3 drug-eluting stents. The final angiogram showed TIMI 3 flow with preservation of all side branches. The patient was angina-free during the 6-month follow-up. By presenting this case, we have demonstrated the application of both side-branch and coaxial IVUS-guided recanalization technique in the stumpless CTO lesion. PMID:27274179

  9. HYTHIRM Radiance Modeling and Image Analyses in Support of STS-119, STS-125 and STS-128 Space Shuttle Hypersonic Re-entries

    NASA Technical Reports Server (NTRS)

    Gibson, David M.; Spisz, Thomas S.; Taylor, Jeff C.; Zalameda, Joseph N.; Horvath, Thomas J.; Tomek, Deborah M.; Tietjen, Alan B.; Tack, Steve; Bush, Brett C.

    2010-01-01

    We provide the first geometrically accurate (i.e., 3-D) temperature maps of the entire windward surface of the Space Shuttle during hypersonic reentry. To accomplish this task we began with estimated surface temperatures derived from CFD models at integral high Mach numbers and used them, the Shuttle's surface properties and reasonable estimates of the sensor-to-target geometry to predict the emitted spectral radiance from the surface (in units of W sr-1 m-2 nm-1). These data were converted to sensor counts using properties of the sensor (e.g. aperture, spectral band, and various efficiencies), the expected background, and the atmosphere transmission to inform the optimal settings for the near-infrared and midwave IR cameras on the Cast Glance aircraft. Once these data were collected, calibrated, edited, registered and co-added we formed both 2-D maps of the scene in the above units and 3-D maps of the bottom surface in temperature that could be compared with not only the initial inputs but also thermocouple data from the Shuttle itself. The 3-D temperature mapping process was based on the initial radiance modeling process. Here temperatures were guessed for each node in a well-resolved 3-D framework, a radiance model was produced and compared to the processed imagery, and corrections to the temperature were estimated until the iterative process converged. This process did very well in characterizing the temperature structure of the large asymmetric boundary layer transition the covered much of the starboard bottom surface of STS-119 Discovery. Both internally estimated accuracies and differences with CFD models and thermocouple measurements are at most a few percent. The technique did less well characterizing the temperature structure of the turbulent wedge behind the trip due to limitations in understanding the true sensor resolution. (Note: Those less inclined to read the entire paper are encouraged to read an Executive Summary provided at the end.)

  10. Optimisation and thermal control of a multi-layered structure for space electronic devices and thermal shielding of re-entry vehicles

    NASA Astrophysics Data System (ADS)

    Monti, Riccardo; Barboni, Renato; Gasbarri, Paolo; Chiwiacowsky, Leonardo D.

    2012-06-01

    All electronic devices, due to Joule effect, present heat dissipation, when they are electrically fed. The heat overstocking produces efficiency and performances reduction. On account of this the thermal control is mandatory. On small electronic equipments, the difficulty or impossibility of using a cooling fluid for the free or forced convection heat dissipation imposes the presence of cooling systems based on another kind of functioning principle such as the conduction. In this paper the thermal control, via pyroelectric materials, is presented. Furthermore, an optimisation of geometric, thermal and mechanical parameters, influencing the thermal dissipation, is studied and presented. Pyroelectric materials are able to convert heat into electrical charge spontaneously and, due to this capability, such materials could represent a suitable choice to increase the heat dissipation. The obtained electric charge or voltage could be used to charge a battery or to feed other equipments. In particular, a sequence of different materials such as Kovar®, molybdenum or copper-tungsten, used in a multi-layer pyroelectric wafer, together with their thicknesses, are design features to be optimised in order to have the optimal thermal dissipation. The optimisation process is performed by a hybrid approach where a genetic algorithm (GA) is used coupled with a local search procedure, in order to provide an appropriate balance between exploration and exploitation of the search space, which helps in the search for the optimal or quasi-optimal solution. Since the design variables used in the optimisation procedure are defined in different domains, discrete (e.g. the number of layers in the pyroelectric wafer) and continuous (e.g. the layers thickness) domains, the genetic representation for the solution should take it into account. The chromosome used in the genetic algorithm will mix both integer and real values, what will also be reflected in the genetic operators used in the optimisation process. Finally, numerical analyses and results complete the work.

  11. A new release of the mean orbital motion theory, and a new tool provided by CNES for long term analysis of disposal orbits and re-entry predictions

    NASA Astrophysics Data System (ADS)

    Deleflie, Florent; Wailliez, Sébastien; Portmann, Christophe; Gilles, M.; Vienne, Alain; Berthier, J.; Valk, St; Hautesserres, Denis; Martin, Thierry; Fraysse, Hubert

    To perform an orbit modelling accurate enough to provide a good estimate of the lifetime of a satellite, or to ensure the stability of a disposal orbit through centuries, we built a new orbit propagator based on the theory of mean orbital motion. It is named SECS-SD2 , for Simplified and Extended CODIOR Software -Space Debris Dedicated . The CODIOR software propagates numerically averaged equations of motion, with a typical integration step size on the order of a few hours, and was originally written in classical orbital elements. The so-called Space Debris -dedicated version is written in orbital elements suitable for orbits with small eccentricities and inclinations, so as to characterize the main dynamic properties of the motion within the LEO, MEO, and GEO regions. The orbital modelling accounts for the very first terms of the geopotential, the perturbations induced by the luni-solar attraction, the solar radiation pressure, and the atmospheric drag (using classical models). The new software was designed so as to ensure short computation times, even over periods of decades or centuries. This paper aims first at describing and validating the main functionalities of the software: we explain how the simplified averaged equations of motion were built, we show how we get sim-plified luni-solar ephemerides without using any huge file for orbit propagations over centuries, and we show how we averaged and simulated the solar flux. We show as well how we expressed short periodic terms to be added to the mean equations of motion, in order to get orbital ele-ments comparable to those deduced from the classical numerical integration of the oscultating equations of motion. The second part of the paper sheds light on some dynamical properties of space debris flying in the LEO and GEO regions, which were obtained from the new software. Knowing that each satellite in the LEO region is now supposed to re-enter the atmosphere within a period of 25 years, we estimated in various dynamical configurations the lifetime of LEO objects depending on their initial conditions of motion, on the solar flux models applied through decades, and on the atmospheric density models and also the satellite area-to-mass ratio. In the GEO region, we investigated the dynamical reasons that can cause space debris re-entering the GEO-protected region after the passivation of a disposal spacecraft.

  12. Roundtable on Constructing and Coping with Incarceration and Family Re-Entry: Perspectives from the Field (Philadelphia, Pennsylvania, November 15-16, 2001). Fathers and Families Second-Tier Roundtable Series.

    ERIC Educational Resources Information Center

    Pennsylvania Univ., Philadelphia. National Center on Fathers and Families.

    Issues of incarceration and its effects on parents, children, families, and communities are as much human development concerns as policy dilemmas. This report synthesizes the discussion of these concerns and their implications for policy, practice, and research as presented at the National Center on Fathers and Families'"Roundtable on…

  13. Donating Blood Questions and Answers

    MedlinePlus

    ... the future. In December 1998, a re-entry algorithm for anti-HBc was discussed at FDA's Blood ... to FDA, did not recommend the re-entry algorithm at that time. Individuals can be perfectly healthy, ...

  14. PIRATES: A Program for Offenders Transitioning into the World of Work

    ERIC Educational Resources Information Center

    Musgrove, Kate Racoff; Derzis, Nicholas C.; Shippen, Margaret E.; Brigman, Holly E.

    2012-01-01

    The study assessed the effectiveness of the Preparing Inmates for Re-Entry through Assistance, Training, and Employment Skills (PIRATES) group, which focused on improving dysfunctional career thoughts. Participants were male offenders (n = 14) enrolled in a re-entry training class. Results showed a statistically significant decrease in…

  15. Controlled Hypersonic Flight Air Data System and Flight Instrumentation

    DTIC Science & Technology

    2007-06-01

    strongly on the flight envelope, re-entry trajectory and vehicle structure. Flight envelope and re-entry trajectory influence primarily the sensor...6 3.3 Flight Wind angles and basic considerations...determination the Mach number independence principle can however be used to derive simple analytic expressions. 3.3 Flight Wind angles and basic

  16. Maneuvering Aerothermal Technology (MAT) Program. Data Bibliography. Task 2

    DTIC Science & Technology

    1981-03-24

    Blattner, C. J., "Background and Supplementary Data in Support of Boost- Glide Re-entry Vehicle Study Program Plan," (U) MOAC A-096 (AD 344 840), August...to Deflected Control Surfaces," AIAA Journal, February 1964. 6. Uselton, J. C., "Force Test Results on a Series of Boost Glide Re- entry Vehicles at...June 1964 (Secret). 12. "Ninth Tri-Annual Progress Report on Asset," (U) MDAC A-788, June 1964 (Classified). 13. "Boost- Glide Re-Entry Vehicle Study

  17. Chase Plane Video Of Historic SpaceX Splashdown

    NASA Video Gallery

    During the re-entry of SpaceX's Dragon capsule, NASA and the United States Navy flew a P-3 Orion Cast Glance aircraft to capture airborne views of the spacecraft's descent. The aircraft, based at t...

  18. The X-38 V-201 Flap Actuator Mechanism

    NASA Technical Reports Server (NTRS)

    Hagen, Jeff; Moore, Landon; Estes, Jay; Layer, Chris

    2004-01-01

    The X-38 Crew Rescue Vehicle V-201 space flight test article was designed to achieve an aerodynamically controlled re-entry from orbit in part through the use of two body mounted flaps on the lower rear side. These flaps are actuated by an electromechanical system that is partially exposed to the re-entry environment. These actuators are of a novel configuration and are unique in their requirement to function while exposed to re-entry conditions. The authors are not aware of any other vehicle in which a major actuator system was required to function throughout the complete re-entry profile while parts of the actuator were directly exposed to the ambient environment.

  19. The success of the ESA Intermediate eXperimental Vehicle program

    NASA Astrophysics Data System (ADS)

    Tumino, G.; Mancuso, S.

    2016-07-01

    The atmospheric re-entry domain has always been considered a cornerstone of a wide range of space applications encompassing the planetary exploration, the sample return, the future launchers, the space planes, the crew and the cargo transportation

  20. PubMed Central

    DE STEFANO, A.; COSTANTINO, C.; RANDO, D.; GIGLIONE, M.; STAGNO, R.; BENNICI, E.

    2015-01-01

    SUMMARY This prospective study was designed to evaluate the differences between immediate and delayed canal re-entry of otoliths after therapeutic manoeuvres in patients with benign paroxysmal positional vertigo (BPPV). A total of 196 patients with BPPV were visited and 127 matched our inclusion criteria. The mean age was 54.74 years. The horizontal semicircular canal (HSC) was involved in 30 cases and the posterior semicircular canal (PSC) in 97 patients. Patients with hearing loss in the ear affected by BPPV have a more recurrent form, compared to those with normal hearing. An immediate canal re-entry was recorded in 3 patients with HSC BPPV, all with geotropic nystagmus. In 7 patients with PSC BPPV, the immediate canal re-entry was detected and the delayed form was noted in 5 patients. The patients with the delayed canal re-entry underwent more than 2 previous manoeuvres. The canal re-entry was not related to the manoeuvre performed. The timing of the Dix-Hallpike test to verify the resolution of the BPPV had a significant role in immediate canal re-entry. A recurrence in the follow-up at least one month after treatment was recorded in 20 patients and was more frequent in patients that had canal re-entry. The canal re-entry or canal switch is a clinical entity that should be kept in mind of the neurotologist when approaching BPPV patients. It is important to distinguish it from recurrence when delayed and from manoeuvre failure when immediate. The timing of manoeuvre performing, in particular the final verification test after therapeutic sessions, is important to prevent the immediate reflux of particles into canals. PMID:26019396

  1. Development of a Parachute System for Deceleration of Flying Vehicles in Supersonic Regimes

    NASA Astrophysics Data System (ADS)

    Pilyugin, N. N.; Khlebnikov, V. S.

    2010-09-01

    Aerodynamic problems arising during design and development of braking systems for re-entry vehicles are analyzed. Aerodynamic phenomena and laws valid in a supersonic flow around a pair of bodies having different shapes are studied. Results of this research can be used in solving application problems (arrangement and optimization of experiments; design and development of various braking systems for re-entry vehicles moving with supersonic speeds in the atmosphere).

  2. STS-61C Mission Insignia

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Columbia, which opened the era of the Space Transportation System with four orbital flight tests, is featured in re-entry in the emblem designed by the STS-61C crew representing the seven team members who manned the vehicle for its seventh STS mission. Gold lettering against black background honors the astronaut crewmembers on the delta pattern surrounding colorful re-entry shock waves, and the payload specialists are honored similarly below the sphere

  3. Procedure Planning: Anatomical Determinants of Strategy

    PubMed Central

    Hanratty, Colm; Walsh, Simon

    2014-01-01

    In contemporary practice there are three main methods that can be employed when attempting to open a chronic total occlusion (CTO) of a coronary artery; antegrade or retrograde wire escalation, antegrade dissection re-entry and retrograde dissection re-entry. This editorial will attempt to clarify the anatomical features that can be identified to help when deciding which of these strategies to employ initially and help understand the reasons for this decision. PMID:24694102

  4. Analysis of Plasma Communication Schemes for Hypersonic Vehicles: Final Report

    DTIC Science & Technology

    2009-02-01

    the ReComm scheme for communications through the plasma sheath surrounding a hypersonic vehicle during re-entry. We demonstrate that the time...physical processes of the ReComm scheme for communications through the plasma sheath surrounding a hypersonic vehicle during re-entry. The ReComm scheme...relation is derived to estimate the plasma heating in the sheath due to plasma waves excited by the antenna. Contents I. Introduction 4 II. Electron

  5. The IXV guidance, navigation and control subsystem: Development, verification and performances

    NASA Astrophysics Data System (ADS)

    Marco, Victor; Contreras, Rafael; Sanchez, Raul; Rodriguez, Guillermo; Serrano, Daniel; Kerr, Murray; Fernandez, Vicente; Haya-Ramos, Rodrigo; Peñin, Luis F.; Ospina, Jose A.; De Zaiacomo, Gabriale; Bejar-Romero, Juan Antonio; Yague, Ricardo; Zaccagnino, Elio; Preaud, Jean-Philippe

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) [1] is an ESA re-entry lifting body demonstrator built to verify in-flight the performance of critical re-entry technologies. The IXV was launched on February the 11th, 2015, aboard Europe's Vega launcher. The IXV´s flight and successful recovery represents a major step forward with respect to previous European re-entry experience with the Atmospheric Re-entry Demonstrator (ARD) [2], flown in October 1998. The increased in-flight manoeuvrability achieved from the lifting body solution permitted the verification of technologies over a wider re-entry corridor. Among other objectives, which included the characterisation of the re-entry environment through a variety of sensors, special attention was paid to Guidance, Navigation and Control (GNC) aspects, including the guidance algorithms for the lifting body, the use of the inertial measurement unit measurements with GPS updates for navigation, and the flight control by means of aerodynamic flaps and reaction control thrusters. This paper presents the overall Design, Development and Verification logic that has been successfully followed by the GNC and Flight Management (FM) subsystem of the IXV. It also focuses on the interactions between the GNC and the System, Avionics and OBSW development lifecycles and how an integrated and incremental verification process has been implemented by ensuring the maximum representativeness and reuse through all stages.

  6. Reducing variability in short term orbital lifetime prediction

    NASA Astrophysics Data System (ADS)

    Kebschull, Christopher; Flegel, Sven Kevin; Braun, Vitali; Gelhaus, Johannes; Möckel, Marek; Wiedemann, Carsten; Vörsmann, Peter

    2013-04-01

    Within the last year three major re-entries occurred. The satellites UARS, ROSAT and Phobos-Grunt entered Earth's atmosphere with fragments reaching the surface. Due to a number of uncertainties in propagating an object's trajectory the exact place and time of a satellite's re-entry is hard to determine. Major influences when predicting the re-entry time are the changing precision of the available orbital data, the satellite's ballistic coefficient, the activity of the sun which influences the Earth's atmosphere and the underlying quality of the atmospheric model. In this paper a method is presented which can reduce the variability in short-term orbital lifetime prediction induced by fluctuating orbital data accuracies. A re-entry campaign is used as a reference for this purpose. For a window of a few weeks before the re-entry the position data of a synthetic object is disturbed considering different degrees of orbital data errors. As a result different predictions will exist for the generated position data of a given day. Using a regression algorithm on the available data an average position is obtained, which is then used for the orbital lifetime prediction. The effect of this measure is a more consistent prediction of the orbital lifetime. The paper concludes with the comparison of the generated re-entry windows in various test cases for the original and the averaged data.

  7. Characterization of supraventricular tachycardia in infants: clinical and instrumental diagnosis.

    PubMed

    Vignati, G; Annoni, G

    2008-01-01

    Supraventricular tachycardia (SVT) is the most common symptomatic arrhythmias in children. Re-entry tachycardias are the most common form, on the contrary automatic tachycardias are relatively rare. There are four types or re-entry: along anomalous pathway with bi-directional (Wolff-Parkinson-White) or unidirectional conduction, intranodal re-entry, intra-atrial re-entry that is common after surgical procedure, and finally the uncommon sinus node re-entry. Automatic tachycardias may be atrial or junctional. The different types of tachycardia have a different incidence according to the age: in the first year of age re-entry along anomalous pathway is the dominant form, while intranodal reentry becomes common during adolescence. The age at the beginning of tachycardia is important for long term prognosis. When SVT starts in the first months of life it disappears in 80% of cases within the first year of life; on the contrary, if tachycardia starts later spontaneous remission is detected in only 15%-20% of patients. In infancy heart failure is the more common presenting symptom, thereafter palpitations become the principal cause of recognition of SVT. Syncope is reported in about 8% of cases and in another 15% usually neonates and infants, the SVT has an occasional detection. Electrocardiogram (ecg) usually allows the precise diagnosis of various types of SVT, and every effort should be made to record ecg during tachycardia. The parameters that should be evaluated are: heart rate, P wave axis, PR and RP interval, and finally presence or absence of AV block. Short lasting episodes should be difficult to be recorded; in these cases cardio-call and trans-telephonic transmission represent useful techniques to obtain SVT demonstration. Patients with SVT require a complete evaluation with others diagnostic techniques: echocardiogram, Holter monitoring, stress test, that should be chosen according the type of tachycardia. Electrophysiologic evaluation is now rarely performed

  8. Thermal investigation of nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. L.

    1981-01-01

    A thermal analysis has been conducted to determine the allowable size and response of bare and shielded nuclear waste forms in both low earth orbit and at 0.85 astronomical units. Contingency conditions of re-entry with a 45 deg and 60 deg aeroshell are examined as well as re-entry of a spherical shielded waste form. A variety of shielded schemes were examined and the waste form thermal response for each determined. Two optimum configurations were selected. The thermal response of these two shielded waste configurations to indefinite exposure to ground conditions following controlled and uncontrolled re-entry is determined. In all cases the prime criterion is that waste containment must be maintained.

  9. Intermediate experimental vehicle, ESA program aerodynamics-aerothermodynamics key technologies for spacecraft design and successful flight

    NASA Astrophysics Data System (ADS)

    Dutheil, Sylvain; Pibarot, Julien; Tran, Dac; Vallee, Jean-Jacques; Tribot, Jean-Pierre

    2016-07-01

    With the aim of placing Europe among the world's space players in the strategic area of atmospheric re-entry, several studies on experimental vehicle concepts and improvements of critical re-entry technologies have paved the way for the flight of an experimental space craft. The successful flight of the Intermediate eXperimental Vehicle (IXV), under ESA's Future Launchers Preparatory Programme (FLPP), is definitively a significant step forward from the Atmospheric Reentry Demonstrator flight (1998), establishing Europe as a key player in this field. The IXV project objectives were the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled reentry system, which is highly flexible and maneuverable. The paper presents, the role of aerodynamics aerothermodynamics as part of the key technologies for designing an atmospheric re-entry spacecraft and securing a successful flight.

  10. Electrophysiological assessment of amiodarone in treatment of resistant supraventricular arrhythmias.

    PubMed Central

    Rowland, E; Krikler, D M

    1980-01-01

    Oral amiodarone has been used to treat 21 patients with various supraventricular arrhythmias; 13 had Wolff-Parkinson-White syndrome, which was complicated by atrial fibrillation and re-entry atrioventricular tachycardia in four, and re-entry tachycardia alone in the other nine. The remaining eight patients had paroxysmal atrial fibrillation or flutter without pre-excitation. All were refractory to conventional treatment and had undergone intracardiac electrophysiological study. Fifteen have been controlled with amiodarone, this treatment proving most effective in atrial fibrillation or flutter with or without pre-excitation. Amiodarone was successful in only four of the nine patients with re-entry atrioventricular tachycardia. In two patients who responded well the drug had to be discontinued because of side effects. Images PMID:7426165

  11. Tetrahedral lander

    NASA Technical Reports Server (NTRS)

    Roberts, Michael L. (Inventor)

    1993-01-01

    An apparatus and method is disclosed for decelerating and absorbing impact of a re-entry vehicle suitable for payloads that are relatively light as well as payloads weighing several tons or more. The apparatus includes four inflatable legs displaced equidistantly from each other around a capsule or housing which contains a payload. The legs are inflated at a designated altitude after entering earth's atmosphere to slow the descent of the re-entry vehicle. Connected between each of the four legs are drag inducing surfaces that deploy as the legs inflate. The drag inducing surfaces are triangularly shaped with one such surface being connected between each pair of legs for a total of six drag inducing surfaces. The legs have drag inducing outer surfaces which act to slow the descent of the re-entry vehicle.

  12. Advances in Procedural Techniques - Antegrade

    PubMed Central

    Wilson, William; Spratt, James C.

    2014-01-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the “hybrid’ approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited “interventional” collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  13. 76 FR 11338 - Hospital and Outpatient Care for Veterans Released From Incarceration to Transitional Housing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... have difficulty obtaining similar treatment during a transitional period. In particular, if mental... recidivism. Mallik-Kane, K, and Visher, C.A., Health and prisoner re-entry: How physical, mental, and... mental health conditions is a low-cost powerful tool in preventing recidivism. We received three...

  14. 75 FR 26683 - Hospital and Outpatient Care for Veterans Released From Incarceration to Transitional Housing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... mental health issues are not addressed during the transitional period, upon release, many of these.... Mallik-Kane, K, and Visher, C.A., Health and prisoner re-entry: How physical, mental, and substance abuse...). In particular, the study noted that access to medications for chronic health and mental...

  15. Women Emerge in the Seventies. University Women: A Series of Essays, Volume III.

    ERIC Educational Resources Information Center

    Swoboda, Marian J., Ed.; Roberts, Audrey J., Ed.

    This monograph reviews the role of women in the development of public higher education at the University of Wisconsin with special focus on the period of the 1970s. Essays are presented in the categories of the politicization of women, curriculum, language, athletics, lifestyle, and the re-entry woman. Essays include: "The Women's Movement…

  16. G. M. Koelemay well No. 1, Jefferson County, Texas. Volume I. Completion and testing: testing geopressured geothermal reservoirs in existing wells. Final report

    SciTech Connect

    Not Available

    1980-01-01

    The acquisition, completion, and testing of a geopressured-geothermal well are described. The following are covered: geology; petrophysics; re-entry and completion operations - test well; drilling and completion operations - disposal well; test objectives; surface testing facilities; pre-test operations; test sequence; test results and analysis; and return of wells and location to operator. (MHR)

  17. Thermal Vacuum Facility for Testing Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.

    2002-01-01

    A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.

  18. Effective Stack Design in Air Pollution Control.

    ERIC Educational Resources Information Center

    Clarke, John H.

    1968-01-01

    Stack design problems fall into two general caterories--(1) those of building re-entry, and (2) those of general area pollution. Extensive research has developed adequate information, available in the literature, to permit effective stack design. A major roadblock to effective design has been the strong belief by architects and engineers that high…

  19. The IXV experience, from the mission conception to the flight results

    NASA Astrophysics Data System (ADS)

    Tumino, G.; Mancuso, S.; Gallego, J.-M.; Dussy, S.; Preaud, J.-P.; Di Vita, G.; Brunner, P.

    2016-07-01

    The atmospheric re-entry domain is a cornerstone of a wide range of space applications, ranging from reusable launcher stages developments, robotic planetary exploration, human space flight, to innovative applications such as reusable research platforms for in orbit validation of multiple space applications technologies. The Intermediate experimental Vehicle (IXV) is an advanced demonstrator which has performed in-flight experimentation of atmospheric re-entry enabling systems and technologies aspects, with significant advancements on Europe's previous flight experiences, consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission objectives were the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention was paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight, successfully performed on February 11th, 2015.

  20. Temporal Organization of the Brain: Neurocognitive Mechanisms and Clinical Implications

    ERIC Educational Resources Information Center

    Dawson, Kim A.

