Sample records for reaching surface water

  1. Continuous measurements of water surface height and width along a 6.5km river reach for discharge algorithm development

    NASA Astrophysics Data System (ADS)

    Tuozzolo, S.; Durand, M. T.; Pavelsky, T.; Pentecost, J.

    2015-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite will provide measurements of river width and water surface elevation and slope along continuous swaths of world rivers. Understanding water surface slope and width dynamics in river reaches is important for both developing and validating discharge algorithms to be used on future SWOT data. We collected water surface elevation and river width data along a 6.5km stretch of the Olentangy River in Columbus, Ohio from October to December 2014. Continuous measurements of water surface height were supplemented with periodical river width measurements at twenty sites along the study reach. The water surface slope of the entire reach ranged from during 41.58 cm/km at baseflow to 45.31 cm/km after a storm event. The study reach was also broken into sub-reaches roughly 1km in length to study smaller scale slope dynamics. The furthest upstream sub-reaches are characterized by free-flowing riffle-pool sequences, while the furthest downstream sub-reaches were directly affected by two low-head dams. In the sub-reaches immediately upstream of each dam, baseflow slope is as low as 2 cm/km, while the furthest upstream free-flowing sub-reach has a baseflow slope of 100 cm/km. During high flow events the backwater effect of the dams was observed to propagate upstream: sub-reaches impounded by the dams had increased water surface slopes, while free flowing sub-reaches had decreased water surface slopes. During the largest observed flow event, a stage change of 0.40 m affected sub-reach slopes by as much as 30 cm/km. Further analysis will examine height-width relationships within the study reach and relate cross-sectional flow area to river stage. These relationships can be used in conjunction with slope data to estimate discharge using a modified Manning's equation, and are a core component of discharge algorithms being developed for the SWOT mission.

  2. Trend-outflow method for understanding interactions of surface water with groundwater and atmospheric water for eight reaches of the Upper Rio Grande

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Sheng, Zhuping

    2011-11-01

    SummaryAtmospheric water, surface water, and groundwater interact very actively through hydrologic processes such as precipitation, infiltration, seepage, irrigation, drainage, evaporation, and evapotranspiration in the Upper Rio Grande Basin. A trend-outflow method has been developed in this paper to gain a better understanding of the interactions based on cumulated inflow and outflow data for any river reaches of interest. A general trend-outflow equation was derived by associating the net interaction of surface water with atmospheric water as a polynomial of inflow and the net interaction of surface water with groundwater as a constant based on surface water budget. Linear and quadratic relations are probably two common trend-outflow types in the real world. It was found that trend-outflows of the Upper Rio Grande reaches, Española, Albuquerque, Socorro-Engle, Palomas, and Rincon are linear with inflow, while those of reaches, Belen, Mesilla and Hueco are quadratic. Reaches Belen, Mesilla and Hueco are found as water deficit reaches mainly for irrigated agriculture in extreme drought years.

  3. Flood Map for the Winooski River in Waterbury, Vermont, 2014

    USGS Publications Warehouse

    Olson, Scott A.

    2015-01-01

    High-water marks from Tropical Storm Irene were available for seven locations along the study reach. The highwater marks were used to estimate water-surface profiles and discharges resulting from Tropical Storm Irene throughout the study reach. From a comparison of the estimated water-surface profile for Tropical Storm Irene with the water-surface profiles for the 1- and 0.2-percent annual exceedance probability (AEP) floods, it was determined that the high-water elevations resulting from Tropical Storm Irene exceeded the estimated 1-percent AEP flood throughout the Winooski River study reach but did not exceed the estimated 0.2-percent AEP flood at any location within the study reach.

  4. Flood recovery maps for the White River in Bethel, Stockbridge, and Rochester, Vermont, and the Tweed River in Stockbridge and Pittsfield, Vermont, 2014

    USGS Publications Warehouse

    Olson, Scott A.

    2015-01-01

    Eighteen high-water marks from Tropical Storm Irene were available along the studied reaches. The discharges in the Tropical Storm Irene HEC–RAS model were adjusted so that the resulting water-surface elevations matched the high-water mark elevations along the study reaches. This allowed for an estimation of the water-surface profile throughout the study area resulting from Tropical Storm Irene. From a comparison of the estimated water-surface profile of Tropical Storm Irene to the water-surface profiles of the 1- and 0.2-percent AEP floods, it was determined that the high-water elevations resulting from Tropical Storm Irene exceeded the estimated 1-percent AEP flood throughout the White River and Tweed River study reaches and exceeded the estimated 0.2-percent AEP flood in 16.7 of the 28.6 study reach miles. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging (lidar) data having a 18.2-centimeter vertical accuracy at the 95-percent confidence level and 1-meter horizontal resolution to delineate the area flooded for each water-surface profile.

  5. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    USGS Publications Warehouse

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    A flexible Surface-Water Routing (SWR1) Process that solves the continuity equation for one-dimensional and two-dimensional surface-water flow routing has been developed for the U.S. Geological Survey three-dimensional groundwater model, MODFLOW-2005. Simple level- and tilted-pool reservoir routing and a diffusive-wave approximation of the Saint-Venant equations have been implemented. Both methods can be implemented in the same model and the solution method can be simplified to represent constant-stage elements that are functionally equivalent to the standard MODFLOW River or Drain Package boundary conditions. A generic approach has been used to represent surface-water features (reaches) and allows implementation of a variety of geometric forms. One-dimensional geometric forms include rectangular, trapezoidal, and irregular cross section reaches to simulate one-dimensional surface-water features, such as canals and streams. Two-dimensional geometric forms include reaches defined using specified stage-volume-area-perimeter (SVAP) tables and reaches covering entire finite-difference grid cells to simulate two-dimensional surface-water features, such as wetlands and lakes. Specified SVAP tables can be used to represent reaches that are smaller than the finite-difference grid cell (for example, isolated lakes), or reaches that cannot be represented accurately using the defined top of the model. Specified lateral flows (which can represent point and distributed flows) and stage-dependent rainfall and evaporation can be applied to each reach. The SWR1 Process can be used with the MODFLOW Unsaturated Zone Flow (UZF1) Package to permit dynamic simulation of runoff from the land surface to specified reaches. Surface-water/groundwater interactions in the SWR1 Process are mathematically defined to be a function of the difference between simulated stages and groundwater levels, and the specific form of the reach conductance equation used in each reach. Conductance can be specified directly or calculated as a function of the simulated wetted perimeter and defined reach bed hydraulic properties, or as a weighted combination of both reach bed hydraulic properties and horizontal hydraulic conductivity. Each reach can be explicitly coupled to a single specific groundwater-model layer or coupled to multiple groundwater-model layers based on the reach geometry and groundwater-model layer elevations in the row and column containing the reach. Surface-water flow between reservoirs is simulated using control structures. Surface-water flow between reaches, simulated by the diffusive-wave approximation, can also be simulated using control structures. A variety of control structures have been included in the SWR1 Process and include (1) excess-volume structures, (2) uncontrolled-discharge structures, (3) pumps, (4) defined stage-discharge relations, (5) culverts, (6) fixed- or movable-crest weirs, and (7) fixed or operable gated spillways. Multiple control structures can be implemented in individual reaches and are treated as composite flow structures. Solution of the continuity equation at the reach-group scale (a single reach or a user-defined collection of individual reaches) is achieved using exact Newton methods with direct solution methods or exact and inexact Newton methods with Krylov sub-space methods. Newton methods have been used in the SWR1 Process because of their ability to solve nonlinear problems. Multiple SWR1 time steps can be simulated for each MODFLOW time step, and a simple adaptive time-step algorithm, based on user-specified rainfall, stage, flow, or convergence constraints, has been implemented to better resolve surface-water response. A simple linear- or sigmoid-depth scaling approach also has been implemented to account for increased bed roughness at small surface-water depths and to increase numerical stability. A line-search algorithm also has been included to improve the quality of the Newton-step upgrade vector, if possible. The SWR1 Process has been benchmarked against one- and two-dimensional numerical solutions from existing one- and two-dimensional numerical codes that solve the dynamic-wave approximation of the Saint-Venant equations. Two-dimensional solutions test the ability of the SWR1 Process to simulate the response of a surface-water system to (1) steady flow conditions for an inclined surface (solution of Manning's equation), and (2) transient inflow and rainfall for an inclined surface. The one-dimensional solution tests the ability of the SWR1 Process to simulate a looped network with multiple upstream inflows and several control structures. The SWR1 Process also has been compared to a level-pool reservoir solution. A synthetic test problem was developed to evaluate a number of different SWR1 solution options and simulate surface-water/groundwater interaction. The solution approach used in the SWR1 Process may not be applicable for all surface-water/groundwater problems. The SWR1 Process is best suited for modeling long-term changes (days to years) in surface-water and groundwater flow. Use of the SWR1 Process is not recommended for modeling the transient exchange of water between streams and aquifers when local and convective acceleration and other secondary effects (for example, wind and Coriolis forces) are substantial. Dam break evaluations and two-dimensional evaluations of spatially extensive domains are examples where acceleration terms and secondary effects would be significant, respectively.

  6. Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs

    USGS Publications Warehouse

    Brahana, J.V.; Hollyday, E.F.

    1988-01-01

    In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.

  7. Water-surface elevation and discharge measurement data for the Red River of the North and its tributaries near Fargo, North Dakota, water years 2014–15

    USGS Publications Warehouse

    Damschen, William C.; Galloway, Joel M.

    2016-08-25

    The U.S. Geological Survey, in cooperation with the Fargo Diversion Board of Authority, collected water-surface elevations during a range of discharges needed for calibration of hydrologic and hydraulic models for specific reaches of interest in water years 2014–15. These water-surface elevation and discharge measurement data were collected for design planning of diversion structures on the Red River of the North and Wild Rice River and the aqueduct/diversion structures on the Sheyenne and Maple Rivers. The Red River of the North and Sheyenne River reaches were surveyed six times, and discharges ranged from 276 to 6,540 cubic feet per second and from 166 to 2,040 cubic feet per second, respectively. The Wild Rice River reach also was surveyed six times during 2014 and 2015, and discharges ranged from 13 to 1,550 cubic feet per second. The Maple River reach was surveyed four times, and discharges ranged from 16.4 to 633 cubic feet per second. Water-surface elevation differences from upstream to downstream in the reaches ranged from 0.33 feet in the Red River of the North reach to 9.4 feet in the Maple River reach.

  8. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    USGS Publications Warehouse

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated high flows. Conveyance losses in the Pebble-Topaz reach were greatest, about 283 cubic feet per second, during the spring regulated high flows and were attributed to a hydroelectric project.Comparison of water levels in 30 wells in the Portneuf Valley during September and October 1968 and 2001 indicated long-term declines since 1968; the median decline was 3.4 feet. September and October were selected for characterizing long-term ground-water-level fluctuations because declines associated with irrigation reach a maximum at the end of the irrigation season. The average annual snowpack in the study area has declined significantly; 1945 85 average annual snowpack was 16.1 inches, whereas 1986 through 2002 average annual snowpack was 11.6 inches. Water-level declines during 1998 2002 may be partially attributable to the extended dry climatic conditions. It is unclear whether the declines could be partially attributed to increases in ground-water withdrawals. Between 1968 and 1980, water rights for ground-water withdrawals nearly doubled from 23,500 to 46,000 acre-feet per year. During this period, ground-water levels were relatively constant and did not exhibit a declining trend that could be related to increased ground-water withdrawal rights. However, ground-water withdrawals are not measured in the valley; thus, the amount of water pumped is not known. Since the 1990s, there have been several years when the Chesterfield Reservoir has not completely refilled, and the water in storage behind the reservoir has been depleted by the middle of the irrigation season. In this situation, surface-water diversions for irrigation were terminated before the end of the irrigation season, and irrigators, who were relying in part on diversions from the Portneuf River, had to rely solely on ground water as an alternate supply. Smaller volumes of water in the Chesterfield Reservoir since the 1990s indicate a growing demand for ground-water supplies.

  9. Ground-water/surface-water relations along Honey Creek, Washtenaw County, Michigan, 2003

    USGS Publications Warehouse

    Healy, Denis F.

    2005-01-01

    The U.S. Geological Survey (USGS), in cooperation with the city of Ann Arbor, Mich., investigated the ground-water/ surface-water relations along the lower reaches of Honey Creek, Washtenaw County, Mich., and an unnamed tributary to Honey Creek (the discharge tributary) from June through October 2003. Streamflow in these reaches was artificially high during a naturally low-flow period due to an anthropogenic discharge. Ground-water/surface-water relations were examined by seepage runs (series of streamflow measurements for the computation of streams gains or losses) and measurements of the difference in head between the stream surface and shallow aquifer. Specific conductance and water-temperature measurements were used as ancillary data to help identify gaining and losing reaches. Three seepage runs and four runs in which hydraulic-head differences between the stream and shallow aquifer were measured (piezometer runs) were made during periods of base flow. Streamflow measurements were made at 18 sites for the seepage runs. Instream piezometers were installed at 16 sites and bank piezometers were installed at 2 sites. Two deeper instream piezometers were installed at site 13 on September 4, 2003 to collect additional data on the ground-water/surface-water relations at that site. The seepage runs indicate that the main stem of Honey Creek and the discharge tributary in the study area are overall gaining reaches. The seepage runs also indicate that smaller reaches of Honey Creek and the discharge tributary may be losing reaches and that this relation may change over time with changing hydraulic conditions. The piezometer-run measurements support the seepage-run results on the main stem, whereas piezometer-run measurements both support and conflict with seepage-run measurements on the discharge tributary. Seepage runs give an average for the reach, whereas piezometer head-difference measurements are for a specific area around the piezometer. Data that may appear to be conflicting actually may be showing that within a gaining reach there are localized areas that lose streamflow. The overall gain in streamflow along with specific measurements of head differences, specific conductance, and water temperature indicate that ground water is discharging to Honey Creek and the discharge tributary. Although reaches and areas that lose streamflow have been identified, data collected during this study cannot confirm or disprove that the loss is to the regional ground-water system.

  10. The Reach Address Database (RAD)

    EPA Pesticide Factsheets

    The Reach Address Database (RAD) stores reach address information for each Water Program feature that has been linked to the underlying surface water features (streams, lakes, etc) in the National Hydrology Database (NHD) Plus dataset.

  11. WATERS Terms of Use and Disclaimer

    EPA Pesticide Factsheets

    The Reach Address Database (RAD) stores reach address information for each Water Program feature that has been linked to the underlying surface water features (streams, lakes, etc) in the National Hydrology Database (NHD) Plus dataset.

  12. Swath-altimetry measurements of the main stem Amazon River: measurement errors and hydraulic implications

    NASA Astrophysics Data System (ADS)

    Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.

    2015-04-01

    The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface-water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water-surface elevations. In this paper, we aimed to (i) characterise and illustrate in two dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water-surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a virtual mission for a ~260 km reach of the central Amazon (Solimões) River, using a hydraulic model to provide water-surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimensional height error spectrum derived from the SWOT design requirements. We thereby obtained water-surface elevation measurements for the Amazon main stem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-sectional averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1 % average overall error in discharge, respectively. We extend the results to other rivers worldwide and infer that SWOT-derived discharge estimates may be more accurate for rivers with larger channel widths (permitting a greater level of cross-sectional averaging and the use of shorter reach lengths) and higher water-surface slopes (reducing the proportional impact of slope errors on discharge calculation).

  13. Drivers and Effects of Groundwater-Surface Water Interaction in the Karstic Lower Flint River Basin, Southwestern Georgia, USA

    NASA Astrophysics Data System (ADS)

    Rugel, K.; Golladay, S. W.; Jackson, C. R.; Rasmussen, T. C.; Dowd, J. F.; Mcdowell, R. J.

    2017-12-01

    Groundwater provides the majority of global water resources for domestic and agricultural usage while contributing vital surface water baseflows which support healthy aquatic ecosystems. Understanding the extent and magnitude of hydrologic connectivity between groundwater and surface water components in karst watersheds is essential to the prudent management of these hydraulically-interactive systems. We examined groundwater and surface water connectivity between the Upper Floridan Aquifer (UFA) and streams in the Lower Flint River Basin (LFRB) in southwestern Georgia where development of agricultural irrigation intensified over the past 30 years. An analysis of USGS streamflow data for the pre- and post-irrigation period showed summer baseflows in some Lower Flint River tributaries were reduced by an order of magnitude in the post-irrigation period, reiterating the strong hydraulic connection between these streams and the underlying aquifer. Large and fine-scale monitoring of calcium, nitrate, specific conductance and stable isotopes (δ18O and δD) on 50 km of Ichawaynochaway Creek, a major tributary of the Lower Flint, detected discrete groundwater-surface water flow paths which accounted for 42% of total groundwater contributions in the 50 km study reach. This presentation will highlight a new analysis using the metadata EPA Reach File (1) and comparing stream reach and instream bedrock joint azimuths with stream geochemical results from previous field study. Our findings suggested that reaches with NNW bearing may be more likely to display enhanced groundwater-surface water connectivity. Our results show that local heterogeneity can significantly affect water budgets and quality within these watersheds, making the use of geomorphological stream attributes a valuable tool to water resource management for the prediction and protection of vulnerable regions of hydrologic connectivity in karst catchments.

  14. Shallow groundwater mercury supply in a coastal plain stream

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.; Lowery, Mark A.; Brigham, Mark E.; Burns, Douglas A.; Button, Daniel T.; Chapelle, Francis H.; Lutz, Michelle A.; Marvin-DiPasquale, Mark C.; Riva-Murray, Karen

    2012-01-01

    Fluvial methylmercury (MeHg) is attributed to methylation in up-gradient wetland areas. This hypothesis depends on efficient wetland-to-stream hydraulic transport under nonflood and flood conditions. Fluxes of water and dissolved (filtered) mercury (Hg) species (FMeHg and total Hg (FTHg)) were quantified in April and July of 2009 in a reach at McTier Creek, South Carolina to determine the relative importance of tributary surface water and shallow groundwater Hg transport from wetland/floodplain areas to the stream under nonflood conditions. The reach represented less than 6% of upstream main-channel distance and 2% of upstream basin area. Surface-water discharge increased within the reach by approximately 10%. Mean FMeHg and FTHg fluxes increased within the reach by 23–27% and 9–15%, respectively. Mass balances indicated that, under nonflood conditions, the primary supply of water, FMeHg, and FTHg within the reach (excluding upstream surface water influx) was groundwater discharge, rather than tributary transport from wetlands, in-stream MeHg production, or atmospheric Hg deposition. These results illustrate the importance of riparian wetland/floodplain areas as sources of fluvial MeHg and of groundwater Hg transport as a fundamental control on Hg supply to Coastal Plain streams.

  15. Shallow Groundwater Mercury Supply in a Coastal Plain Stream

    PubMed Central

    2012-01-01

    Fluvial methylmercury (MeHg) is attributed to methylation in up-gradient wetland areas. This hypothesis depends on efficient wetland-to-stream hydraulic transport under nonflood and flood conditions. Fluxes of water and dissolved (filtered) mercury (Hg) species (FMeHg and total Hg (FTHg)) were quantified in April and July of 2009 in a reach at McTier Creek, South Carolina to determine the relative importance of tributary surface water and shallow groundwater Hg transport from wetland/floodplain areas to the stream under nonflood conditions. The reach represented less than 6% of upstream main-channel distance and 2% of upstream basin area. Surface-water discharge increased within the reach by approximately 10%. Mean FMeHg and FTHg fluxes increased within the reach by 23–27% and 9–15%, respectively. Mass balances indicated that, under nonflood conditions, the primary supply of water, FMeHg, and FTHg within the reach (excluding upstream surface water influx) was groundwater discharge, rather than tributary transport from wetlands, in-stream MeHg production, or atmospheric Hg deposition. These results illustrate the importance of riparian wetland/floodplain areas as sources of fluvial MeHg and of groundwater Hg transport as a fundamental control on Hg supply to Coastal Plain streams. PMID:22734594

  16. Reach Address Database (RAD)

    EPA Pesticide Factsheets

    The Reach Address Database (RAD) stores the reach address of each Water Program feature that has been linked to the underlying surface water features (streams, lakes, etc) in the National Hydrology Database (NHD). (A reach is the portion of a stream between two points of confluence. A confluence is the location where two or more streams flow together.)

  17. ReachScan - an Exposure Assessment Model

    EPA Pesticide Factsheets

    ReachScan estimates surface water concentrations downstream from industrial sites to assess impacts on the aquatic environment and potential dose rates for humans exposed via ingestion of drinking water and fish.

  18. Automated River Reach Definition Strategies: Applications for the Surface Water and Ocean Topography Mission

    NASA Astrophysics Data System (ADS)

    Frasson, Renato Prata de Moraes; Wei, Rui; Durand, Michael; Minear, J. Toby; Domeneghetti, Alessio; Schumann, Guy; Williams, Brent A.; Rodriguez, Ernesto; Picamilh, Christophe; Lion, Christine; Pavelsky, Tamlin; Garambois, Pierre-André

    2017-10-01

    The upcoming Surface Water and Ocean Topography (SWOT) mission will measure water surface heights and widths for rivers wider than 100 m. At its native resolution, SWOT height errors are expected to be on the order of meters, which prevent the calculation of water surface slopes and the use of slope-dependent discharge equations. To mitigate height and width errors, the high-resolution measurements will be grouped into reaches (˜5 to 15 km), where slope and discharge are estimated. We describe three automated river segmentation strategies for defining optimum reaches for discharge estimation: (1) arbitrary lengths, (2) identification of hydraulic controls, and (3) sinuosity. We test our methodologies on 9 and 14 simulated SWOT overpasses over the Sacramento and the Po Rivers, respectively, which we compare against hydraulic models of each river. Our results show that generally, height, width, and slope errors decrease with increasing reach length. However, the hydraulic controls and the sinuosity methods led to better slopes and often height errors that were either smaller or comparable to those of arbitrary reaches of compatible sizes. Estimated discharge errors caused by the propagation of height, width, and slope errors through the discharge equation were often smaller for sinuosity (on average 8.5% for the Sacramento and 6.9% for the Po) and hydraulic control (Sacramento: 7.3% and Po: 5.9%) reaches than for arbitrary reaches of comparable lengths (Sacramento: 8.6% and Po: 7.8%). This analysis suggests that reach definition methods that preserve the hydraulic properties of the river network may lead to better discharge estimates.

  19. NHD Event Data Dictionary

    EPA Pesticide Factsheets

    The Reach Address Database (RAD) stores reach address information for each Water Program feature that has been linked to the underlying surface water features (streams, lakes, etc) in the National Hydrology Database (NHD) Plus dataset.

  20. How well Can We Classify SWOT-derived Water Surface Profiles?

    NASA Astrophysics Data System (ADS)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  1. Hydraulic and biochemical gradients limit wetland mercury supply to an Adirondack stream

    USGS Publications Warehouse

    Bradley, Paul M.; Burns, Douglas A.; Harvey, Judson; Journey, Celeste A.; Brigham, Mark E.; Murray, Karen

    2016-01-01

    Net fluxes (change between upstream and downstream margins) for water, methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and chloride (Cl) were assessed twice in an Adirondack stream reach (Sixmile Brook, USA), to test the hypothesized importance of wetland-stream hydraulic and chemical gradients as fundamental controls on fluvial mercury (Hg) supply. The 500 m study reach represented less than 4% of total upstream basin area. During a snowmelt high-flow event in May 2009 surface water, DOC, and chloride fluxes increased by 7.1±1.3%, 8.0±1.3%, and 9.0±1.3%, respectively, within the reach, demonstrating that the adjacent wetlands are important sources of water and solutes to the stream. However, shallow groundwater Hg concentrations lower than in the surface water limited groundwater-surface water Hg exchange and no significant changes in Hg (filtered MeHg and THg) fluxes were observed within the reach despite the favorable hydraulic gradient. In August 2009, the lack of significant wetland-stream hydraulic gradient resulted in no net flux of water or solutes (MeHg, THg, DOC, or Cl) within the reach. The results are consistent with the wetland-Hg-source hypothesis and indicate that hydraulic and chemical gradient (direction and magnitude) interactions are fundamental controls on the supply of wetland Hg to the stream.

  2. Impacts of river segmentation strategies on reach-averaged product uncertainties for the upcoming Surface Water and Ocean Topography (SWOT) mission

    NASA Astrophysics Data System (ADS)

    Frasson, R. P. M.; Wei, R.; Minear, J. T.; Tuozzolo, S.; Domeneghetti, A.; Durand, M. T.

    2016-12-01

    Averaging is a powerful method to reduce measurement noise associated with remote sensing observation of water surfaces. However, when dealing with river measurements, the choice of which points are averaged may affect the quality of the products. We examine the effectiveness of three fully automated reach definition strategies: In the first, we break up reaches at regular intervals measured along the rivers' centerlines. The second strategy consists of identifying hydraulic controls by searching for inflection points on water surface profiles. The third strategy takes into consideration river planform features, breaking up reaches according to channel sinuosity. We employed the Jet Propulsion Laboratory's (JPL) SWOT hydrology simulator to generate 9 synthetic SWOT observations of the Sacramento River in California, USA and 14 overpasses of the Po River in northern Italy. In order to create the synthetic SWOT data, the simulator requires the true water digital elevation model (DEM), which we constructed from hydraulic models of both rivers, and the terrain DEM, which we built from LiDAR data of both basins. We processed the simulated pixel clouds using the JPL's RiverObs package, which traces the river centerline and estimates water surface height and river width on equally spaced nodes located along the centerline. Subsequently, we applied the three reach definition methodologies to the nodes and to the hydraulic models' outputs to generate simulated reach-averaged observations and the reach-averaged truth respectively. Our results generally indicate that height, width, slope, and discharge errors decrease with increasing reach length, with most of the accuracy gains occurring when reach length increases to up to 15 km for both the narrow (Sacramento) and the wide (Po) rivers. The "smart" methods led to smaller slope, width, and discharge errors for the Sacramento River when compared to arbitrary reaches of similar length whereas, for the for the Po River all methods had comparable performance. Our results suggest that river segmentation strategies that take into consideration the hydraulic characteristics of rivers may lead to more meaningful reach boundaries and to better products especially for narrower and more complex rivers.

  3. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    USGS Publications Warehouse

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  4. Stream profile analysis using a step backwater model for selected reaches in the Chippewa Creek basin in Medina, Wayne, and Summit Counties, Ohio

    USGS Publications Warehouse

    Straub, David E.; Ebner, Andrew D.

    2011-01-01

    The USGS, in cooperation with the Chippewa Subdistrict of the Muskingum Watershed Conservancy District, performed hydrologic and hydraulic analyses for selected reaches of three streams in Medina, Wayne, Stark, and Summit Counties in northeast Ohio: Chippewa Creek, Little Chippewa Creek, and River Styx. This study was done to facilitate assessment of various alternatives for mitigating flood hazards in the Chippewa Creek basin. StreamStats regional regression equations were used to estimate instantaneous peak discharges approximately corresponding to bankfull flows. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Hydraulic models were developed to determine water-surface profiles along the three stream reaches studied for the bankfull discharges established in the hydrologic analyses. The HEC-RAS step-backwater hydraulic analysis model was used to determine water-surface profiles for the three streams. Starting water-surface elevations for all streams were established using normal depth computations in the HEC-RAS models. Cross-sectional elevation data, hydraulic-structure geometries, and roughness coefficients were collected in the field and (along with peak-discharge estimates) used as input for the models. Reach-averaged reductions in water-surface elevations ranged from 0.11 to 1.29 feet over the four roughness coefficient reduction scenarios.

  5. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, J.W.; Preston, S.D.

    2003-01-01

    The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.

  6. Effects of land use types on surface water quality across an anthropogenic disturbance gradient in the upper reach of the Hun River, Northeast China.

    PubMed

    Wang, Ruizhao; Xu, Tianle; Yu, Lizhong; Zhu, Jiaojun; Li, Xiaoyu

    2013-05-01

    Surface water quality is vulnerable to pollution due to human activities. The upper reach of the Hun River is an important water source that supplies 52 % of the storage capacity of the Dahuofang Reservoir, the largest reservoir for drinking water in Northeast China, which is suffering from various human-induced changes in land use, including deforestation, reclamation/farming, urbanization and mine exploitation. To investigate the impacts of land use types on surface water quality across an anthropogenic disturbance gradient at a local scale, 11 physicochemical parameters (pH, dissolved oxygen [DO], turbidity, oxygen redox potential, conductivity, biochemical oxygen demand [BOD5], chemical oxygen demand [COD], total nitrogen [TN], total phosphorus [TP], NO(3)(-)N, and NH(4)(+)-N) of water from 12 sampling sites along the upper reach of the Hun River were monitored monthly during 2009-2010. The sampling sites were classified into four groups (natural, near-natural, more disturbed, and seriously disturbed). The water quality exhibited distinct spatial and temporal characteristics; conductivity, TN, and NO(3)(-)-N were identified as key parameters indicating the water quality variance. The forest and farmland cover types played significant roles in determining the surface water quality during the low-flow, high-flow, and mean-flow periods based on the results of a stepwise linear regression. These results may provide incentive for the local government to consider sustainable land use practices for water conservation.

  7. Tidal influence on subtropical estuarine methane emissions

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period. Although dissolved methane surface water concentrations were highest in the upper reaches of the estuary, experiencing the lowest tidal currents, fluxes measured using chambers were lower relative to middle and lower reaches. This supports the tidal study findings as higher tidal currents were experienced in the middle and lower reaches. The dominant driver behind estuarine methane water-air fluxes in this system was tidal current speed. Future studies need to take into account flux rates during both transition and slack tide periods to quantify total flux rates.

  8. EPA Office of Water (OW): Fish Consumption Advisories and Fish Tissue Sampling Stations NHDPlus Indexed Datasets

    EPA Pesticide Factsheets

    The Fish Consumption Advisories dataset contains information on Fish Advisory events that have been indexed to the EPA Office of Water NHDPlus v2.1 hydrology and stored in the Reach Addressing Database (RAD). NHDPlus is a database that interconnects and uniquely identifies the millions of stream segments or reaches that comprise the Nations' surface water drainage system. NHDPlus provides a national framework for assigning reach addresses to water quality related entities, such as fish advisories locations. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network in a manner similar to street addresses. The assignment of reach addresses is accomplished through a process known as reach indexing. Fish consumption advisories and fish tissue sampling stations are reported to EPA by the states. Sampling stations are the locations where a state has collected fish tissue data for use in advisory determinations. Fish consumption advisory locations are coded onto NHDPlus flowline features to create point and linear events. Fish consumption advisory locations are also coded onto NHDPlus waterbody features to create area events. In addition to NHDPlus-reach indexed data, there may also be custom events (point, line, or area) that are not associated with NHDPlus. Although these Fish consumption advisories are not represented in NHDPlus, the data created for them are in an EPA standard format that is co

  9. Determination of infiltration and percolation rates along a reach of the Santa Fe River near La Bajada, New Mexico

    USGS Publications Warehouse

    Thomas, Carole L.; Stewart, Amy E.; Constantz, Jim E.

    2000-01-01

    Two methods, one a surface-water method and the second a ground-water method, were used to determine infiltration and percolation rates along a 2.5-kilometer reach of the Santa Fe River near La Bajada, New Mexico. The surface-water method uses streamflow measurements and their differences along a stream reach, streamflow-loss rates, stream surface area, and evaporation rates to determine infiltration rates. The ground-water method uses heat as a tracer to monitor percolation through shallow streambed sediments. Data collection began in October 1996 and continued through December 1997. During that period the stream reach was instrumented with three streamflow gages, and temperature profiles were monitored from the stream-sediment interface to about 3 meters below the streambed at four sites along the reach. Infiltration is the downward flow of water through the stream- sediment interface. Infiltration rates ranged from 92 to 267 millimeters per day for an intense measurement period during June 26- 28, 1997, and from 69 to 256 millimeters per day during September 27-October 6, 1997. Investigators calculated infiltration rates from streamflow loss, stream surface-area measurements, and evaporation-rate estimates. Infiltration rates may be affected by unmeasured irrigation-return flow in the study reach. Although the amount of irrigation-return flow was none to very small, it may result in underestimation of infiltration rates. The infiltration portion of streamflow loss was much greater than the evaporation portion. Infiltration accounted for about 92 to 98 percent of streamflow loss. Evaporation-rate estimates ranged from 3.4 to 7.6 millimeters per day based on pan-evaporation data collected at Cochiti Dam, New Mexico, and accounted for about 2 to 8 percent of streamflow loss. Percolation is the movement of water through saturated or unsaturated sediments below the stream-sediment interface. Percolation rates ranged from 40 to 109 millimeters per day during June 26-28, 1997. Percolation rates were not calculated for the September 27-October 6, 1997, period because a late summer flood removed the temperature sensors from the streambed. Investigators used a heat-and-water flow model, VS2DH (variably saturated, two- dimensional heat), to calculate near-surface streambed infiltration and percolation rates from temperatures measured in the stream and streambed. Near the stream-sediment interface, infiltration and percolation rates are comparable. Comparison of infiltration and percolation rates showed that infiltration rates were greater than percolation rates. The method used to calculate infiltration rates accounted for net loss or gain over the entire stream reach, whereas the method used to calculate percolation was dependent on point measurements and, as applied in this study, neglected the nonvertical component of heat and water fluxes. In general, using the ground-water method was less labor intensive than making a series of streamflow measurements and relied on temperature, an easily measured property. The ground-water method also eliminated the difficulty of measuring or estimating evaporation from the water surface and was therefore more direct. Both methods are difficult to use during periods of flood flow. The ground-water method has problems with the thermocouple-wire temperature sensors washing out during flood events. The surface- water method often cannot be used because of safety concerns for personnel making wading streamflow measurements.

  10. Tropical storm Irene flood of August 2011 in northwestern Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Olson, Scott A.; Massey, Andrew J.

    2016-09-02

    The simulated 1-percent AEP discharge water-surface elevations (nonregulatory) from recent (2015–16) hydraulic models for river reaches in the study area, which include the Deerfield, Green, and North Rivers in the Deerfield River Basin and the Hoosic River in the Hoosic River Basin, were compared with water-surface profiles in the FISs. The water-surface elevation comparisons were generally done downstream and upstream from bridges, dams, and major tributaries. The simulated 1-percent AEP discharge water-surface elevations of the recent hydraulic studies averaged 2.2, 2.3, 0.3, and 0.7 ft higher than water-surface elevations in the FISs for the Deerfield, Green, North, and Hoosic Rivers, respectively. The differences in water-surface elevations between the recent (2015–16) hydraulic studies and the FISs likely are because of (1) improved land elevation data from light detection and ranging (lidar) data collected in 2012, (2) detailed surveying of hydraulic structures and cross sections throughout the river reaches in 2012–13 (reflecting structure and cross section changes during the last 30–35 years), (3) updated hydrology analyses (30–35 water years of additional peak flow data at streamgages), and (4) high-water marks from the 2011 tropical storm Irene flood being used for model calibration.

  11. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    USGS Publications Warehouse

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    A detailed study of the ground-water system in the unconsolidated glacial deposits in the Chimacum Creek Basin and the interactions between surface water and ground water in four main drainage basins was conducted in eastern Jefferson County, Washington. The study will assist local watershed planners in assessing the status of the water resources and the potential effects of ground-water development on surface-water systems. A new surficial geologic map of the Chimacum Creek Basin and a series of hydrogeologic sections were developed by incorporating LIDAR imagery, existing map sources, and drillers' logs from 110 inventoried wells. The hydrogeologic framework outlined in the study will help characterize the occurrence of ground water in the unconsolidated glacial deposits and how it interacts with the surface-water system. Water levels measured throughout the study show that the altitude of the water table parallels the surface topography and ranges from 0 to 400 feet above the North American Vertical Datum of 1988 across the basin, and seasonal variations in precipitation due to natural cycles generally are on the order of 2 to 3 feet. Synoptic stream-discharge measurements and instream mini-piezometers and piezometers with nested temperature sensors provided additional data to refine the positions of gaining and losing reaches and delineate seasonal variations. Chimacum Creek generally gains water from the shallow ground-water system, except near the community of Chimacum where localized losses occur. In the lower portions of Chimacum Creek, gaining conditions dominate in the summer when creek stages are low and ground-water levels are high, and losing conditions dominate in the winter when creek stages are high relative to ground-water levels. In the Quilcene Bay area, three drainage basins were studied specifically to assess surface water/ground water interactions. The upper reaches of Tarboo Creek generally gain water from the shallow ground-water system throughout most of the year and the lower reaches have little or no gains. The Big Quilcene River generally gains water from the shallow ground-water system after it emerges from a bedrock canyon and loses water from the town of Quilcene to the mouth of the river in Quilcene Bay. The Little Quilcene River generally loses water to the shallow ground-water system, although two localized areas were found to have gaining conditions. The Big Quilcene and Little Quilcene Rivers incur significant losses on the alluvial plain at the head of Quilcene Bay. Each of the creeks examined had a unique pattern of gaining and losing reaches, owing to the hydraulic conductivity of the streambed material and the relative altitude of the surrounding water table. Although the magnitudes of gains and losses varied seasonally, the spatial distribution did not vary greatly, suggesting that patterns of gains and losses in surface-water systems depend greatly on the geology underlying the streambed.

  12. Hydrologic and Water-Quality Conditions During Restoration of the Wood River Wetland, Upper Klamath River Basin, Oregon, 2003-05

    USGS Publications Warehouse

    Carpenter, Kurt D.; Snyder, Daniel T.; Duff, John H.; Triska, Frank J.; Lee, Karl K.; Avanzino, Ronald J.; Sobieszczyk, Steven

    2009-01-01

    Restoring previously drained wetlands is a strategy currently being used to improve water quality and decrease nutrient loading into Upper Klamath Lake, Oregon. In this 2003-05 study, ground- and surface-water quality and hydrologic conditions were characterized in the Wood River Wetland. Nitrogen and phosphorus levels, primarily as dissolved organic nitrogen and ammonium (NH4) and soluble reactive phosphorus (SRP), were high in surface waters. Dissolved organic carbon concentrations also were elevated in surface water, with median concentrations of 44 and 99 milligrams of carbon per liter (mg-C/L) in the North and South Units of the Wood River Wetland, respectively, reaching a maximum of 270 mg-C/L in the South Unit in late autumn. Artesian well water produced NH4 and SRP concentrations of about 6,000 micrograms per liter (ug/L), and concentrations of 36,500 ug-N/L NH4 and 4,110 ug-P/L SRP in one 26-28 ft deep piezometer well. Despite the high ammonium concentrations, the nitrate levels were moderate to low in wetland surface and ground waters. The surface-water concentrations of NH4 and SRP increased in spring and summer, outpacing those for chloride (a conservative tracer), indicative of evapoconcentration. In-situ chamber experiments conducted in June and August 2005 indicated a positive flux of NH4 and SRP from the wetland sediments. Potential sources of NH4 and SRP include diffusion of nutrients from decomposed peat, decomposing aquatic vegetation, or upwelling ground water. In addition to these inputs, evapoconcentration raised surface-water solute concentrations to exceedingly high values by the end of summer. The increase was most pronounced in the South Unit, where specific conductance reached 2,500 uS/cm and median concentrations of total nitrogen and total phosphorus reached 18,000-36,500 ug-N/L and about 18,000-26,000 ug-P/L, respectively. Water-column SRP and total phosphorus levels decreased during autumn and winter following inputs of irrigation water and precipitation, which have lower nutrient concentrations. The SRP concentrations, however, decreased faster than the dilution rate alone, possibly due to precipitation of phosphorus with iron, manganese, or calcium. The high concentrations of dissolved nitrogen and phosphorus during the growing season give rise to a rich plant community in the wetland consisting of emergent and submergent macrophytes and algae including phytoplankton and benthic and epiphytic algae that have pronounced effects on dissolved oxygen (DO) and pH. Midday readings of surface-water DO during summer often were supersaturated (as much as 310 percent saturation) with elevated pH (as much as 9.2 units), indicative of high rates of photosynthesis. Minimum DO concentrations in the shallow ground-water piezometer wells were 0.4 mg/L in the North Unit and 0.8 mg/L in the South Unit during summer, which is probably low enough to support microbial denitrification. Denitrification was confirmed during in-situ experiments conducted at the sediment-water interface, but rates were low due to low background nitrate (NO3). Nevertheless, denitrification (and plant uptake) likely contribute to low nitrate levels. Another possible cause of low nitrate levels is dissimilatory nitrate reduction to ammonia (DNRA), a microbial process that converts and decreases nitrate to ammonia. DNRA explains the excess ammonia production measured in the chambers treated with nitrate. Surface-water levels and standing surface-water volume in the Wood River Wetland reached a maximum in early spring, inundating 80-90 percent of the wetland. Surface-water levels and standing volume then declined reaching a minimum in August through November, when the South Unit was only 10 percent inundated and the North Unit was nearly dry. The shallow ground-water levels followed a trend similar to surface-water levels and indicated a strong upward gradient. A monthly water budget was developed individually for the North

  13. Understanding Groundwater and Surface Water Exchange Processes Along a Controlled Stream Using Thermal Remote Sensing and In-Situ Measurements

    NASA Astrophysics Data System (ADS)

    Varli, D.; Yilmaz, K. K.

    2016-12-01

    Effective management of water resources requires understanding and quantification of interaction between groundwater and surface water bodies. Moreover, the exchange processes have recently received increasing attention due to important influences on biogeochemical and ecological status of watersheds. In this study we investigated the exchange processes between surface water and groundwater along Kirmir stream - a controlled stream nearby Kizilcahamam, Ankara, Turkey. At the first stage, potential stream reaches where the exchange processes could occur were pinpointed using geological and geomorphological information. Then, thermal remote sensing was utilized to further narrow down the potential locations in which interaction could occur at a smaller scale. Nested piezometers were installed at identified locations to observe the variations in vertical hydraulic gradient over time. Differential discharge measurements were performed to understand the gains and losses along the stream reach. Streambed temperature measurements were taken at two different depths for a period of time using temperature loggers to calculate the vertical fluid fluxes through the streambed at various locations. Basic water quality field parameters (temperature, electrical conductivity, total dissolved solid amount, dissolved oxygen, pH and oxidation - reduction potential) were measured along the stream reach, from surface water and the piezometers as wells as from the nearby springs and wells. Chloride mass balance was performed to find the contribution of groundwater and chloride concentrations were associated with the geology of the area. This hierarchical, multi-scale methodology provided an efficient and effective way to determine the locations and the direction of groundwater and surface water exchange processes within the study area.

  14. Surface and ground water quality in a restored urban stream affected by road salts

    EPA Science Inventory

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  15. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    EPA Science Inventory

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  16. Effect of Surface-mantle Water Exchange Parameterizations on Exoplanet Ocean Depths

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Abbot, Dorian S.

    2016-11-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a “waterworld.” On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after ∼ 2 {Gyr}. Using these steady states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳ 0.3 % of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

  17. Thermophilic campylobacters in surface waters around Lancaster, UK: negative correlation with Campylobacter infections in the community.

    PubMed

    Jones, K; Betaieb, M; Telford, D R

    1990-11-01

    The incidence of campylobacter enteritis in Lancaster City Health Authority is three times the UK average for similar sizes of population and has marked seasonal peaks in May and June. Environmental monitoring of surface waters around Lancaster showed that thermophilic campylobacters were absent from drinking water from the fells and from the clean upper reaches of the River Conder but were present in the main rivers entering Morecambe Bay, the lower reaches of the River Conder, the Lancaster canal, and seawater from the Lune estuary and Morecambe Bay. All the surface waters tested showed the same seasonality, namely, higher numbers in the winter months and low numbers or none in May, June and July. The absence of thermophilic campylobacters in the summer months may be due to high sunshine levels because experiments on the effects of light showed that campylobacters in sewage effluent and seawater were eliminated within 60 and 30 min of daylight respectively but survived for 24 h in darkness. As the concentrations of campylobacters in surface waters were at their lowest precisely at the time of peak infections in the community it is unlikely that surface waters form Lancaster's reservoir of campylobacter infection for the community.

  18. Evaporation of tiny water aggregation on solid surfaces with different wetting properties.

    PubMed

    Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping

    2012-11-29

    The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.

  19. Determination of channel capacity of the Sacramento River between Ordbend and Glenn, Butte and Glenn counties, California

    USGS Publications Warehouse

    Simpson, R.G.

    1976-01-01

    The adequacy of an 8.5-mi reach of the Sacramento River to carry flood flows is evaluated. The reach studied is in Butte and Glenn Counties, California, and extends northward from the present east-bank Sacramento River Flood Control Project levee near Glenn upstream to the Ord Ferry gaging station near Ordbend. There is a west-bank levee throughout the study reach. Flows analyzed range from 11,500 to 265,000 cfs. Computed water-surface elevations are based on topography obtained during September through November 1974. The present Sacramento River Flood Control Project levees at the downstream end of the study reach near Glenn are designed to contain flows up to 150,000 cfs. Water-surface elevations computed for flows of this magnitude are about 6 to 8 ft below the top of the existing west-bank levee throughout the study reach. (Woodard-USGS)

  20. Nitrate dynamics within the Pajaro River, a nutrient-rich, losing stream

    USGS Publications Warehouse

    Ruehl, C.R.; Fisher, A.T.; Los, Huertos M.; Wankel, Scott D.; Wheat, C.G.; Kendall, C.; Hatch, C.E.; Shennan, C.

    2007-01-01

    The major ion chemistry of water from an 11.42-km reach of the Pajaro River, a losing stream in central coastal California, shows a consistent pattern of higher concentrations during the 2nd (dry) half of the water year. Most solutes are conserved during flow along the reach, but [NO 3-] decreases by ???30% and is accompanied by net loss of channel discharge and extensive surface-subsurface exchange. The corresponding net NO3- uptake length is 37 ?? 13 km (42 ?? 12 km when normalized to the conservative solute Cl-), and the areal NO3- uptake rate is 0.5 ??mol m -2 s-1. The observed reduction in [NO3-] along the reach results from one or more internal sinks, not dilution by ground water, hill-slope water, or other water inputs. Observed reductions in [NO3-] and channel discharge along the experimental reach result in a net loss of 200-400 kg/d of NO3--N, ???50% of the input load. High-resolution (temporal and spatial) sampling indicates that most of the NO3- loss occurs along the lower part of the reach, where there is the greatest seepage loss and surface-subsurface exchange of water. Stable isotopes of NO 3-, total dissolved P concentrations, and streambed chemical profiles suggest that denitrification is the most significant NO 3- sink along the reach. Denitrification efficiency, as expressed through downstream enrichment in 15N-NO3-, varies considerably during the water year. When discharge is greater (typically earlier in the water year), denitrification is least efficient and downstream enrichment in 15N-NO3- is greatest. When discharge is lower, denitrification in the streambed appears to occur with greater efficiency, resulting in lower downstream enrichment in 15N-NO3-. ?? 2007 by The North American Benthological Society.

  1. Evaluation of tracer tests completed in 1999 and 2000 on the upper Santa Clara River, Los Angeles and Ventura Counties, California

    USGS Publications Warehouse

    Cox, Marisa H.; Mendez, Gregory O.; Kratzer, Charles R.; Reichard, Eric G.

    2003-01-01

    The interaction of surface water and hyporheic water along the Santa Clara River in Los Angeles and Ventura Counties, California, was evaluated by conducting tracer tests and analyzing water-quality data under different flow conditions in October 1999 and May 2000. Tracer and water-quality samples were collected at multiple river and hyporheic sites as well as at the Los Angeles County Sanitation Districts Saugus and Valencia Water Reclamation Plants. These water reclamation plants provide the main source of base flow in the river. Rhodamine WT dye was injected into the river to determine river traveltimes and to indicate when Lagrangian water-quality sampling could be performed at each site. Sodium bromide was injected into the river at a constant rate at the water reclamation plants to evaluate the surface-water and shallow ground-water interactions in the hyporheic zone. In the upper reach of the study area, which extends 2.9 river miles downstream from the Saugus Water Reclamation Plant, traveltime was 3.2 hours during May 2000. In the lower reach, which extends 14.1 river miles downstream from the Valencia Water Reclamation Plant, traveltime was 9.6 hours during October 1999 and 7.1 hours during May 2000. The sodium bromide tracer was detected at both hyporheic locations sampled during October 1999, and at two of the three hyporheic locations sampled during May 2000. On the basis of Rhodamine dye tests, flow curves were constructed from the discharge measurements in the Valencia reach. Flow-curve results indicate net gains in flow throughout most, but not all, of the upper parts of the reach and net losses in flow at the lower part of the reach. Lagrangian water-quality sampling provides information on the changes in chemistry as the water flows downstream from the water reclamation plants. Along both reaches there is an increase in sulfate (40-60 mg/L in the Saugus reach and 160 mg/L in the Valencia reach) and a decrease in chloride (about 45 mg/L in the Saugus reach and about 10 mg/L in the Valencia reach). The increasing sulfate concentrations are consistent with discharge of higher sulfate ground water into the river. Along both reaches there is a trend of decreasing ammonia and slightly increasing nitrate concentrations. This trend is consistent with nitrification. Samples were also analyzed for numerous compounds associated with wastewater, but analysis focused on four indicators. Concentrations of wastewater indicators in the Santa Clara River were low and decreased downstream from the reclamation plants. There is general consistency between the chemical and tracer data collected from the hyporheic and the river-aquifer flow regime within a reach. The water quality at the hyporheic site in a gaining reach of the river resembled that of the local ground water and no wastewater indicators or injected tracers were observed; whereas, the water quality at the hyporheic sites in a losing reach of the river resembled the water quality of the river at the corresponding river site, and injected tracers were observed.

  2. Spatially telescoping measurements for improved characterization of groundwater-surface water interactions

    USGS Publications Warehouse

    Kikuchi, Colin; Ferre, Ty P.A.; Welker, Jeffery M.

    2012-01-01

    The suite of measurement methods available to characterize fluxes between groundwater and surface water is rapidly growing. However, there are few studies that examine approaches to design of field investigations that include multiple methods. We propose that performing field measurements in a spatially telescoping sequence improves measurement flexibility and accounts for nested heterogeneities while still allowing for parsimonious experimental design. We applied this spatially telescoping approach in a study of ground water-surface water (GW-SW) interaction during baseflow conditions along Lucile Creek, located near Wasilla, Alaska. Catchment-scale data, including channel geomorphic indices and hydrogeologic transects, were used to screen areas of potentially significant GW-SW exchange. Specifically, these data indicated increasing groundwater contribution from a deeper regional aquifer along the middle to lower reaches of the stream. This initial assessment was tested using reach-scale estimates of groundwater contribution during baseflow conditions, including differential discharge measurements and the use of chemical tracers analyzed in a three-component mixing model. The reach-scale measurements indicated a large increase in discharge along the middle reaches of the stream accompanied by a shift in chemical composition towards a regional groundwater end member. Finally, point measurements of vertical water fluxes -- obtained using seepage meters as well as temperature-based methods -- were used to evaluate spatial and temporal variability of GW-SW exchange within representative reaches. The spatial variability of upward fluxes, estimated using streambed temperature mapping at the sub-reach scale, was observed to vary in relation to both streambed composition and the magnitude of groundwater contribution from differential discharge measurements. The spatially telescoping approach improved the efficiency of this field investigation. Beginning our assessment with catchment-scale data allowed us to identify locations of GW-SW exchange, plan measurements at representative field sites and improve our interpretation of reach-scale and point-scale measurements.

  3. Spatial Structure of a Braided River: Metric Resolution Hydrodynamic Modeling Reveals What SWOT Might See

    NASA Astrophysics Data System (ADS)

    Schubert, J.; Sanders, B. F.; Andreadis, K.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting features, including a high degree of variability in the water depth and velocity and lesser variability in the free-surface profile and river discharge. Hydraulic control sections are also revealed, and shown to depend on flow stage. Reach-averaging of model output is applied to study the macro-scale balance of forces in this system, and the scales at which such a force balance is appropriate. We find that the reach-average slope exhibits a declining reach-length dependence with increasing reach length, up to reach lengths of 1 km. Hence, 1 km appears to be the minimum appropriate length for reach-averaging, and at this scale, a diffusive-wave momentum balance is a reasonable approximation suitable for emerging models of discharge estimation that rely only on SWOT-observable river properties (width, height, slope, etc.).

  4. [Spatial distribution and pollution assessment of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area, China ].

    PubMed

    Zhang, Lei; Qin, Yan-wen; Ma, Ying-qun; Zhao, Yan-min; Shi, Yao

    2014-09-01

    The aim of this article was to explore the pollution level of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area. The contents and spatial distribution of As, Cd, Cr, Cu, Ph and Zn in surface water, suspended solids and surface sediments were analyzed respectively. The integrated pollution index and geoaccumulation index were used to evaluate the contamination degree of heavy metals in surface water and surface sediments respectively. The results indicated that the contents of heavy metals in surface water was in the order of Pb < Cu < Cd < Cr < As < Zn. The heavy metal contents in surface water increased from river to sea. Compared with the contents of heavy metals in surface water of the typical domestic estuary in China, the overall contents of heavy metals in surface water were at a higher level. The contents of heavy metals in suspended solids was in the order of Cd < Cu < As < Cr

  5. Emission of dimers from a free surface of heated water

    NASA Astrophysics Data System (ADS)

    Bochkarev, A. A.; Polyakova, V. I.

    2014-09-01

    The emission rate of water dimers from a free surface and a wetted solid surface in various cases was calculated by a simplified Monte Carlo method with the use of the binding energy of water molecules. The binding energy of water molecules obtained numerically assuming equilibrium between the free surface of water and vapor in the temperature range of 298-438 K corresponds to the coordination number for liquid water equal to 4.956 and is close to the reference value. The calculation results show that as the water temperature increases, the free surface of water and the wetted solid surface become sources of free water dimers. At a temperature of 438 K, the proportion of dimers in the total flow of water molecules on its surface reaches 1%. It is found that in the film boiling mode, the emission rate of dimers decreases with decreasing saturation vapor. Two mechanisms of the emission are described.

  6. The quality of surface water on Sanibel Island, Florida, 1976-77

    USGS Publications Warehouse

    McPherson, Benjamin F.; O'Donnell, T. H.

    1979-01-01

    The quality of surface water in parts of the interior of Sanibel Island, Fla., has been periodically degraded by high concentrations of salt or macronutrients and by low concentrations of dissolved oxygen. In 1976 the chloride concentration of surface water ranged from about 500 milligrams per liter to almost that of seawater, 19,000 milligrams per liter. The highest salinities were during the dry season of 1976 in the Sanibel River near the Tarpon Bay control structure and are attributed to leakage of saline water past the structure. The highest concentrations of macronutrients occurred during the dry season in the eastern reach of the Sanibel River, where concentrations generally exceeded 4.0 milligrams per liter total nitrogen and 0.9 milligrams per liter total phosphorus. Concentrations of dissolved oxygen were lowest in the wet season along an eastern reach of the Sanibel River and in several nearby ponds and canals where near-anaerobic conditions prevailed. The high concentration of macronutrients and the low dissolved oxygen are attributed, in part, to urban and sewage effluent that flow directly or seep into surface water. (Kosco-USGS)

  7. Two-dimensional streamflow simulations of the Jordan River, Midvale and West Jordan, Utah

    USGS Publications Warehouse

    Kenney, Terry A.; Freeman, Michael L.

    2011-01-01

    The Jordan River in Midvale and West Jordan, Utah, flows adjacent to two U.S. Environmental Protection Agency Superfund sites: Midvale Slag and Sharon Steel. At both sites, geotechnical caps extend to the east bank of the river. The final remediation tasks for these sites included the replacement of a historic sheet-pile dam and the stabilization of the river banks adjacent to the Superfund sites. To assist with these tasks, two hydraulic modeling codes contained in the U.S. Geological Survey (USGS) Multi-Dimensional Surface-Water Modeling System (MD_SWMS), System for Transport and River Modeling (SToRM) and Flow and Sediment Transport and Morphological Evolution of Channels (FaSTMECH), were used to provide predicted water-surface elevations, velocities, and boundary shear-stress values throughout the study reach of the Jordan River. A SToRM model of a 0.7 mile subreach containing the sheet-pile dam was used to compare water-surface elevations and velocities associated with the sheet-pile dam and a proposed replacement structure. Maps showing water-surface elevation and velocity differences computed from simulations of the historic sheet-pile dam and the proposed replacement structure topographies for streamflows of 500 and 1,000 cubic feet per second (ft3/s) were created. These difference maps indicated that the velocities associated with the proposed replacement structure topographies were less than or equal to those associated with the historic sheet-pile dam. Similarly, water-surface elevations associated with the proposed replacement structure topographies were all either greater than or equal to water-surface elevations associated with the sheet-pile dam. A FaSTMECH model was developed for the 2.5-mile study reach to aid engineers in bank stabilization designs. Predicted water-surface elevations, velocities and shear-stress values were mapped on an aerial photograph of the study reach to place these parameters in a spatial context. Profile plots of predicted cross-stream average water-surface elevations and cross-stream maximum and average velocities showed how these parameters change along the study reach for two simulated discharges of 1,040 ft3/s and 2,790 ft3/s. The profile plots for the simulated streamflow of 1,040 ft3/s show that the highest velocities are associated with the constructed sheet-pile replacement structure. Results for the simulated streamflow of 2,790 ft3/s indicate that the geometry of the 7800 South Bridge causes more backwater and higher velocities than the constructed sheet-pile replacement structure.

  8. Drainage of Southeast Greenland firn aquifer water through crevasses to the bed

    NASA Astrophysics Data System (ADS)

    Poinar, Kristin; Joughin, Ian; Lilien, David; Brucker, Ludovic; Kehrl, Laura; Nowicki, Sophie

    2017-02-01

    A firn aquifer in the Helheim Glacier catchment of Southeast Greenland lies directly upstream of a crevasse field. Previous measurements show that a 3.5-km long segment of the aquifer lost a large volume of water (26,000 - 65,000 m2 in cross section) between spring 2012 and spring 2013, compared to annual meltwater accumulation of 6000 - 15,000 m2. The water is thought to have entered the crevasses, but whether the water reached the bed or refroze within the ice sheet is unknown. We used a thermo-visco-elastic model for crevasse propagation to calculate the depths and volumes of these water-filled crevasses. We compared our model output to data from the Airborne Topographic Mapper (ATM), which reveals the near-surface geometry of specific crevasses, and WorldView images, which capture the surface expressions of crevasses across our 1.5-km study area. We found a best fit with a shear modulus between 0.2 and 1.5 GPa within our study area. We show that surface meltwater can drive crevasses to the top surface of the firn aquifer ( 20 m depth), whereupon it receives water at rates corresponding to the water flux through the aquifer. Our model shows that crevasses receiving firn-aquifer water hydrofracture through to the bed, 1000 m below, in 10-40 days. Englacial refreezing of firn-aquifer water raises the average local ice temperature by 4°C over a ten-year period, which enhances deformational ice motion by 50 m/yr, compared to the observed surface velocity of 200 m/yr. The effect of the basal water on the sliding velocity remains unknown. Were the firn aquifer not present to concentrate surface meltwater into crevasses, we find that no surface melt would reach the bed; instead, it would refreeze annually in crevasses at depths <500 m. The crevasse field downstream of the firn aquifer likely allows a large fraction of the aquifer water in our study area to reach the bed. Thus, future studies should consider the aquifer and crevasses as part of a common system. This system may uniquely affect ice-sheet dynamics by routing a large volume of water to the bed outside of the typical runoff period.

  9. Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling

    NASA Astrophysics Data System (ADS)

    Anibas, Christian; Tolche, Abebe Debele; Ghysels, Gert; Nossent, Jiri; Schneidewind, Uwe; Huysmans, Marijke; Batelaan, Okke

    2018-05-01

    Among the advances made in analytical and numerical analysis methods to quantify groundwater/surface-water interaction, one methodology that stands out is the use of heat as an environmental tracer. A large data set of river and riverbed temperature profiles from the Aa River in Belgium has been used to examine the spatial-temporal variations of groundwater/surface-water interaction. Exchange fluxes were calculated with the numerical heat-transport code STRIVE. The code was applied in transient mode to overcome previous limitations of steady-state analysis, and allowed for the calculation of model quality. In autumn and winter the mean exchange fluxes reached -90 mm d-1, while in spring and early summer fluxes were -42 mm d-1. Predominantly gaining conditions occurred along the river reach; however, in a few areas the direction of flow changed in time. The river banks showed elevated fluxes up to a factor of 3 compared to the center of the river. Higher fluxes were detected in the upstream section of the reach. Due to the influence of exchange fluxes along the river banks, larger temporal variations were found in the downstream section. The exchange fluxes at the river banks seemed more driven by variable local exchange flows, while the center of the river was dominated by deep and steady regional groundwater flows. These spatial and temporal differences in groundwater/surface-water exchange show the importance of long-term investigations on the driving forces of hyporheic processes across different scales.

  10. Surface water-ground water interactions along the lower Dungeness River and vertical hydraulic conductivity of streambed sediments, Clallam County, Washington, September 1999-July 2001

    USGS Publications Warehouse

    Simonds, F. William; Sinclair, Kirk A.

    2002-01-01

    The Dungeness River emerges from the Olympic Mountains and flows generally north toward the Strait of Juan De Fuca, crossing the broad, fertile alluvial fan of the Sequim-Dungeness peninsula in northeastern Clallam County, Washington. Increasing competition for the peninsula's ground-water resources, changing water-use patterns, and recent requirements to maintain minimum in-stream flows to enhance endangered salmon and trout populations have severely strained the peninsula's water resources and necessitated a better understanding of the interaction between surface water and groundwater. Three methods were used to characterize the interchange between surface water and groundwater along the lower 11.8 miles of the Dungeness River corridor between September 1999 and July 2001. In-stream mini-piezometers were used to measure vertical hydraulic gradients between the river and the water-table aquifer at 27 points along the river and helped to define the distribution of gaining and losing stream reaches. Seepage runs were used to quantify the net volume of water exchanged between the river and ground water within each of five river reaches, termed 'seepage reaches.' Continuous water-level and water-temperature monitoring at two off-stream well transects provided data on near-river horizontal hydraulic gradients and temporal patterns of water exchange for a representative gaining stream reach and a representative losing stream reach. Vertical hydraulic gradients in the mini-piezometers generally were negative between river miles 11.8 and 3.6, indicating loss of water from the river to ground water. Gradients decreased in the downstream direction from an average of -0.86 at river mile 10.3 to -0.23 at river mile 3.7. Small positive gradients (+0.01 to +0.02) indicating ground-water discharge occurred in three localized reaches below river mile 3.7. Data from the seepage runs and off-stream transect wells supported and were generally consistent with the mini-piezometer findings. An exception occurred between river miles 8.1 and 5.5 where seepage results showed a small gain and the mini-piezometers showed negative gradients. Vertical hydraulic conductivity of riverbed sediments was estimated using hydraulic gradients measured with the mini-piezometers and estimated seepage fluxes. The resulting conductivity values ranged from an average of 1 to 29 feet per day and are similar to values reported for similar river environments elsewhere. The results of this study will be used to calibrate a transient, three-dimensional ground-water flow model of the Sequim-Dungeness peninsula. The model will be used to assess the potential effects on ground-water levels and river flows that result from future water use and land-use changes on the peninsula.

  11. Groundwater/surface-water interaction in central Sevier County, Tennessee, October 2015–2016

    USGS Publications Warehouse

    Carmichael, John K.; Johnson, Gregory C.

    2017-12-14

    The U.S. Geological Survey evaluated the interaction of groundwater and surface water in the central part of Sevier County, Tennessee, from October 2015 through October 2016. Stream base flow was surveyed in December 2015 and in July and October 2016 to evaluate losing and gaining stream reaches along three streams in the area. During a July 2016 synoptic survey, groundwater levels were measured in wells screened in the Cambrian-Ordovician aquifer to define the potentiometric surface in the area. The middle and lower reaches of the Little Pigeon River and the middle reaches of Middle Creek and the West Prong Little Pigeon River were gaining streams at base-flow conditions. The lower segments of the West Prong Little Pigeon River and Middle Creek were losing reaches under base-flow conditions, with substantial flow losses in the West Prong Little Pigeon River and complete subsurface diversion of flow in Middle Creek through a series of sinkholes that developed in the streambed and adjacent flood plain beginning in 2010. The potentiometric surface of the Cambrian-Ordovician aquifer showed depressed water levels in the area where loss of flow occurred in the lower reaches of West Prong Little Pigeon River and Middle Creek. Continuous dewatering activities at a rock quarry located in this area appear to have lowered groundwater levels by as much as 180 feet, which likely is the cause of flow losses observed in the two streams, and a contributing factor to the development of sinkholes at Middle Creek near Collier Drive.

  12. Whole-stream response to nitrate loading in three streams draining agricultural landscapes

    USGS Publications Warehouse

    Duff, J.H.; Tesoriero, A.J.; Richardson, W.B.; Strauss, E.A.; Munn, M.D.

    2008-01-01

    Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3 −) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d “snapshots” during biotically active periods, we estimated reach-level NO3 − sources, NO3 − mass balance, in-stream processing (nitrification, denitrification, and NO3 − uptake), and NO3 − retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3 − input. Streambed processes potentially reduced 45 to 75% of ground water NO3 − before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3 − retention. Estimated nitrification (1.6–4.4 mg N m−2 h−1) and unamended denitrification rates (2.0–16.3 mg N m−2 h−1) in sediment slurries were high relative to pristine streams. Denitrification of NO3 − was largely independent of nitrification because both stream and ground water were sources of NO3 − Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3 − exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3 − inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3 − variation. Biotic processing potentially removed 75% of ground water NO3 − at this site, suggesting an important role for photosynthetic assimilation of ground water NO3 − relative to subsurface denitrification as water passed directly through benthic diatom beds.

  13. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.

    PubMed

    Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène

    2009-09-01

    A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater.

  14. Groundwater response to leakage of surface water through a thick vadose zone in the middle reaches area of Heihe River Basin, in China

    NASA Astrophysics Data System (ADS)

    Wang, X.-S.; Ma, M.-G.; Li, X.; Zhao, J.; Dong, P.; Zhou, J.

    2009-12-01

    The behavior of groundwater response to leakage of surface water in the middle reaches area of Heihe River Basin is significantly influenced by a thick vadose zone. The variation of groundwater level is a result of two recharge events corresponding to leakage of Heihe River and irrigation water with different delay time. A nonlinear leakage model is developed to calculate the monthly leakage of Heihe River in considering changes of streamflow, river stage and agricultural water utilization. Numerical modeling of variable saturated flow is carried out to investigate the general behaviors of leakage-recharge conversion through a thick vadose zone. It is found that the variable recharge can be approximated by simple reservoir models for both leakage under a river and leakage under an irrigation district but with different delay-time and recession coefficient. A triple-reservoir model of relationship between surface water, vadose zone and groundwater is developed. It reproduces the in situ water table movement during 1989-2006 with variable streamflow of Heihe River and agricultural water utilization. The model is applied to interpret groundwater dynamics during 2007-2008 that observed in the Watershed Airborne Telemetry Experimental Research (WATER).

  15. Nitrate retention in a sand plains stream and the importance of groundwater discharge

    Treesearch

    Robert S. Stelzer; Damion R. Drover; Susan L. Eggert; Maureen A. Muldoon

    2011-01-01

    We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and ground-water fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and...

  16. Hydraulic visibility and effective cross sections based on hydrodynamical modeling of flow lines gained by satellite altimetry

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Garambois, P. A.; Calmant, S.; Roux, H.; Paris, A.; Monnier, J.; Santos da Silva, J.

    2015-12-01

    Hydrodynamic laws predict that irregularities in a river bed geometry produce spatial and temporal variations in the water level, hence in its slope. Conversely, observation of these changes is a goal of the SWOT mission with the determination of the discharge as a final objective. In this study, we analyse the relationship between river bed undulations and water surface for an ungauged reach of the Xingu river, a first order tributary of the Amazon river. It is crosscut more than 10 times by a single ENVISAT track over a hundred of km. We have determined time series of water levelsat each of these crossings, called virtual stations (VS), hence slopes of the flow line. Using the discharge series computed by Paiva et al. (2013) between 1998 and 2009, Paris et al. (submitted) determined at each VS a rating curve relating these simulated discharge with the ENVISAT height series. One parameter of these rating curves is the zero-flow depth Z 0 . We show that it is possible to explain the spatial and temporal variations of the water surface slope in terms of hydrodynamical response of the longitudinal changes of the river bed geometry given by the successive values of Z 0 . Our experiment is based on an effective, single thread representation of a braided river, realistic values for the Manning coefficient and river widths picked up on JERS images. This study confirms that simulated flow lines are consistent with water surface elevations (WSE) and slopes gained by satellite altimetry. Hydrodynamical signatures are more visible where the river bed geometry varies significantly, and for reaches with a strong downstream control. Therefore, this study suggests that the longitudinal variations of the slope might be an interesting criteria for the question of river segmentation into elementary reaches for the SWOT mission which will provide continuous measurements of the water surface elevation, the slope and the reach width.

  17. Spatial assessment of water quality using chemometrics in the Pearl River Estuary, China

    NASA Astrophysics Data System (ADS)

    Wu, Meilin; Wang, Youshao; Dong, Junde; Sun, Fulin; Wang, Yutu; Hong, Yiguo

    2017-03-01

    A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organizing Map (SOM) were employed to identify anthropogenic and natural influences on estuary water quality. The scores of stations in the surface layer in the first principal component (PC1) were related to NH4-N, PO4-P, NO2-N, NO3-N, TP, and Chlorophyll a while salinity, turbidity, and SiO3-Si in the second principal component (PC2). Similarly, the scores of stations in the bottom layers in PC1 were related to PO4-P, NO2-N, NO3-N, and TP, while salinity, Chlorophyll a, NH4-N, and SiO3-Si in PC2. Results of the PCA identified the spatial distribution of the surface and bottom water quality, namely the Guangzhou urban reach, Middle reach, and Lower reach of the estuary. Both cluster analysis and PCA produced the similar results. Self-organizing map delineated the Guangzhou urban reach of the Pearl River that was mainly influenced by human activities. The middle and lower reaches of the PRE were mainly influenced by the waters in the South China Sea. The information extracted by PCA, CA, and SOM would be very useful to regional agencies in developing a strategy to carry out scientific plans for resource use based on marine system functions.

  18. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  19. Characterization of surface-water resources in the Great Basin National Park area and their susceptibility to ground-water withdrawals in adjacent valleys, White Pine County, Nevada

    USGS Publications Warehouse

    Elliott, Peggy E.; Beck, David A.; Prudic, David E.

    2006-01-01

    Eight drainage basins and one spring within the Great Basin National Park area were monitored continually from October 2002 to September 2004 to quantify stream discharge and assess the natural variability in flow. Mean annual discharge for the stream drainages ranged from 0 cubic feet per second at Decathon Canyon to 9.08 cubic feet per second at Baker Creek. Seasonal variability in streamflow generally was uniform throughout the network. Minimum and maximum mean monthly discharges occurred in February and June, respectively, at all but one of the perennial streamflow sites. Synoptic-discharge, specific-conductance, and water- and air-temperature measurements were collected during the spring, summer, and autumn of 2003 along selected reaches of Strawberry, Shingle, Lehman, Baker, and Snake Creeks, and Big Wash to determine areas where surface-water resources would be susceptible to ground-water withdrawals in adjacent valleys. Comparison of streamflow and water-property data to the geology along each stream indicated areas where surface-water resources likely or potentially would be susceptible to ground-water withdrawals. These areas consist of reaches where streams (1) are in contact with permeable rocks or sediments, or (2) receive water from either spring discharge or ground-water inflow.

  20. Hydrodynamic Influence Dabanhu River Bridge Holes Widening Based on Two-Dimensional Finite Element Numerical Model

    NASA Astrophysics Data System (ADS)

    Li, Dong Feng; Bai, Fu Qing; Nie, Hui

    2018-06-01

    In order to analyze the influence of bridge holes widening on hydrodynamic such as water level, a two-dimensional mathematical model was used to calculate the hydrodynamic factors, river network flow velocity vector distribution is given, water level and difference of bridge widening before and after is calculated and charted, water surface gradient in seven different river sections near the upper reaches of bridges is counted and revealed. The results of hydrodynamic calculation indicate that The Maximum and the minimum deducing numerical value of the water level after bridge widening is 0.028m, and 0.018m respective. the seven sections water surface gradient becomes smaller until it becomes negative, the influence of bridge widening on the upstream is basically over, the range of influence is about 450m from the bridge to the upstream. reach

  1. Groundwater response to leakage of surface water through a thick vadose zone in the middle reaches area of Heihe River Basin, in China

    NASA Astrophysics Data System (ADS)

    Wang, X.-S.; Ma, M.-G.; Li, X.; Zhao, J.; Dong, P.; Zhou, J.

    2010-04-01

    The behavior of groundwater response to leakage of surface water in the middle reaches area of Heihe River Basin is significantly influenced by a thick vadose zone. The groundwater regime is a result of two recharge events due to leakage of Heihe River and irrigation water with different delay time. A nonlinear leakage model is developed to calculate the monthly leakage of Heihe River in considering changes of streamflow, river stage and agricultural water utilization. Numerical modeling of variable saturated flow is carried out to investigate the general behaviors of leakage-recharge conversion through a thick vadose zone. It is found that the recharge pattern can be approximated by simple reservoir models of leakages under a river and under an irrigation district with different delay-time and recession coefficient. A triple-reservoir model of relationship between surface water, vadose zone and groundwater is developed. It reproduces the groundwater regime during 1989-2006 with variable streamflow of Heihe River and agricultural water utilization. The model is applied to interpret changes of groundwater level during 2007-2008 that observed in the Watershed Airborne Telemetry Experimental Research (WATER).

  2. Subsurface Controls on Stream Intermittency in a Semi-Arid Landscape

    NASA Astrophysics Data System (ADS)

    Dohman, J.; Godsey, S.; Thackray, G. D.; Hale, R. L.; Wright, K.; Martinez, D.

    2017-12-01

    Intermittent streams currently constitute 30% to greater than 50% of the global river network. In addition, the number of intermittent streams is expected to increase due to changes in land use and climate. These streams provide important ecosystem services, such as water for irrigation, increased biodiversity, and high rates of nutrient cycling. Many hydrological studies have focused on mapping current intermittent flow regimes or evaluating long-term flow records, but very few have investigated the underlying causes of stream intermittency. The disconnection and reconnection of surface flow reflects the capacity of the subsurface to accommodate flow, so characterizing subsurface flow is key to understanding stream drying. We assess how subsurface flow paths control local surface flows during low-flow periods, including intermittency. Water table dynamics were monitored in an intermittent reach of Gibson Jack Creek in southeastern Idaho. Four transects were delineated with a groundwater well located in the hillslope, riparian zone, and in the stream, for a total of 12 groundwater wells. The presence or absence of surface flow was determined by frequent visual observations as well as in situ loggers every 30m along the 200m study reach. The rate of surface water drying was measured in conjunction with temperature, precipitation, subsurface hydraulic conductivity, hillslope-riparian-stream connectivity and subsurface travel time. Initial results during an unusually wet year suggest different responses in reaches that were previously observed to occasionally cease flowing. Flows in the intermittent reaches had less coherent and lower amplitude diel variations during base flow periods than reaches that had never been observed to dry out. Our findings will help contribute to our understanding of mechanisms driving expansion and contraction cycles in intermittent streams, increase our ability to predict how land use and climate change will affect flow regimes, and improve management of our critical water resources.

  3. Water quality and streamflow gains and losses of Osage and Prairie Creeks, Benton County, Arkansas, July 2001

    USGS Publications Warehouse

    Moix, Matthew W.; Barks, C. Shane; Funkhouser, Jaysson E.

    2003-01-01

    Osage and Prairie Creeks in Benton County, Arkansas, were studied between July 24 and July 26, 2001, to describe the surface-water quality and the streamflow gains and losses along sections of each mainstem. The creeks are located in northwestern Arkansas. Water-quality samples were collected at 12 surface-water sites on the mainstem and at 6 points of inflow for Osage Creek, and at 9 surface-water sites on the mainstem and at 4 points of inflow for Prairie Creek. Water-quality analyses were performed by Rogers Water Utilities and the Arkansas Water Resources Laboratory. Streamflow measurements were made along the mainstem of each creek and at points of inflow (prior to confluence with the mainstem) to identify gaining and losing reaches. Water-quality data collected for Osage Creek indicated that dissolved ammonia concentrations were within the typical range of concentrations measured for streams in the Springfield and Salem Plateaus. Nitrite plus nitrate and total phosphorus concentrations were within the range of concentrations measured for several streams in the western part of the Springfield and Salem Plateaus. Total phosphorus concentrations measured on the mainstem of Osage Creek were higher downstream from the Rogers wastewater-treatment plant than upstream from the wastewater-treatment plant. Water-quality data collected for Prairie Creek indicated that dissolved ammonia concentrations measured for three mainstem sites were above the typical level of dissolved ammonia concentrations measured for streams in the Springfield and Salem Plateaus. High concentrations of dissolved ammonia measured at these sites might be indicative of sewage disposal or organic waste. Most concentrations of nitrite plus nitrate for Prairie Creek were above the range measured for some of the least-disturbed streams of the Ozark Highlands ecoregion but were within the range that is typical for several streams in the western part of the Springfield and Salem Plateaus. Total phosphorus concentrations were below or within the range that is typical for several streams in the western part of the Springfield and Salem Plateaus with elevated concentrations measured at two sties. Elevated concentrations of total phosphorus measured might be indicative of sewage or animal metabolic waste. Identification of losing and gaining reaches indicates that interaction exists between the local shallow unconfined ground-water aquifer and surface flow in Osage and Prairie Creeks. Measured streamflow for the mainstem of Osage Creek ranged from 2.34 to 19.1 cubic feet per second during this study. Streamflow measured at the beginning of the study reach for Osage Creek was 2.34 cubic feet per second, and streamflow measured at the downstream end of the study reach was 15.7 cubic feet per second. One losing and two gaining reaches were identified on the mainstem of Osage Creek with a net gain of 3.58 cubic feet per second upstream from the wastewater-treatment plant. Measured streamflow for the mainstem of Prairie Creek ranged from 0 to 3.17 cubic feet per second during this study. Streamflow measured at the beginning of the study reach for Prairie Creek was 0.44 cubic feet per second, and the stream bed was dry at the downstream end of the study reach. Three losing and two gaining reaches were identified on the mainstem of Prairie Creek with a net loss of 3.06 cubic feet per second.

