Sample records for reacteur experimental jules

  1. Finite Element Analysis and Experimentation of an Icosahedron Frame under Compression

    DTIC Science & Technology

    2015-09-17

    Century of Flight. Jules Henri Gi_ard (1825 - 1882), January 2014. URL [Online]. Available: http://www.century-of-flight.net/Aviation%20history/to...20reality/ Jules % 20Henri%20Gi_ard.htm. [4] Compression test. [Online]. Available: http://en.wikipedia.org/wiki/Compressive_strength [5

  2. Etude thermo-hydraulique de l'ecoulement du moderateur dans le reacteur CANDU-6

    NASA Astrophysics Data System (ADS)

    Mehdi Zadeh, Foad

    Etant donne la taille (6,0 m x 7,6 m) ainsi que le domaine multiplement connexe qui caracterisent la cuve des reacteurs CANDU-6 (380 canaux dans la cuve), la physique qui gouverne le comportement du fluide moderateur est encore mal connue de nos jours. L'echantillonnage de donnees dans un reacteur en fonction necessite d'apporter des changements a la configuration de la cuve du reacteur afin d'y inserer des sondes. De plus, la presence d'une zone intense de radiations empeche l'utilisation des capteurs courants d'echantillonnage. En consequence, l'ecoulement du moderateur doit necessairement etre etudie a l'aide d'un modele experimental ou d'un modele numerique. Pour ce qui est du modele experimental, la fabrication et la mise en fonction de telles installations coutent tres cher. De plus, les parametres de la mise a l'echelle du systeme pour fabriquer un modele experimental a l'echelle reduite sont en contradiction. En consequence, la modelisation numerique reste une alternative importante. Actuellement, l'industrie nucleaire utilise une approche numerique, dite de milieu poreux, qui approxime le domaine par un milieu continu ou le reseau des tubes est remplace par des resistances hydrauliques distribuees. Ce modele est capable de decrire les phenomenes macroscopiques de l'ecoulement, mais ne tient pas compte des effets locaux ayant un impact sur l'ecoulement global, tel que les distributions de temperatures et de vitesses a proximite des tubes ainsi que des instabilites hydrodynamiques. Dans le contexte de la surete nucleaire, on s'interesse aux effets locaux autour des tubes de calandre. En effet, des simulations faites par cette approche predisent que l'ecoulement peut prendre plusieurs configurations hydrodynamiques dont, pour certaines, l'ecoulement montre un comportement asymetrique au sein de la cuve. Ceci peut provoquer une ebullition du moderateur sur la paroi des canaux. Dans de telles conditions, le coefficient de reactivite peut varier de maniere importante, se traduisant par l'accroissement de la puissance du reacteur. Ceci peut avoir des consequences majeures pour la surete nucleaire. Une modelisation CFD (Computational Fluid Dynamics) detaillee tenant compte des effets locaux s'avere donc necessaire. Le but de ce travail de recherche est de modeliser le comportement complexe de l'ecoulement du moderateur au sein de la cuve d'un reacteur nucleaire CANDU-6, notamment a proximite des tubes de calandre. Ces simulations servent a identifier les configurations possibles de l'ecoulement dans la calandre. Cette etude consiste ainsi a formuler des bases theoriques a l'origine des instabilites macroscopiques du moderateur, c.-a-d. des mouvements asymetriques qui peuvent provoquer l'ebullition du moderateur. Le defi du projet est de determiner l'impact de ces configurations de l'ecoulement sur la reactivite du reacteur CANDU-6.

  3. Developpement d'une methode de Monte Carlo dependante du temps et application au reacteur de type CANDU-6

    NASA Astrophysics Data System (ADS)

    Mahjoub, Mehdi

    La resolution de l'equation de Boltzmann demeure une etape importante dans la prediction du comportement d'un reacteur nucleaire. Malheureusement, la resolution de cette equation presente toujours un defi pour une geometrie complexe (reacteur) tout comme pour une geometrie simple (cellule). Ainsi, pour predire le comportement d'un reacteur nucleaire,un schema de calcul a deux etapes est necessaire. La premiere etape consiste a obtenir les parametres nucleaires d'une cellule du reacteur apres une etape d'homogeneisation et condensation. La deuxieme etape consiste en un calcul de diffusion pour tout le reacteur en utilisant les resultats de la premiere etape tout en simplifiant la geometrie du reacteur a un ensemble de cellules homogenes le tout entoure de reflecteur. Lors des transitoires (accident), ces deux etapes sont insuffisantes pour pouvoir predire le comportement du reacteur. Comme la resolution de l'equation de Boltzmann dans sa forme dependante du temps presente toujours un defi de taille pour tous types de geometries,un autre schema de calcul est necessaire. Afin de contourner cette difficulte, l'hypothese adiabatique est utilisee. Elle se concretise en un schema de calcul a quatre etapes. La premiere et deuxieme etapes demeurent les memes pour des conditions nominales du reacteur. La troisieme etape se resume a obtenir les nouvelles proprietes nucleaires de la cellule a la suite de la perturbation pour les utiliser, au niveau de la quatrieme etape, dans un nouveau calcul de reacteur et obtenir l'effet de la perturbation sur le reacteur. Ce projet vise a verifier cette hypothese. Ainsi, un nouveau schema de calcul a ete defini. La premiere etape de ce projet a ete de creer un nouveau logiciel capable de resoudre l'equation de Boltzmann dependante du temps par la methode stochastique Monte Carlo dans le but d'obtenir des sections efficaces qui evoluent dans le temps. Ce code a ete utilise pour simuler un accident LOCA dans un reacteur nucleaire de type CANDU-6. Les sections efficaces dependantes du temps ont ete par la suite utilisees dans un calcul de diffusion espace-temps pour un reacteur CANDU-6 subissant un accident de type LOCA affectant la moitie du coeur afin d'observer son comportement durant toutes les phases de la perturbation. Dans la phase de developpement, nous avons choisi de demarrer avec le code OpenMC, developpe au MIT,comme plateforme initiale de developpement. L'introduction et le traitement des neutrons retardes durant la simulation ont presente un grand defi a surmonter. Il est important de noter que le code developpe utilisant la methode Monte Carlo peut etre utilise a grande echelle pour la simulation de tous les types des reacteurs nucleaires si les supports informatiques sont disponibles.

  4. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    NASA Astrophysics Data System (ADS)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop functional types in JULES are necessary. The model will thus contribute to a complete understanding of the impacts of climate change on food production. JULES will be later coupled with the Unified Model to quantify the impact of tropospheric O3 on crops productivity including feedbacks between the land-surface, atmospheric chemistry and climate change.

  5. Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0

    NASA Astrophysics Data System (ADS)

    Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.; Luke, Catherine M.

    2016-08-01

    Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model-data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. The new improved parameters for JULES are presented along with the associated uncertainties for each parameter.

  6. Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0

    DOE PAGES

    Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.; ...

    2016-08-25

    Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate–carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimationmore » system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model–data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. Furthermore, the new improved parameters for JULES are presented along with the associated uncertainties for each parameter.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.

    Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate–carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimationmore » system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model–data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. Furthermore, the new improved parameters for JULES are presented along with the associated uncertainties for each parameter.« less

  8. Improving the Fit of a Land-Surface Model to Data Using its Adjoint

    NASA Astrophysics Data System (ADS)

    Raoult, Nina; Jupp, Tim; Cox, Peter; Luke, Catherine

    2016-04-01

    Land-surface models (LSMs) are crucial components of the Earth System Models (ESMs) which are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. In this study, JULES is automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. We present an introduction to the adJULES system and demonstrate its ability to improve the model-data fit using eddy covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the 5 Plant Functional Types (PFTS) in JULES. The optimised PFT-specific parameters improve the performance of JULES over 90% of the FLUXNET sites used in the study. These reductions in error are shown and compared to reductions found due to site-specific optimisations. Finally, we show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.

  9. Coupled carbon-nitrogen land surface modelling for UK agricultural landscapes using JULES and JULES-ECOSSE-FUN (JEF)

    NASA Astrophysics Data System (ADS)

    Comyn-Platt, Edward; Clark, Douglas; Blyth, Eleanor

    2016-04-01

    The UK is required to provide accurate estimates of the UK greenhouse gas (GHG; CO2, CH4 and N2O) emissions for the UNFCCC (United Nations Framework Convention on Climate Change). Process based land surface models (LSMs), such as the Joint UK Land Environment Simulator (JULES), attempt to provide such estimates based on environmental (e.g. land use and soil type) and meteorological conditions. The standard release of JULES focusses on the water and carbon cycles, however, it has long been suggested that a coupled carbon-nitrogen scheme could enhance simulations. This is of particular importance when estimating agricultural emission inventories where the carbon cycle is effectively managed via the human application of nitrogen based fertilizers. JULES-ECOSSE-FUN (JEF) links JULES with the Estimation of Carbon in Organic Soils - Sequestration and Emission (ECOSSE) model and the Fixation and Uptake of Nitrogen (FUN) model as a means of simulating C:N coupling. This work presents simulations from the standard release of JULES and the most recent incarnation of the JEF coupled system at the point and field scale. Various configurations of JULES and JEF were calibrated and fine-tuned based on comparisons with observations from three UK field campaigns (Crichton, Harwood Forest and Brattleby) specifically chosen to represent the managed vegetation types that cover the UK. The campaigns included flux tower and chamber measurements of CO2, CH4 and N2O amongst other meteorological parameters and records of land management such as application of fertilizer and harvest date at the agricultural sites. Based on the results of these comparisons, JULES and/or JEF will be used to provide simulations on the regional and national scales in order to provide improved estimates of the total UK emission inventory.

  10. Jules Stein, MD: Ophthalmologist, Entertainment Magnate, and Advocate for Vision.

    PubMed

    Straatsma, Bradley R; Weeks, David F

    2016-04-01

    To report the lifetime activities and accomplishments of Jules Stein, MD. Retrospective review. Assessment of published and unpublished biographical material. Jules Stein combined his love of music and medicine with organizational skills to achieve successive careers as a musician, an ophthalmologist, an entertainment magnate, and an advocate for vision. To preserve vision, he founded Research to Prevent Blindness, founded the Jules Stein Eye Institute at the University of California, Los Angeles, and led a multiyear campaign to establish the National Eye Institute. With successive careers and extraordinary achievements, Jules Stein created an enduring legacy of benefits to ophthalmology, vision research, and the prevention of blindness. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  11. Jules Cotard (1840-1889): his life and the unique syndrome which bears his name.

    PubMed

    Pearn, J; Gardner-Thorpe, C

    2002-05-14

    Dr. Jules Cotard (1840-1889) was a Parisian neurologist who first described the délire des négations. Cotard's syndrome or Cotard's delusion comprises any one of a series of delusions ranging from the fixed and unshakable belief that one has lost organs, blood, or body parts to believing that one has lost one's soul or is dead. In its most profound form, the delusion takes the form of a professed belief that one does not exist. Encountered primarily in psychoses such as schizophrenia and bipolar disorder, Cotard's syndrome has also been described in organic lesions of the nondominant temporoparietal cortex as well as in migraine. Cotard's delusion is the only self-certifiable syndrome of delusional psychosis. Jules Cotard, a Parisian neurologist and psychiatrist and former military surgeon, was one of the first to induce cerebral atrophy by the experimental embolization of cerebral arteries in animals and a pioneer in studies of the clinicopathologic correlates of cerebral atrophy secondary to perinatal and postnatal pathologic changes. He was the first to record that unilateral cerebral atrophy in infancy does not necessarily lead to aphasia and was also the pioneer of studies of altered conscious states in diabetic hyperglycemia.

  12. Improving the Fit of a Land-Surface Model to Data Using its Adjoint

    NASA Astrophysics Data System (ADS)

    Raoult, N.; Jupp, T. E.; Cox, P. M.; Luke, C.

    2015-12-01

    Land-surface models (LSMs) are of growing importance in the world of climate prediction. They are crucial components of larger Earth system models that are aimed at understanding the effects of land surface processes on the global carbon cycle. The Joint UK Land Environment Simulator (JULES) is the land-surface model used by the UK Met Office. It has been automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or 'adjoint', of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. adJULES presents an opportunity to confront JULES with many different observations, and make improvements to the model parameterisation. In the newest version of adJULES, multiple sites can be used in the calibration, to giving a generic set of parameters that can be generalised over plant functional types. We present an introduction to the adJULES system and its applications to data from a variety of flux tower sites. We show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.

  13. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, J.; Reynard-Carette, C.; Tarchalski, M.

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for themore » thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling steps). The paper will concern these two kinds of calorimetric sensors. It will focus in particular on studies on their out-of-pile calibrations. Firstly, the characteristics of the sensor designs will be detailed (such as geometry, dimension, material sample, assembly, instrumentation). Then the out-of-pile calibration methods will be described. Furthermore numerical results obtained thanks to 2D axisymmetrical thermal simulations (Finite Element Method, CAST3M) and experimental results will be presented for each sensor. A comparison of the two different thermal sensor behaviours will be realized. To conclude a discussion of the advantages and the drawbacks of each sensor will be performed especially regarding measurement methods. (authors)« less

  14. Fund honors Jule G. Charney

    NASA Astrophysics Data System (ADS)

    The Department of Meteorology and Physical Oceanography at the Massachusetts Institute of Technology has established a fund in honor of the late Jule G. Charney. Charney died in Boston last month (Eos, July 7). Income from the fund will be awarded to meritorious students for graduate study in the department. The awards will be known as the Jule G. Charney Awards.

  15. Experimental validation of photon-heating calculation for the Jules Horowitz Reactor

    NASA Astrophysics Data System (ADS)

    Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A.; Reynard-Carette, C.; Di Salvo, J.; Gruel, A.

    2015-04-01

    The Jules Horowitz Reactor (JHR) is the next Material-Testing Reactor (MTR) under construction at CEA Cadarache. High values of photon heating (up to 20 W/g) are expected in this MTR. As temperature is a key parameter for material behavior, the accuracy of photon-heating calculation in the different JHR structures is an important stake with regard to JHR safety and performances. In order to experimentally validate the calculation of photon heating in the JHR, an integral experiment called AMMON was carried out in the critical mock-up EOLE at CEA Cadarache to help ascertain the calculation bias and its associated uncertainty. Nuclear heating was measured in different JHR-representative AMMON core configurations using ThermoLuminescent Detectors (TLDs) and Optically Stimulated Luminescent Detectors (OSLDs). This article presents the interpretation methodology and the calculation/experiment (C/E) ratio for all the TLD and OSLD measurements conducted in AMMON. It then deals with representativeness elements of the AMMON experiment regarding the JHR and establishes the calculation biases (and its associated uncertainty) applicable to photon-heating calculation for the JHR.

  16. The Joint UK Land Environment Simulator (JULES), Model description - Part 2: Carbon fluxes and vegetation

    NASA Astrophysics Data System (ADS)

    Clark, D. B.; Mercado, L. M.; Sitch, S.; Jones, C. D.; Gedney, N.; Best, M. J.; Pryor, M.; Rooney, G. G.; Essery, R. L. H.; Blyth, E.; Boucher, O.; Harding, R. J.; Cox, P. M.

    2011-03-01

    The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Past studies with JULES have demonstrated the important role of the land surface in the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of separately changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change. There was a need to consolidate these and other advances into a single model code so as to be able to study interactions in a consistent manner. This paper describes the consolidation of these advances into the modelling of carbon fluxes and stores, in the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model. The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.

  17. Jule from the fish Xiphophorus is the first complete vertebrate Ty3/Gypsy retrotransposon from the Mag family.

    PubMed

    Volff, J N; Körting, C; Altschmied, J; Duschl, J; Sweeney, K; Wichert, K; Froschauer, A; Schartl, M

    2001-02-01

    Jule is the second complete long-terminal-repeat (LTR) Ty3/Gypsy retrotransposon identified to date in vertebrates. Jule, first isolated from the poeciliid fish Xiphophorus maculatus, is 4.8 kb in length, is flanked by two 202-bp LTRs, and encodes Gag (structural core protein) and Pol (protease, reverse transcriptase, RNase H, and integrase, in that order) but no envelope. There are three to four copies of Jule per haploid genome in X. maculatus. Two of them are located in a subtelomeric region of the sex chromosomes, where they are associated with the Xmrk receptor tyrosine kinase genes, of which oncogenic versions are responsible for the formation of hereditary melanoma in Xiphophorus. One almost intact copy of Jule was found in the first intron of the X-chromosomal allele of the Xmrk proto-oncogene, and a second, more corrupted copy is present only 56 nt downstream of the polyadenylation signal of the Xmrk oncogene. Jule-related elements were detected by Southern blot hybridization with less than 10 copies per haploid genome in numerous other poeciliids, as well as in more divergent fishes, including the medakafish Oryzias latipes and the tilapia Oreochromis niloticus. Database searches also identified Jule-related sequences in the zebrafish Danio rerio and in both genome project pufferfishes, Fugu rubripes and Tetraodon nigroviridis. Phylogenetic analysis revealed that Jule is the first member of the Mag family of Ty3/Gypsy retrotransposons described to date in vertebrates. This family includes the silkworm Mag and sea urchin SURL retrotransposons, as well as sequences from the nematode Caenorhabditis elegans. Additional related elements were identified in the genomes of the malaria mosquito Anopheles gambiae and the nematode Ascaris lumbricoides. Phylogeny of Mag-related elements suggested that the Mag family of retrotransposons is polyphyletic and is constituted of several ancient lineages that diverged before their host genomes more than 600 MYA.

  18. Modeling of Cavitating Flow through Waterjet Propulsors

    DTIC Science & Technology

    2015-02-18

    1-0197 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jules W. Lindau 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...RESPONSIBLE PERSON Jules W. Lindau 19b. TELEPONE NUMBER (Include area code) 814-865-8938 ^\\6^G%013 Standard Form 298 (Rev. 8-98) Prescribed by ANSI-Std...239-18 Modeling of Cavitating Flow through Waterjet Propulsors Jules W. Lindau The Pennsylvania State University, Applied Research Laboratory, State

  19. SPACE TODAY ONLINE - Space Today Online covering Space from Earth to the

    Science.gov Websites

    Space Rockets 300 Flights Delta Proton Search for Meteorites American Weather Satellites Artist concept Rockets: Spaceports Plowshares 21st Century Experimental Europe's Vega Brazil's Difficulties U.S. Delta 4 , Atlas 5 America's 300th Delta Russia's 300th Proton Spaceflight Museum Space Station: Jules Verne Cargo

  20. Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows

    DTIC Science & Technology

    2013-08-13

    5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-09-1-0042 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jules W. Lindau and Michael P. Kinzel 5d. PROJECT...REPORT U b. ABSTRACT U c. THIS PAGE U 17. LIMITATION OF ABSTRACT U 18. NUMBER OF PAGES 29 19a. NAME OF RESPONSIBLE PERSON Jules W. Lindau...Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows Michael P. Kinzel Jules W. Lindau Penn State University Applied Research

  1. The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Clark, D. B.; Mercado, L. M.; Sitch, S.; Jones, C. D.; Gedney, N.; Best, M. J.; Pryor, M.; Rooney, G. G.; Essery, R. L. H.; Blyth, E.; Boucher, O.; Harding, R. J.; Huntingford, C.; Cox, P. M.

    2011-09-01

    The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Many studies have demonstrated the important role of the land surface in the functioning of the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of climate change, increasing atmospheric carbon dioxide concentrations, changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change. This paper describes the consolidation of these advances in the modelling of carbon fluxes and stores, in both the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model. The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.

  2. Issues in Big-Data Database Systems

    DTIC Science & Technology

    2014-06-01

    Post, 18 August 2013. Berman, Jules K. (2013). Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information. New York: Elsevier... Jules K. (2013). Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information. New York: Elsevier. 261pp. Characterization of

  3. JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator

    NASA Astrophysics Data System (ADS)

    Osborne, T.; Gornall, J.; Hooker, J.; Williams, K.; Wiltshire, A.; Betts, R.; Wheeler, T.

    2014-10-01

    Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soy bean, maize and rice is presented. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soy bean at the global level, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index and canopy height better than in standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an earth system and crop yield model perspective is encouraging however, more effort is needed to develop the parameterisation of the model for specific applications. Key future model developments identified include the specification of the yield gap to enable better representation of the spatial variability in yield.