    2004-01-01

    The synchrony between the individual brain and its environment is maintained by a system of internal clocks that together reflect the temporal organization of the organism. Extending the theoretical work of Edelman and others, the temporal organization of the brain is posited as functioning through "'re-entry" and "'temporal tagging"' and binds…

  1. Of Radicals and DREAMers: Harnessing Exceptionality to Challenge Immigration Control

    ERIC Educational Resources Information Center

    Heredia, Luisa Laura

    2015-01-01

    This article contributes to the literature on undocumented youth activism and citizenship by assessing undocumented youth's challenges to a growing regime of migration control in the US. It uses Doug McAdam's tactical interaction as an analytical lens to explore two consecutive high-risk campaigns, ICE infiltrations and expulsion/re-entry. In this…

  2. Effect of adult screwworm male size on mating competence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screwworms, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae), were devastating pests in parts of North America and Central America before their eradication by means of the sterile insect technique (SIT). Now, a barrier is maintained to prevent re-entry of screwworms from endemic regions t...

  3. HL-20 Wax Model

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A numerically machined wax pattern of the NASA HL-20 orbital re-entry lifting body was cut from a CAD/CAM file. This nine-inch wax model was later used in a lost wax investment casting process to replicate the pattern in ceramic for wind-tunnel aero-heating studies

  4. Developing Survival Skills Workshops for Urban Women.

    ERIC Educational Resources Information Center

    Thurston, Linda P.; Greenwood, Charles R.

    Survival Skills for Urban Women is a series of 10 3-hour workshops designed for low-income minority women. The workshops cover the following topics: (1) assertiveness; (2) personal health; (3) nutrition; (4) money management; (5) child management; (6) legal rights; (7) self-advocacy; (8) crisis coping; (9) community resources; and (10) re-entry to…

  5. 77 FR 60476 - Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... DISABILITY Sunshine Act Meetings TIME AND DATES: The Members of the National Council on Disability (NCD) will... services, and veterans issues, including re-entry of veterans with disabilities into civilian life. The... for people with disabilities, along with recommendations for policy changes. NCD is charged...

  6. Ground Target Overflight and Orbital Maneuvering via Atmospheric Maneuvers

    DTIC Science & Technology

    2014-03-27

    26 Numerical Integration of the Equations of Motion...Flight Data with Numerical Integration for Model Verification Purposes...throughout this research was developed by Dr. Kerry Hicks in his book An Introduction to Astrodynamic Re-Entry. The equations of motion are defined in

  7. Steam disinfestation as a methyl bromide alternative in California cut flower nurseries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Steam may be an effective alternative to methyl bromide in cut flower production in California. Advantages of steam include broad spectrum pest control and a zero hour re-entry interval. The principle disadvantage of sheet steaming is cost effectiveness due to current energy prices and application...

  8. Traumatic Brain Injury: What the Teacher Needs To Know.

    ERIC Educational Resources Information Center

    Pieper, Betty

    Intended for use by the classroom teacher, this guide presents teaching suggestions as well as suggested resources for teaching children with traumatic brain injuries (TBI). Emphasis is placed on working with the injured family and the importance of planning for transition and re-entry into the classroom through a continuum of settings. Teachers…

  9. 9 CFR 93.519 - Special provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... signature of the Canadian Port Veterinarian that inspected the swine for entry into Canada shall be recorded... the certificate that accompanies the swine. In all cases it shall be determined by the veterinary... offered for re-entry upon examination by the veterinary inspector at the U.S. port of entry, are found...

  10. 9 CFR 93.215 - Special provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be recorded on the United States health certificate, or a paper containing the information shall be... veterinary inspector at the United States port of entry that the poultry are the identical poultry covered by..., That all poultry offered for re-entry upon examination by the veterinary inspector at the U.S. port...

  11. Identifying Life Challenges of Women at a Branch Campus through Life Course Interviews: Implications for Service Delivery

    ERIC Educational Resources Information Center

    Horn-Johnson, Tancy Clarissa

    2016-01-01

    An increasing number of women are returning to school as nontraditional students to complete their bachelor's degrees. These women may have specific needs related to life transitions and re-entry into postsecondary education that traditional students do not. The purpose of this study was to gain insight into the experiences of women who are…

  12. Why School English Needs a "Good Enough" Grammatics (and Not More Grammar)

    ERIC Educational Resources Information Center

    Macken-Horarik, Mary

    2012-01-01

    At the dawn of a national curriculum for English in Australia, grammar has appeared without any serious interrogation of the terms of its re-entry and against ambiguous evidence about its value for teaching writing. What kinds of knowledge about language do teachers need in rhetorically productive teaching? This article investigates the potential…

  13. The Space Shuttle Columbia Preservation Project - The Debris Loan Process

    NASA Technical Reports Server (NTRS)

    Thurston, Scott; Comer, Jim; Marder, Arnold; Deacon, Ryan

    2005-01-01

    The purpose of this project is to provide a process for loan of Columbia debris to qualified researchers and technical educators to: (1) Aid in advanced spacecraft design and flight safety development (2) Advance the study of hypersonic re-entry to enhance ground safety. (3) Train and instruct accident investigators and (4) Establish an enduring legacy for Space Shuttle Columbia and her crew.

  14. Science Education in Early Childhood (March 9-April 18, 1997). Report on Course.

    ERIC Educational Resources Information Center

    Golda Meir Mount Carmel International Training Centre, Haifa (Israel).

    This document is a report on a 6-week course on science education in early childhood programs. Attending the conference in Israel were 30 participants representing 21 countries from Africa, Asia, Europe, and the Caribbean. Teaching methods included lectures, workshops, small group activities, professional study visits, and a re-entry workshop to…

  15. ADEPT Sounding Rocket One (SR-1)Flight Experiment Overview

    NASA Technical Reports Server (NTRS)

    Wercinski, Paul; Smith, B.; Yount, B.; Cassell, A.; Kruger, C.; Brivkalns, C.; Makino, A.; Duttta, S.; Ghassemieh, S.; Wu, S.; Battazzo, S.; Nishioka, O.; Venkatapathy, E.

    2017-01-01

    The SR-1 flight experiment will demonstrate most of the primary end-to-end mission stages including: launch in a stowed configuration, separation and deployment in exo-atmospheric conditions, and passive ballistic re-entry of a 70-degree half-angle faceted cone geometry.

  16. Astronauts McNair and Stewart prepare for reentry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts Ronald E. McNair and Robert L. Stewart prepare for the re-entry phase of the shuttle Challenger near the end of the 41-B mission. The are stationed behind the crew commander and pilot. Stewart is already wearing his helmet. McNair is stowing some of his gear.

  17. Water-Repellency Probe

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D.; Mitchell, Shirley M.; Jolly, Stanley R.; Jackson, Richard G.; Fleming, Scott T.; Roberts, William J.; Bell, Daniel R., III

    1996-01-01

    Instrument yielding presence or absence of waterproofing agent at any given depth in blanket developed. In original application, blankets in question part of space shuttle thermal protection system. Instrument utilized to determine extent of waterproofing "burnout" due to re-entry heating and adverse environment exposure.

  18. Traumatic Brain Injury and Its Effect on Students

    ERIC Educational Resources Information Center

    Rosenthal, Stacy B.

    2012-01-01

    Over one million people suffer a traumatic brain injury every year, many of whom are students between the ages of 5 and 18. Using a qualitative case study approach, I wanted to discover the specific factors that both impede and help the school re-entry process for students in grades kindergarten through twelve so that these students can return to…

  19. Comparison of Demineralized Dentin and Demineralized Freeze Dried Bone as Carriers for Enamel Matrix Proteins in a Rat Critical Size Defect

    DTIC Science & Technology

    2005-05-01

    derivative in the treatment of periodontal intrabony defects. A 12-month re-entry study. J Periodontol 2001;72:25-34. Froum S., Weinberg M., Novak J., Mailhot...1 B . O dontogenesis ........................................................................ 2 C. Periodontal regeneration...LITERATURE REVIEW A. Introduction Periodontal disease may result in destruction of periodontal attachment and eventual loss of bone and/or teeth. About 13

  20. The Prospect of Responsive Spacecraft Using Aeroassisted, Trans-Atmospheric Maneuvers

    DTIC Science & Technology

    2014-06-19

    to the ellipticity of the Earth , however, the distance between lines of latitude increases towards the poles and, as a result, cannot be assumed...life for low- Earth orbit (LEO) spacecraft, both manned and unmanned. Transcending this paradigm, atmospheric re-entry can be employed as a means of...Properties ........................................................................................................40 Earth -Based Constants

  1. ACUTE STUDIES OF INHALED CHLORINE IN F344 RATS SUGGEST ALTERNATIVE TO HABER'S RULE FOR RISK EXTRAPOLATIONS

    EPA Science Inventory

    Chlorine (CI2), a high-production volume air pollutant, is an irritant of interest to homeland security. Risk assessment approaches to establish egress or re-entry levels typically use an assumption based on Haber's Rule and apply a concentration times duration ("C x t") adjustme...

  2. Descriptions of Community by People with Spinal Cord Injuries: Concepts to Inform Community Integration and Community Rehabilitation

    ERIC Educational Resources Information Center

    Kuipers, Pim; Kendall, Melissa B.; Amsters, Delena; Pershouse, Kiley; Schuurs, Sarita

    2011-01-01

    Effective measurement and optimization of re-entry into the community after injury depends on a degree of understanding of how those injured persons actually perceive their community. In light of the limited research about foundational concepts regarding community integration after spinal cord injury, this study investigated how a large number of…

  3. Impact fuze testing at 3000 m/sec employing explosively accelerating plates

    SciTech Connect

    Gill, W.

    1981-01-01

    The Explosives Testing Division at Sandia has developed a method of simulating a re-entry vehicle impacting the ground. The purpose of the simulation is to evaluate different fusing concepts. The design and operation of this impact testing facility are described.

  4. Inter-Agency Coordination: The Key to Successfully Transition Juvenile Offenders Back into the Educational Mainstream

    ERIC Educational Resources Information Center

    Gordon, Robyn Beth

    2013-01-01

    The focus of this study was to determine the characteristics of successful re-entry programs for youth as they transition back into the educational mainstream. The study was also used to determine the implementation needed for effective inter-agency coordination of social service systems for students to successfully transition into the educational…

  5. Normal and abnormal electrical propagation in the small intestine.

    PubMed

    Lammers, W J E P

    2015-02-01

    As in other muscular organs, small intestinal motility is determined to a large degree by the electrical activities that occur in the smooth muscle layers of the small intestine. In recent decades, the interstitial cells of Cajal, located in the myenteric plexus, have been shown to be responsible for the generation and propagation of the electrical impulse: the slow wave. It was also known that the slow waves as such do not cause contraction, but that the action potentials ('spikes') that are generated by the slow waves are responsible for the contractions. Recording from large number of extracellular electrodes simultaneously is one method to determine origin and pattern of propagation of these electrical signals. This review reports the characteristics of slow wave propagation through the intestinal tube, the occurrence of propagation blocks along its length, which explains the well-known decrease in frequency, and the specific propagation pattern of the spikes that follow the slow waves. But the value of high-resolution mapping is highest in discovering and analysing mechanisms of arrhythmias in the gut. Most recently, circus movements (also called 're-entries') have been described in the small intestine in several species. Moreover, several types of re-entries have now been described, some similar to what may occur in the heart, such as functional re-entries, but others more unique to the small intestine, such as circumferential re-entry. These findings seem to suggest the possibilities of hitherto unknown pathologies that may be present in the small intestine.

  6. Impact of Teenage Motherhood on the Academic Performance in Public Primary Schools in Bungoma County, Kenya

    ERIC Educational Resources Information Center

    Barmao-Kiptanui, Catherine; Kindiki, Jonah Nyaga; Lelan, Joseph K.

    2015-01-01

    Teenage pregnancy and motherhood is a concern in both developed and developing countries and is a complex reality of contemporary society however the re-entry of teenage mothers into the school system continues to demand attention as society's negative attitude towards pregnant girls and teenage mothers persists. Those who do return to school…

  7. Career Development Curriculum for Single Parents/Homemakers.

    ERIC Educational Resources Information Center

    Malott, Karen; Taylor, Angela

    This core curriculum, in use at the Homemaker ReEntry Center at Northern Kentucky University, provides three units of materials that teachers can use to help homemakers make the transition to the world of work. The first unit, on personal development, covers such topics such as self-esteem, self-awareness, goal setting, decision making, sex role…

  8. CPAS Parachute Testing, Model Development, & Verification

    NASA Technical Reports Server (NTRS)

    Romero, Leah M.

    2013-01-01

    Capsule Parachute Assembly System (CPAS) is the human rated parachute system for the Orion vehicle used during re-entry. Similar to Apollo parachute design. Human rating requires additional system redundancy. A Government Furnished Equipment (GFE) project responsible for: Design; Development testing; Performance modeling; Fabrication; Qualification; Delivery

  9. Proceedings of the Annual Midwest Research-to-Practice Conference in Adult and Continuing Education (2nd, DeKalb, Illinois, November 4-5, 1983).

    ERIC Educational Resources Information Center

    Northern Illinois Univ., De Kalb. Coll. of Continuing Education.

    These proceedings consist of 26 presentations. They include, in alphabetical order by author, "Time and Distance: Crucial Factors in Selection of Training and Vocation by Re-entry Women" (Cynthia Bagley), "Using Learner Surveys to Enhance Continuing Education Programs" (Carol Brown), "Designing Inservice Training as a Learning System: The Case of…

  10. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Aleksashkin, Sergey; Martynov, Maxim; Schmidt, Walter; Harri, Ari-Matti; Vsevolod Koryanov, D.; Kazakovtcev, Victor; Haukka, Harri; Arruego, Ignacio; Finchenko, Valery; Ostresko, Boris; Ponomarenko, Andrei; Martin, Susanna; Siili, Tero

    Abstract A new generation of inflatable Entry, Descent and Landing System (EDLS) or Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth’s atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth’s atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. “Mini-1” category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: - qmax (kW/m2): maximal specific heat flux, - Q (MJ/m2): specific integral heat flux to DV front shield, - m (kg): descent vehicle (DV) mass, - V (m/s): re-entry velocity and - theta(deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet (“Mini-1” category) -type

  11. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergey; Koryanov, Vsevolod; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valery; Martynov, Maxim; Ostresko, Boris; Ponomarenko, Andrey; Kazakovtsev, Viktor; Martin, Susanna; Siili, Tero

    2014-05-01

    A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry. 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth's atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. 'Mini-1' category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: qmax (kW/m2): maximal specific heat flux, Q (MJ/m2): specific integral heat flux to DV front shield, m (kg): descent vehicle (DV) mass, V (m/s): re-entry velocity and Θ (deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet ('Mini-1' category) -type lander, with mass of 22kg, being

  12. One-year outcomes after successful chronic total occlusion percutaneous coronary intervention.

    PubMed

    Wilson, W M; Walsh, S J; Bagnall, A; Yan, A T; Hanratty, C G; Egred, M; Smith, E; Oldroyd, K G; McEntegart, M; Irving, J; Douglas, H; Strange, J; Spratt, J C

    2017-03-15

    We aimed to determine clinical outcomes 1 year after successful chronic total occlusion (CTO) PCI and, in particular, whether use of dissection and re-entry strategies affects clinical outcomes. Hybrid approaches have increased the procedural success of CTO percutaneous coronary intervention (PCI) but longer-term outcomes are unknown, particularly in relation to dissection and re-entry techniques. Data were collected for consecutive CTO PCIs performed by hybrid-trained operators from 7 United Kingdom (UK) centres between 2012 and 2014. The primary endpoint (death, myocardial infarction, unplanned target vessel revascularization) was measured at 12 months along with angina status. One-year follow up data were available for 96% of successful cases (n = 805). In total, 85% of patients had a CCS angina class of 2-4 prior to CTO PCI. Final successful procedural strategy was antegrade wire escalation 48%; antegrade dissection and re-entry (ADR) 21%; retrograde wire escalation 5%; retrograde dissection and re-entry (RDR) 26%. Overall, 47% of CTOs were recanalized using dissection and re-entry strategies. During a mean follow up of 11.5 ± 3.8 months, the primary endpoint occurred in 8.6% (n = 69) of patients (10.3% (n = 39/375) in DART group and 7.0% (n = 30/430) in wire-based cases). The majority of patients (88%) had no or minimal angina (CCS class 0 or 1). ADR and RDR were used more frequently in more complex cases with greater disease burden, however, the only independent predictor of the primary endpoint was lesion length. CTO PCI in complex lesions using the hybrid approach is safe, effective and has a low one-year adverse event rate. The method used to recanalize arteries was not associated with adverse outcomes. © 2017 Wiley Periodicals, Inc.

  13. Effect of regional differences in cardiac cellular electrophysiology on the stability of ventricular arrhythmias: a computational study

    NASA Astrophysics Data System (ADS)

    Clayton, Richard H.; Holden, Arun V.

    2003-01-01

    Re-entry is an important mechanism of cardiac arrhythmias. During re-entry a wave of electrical activation repeatedly propagates into recovered tissue, rotating around a rod-like filament. Breakdown of a single re-entrant wave into multiple waves is believed to underlie the transition from ventricular tachycardia to ventricular fibrillation. Several mechanisms of breakup have been identified including the effect of anisotropic conduction in the ventricular wall. Cells in the inner and outer layers of the ventricular wall have different action potential durations (APD), and support re-entrant waves with different periods. The aim of this study was to use a computational approach to study twisting and breakdown in a transmural re-entrant wave spanning these regions, and examine the relative role of this effect and anisotropic conduction. We used a simplified model of action potential conduction in the ventricular wall that we modified so that it supported stable re-entry in an anisotropic model with uniform APD. We first examined the effect of regional differences on breakdown in an isotropic model with transmural differences in APD, and found that twisting of the re-entrant filament resulted in buckling and breakdown during the second cycle of re-entry. We found that breakdown was amplified in the anisotropic model, resulting in complex activation in the region of longest APD. This study shows that regional differences in cardiac electrophysiology are a potentially important mechanism for destabilizing re-entry and may act synergistically with other mechanisms to mediate the transition from ventricular tachycardia to ventricular fibrillation.

  14. Flutter Analysis of the Shuttle Tile Overlay Repair Concept

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.; Scott, Robert C.; Bartels, Robert E.; Waters, William A.; Chen, Roger

    2007-01-01

    The Space Shuttle tile overlay repair concept, developed at the NASA Johnson Space Center, is designed for on-orbit installation over an area of damaged tile to permit safe re-entry. The thin flexible plate is placed over the damaged area and secured to tile at discreet points around its perimeter. A series of flutter analyses were performed to determine if the onset of flutter met the required safety margins. Normal vibration modes of the panel, obtained from a simplified structural analysis of the installed concept, were combined with a series of aerodynamic analyses of increasing levels of fidelity in terms of modeling the flow physics to determine the onset of flutter. Results from these analyses indicate that it is unlikely that the overlay installed at body point 1800 will flutter during re-entry.

  15. Impact analysis of Minuteman III Payload Transporter Type III

    SciTech Connect

    Stirbis, P.P.

    1993-12-01

    An analysis of the impact of the Minuteman III Payload Transporter Type III into a nonyielding target at 46 m.p.h. and 30 m.p.h., and into a yielding target at 46 m.p.h. is presented. The analysis considers the structural response of the tiedown system which secures the Minuteman III re-entry system to the floor of the payload transporter. A finite element model of the re-entry system, its tiedown system, which includes tie-rods and shear pins, and the pallet plate which is attached to the transporter floating plate, was constructed. Because accelerations of the payload transporter are not known, acceleration data from one-quarter scale testing of the Safe Secure Trailer was used to investigate the response of the tiedown system. These accelerations were applied to the pallet plate. The ABAQUS computer code was used to predict the forces in the members of the tiedown system.

  16. Cell cycle activation in striatal neurons from Huntington's disease patients and rats treated with 3-nitropropionic acid.

    PubMed

    Pelegrí, Carme; Duran-Vilaregut, Joaquim; del Valle, Jaume; Crespo-Biel, Natàlia; Ferrer, Isidre; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi

    2008-11-01

    This study was undertaken to investigate the potential role of cell cycle re-entry in an experimental model of Huntington's disease and in human brain samples. We found that after treatment of rats with the mitochondrial neurotoxin 3-nitropropionic acid, the expression of cell cycle markers of G1 phase measured by immunohistochemistry was induced in the striatal brain region. Furthermore, we detected an increase in the nuclear and also cytoplasmatic E2F-1 expression, suggesting that this protein could activate the apoptotic cascade in rat brain. Western blot analysis of post-mortem brain samples from patients also showed an increase in the expression of E2F-1 and cyclin D1 in comparison with control samples. These results indicate that cell cycle re-entry is activated in Huntington's disease and may contribute to the neurodegenerative process.

  17. Development and flight qualification of the C-SiC thermal protection systems for the IXV

    NASA Astrophysics Data System (ADS)

    Buffenoir, François; Zeppa, Céline; Pichon, Thierry; Girard, Florent

    2016-07-01

    The Intermediate experimental Vehicle (IXV) atmospheric re-entry demonstrator, developed within the FLPP (Future Launcher Preparatory Programme) and funded by ESA, aimed at developing a demonstration vehicle that gave Europe a unique opportunity to increase its knowledge in the field of advanced atmospheric re-entry technologies. A key technology that has been demonstrated in real conditions through the flight of this ambitious vehicle is the thermal protection system (TPS) of the Vehicle. Within this programme, HERAKLES, Safran Group, has been in charge of the TPS of the windward and nose assemblies of the vehicle, and has developed and manufactured SepcarbInox® ceramic matrix composite (CMC) protection systems that provided a high temperature resistant non ablative outer mould line (OML) for enhanced aerodynamic control. The design and flight justification of these TPS has been achieved through extensive analysis and testing:

  18. New motors solve UBD and HPHT problems

    SciTech Connect

    Stewart, D.; Susman, H.

    1997-08-01

    There are two particular areas where industry contractors have been pushing current downhole motor technology to the limits of its capabilities--high temperature (HPHT) and underbalanced (UBD) operations. Economic incentives for slimhole, short-radius re-entry and multilateral wells have been well established, but until recently, the options for this kind of work have been limited. The increased use of coiled tubing has introduced additional challenges for motor manufacturers, with greater emphasis on shortness for ease of rig-up and steerability. These challenges are addressed by a unique new motor that promises benefits for coiled tubing drilling, re-entry work and multilateral drilling, as well as for geothermal wells.

  19. Verification and validation of a parallel 3D direct simulation Monte Carlo solver for atmospheric entry applications

    NASA Astrophysics Data System (ADS)

    Nizenkov, Paul; Noeding, Peter; Konopka, Martin; Fasoulas, Stefanos

    2017-03-01

    The in-house direct simulation Monte Carlo solver PICLas, which enables parallel, three-dimensional simulations of rarefied gas flows, is verified and validated. Theoretical aspects of the method and the employed schemes are briefly discussed. Considered cases include simple reservoir simulations and complex re-entry geometries, which were selected from literature and simulated with PICLas. First, the chemistry module is verified using simple numerical and analytical solutions. Second, simulation results of the rarefied gas flow around a 70° blunted-cone, the REX Free-Flyer as well as multiple points of the re-entry trajectory of the Orion capsule are presented in terms of drag and heat flux. A comparison to experimental measurements as well as other numerical results shows an excellent agreement across the different simulation cases. An outlook on future code development and applications is given.

  20. Efficacy of MTA and CEM Cement with Collagen Membranes for Treatment of Class II Furcation Defects

    PubMed Central

    Ghanbari, Habib Ollah; Taheri, Morteza; Abolfazli, Salman; Asgary, Saeed; Gharechahi, Maryam

    2014-01-01

    Objectives: This study aimed to compare the efficacy of MTA and CEM cement in Class II furcation defects in human mandibular molars. Materials and Methods: Forty furcation defects were treated in 16 patients with chronic periodontitis. The clinical parameters of probing depth (PD), vertical and horizontal clinical attachment levels (VCAL and HCAL), open vertical and horizontal furcation depths (OVFD and OHFD), and gingival margin level (GML) were measured at baseline and at 3- and 6-month (re-entry surgery) postoperatively. Data were analyzed at a significance level of P<0.05. Results: Use of MTA and CEM caused significant decreases in PD, VCAL, HCAL, OVFD and OHFD at re-entry, with no statistically significant differences between the two treatment options in soft and hard tissue parameters. Conclusion: Both treatment modalities caused significant gains in attachment levels and bone fills, proving efficacy for treatment of Class II furcation involvements. PMID:25628670

  1. Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes

    PubMed Central

    1994-01-01

    Successful transmission of the African trypanosome between the mammalian host blood-stream and the tsetse fly vector involves dramatic alterations in the parasite's morphology and biochemistry. This differentiation through to the tsetse midgut procyclic form is accompanied by re-entry into a proliferative cell cycle. Using a synchronous differentiation model and a variety of markers diagnostic for progress through both differentiation and the cell cycle, we have investigated the interplay between these two processes. Our results implicate a relationship between the trypanosome cell cycle position and the perception of the differentiation signal and demonstrate that irreversible commitment to the differentiation occurs rapidly after induction. Furthermore, we show that re-entry into the cell cycle in the differentiating population is synchronous, and that once initiated, progress through the differentiation pathway can be uncoupled from progress through the cell cycle. PMID:8195296

  2. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Haukka, H.; Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Finchenko, V.; Martynov, M.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.

    2015-10-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface.

  3. HYSHOT-2 Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cain, T.; Owen, R.; Walton, C.

    2005-02-01

    The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.

  4. Expert- Demonstrating Reentry Aerothermodinamics Phenomena From A System Perspective

    NASA Astrophysics Data System (ADS)

    Massobrio, F.; Passarelli, G.; Gavira-Izquierdo, J.; Ratti, F.