  4. Simulation of Columbia River Floods in the Hanford Reach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waichler, Scott R.; Serkowski, John A.; Perkins, William A.

    Columbia River water elevations and flows in the Hanford Reach affect the environment and facilities along the shoreline, including movement of contaminants in groundwater, fish habitat, and infrastructure subject to flooding. This report describes the hydraulic simulation of hypothetical flood flows using the best available topographic and bathymetric data for the Hanford Reach and the Modular Aquatic Simulation System in 1 Dimension (MASS1) hydrodynamic model. The MASS1 model of the Hanford Reach was previously calibrated to field measurements of water surface elevations. The current model setup can be used for other studies of flow, water levels, and temperature in themore » Reach. The existing MASS1 channel geometry and roughness and other model configuration inputs for the Hanford Reach were used for this study, and previous calibration and validation results for the model are reprinted here for reference. The flood flows for this study were simulated by setting constant flow rates obtained from the U.S. Army Corps of Engineers (USACE) for the Columbia, Snake, and Yakima Rivers, and a constant water level at McNary Dam, and then running the model to steady state. The discharge levels simulated were all low-probability events; for example, a 100-year flood is one that would occur on average every 100 years, or put another way, in any given year there is a 1% chance that a discharge of that level or higher will occur. The simulated floods and their corresponding Columbia River discharges were 100-year (445,000 cfs), 500-year (520,000 cfs), and the USACE-defined Standard Project Flood (960,000 cfs). The resulting water levels from the steady-state floods can be viewed as “worst case” outcomes for the respective discharge levels. The MASS1 output for water surface elevations was converted to the North American Vertical Datum of 1988 and projected across the channel and land surface to enable mapping of the floodplain for each scenario. Floodplain maps show that for the 100-year and 500-year discharge levels, flooding is mainly confined to the topographic trench that is the river channel. The flooded area for the Standard Project Flood extends out of the channel area in some places, particularly in the 100-F Area. All of the output from the simulations have been archived and are available for future investigations in the Hanford Reach.« less

  5. 40 CFR 149.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... significant amount of water to a well or spring. (b) Recharge means a process, natural or artificial, by which water is added to the saturated zone of an aquifer. (c) Recharge Area means an area in which water reaches the zone of saturation (ground water) by surface infiltration; in addition, a major recharge area...

  6. 40 CFR 149.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... significant amount of water to a well or spring. (b) Recharge means a process, natural or artificial, by which water is added to the saturated zone of an aquifer. (c) Recharge Area means an area in which water reaches the zone of saturation (ground water) by surface infiltration; in addition, a major recharge area...

  7. Spiraling in Urban Streams: A Novel Approach to Link Geomorphic Structure with Ecosystem Function

    NASA Astrophysics Data System (ADS)

    Bean, R. A.; Lafrenz, M. D.

    2011-12-01

    The goal of this study is to quantify the relationship between channel complexity and nutrient spiraling along several reaches of an urbanized watershed in Portland, Oregon. Much research points to the effect urbanization has on watershed hydrology and nutrient loading at the watershed scale for various sized catchments. However the flux of nutrients over short reaches within a stream channel has been less studied because of the effort and costs associated with fieldwork and subsequent laboratory analysis of both surface and hyporheic water samples. In this study we explore a novel approach at capturing connectivity though nutrient spiraling along several short reaches (less than 100-meter) within the highly urbanized Fanno Creek watershed (4400 hectares). We measure channel complexity-sinuosity, bed material texture, organic matter-and use these measurements to determine spatial autocorrelation of 50 reaches in Fanno Creek, a small, urban watershed in Portland, Oregon. Using ion-selective electrodes, the fluxes of nitrate and ammonia are measured within each reach, which when combined with channel geometry and velocity measurements allow us to transform the values of nitrate and ammonia fluxes into spiraling metrics. Along each sampled reach, we collected three surface water samples to characterize nutrient amounts at the upstream, midstream, and downstream position of the reach. Two additional water samples were taken from the left and right bank hyporheic zones at a depth just below the armor layer of the channel bed using mini-piezometers and a hand-pumped vacuum device, which we constructed for this purpose. Adjacent to the hyporheic samples soil cores were collected and analyzed for organic matter composition, bulk density, and texture. We hypothesize that spiral metrics will respond significantly to the measured channel complexity values and will be a more robust predictor of nutrient flux than land cover characteristics in the area draining to each reach. Initial results show significant differences in hyporheic and surface water concentrations within the same reach indicating that sources and sinks of mineral nitrogen can be found within stream channels over very short distances. The implication of this study is that channel complexity is an important driver of nutrient flux in a watershed, and that this technique can be applied in future studies to better characterize the ecosystem services of stream channels over short reaches to entire catchments.

  8. Density of river otters (Lontra canadensis) in relation to energy development in the Green River Basin, Wyoming

    USGS Publications Warehouse

    Godwin, B.L.; Albeke, S.E.; Bergman, H.L.; Walters, Annika W.; Ben-David, M.

    2015-01-01

    Exploration and extraction of oil and natural gas have increased in recent years and are expected to expand in the future. Reduction in water quality from energy extraction may negatively affect water supply for agriculture and urban use within catchments as well as down river. We used non-invasive genetic techniques and capture–recapture modeling to estimate the abundance and density of North American river otters (Lontra canadensis), a sentinel species of aquatic ecosystems, in Southwestern Wyoming. While densities in two of three river reaches were similar to those reported in other freshwater systems in the western US (1.45–2.39 km per otter), otters appeared to avoid areas near energy development. We found no strong difference in habitat variables, such as overstory cover, at the site or reach level. Also, fish abundance was similar among the three river reaches. Otter activity in our study area could have been affected by elevated levels of disturbance surrounding the industrial gas fields, and by potential surface water contamination as indicated by patterns in water conductivity. Continued monitoring of surface water quality in Southwestern Wyoming with the aid of continuously recording devices and sentinel species is warranted.

  9. Use of a mixing model to investigate groundwater-surface water mixing and nitrogen biogeochemistry in the bed of a groundwater-fed river

    NASA Astrophysics Data System (ADS)

    Lansdown, Katrina; Heppell, Kate; Ullah, Sami; Heathwaite, A. Louise; Trimmer, Mark; Binley, Andrew; Heaton, Tim; Zhang, Hao

    2010-05-01

    The dynamics of groundwater and surface water mixing and associated nitrogen transformations in the hyporheic zone have been investigated within a gaining reach of a groundwater-fed river (River Leith, Cumbria, UK). The regional aquifer consists of Permo-Triassic sandstone, which is overlain by varying depths of glaciofluvial sediments (~15 to 50 cm) to form the river bed. The reach investigated (~250m long) consists of a series of riffle and pool sequences (Käser et al. 2009), with other geomorphic features such as vegetated islands and marginal bars also present. A network of 17 piezometers, each with six depth-distributed pore water samplers based on the design of Rivett et al. (2008), was installed in the river bed in June 2009. An additional 18 piezometers with a single pore water sampler were installed in the riparian zone along the study reach. Water samples were collected from the pore water samplers on three occasions during summer 2009, a period of low flow. The zone of groundwater-surface water mixing within the river bed sediments was inferred from depth profiles (0 to 100 cm) of conservative chemical species and isotopes of water with the collected samples. Sediment cores collected during piezometer installation also enabled characterisation of grain size within the hyporheic zone. A multi-component mixing model was developed to quantify the relative contributions of different water sources (surface water, groundwater and bank exfiltration) to the hyporheic zone. Depth profiles of ‘predicted' nitrate concentration were constructed using the relative contribution of each water source to the hyporheic and the nitrate concentration of the end members. This approach assumes that the mixing of different sources of water is the only factor controlling the nitrate concentration of pore water in the river bed sediments. Comparison of predicted nitrate concentrations (which assume only mixing of waters with different nitrate concentrations) with actual nitrate concentrations (measured from samples collected in the field) then allows patches of biogeochemical activity to be identified. The depth of the groundwater-surface water mixing zone was not uniform along the study reach or over the three sampling periods, varying from <10 to 50 cm in depth. The influence of factors such as the strength of groundwater upwelling, channel geomorphology, substrate composition (permeability) and river discharge on the extent of groundwater-surface mixing have been investigated. During the three field campaigns conducted, groundwater nitrate concentrations (100 cm) were higher than surface water nitrate concentrations (3.7 ± 0.4 mg N/L versus 2.0 ± 0.03 mg N/L; p < 0.001; n = 27), indicating that throughout the reach investigated groundwater will supply nitrate to the overlying water column unless nitrate attenuation occurs along the upwelling flow path. Actual (measured) pore water nitrate concentrations often differed from concentrations predicted using the mixing model, which suggests that biogeochemical transformations also affected nitrate concentrations in the hyporheic zone. The initial field data suggested that there were regions of both nitrate production and nitrate consumption in the subsurface sediments, and that these zones may extend beyond the depths commonly associated with the hyporheic zone. This research demonstrates that a multi-component mixing model can be used to identify possible hotspots of nitrate production or consumption in the bed of a groundwater-fed river. Käser, DH, Binley, A, Heathwaite, AL and Krause, S (2009) Spatio-temporal variations of hyporheic flow in a riffle-pool sequence. Hydrological Processes 23: 2138 - 2149. Rivett, MO, Ellis, PA, Greswell, RB, Ward, RS, Roche, RS, Cleverly, MG, Walker, C, Conran, D, Fitzgerald, PJ, Willcox, T and Dowle, J (2008) Cost-effective mini drive-point piezometers and multilevel samplers for monitoring the hyporheic zone. Quarterly Journal of Engineering Geology and Hydrogeology 41: 49 - 60.

  10. Evaluation of streamflow traveltime and streamflow gains and losses along the lower Purgatoire River, southeastern Colorado, 1984-92

    USGS Publications Warehouse

    Dash, R.G.; Edelmann, P.R.

    1997-01-01

    Traveltime and gains and losses within a stream are important basic characteristics of streamflow. The lower Purgatoire River flows more than 160 river miles from Trinidad to the Arkansas River near Las Animas. A better knowledge of streamflow traveltime and streamflow gains and losses along the lower Purgatoire River would enable more informed management decisions about the availability of water supplies for irrigation use in southeastern Colorado. In 1994-95, the U.S.\\x11Geological Survey, in cooperation with the Purgatoire River Water Conservancy District and the Arkansas River Compact Administration, evaluated streamflow traveltime and estimated streamflow gains and losses using historical surface-water records. Traveltime analyses were used along the lower Purgatoire River to determine when streamflows would arrive at selected downstream sites. The substantial effects of diversions for irrigation and unmeasured return flows in the most upstream reach of the river prevented the tracking of streamflow through reach\\x111. Therefore, the estimation of streamflow traveltime for the 60.6 miles of river downstream from Trinidad could not be made.Hourly streamflow data from 1990 through 1994 were used to estimate traveltimes of more than 30 streamflow events for about 100 miles of the lower Purgatoire River. In the middle reach of the river, the traveltime of streamflow for the 40.1\\x11miles ranged from about 11 to about 47\\x11hours, and in the lower reach of the river, traveltime for the 58.5 miles ranged from about 6 to about 61 hours.Traveltime in the river reaches generally increased as streamflow decreased, but also varied for a specific streamflow in both reaches. Streamflow gains and losses were estimated using daily streamflow data at the upstream and downstream sites, available tributary inflow data, and daily diversion data. Differences between surface-water inflows and surface-water outflows in a reach determined the quantity of water gained or lost. In the most upstream reach of the river near Trinidad, difficulties in establishing streamflow traveltimes prevented the estimation of streamflow gains or losses. From 1984 through 1992, more than 2,900 daily estimates of streamflow gains or losses were made for the last 100\\x11miles of the lower Purgatoire River that indicated daily gains and losses in streamflow were common during all four seasons of the year. Although some large daily streamflow gains and losses were computed, most daily estimates indicated small gains and losses in streamflow. The daily median streamflow gain or loss for the middle reach of the river was close to zero during every season, whereas median values for the lower most reach of the river indicated a daily gain in streamflow during every season.

  11. Radionuclides as natural tracers of the interaction between groundwater and surface water in the River Andarax, Spain.

    PubMed

    Navarro-Martinez, Francisco; Salas Garcia, Alejandro; Sánchez-Martos, Francisco; Baeza Espasa, Antonio; Molina Sánchez, Luis; Rodríguez Perulero, Antonio

    2017-12-01

    The identification of specific aquifers that supply water to river systems is fundamental to understanding the dynamics of the rivers' hydrochemistry, particularly in arid and semiarid environments where river flow may be discontinuous. There are multiple methods to identify the source of river water. In this study of the River Andarax, in the Southeast of Spain, an analysis of natural tracers (physico-chemical parameters, uranium, radium and radon) in surface water and groundwater indicates that chemical parameters and uranium clearly identify the areas where there is groundwater-surface water interaction. The concentration of uranium found in the river defines two areas: the headwaters with U concentrations of 2 μg L -1 and the lower reaches, with U of 6 μg L -1 . Furthermore, variation in the 234 U/ 238 U isotopic ratio allowed us to detect the influence that groundwater from the carbonate aquifer has on surface water in the headwaters of the river, where the saline content is lower and the water has a calcium bicarbonate facies. The concentration of 226 Ra and 222 Rn are low in the surface waters: <1.6 × 10 -6  μg L -1 and <5.1 × 10 -12  μg L -1 , respectively. There is a slight increase in the lower reaches where the water has a permanent flow, greater salinity and a calcium-magnesium-sulphate facies. All this is favoured by the influence of groundwater from the detritic aquifer on the surface waters. The results of this study indicate the utility in the use of physico-chemical and radiological data conjointly as tracers of groundwater-surface water interaction in semiarid areas where the lithology of aquifers is diverse (carbonate and detritic) and where evaporitic rocks are present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Microbiologically Influenced Corrosion

    DTIC Science & Technology

    2015-11-05

    high in water content, are less corrosive owing to their elevated viscosity and resulting low conductivity (᝺-7 S/cm) [30]. Asphaltenes and resins...wet surface to a water-wet surface. Sludge deposits are combinations of hydrocarbons, sand, clay , corTosion prod- ucts, and biomass that can reach 50...fine clay sun·ounded by a film of water. Under low flow conditions, these particles precipitate and form a sludge deposit. 27.4 TESTING 27 .4.1 A

  13. Seasonal seepage investigation on an urbanized reach of the lower Boise River, southwestern Idaho, water year 2010

    USGS Publications Warehouse

    Williams, Marshall L.

    2011-01-01

    The U.S. Geological Survey in cooperation with the Idaho Department of Water Resources Treasure Valley Comprehensive Aquifer Management Planning effort investigated seasonal groundwater gains and losses on the Boise River, Idaho, starting in November 2009 through August 2010. The investigation was conducted using seepage runs in 11 subreaches over a 14-mile reach from downstream of the inactive streamgage, Boise River below Diversion Dam (U.S. Geological Survey station No. 13203510) to the active Boise River at Glenwood Bridge streamgage (U.S. Geological Survey station No. 13206000). The seepage runs measured mainstem discharge, and significant tributary contributions and diversions along the reach. In addition, an evaluation of the groundwater hydraulic gradient was simultaneously conducted through shallow groundwater mini-piezometers adjacent to the river during February (low stream discharge) and May (high stream discharge) measurement timeframes. November discharge estimates, representative of autumn, had gains and losses that varied by subreach with an overall net gain of 42 ± 8 cubic feet per second (ft3/s). This finding compares favorably to a previous U.S. Geological Survey seepage investigation in November 1996 that found a gaining reach with an estimated gain of 52 ft3/s. This finding also is supported by a U.S. Geological Survey investigation in the study reach in November 1971 that estimated a gain of 74 ft3/s, which largely came from groundwater. The February discharge estimates, representative of winter conditions, showed variability in the reach with a net gain of 52 ft3/s with an uncertainty estimate of ± 7 ft3/s, which is consistent with the low stream discharge findings from November 2009. This finding is further supported by the differential hydraulic head measured at transect sites that qualitatively indicated groundwater to surface-water movement with few exceptions. The May discharge estimates, representative of the spring-time conditions, were gaining or potentially gaining in all but one of the upper subreaches between Boise River below Diversion Dam and Boise River near MK Nature Center sites, with seepage run results supported by hydraulic head differentials indicating a groundwater to surface-water movement. The lower end of the study reach between Boise River near MK Nature Center and Boise River at Glenwood Bridge sites showed more variability with observed hydraulic head differentials that partially supported the potential gains or losses in the reach. Overall, the reach had a calculated net gain of 24 ± 51 ft3/s and, therefore, this estimate may or may not reflect the actual conditions in the reach. The groundwater gains and losses in August, representative of summer conditions, varied in both the upper and lower parts of the reach, with a net loss of -88 ± 69 ft3/s. Overall, the reach experienced a net gain from groundwater at low stream discharges (November and February), a net loss to groundwater at moderately high stream discharge (August), and an ambiguous finding at a higher stream discharge (May). The hydraulic head differentials measured between the groundwater and surface water largely supported the calculated gain and loss estimates in the subreaches, with a potential for groundwater to surface-water movement at low stream discharge in February, and variability during high stream discharge conditions in May.

  14. Water resources of Taos County, New Mexico

    USGS Publications Warehouse

    Garrabrant, Lynn A.

    1993-01-01

    In Taos County, ground water generally is unconfined and moves toward the Rio Grande or perennial streams. Water quality is good except in some areas where water has high values of specific conductance and hardness and contains high concentrations of dissolved solids and fluoride. Most wells are completed in alluvial sediments of Quaternary and Tertiary age in the Costilla Plains. A few wells are completed in basalt of the Taos Plateau and in alluvium of stream channels in the Sangre de Cristo Mountains. Depths to water in wells range from less than 1 to 1,080 feet below land surface. Well yields range from 1 to 3,000 gallons per minute. Water levels in wells in Sunshine Valley dropped 5 to 50 feet between 1955 and 1970. Ground-water irrigation has since declined and water levels have risen. Surface-water records show the county is a net producer of water. The average discharge gained in the Rio Grande as it flows through the county was 271,700 acre-feet per year for water years 1931-89. The highest mean monthly discharge occurs in May or June due to snowmelt runoff. Water quality ranges from good in upstream reaches to fair in lower reaches. Surface water was the source for 93 percent of water withdrawn in 1990, but ground water was used for all public supply, domestic, and industrial purposes. The largest water use is irrigation. About 28,500 acres were irrigated in 1990; alfalfa, native pasture, and planted pasture accounted for 91 percent of this acreage.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Bao, J; Huang, M

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less

  16. Variable exchange between a stream and an aquifer in the Rio Grande Project Area

    NASA Astrophysics Data System (ADS)

    Sheng, Z.; Abudu, S.; Michelsen, A.; King, P.

    2016-12-01

    Both surface water and groundwater in the Rio Grande Project area in southern New Mexico and Far West Texas have been stressed by natural conditions such as droughts and human activities, including urban development and agricultural irrigation. In some area pumping stress in the aquifer becomes so great that it depletes the river flow especially during the irrigation season, typically from March through October. Therefore understanding such relationship between surface water and groundwater becomes more important in regional water resources planning and management. In this area, stream flows are highly regulated by the upstream reservoirs during the irrigation season and greatly influenced by return flows during non-irrigation season. During a drought additional groundwater pumping to supplement surface water shortage further complicates the surface water and groundwater interaction. In this paper the authors will use observation data and results of numerical models (MODFLOW) to characterize and quantify hydrological exchange fluxes between groundwater in the aquifers and surface water as well as impacts of groundwater pumping. The interaction shows a very interesting seasonal variation (irrigation vs. non-irrigation) as well as impact of a drought. Groundwater has been pumped for both municipal supplies and agricultural irrigation, which has imposed stresses toward both stream flows and aquifer storage. The results clearly show that historic groundwater pumping has caused some reaches of the river change from gaining stream to losing stream. Beyond the exchange between surface water and groundwater in the shallow aquifer, groundwater pumping in a deep aquifer could also enhance the exchanges between different aquifers through leaky confining layers. In the earlier history of pumping, pumping from the shallow aquifer is compensated by simple depletion of surface water, while deep aquifer tends to use the aquifer storage. With continued pumping, the cumulative stresses from deeper aquifers migrate upward, resulting in additional depletion of surface water. Eventually such impacts turn some reaches of a gaining river into a losing stream. The research finding provides information needed for future regional water planning and conjunctive management of surface water and groundwater resources.

  17. Hydrogen sulfide production and volatilization in a polymictic eutrophic saline lake, Salton Sea, California.

    PubMed

    Reese, Brandi Kiel; Anderson, Michael A; Amrhein, Christopher

    2008-11-15

    The Salton Sea is a large shallow saline lake located in southern California that is noted for high sulfate concentrations, substantial algal productivity, and very warm water column temperatures. These conditions are well-suited for sulfide production, and sulfide has been implicated in summer fish kills, although no studies have been conducted to specifically understand hydrogen sulfide production and volatilization there. Despite polymictic mixing patterns and relatively short accumulation periods, the amount of sulfide produced is comparable to meromictic lakes. Sulfide levels in the Salton Sea reached concentrations of 1.2 mmol L(-1) of total free sulfide in the hypolimnion and 5.6 mmol L(-1) in the sediment pore water. Strong winds in late July mixed H2S into the surface water, where it depleted the entire water column of dissolved oxygen and reached a concentration of 0.1 mmol L(-1). Sulfide concentrations exceeded the toxicity threshold of tilapia (Oreochromis mossambicus) and combined with strong anoxia throughout the water column, resulted in a massive fish kill. The mixing of sulfide into the surface waters also increased atmospheric H2S concentrations, reaching 1.0 micromol m(-3). The flux of sulfide from the sediment into the water column was estimated to range from 2-3 mmol m(-2) day(-1) during the winter and up to 8 mmol m(-2) day(-1) during the summer. Application of the two-layer model for volatilization indicates that up to 19 mmol m(-2) day(-1) volatilized from the surface during the mixing event. We estimate that as much as 3400 Mg year(-1) or approximately 26% of sulfide that diffused into the water column from the deepest sediments may have been volatilized to the atmosphere.

  18. Simulation of hydraulic characteristics in the white sturgeon spawning habitat of the Kootenai River near Bonners Ferry, Idaho

    USGS Publications Warehouse

    Berenbrock, Charles

    2005-01-01

    Hydraulic characterization of the Kootenai River, especially in the white sturgeon spawning habitat reach, is needed by the Kootenai River White Sturgeon Recovery Team to promote hydraulic conditions that improve spawning conditions for the white sturgeon (Acipenser transmontanus) in the Kootenai River. The decreasing population and spawning failure of white sturgeon has led to much concern. Few wild juvenile sturgeons are found in the river today. Determining the location of the transition between backwater and free-flowing water in the Kootenai River is a primary focus for biologists who believe that hydraulic changes at the transition affect the location where the sturgeon choose to spawn. The Kootenai River begins in British Columbia, Canada, and flows through Montana, Idaho, and back into British Columbia. The 65.6-mile reach of the Kootenai River in Idaho was studied. The study area encompasses the white sturgeon spawning reach that has been designated as a critical habitat. A one-dimensional hydraulic-flow model of the study reach was developed, calibrated, and used to develop relations between hydraulic characteristics and water-surface elevation, discharge, velocity, and backwater extent. The model used 164 cross sections, most of which came from a previous river survey conducted in 2002-03. The model was calibrated to water-surface elevations at specific discharges at five gaging stations. Calibrated water-surface elevations ranged from about 1,743 to about 1,759 feet, and discharges used in calibration ranged from 5,000 to 47,500 cubic feet per second. Model calibration was considered acceptable when the difference between measured and simulated water-surface elevations was ?0.15 foot or less. Measured and simulated average velocities also were compared. These comparisons indicated agreement between measured and simulated values. The location of the transition between backwater and free-flowing water was determined using the calibrated model. The model was used to simulate hydraulic characteristics for a range of water-surface elevations from 1,741 to 1,762 feet and discharges from 4,000 to 75,000 cubic feet per second. These simulated hydraulic characteristics were used to develop a three-parameter relation-discharge in the study reach, water-surface elevation at Kootenai River at Porthill gaging station (12322000), and the location of the transition between backwater and free-flowing water. Simulated hydraulic characteristics produced backwater locations ranging from river mile (RM) 105.6 (Porthill) to RM 158 (near Crossport), a span of about 52 miles. However, backwater locations from measured data ranged primarily from RM 152 to RM 157, a 5-mile span. The average backwater location from measured data was at about RM 154. Three-parameter relations also were developed for determining the amount of discharge in the Shorty Island side channel and average velocity at selected cross sections in the study reach. Simulated discharge for the side channel relative to measured data ranged from 0 to about 5,500 cubic feet per second, and simulated average velocity relative to measured data ranged from 0 to about 3.5 feet per second. Relations using other hydraulic, sediment/incipient motion, ecological, and biological characteristics also could be developed. The relations also can be used in real time by accessing data from the Web. Discharge and stage data for two gaging stations, Tribal Hatchery (12310100) and Porthill (12322500), are available from the Idaho U.S. Geological Survey web page (URL: http://waterdata.usgs.gov/id/nwis/current/?type=flow). Because the coordinate axes of the three-parameter relations use discharge from the Tribal Hatchery gaging station and water-surface elevation from the Porthill gaging station, the location of the transition between backwater and free-flowing water can be determined for current conditions using the real-time data. Similarly, discharge in the Shorty Island side channel and (or) average velocity at selected cross sections also can be determined for current conditions.

  19. Hydraulic characterization of the middle reach of the Congo River

    NASA Astrophysics Data System (ADS)

    O'Loughlin, F.; Trigg, M. A.; Schumann, G. J.-P.; Bates, P. D.

    2013-08-01

    The middle reach of the Congo remains one of the most difficult places to access, with ongoing conflicts and a lack of infrastructure. This has resulted in the Congo being perhaps the least understood large river hydraulically, particularly compared to the Amazon, Nile, or Mississippi. Globally the Congo River is important; it is the largest river in Africa and the basin contains some of the largest areas of tropical forests and wetlands in the world, which are important to both the global carbon and methane cycles. This study produced the first detailed hydraulic characterization of the middle reach, utilizing mostly remotely sensed data sets. Using Landsat imagery, a 30 m resolution water-mask was created for the middle reach, from which effective river widths and the number of channels and islands were determined. Water surface slopes were determined using ICESat observations for three different periods during the annual flood pulse, and while the overall slope calculated was similar to previous estimates, greater spatial variability was identified. We find that the water surface slope varies markedly in space but relatively little in time and that this appears to contrast with the Amazon where previous studies indicate that time and spatial variations are of equal magnitude. Five key hydraulic constraints were also identified, which play an important role in the overall dynamics of the Congo. Finally, backwater lengths were approximated for four of these constraints, with the results showing that at high water, over a third of the middle reach is affected by backwater effects.

  20. The Enterococcus QPCR Method for Recreational Water Quality Testing: Testing Background, Performance and Issues

    EPA Science Inventory

    Currently accepted culture-based monitoring methods for fecal indicator bacteria in surface waters take at least 24 hr to determine if unacceptable levels of fecal pollution have reached our recreational beaches. During this waiting period changing water conditions may result eit...

  1. COLD WATER PATCHES IN WARM STREAMS: PHYSICOCHEMICAL CHARACTERISTICS AND THE INFLUENCE OF SHADING

    EPA Science Inventory

    Discrete coldwater patches within the surface waters of summer-warm streams afford potential thermal refuge for coldwater fishes during periods of heat stress. This analysis focused on reach-scale heterogeneity in water temperatures as influenced by local influx of cooler subsur...

  2. Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China.

    PubMed

    Ma, Jinzhu; Ding, Zhenyu; Wei, Guoxiao; Zhao, Hua; Huang, Tianming

    2009-02-01

    Based on surveys and chemical analyses, we performed a case study of the surface water and groundwater quality in the Wuwei basin, in order to understand the sources of water pollution and the evolution of water quality in Shiyang river. Concentrations of major chemical elements in the surface water were related to the distance downstream from the source of the river, with surface water in the upstream reaches of good quality, but the river from Wuwei city to the Hongya reservoir was seriously polluted, with a synthetic pollution index of 25. Groundwater quality was generally good in the piedmont with dominant bicarbonate and calcium ions, but salinity was high and nitrate pollution occurs in the northern part of the basin. Mineralization of the groundwater has changed rapidly during the past 20 years. There are 23 wastewater outlets that discharge a total of 22.4 x 10(6)m(3)y(-1) into the river from Wuwei city, which, combined with a reduction of inflow water, were found to be the major causes of water pollution. Development of fisheries in the Hongya reservoir since 2000 has also contributed to the pollution. The consumption of water must be decreased until it reaches the sustainable level permitted by the available resources in the whole basin, and discharge of wastes must also be drastically reduced.

  3. Theoretical modeling of heating and structure alterations in cartilage under laser radiation with regard to water evaporation and diffusion dominance

    NASA Astrophysics Data System (ADS)

    Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian

    1998-05-01

    We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.

  4. Surface Water Response Modeling

    EPA Science Inventory

    During response to spills, or for facility planning, the vulnerability of downstream water resources is a major concern. How long and at what concentration do spilled contaminants reach downstream receptors? Models have the potential to answer these questions, but only if they ...

  5. A review of phosphorus removal structures: How to assess and compare their performance

    USDA-ARS?s Scientific Manuscript database

    Controlling dissolved phosphorus (P) losses to surface waters is challenging as most conservation practices are only effective at preventing particulate P losses. As a result, P removal structures were developed to filter dissolved P from drainage water before reaching a water body. While many P rem...

  6. Simultaneous concentration of bovine viruses and agricultural zoonotic bacteria from water using sodocalcic glass wool filters

    USDA-ARS?s Scientific Manuscript database

    Infiltration and runoff from manured agricultural fields can result in livestock pathogens reaching groundwater and surface waters. Here, we measured the effectiveness of glass wool filters to simultaneously concentrate enteric viruses and bacteria of bovine origin from water. The recovery efficienc...

  7. Reconnaissance of chemical quality of surface water and fluvial sediment in the Price River Basin, Utah

    USGS Publications Warehouse

    Mundorff, J.C.

    1972-01-01

    This report on the quality of surface water in the Price River basin was prepared by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights. The primary purpose of the reconnaissance on which this report is based was to obtain information about (1) the general chemical characteristics of surface water throughout the basin, (2) the effect of the natural environment and of present water use on these chemical characteristics, and (3) general characteristics of the sediment discharge of selected streams in the basin. A secondary objective was the definition of specific problem areas or reaches in which marked deterioration in water quality was evident.

  8. Multi-temporal AirSWOT elevations on the Willamette river: error characterization and algorithm testing

    NASA Astrophysics Data System (ADS)

    Tuozzolo, S.; Frasson, R. P. M.; Durand, M. T.

    2017-12-01

    We analyze a multi-temporal dataset of in-situ and airborne water surface measurements from the March 2015 AirSWOT field campaign on the Willamette River in Western Oregon, which included six days of AirSWOT flights over a 75km stretch of the river. We examine systematic errors associated with dark water and layover effects in the AirSWOT dataset, and test the efficacies of different filtering and spatial averaging techniques at reconstructing the water surface profile. Finally, we generate a spatially-averaged time-series of water surface elevation and water surface slope. These AirSWOT-derived reach-averaged values are ingested in a prospective SWOT discharge algorithm to assess its performance on SWOT-like data collected from a borderline SWOT-measurable river (mean width = 90m).

  9. DWH MC 252: Subsurface Oil Transport

    NASA Astrophysics Data System (ADS)

    Beegle-Krause, C. J.; Boyer, T.; Murray, D.

    2010-12-01

    Before reaching the ocean surface, the oil and gas released from the DWH MC 252 blowout at 1500 m moves as a buoyant plume until the trapping depth and plume transition point are reached (Zheng et al 2002). At the transition point, the oil droplets and bubbles move independently of each other, and rise at a rate related to their diameter. The oil density, droplet size distribution and currents primarily determine the distribution of the oil between: Large droplets that rise quickly and create a surface expression of the oil. Moderate size droplets that rise over the course of days, and so spread out quite differently than the surface oil, and commonly do not reach the surface in large enough quantities to create a surface sheen. These droplets separate in the currents, particularly in the strong current shear in upper 500 m currents. Very tiny droplets that rise very slowly, over the course or weeks to months, and may be removed by dissolution, biodegradation or marine snow before ever reaching the surface. Modeling and observations (Joint Analysis Group, 2010) confirm the presence of a deep layer of oil and gas between approximately 1100 and 1300 m over the release location and spreading out along the isopycnal surfaces. Later in the event, a small oxygen depression was a proxy for where oil and gas had been. The DWH MC252 well is located at intermediate depth in the Gulf of Mexico (GoM). The water mass is Antarctic Intermediate Water, which enters and exits the GoM through the Yucatan Straits. Surface influences, such as Loop Current Frontal Eddies (e.g. Berger et al 2000) can reach down to these depths, and alter the flow within De Soto Canyon. The water mass containing the deep layer of oil droplets changes depth within the GoM, but does not reach above a depth of about 900 m. There are no physical processes that could cause this deep layer of oil to reach the continental shelf or the Florida Straits. Observed and historical hydrographic data, observations, previous research and modeling were combined to tell the story of the DWH MC 252 from the subsurface perspective. The Comprehensive Deepwater Oil and Gas model (CDOG, Yapa and Xie, 2005), and the General NOAA Operational Modeling Environment (GNOME, Beegle-Krause, 1999) were used with the NOAA Gulf of Mexico Model nowcast/forecast model to understand the 3D evolution of the subsurface spill. Model/observational comparisons are favorable, though limitations of the available models are apparent. Historical perspective on Thunder Horse (a deepwater well incident that was a dress-rehearsal for the DWH MC 252, Beegle-Krause and Walton, 2004), transitioning models from research to operations, and research needs will also be discussed.

  10. Water-table contours and depth to water in the southeastern part of the Sweetwater River basin, central Wyoming, 1982

    USGS Publications Warehouse

    Borchert, William B.

    1987-01-01

    This map describes the southeastern part of the Sweetwater River basin; the major aquifer consists of the upper part of the White River formations, all of Tertiary age, and to a small extent, the alluvium of the Quaternary age along the Sweetwater River. The saturated thickness of the aquifer in most of the area, but not including the alluvium ranges from 500 to 3000 ft. The maximum saturated thickness of the alluvium penetrated by test holes was 63 ft. The water-table contours and depths to water are based primarily on groundwater-level measurements made during 1982 in 104 wells, most of which are located south of the Sweetwater River. Land-surface altitudes of springs and water-surface altitudes along the Sweetwater River and perennial reaches of creeks flowing northward from the Green and Ferris Mountains also were used as control for mapping the water table. The perennial reaches shown on the map are assumed hydraulically connected with the water table. They were identified from streamflow gain-and-loss measurements made during April and May 1982. (Author 's abstract)

  11. Integration of Rs/gis for Surface Water Pollution Risk Modeling. Case Study: Al-Abrash Syrian Coastal Basin

    NASA Astrophysics Data System (ADS)

    Yaghi, Y.; Salim, H.

    2017-09-01

    Recently the topic of the quality of surface water (rivers - lakes) and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP) and non-point Source pollution (NPSP). Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers) and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  12. Physical basis for river segmentation from water surface observables

    NASA Astrophysics Data System (ADS)

    Samine Montazem, A.; Garambois, P. A.; Calmant, S.; Moreira, D. M.; Monnier, J.; Biancamaria, S.

    2017-12-01

    With the advent of satellite missions such as SWOT we will have access to high resolution estimates of the elevation, slope and width of the free surface. A segmentation strategy is required in order to sub-sample the data set into reach master points for further hydraulic analyzes and inverse modelling. The question that arises is : what will be the best node repartition strategy that preserves hydraulic properties of river flow? The concept of hydraulic visibility introduced by Garambois et al. (2016) is investigated in order to highlight and characterize the spatio-temporal variations of water surface slope and curvature for different flow regimes and reach geometries. We show that free surface curvature is a powerful proxy for characterizing the hydraulic behavior of a reach since concavity of water surface is driven by variations in channel geometry that impacts the hydraulic properties of the flow. We evaluated the performance of three segmentation strategies by means of a well documented case, that of the Garonne river in France. We conclude that local extrema of free surface curvature appear as the best candidate for locating the segment boundaries for an optimal hydraulic representation of the segmented river. We show that for a given river different segmentation scales are possible: a fine-scale segmentation which is driven by fine-scale hydraulic to large-scale segmentation driven by large-scale geomorphology. The segmentation technique is then applied to high resolution GPS profiles of free surface elevation collected on the Negro river basin, a major contributor of the Amazon river. We propose two segmentations: a low-resolution one that can be used for basin hydrology and a higher resolution one better suited for local hydrodynamic studies.

  13. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    USGS Publications Warehouse

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The simulated water-surface profiles were then combined in a geographic information system with a digital elevation model derived from light detection and ranging data (having a 0.429-foot vertical and 0.228-foot horizontal accuracy) to delineate the area flooded at each water level.The availability of these maps, along with Web information regarding current stage from the U.S. Geological Survey streamgages and forecasted high-flow stages from the National Weather Service, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations, road closures, and postflood recovery efforts.

  14. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  15. Water budget and water quality of Ward Lake, flow and water-quality characteristics of the Braden River estuary, and the effects of Ward Lake on the hydrologic system, west-central Florida

    USGS Publications Warehouse

    Trommer, J.T.; DelCharco, M.J.; Lewelling, B.R.

    1999-01-01

    The Braden River is the largest tributary to the Manatee River. The river was dammed in 1936 to provide the city of Bradenton a source of freshwater supply. The resulting impoundment was called Ward Lake and had a storage capacity of about 585 million gallons. Reconstruction in 1985 increased the size of the reservoir to about 1,400 million gallons. The lake has been renamed the Bill Evers Reservoir and drains about 59 square miles. The Braden River watershed can be subdivided into three hydrologic reaches. The upper reach consists of a naturally incised free-flowing channel. The middle reach consists of a meandering channel affected by backwater as a result of the dam. The lower reach is a tidal estuary. Water budgets were calculated for the 1993 through 1997 water years. Mean surface-water inflow to Ward Lake for the 5-year period was 1,645 inches per year (equivalent depth over the surface of the lake), or about 81.8 percent of total inflow. Mean ground-water inflow was 311 inches per year, or about 15.5 percent. A mean of 55 inches of rain fell directly on the lake and accounted for only 2.7 percent. Mean surface-water outflow was 1,736 inches, or about 86.4 percent of total water leaving the lake. There was no net ground-water outflow from the lake. Mean surface-water withdrawal for public supply was 229 inches per year, or about 11.4 percent. Mean evaporation was 45 inches and accounted for only 2.2 percent of the mean outflow. Change in lake storage on the budget was negligible. Most chemical constituents contained in water flowing to Ward Lake meet the standards specified by the Florida Department of Environmental Protection and the U.S. Environmental Protection Agency. Phosphorus is the exception, exceeding the U.S. Environmental Protection Agency limits of 0.10 milligram per liter in most samples. However, the source of the phosphorus is naturally occurring phosphate deposits underlying the watershed. Organic nitrogen and orthophosphate are the dominant species of nutrients in the streams and the lake. A major source of water to the streams is the surficial aquifer system. Mineralized water pumped from the intermediate aquifer system and the Upper Floridan aquifer for irrigation of agricultural areas or golf courses has influenced the chemical composition of the surficial aquifer and surface-water systems. The Braden River estuary receives freshwater inflow from Ward Lake and from three major streams discharging downstream from the dam. Salinity levels in the estuary are affected by freshwater flow from these sources and by antecedent conditions in the estuary prior to flow events. The lowest salinity levels are often measured at the confluence with Williams and Gap Creeks rather than at the outfall from the lake. The chemical composition of water flowing from the tributaries to the estuary is similar to the chemical composition of water in the tributaries flowing to Ward Lake and does not appear to be affected by brackish water from high tides. Nitrogen concentrations in water from Glen Creek were greater than in water from all other tributaries in the watershed. Fertilizer from orange groves and stormwater runoff from urban and industrial areas affect the water quality in Glen Creek. The effects of the reservoir on the hydrology of the watershed were to change the middle reach of the river from a brackish water estuary ecosystem to a freshwater lake ecosystem, raise water levels in the surficial aquifer system adjacent to the river, change water quality, and reduce freshwater flow to the estuary during periods of low flow. The lake acts as a sink for total organic carbon, dissolved solids, calcium, chloride, and sulfate, thereby decreasing loads of these constituents to the estuary.

  16. Movement of water infiltrated from a recharge basin to wells

    USGS Publications Warehouse

    O'Leary, David R.; Izbicki, John A.; Moran, Jean E.; Meeth, Tanya; Nakagawa, Brandon; Metzger, Loren; Bonds, Chris; Singleton, Michael J.

    2012-01-01

    Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 μg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers.

  17. Surface-water/ground-water interaction along reaches of the Snake River and Henrys Fork, Idaho

    USGS Publications Warehouse

    Hortness, Jon E.; Vidmar, Peter

    2005-01-01

    Declining water levels in the eastern Snake River Plain aquifer and decreases in spring discharges from the aquifer to the Snake River have spurred studies to improve understanding of the surface-water/ground-water interaction on the plain. This study was done to estimate streamflow gains and losses along specific reaches of the Snake River and Henrys Fork and to compare changes in gain and loss estimates to changes in ground-water levels over time. Data collected during this study will be used to enhance the conceptual model of the hydrologic system and to refine computer models of ground-water flow and surface-water/ground-water interactions. Estimates of streamflow gains and losses along specific subreaches of the Snake River and Henrys Fork, based on the results of five seepage studies completed during 2001?02, varied greatly across the study area, ranging from a loss estimate of 606 ft3/s in a subreach of the upper Snake River near Heise to a gain estimate of 3,450 ft3/s in a subreach of the Snake River that includes Thousand Springs. Some variations over time also were apparent in specific subreaches. Surface spring flow accounted for much of the inflow to subreaches having large gain estimates. Several subreaches alternately gained and lost streamflow during the study. Changes in estimates of streamflow gains and losses along some of the subreaches were compared with changes in water levels, measured at three different times during 2001?02, in adjacent wells. In some instances, a strong relation between changes in estimates of gains or losses and changes in ground-water levels was apparent.

  18. Fracture mechanics and surface chemistry studies of fatigue crack growth in an aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wei, R. P.; Pao, P. S.; Hart, R. G.; Weir, T. W.; Simmons, G. W.

    1980-12-01

    Fracture mechanics and surface chemistry studies were carried out to develop further understanding of the influence of water vapor on fatigue crack growth in aluminum alloys. The room temperature fatigue crack growth response was determined for 2219-T851 aluminum alloy exposed to water vapor at pressures from 1 to 30 Pa over a range of stress intensity factors ( K). Data were also obtained in vacuum (at < 0.50 μPa), and dehumidified argon. The test results showed that, at a frequency of 5 Hz, the rate of crack growth is essentially unaffected by water vapor until a threshold pressure is reached. Above this threshold, the rates increased, reaching a maximum within one order of magnitude increase in vapor pressure. This maximum crack growth rate is equal to that obtained in air (40 to 60 pct relative humidity), distilled water and 3.5 pct NaCl solution on the same material. Parallel studies of the reactions of water vapor with fresh alloy surfaces (produced either by in situ impact fracture or by ion etching) were made by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The extent of surface reaction was monitored by changes in the oxygen AES and XPS signals. Correlation between the fatigue crack growth response and the surface reaction kinetics has been made, and is consistent with a transport-limited model for crack growth. The results also suggest that enhancement of fatigue crack growth by water vapor in the aluminum alloys occurs through a “hydrogen embrittle ment” mechanism.

  19. In situ assessment of the contact angles of nanoparticles adsorbed at fluid interfaces by multiple angle of incidence ellipsometry.

    PubMed

    Stocco, Antonio; Su, Ge; Nobili, Maurizio; In, Martin; Wang, Dayang

    2014-09-28

    Here multiple angle of incidence ellipsometry was successfully applied to in situ assess the contact angle and surface coverage of gold nanoparticles as small as 18 nm, coated with stimuli-responsive polymers, at water-oil and water-air interfaces in the presence of NaCl and NaOH, respectively. The interfacial adsorption of the nanoparticles was found to be very slow and took days to reach a fairly low surface coverage. For water-oil interfaces, in situ nanoparticle contact angles agree with the macroscopic equilibrium contact angles of planar gold surfaces with the same polymer coatings, whilst for water-air interfaces, significant differences have been observed.

  20. Water repellent soils following prescribed burning treatments and a wildfire in the oak savannas of the Malpai Borderlands Region

    Treesearch

    Cody L. Stropki; Peter F. Ffolliott; Gerald J. Gottfried

    2009-01-01

    Water repellent (hydrophobic) soils impact the infiltration process of a water budget by restricting the movement of water into and through a soil body. The infiltration of water into a water repellent soil can be inhibited or completely impeded in which case much of the incoming precipitation reaching the soil surface becomes overland flow. One mechanism causing the...

  1. Radiation Dose Assessments for Fleet-Based Individuals in Operation Tomodachi

    DTIC Science & Technology

    2013-09-01

    area. DOD took actions to ensure that radioactively contaminated food and bottled water did not reach the DOD-affiliated population. Military commands...material from contaminated surfaces of ships or aircraft or in water, food , or soil and dust each day while on shore. These doses were calculated for...22 2.4.4. Exposure related to Surface Contamination on Ships.......................... 22 2.4.5. Exposure from Skin Contamination

  2. Radiation Dose Assessments for Fleet-Based Individuals in Operation Tomodachi, Revision 1

    DTIC Science & Technology

    2014-04-01

    U.S. agencies were also deployed to the area. DOD took actions to ensure that radioactively contaminated food and bottled water did not reach the...material from contaminated surfaces of ships or aircraft or in water, food , or soil and dust each day while on shore. These doses were calculated for...Exposure below Deck on Ships .......................................................... 22 2.4.4. Exposure related to Radioactive Surface Contamination

  3. LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zugger, M. E.; Kane, T. J.; Kasting, J. F.

    2010-11-10

    Orbital variation in reflected starlight from exoplanets could eventually be used to detect surface oceans. Exoplanets with rough surfaces, or dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180{sup 0}, whereas ocean planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30{sup 0}. Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74{sup 0}; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere andmore » within the water column dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach peak polarization near OL = 90{sup 0}, but clouds and Lambertian surface scattering dilute and shift this peak to smaller OL. A shifted Rayleigh peak might be mistaken for a water signature unless data from multiple wavelength bands are available. Our calculations suggest that polarization alone may not positively identify the presence of an ocean under an Earth-like atmosphere; however, polarization adds another dimension which can be used, in combination with unpolarized orbital light curves and contrast ratios, to detect extrasolar oceans, atmospheric water aerosols, and water clouds. Additionally, the presence and direction of the polarization vector could be used to determine planet association with the star, and constrain orbit inclination.« less

  4. Rio Grande valley Colorado new Mexico and Texas

    USGS Publications Warehouse

    Ellis, Sherman R.; Levings, Gary W.; Carter, Lisa F.; Richey, Steven F.; Radell, Mary Jo

    1993-01-01

    Two structural settings are found in the study unit: alluvial basins and bedrock basins. The alluvial basins can have through-flowing surface water or be closed basins. The discussion of streamflow and water quality for the surface-water system is based on four river reaches for the 750 miles of the main stem. the quality of the ground water is affected by both natural process and human activities and by nonpoint and point sources. Nonpoint sources for surface water include agriculture, hydromodification, and mining operations; point sources are mainly discharge from wastewater treatment plants. Nonpoint sources for ground water include agriculture and septic tanks and cesspools; point sources include leaking underground storage tanks, unlined or manure-lined holding ponds used for disposal of dairy wastes, landfills, and mining operations.

  5. Light attenuation and submersed macrophyte distribution in the tidal Potomac River and estuary

    USGS Publications Warehouse

    Carter, V.; Rybicki, N.B.

    1990-01-01

    Changing light availability may be responsible for the discontinuous distribution of submersed aquatic macrophytes in the freshwater tidal Potomac River. During the 1985-1986 growing seasons, light attenuation and chlorophyll a and suspended particulate material concentrations were measured in an unvegetated reach (B) and in two adjacent vegetated reaches (A and C). Light attenuation in reach B (the lower, fresh to oligohaline tidal river) was greater than that in reach A (the recently revegetated, upper, freshwater tidal river) in both years. Reach B light attenuation was greater than that in reach C (the vegetated, oligohaline to mesohaline transition zone of the Potomac Estuary) in 1985 and similar to that in reach C in 1986. In reach B, 5% of total below-surface light penetrated only an average of 1.3 m in 1985 and 1.0m in 1986, compared with 1.9 m and 1.4 m in reach A in 1985 and 1986, respectively. Water column chlorophyll a concentration controlled light availability in reaches A and B in 1985, whereas both chlorophyll a and suspended particulate material concentrations were highly correlated with attenuation in both reaches in 1986. Reach C light attenuation was correlated with suspended particulate material in 1986. The relationship between attenuation coefficient and Secchi depth was KPAR=1.38/Secchi depth. The spectral distribution of light at 1 m was shifted toward the red portion of the visible spectrum compared to surface light. Blue light was virtually absent at 1.0 m in reach B during July and August 1986. Tidal range is probably an important factor in determining light availability for submersed macrophyte propagule survival at the sediment-water interface in this shallow turbid system. ?? 1990 Estuarine Research Federation.

  6. AirSWOT observations versus hydrodynamic model outputs of water surface elevation and slope in a multichannel river

    NASA Astrophysics Data System (ADS)

    Altenau, Elizabeth H.; Pavelsky, Tamlin M.; Moller, Delwyn; Lion, Christine; Pitcher, Lincoln H.; Allen, George H.; Bates, Paul D.; Calmant, Stéphane; Durand, Michael; Neal, Jeffrey C.; Smith, Laurence C.

    2017-04-01

    Anabranching rivers make up a large proportion of the world's major rivers, but quantifying their flow dynamics is challenging due to their complex morphologies. Traditional in situ measurements of water levels collected at gauge stations cannot capture out of bank flows and are limited to defined cross sections, which presents an incomplete picture of water fluctuations in multichannel systems. Similarly, current remotely sensed measurements of water surface elevations (WSEs) and slopes are constrained by resolutions and accuracies that limit the visibility of surface waters at global scales. Here, we present new measurements of river WSE and slope along the Tanana River, AK, acquired from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission. Additionally, we compare the AirSWOT observations to hydrodynamic model outputs of WSE and slope simulated across the same study area. Results indicate AirSWOT errors are significantly lower than model outputs. When compared to field measurements, RMSE for AirSWOT measurements of WSEs is 9.0 cm when averaged over 1 km squared areas and 1.0 cm/km for slopes along 10 km reaches. Also, AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics, while model outputs of spatial variations in slope are very poor. Combining AirSWOT and future SWOT measurements with hydrodynamic models can result in major improvements in model simulations at local to global scales. Scientists can use AirSWOT measurements to constrain model parameters over long reach distances, improve understanding of the physical processes controlling the spatial distribution of model parameters, and validate models' abilities to reproduce spatial variations in slope. Additionally, AirSWOT and SWOT measurements can be assimilated into lower-complexity models to try and approach the accuracies achieved by higher-complexity models.

  7. Two-dimensional hydrologic modeling to evaluate aquatic habitat conditions

    Treesearch

    Pamela Edwards; Frederica Wood; Michael Little; Peter Vila; Peter Vila

    2006-01-01

    We describe the modeling and mapping procedures used to examine aquatic habitat conditions and habitat suitability of a small river in north- central West Virginia where fish survival and reproduction in specific reaches are poor. The study includes: (1) surveying cross sections of streambed reaches and measuring discharges and corresponding water-surface elevations,...

  8. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    PubMed

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Weight loss and isotopic shifts for water drops frozen on a liquid nitrogen surface.

    PubMed

    Eguchi, Keiko; Abe, Osamu; Hiyama, Tetsuya

    2008-10-01

    A liquid nitrogen freezing method was used to collect raindrops for the determination of isotope-size distribution. Water drops that fall onto a surface of liquid nitrogen stay suspended for 10 to 20 s, until their temperature reaches the Leidenfrost point (126 K). As their temperature falls to the freezing point, they release their heat by thermal conduction. At the freezing point, latent heat of fusion is released, along with a significant loss of water. After freezing completely, the ice droplets stay suspended, cooling by thermal conduction until they reach the Leidenfrost point. They then lose buoyancy and start sinking. Consistent isotopic changes of 1.5 +/- 0.4 and 0.33 +/- 0.05 per thousand for hydrogen and oxygen, respectively, were found for droplets with radii between 1.0 and 1.5 mm. Isotope fractionation appeared to occur at the same time as water loss, as the droplets were freezing, in what was probably a kinetic effect.

  10. Gulf of Aden eddies and their impact on Red Sea Water

    NASA Astrophysics Data System (ADS)

    Bower, Amy S.; Fratantoni, David M.; Johns, William E.; Peters, Hartmut

    2002-11-01

    New oceanographic observations in the Gulf of Aden in the northwestern Indian Ocean have revealed large, energetic, deep-reaching mesoscale eddies that fundamentally influence the spreading rates and pathways of intermediate-depth Red Sea Water (RSW). Three eddies were sampled in February 2001, two cyclonic and one anticyclonic, with diameters 150-250 km. Both cyclones had surface-intensified velocity structure with maxima ~0.5 m s-1, while the equally-energetic anticyclone appeared to be decoupled from the surface circulation. All three eddies reached nearly to the 1000-2000 m deep sea floor, with speeds as high as 0.2-0.3 m s-1 extending through the depth range of RSW. Comparison of salinity and direct velocity measurements indicates that the eddies advect and stir RSW through the Gulf of Aden. Anomalous water properties in the center of the anticyclonic eddy point to a possible formation site in the Somali Current System.

  11. Capacitively coupled and direct-current resistivity surveys of selected reaches of Cozad, Thirty-Mile, Orchard-Alfalfa, Kearney, and Outlet Canals in Nebraska, 2012-13

    USGS Publications Warehouse

    Hobza, Christopher M.; Burton, Bethany L.; Lucius, Jeffrey E.; Tompkins, Ryan E.

    2014-01-01

    Understanding the spatial characteristics of leakage from canals is critical to effectively managing and utilizing water resources for irrigation and hydroelectric purposes. Canal leakage in some parts of Nebraska is the primary source of water for groundwater recharge and helps maintain the base flow of streams. Because surface-water supplies depend on the streamflow of the Platte River and the available water stored in upstream reservoirs, water managers seek to minimize conveyance losses, which can include canal leakage. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District and Nebraska Public Power District, used capacitively coupled (CC) and direct-current (DC) resistivity techniques for continuous resistivity profiling to map near-surface lithologies near and underlying the Cozad, Thirty-Mile, Orchard-Alfalfa, Kearney, and Outlet Canals. Approximately 84 kilometers (km) of CC-resistivity data were collected along the five canals. The CC-resistivity data were compared with results from continuous sediment cores and electrical conductivity logs. Generally, the highest resistivities were recorded at the upstream reaches of the Cozad, Thirty-Mile, and Orchard-Alfalfa canals where flood-plain deposits of silt and clay mantle coarser channel deposits of sand and gravel. The finer grained deposits gradually thicken with increasing distance away from the Platte River. Consequently, for many surveyed reaches the thickness of fine-grained deposits exceeded the 8-meter depth of investigation. A detailed geophysical investigation along a 5-km reach of the Outlet Canal southwest of North Platte, Nebraska, used CC and DC resistivity to examine the condition of a compacted-core bank structure and characterized other potential controls on areas of focused seepage. CC-resistivity data, collected along the 5-km study reach, were compared with continuous sediment cores and DC-resistivity data collected near a selected seep near Outlet Canal mile post 15.55 along 5 separate profiles. DC-resistivity results were compared to a schematic cross section of the Outlet Canal north embankment that include the original surfaces and modifications to the compacted-core bank structure. Along the canal road south line, there is a transition from high resistivity at land surface to much lower resistivity near the estimated depth of the northern slope of the original compacted-core bank; however, the surveyed elevation of the water surface in the canal also is at this elevation. Along the canal road north line, there is a transition from high resistivity near land surface to lower resistivity at depth. Although the transition is rapid near the estimated depth of the first-modified bank slope, it also is coincident with the groundwater level measured in piezometer PZ-4. Currently (2013), it is unknown if the indicated changes in resistivity at these elevations was the effect of saturation of the underlying sediments or caused by the compacted-core bank.

  12. Performance of a water suction system using hydrophilic fibrous cloth under low gravity and microgravity in parabolic flight.

    PubMed

    Tani, A; Saito, T; Kitaya, Y; Takahashi, H; Goto, E

    2000-06-01

    For suction of water from a water supply vessel including both water and air under microgravity and g-jitter conditions, a water suction system using hydrophilic fibrous cloth was developed and its performance was evaluated at 0.01-0.02 g-realized for 20 s by parabolic flight in an aircraft. Vessels used for the experiment were glass flasks and had a suction port for suction filtration. A piece of hydrophilic fibrous cloth was arranged along the inner surface of the vessels and the end was fixed to the suction port of the vessels. In vessel without hydrophilic cloths and containing 220 mL of water, the water did not move more than 5 mm along the inner surface and did not reach the suction port under low gravity. When hydrophilic cloths were used, on the other hand, water gathered onto the cloth surface, moved up along the cloth and reached the suction port under low gravity. The amount of water sucked from vessels varied with the amount of water in the vessel and the sectional area of hydrophilic cloths. When the vessels including both water and air were flown during parabolic flight (10(-4) g), water in the vessel moved along the cloth and a water film was formed on the cloth. These results indicated that it is possible to suck water using the fibrous cloth suction system under low gravity and microgravity conditions. Under low gravity conditions, it was difficult to suck water only. However, it is not necessary to separate water from air when the system is used for supplying water to plant root medium consisting of both liquid and gas phases.

  13. Stream-Groundwater Interaction Buffers Seasonal Changes in Urban Stream Water Quality

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Lautz, L. K.

    2013-12-01

    Urban streams in the northeastern United States have large road salt inputs during winter, increased nonpoint sources of inorganic nitrogen, and decreased short-term and permanent storage of nutrients. Meadowbrook Creek, a first order stream in Syracuse, New York, flows along a negative urbanization gradient, from a channelized and armored stream running through the middle of a roadway to a pool-riffle stream meandering through a broad, vegetated floodplain with a riparian aquifer. In this study we investigated how reconnection to groundwater and introduction of riparian vegetation impacted surface water chemistry by making bi-weekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. Chloride concentrations in the upstream, urban reach of Meadowbrook Creek were strongly influenced by discharge of road salt to the creek during snow melt events in winter and by the chemistry of water draining an upstream retention basin in summer. Chloride concentrations ranged from 161.2 mg/L in August to 2172 mg/L in February. Chloride concentrations in the downstream, 'connected' reach had less temporal variation, ranging from 252.0 mg/L in August to 1049 mg/L in January, and were buffered by groundwater discharge, as the groundwater chloride concentrations during the sampling period ranged from 84.0 to 655.4 mg/L. Groundwater discharge resulted in higher chloride concentrations in summer and lower concentrations in winter in the connected reach relative to the urban reach, minimizing annual variation. In summer, there was little-to-no nitrate in the urban reach due to a combination of limited sources and high primary productivity. In contrast, during the summer, nitrate concentrations reached over 1 mg N/L in the connected reach due to the presence of riparian vegetation and lower nitrate uptake due to cooler temperatures and shading. During the winter, when temperatures fell below freezing, nitrate concentrations in the urban reach increased to around 0.58 mg N/L, but were still lower than the connected reach, which averaged 0.88 mg N/L. Groundwater discharge rates were measured longitudinally along the creek during a constant rate Rhodamine WT injection and also confirmed qualitatively by longitudinal changes in stream sulfate and δ18O. The buffering capability of groundwater discharge in urban systems has implications for managers trying to mitigate the effects of urbanization on surface water.

  14. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team.

    PubMed

    McCord, T B; Hansen, G B; Fanale, F P; Carlson, R W; Matson, D L; Johnson, T V; Smythe, W D; Crowley, J K; Martin, P D; Ocampo, A; Hibbitts, C A; Granahan, J C

    1998-05-22

    Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.

  15. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer

    USGS Publications Warehouse

    McCord, T.B.; Hansen, G.B.; Fanale, F.P.; Carlson, R.W.; Matson, D.L.; Johnson, T.V.; Smythe, W.D.; Crowley, J.K.; Martin, P.D.; Ocampo, A.; Hibbitts, C.A.; Granahan, J.C.

    1998-01-01

    Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.

  16. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Inland River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Li, X.; Cheng, G.; Tian, W.; Zhang, Y.; Zhou, J.; Pan, X.; Ge, Y.; Hu, X.

    2013-12-01

    Inland river basins take about 11.4% of the land area of the world and most of them are distributed over arid regions. Understanding the hydrological cycle of inland river basin is important for water resource management in water scarcity regions. This paper illustrated hydrological cycle of a typical inland river basin in China, the Heihe River Basin (HRB). First, water balance in upper, middle and lower reaches of the HRB was conceptualized by analyzing dominant hydrological processes in different parts of the river basin. Then, we used a modeling approach to study the water cycle in the HRB. In the upper reaches, we used the GBHM-SHAW, a distributed hydrological model with a new frozen soil parameterization. In the middle and lower reaches, we used the GWSiB, a three-dimensionally coupled land surface-groundwater model. Modeling results were compared with water balance observations in different landscapes and cross-validated with other results to ensure the reliability. The results show that the hydrological cycle in HRB has some distinctive characteristics. Mountainous area generates almost all of the runoff for the whole river basin. High-elevation zones have much larger runoff/precipitation ratio. Cryospheric hydrology plays an important role. Although snow melting and glacier runoff take less than 25% of total runoff, these processes regulate inter-annual variation of runoff and thus provide stable water resource for oases downstream. Forest area contributes almost no runoff but it smoothes runoff and reduces floods by storing water in soil and releasing it out slowly. In the middle reaches, artificial hydrological cycle is much more dominated than natural one. River water and groundwater, recharged by runoff from mountainous area, is the water resource to support the agriculture and nurture the riparian ecosystem. Precipitation, approximately 150 mm in average, is only a supplement to agriculture use but sufficient to sustain desert vegetation. Water resources are redistributed by very developed and extensive irrigation system. Irrigation water balance is complex because of strong interactions among surface, ground, river and irrigation water. Lower reaches is an extremely arid environment. Water availability in lower reaches has a great impact on the evolution of natural ecosystem and vice versa the landscape change reshapes the hydrological cycle. After the water resource reallocation project implemented in 2000, the water delivered to lower reaches has increased by 36%. Of all the available water resource, about 10% is used to sustain a terminal lake and other water bodies, 20% is used for irrigation to support very rapidly increased farmlands, 40-50% is used to nurture the natural oasis, and other water is lost due to evaporation. The features of hydrological cycle in the HRB is very typical for inland river basins in China's arid region. In this region, air temperature is rising and precipitation is most likely to increase. Accelerating glacier retreat will also produce more water. However, water demand increases more rapidly due to quickly developing economy and growing population. Therefore, how to turn our understanding of hydrological cycle in this environmental fragile region into more rational water resource management is a grand challenge.

  17. The evolution of the Cappadocia Geothermal Province, Anatolia (Turkey): geochemical and geochronological evidence

    NASA Astrophysics Data System (ADS)

    Şener, M. Furkan; Şener, Mehmet; Uysal, I. Tonguç

    2017-12-01

    Cappadocia Geothermal Province (CGP), central Turkey, consists of nine individual geothermal regions controlled by active regional fault systems. This paper examines the age dating of alteration minerals and the geochemistry (trace elements and isotopes) of the alteration minerals and geothermal waters, to assess the evolution of CGP in relation to regional tectonics. Ar-Ar age data of jarosite and alunite show that the host rocks were exposed to oxidizing conditions near the Earth's surface at about 5.30 Ma. Based on the δ18O-δD relationhip, water samples had a high altitude meteoric origin. The δ34S values of jarosite and alunite indicate that water samples from the southern part of the study area reached the surface after circulation through volcanic rocks, while northern samples had traveled to the surface after interacting with evaporates at greater depths. REY (rare earth elements and yttrium) diagrams of alteration minerals (especially illite, jarosite and alunite) from rock samples, taken from the same locations as the water samples, display a similar REY pattern to water samples. This suggests that thermal fluids, which reached the surface along a fault zone and caused the mineral alteration in the past, had similar chemical composition to the current geothermal water. The geothermal conceptual model, which defines a volcanically heated reservoir and cap rocks, suggests there are no structural drawbacks to the use of the CGP geothermal system as a resource. However, fluid is insufficient to drive the geothermal system as a result of scanty supply of meteoric water due to evaporation significantly exceeding rainfall.

  18. Distribution of the Fukushima-derived radionuclides in seawater in the Pacific off the coast of Miyagi, Fukushima, and Ibaraki Prefectures, Japan

    NASA Astrophysics Data System (ADS)

    Oikawa, S.; Takata, H.; Watabe, T.; Misonoo, J.; Kusakabe, M.

    2013-07-01

    The activities of artificial radionuclides in seawater samples collected off the coast of Miyagi, Fukushima, and Ibaraki Prefectures were measured as part of a monitoring program initiated by the Japanese Ministry of Education, Sports, Science and Technology immediately after the Fukushima Dai-ichi Nuclear Power Plant accident. The spatial and temporal distributions of those activities are summarized herein. The activities of strontium-90, iodine-131, cesium-134 and -137 (i.e. 90Sr, 131I, 134Cs, and 137Cs) derived from the accident were detected in seawater samples taken from areas of the coastal ocean adjacent to the power plant. No 131I was detected in surface waters (≤ 5 m depth) or in intermediate and bottom waters after 30 April 2011. Strontium-90 was found in surface waters collected from a few sampling stations in mid-August 2011 to mid-December 2011. Temporal changes of 90Sr activity in surface waters were evident, although the 90Sr activity at a given time varied widely between sampling stations. The activity of 90Sr in surface waters decreased slowly over time, and by the end of December 2011 had reached background levels recorded before the accident. Radiocesium, 134Cs and 137Cs, was found in seawater samples immediately after the accident. There was a remarkable change in radiocesium activities in surface waters during the first 7 months (March through September 2011) after the accident; the activity reached a maximum in the middle of April and thereafter decreased exponentially with time. Qualitatively, the distribution patterns in surface waters suggested that in early May radiocesium-polluted water was advected northward; some of the water then detached and was transported to the south. Two water cores with high 137Cs activity persisted at least until July 2011. In subsurface waters radiocesium activity was first detected in the beginning of April 2011, and the water masses were characterized by σt (an indicator of density) values of 25.5-26.5. From 9-14 May to 5-16 December 2011, the depths of the water masses increased with time, an indication that deepening of the isopycnal surfaces with time can be an important mechanism for the transport of radiocesium downward in coastal waters. During 4-21 February 2012, the water column became vertically homogeneous, probably because of convective mixing during the winter; the result was nearly constant values of radiocesium activity throughout the water column from the surface to the bottom (~200 m depth) at each station.

  19. Direct-current resistivity profiling at the Pecos River Ecosystem Project study site near Mentone, Texas, 2006

    USGS Publications Warehouse

    Teeple, Andrew; McDonald, Alyson K.; Payne, Jason; Kress, Wade H.

    2009-01-01

    The U.S. Geological Survey, in cooperation with Texas A&M University AgriLife, did a surface geophysical investigation at the Pecos River Ecosystem Project study site near Mentone in West Texas intended to determine shallow (to about 14 meters below the water [river] surface) subsurface composition (lithology) in and near treated (eradicated of all saltcedar) and control (untreated) riparian zone sites during June-August 2006. Land-based direct-current resistivity profiling was applied in a 240-meter section of the riverbank at the control site, and waterborne direct-current continuous resistivity profiling (CRP) was applied along a 2.279-kilometer reach of the river adjacent to both sites to collect shallow subsurface resistivity data. Inverse modeling was used to obtain a nonunique estimate of the true subsurface resistivity from apparent resistivity calculated from the field measurements. The land-based survey showed that the sub-surface at the control site generally is of relatively low resis-tivity down to about 4 meters below the water surface. Most of the section from about 4 to 10 meters below the water surface is of relatively high resistivity. The waterborne CRP surveys convey essentially the same electrical representation of the lithology at the control site to 10 meters below the water surface; but the CRP surveys show considerably lower resistivity than the land-based survey in the subsection from about 4 to 10 meters below the water surface. The CRP surveys along the 2.279-kilometer reach of the river adjacent to both the treated and control sites show the same relatively low resistivity zone from the riverbed to about 4 meters below the water surface evident at the control site. A slightly higher resistivity zone is observed from about 4 to 14 meters below the water surface along the upstream approximately one-half of the profile than along the downstream one-half. The variations in resistivity could not be matched to variations in lithology because sufficient rock samples were not available.

  20. Movement of water infiltrated from a recharge basin to wells.

    PubMed

    O'Leary, David R; Izbicki, John A; Moran, Jean E; Meeth, Tanya; Nakagawa, Brandon; Metzger, Loren; Bonds, Chris; Singleton, Michael J

    2012-01-01

    Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 µg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers. Ground Water © 2011, National Ground Water Association. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  1. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

    USGS Publications Warehouse

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.

    2004-01-01

    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored in a unique WDM dataset identified by an attribute that associates each well with the model reach from which water is withdrawn. Other attributes identify the type and characteristics of the data. The interface allows users to easily add new pumping wells, delete exiting pumping wells, or change properties of the simulated aquifer or well. Development of this application enhanced the ability of the HSPF model to simulate complex water-use conditions in the Ipswich River Basin. The STRMDEPL program and the GenScn extension provide a valuable tool for water managers to evaluate the effects of pumped wells on streamflow and to test alternative water-use scenarios. Copyright ASCE 2004.

  2. Water-surface elevations and channel characteristics for a selected reach of the Applegate River, Jackson County, Oregon

    USGS Publications Warehouse

    Harris, David Dell; Alexander, Clyde W.

    1970-01-01

    In land-use planning for the Applegate River and its flood plain, consideration should be given to (1) preservation of the recreational attributes of the area, (2) allowance for optimum development of the flood plain's natural resources, and (3) protection of the rights of private landowners. Major factors that influence evaluation of the above considerations are the elevations and characteristics of floods. Heretofore, such flood data for the Applegate River have been inadequate to evaluate the flood potential or to use as a basis for delineating reasonable land-use zones. Therefore, at the request of Jackson County, this study was made to provide flood elevations, water-surface profiles, and channel characteristics (geometry and slope) for a reach of the Applegate River from the Jackson-Josephine County line upstream to the Applegate damsite (fig. 1). A similar study was previously made for reaches of adjacent Rogue River and Elk Creek (Harris, 1970).

  3. Inference of Stream Network Fragmentation Patterns from Ground Water - Surface Water Interactions on the High Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; Yang, X.; Steward, D. R.; Gido, K.

    2007-12-01

    Stream networks in the Great Plains integrate fluxes from precipitation as surface runoff in discrete events and groundwater as base flow. Changes in land cover and agronomic practices and development of ground water resources to support irrigated agriculture have resulted in profound changes in the occurrence and magnitude of stream flows, especially near the Ogallala aquifer, where precipitation is low. These changes have demonstrably altered the aquatic habitat of western Kansas, with documented changes in fish populations, riparian communities and groundwater quality due to stream transmission losses. Forecasting future changes in aquatic and riparian ecology and groundwater quality requires a large scale spatially explicit model of groundwater- surface water interaction. In this study, we combine historical data on land use, stream flow, production well development and groundwater level observations with groundwater elevation modeling to support a geospatial framework for assessing changes in refugia for aquatic species in four rivers in western Kansas between 1965 and 2005. Decreased frequency and duration of streamflow occurred in all rivers, but the extent of change depended on the geomorphology of the river basin and the extent of groundwater development. In the absence of streamflow, refugia for aquatic species were defined as the stream reaches below the phreatic surface of the regional aquifer. Changes in extent, location and degree of fragmentation of gaining reaches was found to be a strong predictor of surface water occurrence during drought and a robust hydrological template for the analysis of changes in recharge to alluvial and regional aquifers and riparian and aquatic habitat.

  4. Groundwater/surface-water interactions in the Tunk, Bonaparte, Antoine, and Tonasket Creek Subbasins, Okanogan River Basin, North-Central Washington, 2008

    USGS Publications Warehouse

    Sumioka, S.S.; Dinicola, R.S.

    2009-01-01

    An investigation into groundwater/surface-water interactions in four tributary subbasins of the Okanogan River determined that streamflows and shallow groundwater levels beneath the streams varied seasonally and by location. Streamflows measured in June 2008 indicated net losses of streamflow along 10 of 17 reaches, and hydraulic gradients measured between streams and shallow groundwater indicated potential recharge of surface water to groundwater at 11 of 21 measurement sites. In September 2008, net losses of streamflow were indicated along 9 of 17 reaches, and potential recharge of surface water to groundwater was indicated at 18 of 21 measurement sites. The greatest losses of streamflow occurred near the confluences with the Okanogan River, likely due to the presence of thick layers of unconsolidated deposits in the flood plain of the Okanogan River. Based on available geologic information compiled from drillers' logs, a surficial geologic map, and streamflow records, the extensive and thick deposits of unconsolidated material in the Tunk and Bonaparte Creek subbasins are factors in sustaining the almost perennial streamflow in those creeks. The less extensive and generally thinner unconsolidated deposits in the Tonasket and Antoine subbasins are contributing factors to the occasional extended periods of zero flow (a dry stream channel) in those creeks. Even though groundwater withdrawals would affect streamflows, relatively low precipitation in the area, along with limited groundwater storage capacity and the presence of permeable, unconsolidated deposits underlying the stream channels, would likely lead to loss of surface water to the groundwater system without any withdrawals.

  5. Experimental demonstration of remote, passive acousto-optic sensing.

    PubMed

    Antonelli, Lynn; Blackmon, Fletcher

    2004-12-01

    Passively detecting underwater sound from the air can allow aircraft and surface vessels to monitor the underwater acoustic environment. Experimental research into an optical hydrophone is being conducted for remote, aerial detection of underwater sound. A laser beam is directed onto the water surface to measure the velocity of the vibrations occurring as the underwater acoustic signal reaches the water surface. The acoustically generated surface vibrations modulate the phase of the laser beam. Sound detection occurs when the laser is reflected back towards the sensor. Therefore, laser alignment on the specularly reflecting water surface is critical. As the water surface moves, the laser beam is reflected away from the photodetector and no signal is obtained. One option to mitigate this problem is to continually steer the laser onto a spot on the water surface that provides a direct back-reflection. Results are presented from a laboratory test that investigates the feasibility of the acousto-optic sensor detection on hydrostatic and hydrodynamic surfaces using a laser Doppler vibrometer in combination with a laser-based, surface normal glint tracker for remotely detecting underwater sound. This paper outlines the acousto-optic sensor and tracker concepts and presents experimental results comparing sensor operation under various sea surface conditions.

  6. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources--a review.

    PubMed

    Kümmerer, K

    2001-11-01

    After administration, pharmaceuticals are excreted by the patients into wastewater. Unused medications are sometimes disposed of in drains. The drugs enter the aquatic environment and eventually reach drinking water if they are not biodegraded or eliminated during sewage treatment. Additionally, antibiotics and disinfectants are supposed to disturb the wastewater treatment process and the microbial ecology in surface waters. Furthermore, resistant bacteria may be selected in the aeration tanks of STPs by the antibiotic substances present. Recently, pharmaceuticals have been detected in surface water, ground water and drinking water. However, only little is known about the significance of emissions from households and hospitals. A brief summary of input by different sources, occurrence, and elimination of different pharmaceutical groups such as antibiotics, anti-tumour drugs, anaesthetics and contrast media as well as AOX resulting from hospital effluent input into sewage water and surface water will be presented.

  7. Ecological risks of home and personal care products in the riverine environment of a rural region in South China without domestic wastewater treatment facilities.