  4. Geophysicists: Jules Aarons (1921-2008)

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael

    2009-03-01

    Jules Aarons, a pioneer in satellite radio beacon studies of the ionosphere, died peacefully at his home in Newton, Mass., on 21 November 2008 at age 87. When considering his college career, Jules was drawn toward the humanities, an interest subsequently redirected by his parents toward science as a more suitable way to earn a living, and then by the U.S. Army Air Corps toward radio technology as a more suitable way to win World War II. Both goals were readily accomplished, perhaps instilling in Jules the value of proper mentorship, that central aspect of his life that so dominates our recollections of him. After the war, and with a variety of options before him, Jules decided upon civilian government service at the U.S. Air Force's then new field station in Cambridge, Mass. This was the founding entity of the Air Force Cambridge Research Laboratory (AFCRL), and those five famous letters became identified with his professional career (1946-1981). With Russia's launch of Sputnik in 1957, the era of space-based radio communications began, and with it the need to understand the sporadic crackling and fading (``scintillations'') of radio transmissions from satellites to ground receiving stations. Wartime efforts also gave birth to radio astronomy. Jules fostered ways to fund the synergies he saw between the radio technologies of space science and those of ground-based radio astronomy in ways almost unimaginable today (and certainly not by former U.S. senator Mike Mansfield, whose 1973 amendment to the U.S. Congress's defense appropriations bill limited the financing of basic research by military agencies only to projects that have direct military consequences; the amendment resulted in a permanent restructuring of how U.S. Department of Defense (DOD) agencies fund university-based research).

  5. Juling Crater

    NASA Image and Video Library

    2018-06-05

    This image of Juling and Kupalo Craters was obtained by NASA's Dawn spacecraft on May 25, 2018 from an altitude of about 855 miles (1380 kilometers). The center coordinates of this image are about 38 degrees south in latitude and 173 degrees east in longitude. https://photojournal.jpl.nasa.gov/catalog/PIA22470

  6. Lifting Off of the Digital Plateau with Military Decision Support Systems

    DTIC Science & Technology

    2013-05-23

    concerns were echoed in Germany, where Colonel (later General) Jules von Verdy stripped away the complex rules and tables, and relied on the military...Review (March-April 2001): 38-45. 55 Swift, Eben. Orders. Fort Leavenworth: Staff College Press, 1905. Verdy, Jules von. Free Kreigspiel. Edited by

  7. Juling Crater's Floor

    NASA Image and Video Library

    2018-03-14

    This view from NASA's Dawn mission shows the floor of Ceres' Juling Crater. The crater floor shows evidence of the flow of ice and rock, similar to rock glaciers in Earth's polar regions. Dawn acquired the picture with its framing camera on Aug. 30, 2016. https://photojournal.jpl.nasa.gov/catalog/PIA21920

  8. Would Jule Charney Have Cracked the Madden-Julian Oscillation?

    NASA Astrophysics Data System (ADS)

    Emanuel, K.

    2017-12-01

    Jule Charney's approach to science often involved looking at old problems in new ways. One example was his theory of baroclinic instability, which followed on the heels of long-standing efforts to explain well-observed cyclones and anticyclones. He mastered the art of boiling a physical phenomenon down to its essence, throwing away many things that others had considered important while expressing that which he retained in the simplest possible way. To help honor Charney's legacy, I will review the history of another well-observed phenomenon - the Madden Julian Oscillation (MJO) - together with the many largely unsuccessful efforts to explain it, culminating finally in a satisfying explanation that Jule would have loved.

  9. ComTrustO: Composite Trust-Based Ontology Framework for Information and Decision Fusion

    DTIC Science & Technology

    2015-07-06

    based definitions and models of trust have been studied in various domains [39]. Jules et al. [27] propose an intelligent and dynamic Service Level...Cognitive and affective trust in service relationships. Journal of Business Research, 58:500–507, 2005. [27] O. Jules , A. Hafid, and M.A. Serhani

  10. On the Verbal Art of a Modern Painter: The Work of Jules Kirschenbaum.

    ERIC Educational Resources Information Center

    Gandelman, Claude

    1989-01-01

    Notes that Jules Kirschenbaum, a modern American artist whose work integrates inscriptions and figurative painting, studied under the masters of abstract expressionism yet exhibited with protagonists of "magic realism." States that his later work took a wholly different turn--it became art about meaning and the "meaning of…

  11. Discover Paris with Jules Verne.

    ERIC Educational Resources Information Center

    Hudson, Anna E.

    1996-01-01

    An approach to teaching French literature that uses a Jules Verne novel published only in 1994 is described. The novel, "Paris in the 20th Century," is the basis for a series of written and oral exercises about the novel, its social and cultural context, the author, and the actual changes that have occurred in Paris in comparison with…

  12. Juling Crater

    NASA Image and Video Library

    2018-03-14

    This view from NASA's Dawn mission shows where ice has been detected in the northern wall of Ceres' Juling Crater, which is in almost permanent shadow. Dawn acquired the picture with its framing camera on Aug. 30, 2016, and it was processed with the help of NASA Ames Stereo Pipeline (ASP), to estimate the slope of the cliff. https://photojournal.jpl.nasa.gov/catalog/PIA21918

  13. The Role of History in Teaching Science--A Case Study: The Popularization of Science in Nineteenth-Century France.

    ERIC Educational Resources Information Center

    Hendrick, Robert M.

    1992-01-01

    Examines one of the key methods used to stimulate bourgeois interest in science in France during the Second Empire and early Third Republic; the campaign to create a popularized science. Concentrates on the "science writings" of Jules Michelet and Jules Verne, both of whom were immensely successful in creating a favorable climate of…

  14. Constraining the JULES land-surface model for different land-use types using citizen-science generated hydrological data

    NASA Astrophysics Data System (ADS)

    Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.

    2017-12-01

    Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.

  15. Jules and Augusta Dejerine, Pierre Marie, Joseph Babiński, Georges Guillain and their students during World War I.

    PubMed

    Walusinski, O

    2017-03-01

    World War I (1914-1918), however tragic, was nonetheless an "edifying school of nervous system experimental pathology" not only because of the various types of injuries, but also because their numbers were greater than any physician could have foreseen. The peripheral nervous system, the spine and the brain were all to benefit from the subsequent advances in clinical and anatomo-functional knowledge. Neurosurgeons took on nerve sutures, spinal injury exploration, and the localization and extraction of intracranial foreign bodies. Little by little, physical medicine and rehabilitation were established. A few of the most famous Parisian neurologists at the time-Jules and Augusta Dejerine, Pierre Marie, Joseph Babiński and Georges Guillain, who directed the military neurology centers-took up the physically and emotionally exhausting challenge of treating thousands of wounded soldiers. They not only cared for them, but also studied them scientifically, with the help of a small but devoted band of colleagues. The examples presented here reveal their courage and their efforts to make discoveries for which we remain grateful today. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. A Walk through Graduate Education: Selected Papers and Speeches of Jules B. LaPidus, President of the Council of Graduate Schools, 1984-2000.

    ERIC Educational Resources Information Center

    Hamblin, Jane A., Ed.

    This book was created to honor Jules B. LaPidus, retiring president of the Council of Graduate Education, and to preserve his writings and speeches. The papers and speeches of Part 1 show how the author addressed the topical issues of graduate education, moving from observation to direction on research, funding, and preparation of faculty. Part 2…

  17. Towards a simple representation of chalk hydrology in land surface modelling

    NASA Astrophysics Data System (ADS)

    Rahman, Mostaquimur; Rosolem, Rafael

    2017-01-01

    Modelling and monitoring of hydrological processes in the unsaturated zone of chalk, a porous medium with fractures, is important to optimize water resource assessment and management practices in the United Kingdom (UK). However, incorporating the processes governing water movement through a chalk unsaturated zone in a numerical model is complicated mainly due to the fractured nature of chalk that creates high-velocity preferential flow paths in the subsurface. In general, flow through a chalk unsaturated zone is simulated using the dual-porosity concept, which often involves calibration of a relatively large number of model parameters, potentially undermining applications to large regions. In this study, a simplified parameterization, namely the Bulk Conductivity (BC) model, is proposed for simulating hydrology in a chalk unsaturated zone. This new parameterization introduces only two additional parameters (namely the macroporosity factor and the soil wetness threshold parameter for fracture flow activation) and uses the saturated hydraulic conductivity from the chalk matrix. The BC model is implemented in the Joint UK Land Environment Simulator (JULES) and applied to a study area encompassing the Kennet catchment in the southern UK. This parameterization is further calibrated at the point scale using soil moisture profile observations. The performance of the calibrated BC model in JULES is assessed and compared against the performance of both the default JULES parameterization and the uncalibrated version of the BC model implemented in JULES. Finally, the model performance at the catchment scale is evaluated against independent data sets (e.g. runoff and latent heat flux). The results demonstrate that the inclusion of the BC model in JULES improves simulated land surface mass and energy fluxes over the chalk-dominated Kennet catchment. Therefore, the simple approach described in this study may be used to incorporate the flow processes through a chalk unsaturated zone in large-scale land surface modelling applications.

  18. Jule Gregory Charney

    NASA Astrophysics Data System (ADS)

    Smagorinsky, J.

    Twelve years ago, Jule Charney was honored by AGU when he was named the 38th William Bowie medalist for having epitomized the Bowie criteria of outstanding contribution to fundamental geophysics and for unselfish cooperation in research.Fifty years of Bowie awards were celebrated at a Special Session of the AGU Spring Meeting held in Baltimore, Md., in May. It is a very special distinction that AGU has selected Charney, among others, from a truly impressive field of superachievers, as one meriting extended recall of his contributions and his place in history.

  19. [Professor Jules Gavarret (1809-1890) and the application of mathematics and physics to medicine].

    PubMed

    Beyneix, A

    2001-01-01

    Professor Jules Gavarret has undertaken pretigious offices, has accumulated various titles and honours and has left an abundant bibliography about physics and chemistry of life phenomenon. To recount the career of one of the academics who were benefited the traditional medicine of the progress achieved in physical and mathematical sciences give us the opportunity of recalling one of the great Parisian personalities of 19th Century who had not been appreciated for too long.

  20. Evaluation of modelled methane emissions over northern peatland sites

    NASA Astrophysics Data System (ADS)

    Gao, Yao; Burke, Eleanor; Chadburn, Sarah; Raivonen, Maarit; Susiluoto, Jouni; Vesala, Timo; Aurela, Mika; Lohila, Annalea; Aalto, Tuula

    2017-04-01

    Methane (CH4) is a powerful greenhouse gas, with approximately 34 times the global warming potential of carbon dioxide (CO2) over a century time horizon (IPCC, 2013). The strong sensitivity of methane emissions to environmental factors has led to concerns about potential positive feedbacks to climate change. Evaluation of the ability of the process-based land surface models of earth system models (ESMs) in simulating CH4 emission over peatland is needed for more precise future predictions. In this study, two peatland sites of poor and rich soil nutrient conditions, in southern and northern Finland respectively, are adopted. The measured CH4 fluxes at the two sites are used to evaluate the CH4 emissions simulated by the land surface model (JULES) of the UK Earth System model and by the Helsinki peatland methane emission model (HIMMELI), which is developed at Finnish Meteorological Institute and Helsinki University. In JULES, CH4 flux is simply related to soil temperature, wetland fraction and effective substrate availability. However, HIMMELI has detailed descriptions of microbial and transport processes for simulating CH4 flux. The seasonal dynamics of CH4 fluxes at the two sites are relatively well captured by both models, but model biases exist. Simulated CH4 flux is sensitive to water table depth (WTD) at both models. However, the simulated WTD is limited to be below ground in JULES. It is also important to have the annual cycle of LAI correct when coupling JULES with HIMMELI.

  1. Performance of the JULES land surface model for UK Biogenic VOC emissions

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; Comyn-Platt, Edward; Vieno, Massimo; Langford, Ben

    2017-04-01

    Emissions of biogenic non-methane volatile organic compounds (NMVOCs) are important for air quality and tropospheric composition. Through their contribution to the production of tropospheric ozone and secondary organic aerosol (SOA), biogenic VOCs indirectly contribute to climate forcing and climate feedbacks [1]. Biogenic VOCs encompass a wide range of compounds and are produced by plants for growth, development, reproduction, defence and communication [2]. There are both biological and physico-chemical controls on emissions [3]. Only a few of the many biogenic VOCs are of wider interest and only two or three (isoprene and the monoterpenes, α- and β-pinene) are represented in chemical transport models. We use the Joint UK Land Environment Simulator (JULES), the UK community land surface model, to estimate biogenic VOC emission fluxes. JULES is a process-based model that describes the water, energy and carbon balances and includes temperature, moisture and carbon stores [4, 5]. JULES currently provides emission fluxes of the 4 largest groups of biogenic VOCs: isoprene, terpenes, methanol and acetone. The JULES isoprene scheme uses gross primary productivity (GPP), leaf internal carbon and the leaf temperature as a proxy for the electron requirement for isoprene synthesis [6]. In this study, we compare JULES biogenic VOC emission estimates of isoprene and terepenes with (a) flux measurements made at selected sites in the UK and Europe and (b) gridded estimates for the UK from the EMEP/EMEP4UK atmospheric chemical transport model [7, 8], using site-specific or EMEP4UK driving meteorological data, respectively. We compare the UK-scale emission estimates with literature estimates. We generally find good agreement in the comparisons but the estimates are sensitive to the choice of the base or reference emission potentials. References (1) Unger, 2014: Geophys. Res. Lett., 41, 8563, doi:10.1002/2014GL061616; (2) Laothawornkitkul et al., 2009: New Phytol., 183, 27, doi:10.1111/j.1469-8137.2009.02859.x; (3) Grote and Niinemets, 2008: Plant Biol., 10, 8, doi:10.1055/s-2007-964975; (4) Best et al., 2011: Geosci. Model Dev., 4, 677, doi:10.5194/gmd-4-677-2011; (5) Clark et al., 2011: Geosci. Model Dev., 4, 701, doi:10.5194/gmd-4-701-2011; (6) Pacifico et al., 2011: Atmos. Chem. Phys., 11, 4371, doi:10.5194/acp-11-4371-2011; [7] Simpson et al., 2012: Atmos. Chem. Phys., 12, 7825, doi: 10.5194/acp-12-7825-2012; [8] Vieno et al., 2016: Atmos. Chem. Phys., 16, 265, doi: 10.5194/acp-16-265-2016.

  2. Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information

    NASA Astrophysics Data System (ADS)

    Harper, Anna B.; Cox, Peter M.; Friedlingstein, Pierre; Wiltshire, Andy J.; Jones, Chris D.; Sitch, Stephen; Mercado, Lina M.; Groenendijk, Margriet; Robertson, Eddy; Kattge, Jens; Bönisch, Gerhard; Atkin, Owen K.; Bahn, Michael; Cornelissen, Johannes; Niinemets, Ülo; Onipchenko, Vladimir; Peñuelas, Josep; Poorter, Lourens; Reich, Peter B.; Soudzilovskaia, Nadjeda A.; van Bodegom, Peter

    2016-07-01

    Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle-climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area.Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes - the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year-1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.

  3. Representation of Dissolved Organic Carbon in the JULES Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Nakhavali, Mahdi; Friedlingstein, Pierre; Guenet, Bertrand; Ciais, Philip

    2017-04-01

    Current global models of the carbon cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, hence not considering lateral transport of carbon from the continent to the oceans. This also means that such models implicitly consider that all the CO2 which is not respired to the atmosphere is stored on land, hence overestimating the land sink of carbon. Moving toward a boundless carbon cycle that is integrating the whole continuum from land to ocean to atmosphere is needed in order to better understand Earth's carbon cycle and to make more reliable projection of its future. Here we present an original representation of Dissolved Organic Carbon (DOC) processes in the Joint UK Land Environment Simulator (JULES). The standard version of JULES represent energy, water and carbon cycles and exchanges with the atmosphere, but only account for water run-off, not including export of carbon from terrestrial ecosystems to the aquatic environments. The aim of the project is to include in JULES a representation of DOC production in terrestrial soils, due to incomplete decomposition of organic matter, its decomposition to the atmosphere, and its export to the river network by leaching. In new developed version of JULES (JULES-DOCM), DOC pools, based on their decomposition rate, are classified into labile and recalcitrant within 3 meters of soil. Based on turnover rate, DOC coming from plant material pools and microbial biomass is directed to labile pool, while DOC from humus is directed to recalcitrant pool. Both of these pools have free (dissolved) and locked (adsorbed) form where just the free pool is subjected to decomposition and leaching. DOC production and decomposition are controlled by rate modifiers (moisture, temperature, vegetation fraction and decomposition rate) at each soil layer. Decomposed DOC is released to the atmosphere following a fixed carbon use efficiency. Leaching accounts for both surface (runoff) and subsurface (groundwater) components and is parameterized as Top soil leaching (from top 20cm) and Bottom soil leaching (down to 3 meters) depending on DOC concentration and runoff leaving that layer. The model parameters are calibrated against specific sites (Brasschaat, Hainich and Carlow) for which observations of DOC concentration and leaching are available. Tuning is performed optimizing parameters such as DOC labile and recalcitrant resident time, DOC vertical distribution and CUE. Once this calibration has been performed at the site level, the model is used for global simulations with the major historical forcing (climate, atmospheric CO2 and land-use changes) in order to estimate the changes of DOC export and their attribution to anthropogenic activities.

  4. Revising Hydrology of a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya; Butler, Adrian; McIntyre, Neil; Jackson, Christopher

    2015-04-01

    Land Surface Models (LSMs) are key elements in guiding adaptation to the changing water cycle and the starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, before this potential is realised, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. An important limitation is the simplistic or non-existent representation of the deep subsurface in LSMs; and another is the lack of connection of LSM parameterisations to relevant hydrological information. In this context, the paper uses a case study of the JULES (Joint UK Land Environmental Simulator) LSM applied to the Kennet region in Southern England. The paper explores the assumptions behind JULES hydrology, adapts the model structure and optimises the coupling with the ZOOMQ3D regional groundwater model. The analysis illustrates how three types of information can be used to improve the model's hydrology: a) observations, b) regionalized information, and c) information from an independent physics-based model. It is found that: 1) coupling to the groundwater model allows realistic simulation of streamflows; 2) a simple dynamic lower boundary improves upon JULES' stationary unit gradient condition; 3) a 1D vertical flow in the unsaturated zone is sufficient; however there is benefit in introducing a simple dual soil moisture retention curve; 4) regionalized information can be used to describe soil spatial heterogeneity. It is concluded that relatively simple refinements to the hydrology of JULES and its parameterisation method can provide a substantial step forward in realising its potential as a high-resolution multi-purpose model.

  5. Volkov prepares for the undocking of the ESA Jules Verne ATV during Expedition 17

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015230 (5 Sept. 2008) --- Russian Federal Space Agency cosmonaut Sergei Volkov, Expedition 17 commander, makes preparations in the International Space Station's Zvezda Service Module for the undocking of the European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV). The ATV departed from the aft port of Zvezda at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  6. Volkov and Kononenko prepare for the undocking of the ESA Jules Verne ATV during Expedition 17

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015234 (5 Sept. 2008) --- Russian Federal Space Agency cosmonauts Sergei Volkov (left) and Oleg Kononenko, Expedition 17 commander and flight engineer, respectively, make preparations in the International Space Station's Zvezda Service Module for the undocking of the European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV). The ATV departed from the aft port of Zvezda at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  7. Volkov and Kononenko prepare for the undocking of the ESA Jules Verne ATV during Expedition 17

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015229 (5 Sept. 2008) --- Russian Federal Space Agency cosmonauts Sergei Volkov (left) and Oleg Kononenko, Expedition 17 commander and flight engineer, respectively, make preparations in the International Space Station's Zvezda Service Module for the undocking of the European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV). The ATV departed from the aft port of Zvezda at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  8. Juling and Kupalo Craters

    NASA Image and Video Library

    2017-08-17

    This region on Ceres, located in the vicinity of Toharu Crater, presents two small craters: Juling at top (12 miles, 20 kilometers in diameter) and Kupalo at bottom (16 miles, 26 kilometers in diameter). Both craters are relatively young, as indicated by their sharp rims. These features are located at about the same latitude (about 38 degrees south) as Tawals Crater and show similar crater shapes and rugged terrain. These features may reflect the presence of ice below the surface. Subtle bright features can be distinguished in places. These likely were excavated by small impacts and landslides along the slopes of the crater rims. This suggests that a different type of material, likely rich in salts, is present in the shallow subsurface. Juling is named after the Sakai/Orang Asli spirit of the crops from Malaysia, and Kupalo gets its name from the Russian god of vegetation and of the harvest. NASA's Dawn spacecraft acquired this picture on August 24, 2016. The image was taken during Dawn's extended mission, from its low altitude mapping orbit at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 38 degrees south latitude, 165 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21753

  9. Juling Crater

    NASA Image and Video Library

    2017-08-25

    This high-resolution image of Juling Crater on Ceres reveals, in exquisite detail, features on the rims and crater floor. The crater is about 1.6 miles (2.5 kilometers) deep and the small mountain, seen left of the center of the crater, is about 0.6 miles (1 kilometers) high. The many features indicative of the flow of material suggest the subsurface is rich in ice. The geological structure of this region also generally suggests that ice is involved. The origin of the small depression seen at the top of the mountain is not fully understood but might have formed as a consequence of a landslide, visible on the northeastern flank. Dawn took this image during its extended mission on August 25, 2016, from its low-altitude mapping orbit at a distance of about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 36 degrees south latitude, 167 degrees east longitude. Juling is named after the Sakai/Orang Asli spirit of the crops from Malaysia. NASA's Dawn spacecraft acquired this picture on August 24, 2016. The image was taken during Dawn's extended mission, from its low altitude mapping orbit at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 38 degrees south latitude, 165 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21754

  10. Jules Verne Voyager, Jr: An Interactive Map Tool for Teaching Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Meertens, C. M.