    2011-05-01

    EXPERT is developed by the European Space Agency (ESA) in order to provide the scientific community with quality data on critical aero-thermodynamic phenomena encountered during hypersonic flights as well as to provide industry with system experience of re-entry vehicle manufacturing and development of hypersonic instrumentation. EXPERT is equipped with 14 experiments provided by several scientific institutions all around Europe. The experiments address major aerothermodinamics phenomena: TPS material characterization, surface catalysis and oxidation, plasma spectroscopy, laminar to turbulent transition, flow separation and reattachment, shock-boundary layer interactions, base flow characteristic and aerodynamic characterization of flap control surfaces. The paper focus on the status of the EXPERT project: the design activities and the on going manufacturing, the main challenges and the expected flight data results. EXPERT will benefit future atmospheric re- entry activities ranging from cargo to human orbital transportation systems as well as re-usable launchers and scientific probes.

  5. Post-Flight Analysis of GPSR Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barker, Lee; Mamich, Harvey; McGregor, John

    2016-01-01

    On 5 December 2014, the first test flight of the Orion Multi-Purpose Crew Vehicle executed a unique and challenging flight profile including an elevated re-entry velocity and steeper flight path angle to envelope lunar re-entry conditions. A new navigation system including a single frequency (L1) GPS receiver was evaluated for use as part of the redundant navigation system required for human space flight. The single frequency receiver was challenged by a highly dynamic flight environment including flight above low Earth orbit, as well as single frequency operation with ionospheric delay present. This paper presents a brief description of the GPS navigation system, an independent analysis of flight telemetry data, and evaluation of the GPSR performance, including evaluation of the ionospheric model employed to supplement the single frequency receiver. Lessons learned and potential improvements will be discussed.

  6. Verification and validation of a parallel 3D direct simulation Monte Carlo solver for atmospheric entry applications

    NASA Astrophysics Data System (ADS)

    Nizenkov, Paul; Noeding, Peter; Konopka, Martin; Fasoulas, Stefanos

    2016-07-01

    The in-house direct simulation Monte Carlo solver PICLas, which enables parallel, three-dimensional simulations of rarefied gas flows, is verified and validated. Theoretical aspects of the method and the employed schemes are briefly discussed. Considered cases include simple reservoir simulations and complex re-entry geometries, which were selected from literature and simulated with PICLas. First, the chemistry module is verified using simple numerical and analytical solutions. Second, simulation results of the rarefied gas flow around a 70° blunted-cone, the REX Free-Flyer as well as multiple points of the re-entry trajectory of the Orion capsule are presented in terms of drag and heat flux. A comparison to experimental measurements as well as other numerical results shows an excellent agreement across the different simulation cases. An outlook on future code development and applications is given.

  7. Health status of people with work-related musculoskeletal disorders in return to work programs: a Malaysian study.

    PubMed

    Murad, Mohd Suleiman; O'Brien, Lisa; Farnworth, Louise; Chien, Chi-Wen

    2013-07-01

    This study examined the health status of injured workers with musculoskeletal disorders enrolled in the Malaysian Return to Work (RTW) program. The 102 participants were categorized into three RTW groups: Off-work (n = 30, 29.4%), Re-entry (n = 44, 43.1%), and Maintenance (n = 28, 27.5%). Overall health status, as measured by the SF-36 version 2, of the workers exhibited below average compared to the internationally established normative population, with their physical health component summary rated lower than mental health. Across the different groups, significant differences were found in role-physical, vitality, bodily pain, general health, and mental health. However, the mean values of these variables were higher in the Maintenance group and were found significant. The current health status of injured workers at Off-work and Re-entry phases was significantly low and warranted to be improved by involving other health professionals such as occupational therapists, ergonomists, and psychologists.

  8. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  9. Folding of Polymer Chains in Early Stage of Crystallization

    NASA Astrophysics Data System (ADS)

    Yuan, Shichen; Miyoshi, Toshikazu

    Understanding the structural formation of long polymer chains in the early stage of crystallization is one of the long-standing problems in polymer science. Using solid state NMR, we investigated chain trajectory of isotactic polypropylene in the mesomorphic nano-domains formed via rapid and deep quenching. Comparison of experimental and simulated 13C-13C Double Quantum (DQ) buildup curves demonstrated that instead of random re-entry models and solidification models, individual chains in the mesomorphic form iPP adopt adjacent reentry sequences with an average folding number of = 3-4 (assuming an adjacent re-entry fraction of of 100%) during mesomorphic formation process via nucleation and growth in the early stage. This work was financially supported by the National Science Foundation (Grant DMR-1105829 and 1408855) and startup funds from the UA.

  10. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    NASA Technical Reports Server (NTRS)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  11. Space Debris Alert System for Aviation

    NASA Astrophysics Data System (ADS)

    Sgobba, Tommaso

    2013-09-01

    Despite increasing efforts to accurately predict space debris re-entry, the exact time and location of re-entry is still very uncertain. Partially, this is due to a skipping effect uncontrolled spacecraft may experience as they enter the atmosphere at a shallow angle. Such effect difficult to model depends on atmospheric variations of density. When the bouncing off ends and atmospheric re-entry starts, the trajectory and the overall location of surviving fragments can be precisely predicted but the time to impact with ground, or to reach the airspace, becomes very short.Different is the case of a functional space system performing controlled re-entry. Suitable forecasts methods are available to clear air and maritime traffic from hazard areas (so-called traffic segregation).In US, following the Space Shuttle Columbia accident in 2003, a re-entry hazard areas location forecast system was putted in place for the specific case of major malfunction of a Reusable Launch Vehicles (RLV) at re-entry. The Shuttle Hazard Area to Aircraft Calculator (SHAAC) is a system based on ground equipment and software analyses and prediction tools, which require trained personnel and close coordination between the organization responsible for RLV operation (NASA for Shuttle) and the Federal Aviation Administration. The system very much relies on the operator's capability to determine that a major malfunction has occurred.This paper presents a US pending patent by the European Space Agency, which consists of a "smart fragment" using a GPS localizer together with pre- computed debris footprint area and direct broadcasting of such hazard areas.The risk for aviation from falling debris is very remote but catastrophic. Suspending flight over vast swath of airspace for every re-entering spacecraft or rocket upper stage, which is a weekly occurrence, would be extremely costly and disruptive.The Re-entry Direct Broadcasting Alert System (R- DBAS) is an original merging and evolution of the Re

  12. LUNAR MODULE TEST ARTICLE [LTA] [2R] IS MOVED FOR MATING TO LUNAR MODULE ADAPTER

    NASA Technical Reports Server (NTRS)

    1967-01-01

    The Lunar Module Test Article [LTA] 2R, for the second Saturn V mission, is being moved from the low bay of the Manned Spacecraft Operations Building for mating with the spacecraft Lunar Module Adapter. The second Saturn V [502], except for a different lunar return trajectory, will be a repeat of the Apollo 4 unmanned Earth orbital flight of a high apogee for systems testing using several propulsion system burns and a heat shield test at lunar re-entry speed.

  13. John Glenn - Mini Biography

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Mini Biography of John Glenn, as it was up to 1962. From film to tape transfer of the film 'Friendship 7 - John Glenn' Depicts the historical orbital flight of John Glenn aboard 'Friendship 7', launched on February 20, 1962. Footage of staff at tracking stations worldwide and at Goddard Space Flight Center. Launch from cape canaveral. Flight tracking, re-entry, landing and recovery of Friendship 7.

  14. Improving Intercontinental Ballistic Missile Maintenance Scheduling Through the Use of Location Analysis Methodologies

    DTIC Science & Technology

    2006-03-01

    devastating numerous enemy targets (Russell and Wirtz, 2002:1). Combining the strengths of these three separate nuclear weapons systems has not only...independently targetable re-entry vehicles (Minot AFB, n.d.:5). The 500 Minuteman III missiles are dispersed among 3 Air Force bases: 200 missiles at... target . Security Escort Teams (SETS) Security team that accompanies missile maintenance teams to an LF; protects the topside of the LF while the

  15. An Antenna Design for PANSAT Using NEC

    DTIC Science & Technology

    1991-06-01

    AVERAGE POdER GAIN= 0.96142E00 SOLID ANGLE USED IN AVERAGING=( 1.0000)*PI riERADIANS. *’*’ DATA CARD NO. 7 EN 0 0 0 0 O.O0000100 O.O0000 O0 O.CJGOOE...Corporation, Space and Re-Entry Systems Division , TP-DA0652, vol. TECH I-E. Sakoda, Daniel, "Naval Postgraduate School Petite Navy Satellite (PANSAT)," paper

  16. A guidance concept for hypersonic aerospacecrafts

    NASA Astrophysics Data System (ADS)

    Ishimoto, Shinji

    In this paper a guidance concept for hypersonic re-entry flights is presented. The method uses a closed-form guidance technique based on a drag acceleration reference profile. A guidance law for range control is developed. It employs a physical relation between vehicle energy and range instead of a prediction-correction technique used for Shuttle entry guidance. Simulation results show that the algorithm provides good performance.

  17. Size Distribution of Genesis Solar Wind Array Collector Fragments Recovered

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; McNamara, K. M.

    2005-01-01

    Genesis launched in 2001 with 271 whole and 30 half hexagonally-shaped collectors mounted on 5 arrays, comprised of 9 materials described in [1]. The array collectors were damaged during re-entry impact in Utah in 2004 [2], breaking into many smaller pieces and dust. A compilation of the number and approximate size of the fragments recovered was compiled from notes made during the field packaging performed in the Class 10,000 cleanroom at Utah Test and Training Range [3].

  18. Clinical and radiographic evaluation of Bio-Gen with biocollagen compared with Bio-Gen with connective tissue in the treatment of class II furcation defects: a randomized clinical trial

    PubMed Central

    JENABIAN, Niloofar; HAGHANIFAR, Sina; MABOUDI, Avideh; BIJANI, Ali

    2013-01-01

    Objective Treatment of furcation defects are thought to be challenging. The purpose of this study was to evaluate the clinical and radiographic parameters of Bio-Gen with Biocollagen compared with Bio-Gen with connective tissue in the treatment of Class II furcation defects. Material and Methods In this clinical trial, 24 patients with Class II furcation defect on a buccal or lingual mandibular molar were recruited. After oral hygiene instruction, scaling and root planing and achievement of acceptable plaque control, the patients were randomly chosen to receive either connective tissue and Bio-Gen (case group) or Biocollagen and Bio-Gen (control group). The following parameters were recorded before the first and re-entry surgery (six months later): vertical clinical attachment level (VCAL), gingival index (GI), plaque index (PI), horizontal probing depth (HPD), vertical probing depth (VPD), gingival recession (GR), furcation vertical component (FVC), furcation to alveolar crest (FAC), fornix to base of defect (FBD), and furcation horizontal component (FHC) were calculated at the time of first surgery and during re-entry. A digital periapical radiograph was taken in parallel before first surgery and re-entry. The radiographs were then analyzed by digital subtraction. The differences with p value <0.05 were considered significant. Results Only the mean changes of FAC, FHC, mean of FHC, FBD in re-entry revealed statistically significant differences between the two groups. HPD, VPD, FBD, FAC, and FHC showed statistically significant differences after 6 months in the case group. However, in the control group, statistically significant differences were found in GR and HPD. We did not observe any significant difference in radiographic changes among the two groups. Conclusion The results of this trial indicate that better clinical outcomes can be obtained with connective tissue grafts in combination with bone material compared with a resorbable barrier with bone material

  19. NAVO MSRC Navigator. Spring 2008

    DTIC Science & Technology

    2008-01-01

    CFD), Climate/Weather/Ocean Modeling and Simulation (CWO), Environmental Quality Modeling and Simulation (EQM), Computational Electromagnetic...EINSTEIN and DAVINCI Come to the MSRC The Porthole 19 Visitors to the Naval Oceanographic Office Major Shared Resource Center Navigator Tools and...Events 5SPRING 2008NAVO MSRC NAVIGATOR IntroductIon Higher-altitude missile and re-entry vehicle flowfield simulations often require the

  20. Modern Endodontic Principles. Part 5: Obturation.

    PubMed

    Darcey, James; Roudsari, Reza Vahid; Jawad, Sarra; Taylor, Carly; Hunter, Mark

    2016-03-01

    Once cleaning and shaping is complete the clinician must obturate the canal. There are many different materials and techniques available each with their own discrete advantages and disadvantages. Whichever technique is used, the goal is to seal the entire prepared length of the root canal. This paper describes how best this may be achieved. CPD/Clinical Relevance: It is incumbent on the clinician to ensure that once the canal has been prepared it is sealed from bacterial re-entry.

  1. Furcation therapy with bioabsorbable collagen membrane: a clinical trial.

    PubMed

    Pruthi, Vijay K; Gelskey, Shirley C; Mirbod, Sayed M

    2002-11-01

    This study compared the effectiveness of 2 barrier membranes, expanded polytetrafluoroethylene (e-PTFE) and collagen, in treating Class II furcation defects of mandibular molars in humans. Seventeen nonsmoking subjects with no history of systemic disease each presenting with Class II furcation defects in 2 mandibular molars were selected and underwent initial therapy. At the time of the surgery and at 8-month follow-up, soft-tissue measurements consisting of the gingival index, vertical and horizontal probing depth, recession and clinical attachment level were obtained at the midfurcation level. At the time of membrane placement and at 12-month re-entry, horizontal midfurcation probing depth and hard-tissue measurement of vertical fill (from the crown to the depth of the pocket) were also obtained. According to the surgical protocol, both membranes were completely covered with a coronally positioned flap, and in all cases healing was uneventful. Data were analyzed first by comparing baseline measurements (at surgery) with measurements at 8-month follow-up and 12-month re-entry for both e-PTFE and collagen membranes according to repeated-measures analysis of variance. The changes from surgery to follow-up and re-entry were then compared between the 2 treatment modalities with paired Wilcoxon rank-sum tests. No statistically significant differences were found between e-PTFE and collagen membranes with respect to gingival index, reduction in probing depth, gain in clinical attachment or filling of the horizontal defect. However, the improvement in vertical fill at 12-month re-entry was more substantial for the teeth treated with collagen membrane than those treated with e-PTFE (p < 0.05). Within the limits of this study, it appears that collagen is a beneficial material for regenerative therapy of Class II furcation defects in humans, yielding results that are similar to or better than (vertical fill) those for e-PTFE membrane.

  2. Defense Small Business Innovation Research Program (SBIR). Abstracts of Phase 2 Awards. 1986

    DTIC Science & Technology

    1986-01-01

    RANGE OF TACTILE, AUDIBLE AND VISUAL TEACHING SYSTEMS TO TEACH CHORDIC COMMANDS IN A TEN KEY HANDGRIP SYSTEM TO ALLOW FOR RAPID AND INSTINCTIVE DATA...ADVANCED RE-ENTRY BODY AND WAKE FLOW FIELD CODES, INCLUDING NON- EQUILIBRIUM THERMOCHEMISTRY , TO PREDICT THE EFFECT OF VARIOUS QUENCHANTS ON WAKE ELECTRON...ANALYZE ACTUAL SIMULATIONS THAT HAVE BEEN DESIGNED FOR A HIGH-TECHNOLOGY WEAPON SYSTEM. WE WILL DESIGN AND IMPLEMENT AN EXPERT TEACHER MODEL THAT TEACHES

  3. A complete subsea wireline system

    SciTech Connect

    Manzi, B.; Dines, C.; Headworth, C.

    1987-01-01

    At the present time there are around 400 subsea completions worldwide and even the most conservative surveys predict a doubling of this number within the next decade. This paper discusses the evolution and operation of a flexible, self-contained system which makes optimum use of existing technology thereby offering a safe, reliable and economical system for riserless re-entry into any subsea well.

  4. Analysis of the Reconfigurable Control Capabilities of a Space Access Vehicle (Preprint)

    DTIC Science & Technology

    2006-12-01

    based on dynamic inversion with a non-linear control allocator, is used to linearize the vehicle dynamics over its flight envelope and assign control ...backstepping method. Assessment of the vehicle’s ability to recover from control failures is conducted in this work for a nominal re-entry flight . 15...on dynamic inversion with a non-linear control allocator, is used to linearize the vehicle dynamics over its flight envelope and assign control tasks

  5. Environmental effects of Shuttle launch and landing

    NASA Technical Reports Server (NTRS)

    Potter, A. E.

    1983-01-01

    The areas of concern were the toxic exhaust cloud produced by Shuttle launch, the effect of launch operations on the total ecology, and the sonic boom produced by Orbiter re-entry. Wet acidic dust fell from the exhaust cloud for about ten minutes after launch. The fallout was not entirely unexpected, but the intensity and duration was larger than anticipated. The fallout material is not considered a significant health hazard. Previously announced in STAR as N82-15729

  6. Implementing Recommendations of the Columbia Accident Investigation Board

    NASA Technical Reports Server (NTRS)

    Ottens, B.; La, A.; Brown, T.; Parker, B.; Jenings, D.; Townsend, J.

    2004-01-01

    As many are aware, a piece of insulating foam liberated itself from the external tank and impacted the leading edge of Columbia during ascent on STS-107. It is believed that this impact left a hole in the thermal protection system (TPS), which protects the shuttle from hot plasma generated during re-entry. Unfortunately, the orbiter did not have the margin to withstand this compromise, and it is believed that the result of these events caused the loss of crew and orbiter.

  7. An Overview and Funding History of Select Department of Justice (DOJ) Grant Programs

    DTIC Science & Technology

    2006-06-23

    courts are designed to achieve a reduction in recidivism and substance abuse among nonviolent substance-abusing offenders and to increase the offenders ...and juvenile offender reentry demonstration projects. H.R. 4202, the “Re-entry Enhancement Act” would also reauthorize the adult and juvenile offender ...local courts, units of local government, and Indian tribal governments to develop and establish drug courts for substance-abusing juvenile offenders

  8. Millimeter Wave Communication through Plasma

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.

    2008-01-01

    Millimeter wave communication through plasma at frequencies of 35 GHz or higher shows promise in maintaining communications connectivity during rocket launch and re-entry, critical events which are typically plagued with communication dropouts. Extensive prior research into plasmas has characterized the plasma frequency at these events, and research at the Kennedy Space Center is investigating the feasibility of millimeter communication through these plasma frequencies.

  9. A Micropatterned Human Pluripotent Stem Cell-Based Ventricular Cardiac Anisotropic Sheet for Visualizing Drug-Induced Arrhythmogenicity.

    PubMed

    Shum, Angie M Y; Che, Hui; Wong, Andy On-Tik; Zhang, Chenzi; Wu, Hongkai; Chan, Camie W Y; Costa, Kevin; Khine, Michelle; Kong, Chi-Wing; Li, Ronald A

    2017-01-01

    A novel cardiomimetic biohybrid material, termed as the human ventricular cardiac anisotropic sheet (hvCAS) is reported. Well-characterized human pluripotent stem-cell-derived ventricular cardiomyocytes are strategically aligned to reproduce key electrophysiological features of native human ventricle, which, along with specific selection criteria, allows for a direct visualization of arrhythmic spiral re-entry and represents a revolutionary tool to assess preclinical drug-induced arrhythmogenicity.

  10. MECHANICAL ENGINEERING GROUP 71. QUARTERLY REPORT DIVISION 7. 15 MARCH 1964

    DTIC Science & Technology

    Contents: Mechanical Engineering-Group 71, I . General, II. laboratory services, III. General research, IV. Re-entry physics, V. PRESS program, VI...Space communications, VII. Radar discrimination technology, VIII. Apollo; Construction Engineering-Group 75; I . General, II. Radome heating system...Millstone communications site, III. Antenna access - AMRAD radar, White Sands; and Control Systems - Group 76; I . Objectives, II. Millstone radar, III. Project west ford, IV. AMRAD, V. Apollo, VI. Haystack hill experimental facility.

  11. Probability distribution of von Mises stress in the presence of pre-load.

    SciTech Connect

    Segalman, Daniel Joseph; Field, Richard V.,; Reese, Garth M.

    2013-04-01

    Random vibration under preload is important in multiple endeavors, including those involving launch and re-entry. There are some methods in the literature to begin to address this problem, but there is nothing that accommodates the existence of preloads and the necessity of making probabilistic statements about the stress levels likely to be encountered. An approach to achieve to this goal is presented along with several simple illustrations.

  12. End-of-Life Disposal of Satellites in Low-Earth Orbit

    DTIC Science & Technology

    2010-03-19

    stage with perigee altitude below 2000 km in its final mission orbit may be disposed of by using an atmospheric reentry option. The guideline for...atmospheric reentry is stated as follows: “Leave the structure in an orbit in which, using conservative projections for solar activity, atmospheric...the operator of the system should inform the relevant air traffic and maritime traffic authorities of the re-entry time and trajectory and the

  13. Heat pipe cooling system with sensible heat sink

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1988-01-01

    A heat pipe cooling system which employs a sensible heat sink is discussed. With this type of system, incident aerodynamic heat is transported via a heat pipe from the stagnation region to the heat sink and absorbed by raising the temperature of the heat sink material. The use of a sensible heat sink can be advantageous for situations where the total mission heat load is limited, as it is during re-entry, and a suitable radiation sink is not available.

  14. Orbiter Trajectory Analysis for a Two-Stage Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cowling, Adam L.

    2011-01-01

    Trajectory analysis performed on NASA's reference two-stage-to-orbit launch vehicle upper stage will be presented. The work was completed in support of the Hypersonics Multidisciplinary Analysis and Optimization effort for the NASA-Air Force Joint System Study. Three degree-of-freedom (3-DOF) untrimmed trajectory analysis was performed for the orbiter ascent, closure and re-entry. An iterative closure process resulted in a 333,000 lb initial mass for the orbiter. The re-entry trajectory satisfied heating constraints for all payload out cases and met the constraints with reduced margins for payload in cases. Abort trajectories for engine out at staging, engine out during ascent, and failure to circularize in orbit, gave insight to the robustness of the orbiter. A trimmed ascent trajectory defined an engine gimbal location and the body flap angle best suited for maximizing injected mass. A trimmed re-entry trajectory revealed a need to update the trim routine to accommodate full flap aerodynamic data.

  15. Dynamical and thermal qualification of the C-SiC nose for the IXV

    NASA Astrophysics Data System (ADS)

    Buffenoir, François; Escafre, David; Brault, Tiana; Rival, Loic; Girard, Florent

    2016-07-01

    The Intermediate experimental Vehicle (IXV) atmospheric re-entry demonstrator, developed within the FLPP (Future Launcher Preparatory Program) and funded by ESA, was aimed at developing a demonstration vehicle that gave Europe a unique opportunity to increase its knowledge in the field of advanced atmospheric re-entry technologies. Within this program, HERAKLES, Safran Group, was in charge of the TPS of the windward and nose assemblies of the vehicle, and has developed and manufactured SepcarbInox® Ceramic Matrix Composite (CMC) protection systems that provided a high temperature resistant nonablative outer mold line (OML) for enhanced aerodynamic control. A key component of this TPS is the nose assembly, which is one the most loaded part during re-entry. The paper describes the analysis activities that led to the qualification of the nose assembly, through two activities: Dynamical behavior of the nose. Thermal behavior of the nose For both cases, the paper shows how FE models, compared with tests results, led to the understanding and simulation of the nose assembly behavior, allowing HERAKLES to confirm the design margins before flight.

  16. Impact of Vehicle Flexibility on IRVE-II Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Bose, David M.; Toniolo, Matthew D.; Cheatwood, F. M.; Hughes, Stephen J.; Dillman, Robert A.

    2011-01-01

    The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described.

  17. The IXV Ground Segment design, implementation and operations

    NASA Astrophysics Data System (ADS)

    Martucci di Scarfizzi, Giovanni; Bellomo, Alessandro; Musso, Ivano; Bussi, Diego; Rabaioli, Massimo; Santoro, Gianfranco; Billig, Gerhard; Gallego Sanz, José María

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an ESA re-entry demonstrator that performed, on the 11th February of 2015, a successful re-entry demonstration mission. The project objectives were the design, development, manufacturing and on ground and in flight verification of an autonomous European lifting and aerodynamically controlled re-entry system. For the IXV mission a dedicated Ground Segment was provided. The main subsystems of the IXV Ground Segment were: IXV Mission Control Center (MCC), from where monitoring of the vehicle was performed, as well as support during pre-launch and recovery phases; IXV Ground Stations, used to cover IXV mission by receiving spacecraft telemetry and forwarding it toward the MCC; the IXV Communication Network, deployed to support the operations of the IXV mission by interconnecting all remote sites with MCC, supporting data, voice and video exchange. This paper describes the concept, architecture, development, implementation and operations of the ESA Intermediate Experimental Vehicle (IXV) Ground Segment and outlines the main operations and lessons learned during the preparation and successful execution of the IXV Mission.

  18. Effects of Low Activity Solar Cycle on Orbital Debris Lifetime

    NASA Technical Reports Server (NTRS)

    Cable, Samual B.; Sutton, Eric K.; Lin, chin S.; Liou, J.-C.