    PubMed

    Zhang, Nai-Sheng; Liu, You-sheng; Van den Brink, Paul J; Price, Oliver R; Ying, Guang-Guo

    2015-12-01

    Home and personal care products (HPCPs) including biocides, benzotriazoles (BTs) and ultraviolet (UV) filters are widely used in our daily life. After use, they are discharged with domestic wastewater into the receiving environment. This study investigated the occurrence of 29 representative HPCPs, including biocides, BTs and UV filters, in the riverine environment of a rural region of South China where no wastewater treatment plants were present, and assessed their potential ecological risks to aquatic organisms. The results showed the detection of 11 biocides and 4 BTs in surface water, and 9 biocides, 3 BTs and 4 UV filters in sediment. In surface water, methylparaben (MeP), triclocarban (TCC), and triclosan (TCS) were detected at all sites with median concentrations of 9.23 ng/L, 2.64 ng/L and 5.39 ng/L, respectively. However, the highest median concentrations were found for clotrimazole (CLOT), 5-methyl-1H-benzotriazole (MBT) and carbendazim (CARB) at 55.6 ng/L, 33.7 ng/L and 13.8 ng/L, respectively. In sediment, TCC, TCS, and UV-326 were detected with their maximum concentrations up to 353 ng/g, 155 ng/g, and 133 ng/g, respectively. The concentrations for those detected HPCPs in surface water and sediment were generally lower in the upper reach (rural area) of Sha River than in the lower reach of Sha River with close proximity to Dongjiang River (Pt-test<0.05), indicating other input sources of HPCPs in the lower reach. Biocides showed significantly higher levels in surface water in the wet season than in the dry and intermediate seasons. Preliminary risk assessment demonstrated that the majority of HPCPs monitored represented low risk in surface waters. There are potentially greater risks to aquatic organisms from the use of TCS and TCC in the wet season than in dry and intermediate seasons in surface waters. This preliminary assessment also indicates potential concerns associated with TCC, TCS, DEET, CARB, and CLOT in sediments, although additional data should be generated to assess this fully. Thus future research is needed to investigate ecological effects of these HPCPs on benthic organisms in sediment of rural rivers receiving untreated wastewater discharge. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic.

    PubMed

    Foukal, Nicholas P; Lozier, M Susan

    2016-04-22

    Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS.

  9. No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic

    PubMed Central

    Foukal, Nicholas P.; Lozier, M. Susan

    2016-01-01

    Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS. PMID:27103496

  10. Bacterial repopulation of drinking water pipe walls after chlorination.

    PubMed

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water.

  11. Responses of Surface Runoff to Climate Change and Human Activities in the Arid Region of Central Asia: A Case Study in the Tarim River Basin, China

    NASA Astrophysics Data System (ADS)

    Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui

    2013-04-01

    Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.

  12. Responses of surface runoff to climate change and human activities in the arid region of central Asia: a case study in the Tarim River basin, China.

    PubMed

    Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui

    2013-04-01

    Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.

  13. Effect of 25 cycles of launch pad exposure and simulated mission heating on space shuttle reusable surface insulation coated with reaction cured glass

    NASA Technical Reports Server (NTRS)

    Ransone, P. O.; Morrison, J. D.; Minster, J. E.

    1979-01-01

    Tiles of space shuttle reusable surface insulation coated with reaction cured glass were subjected to 25 cycles of launch pad exposure and simulated mission heating. The coating could not withstand the environment without cracking. Water absorption after cracking reached as high as 150 weight percent. Exposure of insulation fibers beneath the coating to contaminants dissolved in absorbed water initiated fiber degradation.

  14. Water resources of the River Rouge basin southeastern Michigan

    USGS Publications Warehouse

    Knutilla, R.L.

    1971-01-01

    The River Rouge basin is characterized by moderately hilly topography to the northwest graduating to a relatively level land surface to the south east.Stream gradients near the northwestern basin divide are relatively steep; but many become more steep in reaches where they cross beach lines of former glacial lakes. In the lower reaches of the River Rouge gradients lessen.

  15. Chemical composition and reactivity of water on hexagonal Pt-group metal surfaces.

    PubMed

    Shavorskiy, A; Gladys, M J; Held, G

    2008-10-28

    The dissociation behaviour and valence-electronic structure of water adsorbed on clean and oxygen-covered Ru{0001}, Rh{111}, Pd{111}, Ir{111} and Pt{111} surfaces has been studied by high-resolution X-ray photoelectron spectroscopy with the aim of identifying similarities and trends within the Pt-group metals. On average, we find higher reactivity for the 4d metals (Ru, Rh, Pd) as compared to 5d (Ir, Pt), which is correlated with characteristic shifts in the 1b(1) and 3a(1) molecular orbitals of water. Small amounts of oxygen (< 0.2 ML) induce dissociation of water on all five surfaces, for higher coverages (> 0.25 ML) only intact water is observed. Under UHV conditions these higher coverages can only be reached on the 4d metals, the 5d metals are, therefore, not passivated.

  16. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge

    NASA Astrophysics Data System (ADS)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-01

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  17. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    PubMed

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  18. A global hydrographic array for early detection of floods and droughts

    NASA Astrophysics Data System (ADS)

    Brakenridge, G.; Nghiem, S.; Caquard, S.

    An array of over 700 20 km-long river gaging reaches, distributed world-wide, is imaged by the SeaWinds radar scatterometer aboard QuikSCAT every 2.5 days. Strongly negative HH/VV polarity ratios indicate large amounts of surface water. We set individual reach thresholds so that the transition from bankfull to overbank river flow can be identified according to changes in this ratio. Similarly, the wide-swath MODIS optical sensors provide frequent repeat coverage of the reaches at much higher spatial resolution (250 m). In this case, several reach water surface area thresholds can be identified: low flow or drought conditions, normal in-channel flow, overbank flow, and extreme flood conditions. Sustained data collection for the reaches by both sensors allows the radar response to changing surface water to be defined, and allows evaluation of the sensitivity of the MODIS data to river discharge changes. New approaches, such as ``unmixing'' analysis of mixed water/land MODIS pixels can extend detection limits to smaller rivers and streams. It is now possible for wide-area, frequent revisit terrestrial remote sensing to provide human society with early warning of both floods and droughts and by direct observation of the runoff component of the Earth's hydrologic cycle. Examples of both radar and optical approaches towards this end are at the web sites below: http://www.dartmouth.edu/˜ floods/Modisrapidresponse.html http://www.dartmouth.edu/˜ floods/sensorweb/SensorWebindex.html http://www.dartmouth.edu/˜ floods/Quikscat/Regional2/CurrentTisza.jpg} In particular, early flood detection results are obtained over an extensive region in eastern Europe including the Tisza River basin, Romania, Hungary, and adjacent nations. Flood detection maps are updated weekly at the web site. The combination of QuikSCAT and MODIS takes advantage of the large-area coverage of these sensors together with the high temporal resolution of QuikSCAT and the high spatial resolution of MODIS. Such capabilities are also appropriate for early flood detection in Asian monsoon regions including India, Pakistan, Bangladesh, China, and southeast Asia.

  19. Recent Hydrologic Developments in the SWOT Mission

    NASA Astrophysics Data System (ADS)

    Alsdorf, D. E.; Mognard, N. M.; Cretaux, J.; Calmant, S.; Lettenmaier, D. P.; Rodriguez, E.

    2012-12-01

    The Surface Water and Ocean Topography satellite mission (SWOT) is designed to measure the elevations of the world's water surfaces including both terrestrial surface waters and the oceans. CNES, NASA, and the CSA are partners in the mission as are hydrologists, oceanographers, and an international engineering team. Recent hydrologic and mission related advances include the following. (1) An airborne version of SWOT called AirSWOT has been developed to provide calibration and validation for the mission when on orbit as well as to support science and technology during mission development. AirSWOT flights are in the planning stage. (2) In early 2012, NASA and CNES issued calls for proposals to participate in the forthcoming SWOT Science Definition Team. Results are expected in time for a Fall 2012 start of the SDT. (3) A workshop held in June 2012 addressed the problem of estimating river discharge from SWOT measurements. SWOT discharge estimates will be developed for river reaches rather than individual cross-sections. Errors will result from algorithm unknowns of bathymetry and roughness, from errors in SWOT measurements of water surface height and inundation, from the incomplete temporal record dictated by the SWOT orbit, and from fluvial features such as unmeasured inflows and outflows within the reach used to estimate discharge. To overcome these issues, in-situ and airborne field data are required in order to validate and refine algorithms. (4) Two modeling methods are using the Amazon Basin as a test case for demonstrating the utility of SWOT observables for constraining water balances. In one case, parameters used to minimize differences between SWOT and model water surface elevations should be adjusted locally in space and time. In the other case, using actual altimetry data as a proxy for SWOT's water surface elevations, it was determined that model water surface elevations were less than 1.6m different from the altimetry measurements: a considerable match given the lack of channel bathymetric knowledge. (5) The influence of the world's managed reservoirs on the water cycle is difficult to assess given the abundance of dams and the relative lack of water level or storage change information. The downstream impacts, particularly for transboundary rivers, are similarly difficult to determine. The challenges for SWOT to overcome this lack hinge on the temporal sampling dictated by the mission's orbital repeat cycle, on the accuracy of the height measurements, on the surface area, and on topography causing radar layover. (6) While SWOT's orbit is designed to minimize errors from tidal aliasing, orbital sub-cycles can be adjusted to minimize hydrological errors. The impact of theses sub-cycles has been assessed using a hydrodynamic modeling of the last 1000 km reach of the Ob River, a West Siberian river draining a total area of around 3 million km2. Using a local ensemble Kalman smoother to assimilate virtual SWOT observations, similar results have been obtained for either a 1-day or 3-day sub-cycle when decreasing the differences between "true" and modeled water elevations. A key result is the necessity of using the smoother in the assimilation, at least for large rivers like the Ob.

  20. Quantity and quality of ground-water discharge to the South Platte River, Denver to Fort Lupton, Colorado, August 1992 through July 1993

    USGS Publications Warehouse

    McMahon, P.B.; Lull, K.J.; Dennehy, K.F.; Collins, J.A.

    1995-01-01

    Water-quality studies conducted by the Metro Wastewater Reclamation District have indicated that during low flow in segments of the South Platte River between Denver and Fort Lupton, concentrations of dissolved oxygen are less than minimum concen- trations set by the State of Colorado. Low dissolved-oxygen concentrations are observed in two reaches of the river-they are about 3.3 to 6.4 miles and 17 to 25 miles downstream from the Metro Waste- water Reclamation District effluent outfalls. Concentrations of dissolved oxygen recover between these two reaches. Studies conducted by the U.S. Geological Survey have indicated that ground-water discharge to the river may contribute to these low dissolved-oxygen concentrations. As a result, an assessment was made of the quantity and quality of ground-water discharge to the South Platte River from Denver to Fort Lupton. Measurements of surface- water and ground-water discharge and collections of surface water and ground water for water-quality analyses were made from August 1992 through January 1993 and in May and July 1993. The quantity of ground-water discharge to the South Platte River was determined indirectly by mass balance of surface-water inflows and outflows and directly by instantaneous measurements of ground-water discharge across the sediment/water interface in the river channel. The quality of surface water and ground water was determined by sampling and analysis of water from the river and monitoring wells screened in the alluvial aquifer adjacent to the river and by sampling and analysis of water from piezometers screened in sediments underlying the river channel. The ground-water flow system was subdivided into a large-area and a small-area flow system. The precise boundaries of the two flow systems are not known. However, the large-area flow system is considered to incorporate all alluvial sediments in hydrologic connection with the South Platte River. The small- area flow system is considered to incorporate the alluvial aquifer in the vicinity of the river. Flow-path lengths in the large-area flow system were considered to be on the order of hundreds of feet to more than a mile, whereas in the small-area flow system, they were considered to be on the order of feet to hundreds of feet. Mass-balance estimates of incremental ground-water discharge from the large- area flow system ranged from -27 to 17 cubic feet per second per mile in three reaches of the river; the median rate was 4.6 cubic feet per second per mile. The median percentage of surface-water discharge derived from ground-water discharge in the river reaches studied was 13 percent. Instantaneous measurements of ground-water discharge from the small-area flow system ranged from -1,360 to 1,000 cubic feet per second per mile, with a median value of -5.8 cubic feet per second per mile. Hourly measurements of discharge from the small-area flow system indicated that the high rates of discharge were transient and may have been caused by daily fluctuations in river stage due to changing effluent-discharge rates from the Metro Wastewater Reclamation District treatment plant. Higher river stages caused surface water to infiltrate bed sediments underlying the river channel, and lower river stages allowed ground water to discharge into the river. Although stage changes apparently cycled large quantities of water in and out of the small- area flow system, the process probably provided no net gain or loss of water to the river. In general, mass balance and instantaneous measurements of ground-water discharge indicated that the ground- water flow system in the vicinity of the river consisted of a large-area flow system that provided a net addition of water to the river and a small- area flow system that cycled water in and out of the riverbed sediments, but provided no net addition of water to the river. The small-area flow system was superimposed on the large-area flow system. The median values of pH and dissolved oxygen

  1. Distribution of selected volatile organic compounds determined with water-to-vapor diffusion samplers at the interface between ground water and surface water, Centredale Manor site, North Providence, Rhode Island, September 1999

    USGS Publications Warehouse

    Church, Peter E.; Lyford, Forest P.; Clifford, Scott

    2000-01-01

    Volatile organic compounds are present in soils and ground water at the Centredale Manor Superfund Site in North Providence, Rhode Island. In September 1999, water-to-vapor diffusion samplers were placed in the bottom sediments of waterways adjacent to the site to identify possible contaminated ground-water discharge areas. The approximate12-acre site is a narrow stretch of land between the eastern bank of the Woonasquatucket River, downstream from the U.S. Route 44 bridge and a former mill raceway. The samplers were placed along a 2,250-foot reach of the Woonasquatucket River, in the former mill raceway several hundred feet to the east and parallel to the river, and in a cross channel between the river and former mill raceway. Volatile organic compounds were detected in 84 of the 104 water-to-vapor diffusion samplers retrieved. Trichloroethylene and tetrachloro-ethylene were the principal volatile organic compounds detected. The highest vapor concentrations measured for these two chemicals were from diffusion samplers located along an approximate 100-foot reach of the Woonasquatucket River about 500 feet downstream of the bridge; here trichloroethylene and tetrachloroethylene vapor concentrations ranged from about 2,000 to 180,000 and 1,600 to 1,400,000 parts per billion by volume, respectively. Upstream and downstream from this reach and along the former mill raceway, trichloroethylene and tetrachloroethylene vapor concentrations from the diffusion samples were generally less than 100 parts per billion by volume. Along the lower reaches of the river and mill raceway, however, and in the cross channel, vapor concentrations of trichloroethylene exceeded 100 parts per billion by volume and tetrachloroethylene exceeded 1,000 parts per billion by volume in several diffusion samples. Although diffusion sample vapor concentrations are higher than water concentrations in surface waters and in ground water, and they should only be interpreted qualitatively as relative values, these values provide important information as to potential discharge areas of contaminants.

  2. Liquid Water in the Extremely Shallow Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  3. Drugs, diagnostic agents and disinfectants in wastewater and water--a review.

    PubMed

    Kümmerer, K

    2000-01-01

    After administration pharmaceuticals are excreted by the patients into the aquatic environment via wastewater. Unused medications are sometimes disposed of in drains. The drugs may enter the aquatic environment and eventually reach drinking water, if they are not biodegraded or eliminated during sewage treatment. Additionally, antibiotics and disinfectants are assumed to disturb the wastewater treatment process and the microbial ecology in surface waters. Furthermore, resistant bacteria may be selected in the aeration tanks of sewage treatment plants by the antibiotic substances present. Since the 1980s, data on the occurrence of pharmaceuticals in natural surface waters and the effluents of sewage treatment plants have been reported. More recently, pharmaceuticals have been detected in ground and drinking water. However, only little is known about the risk imposed on humans by pharmaceuticals and their metabolites in surface and drinking water. An overview of input, occurrence, elimination (e.g. biodegradability) and possible effects of different pharmaceutical groups such as anti-tumour drugs, antibiotics and contrast media as well as AOX resulting from hospitals effluent input into sewage water and surface water is presented.

  4. Predicting losing and gaining river reaches in lowland New Zealand based on a statistical methodology

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Zammit, Christian; Dudley, Bruce

    2017-04-01

    The phenomenon of losing and gaining in rivers normally takes place in lowland where often there are various, sometimes conflicting uses for water resources, e.g., agriculture, industry, recreation, and maintenance of ecosystem function. To better support water allocation decisions, it is crucial to understand the location and seasonal dynamics of these losses and gains. We present a statistical methodology to predict losing and gaining river reaches in New Zealand based on 1) information surveys with surface water and groundwater experts from regional government, 2) A collection of river/watershed characteristics, including climate, soil and hydrogeologic information, and 3) the random forests technique. The surveys on losing and gaining reaches were conducted face-to-face at 16 New Zealand regional government authorities, and climate, soil, river geometry, and hydrogeologic data from various sources were collected and compiled to represent river/watershed characteristics. The random forests technique was used to build up the statistical relationship between river reach status (gain and loss) and river/watershed characteristics, and then to predict for river reaches at Strahler order one without prior losing and gaining information. Results show that the model has a classification error of around 10% for "gain" and "loss". The results will assist further research, and water allocation decisions in lowland New Zealand.

  5. OZONE DEPLETION AND THE AIR-SEA EXCHANGE OF GREENHOUSE AND CHEMICALLY REACTIVE TRACE GASES

    EPA Science Inventory

    One of the most important aspects of global change is that of stratospheric ozone depletion and the resulting increase in UV radiation reaching the surface of the Earth. Some 70% of the Earth surface is covered by water containing an extremely complicated milieu of organic and in...

  6. Prediction of Groundwater Quality Trends Resulting from Anthropogenic Changes in Southeast Florida.

    PubMed

    Yi, Quanghee; Stewart, Mark

    2018-01-01

    The effects of surface water flow system changes caused by constructing water-conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre-development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water-conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water-conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high-recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system. © 2017, National Ground Water Association.

  7. Effect of oil pollution on fresh groundwater in Kuwait

    NASA Astrophysics Data System (ADS)

    Al-Sulaimi, J.; Viswanathan, M. N.; Székely, F.

    1993-11-01

    Massive oil fires in Kuwait were the aftermath of the Gulf War. This resulted in the pollution of air, water, and soil, the magnitude of which is unparalleled in the history of mankind. Oil fires damaged several oil well heads, resulting in the flow of oil, forming large oil lakes. Products of combustion from oil well fires deposited over large areas. Infiltrating rainwater, leaching out contaminants from oil lakes and products of combustion at ground surface, can reach the water table and contaminate the groundwater. Field investigations, supported by laboratory studies and mathematical models, show that infiltration of oil from oil lakes will be limited to a depth of about 2 m from ground surface. Preliminary mathematical models showed that contaminated rainwater can infiltrate and reach the water table within a period of three to four days, particularly at the Raudhatain and Umm Al-Aish regions. These are the only regions in Kuwait where fresh groundwater exists. After reaching the water table, the lateral movement of contaminants is expected to be very slow under prevailing hydraulic gradients. Groundwater monitoring at the above regions during 1992 showed minor levels of vanadium, nickel, and total hydrocarbons at certain wells. Since average annual rainfall in the region is only 120 mm/yr, groundwater contamination due to the infiltration of contaminated rainwater is expected to be a long-term one.

  8. Ecological effects and potential risks of the water diversion project in the Heihe River Basin.

    PubMed

    Zhang, Mengmeng; Wang, Shuai; Fu, Bojie; Gao, Guangyao; Shen, Qin

    2018-04-01

    To curb the severe ecological deterioration in the lower Heihe River Basin (HRB) in northwest China, a water diversion project was initiated in 2000. A comprehensive analysis of the ecological effects and potential risks associated with the project is needed. We assessed the hydrological and ecological achievements, and also analyzed the potential problems after the project was completed. We found that since the project began the hydrological regime has changed, with more than 57.82% of the upstream water being discharged to the lower reaches on average. As a result, the groundwater level in the lower reaches has risen; the terminal lake has gradually expanded to a maximum area in excess of 50km 2 since 2010, and there has been a significant recovery of vegetation in the riparian zone and the Ejin core oases, which represents the initial rehabilitation of the degraded downstream environment. Additionally, the economy of Ejin has developed spectacularly, with an annual growth rate of 28.06%. However, in the middle reaches, the average groundwater level has continuously declined by a total of 5.8m and significant degradation of the vegetation has occurred along the river course. The discrepancy in the water allocation between the middle and lower reaches has intensified. This highlights the inability of the current water diversion scheme to realize further ecological restoration and achieve sustainable development throughout the whole basin. In future water management programs, we recommend that water allocation is coordinated by considering the basin as an integrated entity and to scientifically determine the size of the midstream farmland and downstream oasis; restrict non-ecological water use in the lower reaches, and jointly dispatch the surface water and groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Satellite (SWOT) and Airborne (AirSWOT) Wide-Swath Altimeters to Study the Garonne River

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Rodriguez, E.; Goutal, N.; Ricci, S.; Mognard, N.; Rogel, P.; Le Pape, E.

    2013-09-01

    The future NASA/CNES Surface Water and Ocean Topography (SWOT) satellite mission will provide global 2D maps of water elevations, water surface volume change and river discharge at an unprecedented resolution. To prepare this mission, airborne campaigns, called AirSWOT, will fly over the Garonne River (and other targets of interest) in 2014. To plan AirSWOT flights over the Garonne, 1D and 2D hydrodynamic models of the 50 km Garonne River reach between Tonneins and La Reole towns developed by the Laboratoire National d'Hydraulique et Environnement (LNHE) will be used. Models outputs will help to validate airborne measurements. After validation, AirSWOT measurements will be assimilated in the models to reduce model errors. Finally, potential algorithms to estimate discharge from AirSWOT and SWOT observations will be tested over this river reach. This paper presents the study domain, the hydrodynamic models and their use in the context of AirSWOT campaigns in France.

  10. Decontamination of Streptococci biofilms and Bacillus cereus spores on plastic surfaces with DC and pulsed corona discharges

    NASA Astrophysics Data System (ADS)

    Koval'ová, Zuzana; Tarabová, Kataŕna; Hensel, Karol; Machala, Zdenko

    2013-02-01

    Cold air plasmas of DC and pulsed corona discharges: positive streamers and negative Trichel pulses were used for bio-decontamination of Streptococci biofilm and Bacillus cereus spores on polypropylene plastic surfaces. The reduction of bacterial population (evaluated as log10) in the biofilm on plastic surfaces treated by DC corona reached 2.4 logs with 10 min treatment time and 3.3 logs with 2 min treatment time with water spraying. The enhancement of plasma biocidal effects on the biofilm by electro-spraying of water through a hollow needle high-voltage electrode was investigated. No significant polarity effect was found with DC corona. Pulsed corona was demonstrated slightly more bactericidal for spores, especially in the negative polarity where the bacterial population reduction reached up to 2.2 logs at 10 min exposure time. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  11. Simulated peak flows and water-surface profiles for Scott Creek near Sylva, North Carolina

    USGS Publications Warehouse

    Pope, B.F.

    1996-01-01

    Peak flows were simulated for Scott Creek, just upstream from Sylva, in Jackson County, North Carolina, in order to provide Jackson County officials with information that can be used to improve preparation for and response to flash floods along the reach of Scott Creek that flows through Sylva. A U.S. Geological Survey rainfall-runoff model was calibrated using observed rainfall and streamflow data collected from March 1994 through September 1995. Standard errors for calibration were 34 percent for runoff volumes and 21 percent for peak flows. The calibrated model was used to simulate peak flows resulting from syn- thetic rainfall amounts of 1.0, 2.5, 5.0, and 7.5 inches in 24-hour periods. For each rainfall amount, peak flows were simulated under low-, moderate-, and high-antecedent soil-moisture conditions, represented by selected 3-month periods of daily rainfall and evaporation record from nearby climatic-data measuring stations. Simulated peak flows ranged from 89 to 10,100 cubic feet per second. Profiles of water-surface elevations for selected observed and simu- lated peak flows were computed for the reach of Scott Creek that flows through Sylva, North Carolina. The profiles were computed using the U.S. Army Corps of Engineers HEC-2 Water Surface Profiles computer program and channel cross-section data collected by the Tennessee Valley Authority. The stage-discharge relation for Scott Creek at the simulation site has changed since the collection of the cross-section data. These changes, however, are such that the water-surface profiles presented in this report likely overestimate the true water-surface elevations at the simulation site for a given peak flow

  12. Variation in surface water-groundwater exchange with land use in an urban stream

    NASA Astrophysics Data System (ADS)

    Ryan, Robert J.; Welty, Claire; Larson, Philip C.

    2010-10-01

    SummaryA suite of methods is being utilized in the Baltimore metropolitan area to develop an understanding of the interaction between groundwater and surface water at multiple space and time scales. As part of this effort, bromide tracer experiments were conducted over two 10-day periods in August 2007 and May 2008 along two sections (each approximately 900 m long) of Dead Run, a small urban stream located in Baltimore County, Maryland, to investigate the influence of distinct zones of riparian land cover on surface-subsurface exchange and transient storage under low and high baseflow conditions. Riparian land cover varied by reach along a gradient of land use spanning parkland, suburban/residential, commercial, institutional, and transportation, and included wooded, meadow, turf grass, and impervious cover. Under summer low baseflow conditions, surface water-groundwater exchange, defined by gross inflow and gross outflow, was larger and net inflow (gross inflow minus gross outflow) had greater spatial variability, than was observed under spring high baseflow conditions. In addition, the fraction of nominal travel time attributable to transient storage ( Fmed) was lower and was more spatially variable under high baseflow conditions than under low baseflow conditions. The influence of baseflow condition on surface water-ground water exchange and transient storage was most evident in the subreaches with the least riparian forest cover and these effects are attributed to a lack of shading in reaches with little riparian forest cover. We suggest that under summer low baseflow conditions, the lack of shading allowed excess in-channel vegetation growth which acted as a transient storage zone and a conduit for outflow (i.e. uptake and evapotranspiration). Under spring high baseflow conditions the transient storage capacity of the channel was reduced because there was little in-channel vegetation.

  13. Thermal behaviour of an urban lake during summer

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans

    2015-04-01

    One of the undesirable effects of urbanisation is higher summer air temperatures in cites compared to rural areas. One of the most important self-cooling mechanism of cities is presence of water. Comparative studies showed that from all urban land-use types open water is the most efficient in reducing the heat in its surrounding. Urban water bodies vary from small ponds to big lakes and rivers, but already the presence of a swimming pool in a garden resulted in lower temperatures in the area. Moving and still water both exhibit slightly different patterns with respect to the environment. While ponds tend to respond more to air temperature changes, faster flowing rivers are expected to have more stable temperature over time. There are two major components of cooling effect of a surface water:(1) through evaporation, and (2) by storing heat and increasing its own temperature. This study shows results from a detailed temperature measurements, using Distributed Temperature Sensing (DTS), in an urban lake in Delft (The Netherlands). A two meter tall construction measuring temperature with 2 mm vertical spatial resolution was placed partly in the water, reaching all the way to the muddy underlayer, and partly in the air. Data from continuous two month measurement campaign show the development of water temperature with respect to solar radiation, air temperature, rain and inflow of rainwater from surrounding streets, etc. Most interesting is the 1-2 cm thick layer of colder air right above the water surface. This layer reaches values lower than both the air and the water, which suggests that certain part of the potential cooling capacity of open water is restricted by a small layer of air just above its surface.

  14. Streamflow, groundwater hydrology, and water quality in the upper Coleto Creek watershed in southeast Texas, 2009–10

    USGS Publications Warehouse

    Braun, Christopher L.; Lambert, Rebecca B.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Goliad County Groundwater Conservation District, Victoria County Groundwater Conservation District, Pecan Valley Groundwater Conservation District, Guadalupe-Blanco River Authority, and San Antonio River Authority, did a study to examine the hydrology and stream-aquifer interactions in the upper Coleto Creek watershed. Findings of the study will enhance the scientific understanding of the study-area hydrology and be used to support water-management decisions to help ensure protection of the Evangeline aquifer and surface-water resources in the study area. This report describes the results of streamflow measurements, groundwater-level measurements, and water quality (from both surface-water and groundwater sites) collected from three sampling events (July–August 2009, January 2010, and June 2010) designed to characterize groundwater (from the Evangeline aquifer) and surface water, and the interaction between them, in the upper Coleto Creek watershed upstream from Coleto Creek Reservoir in southeast Texas. This report also provides a baseline level of water quality for the upper Coleto Creek watershed. Three surface-water gain-loss surveys—July 29–30, 2009, January 11–13, 2010, and June 21–22, 2010—were done under differing hydrologic conditions to determine the locations and amounts of streamflow recharging or discharging from the Evangeline aquifer. During periods when flow in the reaches of the upper Coleto Creek watershed was common (such as June 2010, when 12 of 25 reaches were flowing) or probable (such as January 2010, when 22 of 25 reaches were flowing), most of the reaches appeared to be gaining (86 percent in January 2010 and 92 percent in June 2010); however, during drought conditions (July 2009), streamflow was negligible in the entire upper Coleto Creek watershed; streamflow was observed in only two reaches during this period, one that receives inflow directly from Audilet Spring and another reach immediately downstream from Audilet Spring. Water levels in the aquifer at this time declined to the point that the aquifer could no longer provide sufficient water to the streams to sustain flow. Groundwater-level altitudes were measured at as many as 33 different wells in the upper Coleto Creek watershed during three different survey events: August 4–7 and 12, 2009; January 12–14 and 22, 2010; and June 21–24, 2010. These data were used in conjunction with groundwater-level altitudes from three continuously monitored wells to generate potentiometric surface maps for each of the three sampling events to help characterize the groundwater hydrology of the Evangeline aquifer. The altitudes of potentiometric surface contours from all three sampling events are highest in the northeast part of the study area and lowest in the southwest part of the study area. Groundwater flow direction shifts from southeast to east across the watershed, roughly coinciding with the general flow direction of the main stem of Coleto Creek. Groundwater-level altitudes increased an average of 2.35 inches between the first and third sampling events as drought conditions in summer 2009 were followed by consistent rains the subsequent fall and winter, an indication that the aquifer responds relatively quickly to both the absence and relative abundance of precipitation. A total of 44 water-quality samples were collected at 21 different sites over the course of the three sampling events (August 4–7, 2009, January 12–14, 2010, and June 21–24, 2010). In most cases, samples from each site were analyzed for the following constituents: dissolved solids, major ions, alkalinity, nutrients, trace elements, and stable isotopes (hydrogen, oxygen, and strontium). Major-ion compositions were relatively consistent among most of the samples from the upper Coleto Creek watershed (generally calcium bicarbonate waters, with chloride often making a major contribution). Of the 23 trace elements that were analyzed in water samples as part of this study, only arsenic (in two samples) and manganese (in seven samples) had concentrations that exceeded public drinking-water standards or guidelines. At 3 of the 19 sites sampled—State wells 79-06-411, 79-14-204, and Audilet Spring—nitrate concentrations exceeded the threshold (2.0 milligrams per liter) associated with anthropogenic contributions. The majority of the water samples (36 out of 44) that were analyzed for stable isotopes of hydrogen and oxygen during the three sampling events plotted in a relatively tight cluster centered near the global meteoric water line. The eight remaining samples, which include the four surface-water samples collected in June 2010, the sample collected from Coleto Creek Reservoir in January 2010, and all three samples collected at State well 79-15-904, deviate from the global meteoric water line in a way that indicates evaporative losses. The isotopic signatures of the three samples collected at State well 79-15-904, when taken in conjunction with its proximity to Coleto Creek Reservoir, indicate that there is likely a hydraulic connection between the two. When all of the sites are examined as a whole, there is a general pattern in strontium concentrations across the entire watershed that indicates that both the surface-water and groundwater samples derive from a single source (the Evangeline aquifer) with relatively uniform water-rock interactions.

  15. Estimates of ground-water recharge, base flow, and stream reach gains and losses in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Risley, John C.

    2002-03-19

    Precipitation-runoff models, base-flow-separation techniques, and stream gain-loss measurements were used to study recharge and ground-water surface-water interaction as part of a study of the ground-water resources of the Willamette River Basin. The study was a cooperative effort between the U.S. Geological Survey and the State of Oregon Water Resources Department. Precipitation-runoff models were used to estimate the water budget of 216 subbasins in the Willamette River Basin. The models were also used to compute long-term average recharge and base flow. Recharge and base-flow estimates will be used as input to a regional ground-water flow model, within the same study. Recharge and base-flow estimates were made using daily streamflow records. Recharge estimates were made at 16 streamflow-gaging-station locations and were compared to recharge estimates from the precipitation-runoff models. Base-flow separation methods were used to identify the base-flow component of streamflow at 52 currently operated and discontinued streamflow-gaging-station locations. Stream gain-loss measurements were made on the Middle Fork Willamette, Willamette, South Yamhill, Pudding, and South Santiam Rivers, and were used to identify and quantify gaining and losing stream reaches both spatially and temporally. These measurements provide further understanding of ground-water/surface-water interactions.

  16. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    USGS Publications Warehouse

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  17. Violent storms within the sea: Dense water formation episodes in the Mediterranean.

    NASA Astrophysics Data System (ADS)

    Salat, J.

    2009-09-01

    The Mediterranean is a semi enclosed basin which receives surface water from the Atlantic Ocean. Most of this water is returned into the Ocean with higher density, spreading at more than 1000 m depth (the rest is transported by the atmosphere and the rivers to the Ocean surface). In terms of water budget, the Mediterranean is considered an evaporation basin, but the loss of water is neither the only process that increases the water density nor it is a steady or uniform process. The factors affecting the water density, temperature and salinity, are driven by mass and heat exchanges with the atmosphere. Those exchanges may be by direct contact or mediated by the land. Therefore, changes in water density depend on the water circulation and local weather conditions, both with seasonal and geographical constraints. As the compressibility of water is very low, stratification is expected and horizontal motion is the predominant in the sea interior. Among the few processes that may introduce a vertical component in the water motion are surface heat loss or evaporation that increase the surface water density triggering convective cells. Such processes will be enhanced by surface cooling or by dry continental winds, and counterbalanced by rain, river runoff, solar heating and condensation. Therefore dense water formation are more likely to occur when sea surface temperature is higher than the surface air temperature. There are several scales of convective motions in the ocean, starting from the formation of the surface mixed layer during summer, by night cooling, breezes, and occasional wind storms. During autumn and winter, the vertical scale of the mixing is increasing by steps, through wind storms and progressive cooling, to easily reach the bottom over the continental shelves, typically not deeper than 150 m. However, as the Gibraltar sill is relatively shallow (~350 m) in relation to the average Mediterranean basin (2000-3000 m), the stratification of the deeper layers is weak. Therefore, where and when the surface layer becomes well mixed, typically in winter, in the northern regions, conditions are given (pre-conditioning phase) to the occurrence of dense water formation episodes. Those episodes require the participation of strong cold and dry winds which force an intense evaporation. In the NW Mediterranean, such forcing may act over the continental shelves, like that of the Gulf of Lions, or over deep open seas, typically the central part east of Catalonia and south of Provence. Over the shelf, surface water is expected to be fresher because of the runoff (e.g. the Rhône). Along the continental margin the water circulation, geostrophically adapted, is cyclonic and the stratification in the centre is lower, then density reached may be higher in the central part than on the shelf. However, cooling will be more effective over the shelf as the heat content of the water column is lower because it is much shorter. Once density over the shelf is high enough, the bottom water overflows and violently sinks along the slope in relatively narrow areas through what has been called a cascading event. In the central part, dense water formed sinks almost vertically in funnels not larger than a few kilometres in diameter, and is accompanied by a compensating rise of water from great depth on all sides. In such open sea winter convection events, the dense water can sink some 800 m within a matter of hours and may reach the bottom level, >2500 m deep, within a couple of days. Such short and violent episodes, cascading or open sea convection, of a few days' duration supply enough water to feed the lower layer to compensate the outflow through the Strait of Gibraltar for several weeks. The repeated events in some few points across the Mediterranean, like those above mentioned, are maintaining the Mediterranean circulation and the water exchanges with the Ocean. The overall amount of dense water formed however is highly variable from one year to another according to the forcings involved and perturbations of the water circulation.

  18. Inference of effective river properties from remotely sensed observations of water surface

    NASA Astrophysics Data System (ADS)

    Garambois, Pierre-André; Monnier, Jérôme

    2015-05-01

    The future SWOT mission (Surface Water and Ocean Topography) will provide cartographic measurements of inland water surfaces (elevation, widths and slope) at an unprecedented spatial and temporal resolution. Given synthetic SWOT like data, forward flow models of hierarchical-complexity are revisited and few inverse formulations are derived and assessed for retrieving the river low flow bathymetry, roughness and discharge (A0, K, Q) . The concept of an effective low flow bathymetry A0 (the real one being never observed) and roughness K , hence an effective river dynamics description, is introduced. The few inverse models elaborated for inferring (A0, K, Q) are analyzed in two contexts: (1) only remotely sensed observations of the water surface (surface elevation, width and slope) are available; (2) one additional water depth measurement (or estimate) is available. The inverse models elaborated are independent of data acquisition dynamics; they are assessed on 91 synthetic test cases sampling a wide range of steady-state river flows (the Froude number varying between 0.05 and 0.5 for 1 km reaches) and in the case of a flood on the Garonne River (France) characterized by large spatio-temporal variabilities. It is demonstrated that the most complete shallow-water like model allowing to separate the roughness and bathymetry terms is the so-called low Froude model. In Case (1), the resulting RMSE on infered discharges are on the order of 15% for first guess errors larger than 50%. An important feature of the present inverse methods is the fairly good accuracy of the discharge Q obtained, while the identified roughness coefficient K includes the measurement errors and the misfit of physics between the real flow and the hypothesis on which the inverse models rely; the later neglecting the unobserved temporal variations of the flow and the inertia effects. A compensation phenomena between the indentifiedvalues of K and the unobserved bathymetry A0 is highlighted, while the present inverse models lead to an effective river dynamics model that is accurate in the range of the discharge variability observed. In Case (2), the effective bathymetry profile for 80 km of the Garonne River is retrieved with 1% relative error only. Next, accurate effective topography-friction pairs and also discharge can be inferred. Finally, defining river reaches from the observation grid tends to average the river properties in each reach, hence tends to smooth the hydraulic variability.

  19. Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales

    Treesearch

    Thomas E. Lisle; Jonathan M. Nelson; John Pitlick; Mary Ann Madej; Brent L. Barkett

    2000-01-01

    Abstract - Local variations in boundary shear stress acting on bed-surface particles control patterns of bed load transport and channel evolution during varying stream discharges. At the reach scale a channel adjusts to imposed water and sediment supply through mutual interactions among channel form, local grain size, and local flow dynamics that govern bed mobility...

  20. Jumping on water

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Young

    2016-11-01

    Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.

  1. Accuracy and precision of stream reach water surface slopes estimated in the field and from maps

    USGS Publications Warehouse

    Isaak, D.J.; Hubert, W.A.; Krueger, K.L.

    1999-01-01

    The accuracy and precision of five tools used to measure stream water surface slope (WSS) were evaluated. Water surface slopes estimated in the field with a clinometer or from topographic maps used in conjunction with a map wheel or geographic information system (GIS) were significantly higher than WSS estimated in the field with a surveying level (biases of 34, 41, and 53%, respectively). Accuracy of WSS estimates obtained with an Abney level did not differ from surveying level estimates, but conclusions regarding the accuracy of Abney levels and clinometers were weakened by intratool variability. The surveying level estimated WSS most precisely (coefficient of variation [CV] = 0.26%), followed by the GIS (CV = 1.87%), map wheel (CV = 6.18%), Abney level (CV = 13.68%), and clinometer (CV = 21.57%). Estimates of WSS measured in the field with an Abney level and estimated for the same reaches with a GIS used in conjunction with l:24,000-scale topographic maps were significantly correlated (r = 0.86), but there was a tendency for the GIS to overestimate WSS. Detailed accounts of the methods used to measure WSS and recommendations regarding the measurement of WSS are provided.

  2. Atrazine degradation in a small stream in Iowa

    USGS Publications Warehouse

    Kolpin, D.W.; Kalkhoff, S.J.

    1993-01-01

    A study was conducted during 1990 through an 11.2-km reach of Roberts Creek in northeastern Iowa to determine the fate of atrazine in a surface water environment Water samples were collected at ~1-month intervals from April through November during stable low to medium flow conditions and analyzed for atrazine and two of its initial biotic degradation products, desethylatrazine and deisopropylatrazine. Samples were collected on the basis of a Lagrangian model of streamflow in order to sample the same parcel of water as it moved downstream. Atrazine concentrations substantially decreased (roughly 25-60%) between water entering and exiting the study reach during four of the seven sampling periods. During these same four sampling periods, the concentrations of the two biotic atrazine degradation products were constant or decreasing downstream, suggesting an abiotic degradation process.

  3. Methane from shallow seep areas of the NW Svalbard Arctic margin does not reach the sea surface

    NASA Astrophysics Data System (ADS)

    Silyakova, Anna; Greinert, Jens; Jansson, Pär; Ferré, Bénédicte

    2015-04-01

    Methane, an important greenhouse gas, leaks from large areas of the Arctic Ocean floor. One overall question is how much methane passes from the seabed through the water column, potentially reaching the atmosphere. Transport of methane from the ocean floor into and through the water column depends on many factors such as distribution of gas seeps, microbial methane oxidation, and ambient oceanographic conditions, which may trigger a change in seep activity. From June-July 2014 we investigated dissolved methane in the water column emanating from the "Prins Karls Forland seeps" area offshore the NW Svalbard Arctic margin. Measurements of the spatial variability of dissolved methane in the water column included 65 CTD stations located in a grid covering an area of 30 by 15 km. We repeated an oceanographic transect twice in a week for time lapse studies, thus documenting significant temporal variability in dissolved methane above one shallow seep site (~100 m water depth). Analysis of both nutrient concentrations and dissolved methane in water samples from the same transect, reveal striking similarities in spatial patterns of both dissolved methane and nutrients indicating that microbial community is involved in methane cycling above the gas seepage. Our preliminary results suggest that although methane release can increase in a week's time, providing twice as much dissolved gas to the water column, no methane from a seep reaches the sea surface. Instead it spreads horizontally under the pycnocline. Yet microbial communities react rapidly to the methane supply above gas seepage areas and may also have an important role as an effective filter, hindering methane release from the ocean to the atmosphere during rapid methane ebullition. This study is funded by CAGE (Centre for Arctic Gas Hydrate, Environment and Climate), Norwegian Research Council grant no. 223259.

  4. Effects of plant size and water relations on gas exchange and growth of the desert shrub Larrea tridentata.

    PubMed

    Franco, A C; de Soyza, A G; Virginia, R A; Reynolds, J F; Whitford, W G

    1994-03-01

    Larrea tridentata is a xerophytic evergreen shrub, dominant in the arid regions of the southwestern United States. We examined relationships between gasexchange characteristics, plant and soil water relations, and growth responses of large versus small shrubs of L. tridentata over the course of a summer growing season in the Chihuahuan Desert of southern New Mexico, USA. The soil wetting front did not reach 0.6 m, and soils at depths of 0.6 and 0.9 m remained dry throughout the summer, suggesting that L. tridentata extracts water largely from soil near the surface. Surface soil layers (<0.3 m) were drier under large plants, but predawn xylem water potentials were similar for both plant sizes suggesting some access to deeper soil moisture reserves by large plants. Stem elongation rates were about 40% less in large, reproductively active shrubs than in small, reproductively inactive shrubs. Maximal net photosynthetic rates (P max ) occurred in early summer (21.3 μ mol m -2 s -1 ), when pre-dawn xylem water potential (XWP) reached ca. -1 MPa. Although both shrub sizes exhibited similar responses to environmental factors, small shrubs recovered faster from short-term drought, when pre-dawn XWP reached about -4.5 MPa and P max decreased to only ca. 20% of unstressed levels. Gas exchange measurements yielded a strong relationship between stomatal conductance and photosynthesis, and the relationship between leaf-to-air vapor pressure deficit and stomatal conductance was found to be influenced by pre-dawn XWP. Our results indicate that stomatal responses to water stress and vapor pressure deficit are important in determining rates of carbon gain and water loss in L. tridentata.

  5. Traveltime and reaeration characteristics for a reach of the Rio Grande, Albuquerque, New Mexico, October 1991

    USGS Publications Warehouse

    Waltemeyer, S.D.

    1994-01-01

    Traveltime characteristics were determined using stream-velocity data and tracer-dye data for a reach of the Rio Grande. Traveltimes determined by the stream-velocity method were virtually the same as those determined by the tracer-dye and tracer-gas technique. The mean velocity of the stream was 1.12 miles per hour at a flow of about 300 cubic feet per second. Reaeration characteristics were determined using a propane tracer gas and a tracer-dye (rhodamine WT). Reaeration coefficients were adjusted for water temperature and the effects of wind movement on the water surface. The peak method-adjusted reaeration-coefficient mean value for the reach was 7.0 per day and ranged from 4.6 to 8.3 per day. The area method-adjusted reaeration- coefficient mean value for the reach was 7.7 per day and ranged from 5.5 to 10.4 per day.

  6. Water-surface profile and flood boundaries for the computed 100-year flood, lower Salt River, Lincoln County, Wyoming

    USGS Publications Warehouse

    Miller, Kirk A.; Mason, John P.

    2000-01-01

    The water-surface profile and flood boundaries for the computed 100-year flood were determined for a part of the lower Salt River in Lincoln County, Wyoming. Channel cross-section data were provided by Lincoln County. Cross-section data for bridges and other structures were collected and compiled by the U.S. Geological Survey. Roughness coefficients ranged from 0.034 to 0.100. The 100-year flood was computed using standard methods, ranged from 5,170 to 4,120 cubic feet per second through the study reach, and was adjusted proportional to contributing drainage area. Water-surface elevations were determined by the standard step-backwater method. Flood boundaries were plotted on digital basemaps.

  7. Water color component analysis in saltwater intrusion reach: a case study in Shawan-Humen Watercourse, Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Fang, Li-gang; Chen, Shui-Sen; Li, Dan; Zhang, Lixin; Li, Dong

    2008-11-01

    The saline water color component characteristic (chlorophyll-a and chromophoric dissolved organic matter (CDOM)) and their spatial change tendency in the Pearl River Estuary from the In-situ data in December of 2006 was studied. Based on the experimental results, the mixing behavior of CDOM in the Shawan-Humen Watercourse was analyzed. The mixing behavior was controlled by topography, hydrological and biological factors, and the relationships among absorption characteristics of CDOM (at 400 nm, ag400). Contained is a discussion of chlorophyll-a concentration and salinity. The chlorophyll-a concentration decreases with increasing CDOM absorption under a salinity of 10, while the chlorophyll-a concentration decreases with increasing salinity. The salinity becomes less aggressive towards the Lingding Bay in the saltwater intrusion reach of Shawan-Humen, and a low chlorophyll-a concentration area occurs in the Shiziyang riverway where the salinity is greater than 20. The highest chlorophyll-a concentration of surface water was observed in the Dadaoshawei site of the Shawan tributary reach- where the saltwater and freshwater interface. The slope distribution of the CDOM spectral absorption curve in the Shawan-Humen watercourse was increased towards the Lingding Bay direction. The spectral slope S value of CDOM varied from 0.0107 to 0.0121 nm-1 with an average value of 0.0116 nm-1. This was an indication that the terrestrial river input was the main resource of CDOM in the Shawan-Humen watercourse. The high correlation (R2=0.9458)of surface water and bottom water (-7.5m ) salinity showed that salinity can be monitored by remote sensing. The ag400 in the saltwater intrusion reach showed conservative behavior, indicating strong characteristics of the CDOM it reflected. There was a correlative relationship between ag400, chlorophyll-a concentration and the salinity, showing that a water color analysis technique can be used to study the distribution and behavior of salinity, as well as saltwater intrusion to a certain extent.

  8. Use of hydrologic budgets and hydrochemistry to determine ground-water and surface-water interactions for Rapid Creek, Western South Dakota

    USGS Publications Warehouse

    Anderson, Mark T.

    1995-01-01

    The study of ground-water and surface-water interactions often employs streamflow-gaging records and hydrologic budgets to determine ground-water seepage. Because ground-water seepage usually is computed as a residual in the hydrologic budget approach, all uncertainty of measurement and estimation of budget components is associated with the ground-water seepage. This uncertainty can exceed the estimate, especially when streamflow and its associated error of measurement, is large relative to other budget components. In a study of Rapid Creek in western South Dakota, the hydrologic budget approach with hydrochemistry was combined to determine ground-water seepage. The City of Rapid City obtains most of its municipal water from three infiltration galleries (Jackson Springs, Meadowbrook, and Girl Scout) constructed in the near-stream alluvium along Rapid Creek. The reach of Rapid Creek between Pactola Reservoir and Rapid City and, in particular the two subreaches containing the galleries, were studied intensively to identify the sources of water to each gallery. Jackson Springs Gallery was found to pump predominantly ground water with a minor component of surface water. Meadowbrook and Girl Scout Galleries induce infiltration of surface water from Rapid Creek but also have a significant component of ground water.

  9. Water tribology on graphene.

    PubMed

    N'guessan, Hartmann E; Leh, Aisha; Cox, Paris; Bahadur, Prashant; Tadmor, Rafael; Patra, Prabir; Vajtai, Robert; Ajayan, Pulickel M; Wasnik, Priyanka

    2012-01-01

    Classical experiments show that the force required to slide liquid drops on surfaces increases with the resting time of the drop, t(rest), and reaches a plateau typically after several minutes. Here we use the centrifugal adhesion balance to show that the lateral force required to slide a water drop on a graphene surface is practically invariant with t(rest). In addition, the drop's three-phase contact line adopts a peculiar micrometric serrated form. These observations agree well with current theories that relate the time effect to deformation and molecular re-orientation of the substrate surface. Such molecular re-orientation is non-existent on graphene, which is chemically homogenous. Hence, graphene appears to provide a unique tribological surface test bed for a variety of liquid drop-surface interactions.

  10. Hydraulic Characteristics of Bedrock Constrictions and Evaluation of One- and Two-Dimensional Models of Flood Flow on the Big Lost River at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Berenbrock, Charles; Rousseau, Joseph P.; Twining, Brian V.

    2007-01-01

    A 1.9-mile reach of the Big Lost River, between the Idaho National Engineering and Environmental Laboratory (INEEL) diversion dam and the Pioneer diversion structures, was investigated to evaluate the effects of streambed erosion and bedrock constrictions on model predictions of water-surface elevations. Two one-dimensional (1-D) models, a fixed-bed surface-water flow model (HEC-RAS) and a movable-bed surface-water flow and sediment-transport model (HEC-6), were used to evaluate these effects. The results of these models were compared to the results of a two-dimensional (2-D) fixed-bed model [Transient Inundation 2-Dimensional (TRIM2D)] that had previously been used to predict water-surface elevations for peak flows with sufficient stage and stream power to erode floodplain terrain features (Holocene inset terraces referred to as BLR#6 and BLR#8) dated at 300 to 500 years old, and an unmodified Pleistocene surface (referred to as the saddle area) dated at 10,000 years old; and to extend the period of record at the Big Lost River streamflow-gaging station near Arco for flood-frequency analyses. The extended record was used to estimate the magnitude of the 100-year flood and the magnitude of floods with return periods as long as 10,000 years. In most cases, the fixed-bed TRIM2D model simulated higher water-surface elevations, shallower flow depths, higher flow velocities, and higher stream powers than the fixed-bed HEC-RAS and movable-bed HEC-6 models for the same peak flows. The HEC-RAS model required flow increases of 83 percent [100 to 183 cubic meters per second (m3/s)], and 45 percent (100 to 145 m3/s) to match TRIM2D simulations of water-surface elevations at two paleoindicator sites that were used to determine peak flows (100 m3/s) with an estimated return period of 300 to 500 years; and an increase of 13 percent (150 to 169 m3/s) to match TRIM2D water-surface elevations at the saddle area that was used to establish the peak flow (150 m3/s) of a paleoflood with a return period of 10,000 years. A field survey of the saddle area, however, indicated that the elevation of the lowest point on the saddle area was 1.2 feet higher than indicated on the 2-ft contour map that was used in the TRIM2D model. Because of this elevation discrepancy, HEC-RAS model simulations indicated that a peak flow of at least 210 m3/s would be needed to initiate flow across the 10,000-year old Pleistocene surface. HEC-6 modeling results indicated that to compensate for the effects of streambed scour, additional flow increases would be needed to match HEC-RAS and TRIM2D water-surface elevations along the upper and middle reaches of the river, and to compensate for sediment deposition, a slight decrease in flows would be needed to match HEC-RAS water-surface elevations along the lower reach of the river. Differences in simulated water-surface elevations between the TRIM2D and the HEC-RAS and HEC-6 models are attributed primarily to differences in topographic relief and to differences in the channel and floodplain geometries used in these models. Topographic differences were sufficiently large that it was not possible to isolate the effects of these differences on simulated water-surface elevations from those attributable to the effects of supercritical flow, streambed scour, and sediment deposition.

  11. Hydrologic and Hydraulic Analyses of Selected Streams in Lorain County, Ohio, 2003

    USGS Publications Warehouse

    Jackson, K. Scott; Ostheimer, Chad J.; Whitehead, Matthew T.

    2003-01-01

    Hydrologic and hydraulic analyses were done for selected reaches of nine streams in Lorain County Ohio. To assess the alternatives for flood-damage mitigation, the Lorain County Engineer and the U.S. Geological Survey (USGS) initiated a cooperative study to investigate aspects of the hydrology and hydraulics of the nine streams. Historical streamflow data and regional regression equations were used to estimate instantaneous peak discharges for floods having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Drainage areas of the nine stream reaches studied ranged from 1.80 to 19.3 square miles. The step-backwater model HEC-RAS was used to determine water-surface-elevation profiles for the 10-year-recurrence-interval (10-year) flood along a selected reach of each stream. The water-surface pro-file information was used then to generate digital mapping of flood-plain boundaries. The analyses indicate that at the 10-year flood elevation, road overflow results at numerous hydraulic structures along the nine streams.

  12. Smokes and Obscurants: A Guidebook of Environmental Assessment. Volume 2. A Sample Environmental Assessment

    DTIC Science & Technology

    1987-09-04

    quite variable from year to year. Because the area Is a closed basin with a hardpan near the surface, water reaching the playa accumulates in shallow...Bacteriolostical Characteristics. Using the presence/absence of coliform test, the water in the wells and the water in Grand island Creek were determined...gravels, silts, and clays form a level flood plain. Because the sediments are relatively impervious to water, large shallow ponds form on the playa

  13. Holistic risk assessment of surface water contamination due to Pb-210 in oil produced water from the Bakken Shale.

    PubMed

    Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak

    2017-02-01

    A holistic risk assessment of surface water (SW) contamination due to lead-210 (Pb-210) in oil produced water (PW) from the Bakken Shale in North Dakota (ND) was conducted. Pb-210 is a relatively long-lived radionuclide and very mobile in water. Because of limited data on Pb-210, a simulation model was developed to determine its concentration based on its parent radium-226 and historical total dissolved solids levels in PW. Scenarios where PW spills could reach SW were analyzed by applying the four steps of the risk assessment process. These scenarios are: (1) storage tank overflow, (2) leakage in equipment, and (3) spills related to trucks used to transport PW. Furthermore, a survey was conducted in ND to quantify the risk perception of PW from different stakeholders. Findings from the study include a low probability of a PW spill reaching SW and simulated concentration of Pb-210 in drinking water higher than the recommended value established by the World Health Organization. Also, after including the results from the risk perception survey, the assessment indicates that the risk of contamination of the three scenarios evaluated is between medium-high to high. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A Laboratory Experiment on the Evolution of a Sand Gravel Reach Under a Lack of Sediment Supply

    NASA Astrophysics Data System (ADS)

    Orru, C.; Chavarrias, V.; Ferrara, V.; Blom, A.

    2014-12-01

    A flume experiment was conducted to examine the evolution of a sand-gravel reach under a lack of sediment supply. The experimental data are used to validate a numerical sand-gravel model. A bed composed of a bi-modal sediment mixture is installed with a uniform slope and an imposed gradual fining pattern. Initially, the sand fraction gradually increases in streamwise direction until the bed is fully composed of sand. The water discharge and downstream water level were constant, and the sediment feed rate was equal to zero. The experiment was dominated by bed load, partial transport, and a subcritical flow regime was imposed. The flow rate was such that only sand was mobile (partial transport), which led to a coarsening over the upstream reach and a gradual reduction of the sediment transport rate during the experiment. New equipment was used to measure the evolution of the grain size distribution of the bed surface during the experiment over the entire flume using image analysis. In the upstream reach we observed a gradual coarsening over time and the formation of an armour layer, which resulted in a more abrupt transition in grain size of the bed surface. Bed degradation increased in streamwise direction. This is due to the initial streamwise increase in the availability of sand in the bed. The different volume fraction content of sand in the bed allowed for the gravel to sink more in the downstream part of the upstream reach. The sand reach suffered from a larger degradation. Finally, we see one reach dominated by sand, small bedforms, and a small bed slope, and a gravel reach dominated by a larger bed slope.

  15. A Numerical Study of Currents, Water Surface Elevations, and Energy Dissipation in Chandeleur-Breton Sound, Louisiana.

    DTIC Science & Technology

    1978-02-01

    Numerical methods in the form of a digital computer model were used to simulate and study the tide- and wind-induced circulation in Chandeleur -Breton...entrances through the Chandeleur Island chain, where speed reaches 50-60 cm/sec for short periods. Surface elevations were found to have an average tide range

  16. Spatial and temporal variations of water quality in Cao-E River of eastern China.

    PubMed

    Chen, Ding-jiang; Lu, Jun; Yuan, Shao-feng; Jin, Shu-quan; Shen, Ye-na

    2006-01-01

    Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed I, II, IV and V (0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed III. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed I and II) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed III, IV and V) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes.

  17. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    NASA Astrophysics Data System (ADS)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  18. Distribution of the Fukushima-derived radionuclides in seawater in the Pacific off the coast of Miyagi, Fukushima, and Ibaraki Prefectures, Japan

    NASA Astrophysics Data System (ADS)

    Oikawa, S.; Takata, H.; Watabe, T.; Misonoo, J.; Kusakabe, M.

    2013-03-01

    The activities of artificial radionuclides in seawater samples collected off the coast of Miyagi, Fukushima, and Ibaraki Prefectures were measured as part of a monitoring program initiated by the Japanese government Ministry of Education, Sports, Science and Technology immediately after the Fukushima Dai-ichi nuclear power plant accident. The spatial and temporal distributions of those activities are summarized herein. The activities of strontium-90, iodine-131, cesium-134 and -137 (i.e. 90Sr, 131I, 134Cs, and 137Cs) derived from the accident were detected in seawater samples taken from areas of the coastal ocean adjacent to the power plant. No 131I was detected in surface waters (≤ 5 m depth) or in intermediate and bottom waters after 30 April 2011. Strontium-90 was found in surface waters collected from a few sampling stations in mid-August 2011 to mid-December 2011. Temporal changes of 90Sr activity in surface waters were evident, although the 90Sr activity at a given time varied widely between sampling stations. The activity of 90Sr in surface waters decreased slowly over time, and by the end of December 2011 had reached background levels recorded before the accident. Radiocesium, 134Cs and 137Cs, was found in seawater samples immediately after the accident. There was a remarkable change in 137Cs activities in surface waters during the first 7 months (March through September 2011) after the accident; the activity reached a maximum in the middle of April and thereafter decreased exponentially with time. Qualitatively, the distribution patterns in surface waters suggested that in early May 137Cs-polluted water was advected northward; some of the water then detached and was transported to the south. Two cores of the water with high 137Cs activity persisted at least until July 2011. In subsurface waters 137Cs activity was first detected in the beginning of April 2011, and the water masses were characterized by σt (an indicator of density) values of 25.5-26.5. From 9-14 May to 5-16 December 2011, the depths of the water masses increased with time, an indication that deepening of the isopycnals with time can be an important mechanism for the transport of 137Cs downward in coastal waters. During 4-21 February 2012, the water column became vertically homogeneous, probably because of convective mixing during the winter, the result being nearly constant values of 137Cs activity throughout the water column from the surface to the bottom (~200 m depth) at each station.

  19. Modeling the Effects of Reservoir Releases on the Bed Material Sediment Flux of the Colorado River in western Colorado and eastern Utah

    NASA Astrophysics Data System (ADS)

    Pitlick, J.; Bizzi, S.; Schmitt, R. J. P.

    2017-12-01

    Warm-water reaches of the upper Colorado River have historically provided important habitat for four endangered fishes. Over time these habitats have been altered or lost due to reductions in peak flows and sediment loads caused by reservoir operations. In an effort to reverse these trends, controlled reservoir releases are now used to enhance sediment transport and restore channel complexity. In this presentation, we discuss the development of a sediment routing model designed to assess how changes in water and sediment supply can affect the mass balance of sediment. The model is formulated for ten reaches of the Colorado River spanning 250 km where values of bankfull discharge, width, and reach-average slope have been measured. Bed surface grain size distributions (GSDs) have also been measured throughout the study area; these distributions are used as a test of the model, not as input, except as an upstream boundary condition. In modeling fluxes and GSDs, we assume that the bed load transport capacity is determined by local hydraulic conditions and bed surface grain sizes. Estimates of the bankfull bed load transport capacity in each reach are computed for 14 size fractions of the surface bed material, and the fractional transport rates are summed to get the total transport capacity. In the adjacent reach, fluxes of each size fraction from upstream are used to determine the mean grain size, and the fractional transport capacity of that reach. Calculations proceed downstream and illustrate how linked changes in discharge, shear stress and mean grain size affect (1) the total bed load transport capacity, and (2) the size distribution of the bed surface sediment. The results show that model-derived GSDs match measured GSDs very closely, except for two reaches in the lower part of the study area where slope is affected by uplift associated with salt diapirs; here the model significantly overestimates the transport capacity in relation to the supply. Except for these two reaches, the modeled bed load fluxes seem reasonable (0.5-1.0 kg/m/s at bankfull flow), and exhibit downstream trends that are consistent with trends reported in previous studies. Finally, model simulations show that if reservoir releases fall short of target flows (e.g. bankfull) this can have a disproportionately negative effect on the mass balance of sediment.

  20. Updated one-dimensional hydraulic model of the Kootenai River, Idaho-A supplement to Scientific Investigations Report 2005-5110

    USGS Publications Warehouse

    Czuba, Christiana R.; Barton, Gary J.

    2011-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. The restoration project is focused on recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. River restoration is a complex undertaking that requires a thorough understanding of the river and floodplain landscape prior to restoration efforts. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey developed an updated one-dimensional hydraulic model of the Kootenai River in Idaho between river miles (RMs) 105.6 and 171.9 to characterize the current hydraulic conditions. A previously calibrated model of the study area, based on channel geometry data collected during 2002 and 2003, was the basis for this updated model. New high-resolution bathymetric surveys conducted in the study reach between RMs 138 and 161.4 provided additional detail of channel morphology. A light detection and ranging (LIDAR) survey was flown in the Kootenai River valley in 2005 between RMs 105.6 and 159.5 to characterize the floodplain topography. Six temporary gaging stations installed in 2006-08 between RMs 154.1 and 161.2, combined with five permanent gaging stations in the study reach, provided discharge and water-surface elevations for model calibration and verification. Measured discharges ranging from about 4,800 to 63,000 cubic feet per second (ft3/s) were simulated for calibration events, and calibrated water-surface elevations ranged from about 1,745 to 1,820 feet (ft) throughout the extent of the model. Calibration was considered acceptable when the simulated and measured water-surface elevations at gaging stations differed by less than (+/-)0.15 ft. Model verification consisted of simulating 10 additional events with measured discharges ranging from about 4,900 to 52,000 ft3/s, and comparing simulated and measured water-surface elevations at gaging stations. Average water-surface-elevation error in the verification simulations was 0.05 ft, with the error ranging from -1.17 to 0.94 ft over the range of events and gaging stations. Additional verification included a graphical comparison of measured average velocities that range from 1.0 to 6.2 feet per second to simulated velocities at four sites within the study reach for measured discharges ranging from about 7,400 to 46,600 ft3/s. The availability of high-resolution bathymetric and LIDAR data, along with the additional gaging stations in the study reach, allowed for more detail to be added to the model and a more thorough calibration, sensitivity, and verification analysis to be conducted. Model resolution and performance is most improved between RMs 140 and 160, which includes the 18.3-mile reach of the Kootenai River white sturgeon critical habitat.

  1. PAHs behavior in surface water and groundwater of the Yellow River estuary: Evidence from isotopes and hydrochemistry.

    PubMed

    Li, Jing; Li, Fadong; Liu, Qiang

    2017-07-01

    Large-scale irrigation projects have impacted the regional surface-groundwater interactions in the North China Plain (NCP). Given this concern, the aim of this study is to evaluate levels of PAH pollution, identify the sources of the PAHs, analyze the influence of surface-groundwater interactions on PAH distribution, and propose urgent management strategies for PAHs in China's agricultural areas. PAH concentrations, hydrochemical indicators and stable isotopic compositions (δ 18 O and δ 2 H) were determined for surface water (SW) and groundwater (GW) samples. PAHs concentrations in surface water and groundwater varied from 11.84 to 393.12 ng/L and 8.51-402.84 ng/L, respectively, indicating mild pollution. The seasonal variations showed the following trend: PAHs in surface water at the low-water phase > PAHs in groundwater at the low-water phase > PAHs in surface water at the high-water phase > PAHs in groundwater at the high-water phase. Hydrochemical and δ 18 O value of most groundwater samples distributed between the Yellow River and seawater. The mean value of mixture ratio of the Yellow River water recharge to the groundwater was 65%, few anomalous sites can reach to 90%. Surface-groundwater interactions influence the spatial distribution of PAHs in the study area. In light of the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring network to warn of increased risk are urgently needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microbial environmental contamination in Italian dental clinics: A multicenter study yielding recommendations for standardized sampling methods and threshold values.

    PubMed

    Pasquarella, Cesira; Veronesi, Licia; Napoli, Christian; Castiglia, Paolo; Liguori, Giorgio; Rizzetto, Rolando; Torre, Ida; Righi, Elena; Farruggia, Patrizia; Tesauro, Marina; Torregrossa, Maria V; Montagna, Maria T; Colucci, Maria E; Gallè, Francesca; Masia, Maria D; Strohmenger, Laura; Bergomi, Margherita; Tinteri, Carola; Panico, Manuela; Pennino, Francesca; Cannova, Lucia; Tanzi, Marialuisa

    2012-03-15

    A microbiological environmental investigation was carried out in ten dental clinics in Italy. Microbial contamination of water, air and surfaces was assessed in each clinic during the five working days, for one week per month, for a three-month period. Water and surfaces were sampled before and after clinical activity; air was sampled before, after, and during clinical activity. A wide variation was found in microbial environmental contamination, both within the participating clinics and for the different sampling times. Before clinical activity, microbial water contamination in tap water reached 51,200cfu/mL (colony forming units per milliliter), and that in Dental Unit Water Systems (DUWSs) reached 872,000cfu/mL. After clinical activity, there was a significant decrease in the Total Viable Count (TVC) in tap water and in DUWSs. Pseudomonas aeruginosa was found in 2.38% (7/294) of tap water samples and in 20.06% (59/294) of DUWS samples; Legionella spp. was found in 29.96% (89/297) of tap water samples and 15.82% (47/297) of DUWS samples, with no significant difference between pre- and post-clinical activity. Microbial air contamination was highest during dental treatments, and decreased significantly at the end of the working activity (p<0.05). The microbial buildup on surfaces increased significantly during the working hours. This study provides data for the establishment of standardized sampling methods, and threshold values for contamination monitoring in dentistry. Some very critical situations have been observed which require urgent intervention. Furthermore, the study emphasizes the need for research aimed at defining effective managing strategies for dental clinics. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Formation and transport of deethylatrazine and deisopropylatrazine in surface water

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.; Mills, M.S.; Zimmerman, L.R.; Perry, C.A.; Goolsby, D.A.

    1994-01-01

    Field disappearance studies and a regional study of nine rivers in the Midwest Corn Belt show that deethylatrazine (DEA; 2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (DIA; 2-amino-4-chloro-6-ethylaminos-triazine) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 ??g/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations, giving a "second flush?? of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4 ?? 0.1 when atrazine is the major triazine present to 0.6 ?? 0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  4. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    USGS Publications Warehouse

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  5. Calibration and validation of a two-dimensional hydrodynamic model of the Ohio River, Jefferson County, Kentucky

    USGS Publications Warehouse

    Wagner, C.R.; Mueller, D.S.

    2001-01-01

    The quantification of current patterns is an essential component of a Water Quality Analysis Simulation Program (WASP) application in a riverine environment. The U.S. Geological Survey (USGS) provided a field validated two-dimensional Resource Management Associates-2 (RMA-2) hydrodynamic model capable of quantifying the steady-flowpatterns in the Ohio River extending from river mile 590 to 630 for the Ohio River Valley Water Sanitation Commission (ORSANCO) water-quality modeling efforts on that reach. Because of the hydrodynamic complexities induced by McAlpine Locks and Dam (Ohio River mile 607), the model was split into two segments: an upstream reach, which extended from the dam upstream to the upper terminus of the study reach at Ohio River mile 590; and a downstream reach, which extended from the dam downstream to a lower terminus at Ohio River mile 636. The model was calibrated to a low-flow hydraulic survey (approximately 35,000 cubic feet per second (ft3/s)) and verified with data collected during a high-flow survey (approximately 390,000 ft3/s). The model calibration and validation process included matching water-surface elevations at 10 locations and velocity profiles at 30 cross sections throughout the study reach. Based on the calibration and validation results, the model is a representative simulation of the Ohio River steady-flow patterns below discharges of approximately 400,000 ft3/s.

  6. Long-term effects of surface coal mining on ground-water levels and quality in two small watersheds in eastern Ohio

    USGS Publications Warehouse

    Cunningham, W.L.; Jones, R.L.

    1990-01-01

    Two small watersheds in eastern Ohio that were surface mined for coal and reclaimed were studied during 1986-89. Water-level and water-quality data were compared with similar data collected during previous investigations conducted during 1976-83 to determine long-term effects of surface mining on the hydrologic system. Before mining, the watersheds were characterized by sequences of flat-lying sedimentary rocks containing two major coal seams and underclays. An aquifer was present above each of the underclays. Surface mining removed the upper aquifer, stripped the coal seam, and replaced the sediment. This created a new upper aquifer with different hydraulic and chemical characteristics. Mining did not disturb the middle aquifer. A third, deeper aquifer in each watershed was not studied. Water levels were continuously recorded in one well in each aquifer. Other wells were measured every 2 months. Water levels in the upper aquifers reached hydraulic equilibrium from 2 to 5 years after mining ceased. Water levels in the middle aquifers increased more than 5 feet during mining and reached equilibrium almost immediately thereafter. Water samples were collected from three upper-aquifer well, a seep from the upper aquifer, and the stream in each watershed. Two samples were collected in 1986 and 1987, and one each in 1988 and 1989. In both watersheds, sulfate replaced bicarbonate as the dominant upper-aquifer and surface-water anion after mining. For the upper aquifer of a watershed located in Muskingum County, water-quality data were grouped into premining and late postmining time periods (1986-89). The premining median pH and concentration of dissolved solids and sulfate were 7.6, 378 mg/L (milligrams per liter), and 41 mg/L, respectively. The premining median concentrations of iron and manganese were 10? /L (micrograms per liter) and 25?, respectively. The postmining median values of pH, dissolved solids, and sulfate were 6.7, 1,150 mg/L, and 560 mg/L, respectively. The postmining median concentrations of iron and manganese were 3,900?g/L and 1,900? g/L, respectively. For the upper aquifer of a watershed located in Jefferson County, the water-quality data were grouped into three time periods of premining, early postmining, and late postmining. The premining median pH and concentrations of dissolved solids and sulfate were 7.0, 335 mg/L, and 85 mg/L, respectively. The premining median concentrations of iron and manganese were 30? g/L for each constituent. Late postmining median pH and concentrations of dissolved solids and sulfate were 6.7, 1,495 mg/L, and 825 mg/L, respectively. The postmining median concentrations of iron and manganese were 31? g/L and 1,015? g/L, respectively. Chemistry of water in the middle aquifer in each watershed underwent similar changes. In general, statistically significant increases in concentrations of dissolved constituents occurred because of surface mining. In some constituents, concentrations increased by more than an order of magnitude. The continued decrease in pH indicated that ground water had no reached geochemical equilibrium in either watershed more than 8 years after mining.

  7. The Graded Alluvial River: Variable Flow and the Dominant Discharge

    NASA Astrophysics Data System (ADS)

    Blom, A.; Arkesteijn, L.; Viparelli, E.

    2016-12-01

    We derive analytical formulations for the graded or equilibrium longitudinal profile of a mixed-sediment alluvial river under variable flow. The formulations are applicable to reaches upstream from the backwater zone. The model is based on the conservation equations for the mass of two distinct sediment modes, sand and gravel, at the bed surface to account for the effects of grain size selective transport and abrasion of gravel particles. The effects of a variable flow rate are included by (a) treating the flow as a continuously changing yet steady water discharge (i.e. here termed an alternating steady discharge) and (b) assuming the time scale of changes in channel slope and bed surface texture to be much larger than the one of changes in flow rate. The equations are simplified realizing that at equilibrium the river profile finds itself in a dynamic steady state with oscillations around constant mean values of channel slope and bed surface texture. A generalized sediment transport relation representing the stochastic nature of sediment transport allows for explicit or analytical solutions to the streamwise decrease of both the channel slope and the bed surface mean grain size under variable flow for reaches unaffected by backwater effects. This modelling approach also provides a definition of a channel-forming or dominant water discharge, i.e., that steady water discharge that is equivalent in its effect on the equilibrium channel slope to the full hydrograph.

  8. The comparative limnology of Lakes Nyos and Monoun, Cameroon

    USGS Publications Warehouse

    Kling, George; Evans, William C; Tanyileke, Gregory

    2015-01-01

    Lakes Nyos and Monoun are known for the dangerous accumulation of CO2 dissolved in stagnant bottom water, but the shallow waters that conceal this hazard are dilute and undergo seasonal changes similar to other deep crater lakes in the tropics. Here we discuss these changes with reference to climatic and water-column data collected at both lakes during the years following the gas release disasters in the mid-1980s. The small annual range in mean daily air temperatures leads to an equally small annual range of surface water temperatures (ΔT ~6–7 °C), reducing deep convective mixing of the water column. Weak mixing aids the establishment of meromixis, a requisite condition for the gradual buildup of CO2 in bottom waters and perhaps the unusual condition that most explains the rarity of such lakes. Within the mixolimnion, a seasonal thermocline forms each spring and shallow diel thermoclines may be sufficiently strong to isolate surface water and allow primary production to reduce PCO2 below 300 μatm, inducing a net influx of CO2 from the atmosphere. Surface water O2 and pH typically reach maxima at this time, with occasional O2 oversaturation. Mixing to the chemocline occurs in both lakes during the winter dry season, primarily due to low humidity and cool night time air temperature. An additional period of variable mixing, occasionally reaching the chemocline in Lake Monoun, occurs during the summer monsoon season in response to increased frequency of major storms. The mixolimnion encompassed the upper ~40–50 m of Lake Nyos and upper ~15–20 m of Lake Monoun prior to the installation of degassing pipes in 2001 and 2003, respectively. Degassing caused chemoclines to deepen rapidly. Piping of anoxic, high-TDS bottom water to the lake surface has had a complex effect on the mixolimnion. Algal growth stimulated by increased nutrients (N and P) initially stimulated photosynthesis and raised surface water O2 in Lake Nyos, but O2 removal through oxidation of iron was also enhanced and appeared to dominate at Lake Monoun. Depth-integrated O2 contents decreased in both lakes as did water transparency. No dangerous instabilities in water-column structure were detected over the course of degassing. While Nyos-type lakes are extremely rare, other crater lakes can pose dangers from gas releases and monitoring is warranted.

  9. Spatial distribution of perchlorate, iodide and thiocyanate in the aquatic environment of Tianjin, China: environmental source analysis.

    PubMed

    Qin, Xiaolei; Zhang, Tao; Gan, Zhiwei; Sun, Hongwen

    2014-09-01

    Although China is the largest producer of fireworks (perchlorate-containing products) in the world, the pathways through which perchlorate enters the environment have not been characterized completely in this country. In this study, perchlorate, iodide and thiocyanate were measured in 101 water samples, including waste water, surface water, sea water and paired samples of rain water and surface runoff collected in Tianjin, China. The concentrations of the target anions were generally on the order of rain>surface water≈waste water treatment plant (WWTP) influent>WWTP effluent. High concentrations of perchlorate, iodide and thiocyanate were detected in rain samples, ranging from 0.35 to 27.3 (median: 4.05), 0.51 to 8.33 (2.92), and 1.31 to 107 (5.62) ngmL(-)(1), respectively. Furthermore, the concentrations of the target anions in rain samples were significantly (r=0.596-0.750, p<0.01) positively correlated with the concentrations obtained in the paired surface runoff samples. The anions tested showed a clear spatial distribution, and higher concentrations were observed in the upper reaches of rivers, sea waters near the coast, and rain-surface runoff pairs sampled in urban areas. Our results revealed that precipitation may act as an important source of perchlorate, iodide and thiocyanate in surface water. Moreover, iodide concentrations in the Haihe River and Dagu Drainage Canal showed a good correlation with an ideal marker (acesulfame) of domestic waste water, indicating that input from domestic waste water was an important source of iodide in the surface waters of Tianjin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Morphology and mechanism of the very large dunes in the tidal reach of the Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Shuwei, Zheng; Heqin, Cheng; Shuaihu, Wu; Shengyu, Shi; Wei, Xu; Quanping, Zhou; Yuehua, Jiang

    2017-05-01

    High-resolution multibeam data was used to interpret the surface morphology of very large dunes (VLDs) in the tidal reach of the Yangtze River, China. These VLDs can be divided into three categories according to their surface morphological characteristics. (1) VLDs-I: those with a smooth surface and cross-section; (2) VLDs-II: those accompanied by secondary dunes; (3) VLDs-III: those accompanied by secondary dunes and numerous elliptical pits. Parameters and spatial distribution of VLDs, and bed surface sediment were analyzed in the laboratory. Overall, channel morphology is an important factor affecting the development of VLDs, and channels with narrow and straight and certain water surface slope are facilitating the development of VLDs by constraining stream power. Meanwhile, distribution density of VLDs depicts a decreasing trend from Chizhou towards the estuary, are probably influenced by channel morphology and width. Associated pits in VLDs-III change the 3D dune morphology by distributing in secondary dunes as beads. The Three Gorges Dam project (TGP) leads to the bed surface sediment activity frequently and leads to the riverbed surface sediment coarsens, which promotes the further development of dunes. Moreover, other human activities, such as river regulation project, sand mining and Deep Water Channel Regulation Project have changed the regional river boundary conditions and hydrodynamic conditions are influential on the development of VLDs.