    2010-12-01

    We present an interactive, web-based map utility that can make new geological and geophysical results accessible to a large number and variety of users. The tool provides a user-friendly interface that allows users to access a variety of maps, satellite images, and geophysical data at a range of spatial scales. The map tool, dubbed 'Jules Verne Voyager, Jr.', allows users to interactively create maps of a variety of study areas around the world. The utility was developed in collaboration with the UNAVCO Consortium for study of global-scale tectonic processes. Users can choose from a variety of base maps (including "Face of the Earth" and "Earth at Night" satellite imagery mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others), add a number of geographic and geophysical overlays (coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, etc.), and then superimpose both observed and model velocity vectors representing a compilation of 2933 GPS geodetic measurements from around the world. A remarkable characteristic of the geodetic compilation is that users can select from some 21 plates' frames of reference, allowing a visual representation of both 'absolute' plate motion (in a no-net rotation reference frame) and relative motion along all of the world's plate boundaries. The tool allows users to zoom among at least three map scales. The map tool can be viewed at http://jules.unavco.org/VoyagerJr/Earth. A more detailed version of the map utility, developed in conjunction with the EarthScope initiative, focuses on North America geodynamics, and provides more detailed geophysical and geographic information for the United States, Canada, and Mexico. The ‘EarthScope Voyager’ can be accessed at http://jules.unavco.org/VoyagerJr/EarthScope. Because the system uses pre-constructed gif images and overlays, the system can rapidly create and display maps to a large number of users simultaneously and does not require any special software installation on users' systems. In addition, a javascript-based educational interface, dubbed "Exploring our Dynamic Planet", incorporates the map tool, explanatory material, background scientific material, and curricular activities that encourage users to explore Earth processes using the Jules Verne Voyager, Jr. tool. Exploring our Dynamic Planet can be viewed at http://www.dpc.ucar.edu/VoyagerJr/. Because of its flexibility, the map utilities can be used for hands-on exercises exploring plate interaction in a range of academic settings, from high school science classes to entry-level undergraduate to graduate-level tectonics courses.

  11. Early Rockets

    NASA Image and Video Library

    2004-04-15

    Jules Verne published his first science fiction novel in 1865 called "From the Earth to the Moon." As shown here in an illustration, passengers in Verne's space ship enjoy their first taste of weightlessness.

  12. ARC-1979-AC79-9114-70

    NASA Image and Video Library

    1979-08-02

    Jules Bergman, ABC Science Newscaster stands by a NASA Ames press room for the continuing information being returned by the Pioneer spacecraft during it's encounter with the planet Saturn and it's rings.

  13. Testing the Joint UK Land Environment Simulator (JULES) for flood forecasting

    NASA Astrophysics Data System (ADS)

    Batelis, Stamatios-Christos; Rosolem, Rafael; Han, Dawei; Rahman, Mostaquimur

    2017-04-01

    Land Surface Models (LSM) are based on physics principles and simulate the exchanges of energy, water and biogeochemical cycles between the land surface and lower atmosphere. Such models are typically applied for climate studies or effects of land use changes but as the resolution of LSMs and supporting observations are continuously increasing, its representation of hydrological processes need to be addressed adequately. For example, changes in climate and land use can alter the hydrology of a region, for instance, by altering its flooding regime. LSMs can be a powerful tool because of their ability to spatially represent a region with much finer resolution. However, despite such advantages, its performance has not been extensively assessed for flood forecasting simply because its representation of typical hydrological processes, such as overland flow and river routing, are still either ignored or roughly represented. In this study, we initially test the Joint UK Land Environment Simulator (JULES) as a flood forecast tool focusing on its river routing scheme. In particular, JULES river routing parameterization is based on the Rapid Flow Model (RFM) which relies on six prescribed parameters (two surface and two subsurface wave celerities, and two return flow fractions). Although this routing scheme is simple, the prescription of its six default parameters is still too generalized. Our aim is to understand the importance of each RFM parameter in a series of JULES simulations at a number of catchments in the UK for the 2006-2015 period. This is carried out, for instance, by making a number of assumptions of parameter behaviour (e.g., spatially uniform versus varying and/or temporally constant or time-varying parameters within each catchment). Hourly rainfall radar in combination with the CHESS (Climate, Hydrological and Ecological research Support System) meteorological daily data both at 1 km2 resolution are used. The evaluation of the model is based on hourly runoff data provided by the National River Flood Archive using a number of model performance metrics. We use a calibrated conceptually-based lumped model, more typically applied in flood studies, as a benchmark for our analysis.

  14. Land-use change may exacerbate climate change impacts on water resources in the Ganges basin

    NASA Astrophysics Data System (ADS)

    Tsarouchi, Gina; Buytaert, Wouter

    2018-02-01

    Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000-2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000-2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030-2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of climate change and land-use change from a water demand perspective. We conclude that future water demands in the Upper Ganges region for winter months may not be met.

  15. Dawn LAMO Image 55

    NASA Image and Video Library

    2016-03-29

    This view from NASA Dawn spacecraft shows an area in mid-southern latitudes on Ceres. The crater named Juling 12 miles, 20 kilometers wide is seen at lower right. Bright material is visible along its upper walls.

  16. Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM)

    NASA Astrophysics Data System (ADS)

    Nakhavali, Mahdi; Friedlingstein, Pierre; Lauerwald, Ronny; Tang, Jing; Chadburn, Sarah; Camino-Serrano, Marta; Guenet, Bertrand; Harper, Anna; Walmsley, David; Peichl, Matthias; Gielen, Bert

    2018-02-01

    Current global models of the carbon (C) cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, thus not considering the lateral transport of carbon from the continents to the oceans. Therefore, those models implicitly consider all of the C which is not respired to the atmosphere to be stored on land and hence overestimate the land C sink capability. A model that represents the whole continuum from atmosphere to land and into the ocean would provide a better understanding of the Earth's C cycle and hence more reliable historical or future projections. A first and critical step in that direction is to include processes representing the production and export of dissolved organic carbon in soils. Here we present an original representation of dissolved organic C (DOC) processes in the Joint UK Land Environment Simulator (JULES-DOCM) that integrates a representation of DOC production in terrestrial ecosystems based on the incomplete decomposition of organic matter, DOC decomposition within the soil column, and DOC export to the river network via leaching. The model performance is evaluated in five specific sites for which observations of soil DOC concentration are available. Results show that the model is able to reproduce the DOC concentration and controlling processes, including leaching to the riverine system, which is fundamental for integrating terrestrial and aquatic ecosystems. Future work should include the fate of exported DOC in the river system as well as DIC and POC export from soil.

  17. A novel representation of chalk hydrology in a land surface model

    NASA Astrophysics Data System (ADS)

    Rahman, Mostaquimur; Rosolem, Rafael

    2016-04-01

    Unconfined chalk aquifers contain a significant portion of water in the United Kingdom. In order to optimize the assessment and management practices of water resources in the region, modelling and monitoring of soil moisture in the unsaturated zone of the chalk aquifers are of utmost importance. However, efficient simulation of soil moisture in such aquifers is difficult mainly due to the fractured nature of chalk, which creates high-velocity preferential flow paths in the unsaturated zone. In this study, the Joint UK Land Environment Simulator (JULES) is applied on a study area encompassing the Kennet catchment in Southern England. The fluxes and states of the coupled water and energy cycles are simulated for 10 consecutive years (2001-2010). We hypothesize that explicit representation for the soil-chalk layers and the inclusion of preferential flow in the fractured chalk aquifers improves the reproduction of the hydrological processes in JULES. In order to test this hypothesis, we propose a new parametrization for preferential flow in JULES. This parametrization explicitly describes the flow of water in soil matrices and preferential flow paths using a simplified approach which can be beneficial for large-scale hydrometeorological applications. We also define the overlaying soil properties obtained from the Harmonized World Soil Database (HWSD) in the model. Our simulation results are compared across spatial scales with measured soil moisture and river discharge, indicating the importance of accounting for the physical properties of the medium while simulating hydrological processes in the chalk aquifers.

  18. Dawn LAMO Image 32

    NASA Image and Video Library

    2016-02-23

    This image of Ceres from NASA Dawn spacecraft was taken at an oblique viewing angle relative to the surface. The crater to the upper right is named Juling which displays prominent spurs of compacted material along its walls.

  19. In Jules Verne's Footsteps: Seismology in the source

    NASA Astrophysics Data System (ADS)

    Ellsworth, Bill; Ito, Hisao; Malin, Peter; Abercrombie, Rachel

    When Professor Otto Lidenbrock led his little band to the center of the Earth in Jules Verne's 1864 classic novel, the intrepid adventurers needed little more than practical 19th century clothes to provide them with comfort and protection. How different the science of earthquakes would be if conditions in the Earth were really so friendly to the would-be observer. Even the operation of seismic sensors at the relatively modest depth of 2-3 km, roughly the depth of the shallowest crustal earthquakes, requires careful precautions against the effects of unstable materials, temperature, pressure, and water for successful long-term observations to be made. Indeed, the handful of successful deep borehole experiments that have been conducted to date have depended on simple sensors with limited bandwidth and dynamic range, and have yielded data that were not ideally suited to investigating the details of the earthquake source.

  20. Incorporating JULES into NASA's Land Information System (LIS) and Investigations of Land-Atmosphere Coupling

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph

    2011-01-01

    NASA's Land Information System (LIS; lis.gsfc.nasa.gov) is a flexible land surface modeling and data assimilation framework developed over the past decade with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. LIS features a high performance and flexible design, and operates on an ensemble of land surface models for extension over user-specified regional or global domains. The extensible interfaces of LIS allow the incorporation of new domains, land surface models (LSMs), land surface parameters, meteorological inputs, data assimilation and optimization algorithms. In addition, LIS has also been demonstrated for parameter estimation and uncertainty estimation, and has been coupled to the Weather Research and Forecasting (WRF) mesoscale model. A visiting fellowship is currently underway to implement JULES into LIS and to undertake some fundamental science on the feedbacks between the land surface and the atmosphere. An overview of the LIS system, features, and sample results will be presented in an effort to engage the community in the potential advantages of LIS-JULES for a range of applications. Ongoing efforts to develop a framework for diagnosing land-atmosphere coupling will also be presented using the suite of LSM and PBL schemes available in LIS and WRF along with observations from the U. S .. Southern Great Plains. This methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.

  1. Calculation to experiment comparison of SPND signals in various nuclear reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbot, Loic; Radulovic, Vladimir; Fourmentel, Damien

    2015-07-01

    In the perspective of irradiation experiments in the future Jules Horowitz Reactor (JHR), the Instrumentation Sensors and Dosimetry Laboratory of CEA Cadarache (France) is developing a numerical tool for SPND design, simulation and operation. In the frame of the SPND numerical tool qualification, dedicated experiments have been performed both in the Slovenian TRIGA Mark II reactor (JSI) and very recently in the French CEA Saclay OSIRIS reactor, as well as a test of two detectors in the core of the Polish MARIA reactor (NCBJ). A full description of experimental set-ups and neutron-gamma calculations schemes are provided in the first partmore » of the paper. Calculation to experiment comparison of the various SPNDs in the different reactors is thoroughly described and discussed in the second part. Presented comparisons show promising final results. (authors)« less

  2. Exposure / Ritual Prevention Therapy Boosts Antidepressant Treatment of OCD

    MedlinePlus

    ... 24026506 Grants: MH045436 , MH45404 . Clinical Trial: 00389493 Share Contact(s) Jules Asher NIMH Press Office 301-443-4536 ... More Science News about Obsessive-Compulsive Disorder (OCD) Contact the Press Office 301-443-4536 NIMHpress@nih. ...

  3. 21. INTERIOR, DETAIL VIEW OF PARLOR, FIRST FLOOR, SOUTH ROOM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. INTERIOR, DETAIL VIEW OF PARLOR, FIRST FLOOR, SOUTH ROOM, NORTHWEST CORNER SHOWING PANELED WALLS AND PAINTING OVER DOORWAY (PAINTED BY FORMER RESIDENT, JULES DIEUDONNE) - Bostwick Hall, 3901 Forty-eighth Street, Bladensburg, Prince George's County, MD

  4. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    PubMed Central

    Fraser, Tricia; Brown, Paul D.

    2017-01-01

    Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC) were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere) and ligB and mce (for Jules) were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size) and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and/or duration were factors which acted in isolation or together with other regulatory cues to contribute to the variable gene expression observed in this study. Overall, differential gene expression in serovar Portlandvere was more responsive to temperature and oxidative stress. PMID:28536558

  5. 76 FR 1402 - Notice of allocation of Tariff Rate Quotas (TRQ) on the Import of Certain Worsted Wool Fabrics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Receiving Allocation Adrian Jules LTD--Rochester, NY, HMX, LLC-- New York, NY, Hugo Boss Cleveland, Inc... York, NY, HMX, LLC--New York, NY, Hugo Boss Cleveland, Inc.--Brooklyn, OH, JA Apparel Corp.--New York...

  6. [The amazing career of a homeopath, philanthropist, Fourierist, Benoît-Jules Mure. (1809-1858)].

    PubMed

    Ségal, Alain; Trépardoux, Francis

    2005-01-01

    The authors evoke the difficulty of dealing with the life and work of Benoît-Jules Mure who was a homeopathic scientist and a keen specialist on propaganda. He was also an adept of Charles Fourier and he used almost his fortune to the spreading of homeopathy and at time, the improvement of social life. Thus he tried to settle humanitarian colonies in Brazil and later in Egypt, Nubian and Sudan in order to improve their fashion of life. He was hit by tuberculosis which led him discover homeopathy and by his strength of character lie led the idea of his mission in favour of his convictions. He was very angry with the official medical organisation and at last he never has been recognized as a médical doctor. The authors underline that his life and his work have probably left some definite marks in the South America let alone the birth of Socialism.

  7. Radiation Transport Calculation of the UGXR Collimators for the Jules Horowitz Reactor (JHR)

    NASA Astrophysics Data System (ADS)

    Chento, Yelko; Hueso, César; Zamora, Imanol; Fabbri, Marco; Fuente, Cristina De La; Larringan, Asier

    2017-09-01

    Jules Horowitz Reactor (JHR), a major infrastructure of European interest in the fission domain, will be built and operated in the framework of an international cooperation, including the development and qualification of materials and nuclear fuel used in nuclear industry. For this purpose UGXR Collimators, two multi slit gamma and X-ray collimation mechatronic systems, will be installed at the JHR pool and at the Irradiated Components Storage pool. Expected amounts of radiation produced by the spent fuel and X-ray accelerator implies diverse aspects need to be verified to ensure adequate radiological zoning and personnel radiation protection. A computational methodology was devised to validate the Collimators design by means of coupling different engineering codes. In summary, several assessments were performed by means of MCNP5v1.60 to fulfil all the radiological requirements in Nominal scenario (TEDE < 25µSv/h) and in Maintenance scenario (TEDE < 2mSv/h) among others, detailing the methodology, hypotheses and assumptions employed.

  8. Neutronics qualification of the Jules Horowitz reactor fuel by interpretation of the VALMONT experimental program - Transposition of the uncertainties on the reactivity of JHR with JEF2.2 and JEFF3.1.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leray, O.; Hudelot, J. P.; Antony, M.

    2011-07-01

    The new European material testing Jules Horowitz Reactor (JHR), currently under construction in Cadarache center (CEA France), will use LEU (20% enrichment in {sup 235}U) fuels (U{sub 3}Si{sub 2} for the start up and UMoAl in the future) which are quite different from the industrial oxide fuel, for which an extensive neutronics qualification database has been established. The HORUS3D/N neutronics calculation scheme, used for the design and safety studies of the JHR, is being developed within the framework of a rigorous verification-validation-qualification methodology. In this framework, the experimental VALMONT (Validation of Aluminium Molybdenum uranium fuel for Neutronics) program has beenmore » performed in the MINERVE facility of CEA Cadarache (France), in order to qualify the capability of HORUS3D/N to accurately calculate the reactivity of the JHR reactor. The MINERVE facility using the oscillation technique provides accurate measurements of reactivity effect of samples. The VALMONT program includes oscillations of samples of UAl{sub x}/Al and UMo/Al with enrichments ranging from 0.2% to 20% and Uranium densities from 2.2 to 8 g/cm{sup 3}. The geometry of the samples and the pitch of the experimental lattice ensure maximum representativeness with the neutron spectrum expected for JHR. By comparing the effect of the sample with the one of a known fuel specimen, the reactivity effect can be measured in absolute terms and be compared to computational results. Special attention was paid to the rigorous determination and reduction of the experimental uncertainties. The calculational analysis of the VALMONT results was performed with the French deterministic code APOLLO2. A comparison of the impact of the different calculation methods, data libraries and energy meshes that were tested is presented. The interpretation of the VALMONT experimental program allowed the qualification of JHR fuel UMoAl8 (with an enrichment of 19.75% {sup 235}U) by the Minerve-dedicated interpretation tool: PIMS. The effect of energy meshes and evaluations put forward the JEFF3.1.1/SHEM scheme that leads to a better calculation of the reactivity effect of VALMONT samples. Then, in order to quantify the impact of the uncertainties linked to the basic nuclear data, their propagation from the cross section measurement to the final computational result was analysed in a rigorous way by using a nuclear data re-estimation method based on Gauss-Newton iterations. This study concludes that the prior uncertainties due to nuclear data (uranium, aluminium, beryllium and water) on the reactivity of the Begin Of Cycle (BOC) for the JHR core reach 1217 pcm at 2{sigma}. Now, the uppermost uncertainty on the JHR reactivity is due to aluminium. (authors)« less

  9. Cats on the Couch: The Experimental Production of Animal Neurosis.

    PubMed

    Winter, Alison

    2016-03-01

    Argument In the 1940s-50s, one of the most central questions in psychological research related to the nature of neurosis. In the final years of the Second World War and the following decade, neurosis became one of the most prominent psychiatric disorders, afflicting a high proportion of military casualties and veterans. The condition became central to the concerns of several psychological fields, from psychoanalysis to Pavlovian psychology. This paper reconstructs the efforts of Chicago psychiatrist Jules Masserman to study neurosis in the laboratory during the 1940s and 1950s. Masserman used Pavlovian techniques in a bid to subject this central psychoanalytic subject to disciplined scientific experimentation. More generally, his project was an effort to bolster the legitimacy of psychoanalysis as a human science by articulating a convergence of psychoanalytic categories across multiple species. Masserman sought to orchestrate a convergence of psychological knowledge between fields that were often taken to be irreconcilable. A central focus of this paper is the role of moving images in this project, not only as a means of recording experimental data but also as a rhetorical device. The paper argues that for Masserman film played an important role in enabling scientific observers (and then subsequent viewers) to see agency and emotion in the animals they observed.

  10. Volkov and Kononenko in the ATV during Expedition 17

    NASA Image and Video Library

    2008-05-12

    ISS017-E-006544 (12 May 2008) --- Russian Federal Space Agency cosmonauts Sergei Volkov (left), Expedition 17 commander, and Oleg Kononenko, flight engineer, take a moment for a photo in the Jules Verne Automated Transfer Vehicle (ATV) while it remains docked with the International Space Station.

  11. Volkov and Kononenko in the ATV during Expedition 17

    NASA Image and Video Library

    2008-05-12

    ISS017-E-006543 (12 May 2008) --- Russian Federal Space Agency cosmonauts Sergei Volkov (bottom), Expedition 17 commander, and Oleg Kononenko, flight engineer, take a moment for a photo in the Jules Verne Automated Transfer Vehicle (ATV) while it remains docked with the International Space Station.

  12. Why Our Nation Tolerates Risks to Children.

    ERIC Educational Resources Information Center

    Penning, Nick

    1991-01-01

    Contrasts children's well-being and family support services in the United States with superior programs in Germany and other industrialized countries. The American Association of School Administrators considers the Children's Investment Trust, authored by Head Start founding administrator Jule Sugarman, an absolute must for improving children's…

  13. New York area and worldwide: call-in radio program on HIV.

    PubMed

    1999-07-16

    Treatment activist Jules Levin, founder of the National AIDS Treatment Advocacy Group, has begun a weekly radio program called "Living Well with HIV". Listeners can call in with questions for experts featured on the show. Programs on hepatitis and AIDS have already been scheduled. Contact information is provided.