    2011-01-01

    Long duration of low solar activity in the last solar minimum has an undesirable consequence of extending the lifetime of orbital debris. The AFRL TacSat-2 satellite decommissioned in 2008 has finally re-entered into the atmosphere on February 5th after more than one year overdue. Concerning its demise we have monitored its orbital decay and monthly forecasted Tacsat-2 re-entry since September 2010 by using the Orbital Element Prediction (OEP) model developed by the AFRL Orbital Drag Environment program. The model combines estimates of future solar activity with neutral density models, drag coefficient models, and an orbit propagator to predict satellite lifetime. We run the OEP model with solar indices forecast by the NASA Marshall Solar Activity Future Estimation model, and neutral density forecast by the MSIS-00 neutral density model. Based on the two line elements in 2010 up to mid September, we estimated at a 50% confidence level TacSat-2's re-entry time to be in early February 2011, which turned out to be in good agreement with Tacsat-2's actual re-entry date. The potential space weather effects of the coming low activity solar cycle on satellite lifetime and orbital debris population are examined. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of solar flux on the orbital debris population in the 200-600 km altitude environment. The results are discussed for developing satellite orbital drag application product.

  19. GPs in principle but not in practice: a study of vocationally trained doctors not currently working as principals.

    PubMed Central

    Baker, M.; Williams, J.; Petchey, R.

    1995-01-01

    OBJECTIVES--To identify doctors who are vocationally trained but not currently practising as principals in general practice; their reasons for not practising as principals; and whether the prospect of a re-entry course would appear to this group. DESIGN--Postal questionnaire survey based on semistructured interviews. SUBJECTS--Doctors who had been vocationally trained but were not currently practising as principals: 351 possible subjects identified by a process of "networking." SETTING--Trent Regional Health Authority. RESULTS--166 of the doctors who replied fitted the criteria (100 women; 66 men). The out of hours commitment was ranked as the most important factor for not practising as a principal--95 women and 50 men rated it important--followed by difficulty in combining work with family commitments--84 women, 31 men. 82 respondents (49%) said they would be interested in a re-entry course if one were available. CONCLUSIONS--There is a pool of vocationally trained doctors in Trent region who are not practising as principals in general practice. More flexible working patterns and the availability of a re-entry course could make the post of principal in general practice a more attractive proposition to these doctors. PMID:7773045

  20. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    SciTech Connect

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  1. Demisable Reaction-Wheel Assembly

    NASA Technical Reports Server (NTRS)

    Roder, Russell; Ahronovich, Eliezer; Davis, Milton C., III

    2008-01-01

    A document discusses the concept of a demisable motor-drive-and-flywheel assembly [reaction-wheel assembly (RWA)] used in controlling the attitude of a spacecraft. Demisable as used here does not have its traditional legal meaning; instead, it signifies susceptible to melting, vaporizing, and/or otherwise disintegrating during re-entry of the spacecraft into the atmosphere of the Earth so as not to pose a hazard to anyone or anything on the ground. Prior RWAs include parts made of metals (e.g., iron, steel, and titanium) that melt at high temperatures and include structures of generally closed character that shield some parts (e.g., magnets) against re-entry heating. In a demisable RWA, the flywheel would be made of aluminum, which melts at a lower temperature. The flywheel web would not be a solid disk but would have a more open, nearly-spoke-like structure so that it would disintegrate more rapidly; hence, the flywheel rim would separate more rapidly so that parts shielded by the rim would be exposed sooner to re-entry heating. In addition, clearances between the flywheel and other components would be made greater, imparting a more open character and thus increasing the exposure of those components.

  2. Reliability of dynamic systems under limited information.

    SciTech Connect

    Field, Richard V., Jr.; Grigoriu, Mircea

    2006-09-01

    A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.

  3. Social Reintegration of Traumatic Brain-Injured: The French Experience

    PubMed Central

    Truelle, J.-L.; Wild, K. Von; Onillon, M.; Montreuil, M.

    2010-01-01

    Traumatic Brain Injury (TBI) may lead to specific handicap, often hidden, mainly due to cognitive and behavioural sequelae. Social re-entry is a long-term, fluctuant and precarious process. The French experience will be illustrated by 6 initiatives answering to 6 challenges to do with TBI specificities: 1. bridging the gap, between initial rehabilitation and community re-entry, via transitional units dealing with assessment, retraining, social/vocational orientation and follow-up. Today, there are 30 such units based on multidisciplinary teams. 2. assessing recovery by TBI-specific and validated evaluation tools: EBIS holistic document, BNI Screening of higher cerebral functions, Glasgow outcome extended, and QOLIBRI, a TBI-specific quality of life tool. 3. promoting specific re-entry programmes founded on limited medication, ecological neuro-psychological rehabilitation, exchange groups and workshops, violence prevention, continuity of care, environmental structuration, and “resocialisation”. 4. taking into account the “head injured family” 5. facilitating recovery after sports-related concussion 6. facing medico-legal consequences and compensation: In that perspective, we developed guidelines for TBI-specific expert appraisal, including mandatory neuro-psychological assessment, family interview and an annual forum gathering lawyers and health professionals. PMID:22028740

  4. Occupational competence and its relationship to emotional health in injured workers in return to work programs: a Malaysian study.

    PubMed

    Murad, Mohd Suleiman; O'brien, Lisa; Farnworth, Louise; Chien, Chi-Wen

    2013-03-01

    Workers with musculoskeletal disorders undertaking Malaysia's return to work (RTW) programmes may experience challenges in occupational competence (OC) and negative emotional states (NES). This study aimed to measure and examines the OC and NES of the workers by comparing specific comparison groups and groups of different phases. A total of 76 participants were recruited from a national RTW programme and categorized into three groups based on different RTW phases: off-work (n = 22), re-entry (n = 31), and maintenance (n = 23). Self-report questionnaires consisted of the Occupational Self Assessment version 2.2 and the Depression, Anxiety and Stress Scale-21. Results showed that injured workers exhibited significantly lower OC in comparison with an international group with various disabilities. In contrast, there was significantly higher NES when compared with Malaysia's general population. Significant differences in OC and NES were also found between workers in the three RTW phases. In particular, OC and NES in the off-work and re-entry phases were significantly lower (OC) and higher (NES) than in the maintenance phase. Furthermore, there was a moderate, negative correlation between OC and NES in the off-work and re-entry phase groups. This indicated that low levels of perceived OC were associated with higher levels of NES.

  5. Conceptual design of an Orbital Debris Defense System

    NASA Technical Reports Server (NTRS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-01-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  6. Conceptual design of an Orbital Debris Defense System

    NASA Astrophysics Data System (ADS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-08-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  7. Space safety trajectory optimization and debris analysis using ASTOS at ESA

    NASA Astrophysics Data System (ADS)

    Ortega, Guillermo; Blasco, Ana; Weikert, Sven

    This paper describes the coupling of the space trajectory optimization software ASTOS with a tool for splashdown analysis of separated spacecraft stages and debris called DARS (Destructive Analysis for Re-entry Spacecraft), and a Risk Analysis Module called RAM. ASTOS is a main reference tool for space trajectory optimization at ESA. It is also used to compute demise and break up of rocket stages and re-entry vehicles and analyze the risk to populated areas. ASTOS software is a simulation and optimization environment to compute optimal trajectories for a variety of complex multi-phase optimal control problems. It consists of fast and powerful optimization programs, PROMIS, CAMTOS, SOCS and TROPIC, that handle large and highly discretized problems, a user interface with multiple plot capability, and GISMO, an integrated graphical iteration monitor to review the optimization process and plot the state and control histories at intermediate steps during the optimization. The optimization programs used by ASTOS use Non-Linear Programming (NLP) mathematical solvers like NPSOL, SLSQP, SLLSQP, and SNOPT. These solvers use Sequential Quadratic Programming (SQP) mathematical algorithms to find the solution of the non-linear programming problems in trajectory optimization. ASTOS comprises an extensive model library, which allows launcher and re-entry spacecraft trajectory optimization without programming work. DARS considers not only a stage break-up, but also ablation and melting of the fragments, taking diverse materials and shapes into account. The paper discusses hazard due to stage and debris impact, considering the ESA launchers and re-entry vehicles as examples. Previous approaches for the impact point calculation during trajectory optimization are presented. Subsequently the results of these approaches are compared to DARS results. This paper shows that ASTOS and the DARS and RAM extensions can calculate impact points with satisfactory accuracy and calculation time

  8. EntrySat: A 3U CubeStat to study the reentry atmospheric environment

    NASA Astrophysics Data System (ADS)

    Anthony, Sournac; Raphael, Garcia; David, Mimoun; Jeremie, Chaix

    2016-04-01

    ISAE France Entrysat has for main scientific objective the study of uncontrolled atmospheric re-entry. This project, is developed by ISAE in collaboration with ONERA and University of Toulouse, is funded by CNES, in the overall frame of the QB50 project. This nano-satellite is a 3U Cubesat measuring 34*10*10 cm3, similar to secondary debris produced during the break up of a spacecraft. EntrySat will collect the external and internal temperatures, pressure, heat flux, attitude variations and drag force of the satellite between ≈150 and 90 km before its destruction in the atmosphere, and transmit them during the re-entry using the IRIDIUM satellite network. The result will be compared with the computations of MUSIC/FAST, a new 6-degree of freedom code developed by ONERA to predict the trajectory of space debris. In order to fulfil the scientific objectives, the satellite will acquire 18 re-entry sensors signals, convert them and compress them, thanks to an electronic board developed by ISAE students in cooperation with EREMS. In order to transmit these data every second during the re-entry phase, the satellite will use an IRIDIUM connection. In order to keep a stable enough attitudes during this phase, a simple attitude orbit and control system using magnetotorquers and an inertial measurement unit (IMU) is developed at ISAE by students. A commercial GPS board is also integrated in the satellite into Entry Sat to determine its position and velocity which are necessary during the re-entry phase. This GPS will also be used to synchronize the on-board clock with the real-time UTC data. During the orbital phase (≈2 year) EntrySat measurements will be recorded transmitted through a more classical "UHF/VHF" connection. Preference for presentation: Poster Most suitable session: Author for correspondence: Dr Raphael F. Garcia ISAE 10, ave E. Belin, 31400 Toulouse, France Raphael.GARCIA@isae.fr +33 5 61 33 81 14

  9. ESTIMATING THE BENEFIT OF TRMM TROPICAL CYCLONE DATA IN SAVING LIVES

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.

    2005-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint NASA/JAXA research mission launched in late 1997 to improve our knowledge of tropical rainfall processes and climatology (Kummerow et ai., 2000; Adler et ai., 2003). In addition to being a highly successful research mission, its data are available in real time and operational weather agencies in the U.S. and internationally are using TRMM data and images to monitor and forecast hazardous weather (tropical cyclones, floods, etc.). For example, in 2004 TRMM data were used 669 times for determining tropical cyclone location fixes (National Research Council, 2004). TRMM flies at a relatively low altitude, 400 km, and requires orbit adjustment maneuvers to maintain altitude against the small drag of the atmosphere. There is enough fuel used for these maneuvers remaining on TRMM for the satellite to continue flying until 2011-12. However, most of the remaining fuel may be used to perform a controlled re-entry of the satellite into the Pacific Ocean. The fuel threshold for this operation will be reached in the summer of 2005, although the maneuver would actually occur in late 2006 or 2007. The full science mission would end in 2005 under the controlled re-entry option. This re-entry option is related to the estimated probability of injury (1/5,000) that might occur during an uncontrolled re-entry of the satellite. If the estimated probability of injury exceeds 1/10,000 a satellite is a candidate for a possible controlled re-entry. In the TRMM case the NASA Safety Office examined the related issues and concluded that, although TRMM exceeded the formal threshold, the use of TRMM data in the monitoring and forecasting of hazardous weather gave a public safety benefit that compensated for TRMM slightly exceeding the orbital debris threshold (Martin, 2002). This conclusion was based in part on results of an independent panel during a workshop on benefits of TRMM data in concluded that the benefit of TRMM data in saving

  10. RITD – Wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Schmidt, Walter; Heilimo, Jyri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Arruego, Ignazio

    2015-04-01

    An atmospheric re-entry and descent and landing system (EDLS) concept based on inflatable hypersonic decelerator techniques is highly promising for the Earth re-entry missions. We developed such EDLS for the Earth re-entry utilizing a concept that was originally developed for Mars. This EU-funded project is called RITD - Re-entry: Inflatable Technology Development - and it was to assess the bene¬fits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develope a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. The RITD entry and descent system utilizes an inflatable hypersonic decelerator. Development of such system requires a combination of wind tunnel tests and numerical simulations. This included wind tunnel tests both in transsonic and subsonic regimes. The principal aim of the wind tunnel tests was the determination of the RITD damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere. The RITD mock-up model used in the tests was in scale of 1:15 of the real-size vehicle as the dimensions were (midsection) diameter of 74.2 mm and length of 42 mm. For wind tunnel testing purposes the frontal part of the mock-up model body was manufactured by using a PolyJet 3D printing technology based on the light curing of liquid resin. The tail part of the mock-up model body was manufactured of M1 grade copper. The structure of the mock-up model placed th center of gravity in the same position as that of the real-size RITD. The wind tunnel test program included the defining of the damping factor at seven values of Mach numbers 0.85; 0.95; 1.10; 1.20; 1.25; 1.30 and 1.55 with the angle of attack ranging from 0 degree to 40 degrees with the step of 5 degrees. The damping characteristics of

  11. Base Flow Investigation of the Apollo AS-202 Command Module. Chapter 6

    NASA Technical Reports Server (NTRS)

    Walpot, Louis M. G.; Wright, Michael J.; Noeding, Peter; Schrijer, Ferry

    2011-01-01

    In recent years, both Europe and the US are developing hypersonic research and operational vehicles. These include (re)entry capsules (both ballistic and lifting) and lifting bodies such as ExoMars, EXPERT, ARV, CEV and IXV. The research programs are meant to enable technology and engineering capabilities to support during the next decade the development of affordable (possibly reusable) space transportation systems as well as hypersonic weapons systems for time critical targets. These programs have a broad range of goals, ranging from the qualification of thermal protection systems, the assessment of RCS performances, the development of GNC algorithms, to the full demonstration of the performance and operability of the integrated vehicles. Since the aerothermodynamic characteristics influence nearly all elements of the vehicle design, the accurate prediction of the aerothermal environment is a prerequisite for the design of efficient hypersonic systems. Significant uncertainties in the prediction of the hypersonic aerodynamic and the aerothermal loads can lead to conservative margins in the design of the vehicle including its Outer Mould Line (OML), thermal protection system, structure, and required control system robustness. The current level of aerothermal prediction uncertainties results therefore in reduced vehicle performances (e.g., sub-optimal payload to mass ratio, increased operational constraints). On the other hand, present computational capabilities enable the simulation of three dimensional flow fields with complex thermo-chemical models over complete trajectories and ease the validation of these tools by, e.g., reconstruction of detailed wind tunnel tests performed under identified and controlled conditions (flow properties and vehicle attitude in particular). These controlled conditions are typically difficult to achieve when performing in flight measurements which in turn results in large associated measurement uncertainties. Similar problems arise

  12. Intermediate Experimental Vehicle, ESA Program IXV ATDB Tool and Aerothermodynamic Characterization

    NASA Astrophysics Data System (ADS)

    Mareschi, Vincenzo; Ferrarella, Daniela; Zaccagnino, Elio; Tribot, Jean-Pierre; Vallee, Jean-Jacques; Haya-Ramos, Rodrigo; Rufolo, Giuseppe; Mancuso, Salvatore

    2011-05-01

    In the complex domain of the space technologies and among the different applications available in Europe, a great interest has been placed since several years in the development of re-entry technologies. Among the different achievements obtained in that field it is to be recalled the experience of the Atmospheric Re-entry Vehicle flight in 1998 and a certain number of important investments per-formed at Agency and national levels like Hermes, MSTP, Festip, X-38, FLPP, TRP, GSTP, HSTS, AREV, Pre-X. IXV (Intermediate eXperimental V ehicle) builds on these past experiences and studies and it is conceived to be the next technological step forward with respect to ARD With respect to previous European ballistic or quasi- ballistic demonstrators, IXV will have an increased in- flight manoeuvrability and the planned mission will allow verifying the performances of the required technologies against a wider re-entry corridor. This will imply from the pure technological aspect to increase the level of engagement on critical technologies and disciplines like aerodynamics/aerothermodynamics, guidance, navigation, control, thermal protection materials and in flight measurements. In order to support the TPS design and the other sub- systems, an AeroThermodynamicDataBase Tool has been developed by Dassault Aviation and integrated by Thales Alenia Space with the Functional Engineering Simulator (used for GNC performances evaluation) in order to characterize the aerothermodynamic behaviour of the vehicle. This paper will describe: - The methodology used to develop the ATDB tool, based on the processing of CFD computations and WTT campaigns results. - The utilization of the ATDB tool, by means of its integration into the System process. - The methodology used for the aerothermal characterization of IXV.

  13. Repression of DNA replication licensing in quiescence is independent of geminin and may define the cell cycle state of progenitor cells

    SciTech Connect

    Kingsbury, Sarah R.; Loddo, Marco; Fanshawe, Thomas; Obermann, Ellen C.; Prevost, A. Toby; Stoeber, Kai . E-mail: k.stoeber@ucl.ac.uk; Williams, Gareth H.

    2005-09-10

    The DNA replication (or origin) licensing machinery ensures precise duplication of the genome and contributes to the regulation of proliferative capacity in metazoa. Using an in vitro fibroblast model system coupled to a cell-free DNA replication assay, we have studied regulation of the origin licensing pathway during exit from and re-entry into the mitotic cell cycle. We show that in the quiescent state (G0) loss of proliferative capacity is achieved in part through down-regulation of the replication licensing factors Cdc6 and Mcm2-7. The origin licensing repressor geminin is absent in quiescent fibroblasts, suggesting that this powerful inhibitor of the licensing machinery is not required to suppress proliferative capacity in G0. Geminin expression is induced at a late stage in the G0-S transition post pre-RC assembly. Ectopic geminin can block re-acquisition of DNA replication competence during re-entry into the cell cycle, indicating that geminin levels must be tightly down-regulated for escape from G0. Analysis of geminin levels in thyroid shows that geminin expression is suppressed in anatomical compartments/tissues harbouring quiescent cells, confirming our in vitro data. Spatio-temporal control of geminin expression may therefore be of particular relevance for multi-potential stem cells which cycle infrequently. In support of this hypothesis, we have identified a unique population of cells in the putative stem cell niche of intestinal epithelium that are unlicensed and lack geminin expression, a prerequisite for successful re-entry into cycle. Our data argue that the prolonged cell cycle times observed for intestinal stem cells could be due to exit of progenitor cells from cycle into an unlicensed 'out-of-cycle' state, a powerful mechanism by which rapidly proliferating tissues may resist genotoxic insult.

  14. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria.

    PubMed

    Colman, Michael A; Aslanidi, Oleg V; Kharche, Sanjay; Boyett, Mark R; Garratt, Clifford; Hancox, Jules C; Zhang, Henggui

    2013-09-01

    Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche-Ramirez-Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca(2+) handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate

  15. Potential applications of skip SMV with thrust engine

    NASA Astrophysics Data System (ADS)

    Wang, Weilin; Savvaris, Al

    2016-11-01

    This paper investigates the potential applications of Space Maneuver Vehicles (SMV) with skip trajectory. Due to soaring space operations over the past decades, the risk of space debris has considerably increased such as collision risks with space asset, human property on ground and even aviation. Many active debris removal methods have been investigated and in this paper, a debris remediation method is first proposed based on skip SMV. The key point is to perform controlled re-entry. These vehicles are expected to achieve a trans-atmospheric maneuver with thrust engine. If debris is released at altitude below 80 km, debris could be captured by the atmosphere drag force and re-entry interface prediction accuracy is improved. Moreover if the debris is released in a cargo at a much lower altitude, this technique protects high value space asset from break up by the atmosphere and improves landing accuracy. To demonstrate the feasibility of this concept, the present paper presents the simulation results for two specific mission profiles: (1) descent to predetermined altitude; (2) descent to predetermined point (altitude, longitude and latitude). The evolutionary collocation method is adopted for skip trajectory optimization due to its global optimality and high-accuracy. This method is actually a two-step optimization approach based on the heuristic algorithm and the collocation method. The optimal-control problem is transformed into a nonlinear programming problem (NLP) which can be efficiently and accurately solved by the sequential quadratic programming (SQP) procedure. However, such a method is sensitive to initial values. To reduce the sensitivity problem, genetic algorithm (GA) is adopted to refine the grids and provide near optimum initial values. By comparing the simulation data from different scenarios, it is found that skip SMV is feasible in active debris removal and the evolutionary collocation method gives a truthful re-entry trajectory that satisfies the

  16. Prediction of STS-107 Hypervelocity Flow Fields about the Shuttle Orbiter with Various Wing Leading Edge Damage

    NASA Technical Reports Server (NTRS)

    Pulsonetti, Maria V.; Thompson, Richard A.; Alter, Stephen J.

    2004-01-01

    Computations were performed for damaged configurations of the Shuttle Orbiter in support of the STS-107 Columbia accident investigation. Two configurations with missing wing leading-edge reinforced carbon-carbon (RCC) panels were evaluated at conditions just prior to the peak heating trajectory point. The initial configuration modeled the Orbiter with an approximate missing RCC panel 6 to determine whether this damage could result in anomalous temperatures measured during the STS-107 reentry. This missing RCC panel 6 computation was found to produce heating augmentation factors of 5 times the nominal heating rates on the side fuselage with lesser heat increases on the front of the OMS pod. This is consistent with the thermocouple and resistance temperature detector sensors from the STS-107 re-entry which observed off nominal high early in the re-entry trajectory. A second damaged configuration modeled the Orbiter with missing RCC panel 9 and included ingestion of the flow into the outboard RCC channel. This computation lowered the level (only 2 times nominal) and moved the location of the heating augmentation on the leeside fuselage relative to the missing RCC panel 6 configuration. The lesser heating augmentation for missing RCC panel 9 was confined near the wing fuselage juncture. Near nominal heating was predicted on the remainder of the side fuselage with some lower than nominal heating on the front surface of the OMS pod. These results for missing RCC panel 9 are consistent with data from the STS-107 re-entry where the heating augmentation was observed to move off the side fuselage and OMS pod sensors at later times in the trajectory. As this solution requires supersonic mass ingestion into the RCC channel, it is probably not an appropriate model prior to penetration of the flow through the spar into the wing structure. It may, however, be representative of the conditions at later times and could account for the movement of the heating signature on the side

  17. CubeSat Material Limits for Design for Demise

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.

    2014-01-01

    The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with re-entry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with re-entry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for re-entry survivability analysis tool comparison will be discussed.

  18. Experimental Study Of SHEFEX II Hypersonic Aerodynamics And Canard Efficiency In H2K

    NASA Astrophysics Data System (ADS)

    Neeb, D.; Gulhan, A.

    2011-05-01

    One main objective of the DLR SHEFEX programme is to prove that sharp edged vehicles are capable of performing a re-entry into earth atmosphere by using a simple thermal protection system consisting of flat ceramic tiles. In comparison to blunt nose configurations like the Space shuttle, which are normally used for re-entry configurations, the SHEFEX TPS design is able to significantly reduce the costs and complexity of TPS structures and simultaneously increase the aerodynamic performance of the flight vehicle [1], [2]. To study its characteristics and perform several defined in-flight experiments during re-entry, the vehicle’s attitude will be controlled actively by canards [3]. In the framework of the SHEFEX II project an experimental investigation has been conducted in the hypersonic wind tunnel H2K to characterize the aerodynamic performance of the vehicle in hypersonic flow regime. The model has a modular design to enable the study of a variety of different influencing parameters. Its 4 circumferential canards have been made independently adjustable to account for the simulation of different manoeuvre conditions. To study the control behaviour of the vehicle and validate CFD data, a variation of canard deflections, angle of attack and angle of sideslip have been applied. Tests have been carried out at Mach 7 and 8.7 with a Reynolds number sensitivity study at the lower Mach number. The model was equipped with a six component internal balance to realize accurate coefficient measurements. The flow topology has been analyzed using Schlieren images. Beside general aerodynamic performance and canard efficiencies, flow phenomena like shock impingement on the canards could be determined by Schlieren images as well as by the derived coefficients.

  19. A Unified Hypothesis of Early- and Late-Onset Alzheimer's Disease Pathogenesis.

    PubMed

    Atwood, Craig S; Bowen, Richard L

    2015-01-01

    Early-onset familial Alzheimer's disease (EOFAD) and late-onset sporadic AD (LOSAD) both follow a similar pathological and biochemical course that includes: neuron and synapse loss and dysfunction, microvascular damage, microgliosis, extracellular amyloid-β deposition, tau phosphorylation, formation of intracellular neurofibrillary tangles, endoreduplication and related cell cycle events in affected brain regions. Any mechanistic explanation of AD must accommodate these biochemical and neuropathological features for both forms of the disease. In this insight paper we provide a unifying hypothesis for EOFAD and LOSAD that proposes that the aberrant re-entry of terminally differentiated, post-mitotic neurons into the cell division cycle is a common pathway that explains both early and late-onset forms of AD. Cell cycle abnormalities appear very early in the disease process, prior to the appearance of plaques and tangles, and explain the biochemical (e.g. tau phosphorylation), neuropathological (e.g. neuron hypertrophy; polypoidy) and cognitive changes observed in EOFAD and LOSAD. Genetic mutations in AβPP, PSEN1, and PSEN2 that alter amyloid-β precursor protein and Notch processing drive reactivation of the cell cycle in EOFAD, while age-related reproductive endocrine dyscrasia that upregulates mitogenic TNF signaling and AβPP processing toward the amyloidogenic pathway drives reactivation of the cell cycle in LOSAD. In essence, AβPP and presenilin mutations initiate early, what endocrine dyscrasia initiates later: aberrant cell cycle re-entry of post-mitotic neurons leading to neurodegeneration and cognitive decline in AD. Inhibition of cell cycle re-entry in post-mitotic neurons may be a useful therapeutic strategy to prevent, slow or halt disease progression.