  11. Understanding the Interaction of Peptides and Proteins with Abiotic Surfaces: Towards Water-Free Biologics

    DTIC Science & Technology

    2018-02-03

    peptides immobilized on abiotic surfaces depends upon a) the chemical and physical nature of the abiotic surface; b) the physicochemical properties of... dependent model of protein aggregation, aggregation proceeds only after a lag phase in which the concentration of energetically unfavorable nuclei reaches...time dependent kinetics or dynamics at such interfaces. This paper focuses on these three most important advantages of SFG and reviews some of the

  12. Monitoring monthly surface water dynamics of Dongting Lake using Sentinel-1 data at 10 m.

    PubMed

    Xing, Liwei; Tang, Xinming; Wang, Huabin; Fan, Wenfeng; Wang, Guanghui

    2018-01-01

    High temporal resolution water distribution maps are essential for surface water monitoring because surface water exhibits significant inner-annual variation. Therefore, high-frequency remote sensing data are needed for surface water mapping. Dongting Lake, the second-largest freshwater lake in China, is famous for the seasonal fluctuations of its inundation extents in the middle reaches of the Yangtze River. It is also greatly affected by the Three Gorges Project. In this study, we used Sentinel-1 data to generate surface water maps of Dongting Lake at 10 m resolution. First, we generated the Sentinel-1 time series backscattering coefficient for VH and VV polarizations at 10 m resolution by using a monthly composition method. Second, we generated the thresholds for mapping surface water at 10 m resolution with monthly frequencies using Sentinel-1 data. Then, we derived the monthly surface water distribution product of Dongting Lake in 2016, and finally, we analyzed the inner-annual surface water dynamics. The results showed that: (1) The thresholds were -21.56 and -15.82 dB for the backscattering coefficients for VH and VV, respectively, and the overall accuracy and Kappa coefficients were above 95.50% and 0.90, respectively, for the VH backscattering coefficient, and above 94.50% and 0.88, respectively, for the VV backscattering coefficient. The VV backscattering coefficient achieved lower accuracy due to the effect of the wind causing roughness on the surface of the water. (2) The maximum and minimum areas of surface water were 2040.33 km 2 in July, and 738.89 km 2 in December. The surface water area of Dongting Lake varied most significantly in April and August. The permanent water acreage in 2016 was 556.35 km 2 , accounting for 19.65% of the total area of Dongting Lake, and the acreage of seasonal water was 1525.21 km 2 . This study proposed a method to automatically generate monthly surface water at 10 m resolution, which may contribute to monitoring surface water in a timely manner.

  13. Occurrence, Ecological and Human Health Risks, and Seasonal Variations of Phenolic Compounds in Surface Water and Sediment of a Potential Polluted River Basin in China.

    PubMed

    Zhou, Mo; Zhang, Jiquan; Sun, Caiyun

    2017-09-27

    Five phenolic compounds in water and sediment of Yinma River Basin were investigated. The average concentration of phenol was the highest in water samples as well as in sediment samples during the wet season, 101.68 ng/L and 127.76 ng/g, respectively. 2,4,6-Trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) was not detected in some sampling sites. Shitou Koumen Reservoir and the neighboring area were the severest areas of phenolic pollution. The lower reach was more polluted in three water seasons than the middle reach and upper reach. Phenol had ecological risks in sediment during three water seasons. 2-Nitrophenol (2-NP) and 2,4-dichlorophenol (2,4-DCP) had ecological risks in sediment in both the normal and wet season. The concentrations of five phenolic compounds from high to low were in the wet season, normal season, and dry season in water and sediment, respectively. There were middle risks in water of total concentrations for five phenolic compounds in several sampling sites. Total concentrations for five phenolic compounds in sediment had high ecological risks in all sampling sites. However, there was no human health risk in the Yinma River Basin.

  14. Occurrence, Ecological and Human Health Risks, and Seasonal Variations of Phenolic Compounds in Surface Water and Sediment of a Potential Polluted River Basin in China

    PubMed Central

    Zhou, Mo; Sun, Caiyun

    2017-01-01

    Five phenolic compounds in water and sediment of Yinma River Basin were investigated. The average concentration of phenol was the highest in water samples as well as in sediment samples during the wet season, 101.68 ng/L and 127.76 ng/g, respectively. 2,4,6-Trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) was not detected in some sampling sites. Shitou Koumen Reservoir and the neighboring area were the severest areas of phenolic pollution. The lower reach was more polluted in three water seasons than the middle reach and upper reach. Phenol had ecological risks in sediment during three water seasons. 2-Nitrophenol (2-NP) and 2,4-dichlorophenol (2,4-DCP) had ecological risks in sediment in both the normal and wet season. The concentrations of five phenolic compounds from high to low were in the wet season, normal season, and dry season in water and sediment, respectively. There were middle risks in water of total concentrations for five phenolic compounds in several sampling sites. Total concentrations for five phenolic compounds in sediment had high ecological risks in all sampling sites. However, there was no human health risk in the Yinma River Basin. PMID:28953252

  15. Pharmaceuticals released from senior residences: occurrence and risk evaluation.

    PubMed

    Lacorte, Silvia; Luis, Silvia; Gómez-Canela, Cristian; Sala-Comorera, Teresa; Courtier, Audrey; Roig, Benoit; Oliveira-Brett, Ana Maria; Joannis-Cassan, Claire; Aragonés, Juan Ignacio; Poggio, Lucia; Noguer, Thierry; Lima, Luisa; Barata, Carlos; Calas-Blanchard, Carole

    2018-03-01

    One of the main pursuits, yet most difficult, in monitoring studies is to identify the sources of environmental pollution. In this study, we have identified health-care facilities from south European countries as an important source of pharmaceuticals in the environment. We have estimated that compounds consumed in by the elderly and released from effluents of senior residences can reach river waters at a concentration higher than 0.01 μg/L, which is the European Medicines Agency (EMA) threshold for risk evaluation of pharmaceuticals in surface waters. This study has been based on five health institutions in Portugal, Spain, and France, with 52 to 130 beds. We have compiled the pharmaceuticals dispensed on a daily base and calculated the consumption rates. From 54.9 to 1801 g of pharmaceuticals are consumed daily, with laxatives, analgesics, antiepileptics, antibiotics, and antidiabetic agents being the main drug families administered. According to excretion rates, dilution in the sewerage system, and elimination in wastewater treatment plants, macrogol, metformin, paracetamol, acetylcysteine, amoxicillin, and gabapentin, among others, are expected to reach river waters. Finally, we discuss the risk management actions related to the discharge of pharmaceuticals from senior residences to surface waters.

  16. Surface storage of rainfall in tree crowns: not all trees are equal

    Treesearch

    E. Gregory McPherson; Q. Xiao; Natalie van Doorn; P. Peper; E. Teach

    2017-01-01

    Urban forests can be an effective strategy for managing stormwater. The soil that supports tree growth acts like a reservoir that reduces runoff. The tree crown intercepts rainfall on leaves and stems and its evaporation reduces water reaching the ground below. Until now surface storage capacities have been studied only for forest trees. Based on forest research, green...

  17. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification.

    PubMed

    Wang, Weiping; Zheng, Zhi; Huang, Xin; Fan, Wenling; Yu, Wenkui; Zhang, Zhibing; Li, Lei; Mao, Chun

    2017-10-01

    Polyethylene glycol (PEG) and heparin (Hep) were grafted onto polysulfone (PSF) membrane by plasma-induced surface modification to prepare PSF-PEG-Hep membranes used for artificial lung. The effects of plasma treatment parameters, including power, gas type, gas flow rate, and treatment time, were investigated, and different PEG chains were bonded covalently onto the surface in the postplasma grafting process. Membrane surfaces were characterized by water contact angle, PEG grafting degree, attenuated total reflectance-Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, X-ray photoelectron spectroscopy, critical water permeability pressure, and scanning electron microscopy. Protein adsorption, platelet adhesion, and coagulation tests showed significant improvement in the hemocompatibility of PSF-PEG-Hep membranes compared to pristine PSF membrane. Gas exchange tests through PSF-PEG6000-Hep membrane showed that when the flow rate of porcine blood reached 5.0 L/min, the permeation fluxes of O 2 and CO 2 reached 192.6 and 166.9 mL/min, respectively, which were close to the gas exchange capacity of a commercial membrane oxygenator. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1737-1746, 2017. © 2016 Wiley Periodicals, Inc.

  18. Water repellent properties of dispersed metals containing low-dimensional forms of ammonium compounds on the surface

    NASA Astrophysics Data System (ADS)

    Syrkov, A. G.; Kabirov, V. R.; Silivanov, M. O.

    2017-07-01

    For the first time the change of the water repellent properties of dispersed copper, modified using quaternary ammonium compounds on 24 h time scale in saturated water vapours was studied. Exponential time dependences of the water repellent properties of dispersed copper with adsopted QAC were derived and characterized. It was established that the samples modified in mixed and consistent modes by both modifiers reach the saturation state faster than others, due to the small number of hydrophilic centers on the surface of metals. The last conclusion was confirmed by the distribution spectra of centers of adsorption, which were obtained by the adsorption of acid-base indicators for more dispersed samples based on aluminum powder.

  19. Copepod communities from surface and ground waters in the everglades, south Florida

    USGS Publications Warehouse

    Bruno, M.C.; Cunningham, K.J.; Perry, S.A.

    2003-01-01

    We studied species composition and individual abundance of copepods in the surficial aquifer northeast of Everglades National Park. We identified the spatial distribution of subsurface habitats by assessing the depth of the high porosity layers in the limestone along a canal system, and we used copepods to assess the exchange between surface water and ground water along canal banks, at levels in the wells where high porosity connections to the canals exist. Surface- and ground-water taxa were defined, and species composition was related to areal position, sampling depth, and time. Subsurface copepod communities were dominated by surface copepods that disperse into the aquifer following the groundwater seepage along canal L-31N. The similarities in species composition between wells along canal reaches, suggest that copepods mainly enter ground water horizontally along canals via active and passive dispersal. Thus, the copepod populations indicate continuous connections between surface- and ground waters. The most abundant species were Orthocyclops modestus, Arctodiaptomus floridanus, Mesocyclops edax, and Thermocyclops parvus, all known in literature from surface habitats; however, these species have been collected in ground water in ENP. Only two stygophiles were collected: Diacylcops nearcticus and Diacyclops crassicaudis brachycercus. Restoration of the Everglades ecosystem requires a mosaic of data to reveal a complete picture of this complex system. The use of copepods as indicators of seepage could be a tool in helping to assess the direction and the duration of surface and ground water exchange.

  20. Cu mesh's super-hydrophobic and oleophobic properties with variations in gravitational pressure and surface components for oil/water separation applications

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Zhang, Qin; Xiao, Haibo; Xu, Jie; Li, Qintao; Pan, Xiaohui; Huang, Zhiyong

    2014-09-01

    The super-hydrophobic and super-oleophilic properties of various materials have been utilized to separate oil from water. These properties induce both oil penetration and water slide off. This research demonstrates that the mesh with both super-hydrophobic and oleophobic properties, with a water contact angle (WCA) higher than 150° and oil contact angle (OCA) near 140°, can also be used to separate oil from. Oil has a higher probability than water of entering into the interstice of the Cu mesh surface and passing through it due to the capillarity effect, van der Waals attractions and the effects of gravitational pressure. The modified mesh surface can easily adsorb the oil, which then forms a film, due to the very strong adhesion properties of the oil molecules. The oil film then contributes to the water sliding off. These properties can be used to separate oil from water with separation efficiencies reaching 99.3%. Additionally, the separation of an oil/water mixture using sand permeated with oil yielded separation efficiencies exceeding 90%.

  1. Molecular dynamics simulations of the surface tension and structure of salt solutions and clusters.

    PubMed

    Sun, Lu; Li, Xin; Hede, Thomas; Tu, Yaoquan; Leck, Caroline; Ågren, Hans

    2012-03-15

    Sodium halides, which are abundant in sea salt aerosols, affect the optical properties of aerosols and are active in heterogeneous reactions that cause ozone depletion and acid rain problems. Interfacial properties, including surface tension and halide anion distributions, are crucial issues in the study of the aerosols. We present results from molecular dynamics simulations of water solutions and clusters containing sodium halides with the interatomic interactions described by a conventional force field. The simulations reproduce experimental observations that sodium halides increase the surface tension with respect to pure water and that iodide anions reach the outermost layer of water clusters or solutions. It is found that the van der Waals interactions have an impact on the distribution of the halide anions and that a conventional force field with optimized parameters can model the surface tension of the salt solutions with reasonable accuracy. © 2012 American Chemical Society

  2. Direct observation of terahertz surface modes in nanometer-sized liquid water pools.

    PubMed

    Boyd, J E; Briskman, A; Colvin, V L; Mittleman, D M

    2001-10-01

    The far-infrared absorption spectrum of nanometer-sized water pools at the core of AOT micelles exhibits a pronounced resonance which is absent in bulk water. The amplitude and spectral position of this resonance are sensitive to the size of the confined water core. This resonance results from size-dependent modifications in the vibrational density of states, and thus has far-reaching implications for chemical processes which involve water sequestered within small cavities. These data represent the first study of the terahertz dielectric properties of confined liquids.

  3. The Relative Influence of H2O and CO2 on the Primitive Surface Conditions and Evolution of Rocky Planets

    NASA Astrophysics Data System (ADS)

    Salvador, A.; Massol, H.; Davaille, A.; Marcq, E.; Sarda, P.; Chassefiere, E.

    2016-12-01

    Recent literature reveals how different the telluric planets' water content can be, depending on the formation processes and origins of water. Furthermore, for Earth mass planets, estimates of their atmospheric water content range between 0.3 to 1000 water oceans. We simulate the secular convective cooling and solidification of a 1D magma ocean (hereafter "MO") in interaction with the outgassed atmosphere. We vary the initial CO2 and H2O contents (respectively from 0.1×10-2 to 14×10-2wt% and from 0.05 to 2.2 times the Earth Ocean current mass (MEO)), the solar distance - from 0.63 to 1.30 AU -, the radiative heat transfer in the atmosphere (grey or non-grey, with or without clouds) and investigate the relative influence of these parameters on an Earth like planet's surface conditions at the MO phase term, and especially its ability to form a water ocean. We define the end of the MO as the time when the heat flux from the vigorous convecting mantle becomes negligible compared to the incident solar flux, linked to the dramatic increase of viscosity as the MO solidification reaches the surface, which considerably reduces the convection intensity and the heat transfer. This particular time coincides with the possible apparition of a water ocean and with the development of a thermal boundary layer at the surface, thick enough to limit the interactions between the two reservoirs. As a first step, we assume a bottom-up solidification of the MO. The planetary surface pressure-temperature conditions, resulting from the solidification, are conditioned by the sun-planet distance and the initial CO2 and H2O contents. There is a critical sun-planet distance Rc below which water will never condense, whatever the initial volatile content. For distances larger than Rc, water condensation strongly depends on the relative proportion of CO2 and H2O. The higher the H2O content, the easier it is to reach the equilibrium water vapor pressure and therefore to condense water, for the tested range of CO2 contents. Otherwise, for [H2O]t0<1.8 MEO , too much CO2 precludes the formation of a water ocean by greenhouse effect. In order to study exoplanets surface conditions, and the wide diversity of these gas rich extrasolar worlds, we propose a simple scaling law to explain the relative influence of the tested parameters on the water condensation.

  4. Implementation and use of direct-flow connections in a coupled ground-water and surface-water model

    USGS Publications Warehouse

    Swain, Eric D.

    1994-01-01

    The U.S. Geological Survey's MODFLOW finite-difference ground-water flow model has been coupled with three surface-water packages - the MODBRANCH, River, and Stream packages - to simulate surface water and its interaction with ground water. Prior to the development of the coupling packages, the only interaction between these modeling packages was that leakage values could be passed between MODFLOW and the three surface-water packages. To facilitate wider and more flexible uses of the models, a computer program was developed and added to MODFLOW to allow direct flows or stages to be passed between any of the packages and MODFLOW. The flows or stages calculated in one package can be set as boundary discharges or stages to be used in another package. Several modeling packages can be used in the same simulation depending upon the level of sophistication needed in the various reaches being modeled. This computer program is especially useful when any of the River, Stream, or MODBRANCH packages are used to model a river flowing directly into or out of wetlands in direct connection with the aquifer and represented in the model as an aquifer block. A field case study is shown to illustrate an application.

  5. Characterization of Thermal Refugia and Biogeochemical Hotspots at Sleepers River Watershed, VT

    NASA Astrophysics Data System (ADS)

    Hwang, K.; Chandler, D. G.; Kelleher, C.; Shanley, J. B.; Shaw, S. B.

    2017-12-01

    During low flow, changes in the extent of the channel network in headwater catchments depend on groundwater-surface water interactions, and dictate thermal and biogeochemical heterogeneities. Channel reaches with low temperature may act as refugia for valued species such as brook trout, and warmer reaches with high dissolved organic matter may act as biogeochemical hotspots. Prior studies have found uniform scaling of hydrologic and biogeochemical processes above certain spatial thresholds but sizable heterogeneities in these processes below the threshold. We utilize high resolution measurements of water quality parameters including stream temperature, conductivity and fluorescent dissolved organic matter (fDOM) at tributaries in two catchments of Sleepers River Watershed, Vermont to investigate seasonal and spatial variation of water quality and scaling of stream chemistry within the intensive study area and the larger Sleepers River Watershed. This study leverages findings from various small scale regional studies to identify differences in headwater channel reach behavior in a similar climate across some dissimilar geomorphic units, to inform the identification of thermal refugia and biogeochemical hotspots.

  6. [Indoor simulation on dew formation on plant leaves].

    PubMed

    Gao, Zhi-Yong; Wang, You-Ke; Wei, Xin-Guang; Liu, Shou-Yang; He, Zi-Li; Zhou, Yu-Hong

    2014-03-01

    Dew forming on plant leaves through water condensation plays a significant ecological role in arid and semi-arid areas as an ignorable fraction of water resources. In this study, an artificial intelligent climate chamber and an automatic temperature-control system for leaves were implemented to regulate the ambient temperature, the leaf surface temperature and the leaf inclination for dew formation. The impact of leaf inclination, ambient temperature and dew point-leaf temperature depression on the rate and quantity of dew accumulation on leaf surface were analyzed. The results indicated that the accumulation rate and the maximum volume of dew on leaves decreased with increasing the leaf inclination while increased with the increment of dew point-leaf temperature depression, ambient temperature and relative humidity. Under the horizontal configuration, dew accumulated linearly on leaf surface over time until the maximum volume (0.80 mm) was reached. However, dew would fall down after reaching the maximum volume when the leaf inclination existed (45 degrees or 90 degrees), significantly slowing down the accumulative rate, and the zigzag pattern for the dynamic of dew accumulation appeared.

  7. The occurrence and distribution of a group of organic micropollutants in Mexico City's water sources.

    PubMed

    Félix-Cañedo, Thania E; Durán-Álvarez, Juan C; Jiménez-Cisneros, Blanca

    2013-06-01

    The occurrence and distribution of a group of 17 organic micropollutants in surface and groundwater sources from Mexico City was determined. Water samples were taken from 7 wells, 4 dams and 15 tanks where surface and groundwater are mixed and stored before distribution. Results evidenced the occurrence of seven of the target compounds in groundwater: salicylic acid, diclofenac, di-2-ethylhexylphthalate (DEHP), butylbenzylphthalate (BBP), triclosan, bisphenol A (BPA) and 4-nonylphenol (4-NP). In surface water, 11 target pollutants were detected: same found in groundwater as well as naproxen, ibuprofen, ketoprofen and gemfibrozil. In groundwater, concentration ranges of salicylic acid, 4-NP and DEHP, the most frequently found compounds, were 1-464, 1-47 and 19-232 ng/L, respectively; while in surface water, these ranges were 29-309, 89-655 and 75-2,282 ng/L, respectively. Eleven target compounds were detected in mixed water. Concentrations in mixed water were higher than those determined in groundwater but lower than the detected in surface water. Different to that found in ground and surface water, the pesticide 2,4-D was found in mixed water, indicating that some pollutants can reach areas where they are not originally present in the local water sources. Concentration of the organic micropollutants found in this study showed similar to lower to those reported in water sources from developed countries. This study provides information that enriches the state of the art on the occurrence of organic micropollutants in water sources worldwide, notably in megacities of developing countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Extracting Hydrologic Understanding from the Unique Space-time Sampling of the Surface Water and Ocean Topography (SWOT) Mission

    NASA Astrophysics Data System (ADS)

    Nickles, C.; Zhao, Y.; Beighley, E.; Durand, M. T.; David, C. H.; Lee, H.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is jointly developed by NASA, the French space agency (CNES), with participation from the Canadian and UK space agencies to serve both the hydrology and oceanography communities. The SWOT mission will sample global surface water extents and elevations (lakes/reservoirs, rivers, estuaries, oceans, sea and land ice) at a finer spatial resolution than is currently possible enabling hydrologic discovery, model advancements and new applications that are not currently possible or likely even conceivable. Although the mission will provide global cover, analysis and interpolation of the data generated from the irregular space/time sampling represents a significant challenge. In this study, we explore the applicability of the unique space/time sampling for understanding river discharge dynamics throughout the Ohio River Basin. River network topology, SWOT sampling (i.e., orbit and identified SWOT river reaches) and spatial interpolation concepts are used to quantify the fraction of effective sampling of river reaches each day of the three-year mission. Streamflow statistics for SWOT generated river discharge time series are compared to continuous daily river discharge series. Relationships are presented to transform SWOT generated streamflow statistics to equivalent continuous daily discharge time series statistics intended to support hydrologic applications using low-flow and annual flow duration statistics.

  9. Flood boundaries and water-surface profile for the computed 100-year flood, Swift Creek at Afton, Wyoming, 1986

    USGS Publications Warehouse

    Rankl, James G.; Wallace, Joe C.

    1989-01-01

    Flood flows on Swift Creek near Afton, Wyoming, were analyzed. Peak discharge with an average recurrence interval of 100 years was computed and used to determine the flood boundaries and water surface profile in the study reach. The study was done in cooperation with Lincoln County and the Town of Afton to determine the extent of flooding in the Town of Afton from a 100-year flood on Swift Creek. The reach of Swift Creek considered in the analysis extends upstream from the culvert at Allred County Road No. 12-135 to the US Geological Survey streamflow-gaging station located in the Bridger National Forest , a distance of 3.2 miles. Boundaries of the 100-year flood are delineated on a map using the computed elevation of the flood at each cross section, survey data, and a 1983 aerial photograph. The computed water surface elevation for the 100-year flood was plotted at each cross section, then the lateral extent of the flood was transferred to the flood map. Boundaries between cross sections were sketched using information taken from the aerial photograph. Areas that are inundated, but not part of the active flow, are designated on the cross sections. (Lantz-PTT)

  10. Infiltration of pesticides in surface water into nearby drinking water supply wells

    NASA Astrophysics Data System (ADS)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  11. Theory of hydrophobicity: transient cavities in molecular liquids

    NASA Technical Reports Server (NTRS)

    Pratt, L. R.; Pohorille, A.

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or "squeezing" force, reaches a maximum near cavity diameters of 2.4 angstroms. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studied here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems.

  12. Theory of hydrophobicity: Transient cavities in molecular liquids

    PubMed Central

    Pratt, Lawrence R.; Pohorille, Andrew

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or “squeezing” force, reaches a maximum near cavity diameters of 2.4 Å. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studies here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems. PMID:11537863

  13. Laboratory-based geoelectric monitoring of water infiltration in consolidated ground

    NASA Astrophysics Data System (ADS)

    Yang, Lining; Sun, Qiang; Yang, Haiping

    2018-04-01

    Infiltration usually plays a significant role in construction failures and transfer of contaminants. Therefore, it is very important to monitor underground water migration. In this study, a soil infiltration experiment was carried out using an indoor model test. The water infiltration characteristics were recorded and analyzed based on the response of the geoelectric field, including the primary field potential, self-potential, excitation current and apparent resistivity. The phreatic water surface and the infiltration velocity were determined. The inversion results were compared with direct observations. The results showed that the changes in the geoelectric field parameters explain the principles of groundwater flow. The infiltration velocity and the phreatic surface can be determined based on the primary field potential response and the excitation current. When the phreatic surface reached the location of the electrodes, the primary field potential and self-potential decreased rapidly whereas the excitation current increased rapidly. The height of the phreatic surface and the infiltration time exhibited a linear relationship for both the observation data and the calculations of the excitation current. The apparent resistivity described the infiltration status in the soil and tracked the phreatic surface accurately.

  14. Hot and Cold

    NASA Image and Video Library

    2015-03-16

    This view shows Mercury's north polar region, colored by the maximum biannual surface temperature, which ranges from >400 K (red) to 50 K (purple). As expected for the Solar System's innermost planet, areas of Mercury's surface that are sunlit reach high temperatures, and hence most of this image is colored red! In contrast, some craters near Mercury's poles have regions that remain permanently in shadow, and in these regions even the maximum temperatures can be extremely low. Evidence from MESSENGER and Earth-based observations indicate that water ice deposits are present in these cold craters. The craters nearest Mercury' poles have surface temperatures less than 100 K (-173°C, -280°F), and water ice is stable on the surface, such as in Prokofiev. However, many craters near but somewhat farther from Mercury's poles have cold, permanently shadowed interiors, but the maximum temperature is too high for water ice to persist at the surface. In these craters, water ice is present but is buried beneath a thin, low-reflectance volatile layer likely consisting of organic-rich material, such as in Berlioz crater. http://photojournal.jpl.nasa.gov/catalog/PIA19247

  15. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology.

    PubMed

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Kim, Ho-Young

    2016-12-07

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  16. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G.; Kim, Ho-Young

    2016-12-01

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  17. Earth observations taken during STS-83 mission

    NASA Image and Video Library

    2016-08-12

    STS083-747-026 (4-8 April 1997) --- Aswan Dam and Lake Nasser along the Nile River, Egypt. The Aswan Dam controls the flow of the Nile River forming Lake Nasser. Lake Nasser is reaching relatively high water levels due to the plentiful rains since December 1996 in Kenya, near the headwaters of the Nile river. The light colored areas in the Lake are where the sun is reflecting off the surface of the water. These areas are fairly calm and not disturbed by wind gusts enabling the sunglint to show water current patterns on the surface. The Aswan runway is seen as a dark set of lines west of the Aswan Dam.

  18. Effect of hydration of sugar groups on adsorption of Quillaja bark saponin at air/water and Si/water interfaces.

    PubMed

    Wojciechowski, Kamil; Orczyk, Marta; Marcinkowski, Kuba; Kobiela, Tomasz; Trapp, Marcus; Gutberlet, Thomas; Geue, Thomas

    2014-05-01

    Adsorption of a natural glycoside surfactant Quillaja bark saponin ("QBS", Sigma Aldrich 84510) was studied at the air/water and Si/water interfaces using a combination of surface pressure (SP), surface dilatational rheology, neutron reflectivity (NR), Infra-Red Attenuated Total Reflection Spectroscopy (IR ATR) and Quartz Crystal Microbalance (QCM). The adsorbed layers formed at the air/water interface are predominantly elastic, with the dilatational surface storage modulus reaching the maximum value of E'=184 mN/m. The NR results point to a strong hydration of the adsorbed layers (about 65% hydration, corresponding to about 60 molecules of water per one QBS molecule), most likely related to the presence of multiple sugar groups constituting the glycone part of the QBS molecules. With a layer thickness of 19 Å, the adsorbed amount obtained from NR seems largely underestimated in comparison to the value obtained from the surface tension isotherm. While this high extent of hydration does not prevent formation of dense and highly elastic layers at the air-water surface, QBS adsorption at the Si/water interface is much weaker. The adsorption isotherm of QBS on Si obtained from the QCM study reflects much lower affinity of highly hydrated and negatively charged saponin molecules to the Si/water interface. We postulate that at the air/water interface, QBS adsorbs through the triterpene aglycone moiety. In contrast, weak hydrogen bonding between the glycone part and the surface silanol groups of Si is responsible for QBS adsorption on more polar Si/water interface. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Determination of pharmaceuticals, personal care products, and pesticides in surface and treated waters: method development and survey.

    PubMed

    Caldas, Sergiane Souza; Bolzan, Cátia Marian; Guilherme, Juliana Rocha; Silveira, Maria Angelis Kisner; Escarrone, Ana Laura Venquiaruti; Primel, Ednei Gilberto

    2013-08-01

    Water is fundamental to the existence of life since it is essential to a series of activities, such as agriculture, power generation, and public and industrial supplies. The residual water generated by these activities is released into the environment, reaches the water systems, and becomes a potential risk to nontarget organisms. This paper reports the development and validation of a quantitative method, based on solid-phase extraction and liquid chromatography tandem mass spectrometry, for the simultaneous analysis of 18 pharmaceuticals and personal care products (PPCPs) and 33 pesticides in surface and drinking waters. The accuracy of the method was determined by calculating the recoveries, which ranged from 70 to 120 % for most pesticides and PPCPs, whereas limits of quantification ranged from 0.8 to 40 ng/L. After the validation step, the method was applied to drinking and surface waters. Pesticides and PPCPs were found in concentrations lower than 135.5 ng/L. The evaluation of different water sources with regard to contamination by pesticides and PPCPs has been quite poor in southern Brazil.

  20. Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf

    PubMed Central

    Sparrow, Katy J.; Kessler, John D.; Southon, John R.; Garcia-Tigreros, Fenix; Schreiner, Kathryn M.; Ruppel, Carolyn D.; Miller, John B.; Lehman, Scott J.; Xu, Xiaomei

    2018-01-01

    In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere. PMID:29349299

  1. Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf

    USGS Publications Warehouse

    Sparrow, Katy J.; Kessler, John D.; Southon, John R.; Garcia-Tigreros, Fenix; Schreiner, Kathryn M.; Ruppel, Carolyn D.; Miller, John B.; Lehman, Scott J.; Xu, Xiaomei

    2018-01-01

    In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.

  2. Identifiability of altimetry-based rating curve parameters in function of river morphological parameters

    NASA Astrophysics Data System (ADS)

    Paris, Adrien; André Garambois, Pierre; Calmant, Stéphane; Paiva, Rodrigo; Walter, Collischonn; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Bonnet, Marie-Paule; Seyler, Frédérique; Monnier, Jérôme

    2016-04-01

    Estimating river discharge for ungauged river reaches from satellite measurements is not straightforward given the nonlinearity of flow behavior with respect to measurable and non measurable hydraulic parameters. As a matter of facts, current satellite datasets do not give access to key parameters such as river bed topography and roughness. A unique set of almost one thousand altimetry-based rating curves was built by fit of ENVISAT and Jason-2 water stages with discharges obtained from the MGB-IPH rainfall-runoff model in the Amazon basin. These rated discharges were successfully validated towards simulated discharges (Ens = 0.70) and in-situ discharges (Ens = 0.71) and are not mission-dependent. The rating curve writes Q = a(Z-Z0)b*sqrt(S), with Z the water surface elevation and S its slope gained from satellite altimetry, a and b power law coefficient and exponent and Z0 the river bed elevation such as Q(Z0) = 0. For several river reaches in the Amazon basin where ADCP measurements are available, the Z0 values are fairly well validated with a relative error lower than 10%. The present contribution aims at relating the identifiability and the physical meaning of a, b and Z0given various hydraulic and geomorphologic conditions. Synthetic river bathymetries sampling a wide range of rivers and inflow discharges are used to perform twin experiments. A shallow water model is run for generating synthetic satellite observations, and then rating curve parameters are determined for each river section thanks to a MCMC algorithm. Thanks to twin experiments, it is shown that rating curve formulation with water surface slope, i.e. closer from Manning equation form, improves parameter identifiability. The compensation between parameters is limited, especially for reaches with little water surface variability. Rating curve parameters are analyzed for riffle and pools for small to large rivers, different river slopes and cross section shapes. It is shown that the river bed elevation Z0is systematically well identified with relative errors on the order of a few %. Eventually, these altimetry-based rating curves provide morphological parameters of river reaches that can be used as inputs into hydraulic models and a priori information that could be useful for SWOT inversion algorithms.

  3. Occurrence and distribution of pesticides and volatile organic compounds in ground water and surface water in Central Arizona Basins, 1996-98, and their relation to land use

    USGS Publications Warehouse

    Gellenbeck, Dorinda J.; Anning, David W.

    2002-01-01

    Samples of ground water and surface water from the Sierra Vista subbasin, the Upper Santa Cruz Basin, and the West Salt River Valley were collected and analyzed to determine the occurrence and distribution of pesticides and volatile organic compounds in central Arizona. The study was done during 1996-98 within the Central Arizona Basins study unit of the National Water-Quality Assessment program. This study included 121 wells and 4 surface-water sites in the 3 basins and the analyses of samples from 4 sites along the Santa Cruz River that were part of a separate study. Samples were collected from 121 wells and 3 surface-water sites for pesticide analyses, and samples were collected from 109 wells and 3 surface-water sites for volatile organic compound analyses. Certain pesticides detected in ground water and surface water can be related specifically to agricultural or urban uses; others can be related to multiple land uses. Effects from historical agriculture are made evident by detections of DDE in ground-water and surface-water samples collected in the West Salt River Valley and detections of atrazine and deethylatrazine in the ground water in the Upper Santa Cruz Basin. Effects from present agriculture are evident in the seasonal variability in concentrations of pre-emergent pesticides in surface-water samples from the West Salt River Valley. Several detections of DDE and dieldrin in surface water were higher than established water-quality limits. Effects of urban land use are made evident by detections of volatile organic compounds in ground water and surface water from the West Salt River Valley. Detections of volatile organic compounds in surface water from the Santa Cruz River near Nogales, Arizona, also are indications of the effects of urban land use. One detection of tetrachloroethene in ground water was higher than established water-quality limits. Water reuse is an important conservation technique in the Southwest; however, the reuse of water provides a transport mechanism for pesticides and volatile organic compounds to reach areas that are not normally affected by manmade compounds from specific land-use activities. The most complex mixture of pesticides and volatile organic compounds is in the West Salt River Valley and is the result of water-management practices and the combination of land uses in this basin throughout history.

  4. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Wu, Feng; Zhang, Qian

    Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers' decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers' response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.

  5. Use of Ground-water Temperature Patterns to Determine the Hydraulic Conductance of the Streambed Along the Middle Reaches of the Russian River, CA

    NASA Astrophysics Data System (ADS)

    Su, G. W.; Constantz, J.; Jasperse, J.; Seymour, D.

    2002-12-01

    Along the Russian River in Sonoma County, the alluvial aquifer is the preferred source of drinking water because sediments and other constituents in the river water would require additional treatment. From late spring to early winter, an inflatable dam is erected to raise the river stage and passively recharge the alluvial aquifer. The raised stage also permits diversion of river water to a series of recharge ponds located near the dam along the river. Improved understanding of stream exchanges with ground water is needed to better manage available water resources. Heat is used as a tracer of shallow ground-water movement for detailed hydraulic parameter estimation along the middle reaches of the river. Water-levels and ground-water temperatures were measured in a series of observations wells and compared to the river stage and surface-water temperatures. Hydraulic conductivities were predicted by optimizing simulated ground-water temperatures using VS2DHI, a heat and water transport model, to observed temperatures in the aquifer. These conductivity values will be used in a stream/ground-water model of this region being developed using MODFLOW. Temperature-based estimates of streambed conductance will be inserted in the STREAM package of the model to constrain this parameter. Although temperature-based predictions of hydraulic conductivity vary significantly along the reach, the results generally suggest that an anisotropy of 5 to 1 (horizontal to vertical) provides the best hydraulic conductivity matches for predicted versus observed ground-water temperatures.

  6. Variational Data Assimilation of AirSWOT Data into the 2D Shallow Water Model DassFlow. Method and Test Case on the Garonne River (France)

    NASA Astrophysics Data System (ADS)

    Garambois, Pierre-Andre; Biancamaria, Sylvian; Monnier, Jerome; Roux, Helene; Dartus, Denis

    2013-09-01

    For continental water bodies and river hydraulic studies, water level measurements are fundamental information, yet they are currently mostly provided by punctual gauging stations located on the main river channel. That is why they are sparsely distributed in space and can have gaps in their time series (e.g. sensors failures). These issues can be compensated by remote sensing data, which have considerably contributed to improve the observation and understanding of physical processes in hydrology and hydraulics in general. Satellites such as SWOT (Surface Water and Ocean Topography) would give spatially distributed information on water elevations at an unprecedented resolution. Gathering pre-mission data over specific and varied science targets is the purpose of the AirSWOT airborne campaign in order to implement and test SWOT products retrieval algorithms. A reach of the Garonne River, downstream of Toulouse (FRANCE), is a proposed study area for AirSWOT flights. This choice is motivated by previous studies already performed on this section of 100km reach of the river. Moreover, on this highly instrumented and studied portion of river many typical free surface flow modelling issue has been encountered, and this river reach represents the limit of SWOT observation capability. The 2D hydrodynamic model DassFlow especially designed for variational data assimilation will be used on this portion of the Garonne River with cartographic sensitivity analysis. An identification strategy would allow retrieving spatial roughness along the main channel, variation of the local topographic slope or else temporal evolution of the streamflow. Addressing such problems and studying horizontal and vertical river sinuosity would improve fine scale hydraulics representation and understanding, which could additionally help to improve global discharge algorithms with different scales and complexity levels.

  7. Development of a Model to Correct Multi-View Angle above Water Measurements for the Analysis of the Bidirectional Reflectance of Coral and Other Reef Substrates

    NASA Astrophysics Data System (ADS)

    Miller, I.; Forster, B. C.; Laffan, S. W.

    2012-07-01

    Spectral reflectance characteristics of substrates in a coral reef environment are often measured in the field by viewing a substrate at nadir. However, viewing a substrate from multiple angles would likely result in different spectral characteristics for most coral reef substrates and provide valuable information on structural properties. To understand the relationship between the morphology of a substrate and its spectral response it is necessary to correct the observed above-water radiance for the effects of atmosphere and water attenuation, at a number of view and azimuth angles. In this way the actual surface reflectance can be determined. This research examines the air-water surface interaction for two hypothetical atmospheric conditions (clear Rayleigh scattering and totally cloudcovered) and the global irradiance reaching the benthic surface. It accounts for both water scattering and absorption, with simplifications for shallow water conditions, as well as the additive effect of background reflectance being reflected at the water-air surface at angles greater than the critical refraction angle (~48°). A model was developed to correct measured above-water radiance along the refracted view angle for its decrease due to path attenuation and the "n squared law of radiance" and the additive surface reflectance. This allows bidirectional benthic surface reflectance and nadir-normalised reflectance to be determined. These theoretical models were adapted to incorporate above-water measures relative to a standard, diffuse, white reference panel. The derived spectral signatures of a number of coral and non-coral benthic surfaces compared well with other published results, and the signatures and nadir normalised reflectance of the corals and other benthic surface classes indicate good class separation.

  8. The seasonal cycle of water on Mars

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.

    1985-01-01

    A review of the behavior of water in the Mars atmosphere and subsurface is appropriate now that data from the Mariner and Viking spacecraft have been analyzed and discussed for several years following completion of those missions. Observations and analyses pertinent to the seasonal cycle of water vapor in the atmosphere of Mars are reviewed, with attention toward transport of water and the seasonal exchange of water between the atmosphere and various non-atmospheric reservoirs. Possible seasonally-accessible sources and sinks for water include water ice on or within the seasonal and residual polar caps; surface or subsurface ice in the high-latitude regions of the planet; adsorbed or chemically-bound water within the near-surface regolith; or surface or subsurface liquid water. The stability of water within each of these reservoirs is discussed, as are the mechanisms for driving exchange of the water with the atmosphere and the timescales for exchange. Specific conclusions are reached about the distribution of water and the viability of each mechanism as a seasonal reservoir. Discussion is also included of the behavior of water on longer timescales, driven by the variations in solar forcing due to the quasi-periodic variations of the orbital obliquity. Finally, specific suggestions are made for future observations from spacecraft which would further define or constrain the seasonal cycle of water.

  9. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  10. Water-quality reconnaissance and streamflow gain and loss of Yocum Creek basin, Carroll County, Arkansas

    USGS Publications Warehouse

    Joseph, Robert L.; Green, W. Reed

    1994-01-01

    A study of the Yocum Creek Basin conducted between July 27 and August 3, 1993, described the surface- and ground-water quality of the basin and the streamflow gain and loss. Water samples were collected from 12 sites on the main stem of Yocum Creek and 2 tributaries during periods of low to moderate streamflow (less than 40 cubic feet per second). Water samples were collected from 5 wells and 12 springs located in the basin. In 14 surface- water samples, nitrite plus nitrate concentrations ranged from 1.3 to 3.8 milligrams per liter as nitrogen. Orthophosphorus concentrations ranged from 0.01 to 0.06 milligrams per liter as phosphorous. Fecal coliform bacteria counts ranged from 9 to 220 colonies per 100 milliliters, with a median of 49 colonies per 100 milliliters. Fecal streptococci bacteria counts ranged from 37 to 1,500 colonies per 100 milliliters with a median of 420 colonies per 100 milliliters. Analyses for selected metals collected near the mouth of Yocum Creek indicate that metals are not present in significant concen- trations in surface-water samples. Diel dissolved oxygen concentrations and temperatures were measured at two sites on the mainstem of the stream. At the upstream site, dissolved oxygen concentrations ranged from 6.2 to 9.9 milligrams per liter and temperatures ranged from 18.5 to 23.0 degrees Celsius. Dissolved oxygen concentrations were higher and tempentture values were lower at the upstream site than those at the downstream site. Five wells were sampled in the basin and dissolved ammonia was present in concentrations ranging from 0.01 to 0.07 milligrams per liter as nitrogen. Dissolved nitrite plus nitrate was present in wells, with concen- trations ranging from less than 0.02 to 6.0 milligrams per liter as nitrogen. Volatile organic compound samples were collected at two wells and two springs. Chloroform was the only volatile organic compound found to be above the detection limit. Analysis indicated that 0.2 micrograms per liter of chloroform was present in one spring-water sample. In springs sampled, nitrite plus nitrate concen- trations ranged from 1.4 to 7.0 milligrams per llter as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.2 to 0.49 milligrams per liter as nitrogen. Orthophosphorus concentrations ranged from 0.01 to 0.07 milligrams per liter as phosphorus. Fecal colfform bacteria counts ranged from 3 to 200 colonies per 100 milliliters, with a median of 18 colonies per 100 milliliters. Fecal streptococci bacteria counts ranged from 110 to more than 2,000 colonies per 100 milliliters with a median of 350 colonies per 100 milliliters. Large producing springs 1ocated in the mid to upper reaches of the basin contribute most of the flow to Yocum Creek. Streamflow increased an average of 29 percent on the mainstem of the stream. One losing reach was discovered on the mainstem of the stream and two losing reaches on tributaries to the mainstem. Surface flow steadily decreased along these reaches to the point where surface flow was not present, and the streambed became dry. These observations suggest that significant interaction exists between the underlying Springfield aquifer and surface flow in the Yocum Creek Basin.

  11. Development of a channel classification to evaluate potential for cottonwood restoration, lower segments of the Middle Missouri River, South Dakota and Nebraska

    USGS Publications Warehouse

    Jacobson, Robert B.; Elliott, Caroline M.; Huhmann, Brittany L.

    2010-01-01

    This report documents development of a spatially explicit river and flood-plain classification to evaluate potential for cottonwood restoration along the Sharpe and Fort Randall segments of the Middle Missouri River. This project involved evaluating existing topographic, water-surface elevation, and soils data to determine if they were sufficient to create a classification similar to the Land Capability Potential Index (LCPI) developed by Jacobson and others (U.S. Geological Survey Scientific Investigations Report 2007–5256) and developing a geomorphically based classification to apply to evaluating restoration potential.Existing topographic, water-surface elevation, and soils data for the Middle Missouri River were not sufficient to replicate the LCPI. The 1/3-arc-second National Elevation Dataset delineated most of the topographic complexity and produced cumulative frequency distributions similar to a high-resolution 5-meter topographic dataset developed for the Lower Missouri River. However, lack of bathymetry in the National Elevation Dataset produces a potentially critical bias in evaluation of frequently flooded surfaces close to the river. High-resolution soils data alone were insufficient to replace the information content of the LCPI. In test reaches in the Lower Missouri River, soil drainage classes from the Soil Survey Geographic Database database correctly classified 0.8–98.9 percent of the flood-plain area at or below the 5-year return interval flood stage depending on state of channel incision; on average for river miles 423–811, soil drainage class correctly classified only 30.2 percent of the flood-plain area at or below the 5-year return interval flood stage. Lack of congruence between soil characteristics and present-day hydrology results from relatively rapid incision and aggradation of segments of the Missouri River resulting from impoundments and engineering. The most sparsely available data in the Middle Missouri River were water-surface elevations. Whereas hydraulically modeled water-surface elevations were available at 1.6-kilometer intervals in the Lower Missouri River, water-surface elevations in the Middle Missouri River had to be interpolated between streamflow-gaging stations spaced 3–116 kilometers. Lack of high-resolution water-surface elevation data precludes development of LCPI-like classification maps.An hierarchical river classification framework is proposed to provide structure for a multiscale river classification. The segment-scale classification presented in this report is deductive and based on presumed effects of dams, significant tributaries, and geological (and engineered) channel constraints. An inductive reach-scale classification, nested within the segment scale, is based on multivariate statistical clustering of geomorphic data collected at 500-meter intervals along the river. Cluster-based classifications delineate reaches of the river with similar channel and flood-plain geomorphology, and presumably, similar geomorphic and hydrologic processes. The dominant variables in the clustering process were channel width (Fort Randall) and valley width (Sharpe), followed by braiding index (both segments).Clusters with multithread and highly sinuous channels are likely to be associated with dynamic channel migration and deposition of fresh, bare sediment conducive to natural cottonwood germination. However, restoration potential within these reaches is likely to be mitigated by interaction of cottonwood life stages with the highly altered flow regime.

  12. Hydraulic characteristics of the New River in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.; Appel, David H.

    1989-01-01

    Traveltime, dispersion, water-surface and streambed profiles, and cross-section data were collected for use in application of flow and solute-transport models to the New River in the New River Gorge National River, West Virginia. Dye clouds subjected to increasing and decreasing flow rates (unsteady flow) showed that increasing flows shorten the cloud and decreasing flows lengthen the cloud. After the flow rate was changed and the flow was again steady, traveltime and dispersion characteristics were determined by the new rate of flow. Seven stage/streamflow relations identified the general changes of stream geometry throughout the study reach. Channel cross sections were estimated for model input. Low water and streambed profiles were developed from surveyed water surface elevations and water depths. (USGS)

  13. Effect of climate change on sea water intrusion in coastal aquifers

    NASA Astrophysics Data System (ADS)

    Sherif, Mohsen M.; Singh, Vijay P.

    1999-06-01

    There is increasing debate these days on climate change and its possible consequences. Much of this debate has focused in the context of surface water systems. In many arid areas of the world, rainfall is scarce and so is surface runoff. These areas rely heavily on groundwater. The consequences of climate change on groundwater are long term and can be far reaching. One of the more apparent consequences is the increased migration of salt water inland in coastal aquifers. Using two coastal aquifers, one in Egypt and the other in India, this study investigates the effect of likely climate change on sea water intrusion. Three realistic scenarios mimicking climate change are considered. Under these scenarios, the Nile Delta aquifer is found to be more vulnerable to climate change and sea level rise.

  14. Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections

    USGS Publications Warehouse

    Bencala, K.E.; Gooseff, M.N.; Kimball, B.A.

    2011-01-01

    Although surface water and groundwater are increasingly referred to as one resource, there remain environmental and ecosystem needs to study the 10 m to 1 km reach scale as one hydrologic system. Streams gain and lose water over a range of spatial and temporal scales. Large spatial scales (kilometers) have traditionally been recognized and studied as river-aquifer connections. Over the last 25 years hyporheic exchange flows (1-10 m) have been studied extensively. Often a transient storage model has been used to quantify the physical solute transport setting in which biogeochemical processes occur. At the longer 10 m to 1 km scale of stream reaches it is now clear that streams which gain water overall can coincidentally lose water to the subsurface. At this scale, the amounts of water transferred are not necessarily significant but the exchanges can, however, influence solute transport. The interpretation of seemingly straightforward questions about water, contaminant, and nutrient fluxes into and along a stream can be confounded by flow losses which are too small to be apparent in stream gauging and along flow paths too long to be detected in tracer experiments. We suggest basic hydrologic approaches, e.g., measurement of flow along the channel, surface and subsurface solute sampling, and routine measurements of the water table that, in our opinion, can be used to extend simple exchange concepts from the hyporheic exchange scale to a scale of stream-catchment connection. Copyright 2011 by the American Geophysical Union.

  15. The negligible chondritic contribution in the lunar soils water.

    PubMed

    Stephant, Alice; Robert, François

    2014-10-21

    Recent data from Apollo samples demonstrate the presence of water in the lunar interior and at the surface, challenging previous assumption that the Moon was free of water. However, the source(s) of this water remains enigmatic. The external flux of particles and solid materials that reach the surface of the airless Moon constitute a hydrogen (H) surface reservoir that can be converted to water (or OH) during proton implantation in rocks or remobilization during magmatic events. Our original goal was thus to quantify the relative contributions to this H surface reservoir. To this end, we report NanoSIMS measurements of D/H and (7)Li/(6)Li ratios on agglutinates, volcanic glasses, and plagioclase grains from the Apollo sample collection. Clear correlations emerge between cosmogenic D and (6)Li revealing that almost all D is produced by spallation reactions both on the surface and in the interior of the grains. In grain interiors, no evidence of chondritic water has been found. This observation allows us to constrain the H isotopic ratio of hypothetical juvenile lunar water to δD ≤ -550‰. On the grain surface, the hydroxyl concentrations are significant and the D/H ratios indicate that they originate from solar wind implantation. The scattering distribution of the data around the theoretical D vs. (6)Li spallation correlation is compatible with a chondritic contribution <15%. In conclusion, (i) solar wind implantation is the major mechanism responsible for hydroxyls on the lunar surface, and (ii) the postulated chondritic lunar water is not retained in the regolith.

  16. Multi-objective optimization for conjunctive water use using coupled hydrogeological and agronomic models: a case study in Heihe mid-reach (China)

    NASA Astrophysics Data System (ADS)

    LI, Y.; Kinzelbach, W.; Pedrazzini, G.

    2017-12-01

    Groundwater is a vital water resource to buffer unexpected drought risk in agricultural production, which is however apt to unsustainable exploitation due to its open access characteristic and a much underestimated marginal cost. Being a wicked problem of general water resource management, groundwater staying hidden from surface terrain further amplifies difficulties of management. China has been facing this challenge in last decades, particularly in the northern part where irrigated agriculture resides despite of scarce surface water available compared to the south. Farmers therefore have been increasingly exploiting groundwater as an alternative in order to reach Chinese food self-sufficiency requirements and feed fast socio-economic development. In this work, we studied Heihe mid-reach located in northern China, which represents one of a few regions suffering from symptoms of unsustainable groundwater use, such as a large drawdown of the groundwater table in some irrigation districts, or soil salinization due to phreatic evaporation in others. In addition, we focus on solving a multi-objective optimization problem of conjunctive water use in order to find an alternative management scheme that fits decision makers' preference. The methodology starts with a global sensitivity analysis to determine the most influential decision variables. Then a state-of-the-art multi-objective evolutionary algorithm (MOEA) is employed to search a hyper-dimensional Pareto Front. The aquifer system is simulated with a distributed Modflow model, which is able to capture the main phenomenon of interest. Results show that the current water allocation scheme seems to exploit the water resources in an inefficient way, where areas with depression cones and areas with salinization or groundwater table rise can both be mitigated with an alternative management scheme. When assuming uncertain boundary conditions according to future climate change, the optimal solutions can yield better performance in economical productivity by reducing opportunity cost under unexpected drought conditions.

  17. Annual subsurface transport of a red tide dinoflagellate to its bloom area: Water circulation patterns and organism distributions in the Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, M.A.; Seliger, H.H.

    1978-03-01

    An annual, long range, subsurface transport of Prorocentrum mariae-lebouriae, from the mouth of the Chesapeake Bay to its bloom area in the upper bay, a distance of 240 km, is described and completely documented. Prorocentrum in surface outflowing waters at the mouth of the bay is recruited in late winter into more dense inflowing coastal waters. Strong stratification produced by late winter--early spring surface runoff results in the development of a stable pycnocline. Prorocentrum, now in northward-flowing bottom waters, is retained in these bottom waters. It accumulates in a subsurface concentration maximum below the pycnocline and is transported northward tomore » reach its bloom area in the Patapsco River and north of the Bay Bridge by late spring. The rapidly decreasing depth of the upper bay causes the pycnocline to rise, mixing the previously light-limited Prorocentrum and its nutrient-rich bottom waters to the surface, where rapid growth ensues. Once the dinoflagellate is in surface waters, positive phototaxis, combined with both wind- and tide-driven surface convergences, produce dense surface patches or red tides. Prorocentrum is effectively retained in the bay until late winter by sequential inoculation into the tributary estuaries on the western shore, which exchange relatively slowly with bay waters. By late winter the annual cycle is complete. Prorocentrum is again in surface waters at the mouth of the bay where it is reintroduced into northward-flowing bottom waters. The mechanisms described provide a key to understanding the origins of subsurface chlorophyll maxima and the delivery of toxic dinoflagellates to coastal bloom areas.« less

  18. Using a Spectral Method to Evaluate Hyporheic Exchange and its Effect on Reach Scale Nitrate Removal.

    NASA Astrophysics Data System (ADS)

    Moren, I.; Worman, A. L. E.; Riml, J.

    2017-12-01

    Previous studies have shown that hyporheic exchange processes can be of great importance for the transport, retention and mass removal of nutrients in streams. Specifically, the flow of surface water through the hyporheic zone enhances redox-sensitive reactions such as coupled nitrification-denitrification. This self-cleaning capacity of streams can be utilized in stream restoration projects aiming to improve water quality by reconstructing the geomorphology of the streams. To optimize the effect of restoration actions we need quantitative understanding of the linkage between stream geomorphology, hyporheic exchange processes and the desired water quality targets. Here we propose an analytical, spectral methodology to evaluate how different stream geomorphologies induce hyporheic exchange on a wide range of spatial and temporal scales. Measurements of streambed topographies and surface water profiles from agricultural streams were used to calculate the average hyporheic exchange velocity and residence times and the result was compared with in-stream tracer test. Furthermore, the hyporheic exchange induced by steps in the surface water profile was derived as a comparison of the theoretical capacity of the system. Based on differences in hyporheic exchange, the mass removal of nitrate could be derived for the different geomorphologies. The maximum nitrate mass removal was found to be related to a specific Damkhöler number, which reflects that the mass removal can be either reaction or transport controlled. Therefore, although hyporheic exchange induced by steps in the surface water profile was generally larger than the hyporheic exchange in the observed natural reaches, this would not necessarily lead a larger nitrate mass removal provided that the hyporheic residence times are not long enough to facilitate denitrification processes. The study illustrates the importance to investigate a stream thoroughly before any remediation actions are implemented, specifically to evaluate if the mass removal is reaction or transport controlled.

  19. Geology and hydrology between Lake McMillan and Carlsbad Springs, Eddy County, New Mexico

    USGS Publications Warehouse

    Cox, Edward Riley

    1967-01-01

    The hydrology of the Pecos River valley between Lake McMillan and Carlsbad Springs, Eddy County, N. Mex., is influenced by facies changes in rocks of Permian age. Water stored for irrigation leaks from Lake McMillan into evaporite rocks, principally gypsum, of the Seven Rivers Formation and from Lake Avalon into carbonate rocks of the Tansill Formation. This leakage returns to the Pecos River at Major Johnson Springs and Carlsbad Springs. The river has perennial flow between Major Johnson Springs and Lake Avalon, but it loses water into evaporite rocks of the Yates Formation in this reach. Ground-water movement is generally toward the Pecos River in aquifers in the Pecos River valley except in the Rustler Formation east of the river where it moves southeastward toward playas east of Lake Avalon. The chloride content of ground and surface waters indicates that surface water moves from some reaches of the Pecos River and from surface-storage reservoirs to aquifers and also indicates the degree of mixing of ground and surface waters. About 45,000 acre-feet of ground water is stored in highly permeable rocks in a 3-mile wide part of the Seven Rivers Formation between Lake McMillan and Major Johnson Springs. This water in storage comes from leakage from Lake McMillan and from alluvium north of the springs. The flow of Major Johnson Springs is derived from this aquifer. That part of the flow derived from the alluvium north of the springs averaged 13 cfs (cubic feet per second) from 1953 through 1959 ; about 8 cfs of this flow had not been previously measured at gaging stations on the Pecos River and its tributaries. The most favorable plans for increasing terminal storage of the Carlsbad Irrigation District are to construct a dam at the Brantley site (at the downstream end of Major Johnson Springs), or to use underground storage in the permeable Seven Rivers Formation between Lake McMillan and Major Johnson brings in conjunction with surface storage. To avoid excessive leakage from a reservoir at the Brantley site, the dam should be downstream from all sprints in the Major Johnson Springs area but upstream from a point where the river begin losing water to the Yates Formation.

  20. Overview of surface-water resources at the U.S. Coast Guard Support Center Kodiak, Alaska, 1987-89

    USGS Publications Warehouse

    Solin, G.L.

    1996-01-01

    Hydrologic data at a U.S. Coast Guard Support Center on Kodiak Island, Alaska, were collected from 1987 though 1989 to determine hydrologic conditions and if contamination of soils, ground water, or surface water has occurred. This report summarizes the surface-water-discharge data collected during the study and estimates peak, average, and low-flow values for Buskin River near its mouth. Water-discharge measurements were made at least once at 48 sites on streams in or near the Center. Discharges were measured in the Buskin River near its mouth five times during 1987-89 and ranged from 27 to 367 cubic feet per second. Tributaries of Buskin River below Buskin Lake that had discharges greater than 1 cubic foot per second include Bear Creek, Alder Creek, Magazine Creek, Devils Creek and an outlet from Lake Louise. Streams having flows generally greater than 0.1 cubic foot per second but less than 1 cubic foot per second include an unnamed tributary to Buskin River, an unnamed tributary to Lake Catherine and a drainage channel at Kodiak airport. Most other streams flowing into Buskin River, and all streams on Nyman Peninsula, usually had little or no flow except during periods of rainfall or snowmelt. During a low-flow period in February 1989, discharge measurements in Buskin River and its tributaries indicate that three reaches of Buskin River below Buskin Lake lost water to the ground-water system, whereas two reaches gained water; the net gain in streamflow attributed to ground-water inflow at a location near the mouth was estimated to be 2.2 cubic feet per second. The 100-year peak flow for Buskin River near its mouth was estimated to be 4,460 cubic feet per second. Average discharge was estimated to be 125 cubic feet per second and the 7-day 10-year low flow was estimated to be 5.8 cubic feet per second.

  1. Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-based Electrode for Water Oxidation.

    PubMed

    Guo, Dingyi; Qi, Jing; Zhang, Wei; Cao, Rui

    2017-01-20

    The slow kinetics of water oxidation greatly jeopardizes the efficiency of water electrolysis for H 2 production. Developing highly active water oxidation electrodes with affordable fabrication costs is thus of great importance. Herein, a Ni II Fe III surface species on Ni metal substrate was generated by electrochemical modification of Ni in a ferrous solution by a fast, simple, and cost-effective procedure. In the prepared Ni II Fe III catalyst film, Fe III was incorporated uniformly through controlled oxidation of Fe II cations on the electrode surface. The catalytically active Ni II originated from the Ni foam substrate, which ensured the close contact between the catalyst and the support toward improved charge-transfer efficiency. The as-prepared electrode exhibited high activity and long-term stability for electrocatalytic water oxidation. The overpotentials required to reach water oxidation current densities of 50, 100, and 500 mA cm -2 are 276, 290, and 329 mV, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. National Hydrography Dataset (NHD)

    USGS Publications Warehouse

    ,

    2001-01-01

    The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000 scale and exists at that scale for the whole country. High resolution NHD adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Like the 1:100,000-scale NHD, high resolution NHD contains reach codes for networked features and isolated lakes, flow direction, names, stream level, and centerline representations for areal water bodies. Reaches are also defined to represent waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria set out by the Federal Geographic Data Committee.

  3. Water resources in the Big Lost River Basin, south-central Idaho

    USGS Publications Warehouse

    Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.

    1970-01-01

    The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the ground into the surface streams. Large quantities of water disappear in the Chilly, Darlington, and other sinks and reappear above Mackay Narrows, above Moore Canal heading, and in other reaches. A cumulative summary of water yield upstream from selected points in the basin is as follows : Above Howell Ranch: water yield: 345 cfs; surface water: 310 cfs; ground water: 35 cfs Above. Mackay Narrows water yield: 450 cfs; surface water: 325 cfs; ground water: 75 cfs; crop evapotranspiration: 50 cfs Above Arco: water yield: 650 cfs; surface water: 75 cfs; ground water: 425 cfs; crop evapotranspiration: 150 cfs Ground-water pumping affects streamflow in reaches , where the stream and water table are continuous, but the effects of pumping were not measured except locally. Pumping depletes the total water supply by the. amount of the pumped water that is evapotranspired by crops. The part of the pumped water that is not consumed percolates into the ground or runs off over the land surface to the stream. The estimated 425 cfs that leaves the basin as ground-water flow is more than adequate for present and foreseeable needs. However because much of the outflow occurs at considerable depth, the quantity that is salvageable is unknown. Both the surface and ground waters are of good quality and are suitable for most uses. Although these waters are low in total dissolved solids, they tend to be hard or very hard.

  4. In-channel Restoration Structures and the Implications on Hyporheic Exchange: a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Han, B.; Chu, H. H.; Endreny, T. A.

    2014-12-01

    In-channel structures, i.e. cross-vanes and J-hooks, are commonly installed in river restoration projects to modify the streambed morphology and stream water surface profile, and are known to change hyporhiec exchange flux and habitats for riverine animals. However, few studies have continuous and accurate pre- and post-treatment data to evaluate the impact of these structures on channel hydraulic gradients and morphology. To quantify the effects of in-channel structures, we developed a scaled physical model of a meandering stream with a cross-vane and 6 J-hooks on a mobile-bed river table. Close-range photogrammetry technique was applied to obtain 3-D water and ground surface profiles with sub-millimeter vertical accuracy and horizontal resolution. The experiment was compared with a control experiment without structures while maintaining the same initial conditions of river bed, floodplain and stream flow. Results indicated that the cross-vane caused an average local head loss that represented 16% of the total stream reach head loss, and a 74% increase in channel load in the entire stream reach. Most J-hooks can create stepwise patterns in stream longitudinal profile, and cross-vane can create even more significant ones. Hydraulic gradients across the intra-meander zone also increased with in-channel structures, i.e. from 2.5% to 3.5% at the meander neck. Scour pools developed downstream of the cross-vane, and mostly around the 4 meander apex J-hooks at their hooked tip. Backwater caused by the cross-vane steepened the local water table profile by an additional 4.2%, and was the primary driver of statistically significant hydraulic gradient increase. Reach scale water and streambed surface profiles from our study provided detailed data to improve the understanding of in-channel structure effects, and may serve as reliable data source in computational modeling of hyporheic exchange.

  5. Energy Landscape of Water and Ethanol on Silica Surfaces

    DOE PAGES

    Wu, Di; Guo, Xiaofeng; Sun, Hui; ...

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δh ads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually untilmore » reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less

  6. LiDAR-Derived Flood-Inundation Maps for Real-Time Flood-Mapping Applications, Tar River Basin, North Carolina

    USGS Publications Warehouse

    Bales, Jerad D.; Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia

    2007-01-01

    Flood-inundation maps were created for selected streamgage sites in the North Carolina Tar River basin. Light detection and ranging (LiDAR) data with a vertical accuracy of about 20 centimeters, provided by the Floodplain Mapping Information System of the North Carolina Floodplain Mapping Program, were processed to produce topographic data for the inundation maps. Bare-earth mass point LiDAR data were reprocessed into a digital elevation model with regularly spaced 1.5-meter by 1.5-meter cells. A tool was developed as part of this project to connect flow paths, or streams, that were inappropriately disconnected in the digital elevation model by such features as a bridge or road crossing. The Hydraulic Engineering Center-River Analysis System (HEC-RAS) model, developed by the U.S. Army Corps of Engineers, was used for hydraulic modeling at each of the study sites. Eleven individual hydraulic models were developed for the Tar River basin sites. Seven models were developed for reaches with a single gage, and four models were developed for reaches of the Tar River main stem that receive flow from major gaged tributaries, or reaches in which multiple gages were near one another. Combined, the Tar River hydraulic models included 272 kilometers of streams in the basin, including about 162 kilometers on the Tar River main stem. The hydraulic models were calibrated to the most current stage-discharge relations at 11 long-term streamgages where rating curves were available. Medium- to high-flow discharge measurements were made at some of the sites without rating curves, and high-water marks from Hurricanes Fran and Floyd were available for high-stage calibration. Simulated rating curves matched measured curves over the full range of flows. Differences between measured and simulated water levels for a specified flow were no more than 0.44 meter and typically were less. The calibrated models were used to generate a set of water-surface profiles for each of the 11 modeled reaches at 0.305-meter increments for water levels ranging from bankfull to approximately the highest recorded water level at the downstream-most gage in each modeled reach. Inundated areas were identified by subtracting the water-surface elevation in each 1.5-meter by 1.5-meter grid cell from the land-surface elevation in the cell through an automated routine that was developed to identify all inundated cells hydraulically connected to the cell at the downstream-most gage in the model domain. Inundation maps showing transportation networks and orthoimagery were prepared for display on the Internet. These maps also are linked to the U.S. Geological Survey North Carolina Water Science Center real-time streamflow website. Hence, a user can determine the near real-time stage and water-surface elevation at a U.S. Geological Survey streamgage site in the Tar River basin and link directly to the flood-inundation maps for a depiction of the estimated inundated area at the current water level. Although the flood-inundation maps represent distinct boundaries of inundated areas, some uncertainties are associated with these maps. These are uncertainties in the topographic data for the hydraulic model computational grid and inundation maps, effective friction values (Manning's n), model-validation data, and forecast hydrographs, if used. The Tar River flood-inundation maps were developed by using a steady-flow hydraulic model. This assumption clearly has less of an effect on inundation maps produced for low flows than for high flows when it typically takes more time to inundate areas. A flood in which water levels peak and fall slowly most likely will result in more inundation than a similar flood in which water levels peak and fall quickly. Limitations associated with the steady-flow assumption for hydraulic modeling vary from site to site. The one-dimensional modeling approach used in this study resulted in good agreement between measurements and simulations. T

  7. AirSWOT: A New Airborne Instrument for Hydrology

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Behar, A.; Carswell, J.; Chu, V.; Farquharson, G.; Gleason, C. J.; Hensley, S.; Minear, J. T.; Moller, D.; Pavelsky, T.; Perkovic-Martin, D.; Pitcher, L. H.; Sanchez-Barmetty, M.; Smith, L. C.; Wu, X.

    2013-12-01

    The proposed NASA/CNES/CSA Surface Water and Ocean Topography (SWOT) Mission would provide the first global inventory of storage change in fresh water bodies and river discharge. The SWOT mission would produce elevation maps and imagery of all surface water bodies using Ka-band SAR interferometry. From these data, estimates of surface water extent, stage and slope could be derived, and, in theory, from their temporal variability, river bathymetry and Manning's roughness coefficient can also be estimated, enabling estimates of river discharge. Although significant modeling work and some empirical measurements have been used to validate the feasibility of turning SWOT observables into hydrologic measurements of storage change and discharge, no data have been collected using SWOT-like measurements. To overcome this limitation, a new airborne interferometric system, called AirSWOT, has been developed by Remote Sensing Solutions and integrated, tested, and deployed on the NASA Dryden King Air B200 by the Jet Propulsion Laboratory. As part of the validation of AirSWOT, four data collections were devoted to hydrology targets. The first hydrology target consisted of a large reach of the Sacramento River north of Sacramento, CA. The reach was imaged on consecutive days, coincident with a 1,000 cubic-feet/second release from a dam. Ground data were obtained from HOBO water level loggers and gauges deployed by the USGS. An innovative GPS drifter capable of providing centimeter-level elevation measurements and river slopes was developed by UCLA/JPL and deployed along a significant fraction of the reach. The second target was the Sacramento-San Joaquin Delta region, imaged at low and high tides during the same day. For both targets, APL-UW deployed an airborne instrument suite consisting of an along-track interferometer to measure water surface velocities, a thermal infrared camera to validate measurements of river width, and an experimental lidar system. Finally, a team from UCLA, UNC, and JPL collected in situ phenology and pressure transducer data for both sites. In this work, we use the in situ data to validate AirSWOT's ability to measure hydrology parameters. The ability to identify water bodies and estimate river width will be assessed via comparisons with the optical imagery, as well as point measurements. Elevation measurements are validated against the HOBO's, pressure transducers, and the GPS drifter. The GPS drifter also provides a unique resource for validating AirSWOT's ability to measure river slope and its changes. Finally, we use AirSWOT data to validate assumptions made by the SWOT mission regarding the radar brightness of water and land, the ability to resolve water from land, and the ability to form high-resolution images of rivers. These assumptions, which to date have only a limited empirical basis, are key for assessing SWOT's ability to meet its science goals.

  8. Soil-water content characterisation in a modified Jarvis-Stewart model: A case study of a conifer forest on a shallow unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Guyot, Adrien; Fan, Junliang; Oestergaard, Kasper T.; Whitley, Rhys; Gibbes, Badin; Arsac, Margaux; Lockington, David A.

    2017-01-01

    Groundwater-vegetation-atmosphere fluxes were monitored for a subtropical coastal conifer forest in South-East Queensland, Australia. Observations were used to quantify seasonal changes in transpiration rates with respect to temporal fluctuations of the local water table depth. The applicability of a Modified Jarvis-Stewart transpiration model (MJS), which requires soil-water content data, was assessed for this system. The influence of single depth values compared to use of vertically averaged soil-water content data on MJS-modelled transpiration was assessed over both a wet and a dry season, where the water table depth varied from the surface to a depth of 1.4 m below the surface. Data for tree transpiration rates relative to water table depth showed that trees transpire when the water table was above a threshold depth of 0.8 m below the ground surface (water availability is non-limiting). When the water table reached the ground surface (i.e., surface flooding) transpiration was found to be limited. When the water table is below this threshold depth, a linear relationship between water table depth and the transpiration rate was observed. MJS modelling results show that the influence of different choices for soil-water content on transpiration predictions was insignificant in the wet season. However, during the dry season, inclusion of deeper soil-water content data improved the model performance (except for days after isolated rainfall events, here a shallower soil-water representation was better). This study demonstrated that, to improve MJS simulation results, appropriate selection of soil water measurement depths based on the dynamic behaviour of soil water profiles through the root zone was required in a shallow unconfined aquifer system.

  9. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China.

    PubMed

    Wang, Wenfeng; Ndungu, Anne Wairimu; Li, Zhen; Wang, Jun

    2017-01-01

    Microplastics have been considered as an emerging pollutant in the aquatic environment. However, research about microplastic pollution in inland freshwaters of China is insufficient. The present study investigated the levels of microplastics in surface water of 20 urban lakes and urban reaches of the Hanjiang River and Yangtze River of Wuhan, the largest city in central China. Microplastic concentrations ranged from 1660.0±639.1 to 8925±1591n/m 3 for the studied waters, with the highest concentration found in Bei Lake. Microplastic abundance in lakes varied markedly in space, and negatively correlated with the distance from the city center (p<0.001), which confirmed the important role of anthropogenic factors in microplastic distribution. Urban reaches of the Hanjiang River and Yangtze River were found to have relatively lower levels of microplastics than most of the studied lakes. The major type of microplastics among the studied waters was colored plastic, with fiber being the most frequent shape. More than 80% of microplastics in number had a size of <2mm. Polyethylene terephthalate and polypropylene were the dominant polymer-types of microplastics analyzed. This study provided important reference for better understanding microplastic levels in inland freshwaters. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Field data describing the movement and storage of sediment in the East Fork River, Wyoming; Part I, River hydraulics and sediment transport, 1979

    USGS Publications Warehouse

    Emmett, William W.; Myrick, Robert M.; Meade, Robert H.

    1980-01-01

    Bed-material gradation and water-surface slope were determined for a 3.3-kilometer reach of East Fork River, Wyo. During peak snowmelt runoff, frequent measurements of water discharge and sediment-transport rate provided data describing the inflow and outflow of water and sediment. In spring 1979, bankfull stage was exceeded on 8 days. Maximum discharge was about 32 cubic meters per second, which has a recurrence interval of about 2 years. The median particle size of bed material is 1.28 millimeters; the 35 and 65 percentiles are represented by diameters of 0.50 and 2.88 millimeters, respectively. The average water-surface slope in the reach is 0.0007 and varies little with river stage. Bedload-transport rates ranged from a little less than 0.001 to a little more than 0.1 kilograms per meter of channel width per second. Median bedload grain size, with several exceptions, ranged from 0.4 to 1.5 millimeters. Gravel-size particles generally constituted 10 to 40% of the bedload. Suspended-sediment concentrations ranged from 6 to 95 milligrams per liter. Suspended sediment smaller than sand constited about half the measured suspended sediment, ranging from 17 to 81%. (USGS)

  11. [Ammonia volatilization loss of nitrogen fertilizer from rice field and wet deposition of atmospheric nitrogen in rice growing season].

    PubMed

    Su, Chengguo; Yin, Bin; Zhu, Zhaoliang; Shen, Qirong

    2003-11-01

    Plot and field experiments showed that the NH3 volatilization loss from rice field reached its maximum in 1-3 days after N-fertilization, which was affected by the local climate conditions (e.g., sun illumination, temperature, humidity, wind speed, and rainfall), fertilization time, and ammonium concentration in surface water of the rice field. The wet deposition of atmospheric nitrogen was correlated with the application rate of N fertilizer and the rainfall. The amount of nitrogen brought into soil or surface water by the wet deposition in rice growing season reached 7.5 kg.hm-2. The percent of NH4(+)-N in the wet deposition was about 39.8%-73.2%, with an average of 55.5%. There was a significant correlation of total ammonia volatilization loss with the average concentration of NH4(+)-N in wet deposition and total amount of wet deposition in rice growing season.

  12. Glacial moulin formation triggered by rapid lake drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Matt

    Scientists at Los Alamos National Laboratory and collaborators are uncovering the mystery of how, where and when a glacial feature called a moulin can form on the Greenland Ice Sheet. Moulins, drain-like holes that form in glaciers, funnel meltwater from the ice surface to the ground beneath, and they are the alarmingly efficient conduits that allow surface water to reach deep and drive the ice to flow faster.

  13. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater-facility-impacted stream reach.

    PubMed

    Bradley, Paul M; Barber, Larry B; Clark, Jimmy M; Duris, Joseph W; Foreman, William T; Furlong, Edward T; Givens, Carrie E; Hubbard, Laura E; Hutchinson, Kasey J; Journey, Celeste A; Keefe, Steffanie H; Kolpin, Dana W

    2016-10-15

    Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem. Published by Elsevier B.V.

  14. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater‑facility-impacted stream reach

    USGS Publications Warehouse

    Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.

    2016-01-01

    Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.

  15. [Hydrochemistry and Dissolved Inorganic Carbon Stable Isotope of Shibing Dolomite Karst Area in Guizhou Province].

    PubMed

    Xiao, Shi-zhen; Lan, Jia-cheng; Yuan, Dao-xian; Wang, Yun; Yang, Long; Ao, Xiang-hong

    2015-06-01

    Totally 49 water samples were collected in Shibing Dolomite Karst World Natural Heritage Site in Guizhou Province to analyze the characteristics and controlling factors of both the surface and underground waters, as well as the features and their origins of the dissolved inorganic carbon isotope. It was found that the pH of the study area was neutral to alkaline with low concentrations of total dissolved solids. The cations were dominated by Ca2+, Mg2 and anions by HCO3-, featured by HCO3-Ca x Mg type water. The ratios of Cl-, NO3- and SO4(2-) in the allogenic water from the shale area in the northern catchment were higher than those in autogenic water from the dolomite karst area, so did the concentration of Si. The SIc and SId of the allogenic waters in the shale area were negative. After the waters entered into and flew by the dolomite karst area, both the SIc and SId increased to over 0. It could be told by the water chemistry that the hydrochemistry was little impacted by the rainfall and human activities. The Gibbs plot revealed that the chemical composition of the waters was mainly controlled by rock weathering. The δ(13)C(DIC) of the surface waters ranged from -8.27% to -11.55% per hundred, averaging -9.45% per hundredo, while that of the underground waters ranged from -10.57% per hundred to -15.59% per hundred, averaging -12.04% per hundred, which was lighter than that of surface water. For the distribution features, it was found the δ(13)C(DIC), of the upper reaches of branches of Shangmuhe River was lighter than that of the lower reach, while that of the main river Shangmuhe River was relatively complex. Based on the mass balance of stable isotopes and the δ(13)C(DIC), the ratio of the origin of DIC of the ground water was calculated. It was found that 51.2% was from soil CO2, and 48.8% was from the rock itself.