  14. Volkov and Kononenko with the stowage bags in the ATV during Expedition 17

    NASA Image and Video Library

    2008-05-12

    ISS017-E-006545 (12 May 2008) --- Russian Federal Space Agency cosmonauts Sergei Volkov (left), Expedition 17 commander, and Oleg Kononenko, flight engineer, work with stowage bags in the Jules Verne Automated Transfer Vehicle (ATV) while it remains docked with the International Space Station.

  15. ATV during Demonstration Day 2 Rendezvous Test

    NASA Image and Video Library

    2008-03-31

    ISS016-E-034177 (31 March 2008) --- Backdropped by the blackness of space, the Jules Verne Automated Transfer Vehicle (ATV) approaches the International Space Station on Monday, March 31, 2008, for its "Demo Day 2" practice maneuvers. It moved to within 36 feet of the Zvezda Service Module in a rehearsal for docking on Thursday.

  16. KSC-2012-4243

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Charles Bolden, NASA administrator, center, is shown the high bay at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida by NASA's Scott Wilson, left, and Lockheed Martin's Jules Schneider, right. Lockheed Martin is processing an Orion spacecraft that will make an uncrewed flight test in 2014. Photo credit: NASA/Kim Shifflett

  17. KSC-2012-4244

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Charles Bolden, NASA administrator, center, is shown the high bay at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida by NASA's Scott Wilson, left, and Lockheed Martin's Jules Schneider, foreground. Lockheed Martin is processing an Orion spacecraft that will make an uncrewed flight test in 2014. Photo credit: NASA/Kim Shifflett

  18. A Review of Publications on Testing for Parents and the Public. National Consortium on Testing Staff Circular No. 5.

    ERIC Educational Resources Information Center

    Haney, Walt

    Three do-it-yourself intelligence test handbooks, five mini-textbooks, and five consumer protection guides are reviewed. Each type of publication reflects different social ideologies and communicates favorable, cautiously neutral, or critical messages, respectively, about testing. Psychologists Jules Leopold, Martin Lutterjohan, and Victor…

  19. ATV during Demonstration Day 2 Rendezvous Test

    NASA Image and Video Library

    2008-03-31

    ISS016-E-034176 (31 March 2008) --- Backdropped by the blackness of space, the Jules Verne Automated Transfer Vehicle (ATV) approaches the International Space Station on Monday, March 31, 2008, for its "Demo Day 2" practice maneuvers. It moved to within 36 feet of the Zvezda Service Module in a rehearsal for docking on Thursday.

  20. Diagnosing hydrological limitations of a Land Surface Model: application of JULES to a deep-groundwater chalk basin

    NASA Astrophysics Data System (ADS)

    Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.

    2015-08-01

    Land Surface Models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution and spatial water redistribution over the catchment's groundwater and surface water systems. Three types of information are utilised to improve the model's hydrology: (a) observations, (b) information about expected response from regionalised data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.

  1. Diagnosing hydrological limitations of a land surface model: application of JULES to a deep-groundwater chalk basin

    NASA Astrophysics Data System (ADS)

    Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.

    2016-01-01

    Land surface models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy, and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation and improvement is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution, and spatial water redistribution over the catchment's groundwater and surface-water systems. Three types of information are utilized to improve the model's hydrology: (a) observations, (b) information about expected response from regionalized data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.

  2. Development of Forest Drought Index and Forest Water Use Prediction in Gyeonggi Province, Korea Using High-Resolution Weather Research and Forecast Data and Localized JULES Land Surface Model

    NASA Astrophysics Data System (ADS)

    Lee, H.; Park, J.; Cho, S.; Lee, S. J.; Kim, H. S.

    2017-12-01

    Forest determines the amount of water available to low land ecosystems, which use the rest of water after evapotranspiration by forests. Substantial increase of drought, especially for seasonal drought, has occurred in Korea due to climate change, recently. To cope with this increasing crisis, it is necessary to predict the water use of forest. In our study, forest water use in the Gyeonggi Province in Korea was estimated using high-resolution (spatial and temporal) meteorological forecast data and localized Joint UK Land Environment Simulator (JULES) which is one of the widely used land surface models. The modeled estimation was used for developing forest drought index. The localization of the model was conducted by 1) refining the existing two tree plant functional types (coniferous and deciduous trees) into five (Quercus spp., other deciduous tree spp., Pinus spp., Larix spp., and other coniferous spp.), 2) correcting moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) through data assimilation with in situ measured LAI, and 3) optimizing the unmeasured plant physiological parameters (e.g. leaf nitrogen contents, nitrogen distribution within canopy, light use efficiency) based on sensitivity analysis of model output values. The high-resolution (hourly and 810 × 810 m) National Center for AgroMeteorology-Land-Atmosphere Modeling Package (NCAM-LAMP) data were employed as meteorological input data in JULES. The plant functional types and soil texture of each grid cell in the same resolution with that of NCAM-LAMP was also used. The performance of the localized model in estimating forest water use was verified by comparison with the multi-year sapflow measurements and Eddy covariance data of Taehwa Mountain site. Our result can be used as referential information to estimate the forest water use change by the climate change. Moreover, the drought index can be used to foresee the drought condition and prepare to it.

  3. Reach for the Stars: Visions for Literacy Coaching Programs

    ERIC Educational Resources Information Center

    DeFord, Diane

    2012-01-01

    This brief by the Literacy Coaching Clearinghouse is about reaching for the stars--stories of vision and commitment from educators in small and large schools. Everyone knows of people who are held up as "visionaries" throughout history: Leonardo Da Vinci, Mahatma Gandhi, Jules Verne, Thomas Edison, Susan Anthony, or John Dewey, to name a few. The…

  4. Jules Verne's "Around the World in Eighty Days": Helping Teach the National Geography Standards

    ERIC Educational Resources Information Center

    Donaldson, Daniel P.; Kuhlke, Olaf

    2009-01-01

    Consistent with developments in American education pedagogy, geography educators have made great strides exploring a wide range of high- and low-tech methods for teaching and learning geographic concepts. This article draws on a qualitative analysis of essays in which college students discuss tenets of the National Geography Standards in the…

  5. "Does Broca's Area Exist?:" Christofredo Jakob's 1906 Response to Pierre Marie's Holistic Stance

    ERIC Educational Resources Information Center

    Tsapkini, Kyrana; Vivas, Ana B.; Triarhou, Lazaros C.

    2008-01-01

    In 1906, Pierre Marie triggered a heated controversy and an exchange of articles with Jules Dejerine over the localization of language functions in the human brain. The debate spread internationally. One of the timeliest responses, that appeared in print 1 month after Marie's paper, came from Christofredo Jakob, a Bavarian-born neuropathologist…

  6. KSC-2012-4247

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Lockheed Martin's Jules Schneider, right, shows details of the preparation hardware used for the Orion capsule to Charles Bolden, NASA administrator, center. The Orion capsule will make an uncrewed flight test in 2014. The spacecraft is in the high bay at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Kim Shifflett

  7. Lessons from Abroad--Developing Countries. Viewpoints: A Series of Occasional Papers on Basic Education. Issue No. 9.

    ERIC Educational Resources Information Center

    Adult Literacy and Basic Skills Unit, London (England).

    This document, one of a series of British occasional papers on basic education, investigates adult literacy practices in Africa, Asia, Latin America, and the Caribbean. The texts and their authors are "Building a National Movement: The Caribbean Experience" (Didacus Jules); "Literacy and Empowerment: A Definition for Literacy"…

  8. Invest in Children Today for a Work Force Tomorrow.

    ERIC Educational Resources Information Center

    Penning, Nick

    1989-01-01

    To confront the growing proportion of disadvantaged children amidst the shrinking pool of future workers, Jule Sugarman (Washington State Secretary of Social and Health Services) has proposed a Children's Trust to fund existing and new programs for children. The program would be funded by a .3 percent payroll tax for both employers and employees.…

  9. The Film. The Bobbs-Merrill Series in Composition and Rhetoric.

    ERIC Educational Resources Information Center

    Sarris, Andrew, Ed.

    Prefaced by a brief discussion of early films and film criticism, 10 essays treat selected modern directors and their works. Essays on Stanley Kubrick's "Lolita," the early works of Elia Kazan, and the response of French critics to Jerry Lewis explore the American scene, while Francois Truffaut's "Jules and Jim," the early work of Robert Bressen,…

  10. KSC-2012-4248

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Lockheed Martin's Jules Schneider, right, shows the upper portion of the Orion capsule to Charles Bolden, NASA administrator, center, as NASA's Scott Wilson looks on. The Orion capsule will make an uncrewed flight test in 2014. The spacecraft is in the high bay at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Kim Shifflett

  11. KSC-2012-4246

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – Lockheed Martin's Jules Schneider, right, shows the upper portion of the Orion capsule to Charles Bolden, NASA administrator, center, as NASA's Scott Wilson looks on. The Orion capsule will make an uncrewed flight test in 2014. The spacecraft is in the high bay at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Kim Shifflett

  12. ATV during Demonstration Day 2 Rendezvous Test

    NASA Image and Video Library

    2008-03-31

    ISS016-E-034191 (31 March 2008) --- Backdropped by the airglow of Earth's horizon and the blackness of space, the Jules Verne Automated Transfer Vehicle (ATV) approaches the International Space Station on Monday, March 31, 2008, for its "Demo Day 2" practice maneuvers. It moved to within 36 feet of the Zvezda Service Module in a rehearsal for docking on Thursday.

  13. Improving Reading Programs for Emotionally Handicapped Children. Proceedings Highlights of a Special Study Institute (Medina, New York, May 3-5, 1971).

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. for Handicapped Children.

    Six speeches given at an institute on reading programs for emotionally handicapped children are presented. Jules Abrams first examines the relationship of emotional and personality maladjustments to reading difficulty. Then Clifford Kolson advocates the promotion of informal reading and the proper diagnosis of a child's reading level. A discussion…

  14. Reading and the Emotionally Handicapped Child. Highlights of a Special Study Institute (Poughkeepsie, New York, October 5-7, 1970).

    ERIC Educational Resources Information Center

    Duchess County Board of Cooperative Educational Services, NY.

    The conference proceedings include seven papers dealing with reading problems of emotionally disturbed children. Emotional resistance to reading is discussed by Jules Abrams, a psychiatrist. The purposes of testing and the problem of labeling are touched upon by Clifford Kolson. Some practical suggestions of classroom techniques for combining a…

  15. What Is Steampunk, and Do I Want It in My Library?

    ERIC Educational Resources Information Center

    Rozmus, Emily

    2011-01-01

    What is steampunk? Most call it Victorian science fiction. Steampunk can claim such authors as H.G. Wells and Jules Verne as its earliest writers. These two Victorian/Edwardian era writers created steampunk settings in books such as "The Time Machine" and "Journey to the Center of the Earth". In the 1990s, writers such as William Gibson, Bruce…

  16. The role of history in teaching science — A case study

    NASA Astrophysics Data System (ADS)

    Hendrick, Robert M.

    1992-06-01

    One of the most interesting aspects of late-nineteenth-century France was the extraordinary interest the public expressed in science. Its adulation of Pasteur was only one of the many manifestations of this interest. It was also expressed in the widespread popularity of scientists as public figures and in the increasing public and private financial support of science. While popularity of science was created in the general public by fiction and by the various international ‘world fairs’ held in Paris, it was strongest and most important in the middle classes. This paper examines one of the key methods used to stimulate bourgeois interest in science in France during the Second Empire and early Third Republic (1852 1895): the campaign to create a science vulgarisée, a popularized science. While a number of different approaches used by these popularizers are examined, the article concentrates on the ‘science writings’ of Jules Michelet and Jules Verne, both of whom were immensely successful in creating a favorable climate of opinion for French science. The article concludes by suggesting how such an approach could be modernized and utilized in order to create greater scientific literacy and a similar acceptance by the public today.

  17. Jules Verne's Journey to the centre of the Earth: the secret of counterdepressive narratives.

    PubMed

    Sanchez-Cardenas, Michel

    2005-12-01

    The author interprets Jules Verne's Journey to the centre of the Earth with the help of Matte Blanco's theoretical framework, which describes the principle of symmetry and the principle of generalization. The first states that, from the moment an element or a proposition becomes conscious, it coexists in the unconscious with its symmetrically opposite form. The second refers to the confusion of elements once they have been apprehended by thought as containing a common point; they are put into larger and larger groups which merge into an indivisible whole. Verne's novel is built on paired elements which become symmetrized (e.g. distinct minerals vs molten lava; scientific rationality vs madness; the living vs the dead, etc.). These elements in turn become confused with one another, thanks largely to the novel's atmosphere of oral incorporation. This allows the fusion between subject and object, and, in particular, between the orphaned hero and his dead (Earth) mother. The novel's narrative evolution through three stages (separation, fusion and de-fusion, which are paralleled by rational, irrational and rational thought) can thus be understood as a mourning process. Similar processes can be found in other literary works.

  18. Love stories can be unpredictable: Jules et Jim in the vortex of life.

    PubMed

    Dercole, Fabio; Rinaldi, Sergio

    2014-06-01

    Love stories are dynamic processes that begin, develop, and often stay for a relatively long time in a stationary or fluctuating regime, before possibly fading. Although they are, undoubtedly, the most important dynamic process in our life, they have only recently been cast in the formal frame of dynamical systems theory. In particular, why it is so difficult to predict the evolution of sentimental relationships continues to be largely unexplained. A common reason for this is that love stories reflect the turbulence of the surrounding social environment. But we can also imagine that the interplay of the characters involved contributes to make the story unpredictable-that is, chaotic. In other words, we conjecture that sentimental chaos can have a relevant endogenous origin. To support this intriguing conjecture, we mimic a real and well-documented love story with a mathematical model in which the environment is kept constant, and show that the model is chaotic. The case we analyze is the triangle described in Jules et Jim, an autobiographic novel by Henri-Pierre Roché that became famous worldwide after the success of the homonymous film directed by François Truffaut.

  19. Exemples d’utilisation des techniques d’optimisation en calcul de structures de reacteurs

    DTIC Science & Technology

    2003-03-01

    34~ optimisation g~om~trique (architecture fig~e) A la difference du secteur automobile et des avionneurs, la plupart des composants des r~acteurs n...utilise des lois de comportement mat~riaux non lin~aires ainsi que des hypotheses de grands d~placements. L𔄀tude d’optimisation consiste ý minimiser...un disque simple et d~cid6 de s~lectionner trois param~tes qui influent sur la rupture : 1𔄀paisseur de la toile du disque ElI, la hauteur L3 et la

  20. ARC-2008-ACD08-0218-003

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  1. Controlling Cancer: Choices for a Healthy Life. Hearing before the Select Committee on Aging. House of Representatives, Ninety-Ninth Congress, First Session (Cranston, RI).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Select Committee on Aging.

    This paper contains testimony and prepared statements from the Congressional hearing called to examine ways of controlling cancer. Opening statements are included from Representatives Claudine Schneider, Jim Lightfoot, and Ben Blaz. Testimonies are given by Rosemarie Lindgren, a homemaker and former cancer patient, and by Jules Cardin, a patient…

  2. ARC-2008-ACD08-0218-008

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  3. ARC-2008-ACD08-0218-009

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  4. Installing the new PCE (Proximity Communications Equipment) hardware

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09799 (27 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, works with the new Proximity Communications Equipment (PCE) hardware of the ASN-M satellite navigation system for the European Automated Transfer Vehicle (ATV) “Jules Verne” in the Zvezda Service Module of the International Space Station. The ATV is scheduled to arrive at the Station next year.

  5. ARC-2008-ACD08-0218-001

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  6. ARC-2008-ACD08-0218-010

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  7. Academic Achievement, Pupil Participation and Integration of Group Work Skills in Secondary School Classrooms in Trinidad and Barbados

    ERIC Educational Resources Information Center

    Layne, Anthony; Jules, Vena; Kutnick, Peter; Layne, Clarissa

    2008-01-01

    Studies have shown a positive relationship between a rise in schooling levels and economic production [World Bank, 2005. A Time to Choose: Caribbean Development in the 21st Century. World Bank, Washington, DC; Jules, V., Panneflek, A., 2000. EFA in the Caribbean: Assessment 2000, Sub-Regional Report, vol. 2, The State of Education in the Caribbean…

  8. A motor-driven syringe-type gradient maker for forming immobilized pH gradient gels.

    PubMed

    Fawcett, J S; Sullivan, J V; Chidakel, B E; Chrambach, A

    1988-05-01

    A motor driven gradient maker based on the commercial model (Jule Inc., Trumbull, CT) was designed for immobilized pH gradient gels to provide small volumes, rapid stirring and delivery, strict volume and temperature control and air exclusion. The device was constructed and by a convenient procedure yields highly reproducible gradients either in solution or on polyacrylamide gels.

  9. ARC-2008-ACD08-0218-005

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  10. ARC-2008-ACD08-0218-012

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  11. ARC-2008-ACD08-0218-006

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  12. ARC-2008-ACD08-0218-007

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  13. ARC-2008-ACD08-0218-004

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  14. ARC-2008-ACD08-0218-011

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  15. ARC-2008-ACD08-0218-002

    NASA Image and Video Library

    2008-09-30

    European Space Agency's 'Jules Verne' Automated Transfer Vehicle ATV-1 re-entry in Earth's atmosphere over Pacific Ocean. The breakup ad fragmentation of the ESA's ATV-1 was captured in dramatic fashion by scientists aboard NASA's DC-8 airborne laboratory and a Gulfstream V aircraft as it re-entered the atmosphere early Monday morning over the South Pacific. Photo Credit: NASA Ames Research Center/ESA/Jesse Carpenter/Bill Moede

  16. Further evaluation of wetland emission estimates from the JULES land surface model using SCIAMACHY and GOSAT atmospheric column methane measurements

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; Comyn-Platt, Edward; McNorton, Joey; Chipperfield, Martyn; Gedney, Nicola

    2016-04-01

    The atmospheric concentration of methane began rising again in 2007 after a period of near-zero growth [1,2], with the largest increases observed over polar northern latitudes and the Southern Hemisphere in 2007 and in the tropics since then. The observed inter-annual variability in atmospheric methane concentrations and the associated changes in growth rates have variously been attributed to changes in different methane sources and sinks [2,3]. Wetlands are generally accepted as being the largest, but least well quantified, single natural source of CH4, with global emission estimates ranging from 142-284 Tg yr-1 [3]. The modelling of wetlands and their associated emissions of CH4 has become the subject of much current interest [4]. We have previously used the HadGEM2 chemistry-climate model to evaluate the wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator) against atmospheric observations of methane, including SCIAMACHY total methane columns [5] up to 2007. We have undertaken a series of new HadGEM2 runs using new JULES emission estimates extended in time to the end of 2012, thereby allowing comparison with both SCIAMACHY and GOSAT atmospheric column methane measurements. We will describe the results of these runs and the implications for methane wetland emissions. References [1] Rigby, M., et al.: Renewed growth of atmospheric methane. Geophys. Res. Lett., 35, L22805, 2008; [2] Nisbet, E.G., et al.: Methane on the Rise-Again, Science 343, 493, 2014; [3] Kirschke, S., et al.,: Three decades of global methane sources and sinks, Nature Geosciences, 6, 813-823, 2013; [4] Melton, J. R., et al.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753-788, 2013; [5] Hayman, G.D., et al.: Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data, Atmos. Chem. Phys., 14, 13257-13280, 2014.

  17. Levain et Levier: Le partenariat en educatoin, les nouvelles dynamiques educatives et societales (Leaven and Lever: The Partnership in Education, the New Educational and Societal Dynamics).

    ERIC Educational Resources Information Center

    Tschoumy, Jacques-Andre

    This document examines the trend of school partnership both inside and outside the educational system. The report asks three questions: what is motivating European partners?; is the phenomenon of partnership really European?; and is this the end of the school of Jules Ferry? School partnership history, strategy, and axiomatics or rules are…

  18. Testing the newly installed PCE (Proximity Communications Equipment) hardware

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09816 (28 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, tests the newly installed Proximity Communications Equipment (PCE) hardware of the ASN-M satellite navigation system for the European Automated Transfer Vehicle (ATV) “Jules Verne” in the Zvezda Service Module of the International Space Station. The ATV is scheduled to arrive at the Station next year.

  19. Testing the newly installed PCE (Proximity Communications Equipment) hardware

    NASA Image and Video Library

    2005-06-28

    ISS011-E-09812 (28 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, tests the newly installed Proximity Communications Equipment (PCE) hardware of the ASN-M satellite navigation system for the European Automated Transfer Vehicle (ATV) “Jules Verne” in the Zvezda Service Module of the international space station. The ATV is scheduled to arrive at the station next year.