  20. A Six-Month Clinical Evaluation of Decalcified Freeze-Dried Bone Allografts in Periodontal Osseous Defects.

    DTIC Science & Technology

    1983-12-15

    made with a itent and a calibrated periodontal probe before surgery , at the time of surgery , and at re-entry. The combined mean osseous regeneration for...in periodontal surgery . J Pereaso el S&5, S. Unist, MI. A.. Silverman, 3. F., Biring. K., Dubuc, F. L., and 1981. Rosenberg, J. M.: The bone induction...calibrated periodontal probe before surgery , at the t~in Fell W143 ONMiw of I Bev so eweOev SM ------4s1 WI UNCLALSSIIIKD SUCUft CLMPICATbo Or Title

  1. Insulation Material

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Manufactured by Hitco Materials Division of Armco, Inc. a ceramic fiber insulation material known as Refrasil has been used extensively as a heat-absorbing ablative reinforcement for such space systems as rocket motor nozzles, combustion chambers, and re-entry shields. Refrasil fibers are highly porous and do not melt or vaporize until fibers exceed 3,100 degrees Fahrenheit. Due to these and other properties, Refrasil has found utility in a number of industrial high temperature applications where glass, asbestos and other materials fail. Hitco used this insulation to assist Richardson Co., Inc. in the manufacturing of hard rubber and plastic molded battery cases.

  2. Background-Oriented Schlieren for Large-Scale and High-Speed Aerodynamic Phenomena

    NASA Technical Reports Server (NTRS)

    Mizukaki, Toshiharu; Borg, Stephen; Danehy, Paul M.; Murman, Scott M.; Matsumura, Tomoharu; Wakabayashi, Kunihiko; Nakayama, Yoshio

    2015-01-01

    Visualization of the flow field around a generic re-entry capsule in subsonic flow and shock wave visualization with cylindrical explosives have been conducted to demonstrate sensitivity and applicability of background-oriented schlieren (BOS) for field experiments. The wind tunnel experiment suggests that BOS with a fine-pixel imaging device has a density change detection sensitivity on the order of 10(sup -5) in subsonic flow. In a laboratory setup, the structure of the shock waves generated by explosives have been successfully reconstructed by a computed tomography method combined with BOS.

  3. High efficiency tantalum-based ceramic composite structures

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor); DiFiore, Robert R. (Inventor); Katvala, Victor W. (Inventor)

    2010-01-01

    Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000.degree. F. and above.

  4. Engineering Support of Microgravity Life Science Research: Development of an Avian Development Facility

    NASA Technical Reports Server (NTRS)

    Vellinger, J.; Deuser, M.; Hullinger, R.

    1995-01-01

    The Avian Development Facility (ADF) is designed to provide a 'window' for the study of embryogenesis in space. It allows researchers to determine and then to mitigate or nullify the forces of altered gravity upon embryos when leaving and re-entering the Earth's gravity. The ADF design will allow investigations to begin their incubation after their experiments have achieved orbit, and shut down the experiment and fix specimens before leaving orbit. In effect, the ADF makes every attempt to minimize launch and re-entry effects in order to isolate and preserve the effects of the experimental variable(s) of the space environment.

  5. Symmetric missile dynamic instabilities: A review

    NASA Astrophysics Data System (ADS)

    Murphy, C. H.

    1980-03-01

    Dynamic instabilities observed for symmetric missiles and projectiles arise from a large variety of causes. These include unstable linear damping moments, and different nonlinear in-plane and out-of-plane damping moments for nonspinning re-entry vehicles, nonlinear Magnus moments for spinning missiles, and internal resonance with moving payload components. If aerodynamic trim is present, linear spin-yaw resonance can occur as well as nonlinear subharmonic motions and a number of other limit motions. This report gives a complete survey of these possibilities with a number of actual case histories.

  6. Orion Multi-Purpose Crew Vehicle (MPCV) Capsule Parachute Assembly System (CPAS) Wake Deficit Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Schuster, David M.

    2014-01-01

    During descent after re-entry into the Earth's atmosphere, the Orion CM deploys its drogue parachutes at approximately Mach 0.7. Accurately predicting the dynamic pressure experienced by the drogue parachutes at deployment is critical to properly designing the parachutes. This NASA Engineering and Safety Center assessment was designed to provide a complete set of flowfield measurements on and around an idealized Orion Crew Module shape with the most appropriate wind tunnel simulation of the Orion flight conditions prior to parachute deployment. This document contains the details of testing and the outcome of the assessment.

  7. Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    1999-01-01

    An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle re-entry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800 degrees Fahrenheit. The environmental pressure was varied from 0.0001 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of Saffil, Q-Fiber felt, Cerachrome, and three multi-layer insulation configurations were measured.

  8. An Overview of Demise Calculations, Conceptual Design Studies, and Hydrazine Compatibility Testing for the GPM Core Spacecraft Propellant Tank

    NASA Technical Reports Server (NTRS)

    Estes, Robert H.; Moore, N. R.

    2007-01-01

    NASA's Global Precipitation Measurement (GPM) mission is an ongoing Goddard Space Flight Center (GSFC) project whose basic objective is to improve global precipitation measurements. It has been decided that the GPM spacecraft is to be a "design for demise" spacecraft. This requirement resulted in the need for a propellant tank that would also demise or ablate to an appropriate degree upon re-entry. This paper will describe GSFC-performed spacecraft and tankage demise analyses, vendor conceptual design studies, and vendor performed hydrazine compatibility and wettability tests performed on 6061 and 2219 aluminum alloys.

  9. The 15 kW sub e (nominal) solar thermal electric power conversion concept definition study: Steam Rankine turbine system

    NASA Technical Reports Server (NTRS)

    Bland, T. J.

    1979-01-01

    A study to define the performance and cost characteristics of a solar powered, steam Rankine turbine system located at the focal point of a solar concentrator is presented. A two stage re-entry turbine with reheat between stages, which has an efficiency of 27% at a turbine inlet temperature of 732 C was used. System efficiency was defined as 60 Hertz electrical output divided by absorbed thermal input in the working fluid. Mass production costs were found to be approximately 364 dollars/KW.

  10. STS-114: Discovery Post Landing Press Briefing from JSC

    NASA Technical Reports Server (NTRS)

    2005-01-01

    LeRoy Cain, STS-114 Ascent/Entry Flight Director, takes a solo stand with the Press in this briefing. He noted that the successful flight and return of Discovery is another important milestone, a fresh start, and a new beginning as part of NASA's commitment to the President's vision of man's return to the Moon, Mars and beyond. From this successful test flight, NASA will have a lot of learning and hard work to do in preparation for the next flight. Weather factors, safe landing, touch down, communications, re-entry, the Columbia, were some topics covered with the News media.

  11. STS-114: Discovery Post Landing Press Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Dean Acosta, NASA Public Affairs Deputy Assistant Administrator hosted this press briefing. Michael Griffin, NASA Administrator; Bill Parsons, Shuttle Program Manager; Michael Leinbach, Shuttle Launch Director; and Bill Ready, Space Operations Associate Administrator were present. The Panel specifically honored the Columbia crew as they praised Commander Eileen Collin's performance in bringing the Discovery and crew safe back to Earth. Re-entry, test flight and next test flight, thermal insulation, heat, vehicle inspection, turn around processing, and ferrying Discovery back to the Kennedy Space Center were topics covered with the News media. Michael Griffin announced the launching of Mars Reconnaissance Orbiter will take place the following morning.

  12. Polyimide Boosts High-Temperature Performance

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Maverick Corporation, of Blue Ash, Ohio, licensed DMBZ-15 polyimide technology from Glenn Research Center. This ultrahigh-temperature material provides substantial weight savings and reduced machining costs compared to the same component made with more traditional metallic materials. DMBZ-15 has a wide range of applications from aerospace (aircraft engine and airframe components, space transportation systems, and missiles) to non-aerospace (oil drilling, rolling mill), and is particularly well-suited to use as face sheets with honey cones or thermal protection systems for reusable launch vehicles, which encounter elevated temperatures during launch and re-entry.

  13. Analysis of low-density effects in suborbital flight of FAST20XX

    NASA Astrophysics Data System (ADS)

    Votta, Raffaele; Marini, Marco; Morsa, Luigi; Fels, Giorgio; Zuppardi, Gennaro; Schwanekamp, Tobias; Sippel, Martin

    2012-11-01

    The paper studies the high altitude effects to the future hypersonic/suborbital re-entry vehicle SpaceLiner developed in the framework of EC-funded FAST20XX project. Bridging functions have been developed and validated by means of DSMC calculations. The effects of rarefaction on global longitudinal aerodynamics of SpaceLiner in the range of altitude 65÷85 km have been pointed out by comparing to the aerodatabase in continuum regime conditions. DSMC computation has been done in the higher SpaceLiner altitude point confirming the bridging function results and providing heat transfer estimations.

  14. Hole cleaning imperative in coiled tubing drilling operations

    SciTech Connect

    Rameswar, R.M.; Mudda, K.

    1995-09-01

    Annular flow modeling in coiled tubing applications is essential for optimizing mud rheology and keeping the hole clean. Cuttings transport in coiled tubing drilling must be optimized, particularly the modeling of hole cleaning capabilities. The effects of two different muds in contrasting geometries on hold cleaning efficiency are considered, with the simulation performed using Petrocalc 14. Coiled tubing is widely used to drill new vertical and horizontal wells, and in re-entry operations. Horizontal well problems are subsequently modeled, where annular eccentricities can range anywhere from concentric to highly offset, given the highly buckled or helically deflected states of many drill coils.

  15. Waves in space plasma dipole antenna subsystem

    NASA Technical Reports Server (NTRS)

    Thomson, Mark

    1993-01-01

    The Waves In Space Plasma (WISP) flight experiment requires a 50-meter-long deployable dipole antenna subsystem (DASS) to radiate radio frequencies from the STS Orbiter cargo bay. The transmissions are to excite outer ionospheric plasma between the dipole and a free-flying receiver (Spartan) for scientific purposes. This report describes the singular DASS design requirements and how the resulting design satisfies them. A jettison latch is described in some detail. The latch releases the antenna in case of any problems which might prevent the bay doors from closing for re-entry and landing of the Orbiter.

  16. Planetary Mission Entry Vehicles Quick Reference Guide. Version 3.0

    NASA Technical Reports Server (NTRS)

    Davies, Carol; Arcadi, Marla

    2006-01-01

    This is Version 3.0 of the planetary mission entry vehicle document. Three new missions, Re-entry F, Hayabusa, and ARD have been added to t he previously published edition (Version 2.1). In addition, the Huyge ns mission has been significantly updated and some Apollo data correc ted. Due to the changing nature of planetary vehicles during the desi gn, manufacture and mission phases, and to the variables involved in measurement and computation, please be aware that the data provided h erein cannot be guaranteed. Contact Carol Davies at cdavies@mail.arc. nasa.gov to correct or update the current data, or to suggest other missions.

  17. 2001 Flight Mechanics Symposium

    NASA Technical Reports Server (NTRS)

    Lynch, John P. (Editor)

    2001-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on June 19-21, 2001. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to attitude/orbit determination, prediction and control; attitude simulation; attitude sensor calibration; theoretical foundation of attitude computation; dynamics model improvements; autonomous navigation; constellation design and formation flying; estimation theory and computational techniques; Earth environment mission analysis and design; and, spacecraft re-entry mission design and operations.

  18. Ventricular Tacyhcardia in A Patient with A Previous History of Endocarditis and Ankylosan Spondylitis: A Challenging Case

    PubMed Central

    Koza, Yavuzer; Taş, Muhammed Hakan; Şimşek, Ziya; Gündoğdu, Fuat

    2016-01-01

    Cardiac conduction defects are commonly observed in patients with ankylosing spondylitis, infective endocarditis, and aortic valve replacement. Each of these clinical situations can also present with ventricular tacyhcardia by different mechanisms. Here we report the case of a 53-year-old man with a medical history of untreated ankylosing spondylitis and aortic valve replacement who presented with ventricular tachycardia and underwent successful catheter ablation. Most ventricular tachycardia episodes were intermittent and drug resistant, which could have been caused by abnormal automaticity rather than re-entry. PMID:28149150

  19. Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment

    NASA Astrophysics Data System (ADS)

    Brandstätter, Franz; Brack, André; Baglioni, Pietro; Cockell, Charles S.; Demets, René; Edwards, Howell G. M.; Kurat, Gero; Osinski, Gordon R.; Pillinger, Judith M.; Roten, Claude-Alain; Sancisi-Frey, Suzy

    2008-05-01

    The generic concept of the artificial meteorite experiment STONE is to fix rock samples bearing microorganisms on the heat shield of a recoverable space capsule and to study their modifications during atmospheric re-entry. The STONE-5 experiment was performed mainly to answer astrobiological questions. The rock samples mounted on the heat shield were used (i) as a carrier for microorganisms and (ii) as internal control to verify whether physical conditions during atmospheric re-entry were comparable to those experienced by "real" meteorites. Samples of dolerite (an igneous rock), sandstone (a sedimentary rock), and gneiss impactite from Haughton Crater carrying endolithic cyanobacteria were fixed to the heat shield of the unmanned recoverable capsule FOTON-M2. Holes drilled on the back side of each rock sample were loaded with bacterial and fungal spores and with dried vegetative cryptoendoliths. The front of the gneissic sample was also soaked with cryptoendoliths. The mineralogical differences between pre- and post-flight samples are detailed. Despite intense ablation resulting in deeply eroded samples, all rocks in part survived atmospheric re-entry. Temperatures attained during re-entry were high enough to melt dolerite, silica, and the gneiss impactite sample. The formation of fusion crusts in STONE-5 was a real novelty and strengthens the link with real meteorites. The exposed part of the dolerite is covered by a fusion crust consisting of silicate glass formed from the rock sample with an admixture of holder material (silica). Compositionally, the fusion crust varies from silica-rich areas (undissolved silica fibres of the holder material) to areas whose composition is "basaltic". Likewise, the fusion crust on the exposed gneiss surface was formed from gneiss with an admixture of holder material. The corresponding composition of the fusion crust varies from silica-rich areas to areas with "gneiss" composition (main component potassium-rich feldspar). The

  20. DISCOS- Current Status and Future Developments

    NASA Astrophysics Data System (ADS)

    Flohrer, T.; Lemmens, S.; Bastida Virgili, B.; Krag, H.; Klinkrad, H.; Parrilla, E.; Sanchez, N.; Oliveira, J.; Pina, F.

    2013-08-01

    We present ESA's Database and Information System Characterizing Objects in Space (DISCOS). DISCOS not only plays an essential role in the collision avoidance and re-entry prediction services provided by ESA's Space Debris Office, it is also providing input to numerous and very differently scoped engineering activities, within ESA and throughout industry. We introduce the central functionalities of DISCOS, present the available reporting capabilities, and describe selected data modelling features. Finally, we revisit the developments of the recent years and take a sneak preview of the on-going replacement of DISCOS web front-end.

  1. "Move the cap" technique for ambiguous or impenetrable proximal cap of coronary total occlusion.

    PubMed

    Vo, Minh N; Karmpaliotis, Dimitri; Brilakis, Emmanouil S

    2016-03-01

    Antegrade crossing remains the most commonly employed crossing strategy for coronary chronic total occlusions (CTOs) but can be challenging to perform in cases of ambiguous or impenetrable proximal cap. To successfully treat such cases, we describe a technique named "move the cap," in which the subintimal space is entered proximal to the proximal cap using a stiff coronary guidewire or facilitated by inflating a slightly oversized balloon. Subintimal guidewire entry is followed by standard antegrade dissection and re-entry. The "move the cap" technique can facilitate crossing of CTOs with ambiguous or impenetrable cap, while minimizing the risk of perforation. This technique is also useful for treating balloon uncrossable lesions.

  2. In-situ observations of high-latitude thermosphere-mesosphere turbulence

    NASA Astrophysics Data System (ADS)

    Wanliss, James; Larsen, Miguel

    2011-01-01

    Sounding rocket measurements have provided some of the most detailed observations of the small-scale response of the neutral lower thermosphere to magnetospheric energy input in the auroral zone. In January and February 2007, a series of such launches were carried out at Poker Flat, Alaska. We were able to detect the development of atmospheric turbulence near 100 km through analysis of the trimethyl aluminum (TMA) re-entry bag. The atmospheric turbulence develops soon after the cloud forms, and proceeds from Navier-Stokes through Kraichnan turbulence in the most diffuse observations.

  3. Paroxysmal Supraventricular Tachycardia: Pathophysiology, Diagnosis, and Management.

    PubMed

    Al-Zaiti, Salah S; Magdic, Kathy S

    2016-09-01

    Paroxysmal supraventricular tachycardia (PSVT) is a well-known and thoroughly studied clinical syndrome, characterized by regular tachycardia rhythm with sudden onset and abrupt termination. Most patients present with palpitations and dizziness, and their electrocardiogram demonstrates a narrow QRS complex and regular tachycardia with hidden or inverted P waves. PSVT is caused by re-entry due to the presence of inhomogeneous, accessory, or concealed conducting pathways. Hemodynamically stable patients are treated by vagal maneuvers, intravenous adenosine, diltiazem, or verapamil, hemodynamically unstable patients are treated by cardioversion. Patients with symptomatic and recurrent PSVT can be treated with long-term drug treatment or catheter ablation.

  4. 10.2 Thermal-Structural Testing

    NASA Technical Reports Server (NTRS)

    Hudson, Larry D.

    2008-01-01

    Objective: Test a C/SiC Ruddervator Subcomponent under relevant thermal, mechanical & dynamic loading a) Thermal-structural mission cycling for re-entry and hypersonic cruise conditions; b) High-temperature modal survey to study the effect of heating on mode shapes, natural frequencies and damping. Supports NASA ARMD Hypersonics Material & Structures Program. Partners: NASA Dryden / Langley / Glenn, Lockheed-Martin, Materials Research & Design, GE CCP Test Phases - Phase 1: Acoustic-Vibration Testing (LaRC) completed - Phase 2: Thermal-Mechanical Testing (DFRC) in assembly - Phase 3: Mechanical Testing (DFRC) in assembly

  5. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Rupert, A. H.; Reschke, M. F.; Harm, D. L.; Guedry, F. E.

    2007-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  6. New methods to detect particle velocity and mass flux in arc-heated ablation/erosion facilities

    NASA Technical Reports Server (NTRS)

    Brayton, D. B.; Bomar, B. W.; Seibel, B. L.; Elrod, P. D.

    1980-01-01

    Arc-heated flow facilities with injected particles are used to simulate the erosive and ablative/erosive environments encountered by spacecraft re-entry through fog, clouds, thermo-nuclear explosions, etc. Two newly developed particle diagnostic techniques used to calibrate these facilities are discussed. One technique measures particle velocity and is based on the detection of thermal radiation and/or chemiluminescence from the hot seed particles in a model ablation/erosion facility. The second technique measures a local particle rate, which is proportional to local particle mass flux, in a dust erosion facility by photodetecting and counting the interruptions of a focused laser beam by individual particles.

  7. Productivity improvement by frontier horizontal drilling in Italy

    SciTech Connect

    Schenato, A.

    1995-12-31

    Italian domestic activity on horizontal wells has been specially addressed to carbonate reservoir and specifically targeted to re-entry in existing wells. The speech will focus on the specific experience matured in frontier applications in Italy, from 1989 with the short radius drain holes in Sicily, throughout world record deep water short radius in the southern part of Adriatic sea and depth world record medium radius in a HP/HT reservoir in the Po Valley. Production results will be reported as well as the achieved technological aspects.

  8. Aerospace gerontology

    NASA Technical Reports Server (NTRS)

    Comfort, A.

    1982-01-01

    The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.

  9. STS-88 Mission Specialist Ross prepares to enter Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialist Jerry L. Ross is assisted with his ascent and re-entry flight suit in the white room at Launch Pad 39A before entering Space Shuttle Endeavour for launch. During the nearly 12-day mission, the six-member crew will mate the first two elements of the International Space Station -- the already-orbiting Zarya control module with the Unity connecting module carried by Endeavour. He is making his sixth spaceflight and is one of two extravehicular activity crew members on this mission.

  10. Application of the direct simulation Monte Carlo method to the full shuttle geometry

    NASA Technical Reports Server (NTRS)

    Bird, G. A.

    1990-01-01

    A new set of programs has been developed for the application of the direct simulation Monte Carlo (or DSMC) method to rarefied gas flows with complex three-dimensional boundaries. The programs are efficient in terms of the computational load and also in terms of the effort required to set up particular cases. This efficiency is illustrated through computations of the flow about the Shuttle Orbiter. The general flow features are illustrated for altitudes from 170 to 100 km. Also, the computed lift-drag ratio during re-entry is compared with flight measurements.

  11. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  12. Turbulent Supersonic/Hypersonic Heating Correlations for Open and Closed Cavities

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Greene, Francis A.

    2009-01-01

    Supersonic/hypersonic laminar heating correlations that were developed for damage assessment analysis of atmospheric re-entry vehicles have been modified and extended to cover fully-turbulent conditions over rectangular cavity geometries that are aligned with the local velocity. Turbulent boundary layer properties were computationally determined and used to develop the cavity geometry parametrics and to correlate experimental closed cavity heating data to yield new relationships for the floor-averaged and centerline endwall peak-heating augmentation. With the form of the closed-cavity correlations established, historical data were used to develop new correlations for turbulent open-cavity heating.

  13. Turbulent Supersonic/Hypersonic Heating Correlations for Open and Closed Cavities

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Greene, Francis A.

    2009-01-01

    Supersonic/hypersonic laminar heating correlations that were developed for damage assessment analysis of atmospheric re-entry vehicles have been modified and extended to cover fully-turbulent conditions over rectangular cavity geometries that are aligned with the local velocity. Turbulent boundary layer properties were computationally determined and used to develop the cavity geometry parametrics and to correlate experimental closed cavity heating data to yield new relationships for the floor-averaged and centerline endwall peakheating augmentation. With the form of the closed-cavity correlations established, historical data were used to develop new correlations for turbulent open-cavity heating.

  14. Environmental testing of REI-Mullite thermal protection system for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Gluck, R.; Romano, R.; Thibault, H.

    1973-01-01

    Tests conducted to evaluate performances in the natural environments of salt spray, humidity, rain, vacuum, and cryogenic temperatures have shown the ceramic mullite fiber is completely compatible and that these environments have no adverse effects on subsequent mission performance. Rain erosion testing has indicated a damage threshold that must be accounted for in the final design. Tests conducted to evaluate the performance of ceramic mullite fiber to induced acoustic, re-entry, and structural load environments again have shown complete capability to fulfill mission environments. Although minor cracking of the sidewall coating was seen to occur throughout the induced environment test program, sidewall designs configured to provide increased flexibility have been successfully tested.

  15. Fire retardancy using applied materials

    NASA Technical Reports Server (NTRS)

    Feldman, R.

    1971-01-01

    An example of advanced technology transfer from the Little Joe, Surveyor, Comsat, re-entry and Apollo age to everyday fire protection needs is presented. Utilizing the principle of sublimation cooling for thermostatic temperature control, the material meets a wide range of fire retardancy and heat transmission control requirements. Properties vary from flexible tape for conduits and electrical cables to rigid coatings for column protection, with a broad spectrum of sublimation temperatures available. The material can be applied in the field or in the factory, utilizing mass production techniques, yielding a product that is reliable, effective, widely available and low in cost.

  16. Modeling of transient heat pipe operation

    NASA Technical Reports Server (NTRS)

    Colwell, G. T.; Hartley, J. G.

    1985-01-01

    The overall goal is to gain a better understanding of the transient behavior of heat pipes operating under both normal and adverse conditions. Normal operation refers to cases where the capillary structure remains fully wetted. Adverse operation occurs when drying, re-wetting, choking, noncontinuum flow, freezing, thawing etc., occur within the heat pipe. The work was redirected towards developing the capability to predict operational behavior of liquid metal heat pipes used for cooling aerodynamic structures. Of particular interest is the startup of such heat pipes from an initially frozen state such as might occur during re-entry of a space vehicle into the Earth's atmosphere or during flight of hypersonic aircraft.

  17. Differential profile and treatment development of drug-addicted patients depending on violent behaviours and/or criminal acts.

    PubMed

    López-Goñi, José J; Fernández-Montalvo, Javier; Arteaga, Alfonso; Cacho, Raúl

    2015-01-01

    This study explored the prevalence of violent and/or criminal behaviors in drug-addicted patients. A sample of 252 drug-addicted patients who sought treatment was assessed. Information was collected on violent behaviors, criminal acts, socio-demographic factors, consumption factors, psychopathological factors, and personality variables. The sample was divided into 4 groups according to the presence of violence and/or criminal behaviors. There were significant differences between the groups on some variables. In general, patients associated with both violence and criminal behaviors showed a greater severity in drug consumption and maladjustment variables, as well as a higher rate of treatment dropout and re-entry.

  18. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    NASA Technical Reports Server (NTRS)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.