  16. Landscape resistance to frog movements

    USGS Publications Warehouse

    Mazerolle, M.J.; Desrochers, A.

    2005-01-01

    An animal's capacity to recolonize a patch depends on at least two components: its ability to detect the patch and its ability to reach it. However, the disruption of such processes by anthropic disturbances could explain low animal abundance patterns observed by many investigators in certain landscapes. Through field experiments, we compared the orientation and homing success of northern green frogs (Rana clamitans melanota Rafinesque, 1820) and northern leopard frogs (Rana pipiens Schreber, 1782) translocated across disturbed or undisturbed surfaces. We also monitored the path selected by individuals when presented with a choice between a short distance over a disturbed surface and a longer, undisturbed route. Finally, we measured the water loss and behaviour of frogs on substrates resulting from anthropogenic disturbances and a control. When presented with a choice, 72% of the frogs avoided disturbed surfaces. Although able to orient towards the pond of capture when translocated on disturbed surfaces, frogs had a lower probability of homing successfully to the pond than when translocated at a similar distance on an undisturbed surface. Frogs lost the most water on substrates associated with disturbance and in the absence of cover. Our data illustrate that anthropically disturbed areas devoid of cover, such as mined peatlands and agricultural fields, disrupt the ability of frogs to reach habitat patches and are likely explanations to their reduced abundance patterns in such environments. ?? 2005 NRC Canada.

  17. Air-water CO2 and CH4 fluxes along a river-reservoir continuum: Case study in the Pengxi River, a tributary of the Yangtze River in the Three Gorges Reservoir, China.

    PubMed

    Huang, Yang; Yasarer, Lindsey M W; Li, Zhe; Sturm, Belinda S M; Zhang, Zengyu; Guo, Jinsong; Shen, Yu

    2017-05-01

    Water surface greenhouse gas (GHG) emissions in freshwater reservoirs are closely related to limnological processes in the water column. Affected by both reservoir operation and seasonal changes, variations in the hydro-morphological conditions in the river-reservoir continuum will create distinctive patterns in water surface GHG emissions. A one-year field survey was carried out in the Pengxi River-reservoir continuum, a part of the Three Gorges Reservoir (TGR) immediately after the TGR reached its maximum water level. The annual average water surface CO 2 and CH 4 emissions at the riverine background sampling sites were 6.23 ± 0.93 and 0.025 ± 0.006 mmol h -1  m -2 , respectively. The CO 2 emissions were higher than those in the downstream reservoirs. The development of phytoplankton controlled the downstream decrease in water surface CO 2 emissions. The presence of thermal stratification in the permanent backwater area supported extensive phytoplankton blooms, resulting in a carbon sink during several months of the year. The CH 4 emissions were mainly impacted by water temperature and dissolved organic carbon. The greatest water surface CH 4 emission was detected in the fluctuating backwater area, likely due to a shallower water column and abundant organic matter. The Pengxi River backwater area did not show significant increase in water surface GHG emissions reported in tropical reservoirs. In evaluating the net GHG emissions by the impoundment of TGR, the net change in the carbon budget and the contribution of nitrogen and phosphorus should be taken into consideration in this eutrophic river-reservoir continuum.

  18. Spatial-temporal variations of phosphorus fractions in surface water and suspended particles in the Daliao River Estuary, Northeast China.

    PubMed

    Zhang, Lei; Qin, Yanwen; Han, Chaonan; Cao, Wei; Ma, Yingqun; Shi, Yao; Liu, Zhichao; Yang, Chenchen

    2016-08-01

    The transport and storage of phosphorus in estuary is a complex biogeochemical process as the result of the convergence of fresh and saline water. The objective of the current study is to investigate the spatial-temporal variations of phosphorus fractions in surface water and suspended particles of Daliao River Estuary, China. Samples were collected in August (wet season) and November (dry season), 2013. The results showed that total particulate phosphorus (TPP) in water accounted for more than 50 % of the total phosphorus (TP). Meanwhile, in suspended particles, more than 62 % of particulate phosphorus was in the form of bioavailable phosphorus, including exchangeable phosphorus (Exc-P), extractable organic phosphorus (Exo-P), and iron-bound phosphorus (Fe-P), which meant that the potential impacts of bioavailable phosphorus in suspended particles on estuarine water environment cannot be ignored. There were significantly seasonal variations of phosphorus fractions in the Daliao River Estuary. The concentrations of phosphorus fractions in water in wet season were much lower than that in dry season because of the dilution effect of larger rainfall in wet season. In addition, spatial distribution characteristics of phosphorus fractions were also obvious. Due to terrigenous phosphorus input from the upstream of tidal reach and seawater dilution effect in coastal estuary, total dissolved phosphorus (TDP) concentrations in water gradually decreased from tidal reach to coastal estuary. However, the concentrations of TPP and TP in water and Exo-P in suspended particles presented spatial fluctuation, and these were greatly attributed to sediment re-suspension in coastal estuary.

  19. Rapid temperature increase near the anode and cathode in the afterglow of a pulsed positive streamer discharge

    NASA Astrophysics Data System (ADS)

    Ono, Ryo

    2018-06-01

    The spatiotemporal evolution of the temperature in the afterglow of point-to-plane, pulsed positive streamer discharge was measured near the anode tip and cathode surface using laser-induced predissociation fluorescence of OH radicals. The temperature exhibited a rapid increase and displayed a steep spatial gradient after a discharge pulse. The rate of temperature rise reached 84 K μs‑1 at mm, where z represents the distance from the anode tip. The temperature rise was much faster than in the middle of the gap; it was only 2.8 K μs‑1 at mm. The temperature reached 1700 K near the anode tip at s and 1500 K near the cathode surface at s, where t represents the postdischarge time. The spatial gradient reached 1280 K mm‑1 near the anode tip at s. The mechanism responsible for the rapid temperature increase was discussed, including rapid heating of the gas in the early postdischarge phase (s), and vibration-to-translation energy transfer in the later postdischarge phase (s). The high temperatures near the anode tip and cathode surface are particularly important for the ignition of combustible mixtures and for surface treatments, including solid-surface treatments, water treatments, and plasma medicine using pulsed streamer discharges.

  20. ERTS-1 observes algal blooms in Lake Erie and Utah Lake

    NASA Technical Reports Server (NTRS)

    Strong, A. E.

    1973-01-01

    During late summer when the surface waters of Lake Erie reach their maximum temperature an algal bloom is likely to develop. Such phenomena have been noticed on other shallow lakes using ERTS-1 and characterize eutrophic conditions. The concentration of the algae into long streamers provides additional information on surface circulations. To augment the ERTS-1 MSS data of Lake Erie an aircraft was flown to provide correlative thermal-IR and additional multiband photographs. The algal bloom is highly absorptive in the visible wavelengths but reverses contrast with the surrounding water in the near-IR bands. The absorption of shortwave energy heats the dark brown algal mass, providing a hot surface target for the thermal-IR scanner.

  1. Streamflow gains and losses along San Francisquito Creek and characterization of surface-water and ground-water quality, southern San Mateo and northern Santa Clara counties, California, 1996-97

    USGS Publications Warehouse

    Metzger, Loren F.

    2002-01-01

    San Francisquito Creek is an important source of recharge to the 22-square-mile San Francisquito Creek alluvial fan ground-water subbasin in the southern San Mateo and northern Santa Clara Counties of California. Ground water supplies as much as 20 percent of the water to some area communities. Local residents are concerned that infiltration and consequently ground-water recharge would be reduced if additional flood-control measures are implemented along San Francisquito Creek. To improve the understanding of the surface-water/ground-water interaction between San Francisquito Creek and the San Francisquito Creek alluvial fan, the U.S. Geological Survey (USGS) estimated streamflow gains and losses along San Francisquito Creek and determined the chemical quality and isotopic composition of surface and ground water in the study area.Streamflow was measured at 13 temporary streamflow-measurement stations to determine streamflow gains and losses along a 8.4-mile section of San Francisquito Creek. A series of five seepage runs between April 1996 and May 1997 indicate that losses in San Francisquito Creek were negligible until it crossed the Pulgas Fault at Sand Hill Road. Streamflow losses increased between Sand Hill Road and Middlefield Road where the alluvial deposits are predominantly coarse-grained and the water table is below the bottom of the channel. The greatest streamflow losses were measured along a 1.8-mile section of the creek between the San Mateo Drive bike bridge and Middlefield Road; average losses between San Mateo Drive and Alma Street and from there to Middlefield Road were 3.1 and 2.5 acre-feet per day, respectively.Downstream from Middlefield Road, streamflow gains and losses owing to seepage may be masked by urban runoff, changes in bank storage, and tidal effects from San Francisco Bay. Streamflow gains measured between Middlefield Road and the 1200 block of Woodland Avenue may be attributable to urban runoff and (or) ground-water inflow. Water-level measurements from nearby wells indicate that the regional water table may coincide with the channel bottom along this reach of San Francisquito Creek, particularly during the winter and early spring when water levels usually reach their maximum. Streamflow losses resumed below the 1200 block of Woodland Avenue, extending downstream to Newell Road. Discharge from a large storm drain between Newell Road and East Bayshore Road may account for the streamflow gains measured between these sites. Streamflow gains were measured between East Bayshore Road and the Palo Alto Municipal Golf Course, but this reach is difficult to characterize because of the probable influence of high tides.Estimated average streamflow losses totaled approximately 1,050 acre-feet per year for the reaches between USGS stream gage 11164500 at Stanford University (upstream of Junipero Serra Boulevard) and the Palo Alto Municipal Golf Course, including approximately 595 acre-feet per year for the 1.8-mile section between San Mateo Drive and Middlefield Road. Approximately 58 percent, or 550 acre-feet, of the total estimated average annual recharge from San Francisquito Creek occurs between the San Mateo Drive and Middlefield Road sites.The chemical composition of San Francisquito Creek water varies as a function of seasonal changes in hydrologic conditions. Measurements of specific conductance indicate that during dry weather and low flow, the dissolved-solids concentrations tends to be high, and during wet weather, the concentration tends to be low owing to dilution by surface water. Compared with water samples from upstream sites at USGS stream gage 11164500 and San Mateo Drive, the samples from the downstream sites at Alma Street and Woodland Avenue had low specific conductance; low concentrations of magnesium, sodium, sulfate, chloride, boron, and total dissolved solids; high nutrient concentrations; and light isotopic compositions indicating that urban runoff constitutes most of the streamflow

  2. Influence of Superhydrophobic Properties on Deicing

    NASA Astrophysics Data System (ADS)

    Nazhipkyzy, M.; Mansurov, Z. A.; Amirfazli, A.; Esbosin, A.; Temirgaliyeva, T. S.; Lesbayev, B. T.; Aliyev, E. T.; Prikhodko, N. G.

    2016-11-01

    Nowadays the creation of anti-icing, or deicing, surfaces is one of the most important problems, as such surfaces are widely used in aeronautics, wind turbines, and telecommunication antennas. In this paper, we focus mainly on reducing the ice adhesion forces and easy ice removal, once ice has formed. Removal of a liquid from a surface can be provided by modification of the surface wettability by means of applying superhydrophobic coatings. Such coatings are water-resistant, i.e., are characterized by low water adhesion forces. To study the impact of superhydrophobic coatings, tests were performed on the surface of a wing in a wind tunnel. By spraying Teflon and polyphenylene sulfide (PPS) on the wing, we obtained a superhydrophobic film. This film has a structure that provides superhydrophobic properties, so that the wetting angle is above 140°. A comparison of the resulting surface with a clean Teflon one shows that adhesion of the Teflon + PPS mixture to an aluminum surface is five times higher. We also investigate the degree of ice formation on the surfaces of simple and superhydrophobic aircraft wings at a temperature of -18°C. It was shown that ice was formed on a simple wing within 40 s and on a superhydrophobic wing within 25 s. When the simple wing with a mass of 23 g was inserted into the wind tunnel, its mass reached 50 g, and for a superhydrophobic wing with a mass of 26 g the latter reached 42 g. The sample of the airfoil wing we prepared has a low adhesion, which helps in easy ice removal.

  3. Effects of turbulent hyporheic mixing on reach-scale solute transport

    NASA Astrophysics Data System (ADS)

    Roche, K. R.; Li, A.; Packman, A. I.

    2017-12-01

    Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of flow and mixing over the surface-subsurface continuum must be explicitly considered to properly interpret solute transport in coarse-bed streams.

  4. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data

    NASA Astrophysics Data System (ADS)

    Normandin, Cassandra; Frappart, Frédéric; Lubac, Bertrand; Bélanger, Simon; Marieu, Vincent; Blarel, Fabien; Robinet, Arthur; Guiastrennec-Faugas, Léa

    2018-02-01

    Quantification of surface water storage in extensive floodplains and their dynamics are crucial for a better understanding of global hydrological and biogeochemical cycles. In this study, we present estimates of both surface water extent and storage combining multi-mission remotely sensed observations and their temporal evolution over more than 15 years in the Mackenzie Delta. The Mackenzie Delta is located in the northwest of Canada and is the second largest delta in the Arctic Ocean. The delta is frozen from October to May and the recurrent ice break-up provokes an increase in the river's flows. Thus, this phenomenon causes intensive floods along the delta every year, with dramatic environmental impacts. In this study, the dynamics of surface water extent and volume are analysed from 2000 to 2015 by combining multi-satellite information from MODIS multispectral images at 500 m spatial resolution and river stages derived from ERS-2 (1995-2003), ENVISAT (2002-2010) and SARAL (since 2013) altimetry data. The surface water extent (permanent water and flooded area) peaked in June with an area of 9600 km2 (±200 km2) on average, representing approximately 70 % of the delta's total surface. Altimetry-based water levels exhibit annual amplitudes ranging from 4 m in the downstream part to more than 10 m in the upstream part of the Mackenzie Delta. A high overall correlation between the satellite-derived and in situ water heights (R > 0.84) is found for the three altimetry missions. Finally, using altimetry-based water levels and MODIS-derived surface water extents, maps of interpolated water heights over the surface water extents are produced. Results indicate a high variability of the water height magnitude that can reach 10 m compared to the lowest water height in the upstream part of the delta during the flood peak in June. Furthermore, the total surface water volume is estimated and shows an annual variation of approximately 8.5 km3 during the whole study period, with a maximum of 14.4 km3 observed in 2006. The good agreement between the total surface water volume retrievals and in situ river discharges (R = 0.66) allows for validation of this innovative multi-mission approach and highlights the high potential to study the surface water extent dynamics.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  6. Rainfall and water-level data for a wetland area near Millington, Shelby County, Tennessee, October 1995 through September 1996

    USGS Publications Warehouse

    Knight, R.R.

    1997-01-01

    Rainfall amounts and water levels were collected at a wetland area near Millington, Shelby County, Tennessee, to assist the Tennessee Department of Transportation with a program of wetland restoration. The site is located along a channelized reach of Big Creek Drainage Canal, east of State Route 240, and near the southern boundary of Naval Support Activity Memphis. Rainfall amounts and water levels for the site were recorded from October 1, 1995 to September 30, 1996. Total rainfall for this period was 47.58 inches. In general, water levels at the wetland were above or near the ground surface during the 6-month period from the first of January through the end of June 1996. For the remainder of the year, water levels generally subsided to several feet below land surface. However, some locations within the wetland were wet or highly saturated year round.

  7. Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf

    NASA Astrophysics Data System (ADS)

    Sparrow, K. J.; Kessler, J. D.

    2017-12-01

    In response to climate change, methane can be released to ocean sediments and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown if methane derived from these massive stores of frozen, ancient carbon reaches the atmosphere. We quantified the fraction of methane sourced from ancient carbon in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. While the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that modern sources of methane predominate in surface waters of relatively shallow mid-outer shelf stations. These results suggest that even if there is a heightened liberation of ancient methane as climate change proceeds, oceanic dispersion and oxidation processes can strongly limit its emission to the atmosphere.

  8. Potential for Small Unmanned Aircraft Systems applications for identifying groundwater-surface water exchange in a meandering river reach

    USGS Publications Warehouse

    Pai, H.; Malenda, H.; Briggs, Martin A.; Singha, K.; González-Pinzón, R.; Gooseff, M.; Tyler, S.W.; ,

    2017-01-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here, we describe the use of a suite of high spatial-resolution remote-sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index (NDVI) mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW “shortcutting” through meander necks, which was corroborated by temperature data at the riverbed interface.

  9. Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater-Surface Water Exchange in a Meandering River Reach

    NASA Astrophysics Data System (ADS)

    Pai, H.; Malenda, H. F.; Briggs, M. A.; Singha, K.; González-Pinzón, R.; Gooseff, M. N.; Tyler, S. W.

    2017-12-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here we describe the use of a suite of high spatial resolution remote sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW "shortcutting" through meander necks, which was corroborated by temperature data at the riverbed interface.

  10. Data for calibrating unsteady-flow sediment-transport models, East Fork River, Wyoming, 1975

    USGS Publications Warehouse

    Mahoney, Holly A.; Andrews, Edmund D.; Emmett, William W.; Leopold, Luna Bergere; Meade, Robert H.; Myrick, Robert M.; Nordin, Carl F.

    1976-01-01

    In 1975, data to calibrate a one-dimensional unsteady-flow and sediment-transport routing model were collected on a reach of the East Fork River of western Wyoming. The reach, 3.1 miles (5 kilometers) in length, wan immediately upstream from a previously established bedload sampling station. Nineteen channel cross sections were sounded at regular intervals during the spring-runoff period. Four stage recorders provided continuous records of water-surface elevations. Samples of bed material at most of the cross sections were obtained prior to high water. Streamflow and sediment-discharge measurements were collected at four of the sections.The physiography and hydrology of the contributing watershed, the study reach, and the equipment and techniques used in data collection are described briefly. The bulk of the report is a presentation of data for the several-week period of late May to early June 1975, for which concurrent water discharge data, bedload transport and size data, and cross-section depth measurements were collected. In addition, some data collected in 1973 and 1974 and before and after the calibration period in 1975 are included for completeness.

  11. Areas of gain and loss along the Platte River, central Nebraska, spring 1999

    USGS Publications Warehouse

    Stanton, Jennifer S.

    2000-01-01

    In an effort to protect endangered and other wildlife species, the governors of Nebraska, Colorado, and Wyoming, and the Secretary of the U.S. Department of the Interior signed an agreement in 1997 (Platte River Endangered Species Partnership, 1997) to initiate the development of a basin-wide habitat recovery program for the central reaches of the Platte River in Nebraska.  This agreement recognizes the need to maintain minimal flows in the central reaches of the Platte River.  An understanding of the surface-water and ground-water interaction along the central reaches of the Platte River is critical to deliver water to the targeted habitat areas.  Therefore, a study by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation and the U.S. Fish and Wildlife Service, was conducted to determine qualitatively the areas of gain and loss along the central Platte River between Gothenburg and Silver Creek, Nebraska (fig. 1).  The purpose of this report is to present the results of the study.

  12. Evaluating Riparian and Agricultural Systems as Sinks for Surface Water Nutrients in the Upper Rio Grande

    NASA Astrophysics Data System (ADS)

    Oelsner, G. P.; Brooks, P. D.; Hogan, J. F.; Phillips, F. M.; Villinski, J. E.

    2005-12-01

    We have performed five years of biannual synoptic sampling along a 1200km reach of the Rio Grande to develop relationships between discharge, land use, and major water quality parameters. Both total dissolved nitrogen (TDN) and dissolved organic carbon (DOC) concentrations gradually increase with distance downstream, however for TDN and phosphate this trend is punctuated by large, localized inputs primarily from urban wastewater. Somewhat surprisingly, surface water draining from areas of intensive, irrigated agriculture during the growing season often had lower nutrient and DOC concentrations than the river. To better quantify the effects of urban and agricultural systems on water quality we conducted three years of higher spatial resolution sampling of a 250km reach (between Cochiti Dam and Elephant Butte Reservoir) that contains both major agricultural and urban water users. During the higher flow years of 2001 and 2005 TDN concentrations in the river were higher (x = 1.19mg/L, SD = 0.21) than in the drier years 2002-2004 (x = 0.52mg/L, SD = 0.42). TDN concentrations decreased from 1.97mg/L to 0.78 mg/L in a 5km reach below the Albuquerque wastewater treatment plant during the low discharge year of 2004, but there was little to no decrease in TDN concentrations over the 180km below the wastewater treatment plant in years with higher river discharge. In contrast, water diverted to agricultural fields and returned to the river in drains experienced a 60% reduction in TDN concentrations in dry years and a 30% reduction in wet years compared to initial river water. During the dry years, water in the conveyance channel appears to be a mixture of river and drain water whereas in wetter years the conveyance channel has a lower average TDN concentration than either the river or the drains. These data suggest that the river-riparian-hyporheic system of the Rio Grande can serve at best as a weak N sink, while the combination of agricultural fields and drains serve as a strong nutrient sink. Ongoing research is quantifying the locations and potential rates of N transformation in both the river and agricultural drain systems.

  13. Using heat to characterize streambed water flux variability in four stream reaches

    USGS Publications Warehouse

    Essaid, H.I.; Zamora, C.M.; McCarthy, K.A.; Vogel, J.R.; Wilson, J.T.

    2008-01-01

    Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  14. Simulation of flow and sediment mobility using a multidimensional flow model for the White Sturgeon critical-habitat reach, Kootenai River near Bonners Ferry, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; McDonald, Richard R.; Nelson, Jonathan M.; Dinehart, Randal L.

    2005-01-01

    In 1994, the Kootenai River white sturgeon (Acipenser transmontanus) was listed as an Endangered Species as a direct result of two related observations. First, biologists observed that the white sturgeon population in the Kootenai River was declining. Second, they observed a decline in recruitment of juvenile sturgeon beginning in the 1950s with an almost total absence of recruitment since 1974, following the closure of Libby Dam in 1972. This second observation was attributed to changes in spawning and (or) rearing habitat resulting from alterations in the physical habitat, including flow regime, sediment-transport regime, and bed morphology of the river. The Kootenai River White Sturgeon Recovery Team was established to find and implement ways to improve spawning and rearing habitat used by white sturgeon. They identified the need to develop and apply a multidimensional flow model to certain reaches of the river to quantify physical habitat in a spatially distributed manner. The U.S. Geological Survey has addressed these needs by developing, calibrating, and validating a multidimensional flow model used to simulate streamflow and sediment mobility in the white sturgeon critical-habitat reach of the Kootenai River. This report describes the model and limitations, presents the results of a few simple simulations, and demonstrates how the model can be used to link physical characteristics of streamflow to biological or other habitat data. This study was conducted in cooperation with the Kootenai Tribe of Idaho along a 23-kilometer reach of the Kootenai River, including the white sturgeon spawning reach near Bonners Ferry, Idaho that is about 108 to 131 kilometers below Libby Dam. U.S. Geological Survey's MultiDimensional Surface-Water Modeling System was used to construct a flow model for the critical-habitat reach of the Kootenai River white sturgeon, between river kilometers 228.4 and 245.9. Given streamflow, bed roughness, and downstream water-surface elevation, the model computes the velocity field, water-surface elevations, and boundary shear stress throughout the modeled reach. The 17.5 kilometer model reach was subdivided into two segments on the basis of predominant grain size: a straight reach with a sand, gravel, and cobble substrate located between the upstream model boundary at river kilometer 245.9 and the upstream end of Ambush Rock at river kilometer 244.6, and a meandering reach with a predominately sand substrate located between upstream end of Ambush Rock and the downstream model boundary at river kilometer 228.4. Model cell size in the x and y (horizontal) dimensions is 5 meters by 5 meters along the computational grid centerline with 15 nodes in the z (vertical) dimension. The model was calibrated to historical streamflows evenly distributed between 141.6 and 2,548.9 cubic meters per second. The model was validated by comparing simulated velocities with velocities measured at 15 cross sections during steady streamflow. These 15 cross sections were each measured multiple (7-13) times to obtain velocities suitable for comparison to the model results. Comparison of modeled and measured velocities suggests that the model does a good job of reproducing flow patterns in the river, although some discrepancies were noted. The model was used to simulate water-surface elevation, depth, velocity, bed shear stress, and sediment mobility for Kootenai River streamflows of 170, 566, 1,130, 1,700, and 2,270 cubic meters per second (6,000, 20,000, 40,000, 60,000, and 80,000 cubic feet per second). The three lowest streamflow simulations represent a range of typical river conditions before and since the construction of Libby Dam, and the highest streamflow simulation (2,270 cubic meters per second) is approximately equal to the annual median peak streamflow prior to emplacement of Libby Dam in 1972. Streamflow greater than 566 cubic meters per second were incrementally increased by 570 cubic meters per second. For each

  15. Morphological Analyses and Simulated Flood Elevations in a Watershed with Dredged and Leveed Stream Channels, Wheeling Creek, Eastern Ohio

    USGS Publications Warehouse

    Sherwood, James M.; Huitger, Carrie A.; Ebner, Andrew D.; Koltun, G.F.

    2008-01-01

    The USGS, in cooperation with the Ohio Emergency Management Agency, conducted a study in the Wheeling Creek Basin to (1) evaluate and contrast land-cover characteristics from 2001 with characteristics from 1979 and 1992; (2) compare current streambed elevation, slope, and geometry with conditions present in the late 1980s; (3) look for evidence of channel filling and over widening in selected undredged reaches; (4) estimate flood elevations for existing conditions in both undredged and previously dredged reaches; (5) evaluate the height of the levees required to contain floods with selected recurrence intervals in previously dredged reaches; and (6) estimate flood elevations for several hypothetical dredging and streambed aggradation scenarios in undredged reaches. The amount of barren land in the Wheeling Creek watershed has decreased from 20 to 1 percent of the basin area based on land-cover characteristics from 1979 and 2001. Barren lands appear to have been converted primarily to pasture, presumably as a result of surface-mine reclamation. Croplands also decreased from 13 to 8 percent of the basin area. The combined decrease in barren lands and croplands is approximately offset by the increase in pasture. Stream-channel surveys conducted in 1987 and again in 2006 at 21 sites in four previously dredged reaches of Wheeling Creek indicate little change in the elevation, slope, and geometry of the channel at most sites. The mean change in width-averaged bed and thalweg elevations for the 21 cross sections was 0.1 feet. Bankfull widths, mean depths, and cross-sectional areas measured at 12 sites in undredged reaches were compared to estimates determined from regional equations. The mean percentage difference between measured and estimated bankfull widths was -0.2 percent, suggesting that bankfull widths in the Wheeling Creek Basin are generally about the same as regional averages for undisturbed basins of identical drainage area. For bankfull mean depth and cross-sectional area, the mean percentage differences between the measured and estimated values were -16.0 and -11.2, respectively. The predominantly negative bias in differences between the measured and estimated values indicates that bankfull mean depths and cross-sectional areas in studied reaches generally are smaller than the regional trend. This may be an indication of channel filling and over widening or it may reflect insufficient representation in the regional dataset of basins with characteristics like that of Wheeling Creek. Step-backwater models were constructed for four previously dredged reaches to determine the height of levees required to contain floods with recurrence intervals of 2, 10, 50, and 100 years. Existing levees (all of which are uncertified) were found to contain the 100-year flood at only 20 percent of the surveyed cross sections. At the other 80 percent of the surveyed cross sections, levee heights would have to be raised an average of 2.5 feet and as much as 6.3 feet to contain the 100-year flood. Step-backwater models also were constructed for three undredged reaches to assess the impacts of selected dredging and streambed aggradation scenarios on water-surface elevations corresponding to the 2-, 10-, 50-, and 100-year floods. Those models demonstrated that changes in water-surface elevations associated with a given depth of dredging were proportionately smaller for larger floods due to the fact that more of the flood waters are outside of the main channel. For example, 2.0 feet of dredging in the three study reaches would lower the water-surface elevation an average of 1.30 feet for the 2-year flood and 0.64 feet for the 100-year flood.

  16. The role of integrative, whole organism testing in monitoring applications: Back to the future

    EPA Science Inventory

    The biological effects of chemicals released to surface waters continue to be an area of uncertainty in risk assessment and risk management. Based on conventional risk assessment considerations, adequate exposure and effects information are required to reach a scientifically soun...

  17. Influence of multi-scale hydrologic controls on river network connectivity and riparian function

    EPA Science Inventory

    The ecological functions of rivers and streams and their associated riparian zones are strongly influenced by surface and subsurface hydrologic routing of water within river basins and river networks. Hydrologic attributes of the riparian area for a given stream reach are typica...

  18. Numerical model of a tracer test on the Santa Clara River, Ventura County, California

    USGS Publications Warehouse

    Nishikawa, Tracy; Paybins, Katherine S.; Izbicki, John A.; Reichard, Eric G.

    1999-01-01

    To better understand the flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of mass in the ephemeral middle subreaches, and (2) groundwater recharge does not explain the loss of mass in the perennial uppermost and lowermost subreaches. The observed tracer curves in the perennial subreaches were indicative of sorptive dye losses, transient storage, and (or) photodecay - these phenomena were simulated using a linear decay term. However, analysis of the linear decay terms indicated that photodecay was not a dominant source of dye loss.To better understand the flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimension-al flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of mass in the ephemeral middle subreaches, and (2) ground-water recharge does not explain the loss of mass in the perennial uppermost and lowermost subreaches. The observed tracer curves in the perennial subreaches were indicative of sorptive dye losses, transient storage, and (or) photodecay - these phenomena were simulated using a linear decay term. However, analysis of the linear decay terms indicated that photodecay was not a dominant source of dye loss.

  19. Flood-inundation maps for the Driftwood River and Sugar Creek near Edinburgh, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Kim, Moon H.; Menke, Chad D.

    2012-01-01

    Digital flood-inundation maps for an 11.2 mile reach of the Driftwood River and a 5.2 mile reach of Sugar Creek, both near Edinburgh, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Camp Atterbury Joint Maneuver Training Center, Edinburgh, Indiana. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. Current conditions at the USGS streamgage in Indiana may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system at http://water.weather.gov/ahps/. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. The hydraulic model was then used to determine elevations throughout the study reaches for nine water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to nearly the highest recorded water level at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. The simulated water-surface profiles were then combined with a geospatial digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps along with real-time information available online regarding current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.

  20. Precipitation in Madeira island and atmospheric rivers in the winter seasons

    NASA Astrophysics Data System (ADS)

    Couto, Flavio T.; Salgado, Rui; João Costa, Maria; Prior, Victor

    2016-04-01

    This study aims to analyse the distribution of the daily accumulated precipitation in the Madeira's highlands over a 10-year period, as well as the main characteristics associated with atmospheric rivers (ARs) affecting the island during 10 winter seasons, and their impact in the rainfall amounts recorded near the mountain crest in the south-eastern part of the island. The period between September 2002 and November 2012 is considered for the analysis. The ARs have been identified from the total precipitable water vapour field extracted from the Atmospheric Infrared Sounder (AIRS). The AIRS observations were downloaded for a domain covering large part of the North Atlantic Ocean. The precipitable water vapour field from the European Centre for Medium-range Weather Forecasts (ECMWF) analysis was also used aiming to support the AIRS data when there was no satellite information over the island. The daily accumulated precipitation at surface showed generally drier summers, while the highest accumulated precipitation are recorded mainly during the winter, although some significant events may occur also in autumn and spring seasons. The patterns of the precipitable water vapour field when ARs reach the island were investigated, and even if great part of the atmospheric rivers reaches the island in a dissipation stage, some rivers are heavy enough to reach the Madeira Island. In this situation, the water vapour transport could be observed in two main configurations and transporting significant water vapour amounts toward the Madeira from the tropical region. This study lead to conclude that the atmospheric rivers, when associated to high values of precipitable water vapour over the island can provide favourable conditions to the development of precipitation, sometimes associated with high amounts. However, it was also found that many cases of high to extreme accumulated precipitation at the surface were not associated to this kind of moisture transport.

  1. Hydrological and chlorofluoromethane measurements of the Indonesian throughflow entering the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Fieux, M.; Andrié, C.; Charriaud, E.; Ilahude, A. G.; Metzl, N.; Molcard, R.; Swallow, J. C.

    1996-05-01

    The Java Australia Dynamic Experiment high-resolution February-March 1992 conductivity-temperature-depth and chlorofluoromethane section obtained between Australia and Bali and on the sills between Flores, Sumba, Sawu, Roti, and the Australian continental shelf allows detailed examination of the water masses distribution and their inferred circulation. A sharp hydrological front between the Indonesian waters and the southern Indian Ocean waters is found between 13°S and 14°S in both seasons (February-March 1992 and August 1989). It separates the high-salinity surface waters to the south from the lower-salinity surface waters derived from the Indonesian Seas to the north. It reaches the surface in February 1992, whereas it was capped by a particularly low salinity surface layer in August 1989. Near Bali, the NW monsoon of February-March produces large intrusions of low-salinity water from the Java Sea, through Lombok Strait in the upper 100 m. At depth, the North Indian Intermediate Water, flowing along the Indonesian coast, brings salty, low-oxygen and low-chlorofluorocarbon water. It enters the Sawu Sea through Sumba Strait toward the east, while it undergoes strong mixing with the Indonesian Seas water. The primary pathway of the Indonesian waters is found north of the front and south of the North Indian Intermediate Water, between 13°S and 9°30'S, and the associated salinity minimum can be followed all across the Indian Ocean.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checco, A.; Hofmann, T.; DiMasi, E.

    The details of air nanobubble trapping at the interface between water and a nanostructured hydrophobic silicon surface are investigated using X-ray scattering and contact angle measurements. Large-area silicon surfaces containing hexagonally packed, 20 nm wide hydrophobic cavities provide ideal model surfaces for studying the morphology of air nanobubbles trapped inside cavities and its dependence on the cavity depth. Transmission small-angle X-ray scattering measurements show stable trapping of air inside the cavities with a partial water penetration of 5-10 nm into the pores, independent of their large depth variation. This behavior is explained by consideration of capillary effects and the cavitymore » geometry. For parabolic cavities, the liquid can reach a thermodynamically stable configuration - a nearly planar nanobubble meniscus - by partially penetrating into the pores. This microscopic information correlates very well with the macroscopic surface wetting behavior.« less

  3. Potentiometric Surface of the Upper Patapsco Aquifer in Southern Maryland, September 1995

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Mack, Frederick K.

    1996-01-01

    A map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Cretaceous age in southern Maryland during September 1995 was prepared from water-level measurements in 42 wells. The potentiometric surface was nearly 120 feet above sea level near the northwestern boundary and outcrop area of the aquifer in topographically high areas of Anne Arundel County, and 55 feet above sea level in a similar setting in Prince Georges County. From these high areas, the potentiometic surface declined to the south and southeast toward large well fields in the Annapolis and Waldorf areas and at the Chalk Point powerplant. Ground-water levels reached nearly 30 feet below sea level in the Annapolis area, 113 feet below sea level southwest of Waldorf, and more than 30 feet below sea level at the Chalk Point powerplant.

  4. Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haijun; Cui, Qun, E-mail: cuiqun@njtech.edu.cn; Wu, Juan

    Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between thatmore » on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N{sub 2} sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%.« less

  5. Flood-inundation maps for the Leaf River at Hattiesburg, Mississippi

    USGS Publications Warehouse

    Storm, John B.

    2012-01-01

    Digital flood-inundation maps for a 1.7-mile reach of the Leaf River were developed by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The Leaf River study reach extends from just upstream of the U.S. Highway 11 crossing to just downstream of East Hardy/South Main Street and separates the cities of Hattiesburg and Petal, Mississippi. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water-surface elevations (stages) at the USGS streamgage at Leaf River at Hattiesburg, Mississippi (02473000). Current conditions at the USGS streamgage may be obtained through the National Water Information System Web site at http://waterdata.usgs.gov/ms/nwis/uv/?site_no=02473000&PARAmeter_cd=00065,00060. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. The forecasted peak-stage information, available on the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the Leaf River at Hattiesburg, Mississippi, streamgage and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water-surface elevation at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model [derived from Light Detection and Ranging (LiDAR) data having a 0.6-foot vertical accuracy and 9.84-foot horizontal resolution] in order to delineate the area flooded at each 1-foot increment of stream stage. The availability of these maps, when combined with real-time stage information from USGS streamgages and forecasted stream stage from the NWS, provides emergency management personnel and residents with critical information during flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  6. Hydraulic analysis of the Schoharie Creek bridge

    USGS Publications Warehouse

    Froehlich, David C.; Trent, Roy E.

    1989-01-01

    Ten people died on April 5, 1987 as a result of the collapse of two spans of a New York State Thruway bridge into the floodwaters of Schoharie Creek. The cause of the bridge failure was determined to be scour of bed material from under the foundations of piers supporting the bridge. To evaluate the hydraulic conditions that produced the scour, a two-dimensional finite element surface-water flow model was constructed. The model was used to obtain a detailed description of water-surface elevations and depth-averaged velocities within a reach that extends from about 4000 ft downstream of the bridge to about 6000 ft upstream of the bridge.

  7. Modeling vadose zone processes during land application of food-processing waste water in California's Central Valley.

    PubMed

    Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H

    2008-01-01

    Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.

  8. ERF1_2 -- Enhanced River Reach File 2.0

    USGS Publications Warehouse

    Nolan, Jacqueline V.; Brakebill, John W.; Alexander, Richard B.; Schwarz, Gregory E.

    2003-01-01

    The digital segmented network based on watershed boundaries, ERF1_2, includes enhancements to the U.S. Environmental Protection Agency's River Reach File 1 (RF1) (USEPA, 1996; DeWald and others, 1985) to support national and regional-scale surface water-quality modeling. Alexander and others (1999) developed ERF1, which assessed the hydrologic integrity of the digital reach traces and calculated the mean water time-of-travel in river reaches and reservoirs. ERF1_2 serves as the foundation for SPARROW (Spatially Referenced Regressions (of nutrient transport) on Watershed) modeling. Within the context of a Geographic Information System, SPARROW estimates the proportion of watersheds in the conterminous U.S. with outflow concentrations of several nutrients, including total nitrogen and total phosphorus, (Smith, R.A., Schwarz, G.E., and Alexander, R.B., 1997). This version of the network expands on ERF1 (Version 1.2; Alexander, et al., 1999) and includes the incremental and total drainage area derived from 1-kilometer (km) elevation data for North America. Previous estimates of the water time-of-travel were recomputed for reaches with water-quality monitoring sites that included two reaches. The mean flow and velocity estimates for these split reaches are based on previous estimation methods (Alexander et al., 1999) and are unchanged in ERF1_2. Drainage area calculations provide data used to estimate the contribution of a given nutrient to the outflow. Data estimates depend on the accuracy of node connectivity. Reaches split at water-quality or pesticide-monitoring sites indicate the source point for estimating the contribution and transport of nutrients and their loads throughout the watersheds. The ERF1_2 coverage extends the earlier drainage area founded on the 1-kilometer data for North America (Verdin, 1996; Verdin and Jenson, 1996). A 1-kilometer raster grid of ERF1_2 projected to Lambert Azimuthal Equal Area, NAD 27 Datum (Snyder, 1987), was merged with the HYDRO1K flow direction data set (Verdin and Jenson, 1996) to generate a DEM-based watershed grid, ERF1_2WS_LG. The watershed boundaries are maintained in a raster (grid cell) format as well as a vector (polygon) format for subsequent model analysis. Both the coverage, ERF1_2, and the grid, ERF1_2WS_LG, are available at: URL:http://water.usgs.gov/lookup/getspatial?erf1_2

  9. Using computational modeling of river flow with remotely sensed data to infer channel bathymetry

    USGS Publications Warehouse

    Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Shimizu, Y.

    2012-01-01

    As part of an ongoing investigation into the use of computational river flow and morphodynamic models for the purpose of correcting and extending remotely sensed river datasets, a simple method for inferring channel bathymetry is developed and discussed. The method is based on an inversion of the equations expressing conservation of mass and momentum to develop equations that can be solved for depth given known values of vertically-averaged velocity and water-surface elevation. The ultimate goal of this work is to combine imperfect remotely sensed data on river planform, water-surface elevation and water-surface velocity in order to estimate depth and other physical parameters of river channels. In this paper, the technique is examined using synthetic data sets that are developed directly from the application of forward two-and three-dimensional flow models. These data sets are constrained to satisfy conservation of mass and momentum, unlike typical remotely sensed field data sets. This provides a better understanding of the process and also allows assessment of how simple inaccuracies in remotely sensed estimates might propagate into depth estimates. The technique is applied to three simple cases: First, depth is extracted from a synthetic dataset of vertically averaged velocity and water-surface elevation; second, depth is extracted from the same data set but with a normally-distributed random error added to the water-surface elevation; third, depth is extracted from a synthetic data set for the same river reach using computed water-surface velocities (in place of depth-integrated values) and water-surface elevations. In each case, the extracted depths are compared to the actual measured depths used to construct the synthetic data sets (with two- and three-dimensional flow models). Errors in water-surface elevation and velocity that are very small degrade depth estimates and cannot be recovered. Errors in depth estimates associated with assuming water-surface velocities equal to depth-integrated velocities are substantial, but can be reduced with simple corrections.

  10. Seasonal Redistribution of Water in the Surficial Martian Regolith: Results of the HEND Data Analysis

    NASA Technical Reports Server (NTRS)

    Kuzmin, R. O.; Zabalueva, E. V.; Mitrofanov, I. G.; Litvak, M. I.; Parshukov, A. V.; Grinkov, V. Yu.; Saunders, R. S.; Boynton, W.

    2005-01-01

    The global mapping of the neutrons emission from the Mars, conducted recently by HEND instrument (Mars Odyssey), has shown that the surface layer (1-2 m) on the high latitudes of the planet (up to 50 ) is very reached by water ice with abundance more 50% by mass [1,2,3 ]. It was also shown that water ice distribution in surficial layer of the northern and the southern sub-polar regions is notably different [4]. Until today the existing HEND data already covers the period more then one the Martian year. This let to study the seasonal effects of volatiles redistribution associated with processes of sublimation and condensation of the seasonal polar caps and water exchange between the surface regolith and atmosphere. The goal of our work was to analyze the dynamic of the globally mapped neutrons flux as key to understanding of the seasonal redistribution of the water ice in the surface layer. For this we analyzed the globally mapped flux of the neutrons with different energy and corresponding effective layer of their emission.

  11. Evaluation of a New Biological Control Pathogen for Management of Eurasian Watermilfoil

    DTIC Science & Technology

    2013-06-01

    Couch and Nelson 1985). It now occurs in lakes, ponds, reservoirs, or rivers in 48 states (excluding Wyoming and Hawaii) and in the Canadian provinces...reducing biodiversity. Its ability to grow at low temperatures allows it to quickly reach the water surface, forming a canopy that shades out other...degrades the aesthetic appeal of a water body. Additionally, excessive growth results in clogged intakes of industrial and power-generating facilities

  12. How does rapidly changing discharge during storm events affect transient storage and channel water balance in a headwater mountain stream?

    Treesearch

    Adam S. Ward; Michael N. Gooseff; Thomas J. Voltz; Michael Fitzgerald; Kamini Singha; Jay P. Zarnetske

    2013-01-01

    Measurements of transient storage in coupled surface-water and groundwater systems are widely made during base flow periods and rarely made during storm flow periods. We completed 24 sets of slug injections in three contiguous study reaches during a 1.25 year return interval storm event (discharge ranging from 21.5 to 434 L s1 ) in a net gaining headwater stream within...

  13. 50 CFR 226.219 - Critical habitat for the Southern Distinct Population Segment of North American Green Sturgeon...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... River at 37°58′22″ N./121°34′40″ W.); Sand Mound Slough (all reaches upstream from 37°58′37″ N./121°37... sills and shelves, cobble and gravel, or hard clean sand, with interstices or irregular surfaces to... survival of all life stages. (iv) Water quality. Water quality, including temperature, salinity, oxygen...

  14. Trench 'bathtubbing' and surface plutonium contamination at a legacy radioactive waste site.

    PubMed

    Payne, Timothy E; Harrison, Jennifer J; Hughes, Catherine E; Johansen, Mathew P; Thiruvoth, Sangeeth; Wilsher, Kerry L; Cendón, Dioni I; Hankin, Stuart I; Rowling, Brett; Zawadzki, Atun

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (~12 Bq/L of (239+240)Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest (239+240)Pu soil activity was 829 Bq/kg in a shallow sample (0-1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the 'bathtub' effect.

  15. Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid (PLA) nonwoven fabrics

    NASA Astrophysics Data System (ADS)

    Ren, Yu; Xu, Lin; Wang, Chunxia; Wang, Xiaona; Ding, Zhirong; Chen, Yuyue

    2017-12-01

    Polylactic acid (PLA) nonwoven fabrics are treated with atmospheric dielectric barrier discharge (DBD) plasma to improve surface wettability. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) show that micro- to nano-scale textures appear on the treated PLA surfaces dependent on the treatment time. X-ray photoelectron spectroscopy (XPS) analysis reveals that the DBD plasma treatments result in decreased carbon contents and increased oxygen contents as well as slightly increased nitrogen contents. The water contact angle decreases sharply with the increase of the DBD plasma treatment time. The super hydrophilic PLA surfaces (the water contact angle reached 0°) are obtained when the treatment time is longer than 90 s. Ninety days after the DBD plasma treatment, the XPS analysis shows that Csbnd O/Csbnd N and Cdbnd O/Osbnd Cdbnd O percentages decline for all treatment groups. However, the water contact angle is kept constant at 0° for the groups treated above 90 s, which could be due to the oxidized nano-structured layer on the DBD plasma treated PLA surfaces.

  16. From watershed- to stream-reach-scale: the influence of multiple spatial scales on surface water-groundwater exchange

    NASA Astrophysics Data System (ADS)

    Caruso, Alice; Boano, Fulvio; Ridolfi, Luca

    2015-04-01

    Surface water bodies continuously interact with the subsurface and it is by now widely known that the hyporheic zone plays a key role in the mixing of river water with shallow groundwater. Hyporheic exchange occurs over a very wide range of spatial and temporal scales and the exchange processes at different scales interact and determine a complex system of nested flow cells. This intricacy results from the multiplicity of spatial scale that characterize landscape and river morphology. In the last years, many processes that regulate the surface-groundwater interactions have been elucidated and a more holistic view of groundwater and surface water has been adopted. However, despite several insights on the mechanisms of hyporheic exchange have been achieved, many important aspects remain to be clarified, i.e. how surface-groundwater interactions influence solute transport, microbial activity and biogeochemical transformations at the scale of entire watersheds. To date a deep knowledge of small-scale processes has been developed but what is lacking is a unifying overview of the role of surface water-groundwater exchange for the health of the whole water system at larger scales, i.e. the scale of the entire basin. In order to better understand the complex multiscale nature of spatial patterns of surface-subsurface exchange, we aim to assess the importance of the individual scales included in the range between watershed scale to stream reach scale. Hence, we study the large-scale subsurface flow field taking into account the surface-groundwater interactions induced by landscape topography from the basin scale to smaller scales ranging from tens of kilometers to tens of meters. The aim of this research is to analyze how individual topographic scales affect the flow field and to understand which ones are the most important and should be focused on. To study the impact of various scales of landscape topography we apply an analytical model that provides an exact solution of the underlying three dimensional groundwater flow and a numerical particle tracking routine that allows to obtain streamlines and residence time distributions from the flow field. Therefore, starting from a previously published mathematical tool we set the goal of investigating the interaction between the scales and clarifying their role. We consider real basin examples and describe subsurface flow at the landscape scale, identifying inflow patterns of groundwater to the river network, in order to obtain, in the near future, results to be used for conserving, managing and restoring of a riverine ecosystem.

  17. Measuring surface-water loss in Honouliuli Stream near the ‘Ewa Shaft, O‘ahu, Hawai‘i

    USGS Publications Warehouse

    Rosa, Sarah N.

    2017-05-30

    The Honolulu Board of Water Supply is currently concerned with the possibility of bacteria in the pumped water of the ‘Ewa Shaft (State well 3-2202-21). Groundwater from the ‘Ewa Shaft could potentially be used to meet future potable water needs in the ‘Ewa area on the island of O‘ahu. The source of the bacteria in the pumped water is unknown, although previous studies indicate that surface water may be lost to the subsurface near the site. The ‘Ewa Shaft consists of a vertical shaft, started near the south bank of Honouliuli Stream at an altitude of about 161 feet, and two horizontal infiltration tunnels near sea level. The shaft extracts groundwater from near the top of the freshwater lens in the Waipahu-Waiawa aquifer system within the greater Pearl Harbor Aquifer Sector, a designated Water Management Area.The surface-water losses were evaluated with continuous groundwater-level data from the ‘Ewa Shaft and a nearby monitoring well, continuous stream-discharge data from U.S. Geological Survey streamflow-gaging station 16212490 (Honouliuli Stream at H-1 Freeway near Waipahu), and seepage-run measurements in Honouliuli Stream and its tributary. During storms, discharge at the Honouliuli Stream gaging station increases and groundwater levels at ‘Ewa Shaft and a nearby monitoring well also increase. The concurrent increase in water levels at ‘Ewa Shaft and the nearby monitoring well during storms indicates that regional groundwater-level changes related to increased recharge, reduced withdrawals (due to a decrease in demand during periods of rainfall), or both may be occurring; although these data do not preclude the possibility of local recharge from Honouliuli Stream. Discharge measurements from two seepage runs indicate that surface water in the immediate area adjacent to ‘Ewa Shaft infiltrates into the streambed and may later reach the groundwater system developed by the ‘Ewa Shaft. The estimated seepage loss rates in the vicinity of ‘Ewa Shaft from the two seepage runs generally ranged from 0.27 to 1.78 million gallons per day per mile of stream reach; although higher seepage rates may occur during periods of higher discharge in Honouliuli Stream. A potential source of bacteria in ‘Ewa Shaft maybe related to seepage from Honouliuli Stream; however, other sources of bacteria were not studied and cannot be excluded.

  18. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    NASA Astrophysics Data System (ADS)

    Beaulieu, J. J.; Mayer, P. M.; Kaushal, S.; Pennino, M. J.; Arango, C. P.; Balz, D. A.; Fritz, K. M.; Golden, H. E.; Knightes, C. D.

    2012-12-01

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban watersheds. Stream burial occurs when segments of a channel are encased in drainage pipe and buried beneath the land surface to facilitate above ground development or stormwater runoff. We predicted that burial suppresses the capacity of streams to retain and transform nitrate, the dominate form of bioavailable N in urban streams, by eliminating primary production, reducing respiration rates, and decreasing water residence time. We tested these predictions by measuring whole-stream nitrate (NO3-) removal rates using 15NO3- isotope tracer releases in reaches that were buried and open to the sunlight in three streams in Cincinnati, Ohio and three streams in Baltimore, Maryland during four seasons. Nitrate uptake lengths in buried reaches (range: 560 - 43,650 m) were 2-98 times greater than open reaches exposed to daylight (range: 85 - 7195 m), indicating that buried reaches were substantially less effective at retaining NO3- than open reaches. Nitrate retention in buried reaches was suppressed by a combination of hydrological and biological processes. High water velocities in buried reaches (buried= 5.8 m/s, open=1.48 m/s) rapidly exported NO3- from the channel, reducing the potential for in-stream NO3- retention. Uptake lengths in the buried reaches were lengthened further by low in-stream biological NO3- demand, as indicated by NO3- uptake velocities 16-fold lower than that of the open reaches. Similarly, buried reaches had lower ecosystem respiration rates than open reaches (buried=1.5g O2/m2/hr, open=4.5g O2/m2/hr), likely due to lower organic matter standing stocks (buried=12 gAFMD/m2, open=48 gAFDM/m2). Biological activity in the buried reaches was further suppressed by the absence of light which precluded photosynthetic activity and the associated assimilative N demand. Overall, our results demonstrate that the combined effects of elevated water velocity and reduced biological activity as a result of stream burial inhibits NO3- retention, exacerbating the export of excess N to downstream water bodies. Future work will scale these results to a river network to assess the cumulative effect of stream burial on watershed NO3- export.

  19. The dynamic response of Kennicott Glacier, Alaska, USA, to the Hidden Creek Lake outburst flood

    USGS Publications Warehouse

    Anderson, R. Scott; Walder, J.S.; Anderson, S.P.; Trabant, D.C.; Fountain, A.G.

    2005-01-01

    Glacier sliding is commonly linked with elevated water pressure at the glacier bed. Ice surface motion during a 3 week period encompassing an outburst of ice-dammed Hidden Creek Lake (HCL) at Kennicott Glacier, Alaska, USA, showed enhanced sliding during the flood. Two stakes, 1.2 km from HCL, revealed increased speed in two episodes, both associated with uplift of the ice surface relative to the trajectory of bed-parallel motion. Uplift of the surface began 12 days before the flood, initially stabilizing at a value of 0.25 m. Two days after lake drainage began, further uplift (reaching 0.4 m) occurred while surface speed peaked at 1.2 m d-1. Maximum surface uplift coincided with peak discharge from HCL, high water level in a down-glacier ice-marginal basin, and low solute concentrations in the Kennicott River. Each of these records is consistent with high subglacial water pressure. We interpret the ice surface motion as arising from sliding up backs of bumps on the bed, which enlarges cavities and produces bed separation. The outburst increased water pressure over a broad region, promoting sliding, inhibiting cavity closure, and blocking drainage of solute-rich water from the distributed system. Pressure drop upon termination of the outburst drained water from and depressurized the distributed system, reducing sliding speeds. Expanded cavities then collapsed with a 1 day time-scale set by the local ice thickness.

  20. Preliminary post-tsunami water quality survey in Phang-Nga province, southern Thailand.

    PubMed

    Tharnpoophasiam, Prapin; Suthisarnsuntorn, Usanee; Worakhunpiset, Suwalee; Charoenjai, Prasasana; Tunyong, Witawat; Phrom-In, Suvannee; Chattanadee, Siriporn

    2006-01-01

    This preliminary water quality survey was performed eight weeks after the tsunami hit Phang-Nga Province on 26 December 2004. Water samples collected from the affected area, 10 km parallel to the seaside, were compared with water samples from the control area approximately 4 km from the seaside, which the tsunami waves could not reach. These samples included 18 surface-water samples, 37 well-water samples, and 8 drinking-water samples, which were examined for microbiology and physical-chemical properties. The microbiological examinations focused on enteric bacteria, which were isolated by culture method, while physical-chemical properties comprised on-site testing for pH, salinity, dissolved oxygen (DO), conductivity and total dissolved solids (TDS) by portable electrochemical meter (Sens Ion 156). The results of the microbiological examinations showed that water samples in the affected areas were more contaminated with enteric bacteria than the control area: 45.4% of surface-water samples in the affected area, and 40.0% in the control; 19.0% of well-water samples in the affected area, and 7.7% in the control. All eight drinking-water samples were clear of enteric bacteria. Tests for physical-chemical properties showed that the salinity, pH, conductivity, and TDS of surface-water samples from the affected area were significantly higher than the control. The salinity, conductivity, and TDS of the well-water samples from the affected areas were also significantly greater than those from the control area. The surface and well water in the tsunami-affected area have been changed greatly and need improvement.

  1. Investigation of Perchlorate and Water at the Surface of Mars with Raman Scattering

    NASA Astrophysics Data System (ADS)

    Nikolakakos, G.; Whiteway, J. A.

    2015-12-01

    A major accomplishment of the NASA Phoenix Mars mission was the identification of perchlorate (ClO4-) in the regolith by the Wet Chemistry Laboratory instrument. More recently, the Sample Analysis at Mars instrument on the NASA Curiosity Rover detected the presence of perchlorate in Gale Crater, suggesting that it is globally distributed. Perchlorates are of great interest on Mars due to their high affinity for water vapor (deliquescence) as well as their ability to greatly depress the freezing point of water when in solution. This has intriguing biological implications as resulting brines could potentially provide a habitable environment for living organisms. Additionally, it has been speculated that these salts may play a significant role in the hydrological cycle on Mars. A sample of magnesium perchlorate was subjected to the water vapor pressure and temperatures found at the landing site of the Phoenix Mars mission. Laser Raman scattering was applied to detect the onset of deliquescence and provide a relative estimate of the quantity of water taken up and subsequently released by the sample. As the temperature of the sample decreased at the same rate as measured on Mars during the evening, significant uptake of water from the atmosphere was observed to occur prior to the frost point temperature being reached. As the temperature was lowered, water uptake continued as saturation was reached and frost formed on the surface surrounding the perchlorate sample. Freezing of the brine film was observed at the eutectic temperature of -67°C and thawing occurred at a temperature of -62°C.

  2. Phosphorous retention in a remediated stream - evaluation of a 32P tracer experiment

    NASA Astrophysics Data System (ADS)

    Riml, Joakim; Morén, Ida; Wörman, Anders

    2017-04-01

    The increased attention to surface water quality problems together with the revealed importance of the stream water -hyporheic zone system for solute retention has highlighted the potential for surface water systems to mitigate solute export to downstream recipients. As a consequence, the number of stream restoration projects during the last decades has increased significantly. However, to be able to design remediation measures as well as to assess the effectiveness of implemented measures, quantitative knowledge of the hydrodynamic (substance independent) and the biogeochemical processes (substance dependent) retaining the solute along the transport pathway is needed. In this work, we present the findings from a simultaneous injection of tritiated water (3H20) and phosphate (32PO4-) with the overall aim to evaluate the effectiveness of remediation actions implemented along a 6 km stretch of a small agricultural stream in Sweden. In contrast to many other tracer tests where different types of proxy substances are used, a key advantage of the study is the use of the substance of environmental interest (in this case phosphorous), which enhances the significance of the results. In addition, the unique radioactive signal from the injected tracer allowed us to distinguish the added phosphorous from other diffuse sources of phosphorous from the surrounding landscape. By using a physically based transport model to evaluate the tracer breakthrough curves at a number of subsequent sampling stations, we were able to contrast the response of different stream reaches both with respect to hydrodynamic and biogeochemical retention. In particular, we found a substantial importance of vegetation on the retention of 32P, when comparing established reaches with dense in-stream vegetation with newly implemented reaches where vegetation was completely absent.

  3. Quito's Urban Watersheds: Applications of Low Impact Development and Sustainable Watershed Management

    NASA Astrophysics Data System (ADS)

    Marzion, R.; Serra-Llobet, A.; Ward Simons, C.; Kondolf, G. M.

    2013-12-01

    Quito, Ecuador sits high in an Interandean valley (elevation ~2,830 meters) at the foot of Pichincha volcano. Above the city, mountain streams descend from high-altitude Andean páramo grasslands down steep slopes through quebradas (ravines) to the Machángara River. Quito's rapid urban growth, while indicative of the city's economic vitality, has led to the city's expansion along the valley floor, settlements along precarious hillslopes and ravines, disappearance of wetlands, and loss of páramo. The upper reaches of the watersheds are being rapidly settled by migrants whose land-use practices result in contamination of waters. In the densely-settled downstream reaches, urban encroachment has resulted in filling and narrowing of quebradas with garbage and other poor-quality fill. These practices have dramatically altered natural drainage patterns, reduced the flood conveyance capacity of the channels (increasing the flood risk to surrounding communities), and further deteriorated water quality. The city's stormwater, wastewater, and surface waters suffer from untreated pollutant loads, aging pipes, and sewer overflows. In response to environmental degradation of the quebradas, awareness is increasing, at both local community and municipal levels, of the importance of stream corridors for water quality, wildlife, and recreation for nearby residents. Citizen groups have organized volunteer river cleanups, and municipal agencies have committed to implementing ';green infrastructure' solutions to make Quito a healthier habitat for humans and other species. City leaders are evaluating innovative low impact development (LID) methods to help decontaminate surface waters, mitigate urban flooding, and promote sustainable water systems. Quito's municipal water agency, EPMAPS, invited faculty and students from Quito and Berkeley to collaborate with agency staff and citizen groups to analyze opportunities and to develop plans and designs for sustainable infrastructure. To facilitate the evaluation of LID potential in Quito, we conducted field observations and measurements, completed archival research, analyzed available geographic and hydrologic data, and developed plans and designs for the Quebrada Ortega from its steep headwater reaches down through the densely-populated valley floor. We identified opportunities and constraints for LID, along with strategies from international LID precedent cities that can be applied in the context of Quito's unique physical and climatic characteristics, urban planning practices, and institutional structures. Using remote sensing techniques to determine permeable versus impermeable surface areas, we calculated that basins of at least 1% of the Ortega subwatershed's surface area would be needed to mitigate peak flows from most design storm scenarios. Rainwater harvesting can provide approximately 30% of average daily water needs based on current Quito consumption rates for the subwatershed's residents. By implementing LID strategies while also addressing other water management priorities, Quito provides a unique case study of a city that could bypass prohibitively expensive models used in industrialized countries (e.g., end-of-pipe treatments), and serve as a model for other Latin American cities seeking to resolve similar water management problems.

  4. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    USGS Publications Warehouse

    Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.

    2013-01-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  5. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    NASA Astrophysics Data System (ADS)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-12-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (˜3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na-Mg-SO4 salts more soluble than gypsum. Irrigation with high SAR (˜24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  6. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: Pharmaceuticals

    EPA Science Inventory

    Mobile and persistent chemicals that are present in urban wastewater, such as pharmaceuticals, may survive on-site or municipal wastewater treatment and post-discharge environmental processes. These pharmaceuticals have the potential to reach surface and groundwaters, essential d...

  7. IMPACTS OF GLOBAL CHANGE ON UV EXPOSURE IN COASTAL SHELF REGIONS OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Global change has a variety of impact on UV exposure in coastal shelf regions of the southeastern United States. Changes in solar UV reaching the water surface have been caused by human alterations of atmospheric composition such as depletion of the ozone layer.

  8. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-08-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  9. Survey of chemical contaminants in the Hanalei River, Kaua'i, Hawai'i, 2001

    USGS Publications Warehouse

    Orazio, Carl E.; May, Thomas W.; Gale, Robert W.; Meadows, John C.; Brumbaugh, William G.; Echols, Kathy R.; Steiner, William W.M.; Berg, Carl J.

    2007-01-01

    The Hanalei River on the island of Kaua'i in Hawai'i was designated an American Heritage River in 1998, providing special attention to natural resource protection, economic revitalization, and historic and cultural preservation. Agricultural, urban, and tourism-related activities are potential sources of contamination within the Hanalei River watershed. The objective of this study was to measure certain persistent organic chemicals and elements in the Hanalei River.During a relatively low-flow period in December of 2001, samples of native Akupa sleeper fish (Eleotris sandwicensis), freshwater Asian clam (Corbicula fluminea), giant mud crab (Scylla serrata), surface water, and stream bed sediment were collected from a lower estuarine reach of the river near its mouth at Hanalei Bay and from an upper reach at the Hanalei National Wildlife Refuge. Samples were analyzed for residues of urban and agricultural chemicals including organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and elements (including mercury, lead, cadmium, arsenic, and selenium). Organic contaminants were extracted from the samples with solvent, enriched, and then analyzed by gas chromatographic analysis with electron capture or mass spectrometric detection. Samples were acid-digested for semi-quantitative analysis for elements by inductively-coupled plasma-mass spectrometry and for quantitative analysis by atomic absorption spectrophotometry.Concentrations of organochlorine pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in biota, surface water, and bed sediment sampled from the Hanalei River ranged from nondetectable to very low levels. Polychlorinated biphenyls were below detection in all samples. Dieldrin, the only compound detected in the water samples, was present at very low concentrations of 1-2 nanograms per liter. Akupa sleeper fish and giant mud crabs from the lower reach ranged from 1 to 5 nanograms per gram (wet weight) dieldrin and from less than 0.3 to 2.1 nanograms per gram total chlordane. Concentrations of individual polycyclic aromatic hydrocarbons in the lower reach bed sediments ranged from less than 1 to 190 nanograms per gram (dry weight). Relative concentrations (patterns) of the polycyclic aromatic hydrocarbons in one portion of a sediment sample indicated combustion sources. Concentrations of elements in the surface water, biota, and sediment samples were below toxicity thresholds of ecological concern. In summary, concentrations of the organic contaminants and elements targeted by this study of the Hanalei River in 2001 were below U.S. Environmental Protection Agency probable adverse effects levels for aquatic organisms.

  10. Thermal profiles for reaches of Snee-Oosh and Fornsby Creeks, Swinomish Indian Reservation, northwestern Washington, July 2013

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Opatz, Chad C.

    2013-01-01

    Longitudinal profiles of streambed temperatures were measured in approximately 225-m-long reaches of the Snee-Oosh and Fornsby Creeks in the Swinomish Indian Reservation, northwestern Washington, during July 2013, to provide information about areas of groundwater discharge to streams. During summer, groundwater discharge is a source of cold water to streams and typically cools the surface water into which it discharges and buffers diurnal temperature fluctuations. Near-streambed temperatures were averaged over 1-m-long sections of cable during 1-minute periods every 30 minutes for 1-week periods using a fiber-optic distributed temperature sensor positioned on top of the streambed. The position of the fiber-optic cable was surveyed with a Global Positioning System. Stream temperatures and survey data are presented as Microsoft Excel® files consisting of date and time, water temperature, and geographical coordinates.

  11. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.

    PubMed

    Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi

    2018-03-21

    Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.

  12. Use of water by bottom-land vegetation in lower Safford Valley, Arizona

    USGS Publications Warehouse

    Gatewood, Joseph S.; Robinson, T.W.; Colby, B.R.; Hem, J.D.; Halpenny, L.C.

    1950-01-01

    Lower Safford Valley, Graham County, Ariz., is an alluvial lowland plain 1 to 3 measurements, and the rate of ground-water inflow to the bottom-land area was determined on the basis of the hydraulic gradient, of the water table at. the time of each set of seepage measurements, the transmissibility of the aquifer, and the length of the reach. Although the methods differed greatly, the figure for use of ground water computed by each method was within 20 percent of the mean determined by averaging the results of all six methods. As a part of the investigation, the quality of the waters of lower Safford Valley was studied in detail. The quality-of-water studies included more than 5,000 analyses of surface and ground waters. These analyses showed that surface waters of the area contain 250 to about 6,000 parts per million of dissolved solids and that ground waters contain 200 to more than 10,000 parts per million. The waters of low dissolved-solids concentration contain mostly sodium or calcium and bicarbonate. Highly mineralized waters contain mostly sodium and chloride. Based on the results obtained by the six methods, the total use of water by vegetation during the 12-month period ending September 30, 1944, was 28,000 acre-feet in a total of 9,303 acres in the 46-mile reach of Gila River from Thatcher to Calva. As precipitation and runoff were subnormal in most of the period of the investigation, it is possible that the total use of water in other years may exceed 28,000 acre-feet. Of the total water used, 23,000 acre-feet was derived frown the ground-water reservoir, and the remainder was derived from precipitation on the area. Of the 23,000 acre-feet, more than 75 percent was used by saltcedar.

  13. Modeling hydrodynamics, water temperature, and water quality in the Klamath River upstream of Keno Dam, Oregon, 2006-09

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Asbill, Jessica R.; Wellman, Roy E.; Stewart, Marc A.; Johnston, Matthew W.; Sogutlugil, I. Ertugrul

    2011-01-01

    A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygen, total nitrogen, ammonia, nitrate, total phosphorus, orthophosphate, dissolved and particulate organic matter, and three algal groups. The Link-Keno model successfully simulated the most important spatial and temporal patterns in the measured data for this 4-year time period. The model calibration process provided critical insights into water-quality processes and the nature of those inputs and processes that drive water quality in this reach. The model was used not only to reproduce and better understand water-quality conditions that occurred in 2006-09, but also to test several load-reduction scenarios that have implications for future water-resources management in the river basin. The model construction and calibration process provided results concerning water quality and transport in the Link-Keno reach of the Klamath River, ranging from interesting circulation patterns in the Lake Ewauna area to the nature and importance of organic matter and algae. These insights and results include: * Modeled segment-average water velocities ranged from near 0.0 to 3.0 ft/s in 2006 through 2009. Travel time through the model reach was about 4 days at 2,000 ft3/s and 12 days at 700 ft3/s flow. Flow direction was aligned with the upstream-downstream channel axis for most of the Link-Keno reach, except for Lake Ewauna. Wind effects were pronounced at Lake Ewauna during low-flow conditions, often with circulation in the form of a gyre that rotated in a clockwise direction when winds were towards the southeast and in a counterclockwise direction when winds were towards the northwest. * Water temperatures ranged from near freezing in winter to near 30 degrees C at some locations and periods in summer; seasonal water temperature patterns were similar at the inflow and outflow. Although vertical temperature stratification was not present at most times and locations, weak stratification could persist for periods up to 1-2 weeks, especially in the downstream parts of the reach. Thermal stratification was important in controlling vertical variations in water quality. * The specific conductance, and thus density, of tributaries within the reach usually was higher than that of the river itself, so that inflows tended to sink below the river surface. This was especially notable for inflows from the Klamath Straits Drain, which tended to sink to the bottom of the Klamath River at its confluence and not mix vertically for several miles downstream. * The model was able to capture most of the seasonal changes in the algal population by modeling that population with three algal groups: blue-green algae, diatoms, and other algae. The blooms of blue-green algae, consisting mostly of Aphanizomenon flos aquae that entered from Upper Klamath Lake, were dominant, dwarfing the populations of the other two algae groups in summer. A large part of the blue-green algae population that entered this reach from upstream tended to settle out, die, and decompose, especially in the upper part of the Link-Keno reach. Diatoms reached a maximum in spring and other algae in midsummer. * Organic matter, occurring in both dissolved and particulate forms, was critical to the water quality of this reach of the Klamath River, and was strongly tied to nutrient and dissolved-oxygen dynamics. Dissolved and particulate organic matter were subdivided into labile (quickly decaying) and refractory (slowing decaying) groups for modeling purposes. The particulate matter in summer, consisting largely of dead blue-green algae, decayed quickly. Consequently, this particulate matt

  14. Mechanisms of surface runoff genesis on a subsurface drained soil affected by surface crusting: A field investigation

    NASA Astrophysics Data System (ADS)

    Augeard, Bénédicte; Kao, Cyril; Chaumont, Cédric; Vauclin, Michel

    Artificial drainage has been subject to widespread criticism because of its impact on water quality and because there is suspicion that it may have detrimental effects on flood genesis. The present work aims at a better understanding of the mechanisms controlling infiltration and surface runoff genesis, particularly in soils with artificial drainage and affected by surface crusting. A field experiment was conducted during one drainage season (November 2003-March 2004) in the Brie region (80 km east of Paris, France) on a subsurface drained silty soil. Water table elevation and surface runoff were monitored above the drain and at midpoint between drains. Soil water pressure head was measured at various depths and locations between the midpoint and the drain. Soil surface characteristics (microtopography and degree of structural and sedimentary crust development) were recorded regularly on the experimental site and on other plots of various drainage intensities. The results show that the first surface runoff events were induced by high water table. However, runoff was higher at midpoint between the drains because water table reached the soil surface at that point, thus considerably reducing infiltration capacity compared to that above the drain. Comparing different plots, the area with older drainage installation (1948) yielded the most surface runoff. Wider drain spacing, smaller drain depth and possible plugging may have led to a greater area of saturated soil between drains. During the winter period, the impact of raindrops induced the formation of a structural crust on the soil surface. Furthermore, the development of the sedimentary crust, which was favored by water actually flowing on the soil surface during the high water table periods could be correlated with surface runoff volume. The formation of this crust had a significant impact on runoff occurrence at the end of the winter. Therefore, poorly drained fields presented more favorable conditions for both Horton type runoff and saturation excess runoff. Drainage effectively reduces surface runoff occurrences not only by lowering the water table in winter but also by limiting soil surface sealing.

  15. Cloud Imagers Offer New Details on Earth's Health

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A stunning red sunset or purple sunrise is an aesthetic treat with a scientific explanation: The colors are a direct result of the absorption or reflectance of solar radiation by atmospheric aerosols, minute particles (either solid or liquid) in the Earth s atmosphere that occur both naturally and because of human activity. At the beginning or end of the day, the Sun s rays travel farther through the atmosphere to reach an observer s eyes and more green and yellow light is scattered, making the Sun appear red. Sunset and sunrise are especially colorful when the concentration of atmospheric particles is high. This ability of aerosols to absorb and reflect sunlight is not just pretty; it also determines the amount of radiation and heat that reaches the Earth s surface, and can profoundly affect climate. In the atmosphere, aerosols are also important as nuclei for the condensation of water droplets and ice crystals. Clouds with fewer aerosols cannot form as many water droplets (called cloud particles), and consequently, do not scatter light well. In this case, more sunlight reaches the Earth s surface. When aerosol levels in clouds are high, however, more nucleation points can form small liquid water droplets. These smaller cloud particles can reflect up to 90 percent of visible radiation to space, keeping the heat from ever reaching Earth s surface. The tendency for these particles to absorb or reflect the Sun s energy - called extinction by astronomers - depends on a number of factors, including chemical composition and the humidity and temperature in the surrounding air; because cloud particles are so small, they are affected quickly by minute changes in the atmosphere. Because of this sensitivity, atmospheric scientists study cloud particles to anticipate patterns and shifts in climate. Until recently, NASA s study of atmospheric aerosols and cloud particles has been focused primarily on satellite images, which, while granting large-scale atmospheric analysis, limited scientists ability to acquire detailed information about individual particles. Now, experiments with specialized equipment can be flown on standard jets, making it possible for researchers to monitor and more accurately anticipate changes in Earth s atmosphere and weather patterns.

  16. Improving the Accuracy of Extracting Surface Water Quality Levels (SWQLs) Using Remote Sensing and Artificial Neural Network: a Case Study in the Saint John River, Canada

    NASA Astrophysics Data System (ADS)

    Sammartano, G.; Spanò, A.

    2017-09-01

    Delineating accurate surface water quality levels (SWQLs) always presents a great challenge to researchers. Existing methods of assessing surface water quality only provide individual concentrations of monitoring stations without providing the overall SWQLs. Therefore, the results of existing methods are usually difficult to be understood by decision-makers. Conversely, the water quality index (WQI) can simplify surface water quality assessment process to be accessible to decision-makers. However, in most cases, the WQI reflects inaccurate SWQLs due to the lack of representative water samples. It is very challenging to provide representative water samples because this process is costly and time consuming. To solve this problem, we introduce a cost-effective method which combines the Landsat-8 imagery and artificial intelligence to develop models to derive representative water samples by correlating concentrations of ground truth water samples to satellite spectral information. Our method was validated and the correlation between concentrations of ground truth water samples and predicted concentrations from the developed models reached a high level of coefficient of determination (R2) > 0.80, which is trustworthy. Afterwards, the predicted concentrations over each pixel of the study area were used as an input to the WQI developed by the Canadian Council of Ministers of the Environment to extract accurate SWQLs, for drinking purposes, in the Saint John River. The results indicated that SWQL was observed as 67 (Fair) and 59 (Marginal) for the lower and middle basins of the river, respectively. These findings demonstrate the potential of using our approach in surface water quality management.

  17. Relations of surface-water quality to streamflow in the Hackensack, Passaic, Elizabeth, and Rahway River basins, New Jersey, water years 1976-93

    USGS Publications Warehouse

    Buxton, Debra E.; Hunchak-Kariouk, Kathryn; Hickman, R. Edward

    1998-01-01

    Relations of water quality to streamflow were determined for 18 water-quality constituents at 19 surface-water-quality stations within the drainage basins of the Hackensack, Passaic, Elizabeth, and Rahway Rivers in New Jersey for water years 1976-93. Surface-waterquality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall’s tau statistic, which was then used to evaluate trends in concentrations during high and low flows.Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes over time for intermittent (nonpoint storm runoff) or constant (point sources and ground water) sources, respectively. Highand low-flow concentration trends were determined for some constituents at 11 of the 19 waterquality stations; 8 stations have insufficient data to determine trends. Seasonal effects on the relations of concentration to streamflow are evident for 16 of the 18 constituents. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of dilution of instream concentrations from storm runoff.The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values suggest larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. Load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. Likewise, load-to-streamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. For most of the 18 constituents, load-to-streamflow relations at stations along a river reach remain constant or decrease in a downstream direction. The slopes increase in the downstream direction for some or all of the nutrient species at the Ramapo, lower Passaic, and Rahway Rivers; for dissolved solids, dissolved sodium, and dissolved chloride at the lower Passaic River; and for alkalinity and hardness at the Rahway River.

  18. Process for the preparation of calcium superoxide

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wood, P. C.; Wydeven, T. J.; Spitze, L. A. (Inventor)

    1978-01-01

    Calcium superoxide is prepared in high yields by spreading a quantity of calcium peroxide diperoxyhydrate on the surface of a container, positioning said container in a vacuum chamber on a support structure through which a coolant fluid can be circulated, partially evacuating said vacuum chamber, allowing the temperature of the diperoxyhydrate to reach the range of about 0 to about 40 C; maintaining the temperature selected for a period of time sufficient to complete the disproproriation of the diperoxyhydrate to calcium superoxide, calcium hydroxide, oxygen, and water; constantly and systematically removing the water as it is formed by sweeping the reacting material with a current of dry inert gas and/or by condensation of said water on a cold surface; backfilling the chamber with a dry inert gas; and finally, recovering the calcium superoxide produced.