  20. Pioneers of high-speed photography and motion analysis

    NASA Astrophysics Data System (ADS)

    Haddleton, Graham P.

    2005-03-01

    In many ways this paper continues from the one presented at the 25th ICHSPP held in Beaune, France in 2002. That paper was on Etienne-Jules Marey, a true pioneer of high speed photographic techniques and cinematography, who was born in Beaune. Whilst researching for that paper the author became fascinated by the efforts and results of many pioneers in the field at the turn of the 19th century.

  1. The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations

    NASA Astrophysics Data System (ADS)

    Walters, David; Boutle, Ian; Brooks, Malcolm; Melvin, Thomas; Stratton, Rachel; Vosper, Simon; Wells, Helen; Williams, Keith; Wood, Nigel; Allen, Thomas; Bushell, Andrew; Copsey, Dan; Earnshaw, Paul; Edwards, John; Gross, Markus; Hardiman, Steven; Harris, Chris; Heming, Julian; Klingaman, Nicholas; Levine, Richard; Manners, James; Martin, Gill; Milton, Sean; Mittermaier, Marion; Morcrette, Cyril; Riddick, Thomas; Roberts, Malcolm; Sanchez, Claudio; Selwood, Paul; Stirling, Alison; Smith, Chris; Suri, Dan; Tennant, Warren; Vidale, Pier Luigi; Wilkinson, Jonathan; Willett, Martin; Woolnough, Steve; Xavier, Prince

    2017-04-01

    We describe Global Atmosphere 6.0 and Global Land 6.0 (GA6.0/GL6.0): the latest science configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment) dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the model's physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe GA6.1/GL6.1, which includes a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global numerical weather prediction, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year.

  2. Sharp and the Jules Verne Launcher

    NASA Astrophysics Data System (ADS)

    Hunter, John; Cartland, Harry

    1996-03-01

    Lawrence Livermore National Laboratory (LLNL) has built the worlds largest hydrogen gas gun called SHARP, (Super High Altitude Research Project). Originally designed to launch 5 kg to a 450 km altitude, SHARP is configured horizontally at Site 300 in Tracy, California. SHARP is successfully delivering 5 kg scramjets at Mach 9 in aerophysics tests. Some of the results of the scramjet tests are enlightening and are presented insofar as they are relevant to future launches into space. Using a light gas gun to launch payloads into orbit has been analyzed. We look at LEO (Low Earth Orbit), GEO (Geosynchronous Earth Orbit), and LO (Lunar Orbit). We present a conceptual design for a large light gas gun called the Jules Verne Launcher (JVL). The JVL can deliver 3.3 metric tons to a 500 km low earth orbit. We anticipate one launch per day. We present the history of light gas guns, the SHARP design and performance, and the JVL design. Another section is devoted to the vehicle environment and resultant design. Lastly, we present a cost analysis. Our results indicated that the JVL will be able to deliver 1000 metric tons of payload to LEO yearly. The cost will be 5% of the best US rocket delivery cost. This technology will enable the next phase of man's exploration of space.

  3. ECG-cryptography and authentication in body area networks.

    PubMed

    Zhang, Zhaoyang; Wang, Honggang; Vasilakos, Athanasios V; Fang, Hua

    2012-11-01

    Wireless body area networks (BANs) have drawn much attention from research community and industry in recent years. Multimedia healthcare services provided by BANs can be available to anyone, anywhere, and anytime seamlessly. A critical issue in BANs is how to preserve the integrity and privacy of a person's medical data over wireless environments in a resource efficient manner. This paper presents a novel key agreement scheme that allows neighboring nodes in BANs to share a common key generated by electrocardiogram (ECG) signals. The improved Jules Sudan (IJS) algorithm is proposed to set up the key agreement for the message authentication. The proposed ECG-IJS key agreement can secure data communications over BANs in a plug-n-play manner without any key distribution overheads. Both the simulation and experimental results are presented, which demonstrate that the proposed ECG-IJS scheme can achieve better security performance in terms of serval performance metrics such as false acceptance rate (FAR) and false rejection rate (FRR) than other existing approaches. In addition, the power consumption analysis also shows that the proposed ECG-IJS scheme can achieve energy efficiency for BANs.

  4. Molten salts in Nuclear Reactors (Bibliography); LES SELS FONDUS DANS LES REACTEURS NUCLEAIRES (BIBLIOGRAPHIE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirian, J.; Saint-James, R.

    1959-01-01

    A collection is presented of references dealing with the physicochemical studies of fused salts, in partictular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thoriuna are examined, and the physical properties, density, viscosity, and vapor pressure going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recovery after irradiation in a nuclear reactor is discussed. (auth)

  5. Neutron fluxes in test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youinou, Gilles Jean-Michel

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  6. Quantifying uncertainties of permafrost carbon-climate feedbacks

    NASA Astrophysics Data System (ADS)

    Burke, Eleanor J.; Ekici, Altug; Huang, Ye; Chadburn, Sarah E.; Huntingford, Chris; Ciais, Philippe; Friedlingstein, Pierre; Peng, Shushi; Krinner, Gerhard

    2017-06-01

    The land surface models JULES (Joint UK Land Environment Simulator, two versions) and ORCHIDEE-MICT (Organizing Carbon and Hydrology in Dynamic Ecosystems), each with a revised representation of permafrost carbon, were coupled to the Integrated Model Of Global Effects of climatic aNomalies (IMOGEN) intermediate-complexity climate and ocean carbon uptake model. IMOGEN calculates atmospheric carbon dioxide (CO2) and local monthly surface climate for a given emission scenario with the land-atmosphere CO2 flux exchange from either JULES or ORCHIDEE-MICT. These simulations include feedbacks associated with permafrost carbon changes in a warming world. Both IMOGEN-JULES and IMOGEN-ORCHIDEE-MICT were forced by historical and three alternative future-CO2-emission scenarios. Those simulations were performed for different climate sensitivities and regional climate change patterns based on 22 different Earth system models (ESMs) used for CMIP3 (phase 3 of the Coupled Model Intercomparison Project), allowing us to explore climate uncertainties in the context of permafrost carbon-climate feedbacks. Three future emission scenarios consistent with three representative concentration pathways were used: RCP2.6, RCP4.5 and RCP8.5. Paired simulations with and without frozen carbon processes were required to quantify the impact of the permafrost carbon feedback on climate change. The additional warming from the permafrost carbon feedback is between 0.2 and 12 % of the change in the global mean temperature (ΔT) by the year 2100 and 0.5 and 17 % of ΔT by 2300, with these ranges reflecting differences in land surface models, climate models and emissions pathway. As a percentage of ΔT, the permafrost carbon feedback has a greater impact on the low-emissions scenario (RCP2.6) than on the higher-emissions scenarios, suggesting that permafrost carbon should be taken into account when evaluating scenarios of heavy mitigation and stabilization. Structural differences between the land surface models (particularly the representation of the soil carbon decomposition) are found to be a larger source of uncertainties than differences in the climate response. Inertia in the permafrost carbon system means that the permafrost carbon response depends on the temporal trajectory of warming as well as the absolute amount of warming. We propose a new policy-relevant metric - the frozen carbon residence time (FCRt) in years - that can be derived from these complex land surface models and used to quantify the permafrost carbon response given any pathway of global temperature change.

  7. The Antiaircraft Journal. Volume 94, Number 2, March-April 1951

    DTIC Science & Technology

    1951-04-01

    are covered in detail. Included under a miscellaneous heading are such topics as the Geneva Conven- tion and extracts from the .United Na- tions Charter...serve as a review for many of the principles associated with guided missiles. They originally were presented in the May 1950 issue of Oil -Power...published by Socony-Vacuum Oil Company, Inc. Hats off to H. G. Wells and Jules Verne! As juvenile readers, most of us thrilled to their seemingly fantastic

  8. Julie Payette and Tamara Jernigan in FGB/Zarya module

    NASA Image and Video Library

    2017-04-20

    S96-E-5161 (2 June 1999) --- Astronauts Jule Payette (left) and Tamara E. Jernigan, mission specialists, participate in the final hours of tasks designed to prepare the International Space Station (ISS) for business. Here, on the Russian-built Zarya module, the two are seen with a small part of the supplies brought up by the Space Shuttle Discovery. The photo was taken with an electronic still camera (ESC) at 05:58:37 GMT, June 2, 1999.

  9. Reflections on the Conception, Birth, and Childhood of Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Lorenz, Edward N.

    2006-05-01

    In recognition of the contributions of Norman Phillips and Joseph Smagorinsky to the field of numerical weather prediction (NWP), a symposium was held in 2003; this account is an amplification of a talk presented there. Ideas anticipating the advent of NWP, the first technically successful numerical weather forcast, and the subsequent progression of NWP to a mature discipline are described, with special emphasis on the work of Phillips and Smagorinsky and their mentor Jule Charney.

  10. A Neutronic Program for Critical and Nonequilibrium Study of Mobile Fuel Reactors: The Cinsf1D Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecarpentier, David; Carpentier, Vincent

    2003-01-15

    Molten salt reactors (MSRs) have the distinction of having a liquid fuel that is also the coolant. The transport of delayed-neutron precursors by the fuel modifies the precursors' equation. As a consequence, it is necessary to adapt the methods currently used for solid fuel reactors to achieve critical or kinetics calculations for an MSR. A program is presented for which this adaptation has been carried out within the framework of the two-energy-group diffusion theory with one dimension of space. This program has been called Cinsf1D (Cinetique pour reacteur a sels fondus 1D)

  11. Transformations structurales d'un acier AU Cr(9%) Mo(2%) (type ZlOCDNbV 09-02) utilisable dans les generateurs de vapeur des reacteurs a neutrons rapides

    NASA Astrophysics Data System (ADS)

    Vilar, Rui M.; Cizeron, Georges; Pelletier, Michel

    1981-12-01

    Transformations undergone by a 9 Cr-2 Mo-Nb-V steel on heating depend on the structure previously developped by quenching or tempering and on the heating rate. TTT and CCT diagrams, plotted after austenizing at 1000 and 1100°C, show only one diffusional transformation at high temperature producing equiaxed ferrite which contains a precipitate of M 23C 6 carbide; the activation energy of the process involved is 123.3 kJ/mol. At low temperatures a martensitic transformation is observed; the martensite is lath-type and autotempered.

  12. Needs of Accurate Prompt and Delayed γ-spectrum and Multiplicity for Nuclear Reactor Designs

    NASA Astrophysics Data System (ADS)

    Rimpault, G.; Bernard, D.; Blanchet, D.; Vaglio-Gaudard, C.; Ravaux, S.; Santamarina, A.

    The local energy photon deposit must be accounted accurately for Gen-IV fast reactors, advanced light-water nuclear reactors (Gen-III+) and the new experimental Jules Horowitz Reactor (JHR). The γ energy accounts for about 10% of the total energy released in the core of a thermal or fast reactor. The γ-energy release is much greater in the core of the reactor than in its structural sub-assemblies (such as reflector, control rod followers, dummy sub-assemblies). However, because of the propagation of γ from the core regions to the neighboring fuel-free assemblies, the contribution of γ energy to the total heating can be dominant. For reasons related to their performance, power reactors require a 7.5% (1σ) uncertainty for the energy deposition in non-fuelled zones. For the JHR material-testing reactor, a 5% (1 s) uncertainty is required in experimental positions. In order to verify the adequacy of the calculation of γ-heating, TLD and γ-fission chambers were used to derive the experimental heating values. Experimental programs were and are still conducted in different Cadarache facilities such as MASURCA (for SFR), MINERVE and EOLE (for JHR and Gen-III+ reactors). The comparison of calculated and measured γ-heating values shows an underestimation in all experimental programs indicating that for the most γ-production data from 239Pu in current nuclear-data libraries is highly suspicious.The first evaluation priority is for prompt γ-multiplicity for U and Pu fission but similar values for otheractinides such as Pu and U are also required. The nuclear data library JEFF3.1.1 contains most of the photon production data. However, there are some nuclei for which there are missing or erroneous data which need to be completed or modified. A review of the data available shows a lack of measurements for conducting serious evaluation efforts. New measurements are needed to guide new evaluation efforts which benefit from consolidated modeling techniques.

  13. Expedition 17 Automated Transfer Vehicle (ATV) Undocking

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015468 (5 Sept. 2008) --- Backdropped by the blackness of space, European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV) begins its relative separation from the International Space Station. The ATV undocked from the aft port of the Zvezda Service Module at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  14. Expedition 17 Automated Transfer Vehicle (ATV) Undocking

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015496 (5 Sept. 2008) --- Backdropped by a blanket of clouds, European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV) continues its relative separation from the International Space Station. The ATV undocked from the aft port of the Zvezda Service Module at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  15. Expedition 17 Automated Transfer Vehicle (ATV) Undocking

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015451 (5 Sept. 2008) --- Backdropped by Earth's horizon and the blackness of space, European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV) begins its relative separation from the International Space Station. The ATV undocked from the aft port of the Zvezda Service Module at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  16. Expedition 17 Automated Transfer Vehicle (ATV) Undocking

    NASA Image and Video Library

    2008-09-05

    ISS017-E-015446 (5 Sept. 2008) --- Backdropped by the blackness of space, European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV) begins its relative separation from the International Space Station. The ATV undocked from the aft port of the Zvezda Service Module at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.

  17. Rubidium-strontium date of possibly 3 billion years for a granitic rock from antarctica.

    PubMed

    Halpern, M

    1970-09-04

    A single total rock sample of biotite granite from Jule Peaks, Antarctica, has been dated by the rubidium-strontium method at about 3 billion years. The juxtaposition of this sector of Antarctica with Africa in the Dietz and Sproll continental drift reconstruction results in a possible geochronologic fit of the Princess Martha Coast of Antarctica with a covered possible notheastern extension of the African Swaziland Shield, which contains granitic rocks that are also 3 billion years old.

  18. Orbital Debris Quarterly News. Volume 13; No. 1

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics discussed include: new debris from a decommissioned satellite with a nuclear power source; debris from the destruction of the Fengyun-1C meteorological satellite; quantitative analysis of the European Space Agency's Automated Transfer Vehicle 'Jules Verne' reentry event; microsatellite impact tests; solar cycle 24 predictions and other long-term projections and geosynchronus (GEO) environment for the Orbital Debris Engineering Model (ORDEM2008). Abstracts from the NASA Orbital Debris Program Office, examining satellite reentry risk assessments and statistical issues for uncontrolled reentry hazards, are also included.

  19. Flow injection method for the determination of silver concentration in drinking water for spacecrafts.

    PubMed

    Bruzzoniti, Maria Concetta; Kobylinska, Dorota Korte; Franko, Mladen; Sarzanini, Corrado

    2010-04-14

    A flow injection method has been developed for determination of silver. The method is based on a reduction reaction with sodium borohydride which leads to the formation of a colloidal species which is monitored at a wavelength of 390 nm. The reaction variables flow rate, sodium borohydride concentration and pH, which affect sensitivity, were investigated and their effects were established using a two-levels, three-factor experimental design. Further optimization of manifold variables (reaction coil and injection volume) allowed us to determine silver in the range 0.050-5.0 mg L(-1) with a minimum detectable concentration of 0.050 mg L(-1). Silver is added, as biocide, to drinking water for spacecrafts. The chemical species of silver, present in this kind of sample, were characterized by a procedure based on the selective retention of Ag(+) onto a 2.2.2. cryptand based substrate followed by determination of the non-bound and bound (after elution) Ag(+) by the FIA method. The method optimized was applied to a drinking water sample provided for the launch with the Automated Transfer Vehicle (ATV) module Jule Verne to the International Space Station (March 9, 2008). Copyright 2010 Elsevier B.V. All rights reserved.

  20. Contribution of Jules Froment to the study of parkinsonian rigidity.

    PubMed

    Broussolle, Emmanuel; Krack, Paul; Thobois, Stéphane; Xie-Brustolin, Jing; Pollak, Pierre; Goetz, Christopher G

    2007-05-15

    Rigidity is commonly defined as a resistance to passive movement. In Parkinson's disease (PD), two types of rigidity are classically recognized which may coexist, "leadpipe " and "cogwheel". Charcot was the first to investigate parkinsonian rigidity during the second half of the nineteenth century, whereas Negro and Moyer described cogwheel rigidity at the beginning of the twentieth century. Jules Froment, a French neurologist from Lyon, contributed to the study of parkinsonian rigidity during the 1920s. He investigated rigidity of the wrist at rest in a sitting position as well as in stable and unstable standing postures, both clinically and with physiological recordings using a myograph. With Gardère, Froment described enhanced resistance to passive movements of a limb about a joint that can be detected specifically when there is a voluntary action of another contralateral body part. This has been designated in the literature as the "Froment's maneuver " and the activation or facilitation test. In addition, Froment showed that parkinsonian rigidity diminishes, vanishes, or enhances depending on the static posture of the body. He proposed that in PD "maintenance stabilization " of the body is impaired and that "reactive stabilization " becomes the operative mode of muscular tone control. He considered "rigidification " as compensatory against the forces of gravity. Froment also demonstrated that parkinsonian rigidity increases during the Romberg test, gaze deviation, and oriented attention. In their number, breadth, and originality, Froment's contributions to the study of parkinsonian rigidity remain currently relevant to clinical and neurophysiological issues of PD. (c) 2007 Movement Disorder Society.

  1. Intentions of Women (18-25 Years Old) to Join the Military: Results of a National Survey.

    DTIC Science & Technology

    1978-09-01

    MILITARY : RESULTS OF A NATIONAL SURVEY __________________________ S . PERFORMING ORG. N~PQRT NUMUER 7. Au fllON(.) S CONTRACT OR GRANT NUNSER(.) Jules...I. Borack S . PERFORMING ORGANI ZAtION N AME~~~~D ADDRE SS ~~~~. PRO GRAM ELEMENT. PROJECT. TaS~- AREA & WÔRK UNIT NUMSERS Navy Personnel Research and...non— Be interested in hiking. traditional women ’ s activities a- Marital status Be married . Be single. Financial Have financial responsibility Have no

  2. National Service: A Responsibility, A Solution

    DTIC Science & Technology

    1991-04-12

    Il tws ~ 00" tic ethe audhoe pa~-~t c re a~ t (M i.W Of~’. NATOCNAL SERVICE: A RESPONSIBILITY , A’SOLUTION BY COLONE1L JULES W. h&’MP’ON United States...NUMBERS PROGRAM PROJECT I TASK WORK UNIT ELEMENT NO NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) NATIONAL SERVICE: A RESPONSIBILITY , A...0l DTIC USERS Unclassified 22a, NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 122c OFFICE SYMBOL D n~D F r 1473. JU 8 PreSv:;, e

  3. Analysis Of The ATV1 Re-Entry Using Near-UV Spectroscopic Data From The ESA/NASA Multi-Instrument Aircraft Observation Campaign

    NASA Astrophysics Data System (ADS)

    Lohle, Stefan; Marynowski, Thomas; Knapp, Andreas; Wernitz, Ricarda; Lips, Tobias

    2011-05-01

    The first Automated Transfer Vehicle (ATV1) named Jules Verne was launched in March 2009 to carry over seven tons of experiments, fuel, water, food and other supplies to the International Space Station (ISS) orbiting at about 350 km. Attached to the ISS, it served as an extension to the space station, giving extra space for the six astronauts and cosmonauts who will ultimately form the permanent ISS Crew. On September 29, 2009, a controlled de-orbit maneuver lead the spacecraft to enter the Earth's atmosphere over the south pacific ocean. The following destructive re-entry was observed by two aircraft equipped with a wide variety of imaging and spectroscopic instruments. In this paper, we present quantitative results from the near-UV spectroscopic measurements acquired aboard an experimental DC-8 aircraft operated by NASA. The wavelength range of observation allows a determination of temperatures from radiation and the investigation of atomic radiation with respect to the identification of the destructive process. Furthermore, the excitation temperatures of chromium give an insight into the explosive events occurring during re-entry. Analysing the continuum of the measured spectra, the Planck radiation temperature is fitted to the data. These temperatures indicate that most of the radiating parts are titanium alloys, i.e. the outer structure of ATV1. All results within this paper are compared to a simulated break-up scenario and related to basic results from other experimenters which allows drawing an overall scenario for this destructive re-entry.