  19. DOD Response to an Accident or Significant Incident Involving Radioactive Materials

    DTIC Science & Technology

    1989-12-21

    and FI Oia if ’CS ’Ct)io :onh’r’,a.’nL otim !,n~ l acinoweg off citerrentorakntiwipted The D~epartment of Enrg-iy I anti the jiid conditioiins...tmy for all Federal agency Ct.0s and Upoxn arrival at the emergency socene. lit winee meargny treasitpubtinc t a Congressionial staff seeking...for the State regarding other Public Information Releases from the planning process . protective measures and re-entry Headquarters International

  20. Advanced Ablative Insulators and Methods of Making Them

    NASA Technical Reports Server (NTRS)

    Congdon, William M.

    2005-01-01

    Advanced ablative (more specifically, charring) materials that provide temporary protection against high temperatures, and advanced methods of designing and manufacturing insulators based on these materials, are undergoing development. These materials and methods were conceived in an effort to replace the traditional thermal-protection systems (TPSs) of re-entry spacecraft with robust, lightweight, better-performing TPSs that can be designed and manufactured more rapidly and at lower cost. These materials and methods could also be used to make improved TPSs for general aerospace, military, and industrial applications.

  1. Toughened uni-piece, fibrous, reinforced, oxidization-resistant composite

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor)

    2008-01-01

    A composite thermal protection structure, for applications such as atmospheric re-entry vehicles, that can withstand temperatures as high as 3600.degree F. The structure includes an exposed surface cap having a specially formulated coating, an insulator base adjacent to the cap with another specially formulated coating, and one or more pins that extend from the cap through the insulator base to tie the cap and base together, through ceramic bonding and mechanical attachment. The cap and insulator base have corresponding depressions and projections that mate and allow for differences in thermal expansion of the cap and base.

  2. Cosmological history in York time: inflation and perturbations

    NASA Astrophysics Data System (ADS)

    Roser, Philipp; Valentini, Antony

    2017-02-01

    The constant mean extrinsic curvature on a spacelike slice may constitute a physically preferred time coordinate, `York time'. One line of enquiry to probe this idea is to understand processes in our cosmological history in terms of York time. Following a review of the theoretical motivations, we focus on slow-roll inflation and the freezing and Hubble re-entry of cosmological perturbations. While the physics is, of course, observationally equivalent, we show how the mathematical account of these processes is distinct from the conventional account in terms of standard cosmological or conformal time. We also consider the cosmological York-timeline more broadly and contrast it with the conventional cosmological timeline.

  3. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  4. Embryonic Stem Cell-Derived Microvesicles: Could They be Used for Retinal Regeneration?

    PubMed

    Farber, Debora B; Katsman, Diana

    2016-01-01

    Mouse embryonic stem cells (mESCs) release into the medium in which they are cultured heterogeneous populations of microvesicles (mESMVs), important components of cell-cell communication, that transfer their contents not only to other stem cells but also to cells of other origins. The purpose of these studies was to demonstrate that ESMVs could be the signals that lead the retinal progenitor Müller cells to de-differentiate and re-entry the cell cycle, followed by differentiation along retinal lineages. Indeed, we found that ESMVs induce these processes and change Müller cells' microenvironment towards a more permissive state for tissue regeneration.

  5. A prediction method for flow in the Shuttle tile strain isolation pad

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1987-01-01

    The Shuttle Orbiter thermal protection system uses a Strain Isolation Pad (SIP) between the tile and the Orbiter. This paper presents experimental measurements of the pressure drop and associated flow rate through a sample of the SIP material. Included are data for a range of air densities representative of Shuttle ascent and re-entry trajectories. Also presented are new theoretical and correlative methods which predict the experimental data. These methods will help in predicting venting characteristics of tile assemblies during ascent, and hot gas leak under the tiles during descent. The predictive philosophy developed is useful in the study of fibrous and porous media fluid mechanics.

  6. Periodicities of hard x-ray burst during the last solar cycle

    NASA Technical Reports Server (NTRS)

    Hady, Ahmed A.

    1995-01-01

    By using power spectrum and standard FFT time series analysis, the Hard X-ray burst during solar cycle -22 were studied. This data of Hard X-ray burst spectrometer (HXRBS) on the solar maximum mission from Launch and February 14, 1980, through re-entry on December 2, 1989, by NASA artificial satellite. The results indicate that there are short and intermediate solar periodicities. Also it is found that there is a relation between the short periodicities (few minutes) with similar periodicities in solar radio emissions and in good agreement with the theoretical mode of solar oscillations.

  7. Right atrial aneurysm with downward displacement of the anterior leaflet that resembled Ebstein's anomaly.

    PubMed

    Yamauchi, Sanae; Suzuki, Yasuyuki; Daitoku, Kazuyuki; Kimura, Masaomi; Okumura, Ken; Fukuda, Ikuo

    2016-06-08

    A 13-year-old boy presented with right atrial aneurysm and downward displacement of the anterior leaflet in the tricuspid valve into the right ventricle, without tricuspid valve regurgitation. Paroxysmal atrial flutter was caused by an abnormal electrical re-entry circuit, which could not be treated using catheter radiofrequency ablation. Therefore, the patient underwent surgical ablation and resection of the enlarged right atrial wall. The anterior leaflet of the tricuspid valve was plastered and displaced downward into the right ventricle, which resembled Ebstein's anomaly. Pathological evaluation revealed a thin wall that contained fibrous tissue with lipomatous degeneration and few muscular elements. No postoperative arrhythmia was observed.

  8. Antidromic His capture during entrainment of orthodromic AVRT.

    PubMed

    Nair, Krishnakumar; Selvaraj, Raja; Farid, Talha; Nanthakumar, Kumaraswamy

    2010-09-01

    A narrow QRS tachycardia with eccentric atrial activation is presented with features favoring an orthodromic atrioventricular re-entrant tachycardia including an extranodal paraHisian response, and a short corrected post-pacing interval to tachycardia cycle length difference following right ventricular entrainment. However, during entrainment, the H-H interval was entrained by the pacing train several beats prior to the A-A interval which would suggest an atrioventricular nodal re-entry tachycardia. We discuss the diagnosis and its mechanism.

  9. Nine Degrees-of-Freedom Parachute Model for Exomars Entry Descent and Landing

    NASA Astrophysics Data System (ADS)

    Calantropio, F.; Langlois, S.; Portigliotti, S.; Parisch, M.; DeSanctis, S.

    2012-08-01

    The interest of the planetary re-entry programs and the acknowledgment that the parachute simplified (drag equivalent) models are affected by limitations in their applicability, drove the need to develop the capability of simulate the EDL parachute phase with an additional 3 DoF body which works as decelerator of a 6 DoF forebody.The proposed model summarizes the capability to simulate the complete parachute behavior, which includes different phases as the ejection, the deployment, the inflation and the steady state descent, by means of a reduced set of the equations used to model the decelerator to a minimum of 3 DoF.

  10. Manned geosynchronous mission requirements and systems analysis study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Boyland, R. E.; Sherman, S. W.; Morfin, H. W.

    1979-01-01

    The crew capsule of the MOTV was studied with emphasis on crew accommodations, crew capsule functional requirements, subsystem interface definition between crew module and propulsion module, and man rating requirements. Competing mission modes were studied covering a wide range of propulsion concepts. These included one stage, one and one half stage, and two stage concepts using either the standard STS or an augmented STS. Several deorbit concepts were considered, including all propulsive modes, direct re-entry, and aeromaneuvering skip in skip out in the upper reaches of Earth's atmosphere. A five year plan covering costs, schedules, and critical technology issues is discussed.

  11. Testing the Shuttle heat-protection armor

    NASA Technical Reports Server (NTRS)

    Strouhal, G.; Tillian, D. J.

    1976-01-01

    The article deals with the thermal protection system (TPS) designed to keep Space Shuttle structures at 350 F ratings over a wide range of temperatures encountered in orbit, but also during prelaunch, launch, deorbit and re-entry, landing and turnaround. The structure, function, fabrication, and bonding of various types of reusable surface insulation and composite materials are described. Test programs are developed for insulation, seals, and adhesion bonds; leak tests and acoustic fatigue tests are mentioned. Test facilities include arc jets, radiant heaters, furnaces, and heated tunnels. The certification tests to demonstrate TPS reusability, structural integrity, thermal performance, and endurance will include full-scale assembly tests and initial orbital flight tests.

  12. Investigation of Post-Flight Solid Rocket Booster Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Nelson, Linda A.

    2006-01-01

    After every Shuttle mission, the Solid Rocket Boosters (SRBs) are recovered and observed for missing material. Most of the SRB is covered with a cork-based thermal protection material (MCC-l). After the most recent shuttle mission, STS-114, the forward section of the booster appeared to have been impacted during flight. The darkened fracture surfaces indicated that this might have occurred early in flight. The scope of the analysis included microscopic observations to assess the degree of heat effects and locate evidence of the impact source as well as chemical analysis of the fracture surfaces and recovered foreign material using Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy/Energy Dispersive Spectroscopy. The amount of heat effects and presence of soot products on the fracture surface indicated that the material was impacted prior to SRB re-entry into the atmosphere. Fragments of graphite fibers found on these fracture surfaces were traced to slag inside the Solid Rocket Motor (SRM) that forms during flight as the propellant is spent and is ejected throughout the descent of the SRB after separation. The direction of the impact mark matches with the likely trajectory of SRBs tumbling prior to re-entry.

  13. Colon perforation during percutaneous nephrolithotomy and fistula closure with Spongostan following conservative therapy

    PubMed Central

    Ün, Sıtkı; Çakır, Volkan; Köse, Osman; Türk, Hakan; Yılmaz, Yüksel

    2015-01-01

    Percutaneous nephrolithotomy (PCNL) is the first-line treatment for kidney stones. Colon perforation is a rare, but dangerous, complication. Colonic perforation might be very serious if it is not found early. After an unsuccessful extracorporeal shockwave lithotripsy, a 45-year-old female underwent a left-sided PCNL for two 1-cm kidney stones in the left kidney upper pole calyx. During dilatation, a colon perforation was suspected. The procedure was finished by inserting a 14Fr re-entry catheter into the colon. On postoperative day 5, a fluoroscopy was performed by injecting contrast dye through the re-entry catheter, which showed a fistula formation between skin and colon. The catheter was removed completely. A 16Fr external drainage catheter was inserted over the guide-wire through the fistula tract. The fistula was closed by introducing prepared absorbable hemostatic gelatin powder (Spongostan) particles into the fistula tract through the catheter. Fistula tracks can be closed early by injecting absorbable Spongostan particles into the colonic fistula tract, thereby reducing inpatient time and increasing patient comfort. PMID:26029304

  14. A critical role for thrombin in vertebrate lens regeneration.

    PubMed Central

    Imokawa, Yutaka; Simon, András; Brockes, Jeremy P

    2004-01-01

    Lens regeneration in urodele amphibians such as the newt proceeds from the dorsal margin of the iris where pigment epithelial cells (PEC) re-enter the cell cycle and transdifferentiate into lens. A general problem in regeneration research is to understand how the events of tissue injury or removal are coupled to the activation of plasticity in residual differentiated cells or stem cells. Thrombin, a pivotal regulator of the injury response, has been implicated as a regulator of cell cycle re-entry in newt myotubes, and also in newt iris PEC. After removal of the lens, thrombin was activated on the dorsal margin for 5-7 days. Inactivation of thrombin by either of two different inhibitors essentially blocked S-phase re-entry by PEC at this location. The axolotl, a related species which can regenerate its limb but not its lens, can activate thrombin after amputation but not after lens removal. These data support the hypothesis that thrombin is a critical signal linking injury to regeneration, and offer a new perspective on the evolutionary and phylogenetic questions about regeneration. PMID:15293804

  15. Further advances in coiled-tubing drilling

    SciTech Connect

    Eide, E.; Brinkhorst, J.; Voelker, H.; Burge, P.; Ewen, R.L.

    1994-12-31

    The use of coiled tubing to drill horizontal re-entry wells has received considerable interest in the industry over the last two years. The benefit of being able to drill at balance, safely and in a controlled manner, using nitrogen to reduce down hole pressure while drilling highly depleted reservoirs, provides an advantage over conventional techniques, particularly in reducing impairment to the formation. The paper describes such a horizontal re-entry drilled in the shallow depleted water flooded reservoir Barenburg in Northern Germany. The entire program was executed with no intervention from a conventional rig or workover hoist. A special structure to be positioned over the well to support the coiled tubing injector head and to provide a work platform had to be constructed for this type of operation. A dedicated mast for lifting of pipe and down hole tools was placed on the substructure. The development of a surface controlled orienting tool and an adjustable motor provided excellent directional capabilities on a 2 3/8 in. coiled tubing. This program represents a significant extension of the capabilities of drilling with coiled tubing.

  16. Coiled tubing drilling: Real time MWD with dedicated powers to the BHA

    SciTech Connect

    Leismer, D.; Williams, B.; Pursell, J.

    1996-12-31

    This paper describes and analyzes the development and ongoing field trials of a Real Time MWD Coiled Tubing Drilling System. The new system holds great promise for advancing the state of coiled tubing drilling for certain applications. The system is designed for through-tubing, short radius re-entry and drilling highly deviated wells as horizontal laterals to a geologic target with minimum wellbore tortuosity. Currently, 4-1/2-in production tubing is the smallest re-entry candidate. Real time MWD and Bottom Hole Assembly (BHA) control is achieved by the use of a combination hydraulic and electric umbilical internal to the coiled tubing (CT), allowing continuous data collection and selective surface control of the BHA components. This communication line allows orientation in 10{degree} increments (or less) while drilling, applies weight-on-bit and operates a reusable circulating valve. In addition, the umbilical provides real-time monitoring of weight-on-bit, circulating pressures of the drilling fluid internal and external to the BHA, dedicated hydraulic system bottom hole pressure, downhole temperature and survey data from logging equipment.

  17. Loss of Polo ameliorates APP-induced Alzheimer’s disease-like symptoms in Drosophila

    PubMed Central

    Peng, Fei; Zhao, Yu; Huang, Xirui; Chen, Changyan; Sun, Lili; Zhuang, Luming; Xue, Lei

    2015-01-01

    The amyloid precursor protein (APP) has been implicated in the pathogenesis of Alzheimer’s disease (AD). Despite extensive studies, little is known about the regulation of APP’s functions in vivo. Here we report that expression of human APP in Drosophila, in the same temporal-spatial pattern as its homolog APPL, induced morphological defects in wings and larval NMJ, larva and adult locomotion dysfunctions, male choice disorder and lifespan shortening. To identify additional genes that modulate APP functions, we performed a genetic screen and found that loss of Polo, a key regulator of cell cycle, partially suppressed APP-induced morphological and behavioral defects in larval and adult stages. Finally, we showed that eye-specific expression of APP induced retina degeneration and cell cycle re-entry, both phenotypes were mildly ameliorated by loss of Polo. These results suggest Polo is an important in vivo regulator of the pathological functions of APP, and provide insight into the role of cell cycle re-entry in AD pathogenesis. PMID:26597721

  18. Animal life support transporters for Shuttle/Spacelab

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Hunt, S. R.

    1978-01-01

    Two transporter devices have been developed by the NASA Ames Research Center, primarily for the purpose of stowing small vertebrates and primates in the mid-deck avionics bay of the Shuttle during launch and re-entry. These animals will be used in Life Science Spacelab experiments. Stowage in the mid-deck area will reduce animal exposure to the high noise levels existing in Spacelab during launch; further, the possible exposure of the animals to high temperatures in Spacelab during re-entry and post-landing will be eliminated. The transporters will provide experimenters more timely access to their animals during experiment-critical, pre-launch, and post-landing periods. Rechargeable batteries in the transporters will provide life support system functions for the animals during periods of transfer and during mission phases in which power is temporarily unavailable. The transporters have been successfully designed, fabricated, and tested. Integrated testing of the transporters was performed in the Space Mission Development III (SMD III) Simulation at the NASA Johnson Space Center.

  19. Rarefield-Flow Shuttle Aerodynamics Flight Model

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.

    1994-01-01

    A model of the Shuttle Orbiter rarefied-flow aerodynamic force coefficients has been derived from the ratio of flight acceleration measurements. The in-situ, low-frequency (less than 1Hz), low-level (approximately 1 x 10(exp -6) g) acceleration measurements are made during atmospheric re-entry. The experiment equipment designed and used for this task is the High Resolution Accelerometer Package (HiRAP), one of the sensor packages in the Orbiter Experiments Program. To date, 12 HiRAP re-entry mission data sets spanning a period of about 10 years have been processed. The HiRAP-derived aerodynamics model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as function of angle of attack, body-flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle of attack are also presented, along with flight-derived rarefied-flow transition bridging formulae. Comparisons are made between the aerodynamics model, data from the latest Orbiter Operational Aerodynamic Design Data Book, applicable computer simulations, and wind-tunnel data.

  20. A novel hypothesis for Alzheimer disease based on neuronal tetraploidy induced by p75 (NTR).

    PubMed

    Frade, José M; López-Sánchez, Noelia

    2010-05-15

    Cumulative evidence indicates that neuronal cell cycle re-entry represents an early and critical event in AD, recapitulating known hallmarks of the disease including tau hyperphosphorylation and production of Aβ peptide-containing plaques. Neurons that duplicate their DNA are rarely observed to undergo mitosis, and they remain for long time as tetraploid cells, in accordance with the chronic course of the disease. We have recently shown that cell cycle re-entry and somatic tetraploidization occurs during normal development in a subpopulation of RGCs, giving rise to enlarged neurons with extensive dendritic trees. Tetraploization in these neurons occurs in response to the activation of the neurotrophin receptor p75NTR by an endogenous source of NGF. In contrast, BDNF inhibits G2/M transition in tetraploid RGCs, preventing their death by apoptosis. In AD both proNGF and p75NTR are overexpressed, and AD-associated oxidative conditions have been shown to enhance proNGF function. This suggests that p75NTR could be a trigger for neuronal tetraploidization in AD, being the p75NTR-mediated pathway a putative target for therapeutical intervention. Functional changes in affected neurons, derived from tetraploidy-associated hypertrophy, could compromise neuronal viability. The known decline of BDNF/TrkB expression in AD could facilitate G2/M transition and apoptosis in tetraploid neurons.

  1. Developing Health-Based Pre-Planning Clearance Goals for Airport Remediation Following Chemical Terrorist Attack: Introduction and Key Assessment Considerations

    PubMed Central

    Watson, Annetta; Hall, Linda; Raber, Ellen; Hauschild, Veronique D.; Dolislager, Fredrick; Love, Adam H.; Hanna, M. Leslie

    2011-01-01

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility reuse and re-entry could require hours to multiple days. While restoration timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical terrorist release. What follows is the first of a two-part analysis identifying key considerations, critical information, and decision criteria to facilitate post-attack and post-decontamination consequence management activities. A conceptual site model and human health-based exposure guidelines are developed and reported as an aid to site-specific pre-planning in the current absence of U.S. state or Federal values designated as compound-specific remediation or re-entry concentrations, and to safely expedite facility recovery to full operational status. Chemicals of concern include chemical warfare nerve and vesicant agents and the toxic industrial compounds phosgene, hydrogen cyanide, and cyanogen chloride. This work has been performed as a national case study conducted in partnership with the Los Angeles International Airport and The Bradley International Terminal. All recommended guidelines have been selected for consistency with airport scenario release parameters of a one-time, short-duration, finite airborne release from a single source followed by compound-specific decontamination. PMID:21390292

  2. Loss of Polo ameliorates APP-induced Alzheimer's disease-like symptoms in Drosophila.

    PubMed

    Peng, Fei; Zhao, Yu; Huang, Xirui; Chen, Changyan; Sun, Lili; Zhuang, Luming; Xue, Lei

    2015-11-24

    The amyloid precursor protein (APP) has been implicated in the pathogenesis of Alzheimer's disease (AD). Despite extensive studies, little is known about the regulation of APP's functions in vivo. Here we report that expression of human APP in Drosophila, in the same temporal-spatial pattern as its homolog APPL, induced morphological defects in wings and larval NMJ, larva and adult locomotion dysfunctions, male choice disorder and lifespan shortening. To identify additional genes that modulate APP functions, we performed a genetic screen and found that loss of Polo, a key regulator of cell cycle, partially suppressed APP-induced morphological and behavioral defects in larval and adult stages. Finally, we showed that eye-specific expression of APP induced retina degeneration and cell cycle re-entry, both phenotypes were mildly ameliorated by loss of Polo. These results suggest Polo is an important in vivo regulator of the pathological functions of APP, and provide insight into the role of cell cycle re-entry in AD pathogenesis.

  3. Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Lengowski, Michael

    2012-01-01

    Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.

  4. Mice Drawer System: a Long Duration Animal Experiment on the International Space Station

    NASA Astrophysics Data System (ADS)

    Cotronei, Vittorio; Liu, Yi; Pignataro, Salvatore

    Mice represent one of the most important animal models for biomedical research. In the past decade mice have been used as surrogates to understand physiological adaption and its under-lying mechanisms to orbital spaceflight. A breakthrough in this field has been achieved with the launch of MDS experiment inside Shuttle Discovery (mission STS-128) on August 28, 2009 at 23:58 EST, and its re-entry to earth by Shuttle Atlantis (mission STS-129) on November 27 2009 at 9:47 EST, marking this as the first long duration animal experiment on the Interna-tional Space Station (ISS). This presentation will provide the life history and milestones starting from the project brainstorm to the post-ground activities of the recent MDS payload mission. The Italian Space Agency (ASI) initiated and coordinated this multi-disciplinary project by focusing on five areas: the development of a multi-purpose automated payload by industry; bio-compatibility tests of subsystems throughout various critical phases of the payload development by researchers, development of a ground segment to interface with NASA Payload Operations Center and three different geographically distributed Italian Operations Centers; establishment of an international tissue sharing program; specialized bio-specimen intercontinental shipment. With close collaboration with NASA, activities such as pre-flight payload acceptance, animal preparation, in-flight crew intervention and re-entry animal recovery were smoothly and swiftly accomplished.

  5. Structural Integrity Of Low-Velocity Impacted C/SIC Ceramic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Knoche, R.; Drose, A.

    2012-07-01

    Carbon fibre reinforced silicon carbide (C/SiC) ceramic matrix composites (CMC) are most favourable for thermal protection systems & hot structures in re-entry vehicles since they offer superior heat resistance, high specific strength as well as a low coefficient of temperature expansion (CTE). To ensure the structural integrity of these C/SiC structures and thus mission safety all potential degradation effects during manufacturing and lifetime have to be considered. One of the most probable defects which may harm the structural integrity significantly can be caused by low-velocity impacts (LVI) which may occur during transportation and integration by e.g. dropping of tools. Thus the present study focuses on the residual mechanical and thermo-mechanical performance of C/SiC composites after being exposed to a low-velocity impact in terms of initial and residual mechanical performance, changes in microstructure, as well as thermo-mechanical performance through exposing specimens to multiple experimentally simulated re-entries. The results reveal the impact characteristics and damage mechanisms of C/SiC CMC exposed to a low-velocity impact and evidence the functional reliability as well as the damage tolerance of the C/SiC material investigated.

  6. Thermostructural Evaluation of Joggle Region on the Shuttle Orbiter's Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Warren, Jerry E.

    2012-01-01

    An investigation was initiated to determine the cause of coating spallation occurring on the Shuttle Orbiter's wing leading edge panels in the slip-side joggle region. The coating spallation events were observed, post flight, on differing panels on different missions. As part of the investigation, the high re-entry heating occurring on the joggles was considered here as a possible cause. Thus, a thermostructural evaluation was conducted to determine the detailed state-of-stress in the joggle region during re-entry and the feasibility of a laboratory test on a local joggle specimen to replicate this state-of-stress. A detailed three-dimensional finite element model of a panel slip-side joggle region was developed. Parametric and sensitivity studies revealed significant stresses occur in the joggle during peak heating. A critical interlaminar normal stress concentration was predicted in the substrate at the coating interface and was confined to the curved joggle region. Specifically, the high interlaminar normal stress is identified to be the cause for the occurrence of failure in the form of local subsurface material separation occurring in the slip-side joggle. The predicted critical stresses are coincident with material separations that had been observed with microscopy in joggle specimens obtained from flight panels.

  7. ATLAS LAUNCHED FROM PAD 12 CARRYING PROJECT FIRE SPACECRAFT

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The Atlas D lifted off Pad 12 at 4:55 p.m. EST carrying the second 200 pound Project FIRE spacecraft on a 5,000 mile ballistic trajectory to expand scientific knowledge of reentry heating. A velocity package using the solid propellant Antares II rocket motor will add the speed needed to drive the re-entry payload back into the atmosphere at 25,000 mph. The payload will reach an apogee of approximately 500 statute miles about 2,440 down range before starting re-entry into the atmosphere. At the speed Project FIRE will attain, the temperature of the gasses in the shock wave area just ahead of the blunt reentry body will approach 20,000 degrees Fahrengeit. As a result from data received from this flight, scientists will be able to predict more accurately, for engineering purposes, the heating associated with entry into the Earth's atmosphere at speeds up to and beyond that of the Apollo command module on its return from lunar flights.

  8. Observations of Shock Diffusion and Interactions in Supersonic Freestreams with Counterflowing Jets

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O.; Pritchett, Victor E.; Wang, Ten-See; Blankson, Isiah M.; Auslender, Aaron H.