  19. Hydrogeologic and geochemical characterization and evaluation of two arroyos for managed aquifer recharge by surface infiltration in the Pojoaque River Basin, Santa Fe County, New Mexico, 2014–15

    USGS Publications Warehouse

    Robertson, Andrew J.; Cordova, Jeffrey; Teeple, Andrew; Payne, Jason; Carruth, Rob

    2017-02-22

    In order to provide long-term storage of diverted surface water from the Rio Grande as part of the Aamodt water rights settlement, managed aquifer recharge by surface infiltration in Pojoaque River Basin arroyos was proposed as an option. The initial hydrogeologic and geochemical characterization of two arroyos located within the Pojoaque River Basin was performed in 2014 and 2015 in cooperation with the Bureau of Reclamation to evaluate the potential suitability of these two arroyos as sites for managed aquifer recharge through surface infiltration.The selected reaches were high-gradient (average 3.0–3.5 percent) braided channels filled with unconsolidated sand and gravel-sized deposits that were generally 30–50 feet thick. Saturation was not observed in the unconsolidated channel sands in four subsurface borings but was found at 7–60 feet below the contact between the unconsolidated channel sands and the bedrock. The poorly to well-cemented alluvial deposits that make up the bedrock underlying the unconsolidated channel material is the Tesuque Formation. The individual beds of the Tesuque Formation are reported to be highly heterogeneous and anisotropic, and the bedrock at the site was observed to have variable moisture and large changes in lithology. Surface electrical-resistivity geophysical survey methods showed a sharp contrast between the electrically resistive unconsolidated channel sands and the highly conductive bedrock; however, because of the high conductivity, the resistivity methods were not able to image the water table or preferential flow paths (if they existed) in the bedrock.Infiltration rates measured by double-ring and bulk infiltration tests on a variety of channel morphologies in the study reaches were extremely large (9.7–94.5 feet per day), indicating that the channels could potentially accommodate as much as 6.6 cubic feet per second of applied water without generating surface runoff out of the reach; however, the small volume available for storage in the unconsolidated channel sands (about 410 acre-feet in the east arroyo and about 190 acre-feet in the west arroyo) and the potential for the infiltrating water to preferentially flow over the bedrock contact and out of the reach present a challenge for storing water. Although a detailed assessment of the infiltration rate of the Tesuque Formation is beyond the scope of this investigation, one double-ring infiltrometer test was conducted on an outcrop, resulting in an estimated infiltration rate of about 4 feet per day.The shallow groundwater observed in this investigation was determined to be recharged locally on the basis of groundwater elevations and geochemical and isotopic signatures. The channel sands and shallow bedrock were observed to be weathered, indicating contact with oxic groundwater following deposition. This observation was supported by whole-rock elemental analysis and mineralogy of several core samples. The downward groundwater gradient between the shallow wells and those wells screened at greater depths suggests that the shallow groundwater is recharged by local precipitation and has the potential to migrate to the deeper aquifer units. The two age-dating tracers measured in this investigation, however, demonstrate that the shallow groundwater flow paths are very slow and that the deeper flow paths are likely part of a larger regional system.The composition of the shallow, native groundwater suggests that storing water diverted from the Rio Grande is not likely to leach constituents of concern that would cause the stored water to exceed health-based U.S. Environmental Protection Agency Maximum Contaminant Levels.

  20. Sorption of pathogens during sub-surface drip irrigation with wastewater

    NASA Astrophysics Data System (ADS)

    Levi, Laillach; Gillerman Gillerman, Leonid; Kalavrouziotis, Ioannis; Oron, Gideon

    2017-04-01

    Water scarcity continues to be one of the major threats to human survival in many regions worldwide, such as Africa, the Mediterranean Basin, the State of California in the US. Due to a mixture of factors such as population growth, reduction in water resources availability and higher demand for high quality waters in these regions these countries face water shortage issues that stem from overuse, extensive extraction of groundwater, and frequent drought events. In addition, there are increases in environmental and health awareness that have led to intensive efforts in the treatment and reuse of nonconventional water sources, mainly wastewater and greywater. One approach to water shortages issues is to use wastewater as means to close the gap between supply and demand. However, the need to treat wastewater and to disinfect it forces additional economic burden on the users, primarily for agricultural irrigation. A possible solution might be to use the soil as a sorbent for the contained pathogens. Under sub-surface drip irrigation, not allowing the wastewater to reach the soil surface, the pathogens will remain in the soil. It was as well shown in field experiments that the opening size of roots will not allow pathogens to penetrate into the plants. Additional advantages such as water saving, protection of the pipe systems and others are also important. Field experiments in commercial fields just emphasize the main advantages of sub-surface drip irrigation.

  1. Influence of the hydrodynamic conditions on the accessibility of the demersal species to the deep water trawl fishery off the Balearic Islands (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Amores, A.; Rueda, L.; Monserrat, S.; Guijarro, B.; Pasqual, C.; Massutí, E.

    2013-12-01

    Ocean mean surface vorticity from gridded multi-mission satellite altimetry data was explored in the Western Mediterranean basin for the period 2000-2010, with the aim of comparing its variability with several species of the deep water fishery in the area. Monthly catches per unit of effort (CPUE) of adult red shrimp (Aristeus antennatus), reported in the deep water bottom trawl fishery developed off northern Mallorca Island displayed a good correlation with surface vorticity. This correlation could be explained by assuming that most of the surface vorticity episodes could reach the bottom, increasing the seabed velocities and producing sediment resuspensions, which could affect the near bottom water turbidity. A. antennatus would respond to this increased turbidity by moving downwards to the deeper waters. This massive displacement of red shrimp specimens away from the fishing grounds would consequently decrease their accesibility to fishing exploitation. This relationship between vorticity and catches also holds for other species , considered as by-catch of the deep water fishery in the area. Results appear to support the suggestion that the water turbidity generated by the vorticy episodes is significant enough to affect the dynamics of the demersal species. The way the surface vorticity observed can affect the bottom sediments is also investigated using a year-long moored near-bottom currentmeter and a sediment trap sited in the fishing grounds.

  2. Recharge of shallow aquifers through two ephemeral-stream channels in northeastern Wyoming, 1982-1983

    USGS Publications Warehouse

    Lenfest, L.W.

    1987-01-01

    Quantifying the recharge from ephemeral streams to alluvial and bedrock aquifers will help evaluate the effects of surface mining on alluvial valley floors in Wyoming. Two stream reaches were chosen for study in the Powder River basin. One reach was located along the North Fork Dry Fork Cheyenne River near Glenrock, Wyoming, and the other reach was located along Black Thunder Creek near Hampshire, Wyoming. The reach along the North Fork Dry Fork Cheyenne River was instrumented with 3 gaging stations to measure streamflow and with 6 observation wells to measure groundwater level fluctuations in alluvial and bedrock aquifers in response to streamflow. The 3 streamflow gaging stations were located within the 2.5-mi study reach to measure the approximate gain or loss of discharge along the reach. Computed streamflow losses ranged from 0.43 acre-ft/mi on July 9 , 1982, to 1.44 acre-ft/mi on August 9, 1982. The observation wells completed only in the alluvial aquifer were dry during flow in the North Fork Dry Fork Cheyenne River, whereas water levels in half of the observation wells completed in the bedrock aquifers or the alluvial and bedrock aquifers rose in response to flow in the North Fork Dry Fork Cheyenne River. Groundwater recharge on August 9, 1982, was calculated using a convolution technique using groundwater levels at the upstream site and was estimated to be 26.5 acre-ft/mi. The reach along Black Thunder Creek was instrumented with one gaging station to measure streamflow and with 4 observation wells to measure water level response in alluvial and bedrock aquifers to streamflow. Recharge to the alluvial aquifer from flow in Black Thunder Creek ranged from 3.56 to 12.4 acre-ft/mi. The recharge was estimated using the convolution technique using water level measurements in the observation wells completed in the alluvial aquifer. Water level measurements in the observation wells indicated water level rises in the alluvial and bedrock aquifers in response to flow in Black Thunder Creek. (Author 's abstract)

  3. Extensive Liquid Meltwater Storage in Firn Within the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Forster, Richard R.; Box, Jason E.; vandenBroeke, Michael R.; Miege, Clement; Burgess, Evan W.; vanAngelen, Jan H.; Lenaerts, Jan T. M.; Koenig, Lora S.; Paden, John; Lewis, Cameron; hide

    2013-01-01

    The accelerating loss of mass from the Greenland ice sheet is a major contribution to current sea level rise. Increased melt water runoff is responsible for half of Greenlands mass loss increase. Surface melt has been increasing in extent and intensity, setting a record for surface area melt and runoff in 2012. The mechanisms and timescales involved in allowing surface melt water to reach the ocean where it can contribute to sea level rise are poorly understood. The potential capacity to store this water in liquid or frozen form in the firn (multi-year snow layer) is significant, and could delay its sea-level contribution. Here we describe direct observation of water within a perennial firn aquifer persisting throughout the winter in the southern ice sheet,where snow accumulation and melt rates are high. This represents a previously unknown storagemode for water within the ice sheet. Ice cores, groundairborne radar and a regional climatemodel are used to estimate aquifer area (70 plue or minus 10 x 10(exp 3) square kilometers ) and water table depth (5-50 m). The perennial firn aquifer represents a new glacier facies to be considered 29 in future ice sheet mass 30 and energy budget calculations.

  4. Water Quality and Management Changes Over the History of Poland.

    PubMed

    Szalinska, Ewa

    2018-01-01

    Poland is one of the countries distinguished by a long and colorful past. Undergoing numerous turbulent socio-economic changes forced by the course of history, Poland is now one of the member states of the European Union. Experiencing low water quantity and high contamination levels in surface waters, Poland is following other EU countries in the effort to reach a "good" water status. Herein are presented impacts of changes in Polish history on water legislation, management, and research, as well as explanations for the perceptible split between engineering and scientific approaches to the aquatic issues. Drawbacks caused by unsatisfactory state research funding for the sciences and division of the water related contemporary scientific interests are also discussed.

  5. Field tracer investigation of unsaturated zone flow paths and mechanisms in agricultural soils of northwestern Mississippi, USA

    USGS Publications Warehouse

    Perkins, K.S.; Nimmo, J.R.; Rose, C.E.; Coupe, R.H.

    2011-01-01

    In many farmed areas, intensive application of agricultural chemicals and withdrawal of groundwater for irrigation have led to water quality and supply issues. Unsaturated-zone processes, including preferential flow, play a major role in these effects but are not well understood. In the Bogue Phalia basin, an intensely agricultural area in the Delta region of northwestern Mississippi, the fine-textured soils often exhibit surface ponding and runoff after irrigation and rainfall as well as extensive surface cracking during prolonged dry periods. Fields are typically land-formed to promote surface flow into drainage ditches and streams that feed into larger river ecosystems. Downward flow of water below the root zone is considered minimal; regional groundwater models predict only 5% or less of precipitation recharges the heavily used alluvial aquifer. In this study transport mechanisms within and below the root zone of a fallow soybean field were assessed by performing a 2-m ring infiltration test with tracers and subsurface monitoring instruments. Seven months after tracer application, 48 continuous cores were collected for tracer extraction to define the extent of water movement and quantify preferential flow using a mass-balance approach. Vertical water movement was rapid below the pond indicating the importance of vertical preferential flow paths in the shallow unsaturated zone, especially to depths where agricultural disturbance occurs. Lateral flow of water at shallow depths was extensive and spatially non-uniform, reaching up to 10. m from the pond within 2. months. Within 1. month, the wetting front reached a textural boundary at 4-5. m between the fine-textured soil and sandy alluvium, now a potential capillary barrier which, prior to extensive irrigation withdrawals, was below the water table. Within 10. weeks, tracer was detectable at the water table which is presently about 12. m below land surface. Results indicate that 43% of percolation may be through preferential flow paths and that any water breaking through the capillary barrier (as potential recharge) likely does so in fingers which are difficult to detect with coring methods. In other areas where water levels have declined and soils have similar properties, the potential for transport of agricultural chemicals to the aquifer may be greater than previously assumed. ?? 2010 .

  6. A prototype data assimilation framework for generating spatiotemporally continuous SWOT data products

    NASA Astrophysics Data System (ADS)

    Andreadis, K.; Margulis, S. A.; Li, D.; Lettenmaier, D. P.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) satellite will provide critical surface water observations for the hydrologic community. However, production of key SWOT variables, such as river discharge and surface inundation, as well as lake, reservoir, and wetland storage change will be complicated by the discontinuity of the observations in space and time. A methodology that generates products with spatially and temporally continuous fields based on SWOT observables would be highly desirable. Data assimilation provides a mechanism for merging observations from SWOT with model predictions in order to produce estimates of quantities such as river discharge, storage change, and water heights for locations and times when there is no satellite overpass or other constraints (such as layover) render the measurement unusable. We describe here a prototype assimilation system with application to the Upper Mississippi basin, implemented using synthetic SWOT observations. We use a hydrologic model (VIC) coupled with a hydrodynamic model (LISFLOOD-FP) which generates "true" fields of surface water variables. The true fields are then used to generate synthetic SWOT observations using the SWOT Instrument Simulator. We also perform a "first-guess" (or open-loop) simulation with the coupled model using a configuration that contains errors representative of the imperfect knowledge of parameters and input data, including channel topography, bankfull widths and depths, and inflows, to create an ensemble of 20 model trajectories. Subsequently we assimilate the synthetic SWOT observations into the open-loop model results to estimate water surface elevation, discharge, and storage change. Our preliminary results using three data assimilation strategies show that all improve the water surface elevation estimate accuracy by 25% - 35% for a river reach of the upper Mississippi River. Ongoing work is examining whether the improved water surface elevation estimates propagate to improvements in river discharge.

  7. The role of groundwater discharge fluxes on Si:P ratios in a major tributary to Lake Erie.

    PubMed

    Maavara, Taylor; Slowinski, Stephanie; Rezanezhad, Fereidoun; Van Meter, Kimberly; Van Cappellen, Philippe

    2018-05-01

    Groundwater discharge can be a major source of nutrients to river systems. Although quantification of groundwater nitrate loading to streams is common, the dependence of surface water silicon (Si) and phosphorus (P) concentrations on groundwater sources has rarely been determined. Additionally, the ability of groundwater discharge to drive surface water Si:P ratios has not been contextualized relative to riverine inputs or in-stream transformations. In this study, we quantify the seasonal dynamics of Si and P cycles in the Grand River (GR) watershed, the largest Canadian watershed draining into Lake Erie, to test our hypothesis that regions of Si-rich groundwater discharge increase surface water Si:P ratios. Historically, both the GR and Lake Erie have been considered stoichiometrically P-limited, where the molar Si:P ratio is greater than the ~16:1 phytoplankton uptake ratio. However, recent trends suggest that eastern Lake Erie may be approaching Si-limitation. We sampled groundwater and surface water for dissolved and reactive particulate Si as well as total dissolved P for 12months within and downstream of a 50-km reach of high groundwater discharge. Our results indicate that groundwater Si:P ratios are lower than the corresponding surface water and that groundwater is a significant source of bioavailable P to surface water. Despite these observations, the watershed remains P-limited for the majority of the year, with localized periods of Si-limitation. We further find that groundwater Si:P ratios are a relatively minor driver of surface water Si:P, but that the magnitude of Si and P loads from groundwater represent a large proportion of the overall fluxes to Lake Erie. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A method to estimate canal leakage to the Biscayne Aquifer, Dade County, Florida

    USGS Publications Warehouse

    Chin, D.A.

    1990-01-01

    The leakage characteristics of channels that partially penetrate the Biscayne aquifer and have reduced bed permeability were studied. Leakage characteristics were described in terms of a reach transmissivity-defined as the volume flow rate out of the channel per unit length of the channel per unit drawdown, where drawdown is defined as the difference in altitude between the water surface in the canal and the water table in the adjacent aquifer. A theoretical expression was developed to relate the reach transmissivity to the transmissivity of the formation, mean channel width, distance of drawdown measurement from the channel centerline, ratio of drawdowns on both sides of the channel, and local reach transmissivity associated with reduced bed permeability. This theoretical expression was verified using a fine-scale numerical model, which gave accurate results when drawdowns were measured beyond 10 aquifer depths from the side of the channel. Using the theoretical formulation, it is shown that the reach transmissivity employed in regional ground-water models, which are based on average drawdowns within a cell, depends on the size of the cell as well as the transmissivity of the formation, channel width, and local reach transmissivity due to reduced bed permeability. The theoretical reach transmissivity function was compared with field measurements at L-31N Canal and Snapper Creek Extension Canal in Dade County, Florida. Analyses of the data for both canals showed good agreement between the estimated and measured reach transmissivities. At L- 31N Canal, field measurements indicated that the local reach transmissivity was relatively uniform over a 2-mile reach of the channel (averaging 630 cubic feet per second per mile per foot), and the formation transmissivity was 1.8 x106 feet squared per day. At Snapper Creek Extension Canal, an approximate analysis was necessary due to the inability of the acoustic velocity meter to measure very low water velocities in the channel. Assuming an aquifer transmissivity of 1 x 106 feet squared per day, drawdown measurements indicated that the local reach transmissivity was about 400 cubic feet per second per mile per foot. The theoretical relation, combined with the local reach transmissivity and formation transmissivity, was sufficient to predict the leakage out of L-31N Canal and Snapper Creek Extension Canal for any drawdown scenario.

  9. Shelf-Slope Exchanges near Submarine Canyons in the Southern Mid-Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Wang, H.; Gong, D.

    2016-02-01

    Shelf-slope exchange processes are major physical drivers of biological productivity near the shelf-break. Observations from two Slocum ocean gliders in Fall 2013 are used to explore the driving mechanisms of cross-shelf-slope exchanges near Norfolk Canyon and Washington Canyon in the southern Mid-Atlantic Bight. Offshore excursion of bottom "cold pool" water, and shoreward intrusion of slope water at surface layer and thermocline depth occurred during northeasterly along-shelf winds. The saline intrusions of surface slope water resided between the cold pool and surface shelf water, and reached the bottom on the outer and mid-shelf, while the offshore excursion of cold pool water was found between the surface and intermediate slope-water over the canyon. Ekman transport calculation shows wind-driven cross-shelf transport can partially explain this interleaving pattern of intrusions. Scaling analysis of double diffusive processes demonstrate that they also likely played a role in the cross-shelf-slope exchange. A unique canyon upwelling event was captured in and around Washington Canyon during a period of southwesterly along-shelf wind and along-shelf flow to the northeast. The water mass distributions and isopycnal responses in both along-canyon and cross-canyon transects are consistent with scaling analysis and numerical studies of canyon upwelling. Temperature-Salinity properties of water masses in the canyon suggest active mixing between shelf and slope water masses near the canyon head. These results point to the importance of wind, double diffusion, and canyon topography on shelf-slope exchange in the MAB.

  10. Evaluation of Floodplain Modifications to Reduce the Effect of Floods Using a Two-Dimensional Hydrodynamic Model of the Flint River at Albany, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2008-01-01

    Potential flow characteristics of future flooding along a 4.8-mile reach of the Flint River in Albany, Georgia, were simulated using recent digital-elevation-model data and the U.S. Geological Survey finite-element surface-water modeling system for two-dimensional flow in the horizontal plane (FESWMS-2DH). The model was run at four water-surface altitudes at the Flint River at Albany streamgage (02352500): 181.5-foot (ft) altitude with a flow of 61,100 cubic feet per second (ft3/s), 184.5-ft altitude with a flow of 75,400 ft3/s, 187.5-ft altitude with a flow of 91,700 ft3/s, and 192.5-ft altitude with a flow of 123,000 ft3/s. The model was run to measure changes in inundated areas and water-surface altitudes for eight scenarios of possible modifications to the 4.8-mile reach on the Flint River. The eight scenarios include removing a human-made peninsula located downstream from Oglethorpe Boulevard, increasing the opening under the Oakridge Drive bridge, adding culverts to the east Oakridge Drive bridge approach, adding culverts to the east and west Oakridge Drive bridge approaches, adding an overflow across the oxbow north of Oakridge Drive, making the overflow into a channel, removing the Oakridge Drive bridge, and adding a combination of an oxbow overflow and culverts on both Oakridge Drive bridge approaches. The modeled inundation and water-surface altitude changes were mapped for use in evaluating the river modifications. The most effective scenario at reducing inundated area was the combination scenario. At the 187.5-ft altitude, the inundated area decreased from 4.24 square miles to 4.00 square miles. The remove-peninsula scenario was the least effective with a reduction in inundated area of less than 0.01 square miles. In all scenarios, the inundated area reduction increased with water-surface altitude, peaking at the 187.5-ft altitude. The inundated area reduction then decreased at the gage altitude of 192.5 ft.

  11. Air Entrainment and Surface Ripples in a Turbulent Ship Hull Boundary Layer

    NASA Astrophysics Data System (ADS)

    Masnadi, Naeem; Erinin, Martin; Duncan, James H.

    2017-11-01

    The air entrainment and free-surface fluctuations caused by the interaction of a free surface and the turbulent boundary layer of a vertical surface-piercing plate is studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally evolving boundary layer analogous to the spatially evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface ripples are measured using a cinematic laser-induced fluorescence technique with the laser sheet oriented parallel or normal to the belt surface. Air entrainment events and bubble motions are recorded from underneath the water surface using a stereo imaging system. Measurements of small bubbles, that tend to stay submerged for a longer time, are planned via a high-speed digital in-line holographic system. The support of the Office of Naval Research is gratefully acknowledged.

  12. Evaluation of the use of reach transmissivity to quantify leakage beneath Levee 31N, Miami-Dade County, Florida

    USGS Publications Warehouse

    Nemeth, Mark S.; Wilcox, Walter M.; Solo-Gabriele, Helena M.

    2000-01-01

    A coupled ground- and surface-water model (MODBRANCH) was developed to estimate ground-water flow beneath Levee 31N in Miami-Dade County, Florida, and to simulate hydrologic conditions in the surrounding area. The study included compilation of data from monitoring stations, measurement of vertical seepage rates in wetlands, and analysis of the hydrogeologic properties of the ground-water aquifer within the study area. In addition, the MODBRANCH code was modified to calculate the exchange between surface-water channels and ground water using a relation based on the concept of reach transmissivity. The modified reach-transmissivity version of the MODBRANCH code was successfully tested on three simple problems with known analytical solutions. It was also tested and determined to function adequately on one field problem that had previously been solved using the unmodified version of the software. The modified version of MODBRANCH was judged to have performed satisfactorily, and it required about 60 percent as many iterations to reach a solution. Additionally, its input parameters are more physically-based and less dependent on model-grid spacing. A model of the Levee 31N area was developed and used with the original and modified versions of MODBRANCH, which produced similar output. The mean annual modeled ground-water heads differed by only 0.02 foot, and the mean annual canal discharge differed by less than 1.0 cubic foot per second. Seepage meters were used to quantify vertical seepage rates in the Everglades wetlands area west of Levee 31N. A comparison between results from the seepage meters and from the computer model indicated substantial differences that seemed to be a result of local variations in the hydraulic properties in the topmost part of the Biscayne aquifer. The transmissivity of the Biscayne aquifer was estimated to be 1,400,000 square feet per day in the study area. The computer model was employed to simulate seepage of ground water beneath Levee 31N. Modeled seepage rates were usually between 100 and 400 cubic feet per day per foot of levee, but extreme values ranged from about -200 to 500 cubic feet per day (positive values indicate eastward seepage beneath the levee). The modeled seepage results were used to develop an algorithm to estimate seepage based on head differential at selected monitoring stations. The algorithm was determined to adequately predict ground-water seepage.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutagalung, H.P.

    Shellfish are known for their ability to accumulate trace metals from their environment. The relatively small increase in ambient metal concentration due to pollution will be reflected in measurable increase in mussel metal concentration. The abnormally high concentration of heavy metals in the surface water of Jakarta Bay has been reported. It was reported that the concentration of heavy metals tends to increase, and in surface water around Onrust Island the mercury and cadmium concentration had reached up to 35 ppb and 450 ppb, respectively. The green mussel, Mytilus viridis L., was cultivated around Onrust Island, Jakarta Bay. So far,more » there is no available information on mercury and cadmium contents in marine organisms from the surrounding waters of Onrust Island. The present study reports the result of an observation of the total mercury and cadmium contents in the soft tissue of Mytilus viridis L. collected from Onrust Island waters.« less

  14. a Novel Catalyst for Reductive Dechlorination of Chlorobenzene in Subcritical Water:. Bifunctional Fe/ZrO2

    NASA Astrophysics Data System (ADS)

    Wei, Guang-Tao; Wei, Chao-Hai; He, Feng-Mei; Wu, Chao-Fei

    Bifunctional Fe/ZrO2 was prepared by mechanical mixing method, and its bifunctional effect on reductive dechlorination of chlorobenzene in subcritical water was studied. Dechlorination efficiency increased with increasing iron content in catalyst and catalyst amount. Dechlorination efficiency slowed when the iron content in catalyst reached 30%; bifunctional catalyst of Fe/ZrO2 was more efficient in dechlorination of chlorobenzene than Fe alone. Catalyst of Fe (30%)/ZrO2 was characterized by means of X-ray diffraction (XRD), H2 temperature programmed desorption (H2-TPD), and N2 adsorption. The possible mechanism of dechlorination in subcritical water by this bifunctional catalyst was proposed. H+ produced in the water dissociation formed the highly reactive spillover hydrogen on the surface of catalyst, and then reacted with chlorobenzene adsorbed on the catalyst surface by ZrO2 to form benzene and chloride ions.

  15. Hillslope run-off thresholds with shrink–swell clay soils

    USGS Publications Warehouse

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Lane, John W.; Uribe, Hamil C.; Arumí, José Luis; Selker, John S.

    2015-01-01

    Irrigation experiments on 12 instrumented field plots were used to assess the impact of dynamic soil crack networks on infiltration and run-off. During applications of intensity similar to a heavy rainstorm, water was seen being preferentially delivered within the soil profile. However, run-off was not observed until soil water content of the profile reached field capacity, and the apertures of surface-connected cracks had closed >60%. Electrical resistivity measurements suggested that subsurface cracks persisted and enhanced lateral transport, even in wet conditions. Likewise, single-ring infiltration measurements taken before and after irrigation indicated that infiltration remained an important component of the water budget at high soil water content values, despite apparent surface sealing. Overall, although the wetting and sealing of the soil profile showed considerable complexity, an emergent property at the hillslope scale was observed: all of the plots demonstrated a strikingly similar threshold run-off response to the cumulative precipitation amount. 

  16. Spatial variability of surface-sediment porewater pH and related water-column characteristics in deep waters of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Shao, Changgao; Sui, Yi; Tang, Danling; Legendre, Louis

    2016-12-01

    This study analyzes the pH of surface-sediment porewater (i.e. 2-3 cm below the water-sediment interface), and concentrations of CaCO3 and organic carbon (OC) in 1192 sediment cores from the northern South China Sea, in water depths ranging from 137 to 3702 m. This is the first study in the literature to analyze the large-scale spatial variability of deep-water surface-sediment pH over a large ocean basin. The data showed strong spatial variations in pH. The lowest pH values (<7.3) were observed south of Hainan Island, an area that is affected by summer upwelling and freshwater runoff from the Pearl and Red Rivers. Moderately low pH values (generally 7.3-7.5) occurred in two other areas: a submarine canyon, where sediments originated partly from the Pearl River and correspond to a paleo-delta front during the last glacial period; and southwest of Taiwan Island, where waters are affected by the northern branch of the Kuroshio intrusion current (KIC) and runoff from Taiwan rivers. The surface sediments with the highest pH (⩾7.5, and up to 8.3) were located in a fourth area, which corresponded to the western branch of the KIC where sediments have been intensively eroded by bottom currents. The pH of surface-sediment porewater was significantly linearly related to water depth, bottom-water temperature, and CaCO3 concentration (p < 0.05 for the whole sampling area). This study shows that the pH of surface-sediment porewater can be sensitive to characteristics of the overlying water column, and suggests that it will respond to global warming as changes in surface-ocean temperature and pH progressively reach deeper waters.

  17. Potentiometric surface of the upper Patapsco Aquifer in southern Maryland, September 1994

    USGS Publications Warehouse

    Curtin, Stephen E.; Mack, Frederick K.; Andreasen, David C.

    1995-01-01

    A map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Cretaceous age in southern Maryland during September 1994 was prepared from water levels measured in 43 wells. The potentiometric surface was at least 70 feet above sea level near the northwestern boundary and outcrop area of the aquifer in a topographically high area of Anne Arundel County, and nearly 60 feet above sea level in a similar setting in Prince Georges County. From these high areas, the potentiometric surface declined to the south and southeast toward large well fields in the Annapolis and Waldorf areas and at the Chalk Point powerplant. Ground-water levels reached nearly 30 feet below sea level in the Annapolis area, nearly 110 feet below sea level southwest of Waldorf, and more than 25 feet below sea level at the Chalk Point powerplant.

  18. Salting the landscapes in Transbaikalia: natural and technogenic factors

    NASA Astrophysics Data System (ADS)

    Peryazeva, E. G.; Plyusnin, A. M.; Chinavlev, A. M.

    2010-05-01

    Salting the soils, surface and subsurface waters is widespread in Transbaikalia. Hearths of salting occur within intermountain depressions of the Mesozoic and Cenozoic age both in the steppe arid and forest humid landscapes. Total water mineralization reaches 80 g/dm3 in lakes and 4-5 g/dm3 in subsurface waters. The waters belong to hydrocarbonate sodium and sulfate sodium types by chemical composition. The soda type of waters is widely spread through the whole area. Sulfate waters are found in several hearths of salting. Deposition of salts takes place in some lakes. Mirabilite and soda depositions are most commonly observed in muds of salt lakes. Deposition of salts occurs both as a result of evaporative concentrating and during freezing out the solvent. In the winter period, efflorescences of salts, where decawater soda is main mineral, are observed on ice surface. Solonchaks are spread in areas of shallow ground waters (1-2m). Soil salting is most intense in the lower parts of depressions, where surface of ground waters is at depth 0.5-1.0m. In soil cover of solonchaks, salt horizon is of various thicknesses, and it has various morphological forms of occurrence, i.e. as thick deposits of salts on soil surface and salting the surficial horizons. The soil has low alkaline reaction of medium and is characterized by high content of exchangeable bases with significant content of exchangeable sodium in the absorbing complex. Total amount of salts varies from 0.7 to 1.3%. Their maximal quantity (3.1%) is confined to the surficial layer. Sulfate-sodium type of salting is noted in the solonchak upper horizons and sulfate-magnesium-calcium one in the lower ones (Ubugunov et al, 2009). Formation of salting hearths is associated with natural and technogenic conditions. The Mesozoic depressions of Transbaikalia are characterized by intense volcanism. Covers of alkaline and moderately alkaline basalts that are enriched in potassium, sodium, carbon dioxide, fluorine, chlorine, sulphur, strontium, lithium, molybdenum, nickel, and vanadium are widely spread there. Geochemical habit of basalts largely determines chemical compositions of waters and mineral formations in hearths of salting. Unloading the fissure-vein waters that evacuate solute from the Jurassic-Cretaceous volcanogenic-sedimentary deposits greatly effects chemical composition in some hearths of salting. Irrigation systems in many intermountain depressions influence the salting hearth formation. The associated secondary salting occurs as spots in the areas, where ground water surface reaches foot of loams during irrigation. Salting the landscapes takes out big areas of fertile lands from agricultural use, threatens with breakdowns at enterprises of thermal energetic that consume water as heat carrier.

  19. Simulations of the effects of U.S. Highway 231 and the proposed Montgomery outer loop on flooding in the Catoma Creek and Little Catoma Creek Basins near Montgomery, Alabama

    USGS Publications Warehouse

    Hedgecock, T. Scott

    1999-01-01

    A two-dimensional finite-element surface-water model was used to study the effects of U.S. Highway 231 and the proposed Montgomery Outer Loop on the water-surface elevations and flow distributions during flooding in the Catoma Creek and Little Catoma Creek Basins southeast of Montgomery, Montgomery County, Alabama. The effects of flooding were simulated for two scenarios--existing and proposed conditions--for the 100- and 500-year recurrence intervals. The first scenario was to model the existing bridge and highway configuration for U.S. Highway 231 and the existing ponds that lie just upstream from this crossing. The second scenario was to model the proposed bridge and highway configuration for the Montgomery Outer Loop and the Montgomery Loop Interchange at U.S. Highway 231 as well as the proposed modifications to the ponds upstream. Simulation of floodflow for Little Catoma Creek for the existing conditions at U.S. Highway 231 indicates that, for the 100-year flood, 54 percent of the flow (8,140 cubic feet per second) was conveyed by the northernmost bridge, 21 percent (3,130 cubic feet per second) by the middle bridge, and 25 percent (3,780 cubic feet per second) by the southernmost bridge. No overtopping of U.S. Highway 231 occurred. However, the levees of the catfish ponds immediately upstream from the crossing were completely overtopped. The average water- surface elevations for the 100-year flood at the upstream limits of the study reach for Catoma Creek and Little Catoma Creek were 216.9 and 218.3 feet, respectively. For the 500-year flood, the simulatin indicates that 51 percent of the flow (11,200 cubic feet per second) was conveyed by the northernmost bridge, 25 percent (5,480 cubic feet per second) by the middle bridge, and 24 percent (5,120 cubic feet per second) by the southernmost bridge. The average water0surface elevations for the 500-year flood at the upstream limits of the study reach for Catoma Creek and Little Catoma Creek were 218.2 and 219.5 feet, respectively. For the 500-year flood, no overtopping of U.S. Highway 231 occurred. Simulation of the 100-year floodflow for Little Catoma Creek for the proposed conditions indicates that, for the existing bridges on U.S. Highway 231, 54 percent of the flow (8,190 cubic feet per second) was conveyed by the northernmost bridge, 22 percent (3,350 cubic feet per second) by the middle bridge, and 24 percent (3,490 cubic feet per second) by the southernmost bridge. The two proposed relief bridges on the Montgomery Outer Loop upstream from the proposed remaining catfish ponds conveyed about 7,750 cubic feet per second (3,400 cubic feet per second for the west relief bridge and 4,350 cubic feet per second for the east relief bridge) with an average depth of flow of about 7 feet. The average water-surface elevation at the upstream limit of the study reach for Little Catoma Creek was 218.8 feet, which is about 0.5 foot higher than the average water-surface elevation for the existing conditions. For the 100-year flood, there was no overtopping of either U.S. Highway 231 or the Montgomery Outer Loop. However, the levees of the proposed remaining catfish ponds were completely overtopped. For the Montgomery Outer Loop crossing of Catoma Creek, simulation of the 100-year floodflow indicates that about 58 percent of the flow (14,100 cubic feet per second) was conveyed by the proposed main channel bridge and 42 percent (10,200 cubic feet per second) by the proposed relief bridge. The average water-surface elevation at the upstream limit of the study reach for Catoma Creek was 216.9 feet, which is the same as the water-surface elevation for the existing conditions. Results of model simulations for the 500-year flood for the proposed conditions indicate that there was no overtopping on either U.S. Highway 231 or the Montgomery Outer Loop. For the existing bridges on U.S. Highway 231, 42 percent of the flow (11,300 cubic feet per second) was conveyed by the northernmost bridge

  20. Assessment of Eutrophication in the Lower Yakima River Basin, Washington, 2004-07

    USGS Publications Warehouse

    Wise, Daniel R.; Zuroske, Marie L.; Carpenter, Kurt D.; Kiesling, Richard L.

    2009-01-01

    In response to concerns that excessive plant growth in the lower Yakima River in south-central Washington was degrading water quality and affecting recreational use, the U.S. Geological Survey and the South Yakima Conservation District conducted an assessment of eutrophication in the lower 116 miles of the river during the 2004-07 irrigation seasons (March - October). The lower Yakima River was divided into three distinct reaches based on geomorphology, habitat, aquatic plant and water-quality conditions. The Zillah reach extended from the upstream edge of the study area at river mile (RM) 116 to RM 72, and had abundant periphyton growth and sparse macrophyte growth, the lowest nutrient concentrations, and moderately severe summer dissolved oxygen and pH conditions in 2005. The Mabton reach extended from RM 72 to RM 47, and had sparse periphyton and macrophyte growth, the highest nutrient conditions, but the least severe summer dissolved oxygen and pH conditions in 2005. The Kiona reach extended from RM 47 to RM 4, and had abundant macrophyte and epiphytic algae growth, relatively high nutrient concentrations, and the most severe summer dissolved oxygen and pH conditions in 2005. Nutrient concentrations in the lower Yakima River were high enough at certain times and locations during the irrigation seasons during 2004-07 to support the abundant growth of periphytic algae and macrophytes. The metabolism associated with this aquatic plant growth caused large daily fluctuations in dissolved oxygen concentrations and pH levels that exceeded the Washington State water-quality standards for these parameters between July and September during all 4 years, but also during other months when streamflow was unusually low. The daily minimum dissolved oxygen concentration was strongly and negatively related to the preceding day's maximum water temperature - information that could prove useful if a dissolved oxygen predictive model is developed for the lower Yakima River. Periphytic algal growth generally was not nutrient-limited and frequently reached nuisance levels in the Zillah reach, where some surface-water nutrient concentrations were below the reference concentrations suggested by the U.S. Environmental Protection Agency. Although lowering nutrient concentrations in this reach might limit periphytic algal growth enough to improve dissolved oxygen and pH conditions, ground water inflow at some locations might still provide an adequate supply of nutrients for periphytic algal growth. Macrophyte growth in the Kiona reach was dominated by water stargrass (Heteranthera dubia), was far greater compared to the other two reaches, varied greatly between years, and was negatively related to greater spring runoff due to lower light availability. Lowering nutrient concentrations in the Kiona reach might not impact the level of macrophyte growth because macrophytes with extensive root systems such as water stargrass can get nutrients from river sediment. In addition, the results from this study did not indicate any nutrient uptake by the macrophytes from the water column (nutrient uptake from the sediment was not examined). Creating the prolonged turbid and deep conditions during spring necessary to suppress macrophyte growth in this reach would not be possible in years with low streamflow. In addition, because of the relatively stable substrate present in much of this reach, the macrophyte root systems would likely not be disturbed under all but the most extremely high streamflows that occur in the lower Yakima River.

  1. A hybrid finite-difference and analytic element groundwater model

    USGS Publications Warehouse

    Haitjema, Henk M.; Feinstein, Daniel T.; Hunt, Randall J.; Gusyev, Maksym

    2010-01-01

    Regional finite-difference models tend to have large cell sizes, often on the order of 1–2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW–MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models.

  2. The Science and Policy of the First Environmental Flows to the Colorado River Delta

    NASA Astrophysics Data System (ADS)

    Flessa, K. W.; Kendy, E.; Schlatter, K.

    2014-12-01

    The first transboundary flow of water for the environment was delivered to the Colorado River Delta in spring of 2014. This engineered mini-spring flood of 130 million cubic meters (105,000 acre-feet) was implemented as part of Minute 319, an addition to the 1944 U.S.-Mexico Water Treaty. Minute 319 is a temporary agreement, expiring in 2017. Teams of scientists from government agencies, universities, and environmental NGOs from both the U.S. and Mexico are measuring the surface flow rates, inundation, ground water recharge, ground water levels and subsurface flows, geomorphic change, recruitment, survival and health of vegetation, and avian response to the environmental flow. Monitoring includes on-the-ground observations and measurements and remote sensing. Surface water from the pulse flow reached restoration sites, prompted germination of both native and non-native vegetation, recharged groundwater and reached the Gulf of California - the first reconnection of the Colorado River and the sea in 16 years. People in local communities joyously welcomed the return of the river; extensive media coverage was overwhelmingly positive - despite widespread drought in the West. After about ten weeks, most of the pulse flow had infiltrated the subsurface, ponded in a few cut-off meanders, or run to the sea. The river no longer flows. Monitoring of seedling survival, groundwater, vegetation and wildlife will continue through 2017. Results of this landscape-scale experiment will play a role in negotiations to renew the agreement, help model and design future flows and guide the efficient use of water for restoration in semi-arid river systems.

  3. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models formore » GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.« less

  4. Impact of debris dams on hyporheic interaction along a semi-arid stream

    NASA Astrophysics Data System (ADS)

    Lautz, Laura K.; Siegel, Donald I.; Bauer, Robert L.

    2006-01-01

    Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi-arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface.Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi-arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS-P, a one-dimensional, surface-water, solute-transport model from which we extracted the storage exchange rate and cross-sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short-term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non-gaining reach, stream water was diverted to the subsurface by debris dams and captured by large-scale near-stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams.

  5. Nitrogen inputs to a river course in a heavily impacted watershed: a combined hydrochemical and isotopic evaluation (Oglio River Basin, N Italy).

    PubMed

    Delconte, C A; Sacchi, E; Racchetti, E; Bartoli, M; Mas-Pla, J; Re, V

    2014-01-01

    This study aims at evaluating sources and processes affecting NO₃(-) concentrations in the Oglio River. Five sampling campaigns considered the main watercourse, tributaries, point pollution sources, springs, and groundwater. Physico-chemical parameters, N forms, B, Sr(2+), stable isotopes (δ(2)HH₂O, δ(18)OH₂O, δ(15)NNO₃, δ(18)ONO₃, δ(11)B) and discharge were measured. Hydrological modelling was performed using mass balance and End Member Mixing Analysis equations. During the irrigation period, in the upstream reach, up to 90% of the natural river flow is diverted for irrigation and industrial purposes; excess water drained from agricultural fields is returned to river in the downstream reach. Results evidenced, in the middle reach, a large input of NO₃(-)-rich groundwater which could be quantified using hydrological modelling. Groundwater inputs are responsible for the sharp, tenfold increase in NO₃(-) in the river water, from 2.2-4.4 up to 33.5 mgL(-1), and are more evident in summer, when discharge is lower. Nevertheless, river water preserves its natural B isotopic composition, indicating that the two tracers do not have a common origin and are not co-migrant. In the lower plain, surface-groundwater interconnections and human disturbances in the water cycle favour the recycling of the compounds in the environment, and lead to a similarity in composition of the different water bodies (Oglio River, tributaries and groundwater). The long lasting agronomical practices have profoundly modified the surface-groundwater equilibrium and chemical characteristics, resulting in a highly buffered system. Infiltrating irrigation water leaches down NO₃(-) which is subsequently denitrified; when returned to the Oglio River, groundwater modifies the river water composition by dilution, in the case of NO₃(-), or by addition, for other constituents (e.g. Cl(-), B). The results of this study indicate that, in order to reduce the NO3(-) transport towards the Adriatic Sea, groundwater contamination should be addressed first, with expected long recovery times. © 2013.

  6. Flood-Inundation Maps for a 1.6-Mile Reach of Salt Creek, Wood Dale, Illinois

    USGS Publications Warehouse

    Soong, David T.; Murphy, Elizabeth A.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 1.6-mile reach of Salt Creek from upstream of the Chicago, Milwaukee, St. Paul & Pacific Railroad to Elizabeth Drive, Wood Dale, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the DuPage County Stormwater Management Division. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage on Salt Creek at Wood Dale, Illinois (station number 05531175). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05531175. In this study, flood profiles were computed for the stream reach by means of a one-dimensional unsteady flow Full EQuations (FEQ) model. The unsteady flow model was verified by comparing the rating curve output for a September 2008 flood event to discharge measurements collected at the Salt Creek at Wood Dale gage. The hydraulic model was then used to determine 14 water-surface profiles for gage heights at 0.5-ft intervals referenced to the streamgage datum and ranging from less than bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The areal extent of the inundation was verified with high-water marks from a flood in July 2010 with a peak gage height of 14.08 ft recorded at the Salt Creek at Wood Dale gage. The availability of these maps along with Internet information regarding current gage height from USGS streamgages provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  7. Multi-geodetic characterization of the seasonal signal at the CERGA geodetic reference, France

    NASA Astrophysics Data System (ADS)

    Memin, A.; Viswanathan, V.; Fienga, A.; Santamaría-Gómez, A.; Boy, J. P.

    2016-12-01

    Crustal deformations due to surface-mass loading account for a significant part of the variability in geodetic time series. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the data. We investigate the discrepancy observed in the seasonal variations of the CERGA station, South of France.We characterize the seasonal motions of the reference geodetic station CERGA from GNSS, SLR and LLR. We compare the station motion observed with GNSS and SLR and we estimate changes in the station-to-the-moon distance using an improved processing strategy. We investigate the consistency between these geodetic techniques and compare the observed station motion with that estimated using models of surface-mass change. In that regard, we compute atmospheric loading effects using surface pressure fields from ECMWF, assuming an ocean response according to the classical inverted barometer (IB) assumption, considered to be valid for periods typically exceeding a week. We also used general circulation ocean models (ECCO and GLORYS) forced by wind, heat and fresh water fluxes. The continental water storage is described using GLDAS/Noah and MERRA-land models.Using the surface-mass models, we estimate the amplitude of the seasonal vertical motion of the CERGA station ranging between 5 and 10 mm with a maximum reached in August, mostly due to hydrology. The horizontal seasonal motion of the station may reach up to 3 mm. Such a station motion should induce a change in the distance to the moon reaching up to 10 mm, large enough to be detected in LLR time series and compared to GNSS- and SLR-derived motion.

  8. Water resources and potential effects of surface coal mining in the area of the Woodson Preference Right Lease Application, Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1987-01-01

    Federal coal lands of the Woodson Preference Right Lease Application are located in Dawson and Richland Counties, northeastern Montana. A probable mine area, comprised of the lease area and adjacent coal lands, contains about 220 million tons of recoverable lignite coal in the 12-37 ft thick Pust coal bed. A hydrologic study has been conducted in the area to describe the water resources and to evaluate potential effects of coal mining on the water resources. Geohydrologic data collected from wells and springs indicate that several aquifers exist in the area. Sandstone beds in the Tongue River Member of the Fort Union Formation (Paleocene age) are the most common aquifers and probably underlie the entire area. The Pust coal bed in the Tongue River Member is water saturated in part of the probable mine area and is dry in other parts of the probable mine area. Other aquifers, located mostly outside of the probable mine area, exist in gravel of the Flaxville Formation (Miocene of Pliocene age) and valley alluvium (Pleistocene and Holocene age). Chemical analyses of groundwater indicate a range in dissolved solids concentration of 240-2,280 mg/L. Surface water resources are limited. Most streams in the area are ephemeral and flow only in response to rainfall or snowmelt. Small reaches of the North and Middle Forks of Burns Creek have intermittent flow. Water sampled from a small perennial reach of the Middle Fork had a dissolved solids concentration of 700 mg/L. Mining of the Pust coal bed would destroy one spring and four stock wells, dewater areas of the Pust coal and sandstone aquifers, and probably lower water levels in seven stock and domestic wells. Mining in the valley of Middle Fork Burns Creek would intercept streamflow and alter flow characteristics of a small perennial reach of stream. Leaching of soluble minerals from mine spoils may cause a long-term degradation of the quality of water in the spoils and in aquifers downgradient from the spoils. Some of the effects on local water supplies could be mitigated by development of new wells in deeper sandstones of the Tongue River Member. Effects of mining on water resources would be minimized if only areas of dry coal were mined. (Author 's abstract)

  9. Groundwater and surface-water interaction within the upper Smith River Watershed, Montana 2006-2010

    USGS Publications Warehouse

    Caldwell, Rodney R.; Eddy-Miller, Cheryl A.

    2013-01-01

    The 125-mile long Smith River, a tributary of the Missouri River, is highly valued as an agricultural resource and for its many recreational uses. During a drought starting in about 1999, streamflow was insufficient to meet all of the irrigation demands, much less maintain streamflow needed for boating and viable fish habitat. In 2006, the U.S. Geological Survey, in cooperation with the Meagher County Conservation District, initiated a multi-year hydrologic investigation of the Smith River watershed. This investigation was designed to increase understanding of the water resources of the upper Smith River watershed and develop a detailed description of groundwater and surface-water interactions. A combination of methods, including miscellaneous and continuous groundwater-level, stream-stage, water-temperature, and streamflow monitoring was used to assess the hydrologic system and the spatial and temporal variability of groundwater and surface-water interactions. Collectively, data are in agreement and show: (1) the hydraulic connectedness of groundwater and surface water, (2) the presence of both losing and gaining stream reaches, (3) dynamic changes in direction and magnitude of water flow between the stream and groundwater with time, (4) the effects of local flood irrigation on groundwater levels and gradients in the watershed, and (5) evidence and timing of irrigation return flows to area streams. Groundwater flow within the alluvium and older (Tertiary) basin-fill sediments generally followed land-surface topography from the uplands to the axis of alluvial valleys of the Smith River and its tributaries. Groundwater levels were typically highest in the monitoring wells located within and adjacent to streams in late spring or early summer, likely affected by recharge from snowmelt and local precipitation, leakage from losing streams and canals, and recharge from local flood irrigation. The effects of flood irrigation resulted in increased hydraulic gradients (increased groundwater levels relative to stream stage) or even reversed gradient direction at several monitoring sites coincident with the onset of nearby flood irrigation. Groundwater-level declines in mid-summer were due to groundwater withdrawals and reduced recharge from decreased precipitation, increased evapotranspiration, and reduced leakage in some area streams during periods of low flow. Groundwater levels typically rebounded in late summer, a result of decreased evapotranspiration, decreased groundwater use for irrigation, increased flow in losing streams, and the onset of late-season flood irrigation at some sites. The effect of groundwater and surface-water interactions is most apparent along the North and South Forks of the Smith River where the magnitude of streamflow losses and gains can be greater than the magnitude of flow within the stream. Net gains consistently occurred over the lower 15 miles of the South Fork Smith River. A monitoring site near the mouth of the South Fork Smith River gained (flow from the groundwater to the stream) during all seasons, with head gradients towards the stream. Two upstream sites on the South Fork Smith River exhibited variable conditions that ranged from gaining during the spring, losing (flowing from the stream to the groundwater) during most of the summer as groundwater levels declined, and then approached or returned to gaining conditions in late summer. Parts of the South Fork Smith River became dry during periods of losing conditions, thus classifying this tributary as intermittent. The North Fork Smith River is highly managed at times through reservoir releases. The North Fork Smith River was perennial throughout the study period although irrigation diversions removed a large percentage of streamflow at times and losing conditions persisted along a lower reach. The lowermost reach of the North Fork Smith River near its mouth transitioned from a losing reach to a gaining reach throughout the study period. Groundwater and surface-water interactions occur downstream from the confluence of the North and South Fork Smith Rivers, but are less discernible compared to the overall magnitude of the main-stem streamflow. The Smith River was perennial throughout the study. Monitoring sites along the Smith River generally displayed small head gradients between the stream and the groundwater, while one site consistently showed strongly gaining conditions. Synoptic streamflow measurements during periods of limited irrigation diversion in 2007 and 2008 consistently showed gains over the upper 41.4 river miles of the main stem Smith River where net gains ranged from 13.0 to 28.9 cubic feet per second. Continuous streamflow data indicated net groundwater discharge and small-scale tributary inflow contributions of around 25 cubic feet per second along the upper 10-mile reach of the Smith River for most of the 2010 record. A period of intense irrigation withdrawal during the last two weeks in May was followed by a period (early June 2010 to mid-July 2010) with the largest net increase (an average of 71.1 cubic feet per second) in streamflow along this reach of the Smith River. This observation is likely due to increased groundwater discharge to the Smith River resulting from irrigation return flow. By late July, the apparent effects of return flows receded, and the net increase in streamflow returned to about 25 cubic feet per second. Two-dimensional heat and solute transport VS2DH models representing selected stream cross sections were used to constrain the hydraulic properties of the Quaternary alluvium and estimate temporal water-flux values through model boundaries. Hydraulic conductivity of the Quaternary alluvium of the modeled sections ranged from 3x10-6 to 4x10-5 feet per second. The models showed reasonable approximations of the streambed and shallow aquifer environment, and the dynamic changes in water flux between the stream and the groundwater through different model boundaries.

  10. Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting.

    PubMed

    Klotz, Dino; Grave, Daniel A; Rothschild, Avner

    2017-08-09

    The oxygen evolution reaction (OER) at the surface of semiconductor photoanodes is critical for photoelectrochemical water splitting. This reaction involves photo-generated holes that oxidize water via charge transfer at the photoanode/electrolyte interface. However, a certain fraction of the holes that reach the surface recombine with electrons from the conduction band, giving rise to the surface recombination loss. The charge transfer efficiency, η t , defined as the ratio between the flux of holes that contribute to the water oxidation reaction and the total flux of holes that reach the surface, is an important parameter that helps to distinguish between bulk and surface recombination losses. However, accurate determination of η t by conventional voltammetry measurements is complicated because only the total current is measured and it is difficult to discern between different contributions to the current. Chopped light measurement (CLM) and hole scavenger measurement (HSM) techniques are widely employed to determine η t , but they often lead to errors resulting from instrumental as well as fundamental limitations. Intensity modulated photocurrent spectroscopy (IMPS) is better suited for accurate determination of η t because it provides direct information on both the total photocurrent and the surface recombination current. However, careful analysis of IMPS measurements at different light intensities is required to account for nonlinear effects. This work compares the η t values obtained by these methods using heteroepitaxial thin-film hematite photoanodes as a case study. We show that a wide spread of η t values is obtained by different analysis methods, and even within the same method different values may be obtained depending on instrumental and experimental conditions such as the light source and light intensity. Statistical analysis of the results obtained for our model hematite photoanode show good correlation between different methods for measurements carried out with the same light source, light intensity and potential. However, there is a considerable spread in the results obtained by different methods. For accurate determination of η t , we recommend IMPS measurements in operando with a bias light intensity such that the irradiance is as close as possible to the AM1.5 Global solar spectrum.

  11. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.

    PubMed

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-28

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.

  12. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-01

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.

  13. Assessing long-term water demand of constantine province in Kébir-Rhumel Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Kiniouar, H.; Hani, A.; Younsi, A.

    2017-02-01

    By mid-century, in the southern Mediterranean countries, levies probably reach the limit level of renewable water resources. Algeria is one of the poorest countries in renewable water resources, with an annual storage capacity of 14.6 million m3 in the Mediterranean coastal watersheds, representing 7% of the land area and accounts for 90 % of total surface runoff of the country. In this paper, we assess water demand to meet the needs of water users in Constantine province. The latter is located in the Kébir-Rhumel Mediterranean basin under semi-arid climate with relatively high growth rate of population, agricultural and industrial activities. Using Water Evaluation And Planning system (WEAP), we built a model for managing water demand of Constantine province. A business as usual and five scenarii of «water demand " were calculated by WEAP model to simulate the uncertainties over the period of 20 years (2008-2027) : (1) Population growth, (2) increase in irrigated crop lands, (3) decrease in basic drinking water consumption, (4) decrease in basic irrigation water consumption and (5) increase in basic industrial water consumption. The results showed that scenario 3 is the best alternative scenario and the most efficient by reducing drinking water demand for about 12 Mm3 in 20 years, and thus preserve reaching the limits of water resources potentialities.

  14. Assessing crop residue cover as scene moisture conditions change

    USDA-ARS?s Scientific Manuscript database

    Crop residue or plant litter is the portion of a crop left in the field after harvest. Crop residues on the soil surface provide a first line of defense against water and wind erosion and reduce the amounts of soil, nutrients, and pesticides that reach streams and rivers. Thus, quantification of cro...

  15. Investigating Groundwater/Surface Water Interaction at the Diversion Dam Site: Report Documentary 2007-2008

    DTIC Science & Technology

    2011-05-01

    operations, and soil properties. Key findings of this study indicate that soils within the study reach are conductive, with groundwater responding...16 3 Develop Detailed Map of Soils and Their Properties in Bosque Adjacent to...27 4 Evaluate Ecological Impact of River Levels, Soil Types, and Dam

  16. A review of the applications of ASCAT soil moisture products

    USDA-ARS?s Scientific Manuscript database

    Remote sensing of soil moisture has reached a level of good maturity and accuracy for which the retrieved products are ready to use in real-world applications. Due to the importance of soil moisture in the partitioning of the water and energy fluxes between the land surface and the atmosphere, a wid...

  17. Hydrology of the Upper Malad River basin, southeastern Idaho

    USGS Publications Warehouse

    Pluhowski, Edward J.

    1970-01-01

    The report area comprises 485 square miles in the Basin and Range physiographic province. It includes most of eastern' Oneida County and parts of Franklin, Bannock, and Power Counties of southeastern Idaho. Relief is about 5,000 feet; the floor of the Malad Valley is at an average altitude of about 4,400 feet. Agriculture is, by far, ,the principal economic .activity. In 1960 the population of the upper Malad River basin was about 3,600, of which about 60 percent resided in Malad City, the county seat of Oneida County. The climate is semiarid throughout the Malad Valley and its principal tributary valleys; ,above 6,500 feet the climate is subhumid. Annual precipitation ranges from about 13 inches in the lower Malad Valley to more than 30 inches on the highest peaks of the Bannock and Malad ranges. Owing to ,the normally clear atmospheric conditions, large daily and seasonal temperature fluctuations are common. Topography, distance from the Pacific Ocean, .and the general atmospheric circulation are the principal factors governing the climate of the Malad River basin. The westerlies transport moisture from the P.acific Ocean toward southeastern Idaho. The north-south tren4ing mountains flanking the basin are oriented orthogonally to the moisture flux so that they are very effective in removing precipitable water from the air. A minimum uplift of 6,000 feet is required to transport moisture from the Pacific source region; accordingly, most air masses are desiccated long before they reach the Malad basin. Heaviest precipitation is generally associated with steep pressure gradients in the midtroposphere that are so oriented as to cause a deep landward penetration of moisture from the Pacific Ocean. Annual water yields in the project area range from about 0.8 inch in the, lower Malad Valley to more than 19 inches on the high peaks north and east of Malad City. The mean annual water yield for the entire basin is 4 inches, or about 115,000 acre-feet. Evaporation is greatest in July when about 7 inches is lost from lakes, reservoirs, and waterlogged areas; losses from free-water surfaces may be as much .as 38 inches annually. An extensive ground-water reservoir consisting of sand and gravel interbedded with relatively impermeable beds of silt .and clay underlies much of the Malad Valley. Wells near the center of the valley exceeding 700 feet in depth do not reach bedrock. The Woodruff fault, which transects the constricted lower Malad Valley, is one of the main factors creating artesian conditions south of the latitude of Malad City. Recharge is obtained principally from mountain runoff which flows onto highly permeable alluvial fans surrounding the valley and from streams that flow across the valley floor. On the basis of a water balance analysis, under flow from the project area was estimated to be 28,000 acre-feet annually, surface-water outflow was 51,000 acre-feet, and transbasin imports were about 4,000 acre-feet. The principal tributaries of the Malad River are perennial along their upper and middle reaches and have well-sustained low flows. During the growing season, all surface water entering the Malad Valley is used for irrigation. Spine irrigation is practiced in the principal tributary valleys; however, a shortage of suitable reservoir sites has hampered surface-water development in these areas. The highly porous deposits underlying the Malad Valley tend to attenuate flood peaks. An unusual combination of meteorologic events early in 1962 effectively counteracted the high absorptive capacity of the valley and predisposed the basin to high flood risk. Subsequent rapid snowmelt combined with frozen ground produced the extraordinary flood of February 12, 1962. Calcium and bicarbonate commonly are the most abundant ions in the surface waters of the upper Malad River basin. In August 1967, the dissolved-solids content of streamflow ranged from 200 to 350 milligrams per liter in the middle and upper parts of the basin; however, much greater values were measured in the Malad River between Woddruff and Cherry Creek Lane. With the exception of that reach, the surface water of the project area is suitable for irrigating all but the most sensitive crops. The total water yield is not sufficient to meet all the water needs of the basin. A comprehensive water-management plan is required to ensure optimal use of the water resource.

  18. Flood-inundation maps for the St. Marys River at Fort Wayne, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Kim, Moon H.; Fowler, Kathleen K.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the St. Marys River that extends from South Anthony Boulevard to Main Street at Fort Wayne, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Fort Wayne. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. Current conditions at the USGS streamgages in Indiana may be obtained from the National Water Information System: Web Interface. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. The hydraulic model was then used to simulate 11 water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (11 maps in all) so that for any given flood stage users will be able to view the estimated area of inundation. The availability of these maps along with current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.

  19. Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy.

    PubMed

    Meffe, Raffaella; de Bustamante, Irene

    2014-05-15

    This paper provides the first review of the occurrence of 161 emerging organic compounds (EOCs) in Italian surface water and groundwater. The reported EOCs belong to the groups of industrials, pharmaceuticals, estrogens and illicit drugs. Occurrence of 137 pesticides was also reported. The reviewed research works have been published between 1997 and 2013. The majority of the studies have been carried out in Northern Italy (n. 30) and to a lower extent in Central Italy (n. 13). Only a limited number of research studies report EOC concentrations in water resources of Southern Italy. The EOCs that have been more frequently studied are in the following descending order, pesticides (16), pharmaceuticals (15), industrials (13), estrogens (7) and illicit drugs (2). Research activities investigating the EOC occurrence in surface water are more numerous than those in groundwater. This is consistent with the higher complexity involved in groundwater sampling and EOC detection. Among the reported EOCs, industrials and pesticides are those occurring in both surface water and groundwater with the highest concentrations (up to 15 × 10(6) and 4.78 × 0(5)ng L(-1), respectively). Concentrations of pharmaceuticals in surface water reach a maximum of 3.59 × 10(3)ng L(-1), whereas only the antimicrobial agent josamycin has been encountered in groundwater with a concentration higher than 100 ng L(-1). Both estrogens and illicit drugs appeared in surface water with concentrations lower than 50 ng L(-1). Groundwater concentrations for estrogens were measured to be below the detection limits, whereas illicit drugs have so far not been studied in groundwater. The present review reveals the serious contamination status of Italian surface water and groundwater especially by pesticides, industrials and to a lower extent by pharmaceuticals and the necessity to foster the research on EOC occurrence in Italian water resources, in particular in Southern Italy where a limited number of investigations currently exist. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system

    NASA Astrophysics Data System (ADS)

    Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.

    2017-07-01

    Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.

  1. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  2. High performance miniature hygrometer and method thereof

    NASA Technical Reports Server (NTRS)

    VanZandt, Thomas R. (Inventor); Kaiser, William J. (Inventor); Kenny, Thomas W. (Inventor); Crisp, David (Inventor)

    1994-01-01

    An uncoated interdigitated transducer is cooled from a temperature above the dew point to a temperature below the dew point, while a parameter of a signal of the transducer is measured. The reduction in temperature causes a monotonic change in transducer signal because that signal is sensitive primarily to the water loading of the transducer surface as water forms on that surface due to the reduction in temperature. As the dew point is approached with temperature reduction, the slope of the curve of transducer signal with respect to temperature, remains relatively constant. However, as the dew point is reached the slope of that curve increases and because of changes in the structure of the water layer on the surface of the transducer, at the dew point the transducer responds with a clear shift in the rate at which the transducer signal changes. The temperature at which the second derivative of signal vs. temperature peaks can be readily used to identify with extreme accuracy, the precise dew point. The measurement technique employed by the present invention is relatively immune to surface contamination which remains significantly unchanged during the brief measurement period.

  3. Benefits of aggregates surface modification in concrete production

    NASA Astrophysics Data System (ADS)

    Junak, J.; Sicakova, A.

    2017-10-01

    In our study, recycled concrete aggregates (RCA), which surfaces had been modified by geopolymer material based on coal fly ash, were used to produce the concrete samples. In these samples, fraction 4/8 mm was replaced by recycled concrete aggregate with a range of 100%. To modify the surface of RCA was “Solo” and “Triple stage” modification used. On these samples real density, total water absorption and compressive strength were examined after 28, 90, 180 and 365 days of hardening. The highest compressive strength 56.8 MPa, after 365 days hardening, reached sample which had improved RCA surface by “Triple stage mixing”.

  4. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain.

    PubMed

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor (SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated (R 2  = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site productivity.

  5. Trench ‘Bathtubbing’ and Surface Plutonium Contamination at a Legacy Radioactive Waste Site

    PubMed Central

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (∼12 Bq/L of 239+240Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest 239+240Pu soil activity was 829 Bq/kg in a shallow sample (0–1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the ‘bathtub’ effect. PMID:24256473

  6. Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice.

    PubMed

    Lipenkov, Vladimir Ya; Ekaykin, Alexey A; Polyakova, Ekaterina V; Raynaud, Dominique

    2016-01-28

    Deep drilling at the Vostok Station has reached the surface of subglacial Lake Vostok (LV) twice-in February 2012 and January 2015. As a result, three replicate cores from boreholes 5G-1, 5G-2 and 5G-3 became available for detailed and revalidation analyses of the 230 m thickness of the accreted ice, down to its contact with water at 3769 m below the surface. The study reveals that the concentration of gases in the lake water beneath Vostok is unexpectedly low. A clear signature of the melt water in the surface layer of the lake, which is subject to refreezing on the icy ceiling of LV, has been discerned in the three different properties of the accreted ice: the ice texture, the isotopic and the gas content of the ice. These sets of data indicate in concert that poor mixing of the melt (and hydrothermal) water with the resident lake water and pronounced spatial and/or temporal variability of local hydrological conditions are likely to be the characteristics of the southern end of the lake. The latter implies that the surface water may be not representative enough to study LV's behaviour, and that direct sampling of the lake at different depths is needed in order to move ahead with our understanding of the lake's hydrological regime. © 2015 The Author(s).

  7. Application of High-resolution Aerial LiDAR Data in Calibration of a Two-dimensional Urban Flood Simulation

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.; Goska, R.; Chen, B.; Krajewski, W. F.; Young, N.; Weber, L.

    2009-12-01

    In June 2008, the state of Iowa experienced an unprecedented flood event which resulted in an economic loss of approximately $2.88 billion. Flooding in the Iowa River corridor, which exceeded the previous flood of record by 3 feet, devastated several communities, including Coralville and Iowa City, home to the University of Iowa. Recognizing an opportunity to capture a unique dataset detailing the impacts of the historic flood, the investigators contacted the National Center for Airborne Laser Mapping (NCALM), which performed an aerial Light Detection and Ranging (LiDAR) survey along the Iowa River. The survey, conducted immediately following the flood peak, provided coverage of a 60-mile reach. The goal of the present research is to develop a process by which flood extents and water surface elevations can be accurately extracted from the LiDAR data set and to evaluate the benefit of such data in calibrating one- and two-dimensional hydraulic models. Whereas data typically available for model calibration include sparsely distributed point observations and high water marks, the LiDAR data used in the present study provide broad-scale, detailed, and continuous information describing the spatial extent and depth of flooding. Initial efforts were focused on a 10-mile, primarily urban reach of the Iowa River extending from Coralville Reservoir, a United States Army Corps of Engineers flood control project, downstream through the Coralville and Iowa City. Spatial extent and depth of flooding were estimated from the LiDAR data. At a given cross-sectional location, river channel and floodplain measurements were compared. When differences between floodplain and river channel measurements were less than a standard deviation of the vertical uncertainty in the LiDAR survey, floodplain measurements were classified as flooded. A flood water surface DEM was created using measurements classified as flooded. A two-dimensional, depth-averaged numerical model of a 10-mile reach of the Iowa River corridor was developed using the United States Bureau of Reclamation SRH-2D hydraulic modeling software. The numerical model uses an unstructured numerical mesh and variable surface roughness, assigned according to observed land use and cover. The numerical model was calibrated using inundation extents and water surface elevations derived from the LiDAR data. It was also calibrated using high water marks and land survey data collected daily during the 2008 flood. The investigators compared the two calibrations to evaluate the benefit of high-resolution LiDAR data in improving the accuracy of a two-dimensional urban flood simulation.

  8. Evolution of steam-water flow structure under subcooled water boiling at smooth and structured heating surfaces

    NASA Astrophysics Data System (ADS)

    Vasiliev, N. V.; Zeigarnik, Yu A.; Khodakov, K. A.

    2017-11-01

    Experimentally studying of subcooled water boiling in rectangular channel electrically heated from one side was conducted. Flat surfaces, both smooth and coated by microarc oxidation technology, were used as heating surfaces. The tests were conducted at atmospheric pressure in the range of mass flow rate from 650 to 1300 kg/(m2 s) and water subcooling relative to saturation temperature from 23 to 75 °C. Using high-speed filming a change in the two-phase flow structure and its statistic characteristics (nucleation sites density, vapor bubble distribution by size, etc.) were studied. With an increase in the heat flux density (with the mass flow rate and subcooling being the same) and amount and size of the vapor bubbles increased also. At a relatively high heat flux density, non-spherical vapor agglomerates appeared at the heating surface as a result of coalescence of small bubbles. They originated in chaotic manner in arbitrary points of the heating surface and then after random evolution in form and size collapsed. The agglomerate size reached several millimeters and their duration of life was several milliseconds. After formation of large vapor agglomerates, with a further small increase in heat flux density a burnout of the heating surface occurred. In most cases the same effect took place if the large agglomerates were retained for several minutes.

  9. Streamflow gain and loss and water quality in the upper Nueces River Basin, south-central Texas, 2008-10

    USGS Publications Warehouse

    Banta, J. Ryan; Lambert, Rebecca B.; Slattery, Richard N.; Ockerman, Darwin J.

    2012-01-01

    During the three surveys, reaches of gaining, losing, or no verifiable change in streamflow were observed in the watersheds in the study area. Reaches of generally consistent gaining or losing streamflow were identified in the Nueces, Frio, and Sabinal River watersheds. The water-quality data indicate that the streamflow, springflow, and groundwater have similar major ion chemical characteristics and generally can be categorized as a calcium-carbonate water type. Those data also indicate that the major ion chemistry was similar during the 2009 and 2010 surveys. Graphical comparisons among ratios of major ions, trace elements, and isotopes (for example, magnesium/calcium ratios to strontium isotopic ratios) indicate that samples collected from each watershed generally clustered together. Determining the source areas and other possible contributors on the basis of these data is not possible because of the small sample size of the water-quality dataset (both in number of samples and spatial distribution of samples). The different relations among the water-quality data indicate that the surface water in the different watersheds is likely influenced by differences in source areas, geochemical evolution, groundwater flow paths and residence time, local stratigraphy, or some combination thereof.

  10. Characteristics and model of sludge adhesion during thermal drying.

    PubMed

    Li, Huan; Zou, Shuxin; Li, Yangyang; Jin, Yiying

    2013-01-01

    During sludge thermal drying, the sludge adhered on the heated surface of drying equipments may affect drying efficiency. Sludge thermal drying experiments were conducted to investigate the effect of different drying conditions on sludge adhesion. The mass of sludge adhered on the heated surface (dryer wall) reached the maximum when sludge water content was about 60%. A high drying temperature would result in more sludge adhered on the heated surface in the temperature range of 80-160 degrees C. The convection heating and rougher surface would also lead to more sludge adhered on the heated surface. The relation between the maximum mass of adherent sludge and drying temperatures could be described by an exponential equation.

  11. Partitioning of water between surface and mantle on terrestrial exoplanets: effect of surface-mantle water exchange parameterizations on ocean depth

    NASA Astrophysics Data System (ADS)

    Komacek, T. D.; Abbot, D. S.

    2016-12-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to their volatile delivery rate via planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld". The habitable zone for waterworlds is likely smaller than that for planets with partial land coverage because waterworlds lack the stabilizing silicate-weathering feedback. On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. We have explored how the incorporation of different mechanisms for the outgassing and regassing of water changes the volatile evolution of a planet. Specifically, we have examined three models for volatile cycling: a model with degassing and regassing both determined by the seafloor pressure, one with mantle temperature-dependent degassing and regassing rates, and a hybrid model that has the degassing rate driven by seafloor pressure and the regassing rate determined by the mantle temperature. We find that the volatile cycling in all three of these scenarios reaches a steady-state after a few billion years. Using these steady-states, we can make predictions from each model for how much water is needed to flood the surface and make a waterworld. We find that if volatile cycling is either solely temperature-dependent or pressure-dependent, exoplanets require a high abundance (more than 0.3% by mass) of water to have fully inundated surfaces. This is because the waterworld boundary for these models is regulated by how much water can be stuffed into the mantle. However, if degassing is more dependent on the seafloor pressure and regassing mainly dependent on mantle temperature, super-Earth mass planets with a total water fraction similar to that of the Earth (approximately 0.05% by mass) can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

  12. Underwater drag-reducing effect of superhydrophobic submarine model.

    PubMed

    Zhang, Songsong; Ouyang, Xiao; Li, Jie; Gao, Shan; Han, Shihui; Liu, Lianhe; Wei, Hao

    2015-01-01

    To address the debates on whether superhydrophobic coatings can reduce fluid drag for underwater motions, we have achieved an underwater drag-reducing effect of large superhydrophobic submarine models with a feature size of 3.5 cm × 3.7 cm × 33.0 cm through sailing experiments of submarine models, modified with and without superhydrophobic surface under similar power supply and experimental conditions. The drag reduction rate reached as high as 15%. The fabrication of superhydrophobic coatings on a large area of submarine model surfaces was realized by immobilizing hydrophobic copper particles onto a precross-linked polydimethylsiloxane (PDMS) surface. The pre-cross-linking time was optimized at 20 min to obtain good superhydrophobicity for the underwater drag reduction effect by investigating the effect of pre-cross-linking on surface wettability and water adhesive property. We do believe that superhydrophobic coatings may provide a promising application in the field of drag-reducing of vehicle motions on or under the water surface.

  13. Surface Properties and Permeability of Poly(Vinylidene Fluoride)-Clays (PVDF/Clays) Composite Membranes

    NASA Astrophysics Data System (ADS)

    Pramono, E.; Ahdiat, M.; Simamora, A.; Pratiwi, W.; Radiman, C. L.; Wahyuningrum, D.

    2017-07-01

    Surface properties are important factors that determine the performance of ultrafiltration membranes. This study aimed to investigate the effects of clay addition on the surface properties and membrane permeability of PVDF (poly-vinylidene fluoride) membranes. Three types of clay with different particle size were used in this study, namely montmorillonite-MMT, bentonite-BNT and cloisite 15A-CLS. The PVDF-clay composite membranes were prepared by phase inversion method using PEG as additive. The hydrophobicity of membrane surface was characterized by contact angle. The membrane permeability was determined by dead- end ultrafiltration with a trans-membrane pressure of 2 bars. In contact angle measurement, water contact angle of composite membranes is higher than PVDF membrane. The addition of clays decreased water flux but increased of Dextran rejection. The PVDF-BNT composite membranes reach highest Dextran rejection value of about 93%. The type and particle size of clay affected the hydrophobicity of membrane surface and determined the resulting membrane structure as well as the membrane performance.

  14. [Survey of alkylphenols in aquatic environment of Zhujiang Delta].

    PubMed

    Duan, Jing-chun; Chen, Bing; Mai, Bi-xian; Yang, Qing-shu; Sheng, Guo-ying; Fu, Jia-mo

    2004-05-01

    The summer contamination of dissolved nonylphenols (NPs) and octylphenol (OP) in surface water of Zhujiang estuary and other rivers of Zhujiang Delta was analyzed. The result reveals that NPs concentration in The Pearl River remains < 20-40 ng/L, apart from the NPs concentrations of the mouth of The Pingzhou Channel the mouth of The Shawan Channel and Hutiaomen reaching a higher level of 98.84, 129.82 and 164.98 ng/L respectively. The Lingding Sea and open sea surface water keep at a lower level with the NPs concentration of < 10-14 ng/L. In terms of OP concentration in The Pearl River, any other sampling location is below LOD 2 ng/L, except for Baiertan, the mouth of The Shawan Channel and Hutiaomen being 2.89, 2.44, 2.12 ng/L respectively and inside Macao harbor being the highest level of 8.54 ng/L. The OP concentrations of The Lingding Sea and open sea surface water are lower than LOD 1 ng/L.

  15. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.

    PubMed

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  16. River Discharge and Bathymetry Estimation from Hydraulic Inversion of Surface Currents and Water Surface Elevation Observations

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2015-12-01

    We developed an inversion model for river bathymetry and discharge estimation based on measurements of surface currents, water surface elevation and shoreline coordinates. The model uses a simplification of the 2D depth-averaged steady shallow water equations based on a streamline following system of coordinates and assumes spatially uniform bed friction coefficient and eddy viscosity. The spatial resolution of the predicted bathymetry is related to the resolution of the surface currents measurements. The discharge is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The inversion model was tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID. The measurements were obtained in August 2010 when the discharge was about 223 m3/s and the maximum river depth was about 6.5 m. Surface currents covering a 10 km reach with 8 m spatial resolution were estimated from airborne infrared video and were converted to depth-averaged currents using acoustic Doppler current profiler (ADCP) measurements along eight cross-stream transects. The streamwise profile of the water surface elevation was measured using real-time kinematic GPS from a drifting platform. The value of the friction coefficient was obtained from forward calibration simulations that minimized the difference between the predicted and measured velocity and water level along the river thalweg. The predicted along/cross-channel water depth variation was compared to the depth measured with a multibeam echo sounder. The rms error between the measured and predicted depth along the thalweg was found to be about 60cm and the estimated discharge was 5% smaller than the discharge measured by the ADCP.

  17. Joint services electronics program

    NASA Astrophysics Data System (ADS)

    Flynn, George W.; Osgood, Richard M., Jr.

    1988-05-01

    Several milestones have been reached in GaAs research. The first active GaAs device, a 1 micrometer channel width MESFET, has been made at Columbia. This device is a basic building block in the GaAs CCD program. GaAs surface studies have also born fruit. UV light has been found to oxidize rapidly the surface of GaAs in an UHV environment containing traces of water vapor and O2. The mechanism appears to be related to the generation of hot photocarriers.