  4. Optograms and criminology: science, news reporting, and fanciful novels.

    PubMed

    Lanska, Douglas J

    2013-01-01

    A persistent nineteenth-century urban legend was the notion that photograph-like images of the last-seen object or person would be preserved in the eyes of the dead. This popular notion followed technological developments (the daguerreotype and ophthalmoscope) that antedated by decades a basic understanding of retinal physiology. From 1876 to 1877, Boll described photochemical bleaching of the retina and produced a crude retinal image that remained briefly visible after death in an experimental animal. From 1877 to 1881, Kühne elaborated the processes involved in photochemical transduction, and created more complex retinal images, or "optograms," that were visible after the death of experimental animals under special laboratory circumstances. In 1880, Kühne reported the first human "optogram" when he examined the eyes following the state execution of a convicted murderer. Although the work of these physiologists increased public interest in "optography" as a potential tool in forensic investigations, Kühne and his student, Ayres, concluded after an extensive series of investigations that optography would never be useful for this purpose. Nevertheless, because of the prior tantalizing results, optography became a frequent consideration in speculative news reports of sensational unsolved murders, and as a plot device in works of fiction, some quite fantastical. Fictional portrayals included works by Rudyard Kipling and Jules Verne. Despite denouncement of optography for forensic investigations by Kühne, and by numerous physicians, the general public and mass media continued to press for examination of the retinae of murder victims well into the twentieth century, particularly in high-profile unsolved cases. © 2013 Elsevier B.V. All rights reserved.

  5. Information perception, wishes, and satisfaction in ambulatory cancer patients under active treatment: patient-reported outcomes with QLQ-INFO25

    PubMed Central

    Pinto, Ana Catarina; Ferreira-Santos, Fernando; Lago, Lissandra Dal; de Azambuja, Evandro; Pimentel, Francisco Luís; Piccart-Gebhart, Martine; Razavi, Darius

    2014-01-01

    Background Information is vital to cancer patients. Physician–patient communication in oncology presents specific challenges. The aim of this study was to evaluate self-reported information of cancer patients in ambulatory care at a comprehensive cancer centre and examine its possible association with patients’ demographic and clinical characteristics. Patients and methods This study included adult patients with solid tumours undergoing chemotherapy at the Institute Jules Bordet’s Day Hospital over a ten-day period. EORTC QLQ-C30 and QLQ-INFO25 questionnaires were administered. Demographic and clinical data were collected. Descriptive and inferential statistics were used. Results 101 (99%) fully completed the questionnaires. They were mostly Belgian (74.3%), female (78.2%), with a mean age of 56.9 ± 12.8 years. The most frequent tumour was breast cancer (58.4%). Patients were well-informed about the disease and treatments, but presented unmet information domains. The Jules Bordet patients desired more information on treatment side effects, long-term outcome, nutrition, and recurrence symptoms. Patients on clinical trials reported having received less information about their disease and less written information than patients outside clinical trials. Higher information levels were associated with higher quality of life (QoL) scores and higher patient satisfaction. Conclusion Patients were satisfied with the information they received and this correlated with higher QoL, but they still expressed unmet information wishes. Additional studies are required to investigate the quality of the information received by patients enrolled in clinical trials. PMID:24834120

  6. Jules Bernard Luys in Charcot's penumbra.

    PubMed

    Parent, Martin; Parent, André

    2011-01-01

    Jules Bernard Luys (1828-1897) is a relatively unknown figure in 19th century French neuropsychiatry. Although greatly influenced by Jean-Martin Charcot (1825-1893), Luys worked in the shadow of the 'master of La Salpêtrière' for about a quarter of a century. When he arrived at this institution in 1862, he used microscopy and photomicrography to identify pathological lesions underlying locomotor ataxia and progressive muscular atrophy. He later made substantial contributions to our knowledge of normal human brain anatomy, including the elucidation of thalamic organization and the discovery of the subthalamic nucleus. Luys's name has long been attached to the latter structure (corps de Luys), which is at the center of our current thinking about the functional organization of basal ganglia and the physiopathology of Parkinson's disease. As head of the Maison de santé d'Ivry, Luys developed a highly original view of the functional organization of the normal human brain, while improving our understanding of the neuropathological and clinical aspects of mental illnesses. In 1886, Luys left La Salpêtrière and became chief physician at La Charité hospital. Following Charcot, whom he considered as the father of scientific hypnotism, Luys devoted the last part of his career to hysteria and hypnosis. However, Luys ventured too deeply into the minefield of hysteria. He initiated experiments as unconventional as the distant action of medication, and became one of the most highly caricatured examples of the fascination that hysteria exerted upon neurologists as well as laypersons at the end of the 19th century. Copyright © 2011 S. Karger AG, Basel.

  7. The birth of numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Wiin-Nielsen, A.

    1991-08-01

    The paper describes the major events leading gradually to operational, numerical, short-range predictions for the large-scale atmospheric flow. The theoretical foundation starting with Rossby's studies of the linearized, barotropic equation and ending a decade and a half later with the general formulation of the quasi-geostrophic, baroclinic model by Charney and Phillips is described. The problems connected with the very long waves and the inconsistences of the geostrophic approximation which were major obstacles in the first experimental forecasts are discussed. The resulting changes to divergent barotropic and baroclinic models and to the use of the balance equation are described. After the discussion of the theoretical foundation, the paper describes the major developments leading to the Meteorology Project at the Institute for Advanced Studied under the leadership of John von Neumann and Jule Charney followed by the establishment of the Joint Numerical Weather Prediction Unit in Suitland, Maryland. The interconnected developments in Europe, taking place more-or-less at the same time, are described by concentrating on the activities in Stockholm where the barotropic model was used in many experiments leading also to operational forecasts. The further developments resulting in the use of the primitive equations and the formulation of medium-range forecasting models are not included in the paper.

  8. The birth of numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Wiin-Nielsen, A.

    1991-09-01

    The paper describes the major events leading gradually to operational, numerical, short-range predictions for the large-scale atmospheric flow. The theoretical foundation starting with Rossby's studies of the linearized, barotropic equation and ending a decade and a half later with the general formulation of the quasi-geostrophic, baroclinic model by Charney and Phillips is described. The problems connected with the very long waves and the inconsistences of the geostrophic approximation which were major obstacles in the first experimental forecasts are discussed. The resulting changes to divergent barotropic and baroclinic models and to the use of the balance equation are described. After the discussion of the theoretical foundation, the paper describes the major developments leading to the Meteorology Project at the Institute for Advanced Studied under the leadership of John von Neumann and Jule Charney followed by the establishment of the Joint Numerical Weather Prediction Unit in Suitland, Maryland. The inter-connected developments in Europe, taking place more-or-less at the same time, are described by concentrating on the activities in Stockholm where the barotropic model was used in many experiments leading also to operational forecasts. The further developments resulting in the use of the primitive equations and the formulation of medium-range forecasting models are not included in the paper.

  9. Status of the MeLoDIE experiment, an advanced device for the study of the irradiation creep of LWR cladding with full online capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guimbal, P.; Huotilainen, S.; Taehtinen, S.

    2015-07-01

    As a prototype of future instrumented material experiments in the Jules Horowitz Reactor (JHR), the MELODIE project was launched in 2009 by the CEA in collaboration with VTT. Being designed as a biaxial creep experiment with online capability, MELODIE is able to apply an online-controlled biaxial loading on a LWR clad sample up to 120 MPa and to perform an online measurement of its biaxial deformation. An important experimental challenge was to perform reliably accurate measurements under the high nuclear heat load of in-core locations while keeping within their tight space. For that purpose, specific sensors were co-designed with andmore » built by IFE Halden. Manufacturing of the MELODIE components was completed one year ago. The complexity of its in-pile section and of the pressurization system requested a step-by-step tuning of the setup. The toughest part of this process dealt with the Diameter gauge which required a partial redesign to take into account unexpected and unwanted electromagnetic interactions with the hosting device. Final cold performance tests of the on-board instrumentation will be presented. The MELODIE device is now ready and irradiation should start in OSIRIS reactor this spring. (authors)« less

  10. Contribution of physiologists to the identification of the humoral component of immunity in the 19th century

    PubMed Central

    Lahaie, Yves-Marie

    2017-01-01

    ABSTRACT The history of antimicrobial humoral immunity usually focuses on the works of the German school at the end of the 19th century, born in the tradition of chemistry and disinfection. Starting from an old quarrel of priority about serotherapy between Emil von Behring (1854–1917) and the French physiologists Charles Richet (1850–1935) and Jules Héricourt (1850–1938), we first confirm that the latter stated the principle of serotherapy in 1888 and put it into practice before the seminal Behring's article in 1890, observing several adverse effects of this new immunotherapy. We also find that researchers who can be considered heirs of the French school of Physiology founded by Claude Bernard (1813–1878) also investigated the field of humoral immunity in the 1870–1880s. Maurice Raynaud (1834–1881), Auguste Chauveau (1827–1917), and eventually Charles Richet applied the experimental method of Claude Bernard to the young field of microbiology, illustrating a movement called by Jacques Léonard “physiologization of the pasteurism.” However, the contribution of physiologists in this field started before Louis Pasteur, leading to the conclusion that physiologists and chemists synergistically contributed to the birth of bacteriology and immunology. PMID:28557665

  11. [Delirium in delusions of negations of Cotard: syndrome versus disorder].

    PubMed

    Huertas, D; Molina, J D; Chamorro, L; Toral, J

    1997-01-01

    This article constitutes the first of a series directed to review fundamental disorders in clinical psychogeriatrics. This sort of publication is intended to retrieve clinical practice as the cornerstone for research and teaching in psychiatry. Besides, and particularly in geriatry, we try to expand the strategy of liaison work with primary physicians. In this case, a nosological review of the so called "delusion of negations" is presented. The Jules Cotard's original concept of subtype of delusional melancholia is contrasted to the view of numerous authors in this century who have described it as a form of non-specific delusional syndrome.

  12. ATV during Demonstration Day 1 Rendezvous Test

    NASA Image and Video Library

    2008-03-29

    ISS016-E-033720 (29 March 2008) --- Cosmonaut Yuri Malenchenko, Expedition 16 flight engineer, aboard the International Space Station used a digital still camera to record several images of the Jules Verne Automated Transfer Vehicle (ATV) during a rendezvous test March 29, 2008. Malenchenko fitted the camera with an 800mm lens typically employed for Shuttle RPM photography while the ATV sat 2.1 statute miles from the ISS during the first of two demonstration days in the lead up to a docking on April 3. On March 31, Demonstration Day 2 will see ATV approach to within 11 meters of the ISS.

  13. ORION Media Event at LASF

    NASA Image and Video Library

    2014-12-19

    Lockheed Martin Manager Jules Schneider speaks to members of the media during a viewing of NASA's Orion spacecraft at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The spacecraft's cross-country return, a 2,700 mile road trip from Naval Base San Diego to Kennedy, sets the stage for in-depth analysis of data obtained during Orion's trip to space. It will provide engineers detailed information on how the spacecraft fared during its two-orbit, 4.5-hour flight test, completed on Dec. 5. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  14. ORION Media Event at LASF

    NASA Image and Video Library

    2014-12-19

    Lockheed Martin Manager Jules Schneider speaks to members of the media during a viewing of NASA's Orion spacecraft at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The spacecraft's cross-country return, a 2,700 mile road trip from Naval Base San Diego to Kennedy, sets the stage for in-depth analysis of data obtained during Orion's trip to space. It will provide engineers with detailed information on how the spacecraft fared during its two-orbit, 4.5-hour flight test, completed on Dec. 5. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts.

  15. Dawn XMO2 Image 3

    NASA Image and Video Library

    2016-11-09

    Relatively young craters, with sharp crater rims and streaks of bright material, are the focus of this view of Ceres from NASA's Dawn spacecraft. The large, ancient and quite degraded crater Fluusa is seen at top center. The younger craters are Kupalo, at lower right, and Juling, to its left. Dawn took this image on Oct. 17, 2016, from its second extended-mission science orbit (XMO2), at a distance of about 920 miles (1,480 kilometers) above the surface. The image resolution is about 460 feet (140 meters) per pxel. http://photojournal.jpl.nasa.gov/catalog/PIA21223

  16. Raphaël Blanchard, parasitology, and the positioning of medical entomology in Paris.

    PubMed

    Osborne, M A

    2008-12-01

    The histories of medical entomology and parasitology are entwined. Raphaël Blanchard (1857-1919), Chair of Medical Natural History and Parasitology at the Faculty of Medicine in Paris, organized the teaching of medical entomology and civilian colonial medicine. He also founded and edited the journal Archives de Parasitologie and started the Institute de Médecine Coloniale where he mentored many foreign students and researchers. Additionally, Blanchard is important for his scientific internationalism and medical historical work on the cultural location of parasitology and for training the future professors of parasitology Jules Guiart, Emile Brumpt, and Charles Joyeux.

  17. Simulating carbon flows in Amazonian rainforests: how intensive C-cycle data can help to reduce vegetation model uncertainty

    NASA Astrophysics Data System (ADS)

    Galbraith, D.; Levine, N. M.; Christoffersen, B. O.; Imbuzeiro, H. A.; Powell, T.; Costa, M. H.; Saleska, S. R.; Moorcroft, P. R.; Malhi, Y.

    2014-12-01

    The mathematical codes embedded within different vegetation models ultimately represent alternative hypotheses of biosphere functioning. While formulations for some processes (e.g. leaf-level photosynthesis) are often shared across vegetation models, other processes (e.g. carbon allocation) are much more variable in their representation across models. This creates the opportunity for equifinality - models can simulate similar values of key metrics such as NPP or biomass through very different underlying causal pathways. Intensive carbon cycle measurements allow for quantification of a comprehensive suite of carbon fluxes such as the productivity and respiration of leaves, roots and wood, allowing for in-depth assessment of carbon flows within ecosystems. Thus, they provide important information on poorly-constrained C-cycle processes such as allocation. We conducted an in-depth evaluation of the ability of four commonly used dynamic global vegetation models (CLM, ED2, IBIS, JULES) to simulate carbon cycle processes at ten lowland Amazonian rainforest sites where individual C-cycle components have been measured. The rigorous model-data comparison procedure allowed identification of biases which were specific to different models, providing clear avenues for model improvement and allowing determination of internal C-cycling pathways that were better supported by data. Furthermore, the intensive C-cycle data allowed for explicit testing of the validity of a number of assumptions made by specific models in the simulation of carbon allocation and plant respiration. For example, the ED2 model assumes that maintenance respiration of stems is negligible while JULES assumes equivalent allocation of NPP to fine roots and leaves. We argue that field studies focusing on simultaneous measurement of a large number of component fluxes are fundamentally important for reducing uncertainty in vegetation model simulations.

  18. When the Patient Believes That the Organs Are Destroyed: Manifestation of Cotard's Syndrome.

    PubMed

    Machado, Leonardo; Filho, Luiz Evandro de Lima; Machado, Liliane

    2016-01-01

    Cotard's Syndrome (CS) is a rare clinical event described for the first time in 1880 by the neurologist and psychiatrist Jules Cotard and characterized by negation delusions (or nihilists). Immortality and hypochondriac delusions are also typical. Nowadays, it is known that CS can be associated with many neuropsychiatric conditions. In this article, we describe the case of a patient that believed not having more organs and having the body deformed and whose CS was associated with a bigger depressive disorder. Although the electroconvulsive therapy is the most described treatment modality in the literature, the reported case had therapeutic success with association of imipramine and risperidone.

  19. Modelling Soil Heat and Water Flow as a Coupled Process in Land Surface Models

    NASA Astrophysics Data System (ADS)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Braud, Isabelle

    2010-05-01

    To improve model estimates of soil water and heat flow by land surface models (LSMs), in particular in the first few centimetres of the near-surface soil profile, we have to consider in detail all the relevant physical processes involved (see e.g. Milly, 1982). Often, thermal and iso-thermal vapour fluxes in LSMs are neglected and the simplified Richard's equation is used as a result. Vapour transfer may affect the water fluxes and heat transfer in LSMs used for hydrometeorological and climate simulations. Processes occurring in the top 50 cm soil may be relevant for water and heat flux dynamics in the deeper layers, as well as for estimates of evapotranspiration and heterotrophic respiration, or even for climate and weather predictions. Water vapour transfer, which was not incorporated in previous versions of the MOSES/JULES model (Joint UK Land Environment Simulator; Cox et al., 1999), has now been implemented. Furthermore, we also assessed the effect of the soil vertical resolution on the simulated soil moisture and temperature profiles and the effect of the processes occurring at the upper boundary, mainly in terms of infiltration rates and evapotranspiration. SiSPAT (Simple Soil Plant Atmosphere Transfer Model; Braud et al., 1995) was initially used to quantify the changes that we expect to find when we introduce vapour transfer in JULES, involving parameters such as thermal vapour conductivity and diffusivity. Also, this approach allows us to compare JULES to a more complete and complex numerical model. Water vapour flux varied with soil texture, depth and soil moisture content, but overall our results suggested that water vapour fluxes change temperature gradients in the entire soil profile and introduce an overall surface cooling effect. Increasing the resolution smoothed and reduced temperature differences between liquid (L) and liquid/vapour (LV) simulations at all depths, and introduced a temperature increase over the entire soil profile. Thermal gradients rather than soil water potential gradients seem to cause temporal and spatial (vertical) soil temperature variability. We conclude that a multi-soil layer configuration may improve soil water dynamics, heat transfer and coupling of these processes, as well as evapotranspiration estimates and land surface-atmosphere coupling. However, a compromise should be reached between numerical and process-simulation aspects. References: Braud I., A.C. Dantas-Antonino, M. Vauclin, J.L. Thony and P. Ruelle, 1995b: A Simple Soil Plant Atmo- sphere Transfer model (SiSPAT), Development and field verification, J. Hydrol, 166: 213-250 Cox, P.M., R.A. Betts, C.B. Bunton, R.L.H. Essery, P.R. Rowntree, and J. Smith (1999), The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn., 15, 183-203. Milly, P.C.D., 1982. Moisture and heat transport in hysteric inhomogeneous porous media: a matric head- based formulation and a numerical model, Water Resour. Res., 18:489-498

  20. On the relative role of fire and rainfall in determining vegetation patterns in tropical savannas: a simulation study

    NASA Astrophysics Data System (ADS)

    Spessa, Allan; Fisher, Rosie

    2010-05-01

    Tropical savannas cover 18% of the world's land surface and are amongst the most productive terrestrial systems in the world. They comprise 15% of the total terrestrial carbon stock, with an estimated mean net primary productivity (NPP) of 7.2 tCha-1yr-1 or two thirds of NPP in tropical forests. Tropical savannas are the most frequently burnt biome, with fire return intervals in highly productive areas being typically 1-2 years. Fires shape vegetation species composition, tree to grass ratios and nutrient redistribution, as well as the biosphere-atmosphere exchange of trace gases, momentum and radiative energy. Tropical savannas are a major source of emissions, contributing 38 % of total annual CO2 from biomass burning, 30% CO, 19 % CH4 and 59 % NOx. Climatically, they occur in regions subject to a strongly seasonal ‘wet-dry' regime, usually under monsoonal control from the movement of the inter-tropical convergence zone. In general, rainfall during the prior wet season(s) determines the amount of grass fuel available for burning while the length of the dry season influences fuel moisture content. Rainfall in tropical savannas exhibits high inter-annual variability, and under future climate change, is projected to change significantly in much of Africa, South America and northern Australia. Process-based simulation models of fire-vegetation dynamics and feedbacks are critical for determining the impacts of wildfires under projected future climate change on i) ecosystem structure and function, and ii) emissions of trace gases and aerosols from biomass burning. A new mechanistic global fire model SPITFIRE (SPread and InTensity of FIRE) has been designed to overcome many of the limitations in existing fire models set within Dynamic Global Vegetation Models (DGVMs). SPITFIRE has been applied in coupled mode globally and southern Africa, both as part of the LPJ DGVM. It has also been driven with MODIS burnt area data applied to sub-Saharan Africa, while coupled to the LPJ-GUESS vegetation model. Recently, SPIFTIRE has been coupled to the Ecosystem Demography (ED) model, which simulates global vegetation dynamics as part of the new land surface scheme JULES (Joint UK Environment Simulator) within the QUEST Earth System Model (http://www.quest-esm.ac.uk/). This study forms part of on-going work to further improve and test the ability of JULES to accurately simulate the terrestrial carbon cycle and land-atmosphere exchanges under different climates. Using the JULES (ED-SPITFIRE) model driven by observed climate (1901-2002), and focusing on large-scale rainfall gradients in the tropical savannas of west Africa, the Northern Territory (Australia) and central-southern Brazil, this study assesses: i) simulated versus observed vegetation dynamics and distributions, and ii) the relative importance of fire versus rainfall in determining vegetation patterns. A sensitivity analysis approach was used.

  1. Development and experimental qualification of a calculation scheme for the evaluation of gamma heating in experimental reactors. Application to MARIA and Jules Horowitz (JHR) MTR Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarchalski, M.; Pytel, K.; Wroblewska, M.