    2006-01-01

    One of the technical challenges in long-duration space exploration and interplanetary missions is controlled entry and re-entry into planetary and Earth atmospheres, which requires the dissipation of considerable kinetic energy as the spacecraft decelerates and penetrates the atmosphere. Efficient heat load management of stagnation points and acreage heating remains a technological challenge and poses significant risk, particularly for human missions. An innovative approach using active flow control concept is proposed to significantly modify the external flow field about the spacecraft in planetary atmospheric entry and re-entry in order to mitigate the harsh aerothermal environments, and significantly weaken and disperse the shock-wave system to reduce aerothermal loads and wave drag, as well as improving aerodynamic performance. To explore the potential benefits of this approach, we conducted fundamental experiments in a trisonic blow down wind tunnel to investigate the effects of counterflowing sonic and supersonic jets against supersonic freestreams to gain a better understanding of the flow physics of the interactions of the opposing flows and the resulting shock structure.

  9. Convective Heating Predictions of Apollo IV Flight Data

    NASA Technical Reports Server (NTRS)

    White, Molly E.

    2012-01-01

    It has been more than 50 years since NASA engineers have attempted to design a manned space vehicle with the capability to return from beyond low Earth orbit. In this interval, our methodologies for designing the thermal protection system (TPS) to protect humans from the extremely high temperatures of re-entry have changed significantly. With these considerations in mind, we return to the Apollo IV (AS-501) flight data. This incredible data set allows us to assess the current tools and methodologies being used to design Orion MPCV. In particular, our ability to predict the aftbody separated region convective heating environments for MPCV is critical. The design uses reusable TPS in this area, whereas Apollo designers used ablative TPS which can withstand much more severe environments. This presentation will revisit the flight data, summarize the assumptions going into the analysis, present the results and draw conclusions regarding how accurately we can currently predict the heating in the aftbody separated region of a re-entry capsule.

  10. SHEFEX II Flight Instrumentation And Preparation Of Post Flight Analysis

    NASA Astrophysics Data System (ADS)

    Thiele, Thomas; Siebe, Frank; Gulhan, Ali

    2011-05-01

    A main disadvantage of modern TPS systems for re- entry vehicles is the expensive manufacturing and maintenance process due to the complex geometry of these blunt nose configurations. To reduce the costs and to improve the aerodynamic performance the German Aerospace Center (DLR) is following a different approach using TPS structures consisting of flat ceramic tiles. To test these new sharp edged TPS structures the SHEFEX I flight experiment was designed and successfully performed by DLR in 2005. To further improve the reliability of the sharp edged TPS design at even higher Mach numbers, a second flight experiment SHEFEX II will be performed in September 2011. In comparison to SHEFEX I the second flight experiment has a fully symmetrical shape and will reach a maximum Mach number of about 11. Furthermore the vehicle has an active steering system using four canards to control the flight attitude during re-entry, e.g. roll angle, angle of attack and sideslip. After a successful flight the evaluation of the flight data will be performed using a combination of numerical and experimental tools. The data will be used for the improvement of the present numerical analysis tools and to get a better understanding of the aerothermal behaviour of sharp TPS structures. This paper presents the flight instrumentation of the SHEFEX II TPS. In addition the concept of the post flight analysis is presented.

  11. [Ventricular pre-excitation: electrophysiopathology, criteria for interpretation and clinical diagnosis. References for geriatrics].

    PubMed

    Tamburrini, L R; Fontanelli, A; Primossi, G

    2001-02-01

    stimulation with a time threshold of 70 ms for ventricular-atrial retrograde activation. The stimulation techniques using single or repeated extrastimulus are explained for this purpose, as well as those with serial extrastimulation and the physical characteristics of the circuit based on the ratio between voltage and resistance. The authors also report the practical aims of electrostimulation for determining the electric threshold of the anomalous circuit in terms of refractoriness, electric atrial stability, reciprocity and the occurrence of the macro re-entry. Lastly, the authors describe electric conduction by anomalous pathways based on the criterion of conduction and activation, both of which are analysed and compared on the basis of the intrinsicoid deflection morphology on the surface ECG: the aberrant qRs usually suggests an antidromic ventricular activation and retrograde conduction between atrium and ventricle, while normal intrinsicoid deflection demonstrates that the activation is orthodromic and the conduction anterograde, namely ventricle-atrial. Having been reproduced in a synoptic synthesis, these manifestations show a regular electrophysiological pattern because they are dissimilar from the behaviour of the monophasic bioelectric potential of the cardiac cells specialised in the conduction of the stimulus, whether they represent a normal or pathological electric pathway. The study is rounded off by the analysis of the reciprocant tachycardias and their re-entry varieties related to the type of the anomalous bundles. A number of types of re-entry can be identified: sinusal re-entry (micro re-entry), atrial re-entry, re-entry in the atrio-ventricular node, re-entry tachycardia and the so-called triggered type. The discussion of the electrophysiopathological aspects of pre-excitation is followed by the clinical forms of ventricular pre-excitation that can be divided into 3 main types. The different ECG clinical pictures are set out in the summary table

  12. The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana.

    PubMed

    Skirycz, Aleksandra; Radziejwoski, Amandine; Busch, Wolfgang; Hannah, Matthew A; Czeszejko, Joanna; Kwaśniewski, Mirosław; Zanor, Maria-Inès; Lohmann, Jan U; De Veylder, Lieven; Witt, Isabell; Mueller-Roeber, Bernd

    2008-12-01

    In contrast to animal growth, plant growth is largely post-embryonic. Therefore plants have developed new mechanisms to precisely regulate cell proliferation by means of internal and external stimuli whilst the general core cell cycle machinery is conserved between eukaryotes. In this work we demonstrate a role for the Arabidopsis thaliana DNA-binding-with-one-finger (DOF) transcription factor OBP1 in the control of cell division upon developmental signalling. Inducible overexpression of OBP1 resulted in a significant overrepresentation of cell cycle genes among the upregulated transcripts. Direct targets of OBP1, as verified by chromatin immunoprecipitation, include at least the core cell cycle gene CYCD3;3 and the replication-specific transcription factor gene AtDOF2;3. Consistent with our molecular data, short-term activation of OBP1 in cell cultures affected cell cycle re-entry, shortening the duration of the G(1) phase and the overall length of the cell cycle, whilst constitutive overexpression of OBP1 in plants influenced cell size and cell number, leading to a dwarfish phenotype. Expression during embryogenesis, germination and lateral root initiation suggests an important role for OBP1 in cell cycle re-entry, operating as a transcriptional regulator of key cell cycle genes. Our findings provide significant input into our understanding of how cell cycle activity is incorporated into plant growth and development.

  13. How clean is clean enough? Recent developments in response to threats posed by chemical and biological warfare agents.

    PubMed

    Raber, Ellen; Carlsen, Tina; Folks, Karen; Kirvel, Robert; Daniels, Jeffrey; Bogen, Kenneth

    2004-02-01

    Recent terrorist events underscore the urgent need to develop a comprehensive set of health-protective cleanup standards and effective decontamination technologies for use in the restoration of civilian facilities. Accurate scientific information remains limited in the area of biological warfare agents. However, new guidelines and calculated cleanup values are emerging for initial re-entry and long-term reoccupation following use of chemical warfare agents. This article addresses airborne, soil, and surface exposures following release of G-type chemical warfare agents and VX. Cleanup goals should be tailored to the type of population that may be exposed, potential exposure times, and other scenario-specific considerations. Three different airborne concentrations are proposed for cleanup of public sector facilities. One value is recommended for initial re-entry; a more conservative value is recommended for long-term monitoring and increased public confidence; and a third, even more conservative concentration represents essentially a no-effect level for round-the-clock airborne exposure. Health-based cleanup levels are provided for contaminated residential and industrial soil. Results are presented on the outcome of a preliminary risk assessment to determine safe surface levels (e.g., walls, floors, and handrails) for cleanup after exposure to the G agents and VX. Because specific cleanup criteria for most biological warfare agents remain problematic, recommendations are made for filling the knowledge gaps.

  14. STS-114: Discovery Post MMT Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On flight day 13, Leroy Cain, STS-114 Ascent/Entry Flight Director, discusses the condition of the Space Shuttle Discovery, and the weather outlook for landing. He answers questions from the news media about his feelings about re-entry since the Columbia tragedy, possible new information during re-entry, critical moments in the Mission Control Room during landing, and differences between night landing and day landing. Footage of the Mission Control Room and a talk with Soichi Noguchi in orbit is shown. Also, footage of the truss structure of the International Space Station, Destiny Laboratory, crew cabin of Discovery, and the Orbiter Docking System linked up to forward docking port on Discovery is shown. Eileen Collins and Wendy Lawrence are shown in the flight deck of Discovery. Charles Camarda is also shown in the mid-deck. Downlink television from Discovery shows spacewalk choreographer Andy Thomas with Stephen Robinson and Soichi Noguchi preparing for depressurization and pre-breathing activities that will lead to the opening of the hatch. The installation of a replacement GPS antenna, images of the port wing of Discovery and Canadarm moving with the Orbital Boom Sensor System (OBSS) extension is shown.

  15. Advanced Seal Sessions I and II

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H.; Sarawate, Neelesh

    2013-01-01

    As aircraft operators continue to seek higher fuel efficiency, lower emissions, and longer on-wing performance, turbine engine designers are scrutinizing all components for areas of improvement. To achieve overall goals, turbine pressure ratios and by-pass ratios continue to climb. Also, designers are seeking to minimize parasitic and cooling flows to extract the most useful work out of the flow stream, placing a renewed interest on seal technology and secondary flow path management. In the area of future manned spacecraft, advancements are being examined for both habitat seals and re-entry thermal protection system thermal barrierseals. For long duration space craft, designers are continuing to look for savings in parasitic losses to reduce the amount of cabin re-supply air that needs to be brought along. This is placing greater demands on seal designs and materials to exhibit low leakage and be resistant to space environments. For future missions to and from distant planets, the re-entry heating will be higher than for low-earth orbit or lunar return motivating advanced thermal barrier development. This presentation will provide an overview of the seal challenges and opportunities in these diverse areas.

  16. AP4 is required for mitogen- and c-MYC-induced cell cycle progression

    PubMed Central

    Jackstadt, Rene; Hermeking, Heiko

    2014-01-01

    AP4 represents a c-MYC-inducible bHLH-LZ transcription factor, which displays elevated expression in many types of tumors. We found that serum-starved AP4-deficient mouse embryo fibroblasts (MEFs) were unable to resume proliferation and showed a delayed S-phase entry after restimulation. Furthermore, they accumulated as tetraploid cells due to a cytokinesis defect. In addition, AP4 was required for c-MYC-induced cell cycle re-entry. AP4-deficient MEFs displayed decreased expression of CDK2 (cyclin-dependent kinase 2), which we characterized as a conserved and direct AP4 target. Activation of an AP4 estrogen receptor fusion protein (AP4-ER) enhanced proliferation of human diploid fibroblasts in a CDK2-dependent manner. However, in contrast to c-MYC-ER, AP4-ER activation was not sufficient to induce cell cycle re-entry or apoptosis in serum-starved MEFs. AP4-deficiency was accompanied by increased spontaneous and c-MYC-induced DNA damage in MEFs. Furthermore, c-MYC-induced apoptosis was decreased in AP4-deficient MEFs, suggesting that induction of apoptosis by c-MYC is linked to its ability to activate AP4 and thereby cell cycle progression. Taken together, these results indicate that AP4 is a central mediator and coordinator of cell cycle progression in response to mitogenic signals and c-MYC activation. Therefore, inhibition of AP4 function may represent a therapeutic approach to block tumor cell proliferation. PMID:25261373

  17. Recent progress in scramjet/combined cycle engines at JAXA, Kakuda space center

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Tetsuo; Ito, Katsuhiro; Sato, Shigeru; Ueda, Shuichi; Tani, Kouichiro; Tomioka, Sadatake; Kanda, Takeshi

    2008-09-01

    This report presents recent research activities of the Combined Propulsion Research Group of Japan Aerospace Exploration Agency. Aerodynamics and combustion of the scramjet engine and the rocket-ramjet combined-cycle engine, structure and material for the two engines and thermo-aerodynamic of a re-entry vehicle are major subjects. In Mach 6 condition tests, a scramjet engine model produced about 2000 N net thrust, whereas a model produced thrust almost equal to its drag in Mach 12 condition. A flight test of a combustor model was conducted with Hyshot-IV. A rocket-ramjet combined-cycle engine model is under construction with validation of the rocket engine component. Studies of combustor models and aerodynamic component models were conducted for demonstration of the engine operation and improvement of its performances. Light-weight cooling panel by electrochemical etching examined and C/ C composite structure was tested. Thermo-aerodynamics of re-entry vehicle was investigated and oxygen molecular density was measured also in high enthalpy flow.

  18. Mechanical testing of ultra-high temperature ceramics at 1500°C in air - Development of an experimental facility and test method

    NASA Astrophysics Data System (ADS)

    Winder, Sheena L.

    2015-10-01

    With a melting point in excess of 3000°C and a high density, ultra-high temperature ceramics (UHTCs) are a candidate material for hypersonic flight vehicles, atmospheric re-entry vehicles, and rocket propulsion systems. When ceramics are under consideration as a structural material, creep is an important design criterion and a life-limiting condition. However, the characterization of mechanical behavior at temperatures in excess of 1300°C has many challenges to overcome. Of utmost importance is the selection of materials for test fixtures. Materials selected must maintain their structural integrity, not cause chemical degradation of the test material, and not interfere with the acquisition of data at required temperatures in extreme environments over long durations. In this work, the thermo-chemical compatibility of hafnium diboride (HfB 2) UHTC with other high temperature materials was investigated. The findings enabled the development and construction of a mechanical testing facility capable of reaching 1700°C in air. Platinum foil proved unstable in the presence of HfB2 at 1500°C, while yttrium aluminum garnet and alumina were demonstrated to successfully perform as test fixture materials inside the test chamber. The results of this research represent a significant contribution towards the use of UHTCs in extreme environments associated with hypersonic flight and atmospheric re-entry.

  19. Wellness and illness self-management skills in community corrections.

    PubMed

    Kelly, Patricia J; Ramaswamy, Megha; Chen, Hsiang-Feng; Denny, Donald

    2015-02-01

    Community corrections provide a readjustment venue for re-entry between incarceration and home for inmates in the US corrections system. Our goal was to determine how self-management skills, an important predictor of re-entry success, varied by demographic and risk factors. In this cross-sectional study, we analyzed responses of 675 clients from 57 community corrections programs run by the regional division of the Federal Bureau of Prisons. A self-administered survey collected data on self-management skills, demographics, and risk factors; significant associations were applied in four regression models: the overall self-management score and three self-management subscales: coping skills, goals, and drug use. Over one-quarter (27.2%/146) of participants had a mental health history. White race, no mental health history and high school education were associated with better overall self-management scores; mental health history and drug use in the past year were associated with lower coping scores; female gender and high school education were associated with better self-management goals; female gender was associated with better self-management drug use scores. Self-management programs may need to be individualized for different groups of clients. Lower scores for those with less education suggest an area for targeted, nurse-led interventions.

  20. Chelyabinsk, Zond IV, and a possible first-century fireball of historical importance

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.

    2015-03-01

    The well-recorded Chelyabinsk event, the Tunguska event, and the re-entry of the Zond IV vehicle offer opportunities to compare reactions of modern eyewitnesses to eyewitness accounts of possible ancient fireball events. The first-century book, Acts of the Apostles, gives three separate descriptions of a bright light "from heaven," which occurred probably in the 30s (C.E.) near Damascus, Syria. The details offer a strikingly good match to a Chelyabinsk-class or Tunguska-class fireball. Among the most impressive, unexpected consistencies with modern knowledge is the first-century description of symptoms of temporary blindness caused by exposure to intense radiation, matching a condition now known as photokeratitis. An analysis of the re-entry of debris from the Russian Zond IV over the eastern United States in 1968 shows how actual perceived phenomena in an unfamiliar natural celestial apparition are often conceived by the observer in terms of current cultural conceptions, and it is suggested that this happened also in the first-century case.

  1. German contribution to the X-38 CRV demonstrator in the field of guidance, navigation and control (GNC)

    NASA Astrophysics Data System (ADS)

    Soppa, Uwe; Görlach, Thomas; Roenneke, Axel Justus

    2005-04-01

    In the frame of the ESA/NASA cooperation on the X-38 project, different GNC-related contributions have been made by German industry and universities. First, the primary flight control software for the autonomous guidance and control of the X-38 parafoil descent and landing phase has been developed, integrated and successfully flown during the aerial drop test campaign conducted by NASA. In addition, a fault-tolerant computer similar to the one used onboard the ISS has been delivered to JSC. Together with an alternate re-entry GNC software using onboard flight path optimization for the guidance task and dynamic inversion methods for attitude control, this computer shall be flown as a flight experiment onboard the V201 space flight test vehicle. Finally, the German project team provided a real-time X-38 vehicle simulator, which was supposed to be used as an independent validation tool for the X-38 re-entry simulation and onboard software. This paper will focus on the European parafoil guidance and control software across the different phases of the X-38 mission. Flight test results from the X-38 aerial drop test campaigns will be presented and discussed. In addition, the flight experiment of the fault tolerant computer will be described briefly.

  2. H. Julian Allen

    NASA Technical Reports Server (NTRS)

    1957-01-01

    H. Julian Allen stands beside the observation window of the 8 x 7 foot test section of the NACA Ames Unitary Plan Wind Tunnel. H. Julian Allen is best known for his 'Blunt Body Theory' of aerodynamics, a design technique for alleviating the severe re-entry heating problem which was then delaying the development of ballistic missiles. His findings revolutionized the fundamental design of ballistic missle re-entry shapes. Subsequently, applied research led to applications of the 'blunt' shape to ballistic missles and spacecraft which were intended to re-enter the Earth's atmosphere. This application led to the design of ablative heat shields that protected the Mercury, Gemini and Apollo astronauts as their space capsules re- entered the Earth's atmosphere. 'Harvey' Allen as he was called by most, was not only a brilliant scientist and aeronautical engineer but was also admired for his kindness, thoughtfulness and sense of humor. Among his many other accomplishments, Harvey Allen served as Center Director of the NASA Ames Research Center from 1965 to 1969. He died of a heart attack on January 29, 1977 at the age of 66.

  3. H. Julian Allen with Blunt Body Theory

    NASA Technical Reports Server (NTRS)

    1957-01-01

    H. Julian Allen is best known for his 'Blunt Body Theory' of aerodynamics, a design technique for alleviating the severe re-entry heating problem which was then delaying the development of ballistic missiles. His findings revolutionized the fundamental design of ballistic missle re-entry shapes. Subsequently, applied research led to applications of the 'blunt' shape to ballistic missles and spacecraft which were intended to re-enter the Earth's atmosphere. This application led to the design of ablative heat shields that protected the Mercury, Gemini and Apollo astronauts as their space capsules re- entered the Earth's atmosphere. 'Harvey' Allen as he was called by most, was not only a brilliant scientist and aeronautical engineer but was also admired for his kindness, thoughtfulness and sense of humor. Among his many other accomplishments, Harvey Allen served as Center Director of the NASA Ames Research Center from 1965 to 1969. He died of a heart attack on January 29, 1977 at the age of 66.

  4. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  5. The effect of solar forcing induced atmospheric perturbations on LEO satellites' nominal aerodynamic drag

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar; Weigel, Robert

    2016-07-01

    Atmospheric drag is the strongest force perturbing the motion of satellites in low Earth orbits LEO, and could cause re-entry of satellites, difficulty in identifying and tracking of the satellites and other space objects, manuvering and prediction of lifetime and re-entry. Solar activities influence the temperature, density and composition of the upper atmosphere. These effects thus strongly depend on the phase of a solar cycle. The frequency of intense flares and storms increase during solar maximum. Heating up of the atmosphere causes its expansion eventually leading to accelerated drag of orbiting satellites, especially those in LEO. In this paper, we present the model of the atmospheric drag effect on the trajectory of hypothetical LEO satellites of different ballistic coefficients. We investigate long-term trend of atmospheric drag on LEO satellites due to solar forcing induced atmospheric perturbations and heating at different phases of the solar cycle, and during interval of strong geomagnetic disturbances or storms. We show the dependence of orbital decay on severity of both the solar cycle and phase, and the extent of geomagnetic perturbations. The result of the model compares well with the observed decay profile of existing LEO satellites and provides a better understanding of the issue of the orbital decay. Our result may also be useful for selection of launch window of satellites for an extended lifetime in the orbit.

  6. Recent topics on the surgical treatment for atrial fibrillation.

    PubMed

    Misaki, Takuro; Fukahara, Kazuaki

    2004-10-01

    After the introduction of endocardial radiofrequency catheter, only two arrhythmias, atrial fibrillation and ischemic ventricular tachycardia require surgical procedures. In this review, we describe recent advancements and problems of surgical treatment for atrial fibrillation. On the basis of multiple-circuit re-entry theory, Cox developed the maze operation with the aim of interrupting the re-entry circuit. Although this procedure has become the gold standard technique for the surgical treatment of atrial fibrillation with approximately 90% success rate, several modifications have been made over time. To obtain a more physiological atrial transport function, radial approach technique or bilateral appendage-preserved maze procedures were developed and to simplify surgical procedures, maze operation with cryo-ablation or radiofrequency-ablation were created. Other topics are concerned with surgical target or approach to atrial fibrillation. Ectopic focus theories from pulmonary veins have been widely recognized recently and the surgical isolation of pulmonary veins orifices is performed with various energy sources. In addition to standard cut-and-sew surgical technique, cryoablation, unipolar or bipolar radiofrequency ablation, or microwave ablation were induced with endocardial or epicardial approach for the achievement of less invasive cardiac surgery. As atrial fibrillation leads to frequent mortality, cardiac surgeons have to treat atrial fibrillation with other cardiac disease more frequently to obtain better quality of operative results.

  7. Homelessness in a national sample of incarcerated veterans in state and federal prisons.

    PubMed

    Tsai, Jack; Rosenheck, Robert A; Kasprow, Wesley J; McGuire, James F

    2014-05-01

    The Veterans Health Administration (VHA) has been increasing efforts to reach out to assist incarcerated veterans. While previous studies have shown strong associations between incarceration and homelessness, few studies have examined distinctive characteristics of incarcerated homeless and non-homeless veterans. National administrative data on 30,348 incarcerated veterans served by the Health Care for Re-entry Veterans (HCRV) program were analyzed. Incarcerated veterans were classified into four groups based on their history of past homelessness: not homeless, transiently homeless, episodically homeless, and chronically homeless. Multinomial logistic regression was used to compare groups on sociodemographic characteristics, criminal justice status, clinical status, and their interest in using VHA services. Of the sample, 70 % were classified as not homeless, 8 % as transiently homeless, 11 % as episodically homeless, and 11 % as chronically homeless. Thus, 30 % of the sample had a homeless history, which is five times the 6 % rate of past homelessness among adult men in the general population. Compared to non-homeless incarcerated veterans, all three homeless groups reported significantly more mental health problems, more substance abuse, more times arrested in their lifetime, more likely to be incarcerated for a non-violent offense, and were more interested in receiving VHA services after release from prison. Together, these findings suggest re-entry programs, like HCRV, can address relevant mental health-related service needs, especially among formerly homeless veterans and veterans in need of services are receptive to the offer of assistance.

  8. Design, integration and preliminary results of the IXV Catalysis experiment

    NASA Astrophysics Data System (ADS)

    Viladegut, Alan; Panerai, F.; Chazot, O.; Pichon, T.; Bertrand, P.; Verdy, C.; Coddet, C.

    2016-08-01

    The CATalytic Experiment (CATE) is an in-flight demonstration of catalysis effects at the surface of thermal protection materials. A high-catalytic coating was applied over the baseline ceramic material on the windward side of the intermediate experimental vehicle (IXV). The temperature jump due to different catalytic activities was detected during re-entry through measurements made with near-surface thermocouples on the windward side of the vehicle. The experiment aimed at contributing to the development and validation of gas/surface interaction models for re-entry applications. The present paper summarizes the design of CATE and its integration on the windward side of the IXV. Results of a qualification campaign at the Plasmatron facility of the von Karman Institute for Fluid Dynamics are presented. They provided an experimental evidence of the temperature jump at the low-to-high catalytic interface of the heat shield under aerothermal conditions relevant to the actual IXV flight. These tests also gave confidence so that the high-catalytic patch would not endanger the integrity of the vehicle and the safety of the mission. A preliminary assessment of flight data from the thermocouple measurements shows consistency with results of the qualification tests.

  9. Developing health-based pre-planning clearance goals for airport remediation following chemical terrorist attack: Introduction and key assessment considerations

    SciTech Connect

    Watson, Annetta Paule; Raber, Ellen; Dolislager, Frederick; Hauschild, Veronique; Hall, Dr. Linda; Love, Dr. Adam

    2011-01-01

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility re-use and re-entry could require hours to multiple days. While restoration timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical terrorist release. What follows is the first of a two-part analysis identifying key considerations, critical information, and decision criteria to facilitate post-attack and post-decontamination consequence management activities. A conceptual site model and human health-based exposure guidelines are developed and reported as an aid to site-specific pre-planning in the current absence of U.S. state or Federal values designated as compound-specific remediation or re-entry concentrations, and to safely expedite facility recovery to full operational status. Chemicals of concern include chemical warfare nerve and vesicant agents and the toxic industrial compounds phosgene, hydrogen cyanide, and cyanogen chloride. This work has been performed as a national case study conducted in partnership with the Los Angeles International Airport and The Bradley International Terminal. All recommended guidelines have been selected for consistency with airport scenario release parameters of a one-time, short-duration, finite airborne release from a single source followed by compound-specific decontamination.