  18. Surface nanotexturing of tantalum by laser ablation in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmina, E V; Simakin, Aleksandr V; Shafeev, Georgii A

    2009-01-31

    Surface nanotexturing of tantalum by ablation with short laser pulses in water has been studied experimentally using three ablation sources: a neodymium laser with a pulse duration of 350 ps, an excimer laser (248 nm) with a pulse duration of 5 ps and a Ti:sapphire laser with a pulse duration of 180 fs. The morphology of the nanotextured surfaces has been examined using a nanoprofilometer and field emission scanning electron microscope. The results demonstrate that the average size of the hillocks produced on the target surface depends on the laser energy density and is {approx}200 nm at an energy densitymore » approaching the laser-melting threshold of tantalum and a pulse duration of 350 ps. Their surface density reaches 10{sup 6} cm{sup -2}. At a pulse duration of 5 ps, the average hillock size is 60-70 nm. Nanotexturing is accompanied by changes in the absorption spectrum of the tantalum surface in the UV and visible spectral regions. The possible mechanisms of surface nanotexturing and potential applications of this effect are discussed. (nanostructures)« less

  19. Frozen waterfall (or ice cascade) growth and decay: a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Gauthier, Francis; Montagnat, Maurine; Weiss, Jérôme; Allard, Michel; Hétu, Bernard

    2013-04-01

    The ice volume evolution of an ice cascade was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial LiDAR images. The ice cascade forms over a 45 m high rockwall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and freefalling water. The ice cascade growth rate increases with the decreasing air temperature below 0°C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rockwall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is mainly controlled by the radiation energy balance but more specifically by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is clearly dependant on the sensible heat carried by the increasing water flow and the diffuse solar radiation received at the ice surface during the day.

  20. Observation of water mass characteristics in the southwestern Mariana Trench

    NASA Astrophysics Data System (ADS)

    Xu, H.; Xie, Q.; Hong, B.

    2016-12-01

    The identification of large water mass characteristic can help oceanographer to better understand the oceanic circulation structures and other physical processes in open oceans. In current stage, the water mass characteristics were recognized well by extensive observation in the upper ocean, however, it was rarely studied in deep oceans, especially for deep trench with > 6000 m depth. In this study, we use observed data collected by CTDs during several surveys to investigate the water mass physical characteristic and transport in the world deepest trench, `Challenger Deep', in the southwestern Mariana Trench. The preliminary results show complex vertical structures of water mass in this trench. From surface to 4500 m, the water masses are occupied by typical tropical surface water, NPTUW, NPMW, NPIW and NPDW. Under 4500m, the water mass shows mixing characteristics of NPDW and AABW, which indicate AABW can be transported by form the deep ocean of the South Ocean to Northwestern Pacific and it can affect local water mass characteristics. The baroclinic geostrophic current calculated from the CTDs data shows the westerly transport of water mass can reach about 1.0 SV in the trench which is close to previous results.

  1. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    USGS Publications Warehouse

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the Woonasquatucket and Moshassuck Rivers.

  2. In-stream production of methylmercury in a northern California river during summer baseflow

    NASA Astrophysics Data System (ADS)

    Tsui, M. T.; Finlay, J. C.; Nollet, Y. H.; Balogh, S. J.

    2009-12-01

    In stream ecosystems, it is well established that terrestrial landscape features such as wetlands are important in determining the aqueous concentration and flux of methylmercury. In contrast, our understanding of in-stream production of methylmercury is inadequate, especially on an ecosystem scale. In this study, we examined the relationship between the net production of dissolved methylmercury and algal metabolism in an 8-km reach of a third order stream (South Fork Eel River) in northern California. The stream has a forested watershed with no wetlands and has a long period of baseflow that typically extends from late May to early October. There was an intense rainfall in early May, 2009, but no major precipitation was recorded afterward, as is typical of Mediterranean climate of the study site. We collected surface water samples along the main channel and four major tributaries to the study stream reach. Temporal patterns of algal metabolism were inferred from net changes in total dissolved phosphorus and silica uptake and algal abundance. There was essentially no net production of methylmercury within the study reach (~ 0 µg Hg/km/d) in mid-May but net production of methylmercury occurred afterward when discharge declined exponentially, water temperature increased and algal metabolism increased (i.e. phosphorus and silica were taken up biologically). Net production of dissolved methylmercury peaked in mid-June (100 µg Hg/km/d) and then declined in mid-July (58 µg Hg/km/d) and mid-August (45 µg Hg/km/d) within the 8-km reach. The absence of surface runoff during the summer (e.g. June through September) indicates that the observed net production of methylmercury occurred within the channel and algal metabolism is coupled to the mercury methylation process. In summary, our study suggests that, in addition to watershed features, in-stream production of methylmercury should be considered as an important factor mediating mercury bioavailability in flowing waters especially during baseflow periods and in systems with high rates of algal productivity. Temporal changes of physicochemical properties of the study stream reach.

  3. Environmental stressors afflicting tailwater stream reaches across the United States

    USGS Publications Warehouse

    Miranda, Leandro E.; Krogman, R. M.

    2014-01-01

    The tailwater is the reach of a stream immediately below an impoundment that is hydrologically, physicochemically and biologically altered by the presence and operation of a dam. The overall goal of this study was to gain a nationwide awareness of the issues afflicting tailwater reaches in the United States. Specific objectives included the following: (i) estimate the percentage of reservoirs that support tailwater reaches with environmental conditions suitable for fish assemblages throughout the year, (ii) identify and quantify major sources of environmental stress in those tailwaters that do support fish assemblages and (iii) identify environmental features of tailwater reaches that determine prevalence of key fish taxa. Data were collected through an online survey of fishery managers. Relative to objective 1, 42% of the 1306 reservoirs included in this study had tailwater reaches with sufficient flow to support a fish assemblage throughout the year. The surface area of the reservoir and catchment most strongly delineated reservoirs maintaining tailwater reaches with or without sufficient flow to support a fish assemblage throughout the year. Relative to objective 2, major sources of environmental stress generally reflected flow variables, followed by water quality variables. Relative to objective 3, zoogeography was the primary factor discriminating fish taxa in tailwaters, followed by a wide range of flow and water quality variables. Results for objectives 1–3 varied greatly among nine geographic regions distributed throughout the continental United States. Our results provide a large-scale view of the effects of reservoirs on tailwater reaches and may help guide research and management needs.

  4. Effects of recreational flow releases on natural resources of the Indian and Hudson Rivers in the Central Adirondack Mountains, New York, 2004-06

    USGS Publications Warehouse

    Baldigo, Barry P.; Mulvihill, C.I.; Ernst, A.G.; Boisvert, B.A.

    2011-01-01

    The U.S. Geological Survey (USGS), the New York State Department of Environmental Conservation (NYSDEC), and Cornell University carried out a cooperative 2-year study from the fall of 2004 through the fall of 2006 to characterize the potential effects of recreational-flow releases from Lake Abanakee on natural resources in the Indian and Hudson Rivers. Researchers gathered baseline information on hydrology, temperature, habitat, nearshore wetlands, and macroinvertebrate and fish communities and assessed the behavior and thermoregulation of stocked brown trout in study reaches from both rivers and from a control river. The effects of recreational-flow releases (releases) were assessed by comparing data from affected reaches with data from the same reaches during nonrelease days, control reaches in a nearby run-of-the-river system (the Cedar River), and one reach in the Hudson River upstream from the confluence with the Indian River. A streamgage downstream from Lake Abanakee transmitted data by satellite from November 2004 to November 2006; these data were used as the basis for developing a rating curve that was used to estimate discharges for the study period. River habitat at most study reaches was delineated by using Global Positioning System and ArcMap software on a handheld computer, and wetlands were mapped by ground-based measurements of length, width, and areal density. River temperature in the Indian and Hudson Rivers was monitored continuously at eight sites during June through September of 2005 and 2006; temperature was mapped in 2005 by remote imaging made possible through collaboration with the Rochester Institute of Technology. Fish communities at all study reaches were surveyed and characterized through quantitative, nearshore electrofishing surveys. Macroinvertebrate communities in all study reaches were sampled using the traveling-kick method and characterized using standard indices. Radio telemetry was used to track the movement and persistence of stocked brown trout (implanted with temperature-sensitive transmitters) in the Indian and Hudson Rivers during the summer of 2005 and in all three rivers during the summer of 2006. The releases had little effect on river temperatures, but increased discharges by about one order of magnitude. Regardless of the releases, river temperatures at all study sites commonly exceeded the threshold known to be stressful to brown trout. At most sites, mean and median water temperatures on release days were not significantly different, or slightly lower, than water temperatures on nonrelease days. Most differences were very small and, thus, were probably not biologically meaningful. The releases generally increased the total surface area of fast-water habitat (rapids, runs, and riffles) and decreased the total surface area of slow-water habitat (pools, glides, backwater areas, and side channels). The total surface areas of wetlands bordering the Indian River were substantially smaller than the surface areas bordering the Cedar River; however, no channel geomorphology or watershed soil and topographic data were assessed to determine whether the releases or other factors were mainly responsible for observed differences. Results from surveys of resident biota indicate that the releases generally had a limited effect on fish and macroinvertebrate communities in the Indian River and had no effect on communities in the Hudson River. Compared to fish data from Cedar River control sites, the impoundment appeared to reduce total density, biomass, and richness in the Indian River at the first site downstream from Lake Abanakee, moderately reduce the indexes at the other two sites on the Indian River, and slightly reduce the indexes at the first Hudson River site downstream from the confluence with the Indian River. The densities of individual fish populations at all Indian River sites were also reduced, but related effects on fish populations in the Hudson River were less evident. Altho

  5. Chemical characteristics, including stable-isotope ratios, of surface water and ground water from selected sources in and near East Fork Armells Creek basin, southeastern Montana, 1985

    USGS Publications Warehouse

    Ferreira, R.F.; Lambing, J.H.; Davis, R.E.

    1989-01-01

    Water samples were collected from 29 sites to provide synoptic chemical data, including stable-isotope ratios, for an area of active surface coal mining and to explore the effectiveness of using the data to chemically distinguish water from different aquifers. Surface-water samples were collected from one spring, four sites on East Armells Creek, one site on Stocker Creek, and two fly-ash ponds. Streamflows in East Fork Armells Creek ranged from no flow in several upstream reaches to 2.11 cu ft/sec downstream from Colstrip, Montana. Only one tributary, Stocker Creek, was observed to contribute surface flow in the study area. Groundwater samples were collected from wells completed in Quaternary alluvium or mine spoils, Rosebud overburden, Rosebud coal bed, McKay coal bed, and sub-McKay deposits of the Tongue River Member, Paleocene Fort Union Formation. Dissolved-solids concentrations, in mg/L, were 840 at the spring, 3,100 to 5,000 in the streams, 13,000 to 22,000 in the ash ponds, and 690 to 4 ,100 in the aquifers. With few exceptions, water from the sampled spring, streams, and wells had similar concentrations of major constituents and trace elements and similar stable-isotope ratios. Water from the fly-ash ponds had larger concentrations of dissolved solids, boron, and manganese and were isotopically more enriched in deuterium and oxygen-18 than water from other sources. Water from individual aquifers could not be distinguished by either ion-composition diagrams or statistical cluster analyses. (USGS)

  6. A nested observation and model approach to non linear groundwater surface water interactions.

    NASA Astrophysics Data System (ADS)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.

    2009-04-01

    Surface water quality measurements in The Netherlands are scattered in time and space. Therefore, water quality status and its variations and trends are difficult to determine. In order to reach the water quality goals according to the European Water Framework Directive, we need to improve our understanding of the dynamics of surface water quality and the processes that affect it. In heavily drained lowland catchment groundwater influences the discharge towards the surface water network in many complex ways. Especially a strong seasonal contracting and expanding system of discharging ditches and streams affects discharge and solute transport. At a tube drained field site the tube drain flux and the combined flux of all other flow routes toward a stretch of 45 m of surface water have been measured for a year. Also the groundwater levels at various locations in the field and the discharge at two nested catchment scales have been monitored. The unique reaction of individual flow routes on rainfall events at the field site allowed us to separate the discharge at a 4 ha catchment and at a 6 km2 into flow route contributions. The results of this nested experimental setup combined with the results of a distributed hydrological model has lead to the formulation of a process model approach that focuses on the spatial variability of discharge generation driven by temporal and spatial variations in groundwater levels. The main idea of this approach is that discharge is not generated by catchment average storages or groundwater heads, but is mainly generated by points scale extremes i.e. extreme low permeability, extreme high groundwater heads or extreme low surface elevations, all leading to catchment discharge. We focused on describing the spatial extremes in point scale storages and this led to a simple and measurable expression that governs the non-linear groundwater surface water interaction. We will present the analysis of the field site data to demonstrate the potential of nested-scale, high frequency observations. The distributed hydrological model results will be used to show transient catchment scale relations between groundwater levels and discharges. These analyses lead to a simple expression that can describe catchment scale groundwater surface water interactions.

  7. [Temporal and Spatial Characteristics of Lake Taihu Surface Albedo and Its Impact Factors].

    PubMed

    Cao, Chang; Li, Xu-hui; Zhang, Mi; Liu, Shou-dong; Xiao, Wei; Xiao, Qi-tao; Xu, Jia-ping

    2015-10-01

    Lake surface albedo determines energy balance of water-atmospheric interface and water physical environment. Solar elevation angle, cloudiness, wind speed, water quality and other factors can affect lake surface albedo. Using solar radiation, wind speed, and water quality data (turbidity and chlorophyll-a concentration) which were observed in four eddy covariance sites (Meiliangwan, Dapukou, Bifenggang and Xiaoleishan i. e. MLW, DPK, BFG and XLS) in Lake Taihu and clearness index (k(t)), the influence of these factors on Lake Taihu surface albedo and the reasons that led to its spatial difference were investigated. The results showed that solar elevation angle played a leading role in the diurnal and seasonal change of lake surface albedo; lake surface albedo reached two peaks in 0 < k(t) < 0.1 and 0.4 < k(t) < 0.6 respectively, when solar elevation angle was below 35 degrees. The surface albedo increased with the increasing wind speed, turbidity and chlorophyll-a concentration. However, wind could indirectly affect surface albedo through leading to the changes in sediment resuspension and chlorophyll-a distribution. The sequence of albedo in the four sites was XLS > BFG > DPK > MLW. XLS and BFG belonged to the higher albedo group, while DPK and MLW belonged to the lower albedo group. The different biological environments caused by aquatic macrophytes and algae resulting in the spatial variation of Lake Taihu surface albedo. The relationship between albedo and chlorophyll-a concentration was not a very sensitive factor for indicating the outbreak of algae. This study can provide theoretical reference for lake albedo parameterization.

  8. Application of classical thermodynamic principles to the study of oceanic overturning circulation

    NASA Astrophysics Data System (ADS)

    Gade, Herman G.; Gustafsson, Karin E.

    2004-08-01

    Stationary deep-reaching overturning circulation in the ocean is studied by means of classical thermodynamic methods employing closed cycles in pV-space (p, pressure; V, volume). From observed (or computed) density fields, the pV-method may be used to infer the power required for driving a circulation with a given mass flux, or, if the available power is known, the resulting mass flux of the circulation may be assessed. Here, the circulation is assumed to be driven by diapycnal mixing caused by internal disturbances of meteorological and tidal origin and from transfer of geothermal heat through the ocean bottom. The analysis is developed on the basis that potential energy produced by any of these mechanisms is available for driving a circulation of the water masses above its level of generation. The method also takes into account secondary generated potential energy resulting from turbulence developed by the ensuing circulation.Models for different types of circulation are developed and applied to four types of hemispheric circulation with deep-water formation, convection and sinking in an idealized North Atlantic. Our calculations show that the energy input must exceed 15 J kg-1 for a cycle to the bottom to exist. An energy supply of 2 TW would in that case support a constant vertical mass flux of 3.2 G kg s-1 (3.1 Sv). Computed mass fluxes reaching the surface in the subtropics, corresponding to the same energy input, range between 2.3 5.2 G kg s-1, depending on the type of convection/sinking involved. Much higher flux values ensue with ascending water masses reaching the surface at higher geographical latitudes.The study reveals also that compressibility of sea water does not enhance the circulation. An incompressible system, operating within the same mass flux and temperature range, would require about 25% less energy supply, provided that the circulation comprises the same water masses. It is furthermore shown that the meridional distribution of surface salinity, with higher values in the tropics and lower values in regions of deep-water formation, actually enhances the circulation in comparison with one of a more uniform surface salinity. With a homohaline North Atlantic, operating within the same temperature range as presently observed, an increase of 66% of power supply would be required in order that the mass flux of the overturning circulation should remain the same.

  9. Transparent exopolymer particle removal in different drinking water production centers.

    PubMed

    Van Nevel, Sam; Hennebel, Tom; De Beuf, Kristof; Du Laing, Gijs; Verstraete, Willy; Boon, Nico

    2012-07-01

    Transparent exopolymer particles (TEP) have recently gained interest in relation to membrane fouling. These sticky, gel-like particles consist of acidic polysaccharides excreted by bacteria and algae. The concentrations, expressed as xanthan gum equivalents L⁻¹ (μg X(eq) L⁻¹), usually reach hundred up to thousands μg X(eq) L⁻¹ in natural waters. However, very few research was performed on the occurrence and fate of TEP in drinking water, this far. This study examined three different drinking water production centers, taking in effluent of a sewage treatment plant (STP), surface water and groundwater, respectively. Each treatment step was evaluated on TEP removal and on 13 other chemical and biological parameters. An assessment on TEP removal efficiency of a diverse range of water treatment methods and on correlations between TEP and other parameters was performed. Significant correlations between particulate TEP (>0.4 μm) and viable cell concentrations were found, as well as between colloidal TEP (0.05-0.4 μm) and total COD, TOC, total cell or viable cell concentrations. TEP concentrations were very dependent on the raw water source; no TEP was detected in groundwater but the STP effluent contained 1572 μg X(eq) L⁻¹ and the surface water 699 μg X(eq) L⁻¹. Over 94% of total TEP in both plants was colloidal TEP, a fraction neglected in nearly every other TEP study. The combination of coagulation and sand filtration was effective to decrease the TEP levels by 67%, while the combination of ultrafiltration and reverse osmosis provided a total TEP removal. Finally, in none of the installations TEP reached the final drinking water distribution system at significant concentrations. Overall, this study described the presence and removal of TEP in drinking water systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone, with Fe(II) oxidation taking place in the soil surrounding the ditch during summer and in the surface water during winter. The dynamics in Fe(II) oxidation did not affect the dissolved P concentrations. The dissolved P concentrations of the in-stream reservoirs water were an order of magnitude lower than observed in the groundwater and have no seasonal trend. Our data showed preferential binding of P during initial stage of the Fe(II) oxidation process, indicating the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at the groundwater-surface water interface is an important geochemical mechanism in the transformation of dissolved phosphate to particulate phosphate and therefore a major control on the P retention in natural waters that drain anaerobic aquifers.

  11. Location and timing of river-aquifer exchanges in six tributaries to the Columbia River in the Pacific Northwest of the United States

    USGS Publications Warehouse

    Konrad, C.P.

    2006-01-01

    The flow of water between rivers and contiguous aquifers influences the quantity and quality of water resources, particularly in regions where precipitation and runoff are unevenly distributed through the year, such as the Columbia Basin (CB) in northwestern United States. Investigations of basin hydrogeology and gains and losses of streamflow for six rivers in the CB were reviewed to characterize general patterns in the timing and location of river-aquifer exchanges at a reach-scale (0.5-150 km) and to identify geologic and geomorphic features associated with the largest exchanges. Ground-water discharge to each river, or the gain in streamflow, was concentrated spatially: more than one-half of the total gains along each river segment were contributed from reaches that represented no more than 30% of the total segment length with the largest and most concentrated gains in rivers in volcanic terrains. Fluvial recharge of aquifers, or losses of streamflow, was largest in rivers in sedimentary basins where unconsolidated sediments form shallow aquifers. Three types of geologic or geomorphic features were associated with the largest exchanges: (1) changes in the thickness of unconsolidated aquifers; (2) contacts between lithologic units that represent contrasts in permeability; and (3) channel forms that increase the hydraulic gradient or cross-sectional area of flow paths between a river and shallow ground-water. The down-valley component of ground-water flow and its vertical convergence on or divergence from a riverbed account for large streamflow gains in some reaches and contrast with the common assumption of lateral ground-water discharge to a river that penetrates completely through the aquifer. Increased ground-water discharge was observed during high-flow periods in reaches of four rivers indicating that changes in ground-water levels can be more important than stage fluctuations in regulating the direction and magnitude of river-aquifer exchanges and that assumptions about ground-water discharge during high flow periods used for base-flow separation must be verified. Given the variety of geologic terrains in the CB, the spatial and temporal patterns of river-aquifer exchanges provide a framework for investigations in other regions that includes a focus on reaches where the largest exchanges are likely to occur, integration of ground-water and surface-water data, and verification of assumptions regarding ground-water flow direction and temporal variation of exchanges. ?? 2006 Elsevier B.V. All rights reserved.

  12. Benthic invertebrates of fixed sites in the western Lake Michigan drainages, Wisconsin and Michigan, 1993-95

    USGS Publications Warehouse

    Lenz, Bernard N.; Rheaume, S.J.

    2000-01-01

    This report describes the variability in family-level benthic-invertebrate population data and the reliability of the data as a water-quality indicator for 11 fixed surface-water sites in the Western Lake Michigan Drainages study area of the National Water-Quality Assessment Program. Benthic-invertebrate-community measures were computed for the following: number of individuals, Hilsenhoff’s Family-Level Biotic Index, number and percent EPT (Ephemeroptera, Plecoptera, and Tricoptera), Margalef’s Diversity Index, and mean tolerance value. Relations between these measures and environmental setting, habitat, and of chemical water quality are examined. Benthic-invertebrate communities varied greatly among fixed sites and within individual streams among multiple-reach and multiple-year sampling. The variations between multiple reaches and years were sometimes larger than those found between different fixed sites. Factors affecting benthic invertebrates included both habitat and chemical quality. Generally, fixed-site streams with the highest diversity, greatest number of benthic invertebrates, and those at which community measures indicated the best water quality also had the best habitat and chemical quality. Variations among reaches are most likely related to differences in habitat. Variations among years are most likely related to climatic changes, which create variations in flow and/or chemical quality. The variability in the data analyzed in this study shows how benthic invertebrates are affected by differences in both habitat and water quality, making them useful indicators of stream health; however, a single benthic-invertebrate sample alone cannot be relied upon to accurately describe water quality of the streams in this study. Benthic-invertebrate data contributed valuable information on the biological health of the 11 fixed sites when used as one of several data sources for assessing water quality.

  13. Groundwater Surface Water Interactions in a Gold-Mined Dredged Floodplain of the Merced River

    NASA Astrophysics Data System (ADS)

    Sullivan, L.; Conklin, M. H.; Ghezzehei, T. A.

    2012-12-01

    The Merced River, originating in the Sierra Nevada, California, drains a watershed with an area of ~3,305 km2. Merced River has been highly altered due to diversions, mechanically dredged mining, and damming. A year of groundwater-surface water interactions were studied to elucidate the hydrological connection between the Main Canal, an unlined canal that contains Merced River water flows parallel to the river with an average elevation of 89m, the highly conductive previously dredged floodplain, and the Merced River with an average elevation of 84m. Upstream of the study reach, located in an undredged portion, of the floodplain are two fish farms that have been operating for approximately 40 years. This study reach has been historically important for salmon spawning and rearing, where more than 50% of the Chinook salmon of the Merced River spawn. Currently salmon restoration is focusing gravel augmentation and adding side channel and ignoring groundwater influences. Exchanges between the hyporheic and surrounding surface, groundwater, riparian, and alluvial floodplain habitats occur over a wide range of spatial and temporal scales. Pressure transducers were installed in seven wells and four ponds located in the dredged floodplain. All wells were drilled to the Mehrten Formation, a confining layer, and screened for last 3m. These groundwater well water levels as well as the surface water elevations of the Main Canal and the Merced River were used to determine the direction of sublateral surface flows using Groundwater Vistas as a user interface for MODFLOW. The well and pond waters and seepage from the river banks were sampled for anion/cation, dissolved organic carbon, total nitrogen, total iron, and total dissolved iron concentrations to determine water sources and the possibility of suboxic water. Field analysis indicated that water in all wells and ponds exhibit low dissolved oxygen, high conductivity rates, and oxidation/reduction potentials that switched from oxidizing to reductive during the course of the monitoring. Chemical analysis indicates that there are three sources of water for this floodplain: the Merced River and Main Canal, (which are chemically very similar), the waters from the fish hatchery, and precipitation. The well closest to the fish hatcheries had C:N ratio of 1:1, highly carbon-limited system. MODFLOW particle tracer experiments were performed, results indicate that that travel time between the Main Canal and Merced River are approximately 10-15 years. The hydraulic gradient set up by the groundwater connection between Main Canal and the Merced River, insures that any effluent released by the fish farms will be transported to the Merced River. Conclusions of the study are that the waters that seep from the Main Canal to the Merced River in this area can be sub-oxic, which is not conducive to salmon spawning and are detrimental to the developing salmonid embryo. Due to the causal connections between the hydrological system of the Merced River floodplain and the riverine system, habitat rehabilitation must target not only the surface water but also important subsurface hydrological components.

  14. A method of measuring rainfall on windy slopes

    Treesearch

    G. L. Hayes

    1944-01-01

    The object of precipitation measurement, as stated by Brooks (1), is to obtain "a fair sample of the fall reaching the earth's surface over the area represented by the measurement." The area referred to is horizontal, or map area. Even when measured on a slope, precipitation is always expressed as depth of water on a horizontal area.

  15. 40 CFR 412.4 - Best management practices (BMPs) for land application of manure, litter, and process wastewater.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reaching surface waters. (3) Multi-year phosphorus application means phosphorus applied to a field in excess of the crop needs for that year. In multi-year phosphorus applications, no additional manure... phosphorus has been removed from the field via harvest and crop removal. (c) Requirement to develop and...

  16. 40 CFR 412.4 - Best management practices (BMPs) for land application of manure, litter, and process wastewater.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reaching surface waters. (3) Multi-year phosphorus application means phosphorus applied to a field in excess of the crop needs for that year. In multi-year phosphorus applications, no additional manure... phosphorus has been removed from the field via harvest and crop removal. (c) Requirement to develop and...

  17. The development of alum rates to enhance the remediation of phosphorus in fluvial systems following manure spills

    USDA-ARS?s Scientific Manuscript database

    Following the remediation of animal manure spills that reach surface waters, contaminated streambed sediments are often left in place and become a source for internal P loading within the stream in subsequent flow. The objective of this study was to develop treatment rates and combinations of alum a...

  18. Meanderbelt Dynamics of the Sacramento River, California

    Treesearch

    Michael D. Harvey

    1989-01-01

    A 160 km-long reach of Sacramento River was studied with the objective of predicting future changes in channel planform and their effects on water-surface elevations. Planform data were used to develop regression relationships between bend radius of curvature (Rc) and both short-term (5 years) and long term (90 years) lateral migration rates (MR) and migration...

  19. Flood-inundation maps for a nine-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Lake County Stormwater Management Commission and the Villages of Lincolnshire and Riverwoods. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Des Plaines River at Lincolnshire, Illinois (station no. 05528100). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05528100. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The NWS forecasted peak-stage information, also shown on the Des Plaines River at Lincolnshire inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine seven water-surface profiles for flood stages at roughly 1-ft intervals referenced to the streamgage datum and ranging from the 50- to 0.2-percent annual exceedance probability flows. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  20. Mechanism of Hydrophilicity by Radiation-Induced Surface Activation

    NASA Astrophysics Data System (ADS)

    Honjo, Yoshio; Furuya, Masahiro; Takamasa, Tomoji; Okamoto, Koji

    When a metal oxide is irradiated by gamma rays, the irradiated surface becomes hydrophilic. This surface phenomenon is called as radiation-induced surface activation (RISA) hydrophilicity. In order to investigate gamma ray-induced and photoinduced hydrophilicity, the contact angles of water droplets on a titanium dioxide surface were measured in terms of irradiation intensity and time for gamma rays of cobalt-60 and for ultraviolet rays. Reciprocals of the contact angles increased in proportion to the irradiation time before the contact angles reached its super-hydrophilic state. The irradiation time dependency is equal to each other qualitatively. In addition, an effect of ambient gas was investigated. In pure argon gas, the contact angle remains the same against the irradiation time. This clearly indicates that certain humidity is required in ambient gas to take place of RISA hydrophilicity. A single crystal titanium dioxide (100) surface was analyzed by X-ray photoelectron spectrometry (XPS). After irradiation with gamma rays, a peak was found in the O1s spectrum, which indicates the adsorption of dissociative water to a surface 5-fold coordinate titanium site, and the formation of a surface hydroxyl group. We conclude that the RISA hydrophilicity is caused by chemisorption of the hydroxyl group on the surface.

  1. Penetrative Internal Oxidation from Alloy 690 Surfaces and Stress Corrosion Crack Walls during Exposure to PWR Primary Water

    NASA Astrophysics Data System (ADS)

    Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.

    Analytical electron microscopy and three-dimensional atom probe tomography (ATP) examinations of surface and near-surface oxidation have been performed on Ni-30%Cr alloy 690 materials after exposure to high-temperature, simulated PWR primary water. The oxidation nanostructures have been characterized at crack walls after stress-corrosion crack growth tests and at polished surfaces of unstressed specimens for the same alloys. Localized oxidation was discovered for both crack walls and surfaces as continuous filaments (typically <10 nm in diameter) extending from the water interface into the alloy 690 matrix reaching depths of 500 nm. These filaments consisted of discrete, plate-shaped Cr2O3 particles surrounded by a distribution of nanocrystalline, rock-salt (Ni-Cr-Fe) oxide. The oxide-containing filament depth was found to increase with exposure time and, at longer times, the filaments became very dense at the surface leaving only isolated islands of metal. Individual dislocations were oxidized in non-deformed materials, while the oxidation path appeared to be along more complex dislocation substructures in heavily deformed materials. This paper will highlight the use of high resolution scanning and transmission electron microscopy in combination with APT to better elucidate the microstructure and microchemistry of the filamentary oxidation.

  2. Channel geometry and hydrologic data for six eruption-affected tributaries of the Lewis River, Mount St. Helens, Washington, water years 1983-84

    USGS Publications Warehouse

    Martinson, H.A.; Hammond, H.E.; Mast, W.W.; Mango, P.D.

    1986-01-01

    The May 18, 1980, eruption of Mount St. Helens generated a lateral blast, lahars, and tephra deposits that altered stream channels in the Lewis River drainage basin. In order to assess potential flood hazards, monitor channel adjustments, and construct a sediment budget for disturbed drainages on the east and southeast flanks of the volcano, channel cross sections were monumented and surveyed on Pine Creek, Muddy River, and Smith Creek during September and October of 1980. Additional cross sections were monumented and surveyed on Swift Creek, Bean Creek , and Clearwater Creek during 1981. This network of channel cross sections has been resurveyed annually. Selected cross sections have been surveyed more frequently, following periods of higher flow. Longitudinal stream profiles of the low-water thalweg and (or) water surfaces were surveyed periodically for selected short reaches of channel. Corresponding map views for these reaches were constructed using the survey data and aerial photographs. This report presents plots of channel cross-section profiles, longitudinal stream profiles, and channel maps constructed from survey data collected during water years 1983-84. (USGS)

  3. The impact of surface water - groundwater interactions on nitrate cycling assessed by means of hydrogeologic and isotopic techniques in the Alento river basin (Italy)

    NASA Astrophysics Data System (ADS)

    Stellato, Luisa; Di Rienzo, Brunella; Di Fusco, Egidio; Rubino, Mauro; Marzaioli, Fabio; Terrasi, Filippo; D'Onofrio, Antonio; De Vita, Pantaleone; Allocca, Vincenzo; Salluzzo, Antonio; Rimauro, Juri; Romano, Nunzio; Celico, Fulvio

    2017-04-01

    Currently a major concern of water resources managers is to understand the fate and dynamics of nutrients in riverine ecosystems because of their potential impacts on both river quality and human health (e.g., European Council Directive 91/676/EEC). Nutrients are released within a catchment (or river basin) mainly by agricultural practices and urban/industrial activities, in addition to natural sources such as soils and organic matter. They are discharged into surface water bodies by means of nutrient-rich groundwater inflows and/or overland flow pathways, which can be important controls on hot moment/hot spot type biogeochemical behaviors. Groundwater has been recognized to have a major role in controlling stream ecosystem health since it influences stream ecology when surface and subsurface water are hydraulically connected. In particular, processes occurring at the reach or sub-reach scale more directly influence nutrient transport to rivers than larger scale processes. In this general context, the main scope of this study, within the framework of the IAEA Coordinated Research Project (CRP) "Environmental Isotopes and Age Dating Methods to Assess Nitrogen Pollution and Other Quality Issues in Rivers", was to spatially and temporally quantify groundwater inflows to the Alento river (Southern Italy) to characterize sw-gw interactions in the catchment in order to finally assess nitrates contamination of a groundwater dependent river ecosystem. Four sampling campaigns have been carried out in July and October 2014, in April 2015 and in June 2016 during which 1 spring, rain water, 17 surface water and 27 groundwater points were sampled all over the plain. The piezometric reconstruction has been realized by means of the monitoring of groundwater levels in 43 domestic and agricultural wells (10-15 m deep). The preliminary hydrogeological (water table morphology and stream discharge measurements), physico-chemical (T and EC), hydrochemical and isotopic (222Rn, δD and δ18O) data evidence a gaining river in the northern part of the plain. Moreover, δD and δ18O data evidence a fast recharge from seasonal precipitations originating from evaporated and re-evaporated air masses. Finally, even though chemical data evidence no groundwater nitrate pollution (< 50 mg L-1) in the study area, δ15N and δ18O of dissolved nitrates have been used to infer possible nitrate sources in the study area.

  4. Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

    2013-01-01

    Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed.

  5. Flood profiles in the Calapooya Creek basin, Oregon

    USGS Publications Warehouse

    Friday, John

    1982-01-01

    Water-surface profiles were computed for a 19.4-mile reach of Calapooya Creek in Douglas County, Oregon. The data will enable the county to evaluate flood hazards in the floodprone areas in the reach. Profiles for floods having recurrence intervals of 2, 10, 50, 100, and 500 years are shown in graphic and tabular form. A floodway, allowing encroachment of the 100-year floods, was designed with a maximum 1.0-foot surcharge limitation. A profile for a flood that occurred in November 1961 is also presented. All data were derived from a digital computer model developed for the study.

  6. Water resources of the Humboldt River Valley near Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1965-01-01

    This report, resulting from studies made by the U.S. Geological Survey as part of the interagency Humboldt River Research Project, describes the qualitative and quantitative relations among the components of the hydrologic system in the Winnemucca Reach of the Humboldt River valley. The area studied includes the segment of the Humboldt River valley between the Comus and Rose Creek gaging stations. It is almost entirely in Humboldt County in north-central Nevada, and is about 200 miles downstream from the headwaters of the Humboldt River. Agriculture is the major economic activity in the area. Inasmuch as the valley lowlands receive an average of about 8 inches of precipitation per year and because the rate of evaporation from free-water surfaces is about six times the average annual precipitation, all crops in the area (largely forage crops) are irrigated. About 85 percent of the cultivated land is irrigated with Humboldt River water; the remainder is irrigated from about 20 irrigation wells. The consolidated rocks of the uplifted fault-block mountains are largely barriers to the movement of ground water and form ground-water and surface-water divides. Unconsolidated deposits of late Tertiary and Quaternary age underlie the valley lowlands to a maximum depth of about 5,000 feet. These deposits are in hydraulic continuity with the Humboldt River and store and transmit most of the economically recoverable ground water. Included in the valley fill is a highly permeable sand and gravel deposit having a maximum thickness of about 90-100 feet; it underlies the flood plain and bordering terraces throughout most of the project area. This deposit is almost completely saturated and contains about 500,000 acre-feet of ground water in storage. The Humboldt River is the source of 90-95 percent of the surface-water inflow to the area. In water years 1949-62 the average annual streamflow at the Comus gaging station at the upstream margin of the area was 172,100 acre-feet; outflow at the Rose Creek gaging station averaged about 155,400 acre-feet. Accordingly, the measured loss of Humboldt River streamflow averaged nearly 17,000 acre-feet per year. Most of this water was transpired by phreatophytes and crops, evaporated from free-water surfaces, and evaporated from bare soil. Inasmuch as practically no tributary streamflow normally discharges into the river in the Winnemucca reach and because pumpage is virtually negligible during the nonirrigation season, gains and losses of streamflow during most of the year reflect the close interrelation of the Humboldt River and the groundwater reservoir. An estimated average of about 14,000 acre-feet per year of ground-water underflow moves toward the Humboldt River from tributary areas. Much of this water discharges into the Humboldt River; hovever, some evaporates or is transpired before reaching the river. More than 65 percent of the average annual flow of the river horn-ally occurs in April, May, and June owing to the spring runoff. The stage of the river generally rises rapidly during these months causing water to move from the river to the ground-water reservoir. Furthermore, the period of high streamflow normally coincides with the irrigation season, and much of the excess irrigation water diverted from the river percolates downward to the zone of saturation. The net measured loss of streamflow in April-June, which averaged about 24,000 acre-feet in water years 1949-62, was about 7,000 acre-feet more than the average annual loss. The estimated net average annual increase of ground water in storage during these months in this period was on the order of 10,000 acre-feet. Following the spring runoff and the irrigation season, normally in July, some of the ground water stored in the flood-plain deposits during the spring runoff begins to discharge into the river. In addition, ground-water inflow from tributary areas again begins to discharge into the river. Experiments utilizin

  7. Multi-scale controls on spatial variability in river biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Kurz, Marie; Knapp, Julia; Mendoza-Lera, Clara; Lee-Cullin, Joe; Klaar, Megan; Drummond, Jennifer; Jaeger, Anna; Zarnetske, Jay; Lewandowski, Joerg; Marti, Eugenia; Ward, Adam; Fleckenstein, Jan; Datry, Thibault; Larned, Scott; Krause, Stefan

    2016-04-01

    Excessive nutrient concentrations are common in surface waters and groundwaters in agricultural catchments worldwide. Increasing geomorphological heterogeneity in river channels may help to attenuate nutrient pollution by facilitating water exchange fluxes with the hyporheic zone; a site of intense microbial activity where biogeochemical cycling rates can be high. However, the controls on spatial variability in biogeochemical cycling, particularly at scales relevant for river managers, are largely unknown. Here, we aimed to assess: 1) how differences in river geomorphological heterogeneity control solute transport and rates of biogeochemical cycling at sub-reach scales (102 m); and 2) the relative magnitude of these differences versus those relating to reach scale substrate variability (103 m). We used the reactive tracer resazurin (Raz), a weakly fluorescent dye that transforms to highly fluorescent resorufin (Rru) under mildly reducing conditions, as a proxy to assess rates of biogeochemical cycling in a lowland river in southern England. Solute tracer tests were conducted in two reaches with contrasting substrates: one sand-dominated and the other gravel-dominated. Each reach was divided into sub-reaches that varied in geomorphic complexity (e.g. by the presence of pool-riffle sequences or the abundance of large woody debris). Slug injections of Raz and the conservative tracer fluorescein were conducted in each reach during baseflow conditions (Q ≈ 80 L/s) and breakthrough curves monitored using in-situ fluorometers. Preliminary results indicate overall Raz:Rru transformation rates in the gravel-dominated reach were more than 50% higher than those in the sand-dominated reach. However, high sub-reach variability in Raz:Rru transformation rates and conservative solute transport parameters suggests small scale targeted management interventions to alter geomorphic heterogeneity may be effective in creating hotspots of river biogeochemical cycling and nutrient load attenuation.

  8. Delineation and Characterization of Furnace Brook Watershed in Marshfield, Massachusetts: A Study of Effects upon Conjunctive Water Use within a Watershed

    NASA Astrophysics Data System (ADS)

    Croll, E. D.; Enright, R.

    2012-12-01

    An understanding of conjunctive use between surface and ground water is essential to resource management both for sustained public use and watershed conservation practices. The Furnace Brook watershed in Marshfield, Massachusetts supplies a coastal community of 25,132 residents with nearly 50% of the town water supply. As with many other coastal communities, development pressure has increased creating a growing demand for freshwater extraction. It has been observed, however, that portions of the stream and Furnace Pond disappear entirely. This has created a conflict between protection of the designated wetland areas and meeting public pressure for water resources, even within what is traditionally viewed as a humid region. Questions have arisen as to whether the town water extraction is influencing this losing behavior by excessively lowering water-table elevations and potentially endangering the health of the stream. This study set out to initially characterize these behaviors and identify possible influences of anthropogenic and natural sources acting upon the watershed including stream flow obstructions, water extraction, and geologic conditions. The initial characterization was conducted utilizing simple, low-cost and minimally intrusive methods as outlined by Lee and Cherry (1978), Rosenberry and LaBaugh (2008) and others during a six week period. Five monitoring stations were established along a 3.0 mile reach of the basin consisting of mini-piezometers, seepage meters, survey elevation base-lines, and utilizing a Marsh-McBirney flow velocity meter. At each station stream discharge, seepage flux rates and hydraulic gradients were determined to develop trends of stream behavior. This methodology had the benefit of demonstrating the efficacy of an intrinsically low-expense, minimally intrusive initial approach to characterizing interactions between surface and ground water resources. The data was correlated with town pumping information, previous geologic surveys and meteorological data. Early data analysis indicated that the stream behaved in an anomalous manner decreasing in discharge with downstream flow despite normal precipitation inputs. The behavior within this particular watershed appeared to be influenced by four primary factors resulting in the stream "running dry" during the June-August period. These factors included: (1) A losing gradient induced by well pumping (2) Obstructions to stream flow reduced contribution from upper reaches to lower reaches (3) A highly anisotropic layer of lower conductivity material regulated infiltration rates and (4) Evapotranspiration effects are such that during this period the basin is in a deficit situation even without additional losses. Additionally, relationships between well pumping and decreasing discharge, seepage flux loss rates and hydraulic gradients have demonstrated that even within humid region watersheds it cannot be assumed aquifer recharge is sufficient to avoid conflict between surface water protection and ground water utilization. Timing of precipitation events combined with geological governance of aquifer recharge play critical roles in managing the conjunctive use of water resources and cannot be assumed to have a negligible effect, even within relatively humid regions.

  9. Multi-scale nitrate transport in a sandstone aquifer system under intensive agriculture

    NASA Astrophysics Data System (ADS)

    Paradis, Daniel; Ballard, Jean-Marc; Lefebvre, René; Savard, Martine M.

    2018-03-01

    Nitrate transport in heterogeneous bedrock aquifers is influenced by mechanisms that operate at different spatial and temporal scales. To understand these mechanisms in a fractured sandstone aquifer with high porosity, a groundwater-flow and nitrate transport model—reproducing multiple hydraulic and chemical targets—was developed to explain the actual nitrate contamination observed in groundwater and surface water in a study area on Prince Edward Island, Canada. Simulations show that nitrate is leached to the aquifer year-round, with 61% coming from untransformed and transformed organic sources originating from fertilizers and manure. This nitrate reaches the more permeable shallow aquifer through fractures in weathered sandstone that represent only 1% of the total porosity (17%). Some of the nitrate reaches the underlying aquifer, which is less active in terms of groundwater flow, but most of it is drained to the main river. The river-water quality is controlled by the nitrate input from the shallow aquifer. Groundwater in the underlying aquifer, which has long residence times, is also largely influenced by the diffusion of nitrate in the porous sandstone matrix. Consequently, following a change of fertilizer application practices, water quality in domestic wells and the river would change rapidly due to the level of nitrate found in fractures, but a lag time of up to 20 years would be necessary to reach a steady level due to diffusion. This demonstrates the importance of understanding nitrate transport mechanisms when designing effective agricultural and water management plans to improve water quality.

  10. A thermal profile method to identify potential ground-water discharge areas and preferred salmonid habitats for long river reaches

    USGS Publications Warehouse

    Vaccaro, J.J.; Maloy, K.J.

    2006-01-01

    The thermal regime of riverine systems is a major control on aquatic ecosystems. Ground water discharge is an important abiotic driver of the aquatic ecosystem because it provides preferred thermal structure and habitat for different types of fish at different times in their life history. In large diverse river basins with an extensive riverine system, documenting the thermal regime and ground-water discharge is difficult and problematic. A method was developed to thermally profile long (5-25 kilometers) river reaches by towing in a Lagrangian framework one or two probes that measure temperature, depth, and conductivity. One probe is towed near the streambed and, if used, a second probe is towed near the surface. The probes continuously record data at 1-3-second intervals while a Global Positioning System logs spatial coordinates. The thermal profile provides valuable information about spatial and temporal variations in habitat, and, notably, indicates ground-water discharge areas. This method was developed and tested in the Yakima River Basin, Washington, in summer 2001 during low flows in an extreme drought year. The temperature profile comprehensively documents the longitudinal distribution of a river's temperature regime that cannot be captured by fixed station data. The example profile presented exhibits intra-reach diversity that reflects the many factors controlling the temperature of a parcel of water as it moves downstream. Thermal profiles provide a new perspective on riverine system temperature regimes that represent part of the aquatic habitat template for lotic community patterns.

  11. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    PubMed

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  12. Drivers of deep-water renewal events observed over 13 years in the South Basin of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Tsimitri, Chrysanthi; Rockel, Burkhardt; Wüest, Alfred; Budnev, Nikolay M.; Sturm, Michael; Schmid, Martin

    2015-03-01

    Lake Baikal, with a depth of 1637 m, is characterized by deep-water intrusions that bridge the near-surface layer to the hypolimnion. These episodic events transfer heat and oxygen over large vertical scales and maintain the permanent temperature stratified deep-water status of the lake. Here we evaluate a series of intrusion events that reached the bottom of the lake in terms of the stratification and the wind conditions under which they occurred and provide a new insight into the triggering mechanisms. We make use of long-term temperature and current meter data (2000-2013) recorded in the South Basin of the lake combined with wind data produced with a regional downscaling of the global NCEP-RA1 reanalysis product. A total of 13 events were observed during which near-surface cold water reached the bottom of the South Basin at 1350 m depth. We found that the triggering mechanism of the events is related to the time of the year that they take place. We categorized the events in three groups: (1) winter events, observed shortly before the complete ice cover of the lake that are triggered by Ekman coastal downwelling, (2) under-ice events, and (3) spring events, that show no correlation to the wind conditions and are possibly connected to the increased spring outflow of the Selenga River. This article was corrected on 18 MAR 2015. See the end of the full text for details.

  13. Diel Sampling of Groundwater and Surface Water for Trace Elements and Select Water-Quality Constituents at a Former Zinc Smelter Site near Hegeler, Illinois, August 1-3, 2007

    USGS Publications Warehouse

    Kay, Robert T.; Groschen, George E.; Dupre, David H.; Drexler, Timothy D.; Thingvold, Karen L.; Rosenfeld, Heather J.

    2009-01-01

    Surface water can exhibit substantial diel variations in the concentration of a number of constituents. Sampling regimens that do not characterize diel variations in water quality can result in an inaccurate understanding of site conditions and of the threat posed by the site to human health and the environment. Surface- and groundwater affected by acid drainage were sampled every 60 to 90 minutes over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, in Hegeler, Ill. Groundwater-quality data from a well at the site indicate stable, low pH, weakly oxidizing geochemical conditions in the aquifer. With the exceptions of temperature and pH, no constituents exhibited diel variations in groundwater. Variations in temperature and pH likely were not representative of conditions in the aquifer. Surface water was sampled at a site on Grape Creek. Diel variations were observed in temperature, dissolved oxygen, pH, and specific conductance, and in the concentrations of nitrite, barium, iron, lead, vanadium, and possibly uranium. Concentrations during the diel cycles varied by about an order of magnitude for nitrite and varied by about a factor of two for barium, iron, lead, vanadium, and uranium. Temperature, dissolved oxygen, specific conductance, nitrite, barium, lead, and uranium generally reached maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally reached minimum values during the afternoon and maximum values during the night. These variations would need to be accounted for during sampling of surface-water quality in similar hydrologic settings. The temperature variations in surface water were affected by variations in air temperature. Concentrations of dissolved oxygen were affected by variations in the intensity of photosynthetic activity and respiration. Nitrite likely was formed by the oxidation of ammonium by dissolved oxygen and degraded by its anaerobic oxidation by ammonium or as part of the decomposition of organic matter. Variations in pH were affected by the photoreduction of Fe3+ to Fe2+ and the precipitation of iron oxyhydroxides. Diel variations in concentrations of iron and vanadium were likely caused by variations in the dissolution and precipitation of iron oxyhydroxides, oxyhydroxysulfates, and hydrous sulfates, which may have been affected by in the intensity of insolation, iron photoreduction, and the concentration of dissolved oxygen. The concentrations of lead, uranium, and perhaps barium in Grape Creek may have been affected by competition for sorption sites on iron oxyhydroxides. Competition for sorption sites was likely affected by variations in pH and the concentration of Fe2+. Constituent concentrations likely also were affected by precipitation and dissolution of minerals that are sensitive to changes in pH, temperature, oxidation-reduction conditions, and biologic activity. The chemical and biologic processes that resulted in the diel variations observed in Grape Creek occurred within the surface-water column or in the underlying sediments.

  14. Thermal profiles for selected river reaches of the Methow and Chewuch Rivers, Washington, August 2011

    USGS Publications Warehouse

    Gendaszek, Andrew S.

    2012-01-01

    Longitudinal profiles of near-streambed and near-surface temperatures were collected for selected reaches of the Methow and Chewuch Rivers, Washington, during August 2011 to facilitate development of a stream temperature model near the confluence of the Methow and Chewuch Rivers. Temperature was measured using a probe with an internal datalogger towed behind a watercraft moving downstream at ambient river velocity. For the Methow River, an additional temperature survey was completed using near-streambed and near-surface probes towed behind a second watercraft that traversed the channel to measure vertical and lateral temperature variability. All data were referenced to location that was concurrently measured with a Global Positioning System. Data are presented as Microsoft Excel® files consisting of date and time, water temperature, and Washington State Plane North easting and northing.

  15. Flood-inundation maps for the Patoka River in and near Jasper, southwestern Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2018-01-23

    Digital flood-inundation maps for a 9.5-mile reach of the Patoka River in and near the city of Jasper, southwestern Indiana (Ind.), from the streamgage near County Road North 175 East, downstream to State Road 162, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage Patoka River at Jasper, Ind. (station number 03375500). The Patoka streamgage is located at the upstream end of the 9.5-mile river reach. Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, although flood forecasts and stages for action and minor, moderate, and major flood stages are not currently (2017) available at this site (JPRI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Patoka River at Jasper, Ind., streamgage and the documented high-water marks from the flood of April 30, 2017. The calibrated hydraulic model was then used to compute five water-surface profiles for flood stages referenced to the streamgage datum ranging from 15 feet (ft), or near bankfull, to 19 ft. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging [lidar] data having a 0.98 ft vertical accuracy and 4.9 ft horizontal resolution) to delineate the area flooded at each water level.The availability of these flood-inundation maps, along with real-time stage from the USGS streamgage at the Patoka River at Jasper, Ind., will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for postflood recovery efforts.

  16. An Overview of the National Weather Service National Water Model

    NASA Astrophysics Data System (ADS)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Feng, X.; Karsten, L. R.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.

    2016-12-01

    The National Weather Service (NWS) Office of Water Prediction (OWP), in conjunction with the National Center for Atmospheric Research (NCAR) and the NWS National Centers for Environmental Prediction (NCEP) recently implemented version 1.0 of the National Water Model (NWM) into operations. This model is an hourly cycling uncoupled analysis and forecast system that provides streamflow for 2.7 million river reaches and other hydrologic information on 1km and 250m grids. It will provide complementary hydrologic guidance at current NWS river forecast locations and significantly expand guidance coverage and type in underserved locations. The core of this system is the NCAR-supported community Weather Research and Forecasting (WRF)-Hydro hydrologic model. It ingests forcing from a variety of sources including Multi-Sensor Multi-Radar (MRMS) radar-gauge observed precipitation data and High Resolution Rapid Refresh (HRRR), Rapid Refresh (RAP), Global Forecast System (GFS) and Climate Forecast System (CFS) forecast data. WRF-Hydro is configured to use the Noah-Multi Parameterization (Noah-MP) Land Surface Model (LSM) to simulate land surface processes. Separate water routing modules perform diffusive wave surface routing and saturated subsurface flow routing on a 250m grid, and Muskingum-Cunge channel routing down National Hydrogaphy Dataset Plus V2 (NHDPlusV2) stream reaches. River analyses and forecasts are provided across a domain encompassing the Continental United States (CONUS) and hydrologically contributing areas, while land surface output is available on a larger domain that extends beyond the CONUS into Canada and Mexico (roughly from latitude 19N to 58N). The system includes an analysis and assimilation configuration along with three forecast configurations. These include a short-range 15 hour deterministic forecast, a medium-Range 10 day deterministic forecast and a long-range 30 day 16-member ensemble forecast. United Sates Geologic Survey (USGS) streamflow observations are assimilated into the analysis and assimilation configuration, and all four configurations benefit from the inclusion of 1,260 reservoirs. An overview of the National Water Model will be given, along with information on ongoing evaluation activities and plans for future NWM enhancements.

  17. Modeling stream-groundwater interactions and associated groundwater salinization in an urban floodplain

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Lautz, L.

    2014-12-01

    The salinization of freshwater in the Northeastern United States from road salt application is well documented by the observed long-term increases in chloride concentrations in groundwater over the last fifty years. However, the processes controlling exchange of chloride between surface water and groundwater have not been fully investigated, particularly in urban streams where stream-groundwater interactions can be reduced due to bank armoring and channelization. Our research builds on previous findings that showed the potential for an urban riparian floodplain to buffer seasonal changes in chloride concentrations in an urban stream, resulting in smaller annual ranges of chloride in areas with intact riparian floodplains. A reach of Meadowbrook Creek, in Syracuse, New York, that is disconnected from the groundwater had large seasonal shifts in chloride concentration, varying from 2173 mg/L Cl- in the winter to 161.2 mg/L Cl- in the summer. This is in contrast to a downstream reach of the stream that receives groundwater discharge from a riparian floodplain, where chloride concentrations ranged from 657.0 mg/L in the winter to 252.0 mg/L in the summer. We originally hypothesized that winter snowmelt events caused overbank flooding of saline surface water, which recharged the floodplain groundwater, causing salinization. This saline water was then slowly discharged as baseflow throughout the year and was replaced with freshwater overbank events in the summer. However, a three dimensional model of the floodplain created using Visual MODFLOW indicates that surface water-groundwater interactions, such as hyporheic exchange, may have a greater control on winter salt input than overbank events, while summer flooding recharges the aquifer with freshwater. The model was compared to riparian aquifer samples collected from May 2013 until June 2014 to qualitatively study the impact of different types of surface water-groundwater interactions (e.g. groundwater recharge and discharge, hyporheic interaction) on salt storage and to identify the mechanisms by which urban riparian floodplains buffer seasonal variability of stream chloride concentrations in urban systems impacted by road salt.

  18. Geology and ground-water resources in the Zebulon area, Georgia

    USGS Publications Warehouse

    Chapman, M.J.; Milby, B.J.; Peck, M.F.

    1993-01-01

    The current (1991) surface-water source of drinking-water supply for the city of Zebulon, Pike County, Georgia, no longer provides an adequate water supply and periodically does not meet water-quality standards. The hydrogeology of crystalline rocks in the Zebulon area was evaluated to assess the potential of ground-water resources as a supplemental or alternative source of water to present surface-water supplies. As part of the ground-water resource evaluation, well location and construction data were compiled, a geologic map was constructed, and ground water was sampled and analyzed. Three mappable geologic units delineated during this study provide a basic understanding of hydrogeologic settings in the Zebulon area. Rock types include a variety of aluminosilicate schists, granitic rocks, amphibolites/honblende gneisses, and gondites. Several geologic features that may enhance ground-water availability were identified in the study area. These features include contacts between contrasting rock types, where a high degree of differential weathering has occurred, and well-developed structural features, such as foliation and jointing are present. High-yielding wells (greater than 25 gallons per minute) and low-yielding wells (less than one gallon per minute) were located in all three geologic units in a variety of topographic settings. Well yields range from less than one gallon per minute to 250 gallons per minute. The variable total depths and wide ranges of casing depths of the high-yielding wells are indicative of variations in depths to water-bearing zones and regolith thicknesses, respectively. The depth of water-bearing zones is highly variable, even on a local scale. Analyses of ground-water samples indicate that the distribution of iron concentration is as variable as well yield in the study area and does not seem to be related to a particular rock type. Iron concentrations in ground-water samples ranged from 0.02 to 5.3 milligrams per liter. Both iron concentration and well yield vary substantially over a relatively small area. Implementation and Verification of a One-Dimensional, Unsteady-Flow Model for Spring Brook near Warrenville, Illinois By Mary J. Turner, Anthony P. Pulokas, and Audrey L. Ishii Abstract A one-dimensional, unsteady-flow model, Full EQuations (FEQ) model, based on de Saint-Venant equations for dynamic flow in open channels, was calibrated and verified for a 0.75-mile reach of Spring Brook, a tributary to the West Branch Du Page River, near Warrenville in northeastern Illinois. The model was used to simulate streamflow in a small urban stream reach with two short culverts, one with overbank flow around the culvert during high flows. Streamflow data were collected on the reach during three high-flow periods. Data from one period were used to calibrate the model, and data from the other two periods were used to verify the model. Stages and discharges over the periods were simulated, and the results were compared graphically with stage and discharge data collected at 10 sites in the study reach. Errors in simulated stage and discharge were small except when debris, not represented in the model, clogged the culvert. The effects of changes in physical and computational model parameters also were studied. The model was insensit'lve to replacement of measured cross sections with interpolated cross sections, especially if the measured thalweg elevation was preserved. Variation of the roughness, slope, and length of the culvert over-bank section, as well as the chosen representative measured cross section, caused only slight changes in the simulated peak stage and discharge. Changes in the modeled culvert area caused large differences in the simulated highflows in the vicinity of the culvert, whereas simulated low flows were unaffected. At all flows, the misrepresentation of the culvert area caused the simulated water-surface elevations to deviate from the measured elevations, especially on the falling

  19. Water surface elevation from the upcoming SWOT mission under different flows conditions

    NASA Astrophysics Data System (ADS)

    Domeneghetti, Alessio; Schumann, Guy J. P.; Wei, Rui; Frasson, Renato P. M.; Durand, Michael; Pavelsky, Tamlin; Castellarin, Attilio; Brath, Armando

    2017-04-01

    The upcoming SWOT (Surface Water and Ocean Topography) satellite mission will provide unprecedented bi-dimensional observations of terrestrial water surface heights along rivers wider than 100m. Despite the literature reports several activities showing possible uses of SWOT products, potential and limitations of satellite observations still remain poorly understood and investigated. We present one of the first analyses regarding the spatial observation of water surface elevation expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 100-500 m in width and a floodplain delimited by a system of major embankments that can be as wide as 5 km. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2D model built with detailed topographic and bathymetric information (LiDAR, 2m resolution), while the simulation of remotely sensed hydrometric data is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow) this work characterizes the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. The analysis provides a robust reference for spatial water observations that will be available from SWOT and assesses possible effects of river embankments, river width and river topography under different hydraulic conditions. Results of the study characterize the expected accuracy of the upcoming SWOT mission and provide additional insights towards the appropriate exploitation of future hydrological observations.

  20. Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface water.

    PubMed

    Sterk, Ankie; Schijven, Jack; de Roda Husman, Ana Maria; de Nijs, Ton

    2016-05-15

    Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by, for instance, bathing or drinking-water consumption. An increase in runoff, and associated wash-off of animal faeces from fields, is assumed to contribute to the increase of disease outbreaks during periods of high precipitation. Climate change is expected to increase winter precipitation and extreme precipitation events during summer, but has simultaneously also other effects such as temperature rise and changes in evapotranspiration. The question is to what extent the combination of these effects influence the input of zoonotic pathogens to the surface waters. To quantitatively analyse the impacts of climate change on pathogen runoff, pathogen concentrations reaching surface waters through runoff were calculated by combining an input model for catchment pathogen loads with the Wageningen Lowland Runoff Simulator (WALRUS). Runoff of Cryptosporidium and Campylobacter was evaluated under different climate change scenarios and by applying different scenarios for sources of faecal pollution in the catchments, namely dairy cows and geese and manure fertilization. Model evaluation of these scenarios shows that climate change has little overall impact on runoff of Campylobacter and Cryptosporidium from land to the surface waters. Even though individual processes like runoff fluxes, pathogen release and dilution are affected, either positively or negatively, the net effect on the pathogen concentration in surface waters and consequently also on infection risks through recreation seems limited. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Characterisation and quantification of groundwater-surface water interactions along an alluvial stream using geophysical, hydraulic and tracer methods

    NASA Astrophysics Data System (ADS)

    Rumph Frederiksen, R.; Rasmussen, K. R.; Christensen, S.

    2015-12-01

    Qualifying and quantifying water, nutrient and contaminant exchange at the groundwater-surface water interface are becoming increasingly important for water resources management. The objectives of this study are to characterise an alluvial stream using geophysics in addition to traditional geological and geomorphological data and quantify the groundwater seepage to the stream on point-to-reach scale using both hydraulic and tracer methods. We mapped the very shallow subsurface along an alluvial stream using a GCM system (DUALEM421S, an electromagnetic system that can be operated behind a boat or towed behind a motorized vehicle) as well as using geological logs from a large number of old wells. Furthermore we made geomorphological observations through digital maps (old topographical maps and aerial photos) and field observations. We measured stream discharge (quasi-) simultaneously at several positions along the stream using both an Ott-C31 propeller instrument and an Acoustic Doppler Current Profiler instrument. The measurements were made during dry summer periods when baseflow is expected to be the dominating contribution to streamflow. Preliminary findings show that the GCM system reveals small-scale structures not seen with other data types. Furthermore, based on the GCM results and stream discharge results we have identified gaining, losing and zero exchange sections of the stream. During late summer 2015 we will collect additional hydrological data in order to support or modify our preliminary findings. To further investigate the spatial and temporal variations of the groundwater-surface water interactions along the stream we will measure groundwater seepage to the stream using: seepage meter (point-scale) DTS (reach-scale) temperature stick measurements (point-in-space-and-time-scale) temperature loggers installed in the streambed (month-scale) The measurement sites are chosen based on our geophysical, geological, and geomorphological mapping as well as our stream discharge measurements.

  2. A field comparison of multiple techniques to quantify groundwater - surface-water interactions

    USGS Publications Warehouse

    González-Pinzón, Ricardo; Ward, Adam S; Hatch, Christine E; Wlostowski, Adam N; Singha, Kamini; Gooseff, Michael N.; Haggerty, Roy; Harvey, Judson; Cirpka, Olaf A; Brock, James T

    2015-01-01

    Groundwater–surface-water (GW-SW) interactions in streams are difficult to quantify because of heterogeneity in hydraulic and reactive processes across a range of spatial and temporal scales. The challenge of quantifying these interactions has led to the development of several techniques, from centimeter-scale probes to whole-system tracers, including chemical, thermal, and electrical methods. We co-applied conservative and smart reactive solute-tracer tests, measurement of hydraulic heads, distributed temperature sensing, vertical profiles of solute tracer and temperature in the stream bed, and electrical resistivity imaging in a 450-m reach of a 3rd-order stream. GW-SW interactions were not spatially expansive, but were high in flux through a shallow hyporheic zone surrounding the reach. NaCl and resazurin tracers suggested different surface–subsurface exchange patterns in the upper ⅔ and lower ⅓ of the reach. Subsurface sampling of tracers and vertical thermal profiles quantified relatively high fluxes through a 10- to 20-cm deep hyporheic zone with chemical reactivity of the resazurin tracer indicated at 3-, 6-, and 9-cm sampling depths. Monitoring of hydraulic gradients along transects with MINIPOINT streambed samplers starting ∼40 m from the stream indicated that groundwater discharge prevented development of a larger hyporheic zone, which progressively decreased from the stream thalweg toward the banks. Distributed temperature sensing did not detect extensive inflow of ground water to the stream, and electrical resistivity imaging showed limited large-scale hyporheic exchange. We recommend choosing technique(s) based on: 1) clear definition of the questions to be addressed (physical, biological, or chemical processes), 2) explicit identification of the spatial and temporal scales to be covered and those required to provide an appropriate context for interpretation, and 3) maximizing generation of mechanistic understanding and reducing costs of implementing multiple techniques through collaborative research.

  3. Sublimation of icy planetesimals and the delivery of water to the habitable zone around solar type stars

    NASA Astrophysics Data System (ADS)

    Brunini, Adrián; López, María Cristina

    2018-06-01

    We present a semi analytic model to evaluate the delivery of water to the habitable zone around a solar type star carried by icy planetesimals born beyond the snow line. The model includes sublimation of ice, gas drag and scattering by an outer giant planet located near the snow line. The sublimation model is general and could be applicable to planetary synthesis models or N-Body simulations of the formation of planetary systems. We perform a short series of simulations to asses the potential relevance of sublimation of volatiles in the process of delivery of water to the inner regions of a planetary system during early stages of its formation. We could anticipate that erosion by sublimation would prevent the arrival of much water to the habitable zone of protoplanetary disks in the form of icy planetesimals. Close encounters with a massive planet orbiting near the outer edge of the snow line could make possible for planetesimals to reach the habitable zone somewhat less eroded. However, only large planetesimals could provide appreciable amounts of water. Massive disks and sharp gas surface density profiles favor icy planetesimals to reach inner regions of a protoplanetary disk.

  4. Estimation of River Bathymetry from ATI-SAR Data

    NASA Astrophysics Data System (ADS)

    Almeida, T. G.; Walker, D. T.; Farquharson, G.

    2013-12-01

    A framework for estimation of river bathymetry from surface velocity observation data is presented using variational inverse modeling applied to the 2D depth-averaged, shallow-water equations (SWEs) including bottom friction. We start with with a cost function defined by the error between observed and estimated surface velocities, and introduce the SWEs as a constraint on the velocity field. The constrained minimization problem is converted to an unconstrained minimization through the use of Lagrange multipliers, and an adjoint SWE model is developed. The adjoint model solution is used to calculate the gradient of the cost function with respect to river bathymetry. The gradient is used in a descent algorithm to determine the bathymetry that yields a surface velocity field that is a best-fit to the observational data. In applying the algorithm, the 2D depth-averaged flow is computed assuming a known, constant discharge rate and a known, uniform bottom-friction coefficient; a correlation relating surface velocity and depth-averaged velocity is also used. Observation data was collected using a dual beam squinted along-track-interferometric, synthetic-aperture radar (ATI-SAR) system, which provides two independent components of the surface velocity, oriented roughly 30 degrees fore and aft of broadside, offering high-resolution bank-to-bank velocity vector coverage of the river. Data and bathymetry estimation results are presented for two rivers, the Snohomish River near Everett, WA and the upper Sacramento River, north of Colusa, CA. The algorithm results are compared to available measured bathymetry data, with favorable results. General trends show that the water-depth estimates are most accurate in shallow regions, and performance is sensitive to the accuracy of the specified discharge rate and bottom friction coefficient. The results also indicate that, for a given reach, the estimated water depth reaches a maximum that is smaller than the true depth; this apparent maximum depth scales with the true river depth and discharge rate, so that the deepest parts of the river show the largest bathymetry errors.

  5. Holocene evolution of the North Atlantic subsurface transport

    NASA Astrophysics Data System (ADS)

    Repschläger, Janne; Garbe-Schönberg, Dieter; Weinelt, Mara; Schneider, Ralph

    2017-04-01

    Previous studies suggested that short-term freshening events in the subpolar gyre can be counterbalanced by advection of saline waters from the subtropical gyre and thus stabilize the Atlantic Meridional Overturning Circulation (AMOC). However, little is known about the inter-gyre transport pathways. Here, we infer changes in surface and subsurface transport between the subtropical and polar North Atlantic during the last 11 000 years, by combining new temperature and salinity reconstructions obtained from combined δ18O and Mg / Ca measurements on surface and subsurface dwelling foraminifera with published foraminiferal abundance data from the subtropical North Atlantic, and with salinity and temperature data from the tropical and subpolar North Atlantic. This compilation implies an overall stable subtropical warm surface water transport since 10 ka BP. In contrast, subsurface warm water transport started at about 8 ka but still with subsurface heat storage in the subtropical gyre. The full strength of intergyre exchange was probably reached only after the onset of northward transport of warm saline subsurface waters at about 7 ka BP, associated with the onset of the modern AMOC mode. A critical evaluation of different potential forcing mechanisms leads to the assumption that freshwater supply from the Laurentide Ice Sheet was the main control on subtropical to subpolar ocean transport at surface and subsurface levels.

  6. Influence of intermittent water releases on groundwater chemistry at the lower reaches of the Tarim River, China.

    PubMed

    Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen; Zhang, Er-xun

    2009-11-01

    Based on the data of the depths and the chemical properties of groundwater, salinity in the soil profile, and the basic information on each delivery of water collected from the years 2000 to 2006, the varied character of groundwater chemistry and related factors were studied. The results confirmed the three stages of the variations in groundwater chemistry influenced by the intermittent water deliveries. The factors that had close relations to the variations in groundwater chemistry were the distances of monitoring wells from the water channel, the depths of the groundwater, water flux in watercourse, and the salinities in soils. The relations between chemical variation and groundwater depths indicated that the water quality was the best with the groundwater varying from 5 to 6 m. In addition, the constructive species in the study area can survive well with the depth of groundwater varying from 5 to 6 m, so the rational depth of groundwater in the lower reaches of the Tarim River should be 5 m or so. The redistribution of salts in the soil profile and its relations to the chemical properties and depths of groundwater revealed the linear water delivery at present combining with surface water supply in proper sections would promote water quality optimized and speed up the pace of ecological restoration in the study area.

  7. Flood-inundation maps for the Tippecanoe River near Delphi, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2013-01-01

    Digital flood-inundation maps for an 11-mile reach of the Tippecanoe River that extends from County Road W725N to State Road 18 below Oakdale Dam, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind. Current conditions at the USGS streamgages in Indiana may be obtained online at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind., and USGS streamgage 03332605, Tippecanoe River below Oakdale Dam, Ind. The hydraulic model was then used to simulate 13 water-surface profiles for flood stages at 1-foot intervals reference to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (13 maps in all) so that, for any given flood stage, users will be able to view the estimated area of inundation. The availability of these maps, along with current stage from USGS streamgages and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  8. Water Deluge Test at Pad 39B

    NASA Image and Video Library

    2018-05-24

    About 450,000 gallons of water flow at high speed from a holding tank through new and modified piping and valves, the flame trench, flame deflector nozzles and mobile launcher interface risers during a wet flow test on May 24, 2018, at Launch Pad 39B at NASA's Kennedy Space Center in Florida. At peak flow, the water reached about 100 feet in the air above the pad surface. The test was performed by Exploration Ground Systems to confirm the performance of the Ignition Overpressure/Sound Suppression system. During launch of NASA's Space Launch System rocket and Orion spacecraft, the high-speed water flow will help protect the vehicle from the extreme acoustic and temperature environment during ignition and liftoff.

  9. Hydrogeologic framework of the shallow ground-water system in the Cox Hall Creek basin, Cape May County, New Jersey

    USGS Publications Warehouse

    Lacombe, Pierre J.; Zapecza, Otto S.

    2006-01-01

    Cape May County is investigating the feasibility of restoring the lowermost reach of Cox Hall Creek to its former state as a tidal saltwater wetland; however, the potential for contamination of the shallow ground-water system, which provides water to hundreds of nearby privately owned domestic wells, with saltwater from the restored wetland is of particular concern. To evaluate the potential effectiveness and risks of restoring the saltwater wetlands, the County needs information about the hydrogeologic framework in the area, and about the potential vulnerability of the domestic wells to contamination. The shallow ground-water system in the Cox Hall Creek area consists of unconsolidated Holocene and Pleistocene deposits. The Holly Beach water-bearing zone, the unconfined (water-table) aquifer, is about 35 feet thick and contains a 2- to 4-foot-thick clay lens about 10 feet below land surface; a lower, more discontinuous clay lens about 30 to 35 feet below land surface ranges up to 5 feet in thickness. A 75-foot-thick confining unit separates the Holly Beach water-bearing zone from the underlying estuarine sand aquifer. The clay lenses in the Holly Beach water-bearing zone likely retard the movement of contaminants from septic tanks, lawns, and other surficial sources, protecting wells that tap the lower, sandy part of the aquifer. The clay lenses also may protect these wells from salty surface water if withdrawals from the Holly Beach water-bearing zone are not increased substantially. Deeper wells that tap the estuarine sand aquifer are more effectively protected from saltwater from surface sources because of the presence of the overlying confining unit.

  10. An evaporation model of colloidal suspension droplets

    NASA Astrophysics Data System (ADS)

    Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.

    2009-11-01

    Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.

  11. Water Flow Test at Launch Complex 39B

    NASA Image and Video Library

    2017-12-20

    Water flowed during a test at Launch Complex 39B at NASA’s Kennedy Space Center in Florida. About 450,000 gallons of water flowed at high speed from a holding tank through new and modified piping and valves, the flame trench, flame deflector nozzles and mobile launcher interface risers during a wet flow test at Launch Complex 39B. At peak flow, the water reached about 100 feet in the air above the pad surface. The test was a milestone to confirm and baseline the performance of the Ignition Overpressure/Sound Suppression system. During launch of NASA's Space Launch System rocket and Orion spacecraft, the high-speed water flow will help protect the vehicle from the extreme acoustic and temperature environment during ignition and liftoff.

  12. Geochemical tracing of As pollution in the Orbiel Valley (southern France): 87Sr/86Sr as a tracer of the anthropogenic arsenic in surface and groundwater.

    NASA Astrophysics Data System (ADS)

    Khaska, Mahmoud; Le Gal La Salle, Corinnne; Lancelot, Joël; Verdoux, Patrick; Boutin, René

    2014-05-01

    The environmental impacts of arsenic mining activities and their effects on ecosystem and human health are observed in many stream waters and groundwater. The aim of this study is to identify the origin of As content in a mining environment using Sr isotopes. At the Salsigne gold mine, before the closure in 2004, high arsenic content has been observed in surface water and groundwater in the Orbiel valley. At the site, immobilization of As, in As rich leachate, is carried out by adding CaO. High contrast in 87Sr/86Sr between Arsenic rich minerals associated with Variscan metamorphic rocks (0.714888-0.718835), together with rich As waste water (0.713463-715477), and the CaO (0.707593) allows as to trace the origin of anthropogenic As. In 2012, Orbiel stream waters were sampled monthly upstream and downstream from the ancient ore processing site and once after an important rainy event (117mm). The upstream valley samples showed low and relatively constant As content with natural regional background of 3.6 and 5.6 μg/L. The rainy event induced only a slight increase in the As content up to 6.3 μg/L. High 87Sr/86Sr ratios suggested an influence of radiogenic Sr issued from the Variscan metamorphic basement. Downstream from the area, the As content was at least10 time as high. In the wet season, stream water As content clearly increased to 13.9-24 μg/L, reaching 120.5 μg/L during the rainy event. Associated 87Sr/86Sr ratio showed to be less radiogenic (0.712276-0.714002). The anti correlation observed between As and 87Sr/86Sr suggest that As issued from a natural origin is characterised by a high 87Sr/86Sr compared to As derived from the CaO treatement used on site and characterized by a low 87Sr/86Sr ratio. During the dry season, increase in As content was observed reaching 110 μg/L. These highlights the contribution of alluvial groundwater to base flow, probably associated with As reach leachate from the site. Contribution from the alluvial aquifer is confirmed by results from redox potential (Eh) measurements in both surface and groundwater. Hence, 87Sr/86Sr appears as an excellent tracer of the origin of pollution associated with CaO treatment widely used in many water treatment processes.

  13. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or calculated deliveries. IWFM utilizes a very straight-forward input file structure, allowing rapid development of complex simulations. A key feature of IWFM is a new algorithm for computation of groundwater flow across element faces. Enhancements to version 3.0 include automatic time-tracking of input and output data sets, linkage with the HEC-DSS database, and dynamic crop allocation using logit functions. Utilities linking IWFM to the PEST automated calibration suite are also available. All source code, executables and documentation are available for download from the DWR web site. IWFM is currently being used to develop hydrologic simulations of California's Central Valley (C2VSIM); the west side of California's San Joaquin Valley (WESTSIM); Butte County, CA; Solano County, CA; Merced County, CA; and the Oregon side of the Walla Walla River Basin.

  14. Surface- and ground-water characteristics in the Upper Truckee River and Trout Creek watersheds, South Lake Tahoe, California and Nevada, July-December 1996

    USGS Publications Warehouse

    Rowe, T.G.; Allander, Kip K.