    2015-07-01

    Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to themore » qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from measurements is of the order of 2.5 W/g at half of the possible MARIA power - 15 MW. The approach and the detailed program for experimental verification of calculations will be presented. The following points will be discussed: - Development of a gamma heating model of MARIA reactor with TRIPOLI 4 (coupled neutron-photon mode) and APOLLO2 model taking into account the key parameters like: configuration of the core, experimental loading, control rod location, reactor power, fuel depletion); - Design of specific measurement tools for MARIA experiments including for instance a new single-cell calorimeter called KAROLINA calorimeter; - MARIA experimental program description and a preliminary analysis of results; - Comparison of calculations for JHR and MARIA cores with experimental verification analysis, calculation behavior and n-γ 'environments'. (authors)« less

  2. When the Patient Believes That the Organs Are Destroyed: Manifestation of Cotard's Syndrome

    PubMed Central

    Machado, Liliane

    2016-01-01

    Cotard's Syndrome (CS) is a rare clinical event described for the first time in 1880 by the neurologist and psychiatrist Jules Cotard and characterized by negation delusions (or nihilists). Immortality and hypochondriac delusions are also typical. Nowadays, it is known that CS can be associated with many neuropsychiatric conditions. In this article, we describe the case of a patient that believed not having more organs and having the body deformed and whose CS was associated with a bigger depressive disorder. Although the electroconvulsive therapy is the most described treatment modality in the literature, the reported case had therapeutic success with association of imipramine and risperidone. PMID:28003827

  3. KSC-2014-4870

    NASA Image and Video Library

    2014-12-19

    CAPE CANAVERAL, Fla. -- Lockheed Martin Manager Jules Schneider speaks to members of the media during a viewing of NASA's Orion spacecraft at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The spacecraft's cross-country return, a 2,700 mile road trip from Naval Base San Diego to Kennedy, sets the stage for in-depth analysis of data obtained during Orion's trip to space. It will provide engineers with detailed information on how the spacecraft fared during its two-orbit, 4.5-hour flight test, completed on Dec. 5. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  4. Early Rockets

    NASA Image and Video Library

    2004-04-15

    Science fiction writers, like Jules Verne in France and Edward Everett Hale in America, had discovered one of the most vital elements in the formula for space travel-a fertile imagination. The first known proposal for a marned-satellite appears in a story by Hale entitled "The Brick Moon" published in 1899. The story involved a group of young Bostonians who planned to put an artificial satellite into polar orbit for sailors to use to determine longitude accurately and easily. They planned to send a brick satellite into orbit because the satellite would have to withstand fire very well. The Satellite's 37 inhabitants signaled the Earth in morse code by jumping up and down on the outside of the satellite.

  5. ORION Media Event at LASF

    NASA Image and Video Library

    2014-12-19

    NASA's Orion spacecraft is viewed by members of the media at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Speaking to the media during the viewing opportunity is Jules Schneider, Lockheed Martin Manager. Behind him, from left, are Glenn Chin, Orion Production Operations manager and Phil Weber and Lou Garcia, with the Ground Systems Development and Operations Program, or GSDO. Orion made the 8-day, 2,700 mile overland trip back to Kennedy from Naval Base San Diego in California. Analysis of date obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers with detailed information on how the spacecraft fared. GSDO led the recovery, offload and transportation efforts.

  6. Development of noise emission measurement specifications for color printing multifunctional devices

    NASA Astrophysics Data System (ADS)

    Kimizuka, Ikuo

    2005-09-01

    Color printing (including copying) is becoming more popular application in home, as well as in offices. Existing de jule and/or industrial standards (such as ISO 7779, ECMA-74, ANSI S12.10 series, etc.), however, state only monochrome patterns, which are mainly intended for acoustic noise testing of mechanical impact type printers. This paper discusses the key issues and corresponding resolutions for development of color printing patterns for acoustic noise measurements. The results of these technical works will be published by JBMS-74 (new industry standard of JBMIA within 2005), and hopefully be the technical basis of updating other standards mentioned above. This paper also shows the development processes and key features of proposed patterns.

  7. KSC-2014-4871

    NASA Image and Video Library

    2014-12-19

    CAPE CANAVERAL, Fla. -- Lockheed Martin Manager Jules Schneider speaks to members of the media during a viewing of NASA's Orion spacecraft at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The spacecraft's cross-country return, a 2,700 mile road trip from Naval Base San Diego to Kennedy, sets the stage for in-depth analysis of data obtained during Orion's trip to space. It will provide engineers with detailed information on how the spacecraft fared during its two-orbit, 4.5-hour flight test, completed on Dec. 5. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  8. ORION Media Event at LASF

    NASA Image and Video Library

    2014-12-19

    NASA's Orion spacecraft is viewed by members of the media at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Speaking to the media during the viewing opportunity is Phil Weber, with the Ground Systems Development and Operations Program, or GSDO. At left is Jules Schneider, Lockheed Martin manager. At right is Glenn Chin, Orion Production Operations, and Lou Garcia, with GSDO. Orion made the 8-day, 2,700 mile overland trip back to Kennedy from Naval Base San Diego in California. Analysis of date obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. GSDO led the recovery, offload and transportation efforts.

  9. KSC-2014-4869

    NASA Image and Video Library

    2014-12-19

    CAPE CANAVERAL, Fla. -- Lockheed Martin Manager Jules Schneider speaks to members of the media during a viewing of NASA's Orion spacecraft at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The spacecraft's cross-country return, a 2,700 mile road trip from Naval Base San Diego to Kennedy, sets the stage for in-depth analysis of data obtained during Orion's trip to space. It will provide engineers with detailed information on how the spacecraft fared during its two-orbit, 4.5-hour flight test, completed on Dec. 5. The Ground Systems Development and Operations Program led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  10. The Brick Moon

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Science fiction writers, like Jules Verne in France and Edward Everett Hale in America, had discovered one of the most vital elements in the formula for space travel-a fertile imagination. The first known proposal for a marned-satellite appears in a story by Hale entitled 'The Brick Moon' published in 1899. The story involved a group of young Bostonians who planned to put an artificial satellite into polar orbit for sailors to use to determine longitude accurately and easily. They planned to send a brick satellite into orbit because the satellite would have to withstand fire very well. The Satellite's 37 inhabitants signaled the Earth in morse code by jumping up and down on the outside of the satellite.

  11. The body's tailored suit: Skin as a mechanical interface.

    PubMed

    Tissot, Floriane S; Boulter, Etienne; Estrach, Soline; Féral, Chloé C

    2016-11-01

    Skin, by nature, is very similar to the Rouquayrol-Denayrouze suit mentioned by Jules Verne in Twenty Thousand Leagues Under the Sea: it allows "to risk (…) new physiological conditions without suffering any organic disorder". Mechanical cues, to the same extent as other environmental parameters, are such "new physiological conditions". Indeed, skin's primary function is to form a protective barrier to shield inner tissues from the external environment. This requires unique mechanical properties as well as the ability to sense mechanical cues from the environment in order to prevent or repair mechanical damages as well as to function as the primary mechanosensory interface of the whole body. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Coupled C, N and P Controls on Photosynthesis, Primary Production and Decomposition across a Land Use Intensification Gradient and Implications for Land Atmosphere C Exchange

    NASA Astrophysics Data System (ADS)

    Reinsch, S.; Emmett, B.; Cosby, J.; Mercado, L. M.; Smart, S.; Glanville, H.; Alberola, M. B.; Clark, D.; Robinson, E.; Jones, D.

    2015-12-01

    The coupling of C, N and P cycles has rarely been studied through the air- land-water continuum. This is essential if we are to enhance land-atmosphere models to account for N and P limitations. It is also important for developing integrated catchment management solutions to deliver improved water quality combined with a wide range of other ecosystem functions and services.We present results from a project which is part of the interdisciplinary pan-UK NERC Macronutrient Cycles Programme (macronutrient-cycles.ouce.ox.ac.uk/). Our aim is to quantify how coupled C, N & P cycles change across a land use intensification gradient from arable to grass, woodland and bog ecosystems and identify the implications for land-atmosphere C exchange. We focus on three key processes; photosynthesis, annual net primary productivity (ANPP) and decomposition and explore their consequences for biodiversity. Other aspects of the project track delivery to, and transformations within, the freshwater and coastal systems. When we explore relationships between C, N and P, results indicate all habitat types fall on a single land use intensification gradient. Stoichiometry suggests plant productivity is primarily N limited. P limitation occurs rarely but at all levels of intensification. Soil priming shows our soils are primarily C limited and, surprisingly, soil acidity provides one of the most powerful single predictors of processes and ecosystem services perhaps as it is a good integrator of many soil properties. Incorporating this knowledge into the UK land-atmosphere model JULES will be used to improve ANPP projections. These will then be used as inputs into a plant species model called MULTIMOVE to enable future scenarios of climate change, land use and air pollution on habitat suitability for > 1400 plant species to be explored. The enhanced Jules model will ensure both N and P limitations on C fluxes from above and below-ground are incorporated into future UK scenario applications.

  13. Coupled C, N and P controls on photosynthesis, primary production and decomposition across a land use intensification gradient and implications for land atmosphere C exchange

    NASA Astrophysics Data System (ADS)

    Reinsch, Sabine; Glanville, Helen; Smart, Simon; Jones, Davey; Mercado, Lina; Blanes-Alberola, Mamen; Cosby, Jack; Emmett, Bridget

    2016-04-01

    The coupling of C, N and P cycles has rarely been studied through the air- land-water continuum. This is essential if we are to enhance land-atmosphere models to account for N and P limitations. It is also important for developing integrated catchment management solutions to deliver improved water quality combined with a wide range of other ecosystem functions and services. We present results from a project which is part of the interdisciplinary pan-UK NERC Macronutrient Cycles Programme (macronutrient-cycles.ouce.ox.ac.uk/). Our aim is to quantify how coupled C, N & P cycles change across a land use intensification gradient from arable to grass, woodland and bog ecosystems and identify the implications for land-atmosphere C exchange. We focus on three key processes; photosynthesis, annual net primary productivity and decomposition and explore their consequences for biodiversity. Other aspects of the project track delivery to, and transformations within, the freshwater and coastal systems. When we explore relationships between C, N and P, results indicate all habitat types fall on a single land use intensification gradient. Stoichiometry suggests plant productivity is primarily N limited. P limitation occurs rarely but at all levels of intensification. Soil priming shows our soils are primarily C limited and, surprisingly, soil acidity provides one of the most powerful single predictors of processes and ecosystem services perhaps as it is a good integrator of many soil properties. Incorporating this knowledge into the UK land-atmosphere model JULES will improve aNPP projections. These are then being used as inputs into a plant species model called MULTIMOVE to enable future scenarios of climate change, land use and air pollution on habitat suitability for > 1400 plant species to be explored. The enhanced Jules model will ensure both N and P limitations on C fluxes from above and below-ground are incorporated into future UK scenario applications.

  14. Interactive Geophysical Mapping on the Web

    NASA Astrophysics Data System (ADS)

    Meertens, C.; Hamburger, M.; Estey, L.; Weingroff, M.; Deardorff, R.; Holt, W.

    2002-12-01

    We have developed a set of interactive, web-based map utilities that make geophysical results accessible to a large number and variety of users. These tools provide access to pre-determined map regions via a simple Html/JavaScript interface or to user-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Users can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Developed initially by UNAVCO for study of global-scale geodynamic processes, users can choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays for example coastlines, political boundaries, rivers and lakes, NEIC earthquake and volcano locations, stress axes, and observed and model plate motion and deformation velocity vectors representing a compilation of 2933 geodetic measurements from around the world. The software design is flexible allowing for construction of special editions for different target audiences. Custom maps been implemented for UNAVCO as the "Jules Verne Voyager" and "Voyager Junior", for the International Lithosphere Project's "Global Strain Rate Map", and for EarthScope Education and Outreach as "EarthScope Voyager Jr.". For the later, a number of EarthScope-specific features have been added, including locations of proposed USArray (seismic), Plate Boundary Observatory (geodetic), and San Andreas Fault Observatory at Depth sites plus detailed maps and geographically referenced examples of EarthScope-related scientific investigations. In addition, we are developing a website that incorporates background materials and curricular activities that encourage users to explore Earth processes. A cluster of map processing computers and nearly a terabyte of disk storage has been assembled to power the generation of interactive maps and provide space for a very large collection of map data. A portal to these map tools can be found at: http://jules.unavco.ucar.edu.

  15. First clinical use of stereotaxy in humans: the key role of x-ray localization discovered by Gaston Contremoulins.

    PubMed

    Bourdillon, Pierre; Apra, Caroline; Lévêque, Marc

    2018-03-01

    Although attempts to develop stereotactic approaches to intracranial surgery started in the late 19th century with Dittmar, Zernov, and more famously, Horsley and Clarke, widespread use of the technique for human brain surgery started in the second part of the 20th century. Remarkably, a significant similar surgical procedure had already been performed in the late 19th century by Gaston Contremoulins in France and has remained unknown. Contremoulins used the principles of modern stereotaxy in association with radiography for the first time, allowing the successful removal of intracranial bullets in 2 patients. This surgical premiere, greatly acknowledged in the popular French newspaper L'Illustration in 1897, received little scientific or governmental interest at the time, as it emanated from a young self-taught scientist without official medical education. This surgical innovation was only made possible financially by popular crowdfunding and, despite widespread military use during World War I, with 37,780 patients having benefited from this technique for intra- or extracranial foreign bodies, it never attracted academic or neurosurgical consideration. The authors of this paper describe the historical context of stereotactic developments and the personal history of Contremoulins, who worked in the department of experimental physiology of the French Academy of Sciences led by Étienne-Jules Marey in Paris, and later devoted himself to radiography and radioprotection. The authors also give precise information about his original stereotactic tool "the bullet finder" ("le chercheur de projectiles") and its key concepts.

  16. Innovations for In-Pile Measurements in the Framework of the CEA-SCK•CEN Joint Instrumentation Laboratory

    NASA Astrophysics Data System (ADS)

    Villard, Jean-Francois; Schyns, Marc

    2010-12-01

    Optimizing the life cycle of nuclear systems under safety constraints requires high-performance experimental programs to reduce uncertainties on margins and limits. In addition to improvement in modeling and simulation, innovation in instrumentation is crucial for analytical and integral experiments conducted in research reactors. The quality of nuclear research programs relies obviously on an excellent knowledge of their experimental environment which constantly calls for better online determination of neutron and gamma flux. But the combination of continuously increasing scientific requirements and new experimental domains -brought for example by Generation IV programsnecessitates also major innovations for in-pile measurements of temperature, dimensions, pressure or chemical analysis in innovative mediums. At the same time, the recent arising of a European platform around the building of the Jules Horowitz Reactor offers new opportunities for research institutes and organizations to pool their resources in order to face these technical challenges. In this situation, CEA (French Nuclear Energy Commission) and SCK'CEN (Belgian Nuclear Research Centre) have combined their efforts and now share common developments through a Joint Instrumentation Laboratory. Significant progresses have thus been obtained recently in the field of in-pile measurements, on one hand by improvement of existing measurement methods, and on the other hand by introduction in research reactors of original measurement techniques. This paper highlights the state-of-the-art and the main requirements regarding in-pile measurements, particularly for the needs of current and future irradiation programs performed in material testing reactors. Some of the main on-going developments performed in the framework of the Joint Instrumentation Laboratory are also described, such as: - a unique fast neutron flux measurement system using fission chambers with 242Pu deposit and a specific online data processing, - an optical system designed to perform in-pile dimensional measurements of material samples under irradiation, - an acoustical instrumentation allowing the online characterization of fission gas release in Pressurized Water Reactor fuel rods. For each example, the obtained results, expected impacts and development status are detailed.

  17. Cotard's Syndrome in a Patient with Schizophrenia: Case Report and Review of the Literature

    PubMed Central

    Ledesma-Gastañadui, Mario

    2016-01-01

    Jules Cotard described, in 1880, the case of a patient characterized by delusions of negation, immortality, and guilt as well as melancholic anxiety among other clinical features. Later this constellation of symptoms was given the eponym Cotard's syndrome, going through a series of theoretical vicissitudes, considering itself currently as just the presence of nihilistic delusions. The presentation of the complete clinical features described by Cotard is a rare occurrence, especially in the context of schizophrenia. Here we present the case of a 50-year-old male patient with schizophrenia who developed Cotard's syndrome. The patient was treated with aripiprazole, showing improvement after two weeks of treatment. A review of the literature is performed about this case. PMID:28053798

  18. Cotard's Syndrome in a Patient with Schizophrenia: Case Report and Review of the Literature.

    PubMed

    Huarcaya-Victoria, Jeff; Ledesma-Gastañadui, Mario; Huete-Cordova, Maria

    2016-01-01

    Jules Cotard described, in 1880, the case of a patient characterized by delusions of negation, immortality, and guilt as well as melancholic anxiety among other clinical features. Later this constellation of symptoms was given the eponym Cotard's syndrome, going through a series of theoretical vicissitudes, considering itself currently as just the presence of nihilistic delusions. The presentation of the complete clinical features described by Cotard is a rare occurrence, especially in the context of schizophrenia. Here we present the case of a 50-year-old male patient with schizophrenia who developed Cotard's syndrome. The patient was treated with aripiprazole, showing improvement after two weeks of treatment. A review of the literature is performed about this case.

  19. Operational tools and applications of EO satellite data to retrieve surface fluxes in semi-arid countries

    NASA Astrophysics Data System (ADS)

    Tanguy, Maliko

    The objective of the thesis is to develop and evaluate useful tools and applications of Earth Observation (EO) satellite data to estimate surface fluxes in semi-arid countries. In a first part (Chapter 4), we assess the performance of a new parameterisation scheme of ground heat flux (G) to be used in remote sensing (RS) evapotranspiration (ET) estimation methods. The G-parameterisation optimized with AMMA flux data performs well and improves the sensible heat flux (H) and ET retrieved by means of the triangle method (Jiang & Islam, 2001). In a second part (Chapter 5), the triangle method is compared with ET estimated by means of a land surface model (JULES). An attempt is made to calibrate JULES using the triangle method through Monte Carlo simulations, but the two methods supply rather different results, indicating that further intercomparison tasks should be carried out to assess the performance of RS-based algorithms and land surface models in estimating the components of the land surface energy balance. Chapter 6 presents a set of operational examples for retrieving surface fluxes using RS data. The first example is the study of temporal evolution of ET-maps in Western Africa under monsoonal influence. In a second example, we apply the new scheme proposed in Chapter 4 to retrieve and analyse the long term evolution (2000-2009) of the surface energy balance components, G, H and ET at several sites of the Segura Basin (S-E Spain) using MODIS-Terra data (land surface temperature and NDVI). Temporal and spatial distribution of evapotranspiration reveals different controls on ET. (Chapter 6). In the last example, MODIS-Aqua Sea Surface Temperature (SST) is used to validate a mathematical model to retrieve surface fluxes in a Mediterranean coastal lagoon (Mar Menor, S-E Spain). El objetivo de esta tesis es de desarrollar y evaluar herramientas y aplicaciones de la teledetección para estimar flujos de superficie en zonas semiáridas. En una primera parte (Capítulo 4), se evalúa la fiabilidad de una nueva parametrización para estimar el flujo de calor en el suelo (G) con el fin de ser utilizado en métodos de estimación de la evapotranspiración (ET) usando datos de teledetección. La parametrización de G se optimiza usando datos de flujo de energía obtenido durante las campañas del proyecto AMMA, y muestra buenos resultados y una mejora de las estimaciones del flujo de calor sensible (H) y de ET cuando se utiliza conjuntamente con el método del triángulo (Jiang & Islam, 2001). En una segunda parte (Capítulo 5), el método del triángulo se compara con valores de ET estimado por un modelo de superficie terrestre (JULES). Se intenta calibrar JULES usando el método del triángulo mediante simulaciones de Monte Carlo, pero los dos métodos muestran resultados muy diferentes, indicando que se necesita tareas de comparación profundizadas para poder evaluar la eficacia de estos modelos (de superficie terrestre y basados en la teledetección) para estimar los flujos de energía a la superficie. El capítulo 6 presenta un conjunto de ejemplos de aplicaciones operacionales para estimar los flujos de superficie usando datos de teledetección. El primer ejemplo consiste en el estudio de la evolución temporal de mapas de ET en África occidental bajo la influencia del monzón africano. En el segundo ejemplo, se aplica la nueva parametrización de G descrita en el capítulo 4 para calcular y analizar la evolución a largo plazo (2000-2009) de los componentes del balance de energía a la superficie, G, H y ET, en diferentes puntos de la cuenca del río Segura (Sureste español) utilizando datos del sensor MODIS-Terra (temperatura superficial y NDVI). La distribución temporal y espacial de ET revela diferentes controles sobre ET. En el último ejemplo, datos de temperatura superficial del mar del sensor MODIS-Aqua se utilizaron para validar un modelo matemático para calcular los flujos superficiales de una laguna costera del Mediterráneo (Mar Menor en el Sureste español).