  10. German Contribution to the X-38 CRV Demonstrator in the Field of Guidance, Navigation and Control (GNC)

    NASA Astrophysics Data System (ADS)

    Soppa, Uwe; Görlach, Thomas; Roenneke, Axel Justus

    2002-01-01

    As a solution to meet a safety requirement to the future full scale space station infrastructure, the Crew Return/Rescue Vehicle (CRV) was supposed to supply the return capability for the complete ISS crew of 7 astronauts back to earth in case of an emergency. A prototype of such a vehicle named X-38 has been developed and built by NASA with European partnership (ESA, DLR). An series of aerial demonstrators (V13x) for tests of the subsonic TAEM phase and the parafoil descent and landing system has been flown by NASA from 1998 to 2001. A full scale unmanned space flight demonstrator (V201) has been built at JSC Houston and although the project has been stopped for budgetary reasons in 2002, it will hopefully still be flown in near future. The X-38 is a lifting body with hypersonic lift to drag ratio about 0.9. In comparison to the Space Shuttle Orbiter, this design provides less aerodynamic maneuvrability and a different actuator layout (divided body flap and winglet rudders instead as combined aileron and elevon in addition to thrust- ers for the early re-entry phase). Hence, the guidance and control concepts used onboard the shuttle orbiter had to be adapted and further developed for the application on the new vehicle. In the frame of the European share of the X-38 project and also of the German TETRA (TEchnol- ogy for future space TRAnsportation) project different GNC related contributions have been made: First, the primary flight control software for the autonomous guidance and control of the X-38 para- foil descent and landing phase has been developed, integrated and successfully flown on multiple vehicles and missions during the aerial drop test campaign conducted by NASA. Second, a real time X-38 vehicle simulator was provided to NASA which has also been used for the validation of a European re-entry guidance and control software (see below). According to the NASA verification and validation plan this simulator is supposed to be used as an independent vali

  11. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    NASA Astrophysics Data System (ADS)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward

  12. Orbiter Return-To-Flight Entry Aeroheating

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Anderson, Brian; Bourland, Gary; Bouslog, Stan; Cassady, Amy; Horvath, Tom; Berry, Scott A.; Gnoffo, Peter; Wood, Bill; Reuther, James; Driver, Dave; Chao, Dennis

    2006-01-01

    The Columbia accident on February 1, 2003 began an unprecedented level of effort within the hypersonic aerothermodynamic community to support the Space Shuttle Program. During the approximately six month time frame of the primary Columbia Accident Investigation Board activity, many technical disciplines were involved in a concerted effort to reconstruct the last moments of the Columbia and her crew, and understand the critical events that led to that loss. Significant contributions to the CAIB activity were made by the hypersonic aerothermodynamic community(REF CAIB) in understanding the re-entry environments that led to the propagation of an ascent foam induced wing leading edge damage to a subsequent breech of the wing spar of Columbia, and the subsequent breakup of the vehicle. A core of the NASA hypersonic aerothermodynamics team that was involved in the CAIB investigation has been combined with the United Space Alliance and Boeing Orbiter engineering team in order to position the Space Shuttle Program with a process to perform in-flight Thermal Protection System damage assessments. This damage assessment process is now part of the baselined plan for Shuttle support, and is a direct out-growth of the Columbia accident and NASAs response. Multiple re-entry aeroheating tools are involved in this damage assessment process, many of which have been developed during the Return To Flight activity. In addition, because these aeroheating tools are part of an overall damage assessment process that also involves the thermal and stress analyses community, in addition to a much broader mission support team, an integrated process for performing the damage assessment activities has been developed by the Space Shuttle Program and the Orbiter engineering community. Several subsets of activity in the Orbiter aeroheating communities support to the Return To Flight effort have been described in previous publications (CFD?, Cavity Heating? Any BLT? Grid Generation?). This work will

  13. Steady State Transportation Cooling in Porous Media Under Local, Non-Thermal Equilibrium Fluid Flow

    NASA Technical Reports Server (NTRS)

    Rodriquez, Alvaro Che

    2002-01-01

    An analytical solution to the steady-state fluid temperature for 1-D (one dimensional) transpiration cooling has been derived. Transpiration cooling has potential use in the aerospace industry for protection against high heating environments for re-entry vehicles. Literature for analytical treatments of transpiration cooling has been largely confined to the assumption of thermal equilibrium between the porous matrix and fluid. In the present analysis, the fundamental fluid and matrix equations are coupled through a volumetric heat transfer coefficient and investigated in non-thermal equilibrium. The effects of varying the thermal conductivity of the solid matrix and the heat transfer coefficient are investigated. The results are also compared to existing experimental data.

  14. Cajal body proteins SMN and Coilin show differential dynamic behaviour in vivo.

    PubMed

    Sleeman, Judith E; Trinkle-Mulcahy, Laura; Prescott, Alan R; Ogg, Stephen C; Lamond, Angus I

    2003-05-15

    Analysis of stable cell lines expressing fluorescently tagged survival of motor neurons protein (SMN) and coilin shows striking differences in their dynamic behaviour, both in the nucleus and during mitosis. Cajal bodies labelled with either FP-SMN or FP-coilin show similar behaviour and frequency of movements. However, fluorescence recovery after photobleaching (FRAP) studies show that SMN returns approximately 50-fold more slowly to Cajal bodies than does coilin. Time-lapse studies on cells progressing from prophase through to G1 show further differences between SMN and coilin, both in their localisation in telophase and in the timing of their re-entry into daughter nuclei. The data reveal similarities between Cajal bodies and nucleoli in their behaviour during mitosis. This in vivo study indicates that SMN and coilin interact differentially with Cajal bodies and reveals parallels in the pathway for reassembly of nucleoli and Cajal bodies following mitosis.

  15. Extraction site preservation using an in-situ hardening alloplastic bone graft substitute.

    PubMed

    Leventis, Minas D; Fairbairn, Peter; Horowitz, Robert A

    2014-01-01

    This case report highlights the use of an in-situ hardening alloplastic bone grafting material composed of beta-tricalcium phosphate (β-TCP) granules coated with poly(lactic-co-glycolic acid) (PLGA) to preserve the dimensions and architecture of the alveolar ridge after atraumatic extraction. This material provided a stable scaffold that, although left uncovered, deterred the ingrowth of unwanted soft tissue, allowing newly formed keratinized soft tissue to proliferate over the healing grafted socket and gradually cover the site. At re-entry after 4 months adequate newly formed bone was observed, allowing for the correct positional placement of an implant. The results of this case suggest that an in-situ hardening alloplastic grafting material can be successfully utilized with minimally invasive procedures to preserve the bone and the soft-tissue profile of the alveolar ridge for future implant rehabilitation.

  16. Plasma Heating: An Advanced Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.

  17. Quality of care indicators for the rehabilitation of children with traumatic brain injury

    PubMed Central

    Rivara, Frederick P.; Ennis, Stephanie K.; Mangione-Smith, Rita; MacKenzie, Ellen J.; Jaffe, Kenneth M.

    2012-01-01

    Objective To develop measurement tools for assessing compliance with identifiable processes of inpatient care for children with traumatic brain injury that are reliable, valid, and amenable to implementation. Design Literature review and expert panel using the RAND/UCLA Appropriateness Method and a Delphi technique. Setting Not applicable Participants Children with traumatic brain injury (TBI) Interventions Not applicable Main outcome measures Quality of care indicators Results A total of 119 indicators were developed across the domains of general management; family-centered care; cognitive-communication, speech, language and swallowing impairments; gross and fine motor skill impairments; neuropsychological, social and behavioral impairments; school re-entry; community integration. There was a high degree of agreement on these indicators as valid and feasible quality measures for children with TBI. Conclusion These indicators are an important step toward building a better base of evidence about the effectiveness and efficiency of the components of acute inpatient rehabilitation for pediatric patients with TBI. PMID:22280892

  18. Traceability of Equidae: a population in motion.

    PubMed

    Sluyter, F J

    2001-08-01

    The accelerated speed of animal transport and the existence of complex and intricate movement systems have created an equine population in motion. This ease in the international movement of horses has an impact on the risk of introduction or spread of disease, specifically in relation to competition horses. Facilitating trade in Equidae, whilst simultaneously safeguarding the health status of the receiving country is a major challenge. To date, the international regulatory bodies are prepared to consider movement of registered horses as a relatively 'low risk' occurrence and thereby apply the least restrictive measures upon importation or re-entry. However, several outbreaks of contagious disease related to movement of horses have underlined the need to regulate identification of horses, to establish proper sanitary certification and to secure traceability of horse movement.

  19. Ablation Modeling of Ares-I Upper State Thermal Protection System Using Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Sharp, John R.; Page, Arthur T.

    2007-01-01

    The thermal protection system (TPS) for the Ares-I Upper Stage will be based on Space Transportation System External Tank (ET) and Solid Rocket Booster (SRB) heritage materials. These TPS materials were qualified via hot gas testing that simulated ascent and re-entry aerothermodynamic convective heating environments. From this data, the recession rates due to ablation were characterized and used in thermal modeling for sizing the thickness required to maintain structural substrate temperatures. At Marshall Space Flight Center (MSFC), the in-house code ABL is currently used to predict TPS ablation and substrate temperatures as a FORTRAN application integrated within SINDA/G. This paper describes a comparison of the new ablation utility in Thermal Desktop and SINDA/FLUINT with the heritage ABL code and empirical test data which serves as the validation of the Thermal Desktop software for use on the design of the Ares-I Upper Stage project.

  20. Advanced Propulsion and TPS for a Rapidly-Prototyped CEV

    NASA Astrophysics Data System (ADS)

    Hudson, Gary C.

    2005-02-01

    Transformational Space Corporation (t/Space) is developing for NASA the initial designs for the Crew Exploration Vehicle family, focusing on a Launch CEV for transporting NASA and civilian passengers from Earth to orbit. The t/Space methodology is rapid prototyping of major vehicle systems, and deriving detailed specifications from the resulting hardware, avoiding "written-in-advance" specs that can force the costly invention of new capabilities simply to meet such specs. A key technology shared by the CEV family is Vapor Pressurized propulsion (Vapak) for simplicity and reliability, which provides electrical power, life support gas and a heat sink in addition to propulsion. The CEV family also features active transpiration cooling of re-entry surfaces (for reusability) backed up by passive thermal protection.

  1. Understanding the Columbia Space Shuttle Accident

    SciTech Connect

    Osheroff, Doug

    2004-06-16

    On February 1, 2003, the NASA space shuttle Columbia broke apart during re-entry over East Texas at an altitude of 200,000 feet and a velocity of approximately 12,000 mph. All aboard perished. Prof. Osheroff was a member of the board that investigated the origins of this accident, both physical and organizational. In his talk he will describe how the board was able to determine with almost absolute certainty the physical cause of the accident. In addition, Prof. Osherhoff will discuss its organizational and cultural causes, which are rooted deep in the culture of the human spaceflight program. Why did NASA continue to fly the shuttle system despite the persistent failure of a vital sub-system that it should have known did indeed pose a safety risk on every flight? Finally, Prof. Osherhoff will touch on the future role humans are likely to play in the exploration of space.

  2. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals.

    PubMed

    Gawriluk, Thomas R; Simkin, Jennifer; Thompson, Katherine L; Biswas, Shishir K; Clare-Salzler, Zak; Kimani, John M; Kiama, Stephen G; Smith, Jeramiah J; Ezenwa, Vanessa O; Seifert, Ashley W

    2016-04-25

    Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas other rodents including MRL/MpJ 'healer' mice heal similar injuries by scarring. We demonstrate ear-hole closure is independent of ear size, and closure rate can be modelled with a cubic function. Cellular and genetic analyses reveal that injury induces blastema formation in Acomys cahirinus. Despite cell cycle re-entry in Mus musculus and A. cahirinus, efficient cell cycle progression and proliferation only occurs in spiny mice. Together, our data unite blastema-mediated regeneration in spiny mice with regeneration in other vertebrates such as salamanders, newts and zebrafish, where all healthy adults regenerate in response to injury.

  3. Influence of Control Jets on Flush Air-data Sensors

    NASA Technical Reports Server (NTRS)

    Woodruff, Stephen

    2009-01-01

    Computations are performed to investigate the effect of rocket control motors on flush air-data sensor systems. Such sensors are critical for the control of space vehicles during launch and re-entry, but are prone to interference from rocket motors, hypersonic-flow effects, etc. Computational analyses provide a means for studying these interference effects and exploring opportunities for mitigating them, either through design techniques or through appropriate processing of the sensor outputs. In the present work, the influence of rocket control motors on the nosecone flush air-data sensors of a launch-abort vehicle is studied. Particular attention is paid to the differential effect of various control-jet combinations on surface pressures. The relative effectiveness of inviscid, viscous, turbulent and two-phase-flow approximations in addressing this problem is also investigated.

  4. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  5. Geographical determination of an optimal network of landing sites for Hermes

    NASA Astrophysics Data System (ADS)

    Goester, J. F.

    Once its mission is done, Hermès will perform a deorbit burn, then will pilot towards a specially equipped landing site. As the atmospheric re-entry corridor is limited (the maximum cross range is 1500 km) Hermès will have to be situated on or-bits going near the runway. For safety reasons, we need to get one return opportunity per revolution, so it may be necessary to consider several landing sites and to fit out them. This proposed method allows to find, with easiness and quickness, the geographic areas getting the optimal solutions in term of number of runways, solutions amongst which we will choose already existing sites, checking other meteorologic, politic and economic constraints.

  6. Sidetracking technology for coiled-tubing drilling

    SciTech Connect

    Leising, L.J.; Doremus, D.M.; Hearn, D.D.; Rike, E.A.; Paslay, P.R.

    1996-05-01

    Coiled-tubing (CT) drilling is a rapidly growing new technology that has been used for shallow new wells and re-entry applications. Through-tubing drilling has evolved as a major application for CT drilling. The remaining key enabling technology for viable through-tubing drilling is the ability to sidetrack in casing below the tubing tail. This paper describes the three technologies developed for sidetracking and presents a mathematical model of forces, penetration rates, and torques for window milling with the cement-sidetracking (CS) technique. Window milling has been a seat of the pants operation in the past. To the authors` knowledge, this is the first published work on the mechanics of window milling. The results from several yard tests and one field test are presented and show some of the problems associated with sidetracking.

  7. Evaluation of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.

    1971-01-01

    The results of an evaluation of candidate metal-matrix composite materials for shuttle space radiators mounted to external structure are presented. The evaluation was specifically applicable to considerations of the manufacturing and properties of a potential space radiator. Two candidates, boron/aluminum and graphite/aluminum were obtained or made in various forms and tested in sufficient depth to allow selection of one of the two for future scale-up programs. The effort accomplished on this program verified that aluminum reinforced with boron was within the state-of-the-art in industry and possessed properties usable in the external skin areas available for shuttle radiators where re-entry temperatures will not exceed 800 F. It further demonstrated that graphite/aluminum has an apparently attractive future for space applications but requires extension development prior to scale-up.

  8. Turnover of postlarval bivalves in sediments of tidal flats in Königshafen (German Wadden sea)

    NASA Astrophysics Data System (ADS)

    Armonies, W.

    1994-06-01

    After larval settlement, juvenile bivalves may rapidly re-enter the water column and attain secondary dispersal by byssus-drifting. In order to estimate the quantitative importance of byssus-drifting, the abundance of drifters in the water column, their re-entry into the sediment, and their density in the ambient sediment were measured simultaneously over 3 months on a tidal flat in Königshafen near the Island of Sylt in the North Sea. Turnover of juvenile clams Macoma balthica and cockles Cerastoderma edule was more than once per week in summer, showing strong short-term variability because of semi-lunar rhythms of drifting activity. While there is currently no evidence for active habitat selection in settling M. balthica and C. edule larvae, it is suggested that habitat selection occurs following postlarval migrations.

  9. Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981

    SciTech Connect

    Not Available

    1982-01-01

    The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

  10. Subintimal arterial flossing with antegrade-retrograde intervention (SAFARI) and rertograde access for critical limb ischemia.

    PubMed

    Hendricks, Nicholas J; Sabri, Saher S

    2014-09-01

    Retrograde access techniques involve the addition of a retrograde access into the distal target vessel to aid in recanalization of chronic total occlusions. Many patients with critical limb ischemia are also poor surgical candidates because of comorbidities or lack of suitable landing zone for bypass procedures. This approach may be helpful in the setting of chronic occlusions that cannot be crossed via conventional antegrade true-lumen approaches. Subintimal arterial flossing with antegrade-retrograde intervention technique can be used when the occlusion was crossed in the subintimal plane and antegrade re-entry techniques failed. It may also be useful for flush superficial femoral artery occlusions or those lesions that extend into the trifurcation vessels. Proficiency in these techniques allows limb salvage in patients who lack surgical options and would otherwise undergo amputation.

  11. [Stent Grafting for Aortic Dissection].

    PubMed

    Uchida, Naomichi

    2016-07-01

    The purpose of stent graft for aortic dissection is to terminate antegrade blood flow into the false lumen through primary entry. Early intervention for primary entry makes excellent aortic remodeling and emergent stent grafting for complicated acute type B aortic dissection is supported as a class I. On the other hand stent grafting for chronic aortic dissection is controversial. Early stent grafting is considered with in 6 months after on-set if the diameter of the descending aorta is more than 40 mm. Additional interventions for residual false lumen on the downstream aorta are still required. Stent graft for re-entry, candy-plug technique, and double stenting, other effective re-interventions were reported. Best treatment on the basis of each anatomical and physical characteristics should be selected in each institution. Frozen elephant trunk is alternative procedure for aortic dissection without the need to take account of proximal anatomical limitation and effective for acute type A aortic dissection.

  12. Propagation of phase modulation signals in time-varying plasma

    NASA Astrophysics Data System (ADS)

    Yang, Min; Li, Xiaoping; Wang, Di; Liu, Yanming; He, Pan

    2016-05-01

    The effects of time-varying plasma to the propagation of phase modulation signals are investigated in this paper. Through theoretical analysis, the mechanism of the interaction between the time-varying plasma and the phase modulation signal is given. A time-varying plasma generator which could produce arbitrary time-varying plasma is built by adjusting the discharge power. A comparison of results from experiment and simulation prove that the time-varying plasma could cause the special rotation of QPSK (Quadrature Phase Shift Keying) constellation, and the mechanism of constellation point's rotation is analyzed. Additionally, the experimental results of the QPSK signals' EVM (Error Vector Magnitude) after time-varying and time-invariant plasma with different ωp/ω are given. This research could be used to improve the TT&C (Tracking Telemeter and Command) system of re-entry vehicles.

  13. Investigation of the Geokinetics horizontal in situ oil shale retorting process. Quarterly report, January-March 1980

    SciTech Connect

    Hutchinson, D.L.

    1980-05-01

    Retort No. 18 produced 3479 barrels of oil during the quarter for a total of 4528 barrels to date. Chromatographic analyses of Retort No. 18 shale oil by the GKI analytical laboratory indicated variation in the oil from the wells near the air-in end and from the air-out end of the retort. Shale oil has been blended with Altamont crude (the Roosevelt refinery's normal feedstock); the distillation, API gravity, pour point, flash point, Naptha and Cat Gas were not affected by the shale oil. The diesel off the crude unit changed from water white to yellow, however, and a fine grayish-brown precipitate formed. Re-entry drilling was performed on Retorts No. 21, No. 22, and No. 23 during the quarter; tracer tests were run by Sandia Laboratories on Retorts No. 19, No. 21, No. 22, and No. 23. Blasthole drilling began on Retort No. 25.

  14. Colloidal Disorder-Order Transition (CDOT-2)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is an image of a colloidal crystal from the CDOT-2 investigation flown on STS-95. There are so many colloidal particles in this sample that it behaves like a glass. In the laboratory on Earth, the sample remained in an amorphous state, showing no sign of crystal growth. In microgravity the sample crystallized in 3 days, as did the other glassy colloidal samples examined in the CDOT-2 experiment. During the investigation, crystallization occurred in samples that had a volume fraction (number of particles per total volume) larger than the formerly reported glass transition of 0.58. This has great implications for theories of the structural glass transition. These crystals were strong enough to survive space shuttle re-entry and landing.

  15. Thermal protection system ablation sensor

    NASA Technical Reports Server (NTRS)

    Gorbunov, Sergey (Inventor); Martinez, Edward R. (Inventor); Scott, James B. (Inventor); Oishi, Tomomi (Inventor); Fu, Johnny (Inventor); Mach, Joseph G. (Inventor); Santos, Jose B. (Inventor)

    2011-01-01

    An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.

  16. Exploration Flight Test 1 Afterbody Aerothermal Environment Reconstruction

    NASA Technical Reports Server (NTRS)

    Hyatt, Andrew J.; Oliver, Brandon; Amar, Adam; Lessard, Victor

    2016-01-01

    The Exploration Flight Test 1 vehicle included roughly 100 near surface thermocouples on the after body of the vehicle. The temperature traces at each of these instruments have been used to perform inverse environment reconstruction to determine the aerothermal environment experienced during re-entry of the vehicle. This paper provides an overview of the reconstructed environments and identifies critical aspects of the environment. These critical aspects include transition and reaction control system jet influence. A blind test of the process and reconstruction tool was also performed to build confidence in the reconstructed environments. Finally, an uncertainty quantification analysis was also performed to identify the impact of each of the uncertainties on the reconstructed environments.

  17. Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration.

    PubMed

    Chen, Shuyuan; Shimoda, Masayuki; Chen, Jiaxi; Matsumoto, Shinichi; Grayburn, Paul A

    2012-02-15

    The molecular mechanism of β-cell regeneration remains poorly understood. Cyclin D2/CDK4 expresses in normal β cells and maintains adult β-cell growth. We hypothesized that gene therapy with cyclin D2/CDK4/GLP-1 plasmids targeted to the pancreas of STZ-treated rats by ultrasound-targeted microbubble destruction (UTMD) would force cell cycle re-entry of residual G(0)-phase islet cells into G(1)/S phase to regenerate β cells. A single UTMD treatment induced β-cell regeneration with reversal of diabetes for 6 mo without evidence of toxicity. We observed that this β-cell regeneration was not mediated by self-replication of pre-existing β cells. Instead, cyclin D2/CDK4/GLP-1 initiated robust proliferation of adult pancreatic progenitor cells that exist within islets and terminally differentiate to mature islets with β cells and α cells.

  18. Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53.

    PubMed

    Dirac, Annette M G; Bernards, René

    2003-04-04

    Senescence is generally defined as an irreversible state of G(1) cell cycle arrest in which cells are refractory to growth factor stimulation. In mouse embryo fibroblasts (MEFs), induction of senescence requires the presence of p19(ARF) and p53, as genetic ablation of either of these genes allows escape from senescence and leads to immortalization. We have developed a lentiviral vector that directs the synthesis of a p53-specific short hairpin transcript, which mediates stable suppression of p53 expression through RNA interference. We show that suppression of p53 expression in senescent MEFs leads to rapid cell cycle re-entry, is associated with loss of expression of senescence-associated genes, and leads to immortalization. These data indicate that senescence in MEFs is reversible and demonstrate that both initiation and maintenance of senescence is p53-dependent.

  19. The INCAS Project: An Innovative Contact-Less Angular Sensor

    NASA Astrophysics Data System (ADS)

    Ghislanzoni, L.; Di Cintio, A.; Solimando, M.; Parzianello, G.

    2013-09-01

    Angular Positions sensors are widely used in all spacecrafts, including re-entry vehicles and launchers, where mechanisms and pointing-scanning devices are required. The main applications are on mechanisms for TeleMeasure (TM) related to the release and deployment of devices, or on rotary mechanisms such as Solar Array Drive Mechanism (SADM) and Antenna Pointing Mechanism (APM). Longer lifetime (up to 7- 10 years) is becoming a new driver for the coming missions and contact technology sensors often incur in limitations due to the wear of the contacting parts [1].A Self-Compensating Absolute Angular Encoder was developed and tested in the frame of an ESA's ARTES 5.2 project, named INCAS (INnovative Contact-less Angular Sensor). More in particular, the INCAS sensor addresses a market need for contactless angular sensors aimed at replacing the more conventional rotary potentiometers, while featuring the same level of accuracy performances and extending the expected lifetime.

  20. Instrumentation Development for Large Scale Hypersonic Inflatable Aerodynamic Decelerator Characterization

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.

    2011-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology is currently being considered for multiple atmospheric entry applications as the limitations of traditional entry vehicles have been reached. The Inflatable Re-entry Vehicle Experiment (IRVE) has successfully demonstrated this technology as a viable candidate with a 3.0 m diameter vehicle sub-orbital flight. To further this technology, large scale HIADs (6.0 8.5 m) must be developed and tested. To characterize the performance of large scale HIAD technology new instrumentation concepts must be developed to accommodate the flexible nature inflatable aeroshell. Many of the concepts that are under consideration for the HIAD FY12 subsonic wind tunnel test series are discussed below.