    2000-01-01

    The Upper Truckee River and Trout Creek watersheds, South Lake Tahoe, California and Nevada, were studied from July to December 1996 to develop a better understanding of the relation between surface water and ground water. Base flows at 63 streamflow sites were measured in late September 1996 in the Upper Truckee River and Trout Creek watersheds. Most reaches of the main stem of the Upper Truckee River and Trout Creek had gaining or steady flows, with one losing reach in the mid-section of each stream. Twenty-seven of the streamflow sites measured in the Upper Truckee River watershed were on 14 tributaries to the main stem of the Upper Truckee River. Sixteen of the 40 streamflow sites measured in the Upper Truckee River watershed had no measurable flow. Streamflow in Upper Truckee River watershed ranged from 0 to 11.6 cubic feet per second (ft3/s). The discharge into Lake Tahoe from the Upper Truckee River was 11.6 ft3/s, of which, 40 percent of the flow was from ground-water discharge into the main stem, 40 percent was from tributary inflows, and the remaining 20 percent was the beginning flow. Gains from or losses to ground water along streams ranged from a 1.4 cubic feet per second per mile (ft3/s/mi) gain to a 0.5 ft3/s/mi loss along the main stem. Fourteen of the streamflow sites measured in the Trout Creek watershed were on eight tributaries to the main stem of Trout Creek. Of the 23 streamflow sites measured in the Trout Creek watershed, only one site had no flow. Flows in the Trout Creek watershed ranged from zero to 23.0 ft3/s. Discharge into Lake Tahoe from Trout Creek was 23.0 ft3/s, of which, about 5 percent of the flow was from ground-water discharge into the main stem, 75 percent was from tributary inflows, and the remaining 20 percent was the beginning flow. Ground-water seepage rates ranged from a 1.4 ft3/s/mi gain to a 0.9 ft3/s/mi loss along the main stem. Specific conductances measured during the seepage run in September 1996 increased in a downstream direction in the main stem of the Upper Truckee River and remained relatively constant in the main stem of Trout Creek. Water temperatures measured during the seepage run also increased in a downstream direction in both watersheds. Depths to ground water measured at 62 wells in the study area were used with the results of the seepage run to produce a water-level map in the Upper Truckee River and Trout Creek watersheds. Ground-water levels ranged from 1.3 to 69.8 feet below land surface. In the upper sections of the watersheds ground-water flow is generally toward the main stems of Upper Truckee River and Trout Creek, whereas in the lower sections, ground-water flow generally parallels the two streams and flows toward Lake Tahoe. The altitude of ground water between Lake Tahoe and Highway 50 was nearly the same as the lake-surface altitude from July to November 1996. This suggests ground-water discharge beneath the Upper Truckee River and Trout Creek drainages directly to Lake Tahoe was minimal and that much of the ground-water discharge was to the channels of the Upper Truckee River and Trout Creek upstream from Highway 50. Hydraulic gradients ranged from near zero to 1,400 feet per mile. Samples were collected at six surface-water-quality and eight ground-water-quality sites from July through mid-December 1996. Specific conductance of the ground-water-quality sites was higher than that of the surface-water-quality sites. Water temperature and pH median values were similar between ground-water-quality and surface-water-quality sites but ground water had greater variation in pH and surface water had greater variation in water temperature. Ground-water nutrient concentrations were generally higher than those in streams except for bioreactive iron.

  15. Seepage investigation and selected hydrologic data for the Escalante River drainage basin, Garfield and Kane Counties, Utah, 1909-2002

    USGS Publications Warehouse

    Wilberg, Dale E.; Stolp, Bernard J.

    2005-01-01

    This report contains the results of an October 2001 seepage investigation conducted along a reach of the Escalante River in Utah extending from the U.S. Geological Survey streamflow-gaging station near Escalante to the mouth of Stevens Canyon. Discharge was measured at 16 individual sites along 15 consecutive reaches. Total reach length was about 86 miles. A reconnaissance-level sampling of water for tritium and chlorofluorcarbons was also done. In addition, hydrologic and water-quality data previously collected and published by the U.S. Geological Survey for the 2,020-square-mile Escalante River drainage basin was compiled and is presented in 12 tables. These data were collected from 64 surface-water sites and 28 springs from 1909 to 2002.None of the 15 consecutive reaches along the Escalante River had a measured loss or gain that exceeded the measurement error. All discharge measurements taken during the seepage investigation were assigned a qualitative rating of accuracy that ranged from 5 percent to greater than 8 percent of the actual flow. Summing the potential error for each measurement and dividing by the maximum of either the upstream discharge and any tributary inflow, or the downstream discharge, determined the normalized error for a reach. This was compared to the computed loss or gain that also was normalized to the maximum discharge. A loss or gain for a specified reach is considered significant when the loss or gain (normalized percentage difference) is greater than the measurement error (normalized percentage error). The percentage difference and percentage error were normalized to allow comparison between reaches with different amounts of discharge.The plate that accompanies the report is 36" by 40" and can be printed in 16 tiles, 8.5 by 11 inches. An index for the tiles is located on the lower left-hand side of the plate. Using Adobe Acrobat, the plate can be viewed independent of the report; all Acrobat functions are available.

  16. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-11-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater into surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and surface water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than a week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilization of dissolved P during the initial stage of the Fe(II) oxidation process which results in P-depleted water before Fe(II) is completely depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients seems an important geochemical mechanism in the transformation of dissolved phosphate to structural phosphate and, therefore, a major control on the P retention in natural waters that drain anaerobic aquifers.

  17. Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.

    1997-01-01

    The West Valley Creek Basin drains 20.9 square miles in the Piedmont Physiographic Province of southeastern Pennsylvania and is partly underlain by carbonate rocks that are highly productive aquifers. The basin is undergoing rapid urbanization that includes changes in land use and increases in demand for public water supply and wastewater disposal. Ground water is the sole source of supply in the basin.West Valley Creek flows southwest in a 1.5-mile-wide valley that is underlain by folded and faulted carbonate rocks and trends east-northeast, parallel to regional geologic structures. The valley is flanked by hills underlain by quartzite and gneiss to the north and by phyllite and schist to the south. Surface water and ground water flow from the hills toward the center of the valley. Ground water in the valley flows west-southwest parallel to the course of the stream. Seepage investigations identified losing reaches in the headwaters area where streams are underlain by carbonate rocks and gaining reaches downstream. Tributaries contribute about 75 percent of streamflow. The ground-water and surface-water divides do not coincide in the carbonate valley. The ground-water divide is about 0.5 miles west of the surface-water divide at the eastern edge of the carbonate valley. Underflow to the east is about 1.1 inches per year. Quarry dewatering operations at the western edge of the valley may act partly as an artificial basin boundary, preventing underflow to the west. Water budgets for 1990, a year of normal precipitation (45.8 inches), and 1991, a year of sub-normal precipitation (41.5 inches), were calculated. Streamflow was 14.61 inches in 1990 and 12.08 inches in 1991. Evapotranspiration was estimated to range from 50 to 60 percent of precipitation. Base flow was about 62 percent of streamflow in both years. Exportation by sewer systems was about 3 inches from the basin and, at times, equaled base flow during the dry autumn of 1991. Recharge was estimated to be 18.5 inches in 1990 and 13.7 inches in 1991. Ground-water quality in the basin reflects differences in lithology and has been affected by human activities. Ground water in the carbonate rocks is naturally hard, has a near neutral pH, and contains more dissolved solids and less dissolved iron, manganese, and radon-222 than ground water in the noncarbonate rocks, which is soft, with moderately acidic to acidic pH. Regional contamination by chloride and nitrate and local contamination by organic compounds and metals was detected. Natural background concentrations are estimated to be about 1 milligram per liter for nitrate as nitrogen and less than 3 milligrams per liter for chloride. Ground water in unsewered areas and agricultural areas of the basin has median concentrations of nitrate that are greater than those in ground water from other areas; septic system effluent and fertilizer are probable sources of elevated nitrate. Water samples from wells in urbanized areas contain greater concentrations of chloride than samples from wells in residential areas; road salt is the probable source of elevated chloride. Organic solvents, especially trichloroethylene, were detected in 30 percent of the wells sampled in the urbanized carbonate valley. Most of the organic solvents and some of the metals in ground water were detected near old industrial sites.Base-flow stream quality of West Valley Creek was determined at 15 sites from monthly sampling for 1 year. Differences in stream quality reflect differences in lithology, land use, and point sources in tributary subbasins and mainstem reaches. The chemical composition of base flow in the mainstem is dominated by ground-water discharge from carbonate rocks. Elevated concentrations of nitrate (greater than 3 milligrams per liter as nitrogen) in base flow were measured in a tributary draining agricultural land and in a tributary draining an unsewered residential area. Elevated concentrations of phosphate (greater than 0.5 milligrams per liter as phosphorus) were measured in a stream that receives treated sewage effluent. Discharge of water containing elevated sulfate (about 250 milligrams per liter) from quarry dewatering operations contributes to die increase in sulfate concentration (of 10 to 40 milligrams per liter) in base flow downstream from the quarry. The chloride load at all stream sites is greater than the load contributed by precipitation and mineral weathering to the basin, indicating anthropogenic sources of chloride throughout the basin. The diversity index of the benthic invertebrate community has increased since 1973 at the longterm biological monitoring site on West Valley Creek, indicating an improvement in stream quality. The improvement probably is related to controls on discharges and banning of pesticides, such as DOT, in the 1970's. Concentrations of dissolved constituents, except for chloride, determined for base flow in the autumn do not appear to have changed since 1971. Application of the seasonal Kendall test for trend indicates that concentrations of chloride in base flow have increased since 1971; this increase may be related to the increase in urbanization in the basin. The benthic community structure at the West Valley Creek site in 1991 indicates slight nutrient enrichment.Lithium was detected in ground water and surface water downgradient from two lithiumprocessing facilities. Until 1991, lithium was discharged into a losing reach of West Valley Creek, thus introducing lithium into the ground-water system. The potential for cross-contamination between the ground-water and surface-water systems is great, as demonstrated by the detection of lithium in ground water and surface water downstream and downgradient from the two lithium-processing facilities. The lithium that was discharged into the creek acts as a conservative tracer in gaining reaches of West Valley Creek, maintaining a mass balance and characteristic isotopic signature. Lithium-7/lithium-6 ratios were greater in streams that are affected by sewage and by lithium-processing discharges and in ground water downgradient from the lithium-processing facilities than natural background lithium isotopic ratios.

  18. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean.

    PubMed

    Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D

    2013-12-03

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.

  19. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean

    PubMed Central

    Smith, Kenneth L.; Ruhl, Henry A.; Kahru, Mati; Huffard, Christine L.; Sherman, Alana D.

    2013-01-01

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (∼4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections. PMID:24218565

  20. An optical conveyor for molecules.

    PubMed

    Weinert, Franz M; Braun, Dieter

    2009-12-01

    Trapping single ions under vacuum allows for precise spectroscopy in atomic physics. The confinement of biological molecules in bulk water is hindered by the lack of comparably strong forces. Molecules have been immobilized to surfaces, however often with detrimental effects on their function. Here, we optically trap molecules by creating the microscale analogue of a conveyor belt: a bidirectional flow is combined with a perpendicular thermophoretic molecule drift. Arranged in a toroidal geometry, the conveyor accumulates a hundredfold excess of 5-base DNA within seconds. The concentrations of the trapped DNA scale exponentially with length, reaching trapping potential depths of 14 kT for 50 bases. The mechanism does not require microfluidics, electrodes, or surface modifications. As a result, the trap can be dynamically relocated. The optical conveyor can be used to enhance diffusion-limited surface reactions, redirect cellular signaling, observe individual biomolecules over a prolonged time, or approach single-molecule chemistry in bulk water.

  1. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  2. The emission potential of different land use patterns for the occurrence of coliphages in surface water.

    PubMed

    Franke, Christiane; Rechenburg, Andrea; Baumanns, Susanne; Willkomm, Marlene; Christoffels, Ekkehard; Exner, Martin; Kistemann, Thomas

    2009-05-01

    Different land use patterns were investigated for their potential as non-point sources of coliphage emissions into surface waters. Water samples were taken regularly at five locations in the upper reaches of the river Swist, Germany. Samples of surface and subsurface run-off were taken within the same catchment area after rainfall events using a newly developed device that made it possible to collect current concentrations of the effluent compounds. The water quality was examined for the occurrence of somatic coliphages and F(+)-specific RNA-bacteriophages as well as for various bacteria over the period of a hydrological year. The potential of various bacteria as indicators for the occurrence of phages was evaluated using statistical correlations. The load of coliphages varied depending on the land use type, but it did not differ as much as the bacterial parameters. River sections in intensively used areas turned out to be more contaminated than in less intensively used regions. The concentrations of phages from surface and subsurface run-off in most samples were quite low for all land use types and did not show conspicuous variations of surface and subsurface run-off within one land use type. Therefore, high concentrations of phages in river water cannot be explained only by non-point effluent from open ground. Following consideration of the statistical results, conventional indicator bacteria seem not to be reliable indicator organisms for coliphages and subsequently for human pathogen viruses. The detected concentrations of coliphages in several water samples of river sections surrounded by intensively used areas underpin an existing health risk in the use of river water for e.g. recreational activities or irrigation.

  3. Chemical films and monolayers on the water surface and their interactions with ultraviolet radiation: a pilot investigation

    NASA Astrophysics Data System (ADS)

    Schouten, Peter; Lemckert, Charles; Turnbull, David; Parisi, Alfio; Downs, Nathan; Underhill, Ian; Turner, Geoff

    2011-06-01

    Over the past 50 years numerous types of chemical films and monolayers have been deployed on top of a wide variety of water reserves in an endeavour to reduce evaporation. To date very little knowledge has been assimilated on how these chemical films and monolayers, once applied to a water surface, influence the underwater UV light field and, in turn, the delicate ecosystems that exist in aquatic environments. This manuscript presents underwater UV exposure profiles weighted to the DNA damage action spectrum measured under an octadecanol/hexadecanol/lime chemical film mixture, a silicone-based chemical film and an octadecanol monolayer applied to the water surface. UV transmission and absorption properties were also evaluated for each of these chemical films and monolayers. From this it was found that when chemical films/monolayers are applied to surface water they can reduce the penetration of biologically effective UV into the water column by up to 85% at a depth as small as 1 cm. This could have a positive influence on the aquatic ecosystem, as harmful UV radiation may be prevented from reaching and consequently damaging a variety of life forms or it could have a negative effect by potentially stopping aquatic organisms from adapting to solar ultraviolet radiation over extended application intervals. Additionally, there is currently no readily applicable system or technique available to readily detect or visualize chemical films and monolayers on the water surface. To overcome this problem a new method of monolayer and chemical film visualization, using a UV camera system, is detailed and tested and its applicability for usage in both laboratory-based trials and real-world operations is evaluated.

  4. Nearshore circulation and water-column properties in the Skagit River Delta, northern Puget Sound, Washington: juvenile Chinook Salmon habitat availability in the Swinomish Channel

    USGS Publications Warehouse

    Grossman, Eric E.; Stevens, Andrew W.; Gelfenbaum, Guy; Curran, Christopher

    2007-01-01

    Time-series and spatial measurements of nearshore hydrodynamic processes and water properties were made in the Swinomish Channel to quantify the net direction and rates of surface water transport that influence habitat for juvenile Chinook salmon along their primary migratory corridor between the Skagit River and Padilla Bay in northern Puget Sound, Washington. During the spring outmigration of Skagit River Chinook between March and June 2007, currents measured with fixed acoustic doppler current profilers (ADCP) at the south and north end of the Swinomish Channel and with roving ADCP revealed that the currents are highly asymmetric with a dominant flow to the north (toward Padilla Bay). Maximum surface current velocities reached 1.5 m/s and were generally uniform across the channel near McGlinn Island Causeway. Transport times for surface water to travel the 11 km from the southern end of Swinomish Channel at McGlinn Island to Padilla Bay ranged from 2.1 hours to 5.5 days. The mean travel time was ~1 day, while 17 percent of the time, transport of water and passive particles occurred within 3.75 hours. Surface water in the Swinomish Channel during this time was generally very saline 20-27 psu, except south of the Rainbow Bridge in the town of La Conner where it ranged 0-15 psu depending on tide and Skagit River discharge. This salinity regime restricts suitable low salinity (

  5. Potential effects of surface coal mining on the hydrology of the Greenleaf-Miller area, Ashland coal field, southeastern Montana

    USGS Publications Warehouse

    Levings, G.W.

    1982-01-01

    The Greenleaf-Miller area of the Ashland coal field contains reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the potential lease area in 1981 to describe the existing hydrologic system and to assess potential impacts of surface coal mining on local water resources. The hydrologic data collected from wells, test holes, and springs were used to identify aquifers in the alluvium (Pleistocene and Holocene age) and the Tongue River member of the Fort Union Formation (Paleocene age). Coal, clinker, and sandstone beds comprise the aquifers in the Tongue River Member. Most streams are ephemeral and flow only as a result of precipitation. The only perennial surface-water flow in the study area is along short reaches downstream from springs. A mine plan for the area is not available; thus, the location of mine cuts, direction and rate of the mine expansion, and duration of mining are unknown. The mining of the Sawyer and Knoblock coal beds in the Tonge River Member would effect ground-water flow in the area. Declines in the potentiometric surface would be caused by dewatering where the mine pits intersect the water table. Wells and springs would be removed in the mine area; however, deeper aquifers are available as replacement sources of water. The chemical quality of the ground water would change after moving through the spoils. The change would be an increase in the concentration of dissolved solids. (USGS)

  6. Pathways of upwelling deep waters to the surface of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  7. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    PubMed

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  8. Rainfall and water-level data for a wetland area near Millington, Shelby County, Tennessee, October 1996 through September 1997

    USGS Publications Warehouse

    Knight, R.R.

    1998-01-01

    Rainfall amounts and water levels at a degraded wetland area near Millington, Shelby County, Tennessee, were collected to assist the Tennessee Department of Transportation with a program designed to restore the wetland to a more natural condition. The site is located along a channelized reach of Big Creek Drainage Canal, east of State Route 240, and near the southeastern boundary of the Naval Support Activity Memphis, Millington. Rainfall amounts were recorded at 5-minute intervals using a tipping-bucket rain gage from October 1, 1996 through September 30, 1997. Total rainfall for this period was 70.16 inches. In general, water levels at the wetland were above or near the ground surface during the 6-month period from the first of January through June 1997. For the remainder of the year, water levels generally subsided to several feet below land surface. However, some locations within the wetland were wet or highly saturated year round.

  9. Full 2D observation of water surface elevation from SWOT under different flow conditions

    NASA Astrophysics Data System (ADS)

    Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin

    2016-04-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first evaluation of the possible effects of river embankments, river width and river topography under different hydraulic conditions. Results of the study characterize the expected accuracy of the upcoming SWOT mission and provide additional insights towards more appropriate exploitation of future potential hydrologic data.

  10. A modeling study of methane hydrate decomposition in contact with the external surface of zeolites.

    PubMed

    Smirnov, Konstantin S

    2017-08-30

    The behavior of methane hydrate (MH) enclosed between the (010) surfaces of the silicalite-1 zeolite was studied by means of molecular dynamics simulations at temperatures of 150 and 250 K. Calculations reveal that the interaction with the hydrophilic surface OH groups destabilizes the clathrate structure of hydrate. While MH mostly conserves the structure in the simulation at the low temperature, thermal motion at the high temperature breaks the fragilized cages of H-bonded water molecules, thus leading to the release of methane. The dissociation proceeds in a layer-by-layer manner starting from the outer parts of the MH slab until complete hydrate decomposition. The released CH 4 molecules are absorbed by the microporous solid, whereas water is retained at the surfaces of hydrophobic silicalite and forms a meniscus in the interlayer space. Methane uptake reaches 70% of the silicalite sorption capacity. The energy necessary for the endothermic MH dissociation is supplied by the exothermic methane absorption by the zeolite.

  11. An apparatus to measure water optical attenuation length for LHAASO-MD

    NASA Astrophysics Data System (ADS)

    Li, Cong; Xiao, Gang; Feng, Shaohui; Wang, Lingyu; Li, Xiurong; Zuo, Xiong; Cheng, Ning; Wang, Hui; Gao, Bo; Duan, Zhihao; Liu, Jia; He, Huihai; Saeed, Mohsin; Lhaaso Collaboration

    2018-06-01

    The large high altitude air shower observatory (LHAASO) is being constructed at 4400 m a.s.l. in Daocheng, Sichuan Province, aiming to reveal the secrets of cosmic rays origin. And it has the largest surface muon detector array in the world. Due to the needs of calibration and construction of muon detector, we developed a water optical attenuation measurement device using an 8 m long water tank. The results are presented for filtered water at wavelength of 405 nm, which proves this apparatus can reach an accuracy of about 20% at 100 m. This apparatus has not only a high precision measurement of water attenuation length up to 100 m but is also very convenient to be used, which is crucial for water optical properties study during LHAASO detector construction.

  12. Enhanced Climatic Warming in the Tibetan Plateau Due to Double CO2: A Model Study

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston C.; Liu, Xiao-Dong; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The NCAR (National Center for Atmospheric Research) regional climate model (RegCM2) with time-dependent lateral meteorological fields provided by a 130-year transient increasing CO2 simulation of the NCAR Climate System Model (CSM) has been used to investigate the mechanism of enhanced ground temperature warming over the TP (Tibetan Plateau). From our model results, a remarkable tendency of warming increasing with elevation is found for the winter season, and elevation dependency of warming is not clearly recognized in the summer season. This simulated feature of elevation dependency of ground temperature is consistent with observations. Based on an analysis of surface energy budget, the short wave solar radiation absorbed at the surface plus downward long wave flux reaching the surface shows a strong elevation dependency, and is mostly responsible for enhanced surface warming over the TP. At lower elevations, the precipitation forced by topography is enhanced due to an increase in water vapor supply resulted from a warming in the atmosphere induced by doubling CO2. This precipitation enhancement must be associated with an increase in clouds, which results in a decline in solar flux reaching surface. At higher elevations, large snow depletion is detected in the 2xCO2run. It leads to a decrease in albedo, therefore more solar flux is absorbed at the surface. On the other hand, much more uniform increase in downward long wave flux reaching the surface is found. The combination of these effects (i.e. decrease in solar flux at lower elevations, increase in solar flux at higher elevation and more uniform increase in downward long wave flux) results in elevation dependency of enhanced ground temperature warming over the TP.

  13. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    PubMed

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Case history of the Seven Rivers Sand Waterflood, Crockett County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, E.A.; Bates, T.P.

    1965-04-22

    The Noelke Field is located approximately 6 1/2 miles SE of Iraan in Crockett County, Texas. The field covers some 2760 proven productive acres with an estimated 1300 acres being oil-productive and the remainder being high enough structurally to carry gas saturation. This report covers only the southern segment. The Noelke field produces from the Seven Rivers sand of the Permian System. The sand is found at depths ranging from 1006 to 1756 ft from the surface. Illustrations show field location, gas cap and oil segments, structure of the southern segment, isopachs, production history of the southern segment, and themore » injection pattern. Initial water injection was realized on Nov. 17, 1957, with all wells taking water readily at zero pressure. Initial flood response was detected in the first well in July 1958, or 8 months after initial injection. The response was positive and significant, reaching 75 bbl oil per day and no water in a month. Production rapidly increased during all of 1959 and reached a peak rate of 2580 bbl in Jan. 1960. Production declined mildly thereafter, and reached a level of 401 bbl during Dec. 1962, then gradually declined thereafter through 1964 to the economic limit. This shallow waterflood project proved highly successful.« less

  15. Quantifying canal leakage rates using a mass-balance approach and heat-based hydraulic conductivity estimates in selected irrigation canals, western Nebraska, 2007 through 2009

    USGS Publications Warehouse

    Hobza, Christopher M.; Andersen, Michael J.

    2010-01-01

    The water supply in areas of the North Platte River Basin in the Nebraska Panhandle has been designated as fully appropriated or overappropriated by the Nebraska Department of Natural Resources (NDNR). Enacted legislation (Legislative Bill 962) requires the North Platte Natural Resources District (NPNRD) and the NDNR to develop an Integrated Management Plan (IMP) to balance groundwater and surface-water supply and demand in the NPNRD. A clear understanding of the groundwater and surface-water systems is critical for the development of a successful IMP. The primary source of groundwater recharge in parts of the NPNRD is from irrigation canal leakage. Because canal leakage constitutes a large part of the hydrologic budget, spatially distributing canal leakage to the groundwater system is important to any management strategy. Surface geophysical data collected along selected reaches of irrigation canals has allowed for the spatial distribution of leakage on a relative basis; however, the actual magnitude of leakage remains poorly defined. To address this need, the U.S. Geological Survey, in cooperation with the NPNRD, established streamflow-gaging stations at upstream and downstream ends from two selected canal reaches to allow a mass-balance approach to be used to calculate daily leakage rates. Water-level and sediment temperature data were collected and simulated at three temperature monitoring sites to allow the use of heat as a tracer to estimate the hydraulic conductivity of canal bed sediment. Canal-leakage rates were estimated by applying Darcy's Law to modeled vertical hydraulic conductivity and either the estimated or measured hydraulic gradient. This approach will improve the understanding of the spatial and temporal variability of canal leakage in varying geologic settings identified in capacitively coupled resistivity surveys. The high-leakage potential study reach of the Tri-State Canal had two streamflow-gaging stations and two temperature monitoring sites along its length. Calculated leakage rates from the mass-balance approach varied from year to year and were generally dependent on local climatic conditions, and the timing and magnitude of the initial seasonal diversion into the Tri-State Canal. Leakage rates ranged from 0.98 meter per day (m/d) on June 22, 2007, to about to 0 m/d during July 2009. Drier conditions generally resulted in higher leakage rates because of reduced flow from Spottedtail Creek, lower groundwater levels near Spottedtail Creek, and no unmeasured flow entering the reach. Of the three years studied (2007-09), 2007 was the driest, and therefore had the highest canal leakage rates. The moderately low leakage potential study reach of Interstate Canal had two streamflow-gaging stations and one temperature monitoring site along its length. Excluding the leakage calculations from early May 2007, leakage rates ranged from 0.08 to 0.7 m/d. Less variability in leakage from year to year indicates that climatic conditions may have less of an effect for Interstate Canal compared to Tri-State Canal. This may be because Interstate Canal was cut into the northern edge of the North Platte alluvial valley and consequently the canal bed is well above the local groundwater table resulting in a constant (1 meter per meter [m/m]) hydraulic gradient. Interstate Canal also does not receive any captured flow that can vary substantially year to year. Two temperature monitoring sites were installed within the high-leakage potential reach of Tri-State Canal. Site TCTEMP1 was established in 2007 where the water table was well below the canal bed surface. The vertical hydraulic conductivity of the poorly sorted sand and gravel beneath site TCTEMP1 was estimated using a calibrated one-dimensional VS2DH model. Using a trial-and-error approach, the best-fit vertical hydraulic conductivity for the site TCTEMP1 model domain was 1.1 m/d. Site TCTEMP2 was established at the mouth of Spottedtail Creek where a shallow

  16. Artificial recharge through a thick, heterogeneous unsaturated zone

    USGS Publications Warehouse

    Izbicki, J.A.; Flint, A.L.; Stamos, C.L.

    2008-01-01

    Thick, heterogeneous unsaturated zones away from large streams in desert areas have not previously been considered suitable for artificial recharge from ponds. To test the potential for recharge in these settings, 1.3 ?? 10 6 m3 of water was infiltrated through a 0.36-ha pond along Oro Grande Wash near Victorville, California, between October 2002 and January 2006. The pond overlies a regional pumping depression 117 m below land surface and is located where thickness and permeability of unsaturated deposits allowed infiltration and saturated alluvial deposits were sufficiently permeable to allow recovery of water. Because large changes in water levels caused by nearby pumping would obscure arrival of water at the water table, downward movement of water was measured using sensors in the unsaturated zone. The downward rate of water movement was initially as high as 6 m/d and decreased with depth to 0.07 m/d; the initial time to reach the water table was 3 years. After the unsaturated zone was wetted, water reached the water table in 1 year. Soluble salts and nitrate moved readily with the infiltrated water, whereas arsenic and chromium were less mobile. Numerical simulations done using the computer program TOUGH2 duplicated the downward rate of water movement, accumulation of water on perched zones, and its arrival at the water table. Assuming 10 ?? 10 6 m3 of recharge annually for 20 years, a regional ground water flow model predicted water level rises of 30 m beneath the ponds, and rises exceeding 3 m in most wells serving the nearby urban area.

  17. Fabrication of superhydrophobic polyaniline films with rapidly switchable wettability

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoyan; Zhang, Zhaozhu; Men, Xuehu; Yang, Jin; Xu, Xianghui; Zhu, Xiaotao; Xue, Qunji

    2011-10-01

    A superhydrophobic polyaniline (PANI) film has been fabricated by using a facile one-step spraying method. The PANI was synthesized via in situ doping polymerization in the presence of perfluorooctanoic acid (PFOA) as the dopant. The water contact angle of this superhydrophobic surface reaches to 156°. Both the surface chemical compositions and morphological structures were analyzed. A granular morphology of PANI with a moderate amount of nanofibers was obtained. Moreover, a rapid surface wettability transition between superhydrophobicity and superhydrophilicity can be observed when it is doped with PFOA and de-doped with base. The mechanism for this tunable wettability has been discussed in detail.

  18. Water Adsorption Isotherms on Fly Ash from Several Sources.

    PubMed

    Navea, Juan G; Richmond, Emily; Stortini, Talia; Greenspan, Jillian

    2017-10-03

    In this study, horizontal attenuated total reflection (HATR) Fourier-transform infrared (FT-IR) spectroscopy was combined with quartz crystal microbalance (QCM) gravimetry to investigate the adsorption isotherms of water on fly ash, a byproduct of coal combustion in power plants. Because of composition variability with the source region, water uptake was studied at room temperature as a function of relative humidity (RH) on fly ash from several regions: United States, India, The Netherlands, and Germany. The FT-IR spectra show water features growth as a function of RH, with water absorbing on the particle surface in both an ordered (ice-like) and a disordered (liquid-like) structure. The QCM data was modeled using the Brunauer, Emmett, and Teller (BET) adsorption isotherm model. The BET model was found to describe the data well over the entire range of RH, showing that water uptake on fly ash takes place mostly on the surface of the particle, even for poorly combusted samples. In addition, the source region and power-plant efficiency play important roles in the water uptake and ice nucleation (IN) ability of fly ash. The difference in the observed water uptake and IN behavior between the four samples and mullite (3Al 2 O 3 ·2SiO 2 ), the aluminosilicate main component of fly ash, is attributed to differences in composition and the density of OH binding sites on the surface of each sample. A discussion is presented on the RH required to reach monolayer coverage on each sample as well as a comparison between surface sites of fly ash samples and enthalpies of adsorption of water between the samples and mullite.

  19. Fabrication of hierarchical polymer surfaces with superhydrophobicity by injection molding from nature and function-oriented design

    NASA Astrophysics Data System (ADS)

    Weng, Can; Wang, Fei; Zhou, Mingyong; Yang, Dongjiao; Jiang, Bingyan

    2018-04-01

    A comparison of processes and wettability characteristics was presented for injection molded superhydrophobic polypropylene surfaces from two fabricating strategies. One is the biomimetic replication of patterns from indocalamus leaf in nature. The contact angle of water sitting on this PP surface was measured as 152 ± 2°, with comparable wetting behavior to natural indocalamus leaf surface. The other strategy is the fabrication of superhydrophobic structure by combining methods that produce structures at different length scales. Regarding both the machinability of mold inserts and function-oriented design, three micro-quadrangular arrays and one hierarchical micro-nano cylinder array were designed with the goal of superhydrophobicity. Particularly, a simple approach to the fabrication of hierarchical structures was proposed by combining the anodized plate and the punching plate. The function-oriented design targets as superhydrophobicity were all reached for the designed four structures. The measured contact angles of droplet for these structures were almost consistent with the calculated equilibrium contact angles from thermodynamic analysis. Among them, the contact angle of droplet on the surface of designed hierarchical structure reached about 163° with the sliding angle of 5°, resulting in self-cleaning characteristic. The superhydrophobicity of function-oriented designed polymer surfaces could be modified and controlled, which is exactly the limitation of replicating from natural organisms.

  20. Flood-inundation maps for the Mississinewa River at Marion, Indiana, 2013

    USGS Publications Warehouse

    Coon, William F.

    2014-01-01

    Digital flood-inundation maps for a 9-mile (mi) reach of the Mississinewa River from 0.75 mi upstream from the Pennsylvania Street bridge in Marion, Indiana, to 0.2 mi downstream from State Route 15 were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Mississinewa River at Marion (station number 03326500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the current stage-discharge relation at the Mississinewa River streamgage, in combination with water-surface profiles from historic floods and from the current (2002) flood-insurance study for Grant County, Indiana. The hydraulic model was then used to compute seven water-surface profiles for flood stages at 1-fo (ft) intervals referenced to the streamgage datum and ranging from 10 ft, which is near bankfull, to 16 ft, which is between the water levels associated with the estimated 10- and 2-percent annual exceedance probability floods (floods with recurrence interval between 10 and 50 years) and equals the “major flood stage” as defined by the NWS. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging (lidar) data having a 0.98 ft vertical accuracy and 4.9 ft horizontal resolution) to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  1. Spatial and seasonal variability of base flow in the Verde Valley, central Arizona, 2007 and 2011

    USGS Publications Warehouse

    Garner, Bradley D.; Bills, Donald J.

    2012-01-01

    Synoptic base-flow surveys were conducted on streams in the Verde Valley, central Arizona, in June 2007 and February 2011 by the U.S. Geological Survey (USGS), in cooperation with the Verde River Basin Partnership, the Town of Clarkdale, and Yavapai County. These surveys, also known as seepage runs, measured streamflow under base-flow conditions at many locations over a short period of time. Surveys were conducted on a segment of the Verde River that flows through the Verde Valley, between USGS streamflow-gaging stations 09504000 and 09506000, a distance of 51 river miles. Data from the surveys were used to investigate the dominant controls on Verde River base flow, spatial variability in gaining and losing reaches, and the effects that human alterations have on base flow in the surface-water system. The most prominent human alterations in the Verde Valley are dozens of surface-water diversions from streams, including gravity-fed ditch diversions along the Verde River.Base flow that entered the Verde River from the tributary streams of Oak Creek, Beaver Creek, and West Clear Creek was found to be a major source of base flow in the Verde River. Groundwater discharge directly into the Verde River near these three confluences also was an important contributor of base flow to the Verde River, particularly near the confluence with Beaver Creek. An examination of individual reaches of the Verde River in the Verde Valley found three reaches (largely unaffected by ditch diversions) exhibiting a similar pattern: a small net groundwater discharge in February 2011 (12 cubic feet per second or less) and a small net streamflow loss in June 2007 (11 cubic feet per second or less). Two reaches heavily affected by ditch diversions were difficult to interpret because of the large number of confounding human factors. Possible lower and upper bounds of net groundwater flux were calculated for all reaches, including those heavily affected by ditches.

  2. A half-decade of field research on the Greenland firn aquifers - major advances and looming questions.

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Forster, R. R.; Miller, O. L.; Solomon, D. K.; Miège, C.; Schmerr, N. C.; Montgomery, L. N.; Legchenko, A.

    2017-12-01

    In 2011, researchers first drilled into an unknown firn aquifer in Southeast, Greenland. Over the past half-decade our team has conducted field work instrumenting, modeling and remote sensing the aquifer and surrounding snow/firn/ice to get a more complete picture of the system including formation conditions, controlling mechanisms, spatial and temporal change, and connections with the larger ice sheet system. This work summarizes recently published work on the firn aquifer providing our best estimates on the spatial extents, depths and water volumes for the purpose of estimating available water that could reach the en- or subglacial hydrologic network. To do this we reconcile and explain the differences in water volume estimates from three methods, ice core measurements, magnetic resonance and dilution tests. We present measurements of the hydrologic conductivities within a Greenland firn aquifer from two methods, at multiple locations showing that water can flow more freely in ice sheet aquifers than mountain glaciers and attribute this difference to the longer duration of water retained in ice sheet aquifers. While connections of the aquifer water to the glacier bed have been hypothesized and are supported by surface velocity measurements, we still lack direct observations. We show the surface velocity for most aquifer regions ranges from a few meters to 300 m a year with substantial spatial and temporal variability. Given possible aquifer water input scenarios, derived from our field measurements, to the glacier bed, we compare and contrast the seasonal surface velocities and variability of surface velocity for different outlet glaciers that are both connected and not connected to firn aquifers.

  3. Barometric fluctuations in wells tapping deep unconfined aquifers

    USGS Publications Warehouse

    Weeks, Edwin P.

    1979-01-01

    Water levels in wells screened only below the water table in unconfined aquifers fluctuate in response to atmospheric pressure changes. These fluctuations occur because the materials composing the unsaturated zone resist air movement and have capacity to store air with a change in pressure. Consequently, the translation of any pressure change at land surface is slowed as it moves through the unsaturated zone to the water table, but it reaches the water surface in the well instantaneously. Thus a pressure imbalance is created that results in a water level fluctuation. Barometric effects on water levels in unconfined aquifers can be computed by solution of the differential equation governing the flow of gas in the unsaturated zone subject to the appropriate boundary conditions. Solutions to this equation for two sets of boundary conditions were applied to compute water level response in a well tapping the Ogallala Formation near Lubbock, Texas from simultaneous microbarograph records. One set of computations, based on the step function unit response solution and convolution, resulted in a very good match between computed and measured water levels. A second set of computations, based on analysis of the amplitude ratios of simultaneous cyclic microbarograph and water level fluctuations, gave inconsistent results in terms of the unsaturated zone pneumatic properties but provided useful insights on the nature of unconfined-aquifer water level fluctuations.

  4. Detection of Leaks in Water Distribution System using Non-Destructive Techniques

    NASA Astrophysics Data System (ADS)

    Aslam, H.; Kaur, M.; Sasi, S.; Mortula, Md M.; Yehia, S.; Ali, T.

    2018-05-01

    Water is scarce and needs to be conserved. A considerable amount of water which flows in the water distribution systems was found to be lost due to pipe leaks. Consequently, innovations in methods of pipe leakage detections for early recognition and repair of these leaks is vital to ensure minimum wastage of water in distribution systems. A major component of detection of pipe leaks is the ability to accurately locate the leak location in pipes through minimum invasion. Therefore, this paper studies the leak detection abilities of the three NDT’s: Ground Penetration Radar (GPR) and spectrometer and aims at determining whether these instruments are effective in identifying the leak. An experimental setup was constructed to simulate the underground conditions of water distribution systems. After analysing the experimental data, it was concluded that both the GPR and the spectrometer were effective in detecting leaks in the pipes. However, the results obtained from the spectrometer were not very differentiating in terms of observing the leaks in comparison to the results obtained from the GPR. In addition to this, it was concluded that both instruments could not be used if the water from the leaks had reached on the surface, resulting in surface ponding.

  5. Harvesting energy from low-frequency excitations through alternate contacts between water and two dielectric materials.

    PubMed

    Yu, Jian; Ma, Enze; Ma, Tianwei

    2017-12-07

    Recent studies have demonstrated the benefits of water-dielectric interfaces in electrostatic energy harvesting. Most efforts have been focused on extracting the kinetic energy from the motions of water drops on hydrophobic surfaces, and thus, the resulting schemes inherently prefer cases where the water drops move at a high speed, or vibrate at a high frequency. Here we report a method for directly harvesting ambient mechanical energy as electric potential energy through water droplets by making alternate contacts with CYTOP and PTFE thin films. Because CYTOP and PTFE acquire significantly different surface charge densities during contact with water, such a difference can be utilized to effectively generate electricity. We demonstrate this concept using prototype devices fabricated on silicon substrates with a simple procedure. In the experiments conducted, a water drop of 400 μL alone could generate a peak open-circuit voltage of 42 V under a 0.25 Hz vibration. Under a 2.5 Hz vibration, the peak open-circuit voltage reached 115 V under an external bias of 8 V. The demonstrated efficiency is orders of magnitude higher than those of existing devices of similar dimensions.

  6. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    PubMed Central

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  7. [Distribution characteristics of dissolved oxygen and mechanism of hypoxia in the upper estuarine zone of the Daliaohe River].

    PubMed

    Yang, Li-Na; Li, Zheng-Yan; Zhang, Xue-Qing

    2011-01-01

    Based on field surveys in the upper estuarine zone of the Daliaohe River in Spring and Summer of 2009, the spatial and temporal distributions of dissolved oxygen were analyzed and the mechanism of hypoxia were preliminarily discussed. The results indicated that DO concentrations were higher in the river mouth and lower in the upper reaches, higher in surface layers and lower in bottom concerning its spatial distribution. For its temporal distribution, DO concentrations were higher in daytime and lower at night, higher in Spring and lower in Summer. The DO concentrations in the upper estuarine zone of the Daliaohe River in Summer ranged between 1.36-4.77 mg/L with an average of 3.44 mg/L. The concentrations in the lower reaches were higher with an average of 3.94 mg/L. A large hypoxia area was recorded in Summer in the upper reaches of the estuary starting from about 45 km away from the river gate with an average DO concentration of 2.33 mg/L and a minimum of 1.36 mg/L. The correlation analysis showed that DO concentration was significantly correlated with nutrients and permanganate index. Excessive discharge of nutrients and organic pollutants were, therefore, main factors causing hypoxia, and water column stratification due to temperature rise in Summer in surface layers led to further reduction of DO in bottom layers of the water.

  8. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    USGS Publications Warehouse

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  9. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.

    2014-12-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.

  10. Water softening by induced crystallization in fluidized bed.

    PubMed

    Chen, Yuefang; Fan, Rong; An, Danfeng; Cheng, Yujie; Tan, Hazel

    2016-12-01

    Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water pH, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved. With a reactor influent flow of 60L/hr, a fixed-bed height of 0.5m, pH value of 9.5, quartz sand nuclear diameter of 0.2-0.4mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process. Copyright © 2016. Published by Elsevier B.V.

  11. Flood-Inundation Maps for Sugar Creek at Crawfordsville, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2016-06-06

    Digital flood-inundation maps for a 6.5-mile reach of Sugar Creek at Crawfordsville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site CRWI3).Flood profiles were computed for the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., and high-water marks from the flood of April 19, 2013, which reached a stage of 15.3 feet. The hydraulic model was then used to compute 13 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 4.0 ft (the NWS “action stage”) to 16.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  12. Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation v1.0: Impacts of geomorphological parameters and river flow representation

    DOE PAGES

    Luo, Xiangyu; Li, Hong -Yi; Leung, L. Ruby; ...

    2017-03-23

    In the Amazon Basin, floodplain inundation is a key component of surface water dynamics and plays an important role in water, energy and carbon cycles. The Model for Scale Adaptive River Transport (MOSART) was extended with a macroscale inundation scheme for representing floodplain inundation. The extended model, named MOSART-Inundation, was used to simulate surface hydrology of the entire Amazon Basin. Previous hydrologic modeling studies in the Amazon Basin identified and addressed a few challenges in simulating surface hydrology of this basin, including uncertainties of floodplain topography and channel geometry, and the representation of river flow in reaches with mild slopes.more » This study further addressed four aspects of these challenges. First, the spatial variability of vegetation-caused biases embedded in the HydroSHEDS digital elevation model (DEM) data was explicitly addressed. A vegetation height map of about 1 km resolution and a land cover dataset of about 90 m resolution were used in a DEM correction procedure that resulted in an average elevation reduction of 13.2 m for the entire basin and led to evident changes in the floodplain topography. Second, basin-wide empirical formulae for channel cross-sectional dimensions were refined for various subregions to improve the representation of spatial variability in channel geometry. Third, the channel Manning roughness coefficient was allowed to vary with the channel depth, as the effect of riverbed resistance on river flow generally declines with increasing river size. Lastly, backwater effects were accounted for to better represent river flow in mild-slope reaches. The model was evaluated against in situ streamflow records and remotely sensed Envisat altimetry data and Global Inundation Extent from Multi-Satellites (GIEMS) inundation data. In a sensitivity study, seven simulations were compared to evaluate the impacts of the five modeling aspects addressed in this study. The comparisons showed that representing floodplain inundation could significantly improve the simulated streamflow and river stages. Refining floodplain topography, channel geometry and Manning roughness coefficients, as well as accounting for backwater effects had notable impacts on the simulated surface water dynamics in the Amazon Basin. As a result, the understanding obtained in this study could be helpful in improving modeling of surface hydrology in basins with evident inundation, especially at regional to continental scales.« less

  13. Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation v1.0: Impacts of geomorphological parameters and river flow representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiangyu; Li, Hong -Yi; Leung, L. Ruby

    In the Amazon Basin, floodplain inundation is a key component of surface water dynamics and plays an important role in water, energy and carbon cycles. The Model for Scale Adaptive River Transport (MOSART) was extended with a macroscale inundation scheme for representing floodplain inundation. The extended model, named MOSART-Inundation, was used to simulate surface hydrology of the entire Amazon Basin. Previous hydrologic modeling studies in the Amazon Basin identified and addressed a few challenges in simulating surface hydrology of this basin, including uncertainties of floodplain topography and channel geometry, and the representation of river flow in reaches with mild slopes.more » This study further addressed four aspects of these challenges. First, the spatial variability of vegetation-caused biases embedded in the HydroSHEDS digital elevation model (DEM) data was explicitly addressed. A vegetation height map of about 1 km resolution and a land cover dataset of about 90 m resolution were used in a DEM correction procedure that resulted in an average elevation reduction of 13.2 m for the entire basin and led to evident changes in the floodplain topography. Second, basin-wide empirical formulae for channel cross-sectional dimensions were refined for various subregions to improve the representation of spatial variability in channel geometry. Third, the channel Manning roughness coefficient was allowed to vary with the channel depth, as the effect of riverbed resistance on river flow generally declines with increasing river size. Lastly, backwater effects were accounted for to better represent river flow in mild-slope reaches. The model was evaluated against in situ streamflow records and remotely sensed Envisat altimetry data and Global Inundation Extent from Multi-Satellites (GIEMS) inundation data. In a sensitivity study, seven simulations were compared to evaluate the impacts of the five modeling aspects addressed in this study. The comparisons showed that representing floodplain inundation could significantly improve the simulated streamflow and river stages. Refining floodplain topography, channel geometry and Manning roughness coefficients, as well as accounting for backwater effects had notable impacts on the simulated surface water dynamics in the Amazon Basin. As a result, the understanding obtained in this study could be helpful in improving modeling of surface hydrology in basins with evident inundation, especially at regional to continental scales.« less

  14. Hydrologic Data from the Study of Acidic Contamination in the Miami Wash-Pinal Creek Area, Arizona, Water Years 1997-2004

    USGS Publications Warehouse

    Konieczki, A.D.; Brown, J.G.; Parker, J.T.C.

    2008-01-01

    Since 1984, hydrologic data have been collected as part of a U.S. Geological Survey study of the occurrence and movement of acidic contamination in the aquifer and streams of the Pinal Creek drainage basin near Globe, Arizona. Ground-water data from that study are presented for water years 1997 through 2004 and include location, construction information, site plans, water levels, chemical and physical field measurements, and selected chemical analyses of water samples for 31 project wells. Hydrographs of depth to ground water are also included. Surface-water data for four sites are also presented and include selected chemical analyses of water samples. Monthly precipitation data and long-term precipitation statistics are presented for two sites. Chemical analyses of samples collected from the stream and shallow ground water in the perennial reach of Pinal Creek are also included.

  15. Application of geologic map information to water quality issues in the southern part of the Chesapeake Bay watershed, Maryland and Virginia, eastern United States

    USGS Publications Warehouse

    McCartan, L.; Peper, J.D.; Bachman, L.J.; Horton, J. Wright

    1999-01-01

    Geologic map units contain much information about the mineralogy, chemistry, and physical attributes of the rocks mapped. This paper presents information from regional-scale geologic maps in Maryland and Virginia, which are in the southern part of the Chesapeake Bay watershed in the eastern United States. The geologic map information is discussed and analyzed in relation to water chemistry data from shallow wells and stream reaches in the area. Two environmental problems in the Chesapeake Bay watershed are used as test examples. The problems, high acidity and high nitrate concentrations in streams and rivers, tend to be mitigated by some rock and sediment types and not by others. Carbonate rocks (limestone, dolomite, and carbonate-cemented rocks) have the greatest capacity to neutralize acidic ground water and surface water in contact with them. Rocks and sediments having high carbon or sulfur contents (such as peat and black shale) potentially contribute the most toward denitrification of ground water and surface water in contact with them. Rocks and sediments that are composed mostly of quartz, feldspar, and light-colored clay (rocks such as granite and sandstone, sediments such as sand and gravel) tend not to alter the chemistry of waters that are in contact with them. The testing of relationships between regionally mapped geologic units and water chemistry is in a preliminary stage, and initial results are encouraging.Geologic map units contain much information about the mineralogy, chemistry, and physical attributes of the rocks mapped. This paper presents information from regional-scale geologic maps in Maryland and Virginia, which are in the southern part of the Chesapeake Bay watershed in the eastern United States. The geologic map information is discussed and analyzed in relation to water chemistry data from shallow wells and stream reaches in the area. Two environmental problems in the Chesapeake Bay watershed are used as test examples. The problems, high acidity and high nitrate concentrations in streams and rivers, tend to be mitigated by some rock and sediment types and not by others. Carbonate rocks (limestone, dolomite, and carbonate-cemented rocks) have the greatest capacity to neutralize acidic ground water and surface water in contact with them. Rocks and sediments having high carbon or sulfur contents (such as peat and black shale) potentially contribute the most toward denitrification of ground water and surface water in contact with them. Rocks and sediments that are composed mostly of quartz, feldspar, and light-colored clay (rocks such as granite and sandstone, sediments such as sand and gravel) tend not to alter the chemistry of waters that are in contact with them. The testing of relationships between regionally mapped geologic units and water chemistry is in a preliminary stage, and initial results are encouraging.

  16. The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water

    NASA Astrophysics Data System (ADS)

    Chandler, David; Limmer, David

    2013-03-01

    Our detailed and controlled studies of free energy surfaces for models of water find no evidence for reversible polyamorphism, and a general theoretical analysis of the phase behavior of cold water in nano pores shows that measured behaviors of these systems reflect surface modulation and dynamics of ice, not a liquid-liquid critical point. A few workers reach different conclusions, reporting evidence of a liquid-liquid critical point in computer simulations of supercooled water. In some cases, it appears that these contrary results are based upon simulation algorithms that are inconsistent with principles of statistical mechanics, such as using barostats that do not reproduce the correct distribution of volume fluctuations. In other cases, the results appear to be associated with difficulty equilibrating the supercooled material and mistaking metastability for coarsening of the ordered ice phase. In this case, sufficient information is available for us to reproduce the contrary results and to establish that they are artifacts of finite time sampling. This finding leads us to the conclusion that two distinct, reversible liquid phases do not exist in models of supercooled water.

  17. Aerobic spore-forming bacteria for assessing quality of drinking water produced from surface water.

    PubMed

    Mazoua, Stephane; Chauveheid, Eric

    2005-12-01

    Cryptosporidium and Giardia represent a major microbiological issue for drinking water production from surface water. As their monitoring through a treatment process is rather tedious and as low-concentration goals should be reached for drinking water, aerobic spore-forming bacteria (ASFB) have been studied as an indicator microorganism for a drinking water treatment plant using surface water. The results reveal that monitoring naturally occurring ASFB better highlights daily achievable performances and identifies unusual process events for global disinfection, for both physical and chemical treatment steps in a multi-barrier drinking water treatment plant. Advantages of ASFB over usual process parameters are that these microorganisms are more sensitive to process fluctuations. The use of ASFB also showed that the efficiency of ozone disinfection is not as significantly influenced by the water temperature as reported, despite similar or higher CT values applied during warmer periods. Thus, the disinfection of resistant microorganisms with ozone can also be an efficient process at lower water temperature. ASFB have been shown to be a conservative indicator for Cryptosporidium and Giardia up to a 1st stage filtration and the ASFB Log removals can be used to estimate Log removals for Cryptosporidium and Giardia: compared to ASFB, the Log removals for Cryptosporidium or Giardia are at least equal or 50% higher, respectively. Thus, the monitoring of ASFB along a drinking water treatment process could be a useful tool for performing risk analysis for parasites such as Cryptosporidium and Giardia, and would further allow integration of daily variability into a risk analysis.

  18. Study on hydraulic property models for water retention and unsaturated hydraulic conductivity in MATSIRO with representation of water table dynamics

    NASA Astrophysics Data System (ADS)

    Yoshida, N.; Oki, T.

    2016-12-01

    Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west part of America. Selection of each hydraulic property model based on soil types may compensate characteristic of models in initialization.

  19. Examining microbial community response to a strong chemical gradient: the effects of surface coal mining on stream bacteria

    NASA Astrophysics Data System (ADS)

    Bier, R.; Lindberg, T. T.; Wang, S.; Ellis, J. C.; Di Giulio, R. T.; Bernhardt, E. S.

    2012-12-01

    Surface coal mining is the dominant form of land cover change in northern and central Appalachia. In this process, shallow coal seams are exposed by removing overlying rock with explosives. The resulting fragmented carbonate rock and coal residues are disposed of in stream valleys. These valley fills generate alkaline mine drainage (AlkMD), dramatically increasing alkalinity, ionic strength, substrate supply (esp. SO42-), and trace element (Mn, Li, Se, U) concentrations in downstream rivers as well as significant losses of sensitive fish and macroinvertebrate species. In prior work within the Mud River, which drains the largest surface mine complex in Appalachia, we found that concentrations of AlkMD increase proportionally with the extent of upstream mining. Here we ask "How do stream microbial communities change along this strong chemical gradient?" We collected surface water and benthic biofilms from 25 stream reaches throughout the Mud River spanning the full range of surface mining impacts, with 0-96% of the contributing watershed area converted to surface coal mines. Microbial communities were collected from biofilms grown on a common substrate (red maple veneers) that were incubated in each stream reach for four months prior to collection in April, 2011. 16S rRNA genes from microbial communities at each study site were examined using 454 sequencing and compared with a generalized UniFrac distance matrix (674 sequence eveness) that was used in statistical analyses. Water chemistry at the sites was sampled monthly from July 2010 to December 2010 and again in April 2011. In April, surface water concentrations of SO42-, Ca2+, Mg2+, and Se2- increased linearly with the extent of upstream mining (all regressions R2 >0.43; p<0.004), with the resulting gradient in ionic strength extending from low conductivity (average 83 μS cm-1 S.E. 27.4) in unmined streams (n=6) to as high as 899 μS cm-1 in the mainstem and 1889 μS cm-1 immediately below the Connelly Branch valley fill. Across this gradient, we found that microbial community composition varied significantly between sites receiving mine drainage and those that were unexposed (NMDS ordination R2 =0.86; PERMANOVA; p=0.029). Bacterial diversity (OTU richness defined at 3% sequence difference) peaked at intermediate conductivities (600 μS cm-1). Environmental data that correlated significantly with the ordination axes were a variety of surface water ions characteristic of AlkMD (SO42-, Mg2+, Sr2+, Se2-, and U) as well as stream DOC concentrations (p < 0.001).

  20. Variations of Connecticut River Water Pathways and Its Water Age: A Coupled Modeling Study

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Whitney, M. M.

    2016-02-01

    As the largest freshwater source to the east-west oriented Long Island Sound (LIS), the Connecticut River (CR) delivers water on the north shore near the sound's mouth. The pathways the river water follows through LIS are impacted by river discharge, tides, winds, and complex topography. Using the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System, with passive dyes and age tracers, the main routes of CR water through the estuary and onto the shelf are determined with their corresponding time scales. During a high discharge period, the CR plume occupies the northern half of eastern LIS and extends farther west than during average discharge conditions. Most of the river water inside the central LIS is transported through this surface plume. After being mixed to deeper depths and farther offshore, the river water that is still within LIS is transported westward. During periods of low discharge, freshwater is initially more prevalent between the CR and the LIS mouth. Later, CR water mixed to depths still moves westward, reaching the estuary's head in approximately 3 weeks. Neap tide allows more CR water to quickly escape to the open shelf through Block Island Sound (BIS) while spring tide allows more CR water back into the central LIS at depth. BIS has a uniform water age ranging from 40 to 50 days throughout the water column. Lower discharge leads to older age in BIS. In western LIS, CR water age at depth increases from 50 to 75 days as discharge decreases and is several days younger than water closer to the surface. These results suggest a bottom-in/surface-out transport pattern exists for CR water in LIS for at least part of the year.

  1. Experimental-Theoretical Approach to the Adsorption Mechanisms for Anionic, Cationic, and Zwitterionic Surfactants at the Calcite-Water Interface.

    PubMed

    Durán-Álvarez, Agustín; Maldonado-Domínguez, Mauricio; González-Antonio, Oscar; Durán-Valencia, Cecilia; Romero-Ávila, Margarita; Barragán-Aroche, Fernando; López-Ramírez, Simón

    2016-03-22

    The adsorption of surfactants (DTAB, SDS, and CAPB) at the calcite-water interface was studied through surface zeta potential measurements and multiscale molecular dynamics. The ground-state polarization of surfactants proved to be a key factor for the observed behavior; correlation was found between adsorption and the hard or soft charge distribution of the amphiphile. SDS exhibits a steep aggregation profile, reaching saturation and showing classic ionic-surfactant behavior. In contrast, DTAB and CAPB featured diversified adsorption profiles, suggesting interplay between supramolecular aggregation and desorption from the solid surface and alleviating charge buildup at the carbonate surface when bulk concentration approaches CMC. This manifests as an adsorption profile with a fast initial step, followed by a metastable plateau and finalizing with a sharp decrease and stabilization of surface charge. Suggesting this competition of equilibria, elicited at the CaCO3 surface, this study provides atomistic insight into the adsorption mechanism for ionic surfactants on calcite, which is in accordance with experimental evidence and which is a relevant criterion for developing enhanced oil recovery processes.

  2. Adsorption of benzyldimethylhexadecylammonium chloride at the hydrophobic silica-water interface studied by total internal reflection Raman spectroscopy: effects of silica surface properties and metal salt addition.

    PubMed

    Grenoble, Zlata; Baldelli, Steven

    2013-08-29

    The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface further indicate that the surface charge and potential influence the surfactant diffusion and kinetic rates of adsorption at the silica-water interface.

  3. A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1WS

    USGS Publications Warehouse

    Brakebill, J.W.; Terziotti, S.E.

    2011-01-01

    A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.

  4. A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1

    USGS Publications Warehouse

    Brakebill, J.W.; Terziotti, S.E.

    2011-01-01

    A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.

  5. The Effect of Beaver Activity on the Ammonium Uptake and Water Residence Time Characteristics of a Third-Order Stream Reach

    NASA Astrophysics Data System (ADS)

    Briggs, M.; Gooseff, M. N.; Wollheim, W. M.; Peterson, B. J.; Morkeski, K.

    2009-12-01

    Increasing beaver populations within low gradient basins in the northeastern United States are fundamentally changing the way water and dissolved nutrients are exported through these stream networks to the coast. Beaver dams can increase water residence time and contact with organic material, promote anoxic conditions and enhance both surface and hyporheic transient storage; all of these may have an impact on biogeochemical reactivity and nutrient retention. To quantitatively assess some of these effects we co-injected NaCl and NH4+ into the same 3rd-order stream reach in Massachusetts, USA under pre- and post-dam conditions. These experiments were done at similar discharge rates to isolate the impacts of a large natural beaver dam (7 m X 1.3 m) on the low-gradient (0.002) system where variable discharge also imparts a strong control on residence time. During the post-dam experiment there was an estimated 2300 m3 of water impounded behind the structure, which influenced more than 300 m of the 650 m stream reach. Our results showed that median transport time through the reach increased by 160% after dam construction. Additionally the tracer tailing time normalized to the corresponding median transport time increased from 1.08 to 1.51, indicating a pronounced tailing of the tracer signal in the post-dam condition. Data collected within the beaver pond just upstream of the dam indicated poor mixing and the presence of preferential flow paths through the generally stagnant zone. The uptake length (Sw) for NH4+ was 1250 m under the pre-dam condition, and may have changed for the post-dam reach in part because of the observed changes in residence time. As beaver population growth continues within these basins the consequences may be a smoothing of the outlet hydrograph and increased nutrient and organic matter removal and storage along the stream network.

  6. Radiostrontium in the western North Pacific: characteristics, behavior, and the Fukushima impact.

    PubMed

    Povinec, Pavel P; Hirose, Katsumi; Aoyama, Michio

    2012-09-18

    The impact of the Fukushima-derived radiostrontium ((90)Sr and (89)Sr) on the western North Pacific Ocean has not been well established, although (90)Sr concentrations recorded in surface seawater offshore of the damaged Fukushima Dai-ichi nuclear power plant were in some areas comparable to or even higher than (as those in December 2011 with 400 kBq m(-3)(90)Sr) the (137)Cs levels. The total amount of (90)Sr released to the marine environment in the form of highly radioactive wastewater could reach about 1 PBq. Long-term series (1960-2010) of (90)Sr concentration measurements in subtropical surface waters of the western North Pacific indicated that its concentration has been decreasing gradually with a half-life of 14 y. The pre-Fukushima (90)Sr levels in surface waters, including coastal waters near Fukushima, were estimated to be 1 Bq m(-3). To better assess the impact of about 4-5 orders of magnitude increased radiostrontium levels on the marine environment, more detail measurements in seawater and biota of the western North Pacific are required.

  7. Is hyporheic flow an indicator for salmonid spawning site selection?

    NASA Astrophysics Data System (ADS)

    Benjankar, R. M.; Tonina, D.; Marzadri, A.; McKean, J. A.; Isaak, D.

    2015-12-01

    Several studies have investigated the role of hydraulic variables in the selection of spawning sites by salmonids. Some recent studies suggest that the intensity of the ambient hyporheic flow, that present without a salmon egg pocket, is a cue for spawning site selection, but others have argued against it. We tested this hypothesis by using a unique dataset of field surveyed spawning site locations and an unprecedented meter-scale resolution bathymetry of a 13.5 km long reach of Bear Valley Creek (Idaho, USA), an important Chinook salmon spawning stream. We used a two-dimensional surface water model to quantify stream hydraulics and a three-dimensional hyporheic model to quantify the hyporheic flows. Our results show that the intensity of ambient hyporheic flows is not a statistically significant variable for spawning site selection. Conversely, the intensity of the water surface curvature and the habitat quality, quantified as a function of stream hydraulics and morphology, are the most important variables for salmonid spawning site selection. KEY WORDS: Salmonid spawning habitat, pool-riffle system, habitat quality, surface water curvature, hyporheic flow

  8. Vulnerability of drinking water supplies to engineered nanoparticles.

    PubMed

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP contamination. In karstic aquifers, however, there is an increased probability that if any ENPs enter the groundwater system they will reach the extraction point of a drinking water treatment plant (DWTP). The ability to remove ENPs during water treatment depends on the specific design of the treatment process. In conventional DWTPs with no flocculation step a proportion of ENPs, if present in the raw water, may reach the final drinking water. The use of ultrafiltration techniques improves drinking water safety with respect to ENP contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Using Multiple Watershed-scale Dye Tracing Tests to Study Water and Solute Transport in Naturally Obstructed Stream Channels

    NASA Astrophysics Data System (ADS)

    Jin, L.; Meeks, J. L.; Hubbard, K. A.; Kurian, L. M.; Siegel, D. I.; Lautz, L. K.; Otz, M. H.

    2007-12-01

    Temporary storage of surface water at channel sides and pools significantly affects water and solute transport downstream in watersheds. Beavers, natural "stream channel engineers", build dams which obstruct stream flow and temporarily store water in small to large ponds within stream channels. These ponds substantially delay water movement and increase the water residence time in the system. To study how water and solutes move through these obstructed stream channels, we did multiple dye tracing tests at Cherry Creek, a main tributary to Red Canyon Creek (Wind River Range, Wyoming). First we surveyed beaver dam distributions in detail within the study reaches. We then introduced dyes four times from July 2nd to 6th, 2007 using a scale-up approach. The observation site was fixed at the mouth of Cherry Creek, and 1.5 grams of Rhodamine WT (RWT) dye was injected sequentially at upstream sites with increasing test reach length. The reach lengths scaled up from 500m to 2.5 km. A field fluorometer recorded RWT concentrations every 15 seconds. The results show non-linear decreases of the peak concentration of the dye tracing cloud as the reach scaled up. Also, the times to 1.) the arrivals of the leading edges (Tl), 2.) the peak concentrations (Tp) and 3.) the tailing edges (Tt) and 4) the durations of the tracer cloud (Td) behaved non-linearly as function of length scale. For example, plots of arrivals of leading edges and tailing edges with scale distance appear to define curves of the form; Tl=27.665e1.07× Distance (r2=0.99) and Tt=162.62e0.8551× Distance (r2=0.99), respectively. The greatest non-linearity occurred for the time of tailing and the least for the time of leading edge. These observations are consistent with what would be expected with greater density of dams and/or storage volumes as the reach length increased upgradient. To come to a first approximation, we are currently modeling the breakthrough curves with the solute transport code OTIS to address the relative differences in average travel velocity, longitudinal dispersion, and storage parameters from the mouth to the headwaters of the creek.

  10. Simulated and observed 2010 floodwater elevations in selected river reaches in the Pawtuxet River Basin, Rhode Island

    USGS Publications Warehouse

    Zarriello, Phillip J.; Olson, Scott A.; Flynn, Robert H.; Strauch, Kellan R.; Murphy, Elizabeth A.

    2014-01-01

    Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term streamgages in Rhode Island. In response to this event, hydraulic models were updated for selected reaches covering about 56 river miles in the Pawtuxet River Basin to simulate water-surface elevations (WSEs) at specified flows and boundary conditions. Reaches modeled included the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Dry Brook, Meshanticut Brook, Furnace Hill Brook, Flat River, Quidneck Brook, and two unnamed tributaries referred to as South Branch Pawtuxet River Tributary A1 and Tributary A2. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 using steady-state simulations. Updates to the models included incorporation of new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were assessed using high-water marks (HWMs) obtained in a related study following the March– April 2010 flood and the simulated water levels at the 0.2-percent annual exceedance probability (AEP), which is the estimated AEP of the 2010 flood in the basin. HWMs were obtained at 110 sites along the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Furnace Hill Brook, Flat River, and Quidneck Brook. Differences between the 2010 HWM elevations and the simulated 0.2-percent AEP WSEs from flood insurance studies (FISs) and the updated models developed in this study varied with most differences attributed to the magnitude of the 0.2-percent AEP flows. WSEs from the updated models generally are in closer agreement with the observed 2010 HWMs than with the FIS WSEs. The improved agreement of the updated simulated water elevations to observed 2010 HWMs provides a measure of the hydraulic model performance, which indicates the updated models better represent flooding at other AEPs than the existing FIS models.

  11. Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    This software has been designed to detect water bodies that are out in the open on cross-country terrain at mid- to far-range (approximately 20 100 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). Non-traversable water bodies, such as large puddles, ponds, and lakes, are indirectly detected by detecting reflections of the sky below the horizon in color imagery. The appearance of water bodies in color imagery largely depends on the ratio of light reflected off the water surface to the light coming out of the water body. When a water body is far away, the angle of incidence is large, and the light reflected off the water surface dominates. We have exploited this behavior to detect water bodies out in the open at mid- to far-range. When a water body is detected at far range, a UGV s path planner can begin to look for alternate routes to the goal position sooner, rather than later. As a result, detecting water hazards at far range generally reduces the time required to reach a goal position during autonomous navigation. This software implements a new water detector based on sky reflections that geometrically locates the exact pixel in the sky that is reflecting on a candidate water pixel on the ground, and predicts if the ground pixel is water based on color similarity and local terrain features

  12. Setting the scene for SWOT: global maps of river reach hydrodynamic variables

    NASA Astrophysics Data System (ADS)

    Schumann, Guy J.-P.; Durand, Michael; Pavelsky, Tamlin; Lion, Christine; Allen, George

    2017-04-01

    Credible and reliable characterization of discharge from the Surface Water and Ocean Topography (SWOT) mission using the Manning-based algorithms needs a prior estimate constraining reach-scale channel roughness, base flow and river bathymetry. For some places, any one of those variables may exist locally or even regionally as a measurement, which is often only at a station, or sometimes as a basin-wide model estimate. However, to date none of those exist at the scale required for SWOT and thus need to be mapped at a continental scale. The prior estimates will be employed for producing initial discharge estimates, which will be used as starting-guesses for the various Manning-based algorithms, to be refined using the SWOT measurements themselves. A multitude of reach-scale variables were derived, including Landsat-based width, SRTM slope and accumulation area. As a possible starting point for building the prior database of low flow, river bathymetry and channel roughness estimates, we employed a variety of sources, including data from all GRDC records, simulations from the long-time runs of the global water balance model (WBM), and reach-based calculations from hydraulic geometry relationships as well as Manning's equation. Here, we present the first global maps of this prior database with some initial validation, caveats and prospective uses.

  13. [Premises to the transboundary environmental crisis in the water tract on the example of water tract of the Kuban-Manych].

    PubMed

    Dementieva, D M; Dementiev, M S

    As a result, of the management of the irrigation system the most part of the runoff headwaters of the river Kuban was transferred to the arid plains of the Stavropol Territory, Rostov Region and Kalmykia Gravity Water via the water tract of the Kuban-Manych. This system was assumed to be supplied by pure mountain water. In fact, 3-4 class contaminated water currently passes to the water intake of the irrigation system (Nevinnomyssky channel). There is a tendency to the further deterioration in the quality of surface waters. It was determined that in the last decades in the catchment area of the upper reaches of the Kuban (Karachaevo-Cherkessia) the population was determined to increase sharply. As a result the discharge of industrial, agricultural, domestic and recreational waste into the river significantly increased. In that in catchment areas there is practically no infrastructure of the acquisition, processing and recycling of waste for the irrigation system. Intensive recreational and transport development of mountainous areas of Karachay-Cherkessia aggravates the situation and may lead to the need for deep water purification for subsequent consumption already in the vast territories of the Central Caucasus. Due to lack of the infrastructure for the water treatment in the upper reaches of the Kuban, it can lead to the serious systemic crisis. It is proposed to start to create in the catchment areas the cost-based system of recycling waste on the base of their processing by pyrolysis.

  14. Simulated effects of irrigation on salinity in the Arkansas River Valley in Colorado

    USGS Publications Warehouse

    Goff, K.; Lewis, M.E.; Person, M.A.; Konikow, Leonard F.

    1998-01-01

    Agricultural irrigation has a substantial impact on water quantity and quality in the lower Arkansas River valley of southeastern Colorado. A two-dimensional flow and solute transport model was used to evaluate the potential effects of changes in irrigation on the quantity and quality of water in the alluvial aquifer and in the Arkansas River along an 17.7 km reach of the fiver. The model was calibrated to aquifer water level and dissolved solids concentration data collected throughout the 24 year study period (197195). Two categories of irrigation management were simulated with the calibrated model: (1) a decrease in ground water withdrawals for irrigation; and (2) cessation of all irrigation from ground water and surface water sources. In the modeled category of decreased irrigation from ground water pumping, there was a resulting 6.9% decrease in the average monthly ground water salinity, a 0.6% decrease in average monthly river salinity, and an 11.1% increase in ground water return flows to the river. In the modeled category of the cessation of all irrigation, average monthly ground water salinity decreased by 25%; average monthly river salinity decreased by 4.4%; and ground water return flows to the river decreased by an average of 64%. In all scenarios, simulated ground water salinity decreased relative to historical conditions for about 12 years before reaching a new dynamic equilibrium condition. Aquifer water levels were not sensitive to any of the modeled scenarios. These potential changes in salinity could result in improved water quality for irrigation purposes downstream from the affected area.

  15. A universal glue: underwater adhesion of the secretion of the carnivorous flypaper plant Roridula gorgonias

    PubMed Central

    Voigt, Dagmar; Konrad, Wilfried; Gorb, Stanislav

    2015-01-01

    Glandular trichomes of the carnivorous plant Roridula gorgonias release a viscous resinous secretion. Its adhesion to hydrophilic and hydrophobic glass surfaces was measured in air and underwater. The underwater adhesion reached up to 91% (on hydrophilic glass) and 28% (on hydrophobic glass) of that measured in the air. After being submersed for 24 h in water, trichomes did not lose their ability to adhere to both types of glass surfaces underwater. We assume that acylglycerides and triterpenoids, which have been demonstrated previously to be main compounds of the secretion, cause the predominantly non-polar character and the insolubility in water. The robustness of the secretion to a wet environment presumably enables the plant to maintain its trapping function also under humid conditions and during rainy weather. PMID:25657836

  16. 36C1 measurements and the hydrology of an acid injection site

    USGS Publications Warehouse

    Vourvopoulos, G.; Brahana, J.V.; Nolte, E.; Korschinek, G.; Priller, A.; Dockhorn, B.

    1990-01-01

    In an area in western Tennessee (United States), an industrial firm is injecting acidic (pH = 0.1) iron chloride into permeable zones of carbonate rocks at depths ranging from 1000 to 2200 m below land surface. Overlying the injection zone at a depth of approximately 500 m below land surface is a regional fresh-water aquifer, the Knox aquifer. A study is currently underway to investigate whether the injection wells are hydraulically isolated from the fresh-water aquifer. Drilling of a test well that will reach a total depth of 2700 m has been initiated. The 36Cl content of 15 samples from the Knox aquifer, from monitor wells in the vicinity of the injection site, and from the test well have been analyzed. ?? 1990.

  17. Geoethical Approach to Antarctic Subglacial Lakes Exploration

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Markov, Alexey; Sysoev, Mikhail

    2014-05-01

    Antarctic subglacial aquatic environment have become of great interest to the science community because they may provide unique information about microbial evolution, the past climate of the Earth, and the formation of the Antarctic ice sheet. Nowadays it is generally recognized that a vast network of lakes, rivers, and streams exists thousands of meters beneath Antarctic Ice Sheets. Up to date only four boreholes accessed subglacial aquatic system but three of them were filled with high-toxic drilling fluid, and the subglacial water was contaminated. Two recent exploration programs proposed by UK and USA science communities anticipated direct access down to the lakes Ellsworth and Whillans, respectively, in the 2012/2013 Antarctic season. A team of British scientists and engineers engaged in the first attempt to drill into Lake Ellsworth but failed. US research team has successfully drilled through 800 m of Antarctic ice to reach a subglacial lake Whillans and retrieve water and sediment samples. Both activities used hot-water drilling technology to access lakes. Hot water is considered by the world science community as the most clean drilling fluid medium from the present point of view but it cannot solve environmental problems in total because hot-water even when heated to 90 °C, filtered to 0.2 μm, and UV treated at the surface could pick up microorganisms from near-surface snow and circulate them in great volume through the borehole. Another negative impact of hot-water circulation medium is thermal pollution of subglacial water. The new approach to Antarctic subglacial lakes exploration is presented by sampling technology with recoverable autonomous sonde which is equipped by two hot-points with heating elements located on the bottom and top sides of the sonde. All down-hole sonde components will be sterilized by combination of chemical wash, HPV and UV sterilization prior using. At the beginning of the summer season sonde is installed on the surface of the Antarctic ice sheet above subglacial lake. All equipment is got into working trim, the bottom hot-point is powered, and the sonde starts to melt down to the ice sheet bed. The personnel leave the site, and all further operations are going on in semi-automatic mode. The melted water does not recover from the hole and refreezes behind the sonde. Electric line for power supply and communication with down-hole sensors is released from the coil installed inside the sonde. Since the sonde enters into the subglacial lake, it samples the water and examines subglacial conditions. After sampling, the motor connected with coil is switched on, and the top hot-point is put into action. The sonde begins to recover itself to the surface by spooling the cable and melting overlying ice with the help of the upper hot-point. Since 8-9 months from starting, the sonde reaches the surface and waits the personnel for servicing and moving to the next site. The big advantage of the proposed technology is that subglacial lake would be measured and sampled while subglacial water is reliably isolated from surface environment.

  18. Impact of plunging breaking waves on a partially submerged cube

    NASA Astrophysics Data System (ADS)

    Wang, A.; Ikeda, C.; Duncan, J. H.

    2013-11-01

    The impact of a deep-water plunging breaking wave on a partially submerged cube is studied experimentally in a tank that is 14.8 m long and 1.2 m wide with a water depth of 0.91 m. The breakers are created from dispersively focused wave packets generated by a programmable wave maker. The water surface profile in the vertical center plane of the cube is measured using a cinematic laser-induced fluorescence technique with movie frame rates ranging from 300 to 4,500 Hz. The pressure distribution on the front face of the cube is measured with 24 fast-response sensors simultaneously with the wave profile measurements. The cube is positioned vertically at three heights relative to the mean water level and horizontally at a distance from the wave maker where a strong vertical water jet is formed. The portion of the water surface between the contact point on the front face of the cube and the wave crest is fitted with a circular arc and the radius and vertical position of the fitted circle is tracked during the impact. The vertical acceleration of the contact point reaches more than 50 times the acceleration of gravity and the pressure distribution just below the free surface shows a localized high-pressure region with a very high vertical pressure gradient. This work is supported by the Office of Naval Research under grant N000141110095.

  19. The impact of land use on microbial surface water pollution.

    PubMed

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Undoped and Ni-doped CoO x surface modification of porous BiVO 4 photoelectrodes for water oxidation

    DOE PAGES

    Liu, Ya; Guo, Youhong; Schelhas, Laura T.; ...

    2016-09-29

    Surface modification of photoanodes with oxygen evolution reaction (OER) catalysts is an effective approach to enhance water oxidation kinetics, to reduce external bias, and to improve the energy harvesting efficiency of photoelectrochemical (PEC) water oxidation. Here, the surface of porous BiVO 4 photoanodes was modified by the deposition of undoped and Ni-doped CoO x via nitrogen flow assisted electrostatic spray pyrolysis. This newly developed atmospheric pressure deposition technique allows for surface coverage throughout the porous structure with thickness and composition control. PEC testing of modified BiVO 4 photoanodes shows that after deposition of an undoped CoO x surface layer, themore » onset potential shifts negatively by ca. 420 mV and the photocurrent density reaches 2.01 mA cm –2 at 1.23 vs V RHE under AM 1.5G illumination. Modification with Ni-doped CoO x produces even more effective OER catalysis and yields a photocurrent density of 2.62 mA cm –2 at 1.23 V RHE under AM 1.5G illumination. Furthermore, the valence band X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption spectroscopy results show the Ni doping reduces the Fermi level of the CoO x layer; the increased surface band bending produced by this effect is partially responsible for the superior PEC performance.« less

Top