  20. [Theophile-Jules Pelouze (1807-1867) was one of the French pharmacists who has the most contributed to the evolution of the organic chemisty in the first half of the 19th century].

    PubMed

    Arnaud, Pascal

    2015-03-01

    Through some examples of his works, realized between 1833 and 1845 (studies on the tannin, the reaction of etherification, and on the nature of the chemical function of the glycerin), this article tries to bring to light his scientific approach. This one is not only based on the immediate analysis and the elementary analysis, but also on the study of characteristic chemical reactions, which are going to give him information onto the chemical nature and the constitution of the molecules which he studies. This approach will lead him finally to use these reactions not only in an analytical purpose but also in a purpose of synthesis.

  1. Nitrogen deposition, land cover conversion, climate, and contemporary carbon balance of Europe (Invited)

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Zahle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Ramankutty, N.; Roedenbeck, C.; Heimann, M.; Jones, C.

    2009-12-01

    In Europe, atmospheric nitrogen deposition has more than doubled, air temperature was rising, forest cover was steadily increasing, while agricultural area was declining over the last 50 years. What effect have these changes had on the European carbon balance? In this study we estimate responses of the European land ecosystems to nitrogen deposition, rising CO2, land cover conversion and climate change. We use results from three ecosystem process models such as BIOME-BGC, JULES, and ORCHIDEE (-CN) to address this question. We discuss to which degree carbon balance of Europe has been altered by nitrogen deposition in comparison to other drivers and identify areas which carbon balance has been affected by anthropogenic changes the most. We also analyze ecosystems carbon pools which were affected by the abovementioned environmental changes.

  2. KSC-2015-1019

    NASA Image and Video Library

    2015-01-06

    CAPE CANAVERAL, Fla. -- NASA Administrator Charlie Bolden looked over the agency's Orion spacecraft this morning for the first time since it returned to Kennedy Space Center following the successful Orion flight test on Dec. 5. At right is Jules Schneider, Lockheed Martin manager. At left is Kennedy Space Center Associate Director Kelvin Manning. Bearing the marks of a spacecraft that has returned to Earth through a searing plunge into the atmosphere, Orion is perched on a pedestal inside the Launch Abort System Facility at Kennedy where it is going through post-mission processing. Although the spacecraft Bolden looked over did not fly with a crew aboard during the flight test, Orion is designed to carry astronauts into deep space in the future setting NASA and the nation firmly on the journey to Mars. Photo credit: NASA/Cory Huston

  3. KSC-2012-4598

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. - In the Operations and Checkout Building at the Kennedy Space Center in Florida, NASA Administrator Charles Bolden, center, addresses news media in front of the Orion EFT-1 spacecraft. Also participating are Jules Schneider, senior manager of Project Engineering for the Lockheed Martin Orion Program at Kennedy, left, and Scott Wilson, NASA's manager of Production Operations for the Orion Program. Bolden took a few dozen members of the news media on a tour of the space agency's Kennedy Space Center and adjacent Cape Canaveral Air Force Station on Aug. 23, 2012 to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. For more information, visit: http://www.nasa.gov/centers/kennedy/news/kennedy-bolden-tour.html Photo credit: NASA/Kim Shiflett

  4. KSC-2014-4873

    NASA Image and Video Library

    2014-12-19

    CAPE CANAVERAL, Fla. -- NASA's Orion spacecraft is viewed by members of the media at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Speaking to the media during the viewing opportunity is Jules Schneider, Lockheed Martin Manager. Behind him, from left, are Glenn Chin, Orion Production Operations manager and Phil Weber and Lou Garcia, with the Ground Systems Development and Operations Program, or GSDO. Orion made the 8-day, 2,700 mile overland trip back to Kennedy from Naval Base San Diego in California. Analysis of date obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers with detailed information on how the spacecraft fared. GSDO led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  5. Charney's Influence on Modern Oceanography

    NASA Astrophysics Data System (ADS)

    Cane, M. A.

    2017-12-01

    In this talk I will review some of Jule Charney's impacts on current oceanographic research. He was of course a major seminal figure in geophysical fluid dynamics, an approach to understanding the atmosphere and oceans that has been thoroughly absorbed in contemporary thinking. In oceanography, his publications make vorticity dynamics the centerpiece of his analysis. Here I pursue two other aspects of his work. The first is to note that his 1955 paper "The Gulf Stream as an inertial boundary layer" appears to be the earliest numerical model in oceanography. The second is that his work on the equatorial undercurrent leads to a simplification of equatorial ocean structure that was exploited by Zebiak and Cane in their model for ENSO, and thus structures later views of how equatorial ocean dynamics influence sea surface temperature.

  6. KSC-2014-4874

    NASA Image and Video Library

    2014-12-19

    CAPE CANAVERAL, Fla. -- NASA's Orion spacecraft is viewed by members of the media at the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. Speaking to the media during the viewing opportunity is Phil Weber, with the Ground Systems Development and Operations Program, or GSDO. At left is Jules Schneider, Lockheed Martin manager. At right is Glenn Chin, Orion Production Operations, and Lou Garcia, with GSDO. Orion made the 8-day, 2,700 mile overland trip back to Kennedy from Naval Base San Diego in California. Analysis of date obtained during its two-orbit, four-and-a-half hour mission Dec. 5 will provide engineers detailed information on how the spacecraft fared. GSDO led the recovery, offload and transportation efforts. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  7. Augusta Déjerine-Klumpke: the first female neuroanatomist.

    PubMed

    Shoja, Mohammadali M; Tubbs, R Shane

    2007-08-01

    Augusta Déjerine-Klumpke, the wife of Joseph Jules Dejerine, an eminent French neurologist, was an American and the first woman to intern in a Parisian hospital. She is known for Klumpke's radicular palsy, which is a neuropathy involving the lower nerve roots of the brachial plexus. The neuroanatomical treatise that she wrote together with her husband is considered a masterpiece. Klumpke won several awards in medical science, the first of which was in the field of anatomy when she was a student. She was a pioneer of rehabilitation therapy after spinal cord injuries and contributed much to our current knowledge of spinal cord diseases. We review the current English and French literature regarding this neuroanatomist who was the first woman to directly contribute to the writing of a neuroanatomy textbook.

  8. The Klumpke family--memories by Doctor Déjerine, born Augusta Klumpke.

    PubMed

    Bogousslavsky, Julien

    2005-01-01

    In this paper, we present a translation of an unpublished autobiographical document by Augusta Déjerine-Klumpke, reporting her early years before she came to Paris to study medicine, when she was able to become one of the first women in France to hold a hospital position, as an extern and an intern. This American-born girl later married Jules Déjerine, who was to become the second successor to Charcot at La Salpétrière 23 years later. The present document gives a vivid account on the preceding years, and emphasizes the extraordinary dynamism and enthusiasm of a young woman, whose efforts and contributions influenced neurology at the turn of the 20th century, and dramatically changed the role of women in medical careers.

  9. Distributed hydrological models to quantify ecosystem services and inform land use decisions in Europe

    NASA Astrophysics Data System (ADS)

    Wilebore, Beccy; Willis, Kathy

    2016-04-01

    Landcover conversion is one of the largest anthropogenic threats to ecological services globally; in the EU around 1500 ha of biodiverse land are lost every day to changes in infrastructure and urbanisation. This land conversion directly affects key ecosystem services that support natural infrastructure, including water flow regulation and the mitigation of flood risks. We assess the sensitivity of runoff production to landcover in the UK at a high spatial resolution, using a distributed hydrologic model in the regional land-surface model JULES (Joint UK Land Environment Simulator). This work, as part of the wider initiative 'NaturEtrade', will create a novel suite of easy-to-use tools and mechanisms to allow EU landowners to quickly map and assess the value of their land in providing key ecosystem services.

  10. Mitigation potential of horizontal ground coupled heat pumps for current and future climatic conditions: UK environmental modelling and monitoring studies

    NASA Astrophysics Data System (ADS)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Gan, Guohui; Wu, Yupeng; Hughes, Andrew; Mansour, Majdi; Blyth, Eleanor; Finch, Jon; Main, Bruce

    2010-05-01

    An increased uptake of alternative low or non-CO2 emitting energy sources is one of the key priorities for policy makers to mitigate the effects of environmental change. Relatively little work has been undertaken on the mitigation potential of Ground Coupled Heat Pumps (GCHPs) despite the fact that a GCHP could significantly reduce CO2 emissions from heating systems. It is predicted that under climate change the most probable scenario is for UK temperatures to increase and for winter rainfall to become more abundant; the latter is likely to cause a general rise in groundwater levels. Summer rainfall may reduce considerably, while vegetation type and density may change. Furthermore, recent studies underline the likelihood of an increase in the number of heat waves. Under such a scenario, GCHPs will increasingly be used for cooling as well as heating. These factors will affect long-term performance of horizontal GCHP systems and hence their economic viability and mitigation potential during their life span ( 50 years). The seasonal temperature differences encountered in soil are harnessed by GCHPs to provide heating in the winter and cooling in the summer. The performance of a GCHP system will depend on technical factors (heat exchanger (HE) type, length, depth, and spacing of pipes), but also it will be determined to a large extent by interactions between the below-ground parts of the system and the environment (atmospheric conditions, vegetation and soil characteristics). Depending on the balance between extraction and rejection of heat from and to the ground, the soil temperature in the neighbourhood of the HE may fall or rise. The GROMIT project (GROund coupled heat pumps MITigation potential), funded by the Natural Environment Research Council (UK), is a multi-disciplinary research project, in collaboration with EarthEnergy Ltd., which aims to quantify the CO2 mitigation potential of horizontal GCHPs. It considers changing environmental conditions and combines model predictions of soil moisture content and soil temperature with measurements at different GCHP locations over the UK. The combined effect of environment dynamics and horizontal GCHP technical properties on long-term GCHP performance will be assessed using a detailed land surface model (JULES: Joint UK Land Environment Simulator, Meteorological Office, UK) with additional equations embedded describing the interaction between GCHP heat exchangers and the surrounding soil. However, a number of key soil physical processes are currently not incorporated in JULES, such as groundwater flow, which, especially in lowland areas, can have an important effect on the heat flow between soil and HE. Furthermore, the interaction between HE and soil may also cause soil vapour and moisture fluxes. These will affect soil thermal conductivity and hence heat flow between the HE and the surrounding soil, which will in turn influence system performance. The project will address these issues. We propose to drive an improved version of JULES (with equations to simulate GCHP exchange embedded), with long-term gridded (1 km) atmospheric, soil and vegetation data (reflecting current and future environmental conditions) to reliably assess the mitigation potential of GCHPs over the entire domain of the UK, where uptake of GCHPs has been low traditionally. In this way we can identify areas that are most suitable for the installation of GCHPs. Only then recommendations can be made to local and regional governments, for example, on how to improve the mitigation potential in less suitable areas by adjusting GCHP configurations or design.

  11. Wetland methane modelling over the Scandinavian Arctic: Performance of current land-surface models

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; Quiquet, Aurélien; Gedney, Nicola; Clark, Douglas; Friend, Andrew; George, Charles; Prigent, Catherine

    2014-05-01

    Wetlands are generally accepted as being the largest, but least well quantified, single natural source of CH4, with global emission estimates ranging from 100-231 Tg yr-1 [1] and for which the Boreal and Arctic regions make a significant contribution [2, 3]. The recent review by Melton et al. [4] has provided a summary of the current state of knowledge on the modelling of wetlands and the outcome of the WETCHIMP model intercomparison exercise. Melton et al. found a large variation in the wetland areas and associated methane emissions from the participating models and varying responses to climate change. In this paper, we report results from offline runs of two land surface models over Scandinavia (JULES, the Joint UK Land Environment Simulator [5, 6] and HYBRID8 [7]), using the same driving meteorological dataset (CRU-NCEP) for the period from January 1980 to December 2010. Although the two land surface models are very different, both models have used a TOPMODEL approach to derive the wetland area and have similar parameterisations of the methane wetland emissions. We find that both models give broadly similar results. They underestimate the wetland areas over Northern Scandinavia, compared to remote sensing and map-based datasets of wetlands [8]. This leads to lower predicted methane emissions compared to those observed on the ground and from aircraft [9]. We will present these findings and identify possible reasons for the underprediction. We will show the sensitivity to using the observed wetland areas to improve the methane emission estimates. References [1] Denman, K., et al.,: Couplings Between Changes in the Climate System and Biogeochemistry, In Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, United Kingdom, 2007; [2] Smith, L. C., et al.: Siberian peatlands a net carbon sink and global methane source since the early Holocene, Science, 303, 353-356, doi:10.1126/science.1090553, 2004; [3] Zhuang, Q., et al.: CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century, Geophysical Research Letters, 33, doi:10.1029/2006gl026972, 2006; [4] Melton, J.R., et al.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753-788, doi:10.5194/bg-10-753-2013, 2013; [5] Best, M. J., et al.: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes, Geoscientific Model Development, 4, 677-699, doi:10.5194/gmd-4-677-2011, 2011; [6] Clark, D.B., et al.: The Joint UK Land Environment Simulator (JULES), Model description - Part 2: Carbon fluxes and vegetation. Geoscientific Model Development, 4, 701-722, doi:10.5194/gmd-4-701-2011, 2011; [7] Friend, A.D., and N.Y. Kiang: Land surface model development for the GISS GCM: Effects of improved canopy physiology on simulated climate. J. Climate, 18, 2883-2902, doi:10.1175/JCLI3425.1, 2005; [8] Prigent, C., et al.: Changes in land surface water dynamics since the 1990s and relation to population pressure, Geophys. Res. Lett., 39, L08403, doi:10.1029/2012GL051276, 2012; [9] O'Shea, S., et al.: Methane and carbon dioxide fluxes from the European Arctic wetlands during the MAMM project, paper in preparation.

  12. Laboratory analysis of phacoemulsifier compliance and capacity.

    PubMed

    Nejad, Mitra; Injev, Valentine P; Miller, Kevin M

    2012-11-01

    To compare the compliance and capacity of 7 fluidics modules used by 6 phacoemulsifiers from 3 manufacturers. Jules Stein Eye Institute, Los Angeles, California, USA. Experimental study. Previous-model and current-model phacoemulsifiers from 3 manufacturers were subjected to laboratory analysis of compliance and capacity. Previous-generation models tested included the Legacy Advantec, Whitestar Sovereign Phacoemulsification System, and Millennium Microsurgical System. Current models tested were the Infiniti Vision System with standard and Intrepid cassettes, Whitestar Signature Phacoemulsification System, and Stellaris Vision Enhancement System. To measure compliance, the aspiration line was connected to an electronic pressure transducer and small volumes of fluid were injected or aspirated. To measure capacity, the space between the distal end of the aspiration line and the pump was filled with methylene blue-dyed fluid. The Legacy was the most compliant phacoemulsifier. The old and new Whitestar systems, Millennium system, and Stellaris system showed similar midrange compliances. The Infiniti Vision System with the Intrepid fluidic management system was the least compliant. The Infiniti cassettes had the greatest capacity, which is a detriment from a surge-control perspective, and Signature cassettes had the least capacity. The Infiniti Intrepid system had the lowest compliance of the 6 units tested, which is optimum from a surge-control perspective. All other things being equal, the Infiniti should have the safest occlusion-break surge response. Mr. Injev is an employee of Alcon Laboratories. Dr. Miller is a consultant to and investigator for Alcon Laboratories. Ms. Nejad has no financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. JHR Project: a future Material Testing Reactor working as an International user Facility: The key-role of instrumentation in support to the development of modern experimental capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bignan, G.; Gonnier, C.; Lyoussi, A.

    2015-07-01

    Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and Dmore » support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under construction at CEA Cadarache research centre in the south of France will represent a major Research Infrastructure for scientific studies regarding material and fuel behavior under irradiation. It will also be devoted to medical isotopes production. Hence JHR will offer a real opportunity to perform R and D programs regarding needs above and hence will crucially contribute to the selection, optimization and qualification of these innovative materials and fuels. The JHR reactor objectives, principles and main characteristics associated to specific experimental devices associated to measurement techniques and methodology, their performances, their limitations and field of applications will be presented and discussed. (authors)« less

  14. Monte Carlo Interpretation of the Photon Heating Measurements in the Integral AMMON/REF Experiment in the EOLE Facility

    NASA Astrophysics Data System (ADS)

    Vaglio-Gaudard, C.; Stoll, K.; Ravaux, S.; Lemaire, M.; Colombier, A. C.; Hudelot, J. P.; Bernard, D.; Amharrak, H.; Di Salvo, J.; Gruel, A.

    2014-02-01

    An experiment named AMMON is dedicated to the analysis of the neutron and photon physics of the Jules Horowitz Reactor (JHR). AMMON, performed in the EOLE zero-power experimental reactor at CEA Cadarache, is finished since April 2013. Photon heating measurements were performed with both Thermoluminescent Dosimeters (TLD-400s) and Optically-Stimulated Dosimeters (OSLDs) in three AMMON configurations. The objective is to provide data for the experimental validation of the JHR photon calculation tool. The first analysis of the photon heating measurements of the reference configuration (AMMON/REF) is presented in this paper. The reference configuration consists of an experimental zone of 7 JHR assemblies with U3Si2 - Al 27% 235U enriched fuel curved plates surrounded by a driver zone with 623 standard PWR UOx fuel pins. The photon heating has been measured in the aluminum follower of the central and peripheral assemblies, and in aluminum fillers in the rack between assemblies. The measurement analysis is based on Monte Carlo TRIPOLI-4 ® version 8.1 calculations modeling the core exact three-dimensional geometry. The JEFF nuclear data library is used for the calculation of the neutron transport and the photon emission in the AMMON/REF experiment. The photon transport is made on the basis of the EPDL97 photo-atomic library. The prompt and delayed doses deposited in dosimeters have been estimated separately. The transport of 4 (neutrons, photons, electrons and positrons) or 3 particles (photons, electrons and positrons) is simulated in the calculations for the AMMON/REF analysis, depending whether the prompt or delayed dose is calculated. The TRIPOLI-4.8.1 ® calculations makes it possible the modeling of the electromagnetic cascade shower with both electrons and positrons. The delayed dose represents about 25% of the total photon energy deposition in the dosimeters. The comparison between Calculation and Experiment brings into relief a slight systematic underestimation of the calculated global photon energy deposition: (C - E)/E = - 8% ±4.5% (1σ). A special care has been directed towards the determination of the uncertainty associated with the (C-E)/E values. The slight underestimation could be probably explained by an underestimation in the photon emission with the JEFF library.

  15. Restoration of an old telescope: a pedagogic opportunity

    NASA Astrophysics Data System (ADS)

    Le Gall, Christophe

    2016-04-01

    The "Lycée Jules Haag" High School is a former clockwork learning school. It has a telescope, built in the 1930's, which was used to calibrate time for watches. Nowadays, this telescope is no longer of any practical use, and has been classified for its historical interest. Thanks to the financial help of local companies, a new pedagogic project has started inside our school. This astronomical device is going to be repaired, and many teachers and classes will be involved. This will create opportunities during and after the restoration. Our High School will have practical classes that may work around the motorisation of the telescope and creating a new eyepiece. When the telescope is operational, we can use this device for physics and optics classes, and organise an astronomical club to do some day and night observations.

  16. KSC-2014-3634

    NASA Image and Video Library

    2014-08-22

    CAPE CANAVERAL, Fla. – NASA astronauts tour the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, and view the Orion forward bay cover for Exploration Flight Test-1. From left, are Jack Fischer, Mark Vande Hei, Katie Rubins and Scott Tingle. At far right is Jules Schneider, Lockheed Martin senior manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  17. A novel representation of groundwater dynamics in large-scale land surface modelling

    NASA Astrophysics Data System (ADS)

    Rahman, Mostaquimur; Rosolem, Rafael; Kollet, Stefan

    2017-04-01

    Land surface processes are connected to groundwater dynamics via shallow soil moisture. For example, groundwater affects evapotranspiration (by influencing the variability of soil moisture) and runoff generation mechanisms. However, contemporary Land Surface Models (LSM) generally consider isolated soil columns and free drainage lower boundary condition for simulating hydrology. This is mainly due to the fact that incorporating detailed groundwater dynamics in LSMs usually requires considerable computing resources, especially for large-scale applications (e.g., continental to global). Yet, these simplifications undermine the potential effect of groundwater dynamics on land surface mass and energy fluxes. In this study, we present a novel approach of representing high-resolution groundwater dynamics in LSMs that is computationally efficient for large-scale applications. This new parameterization is incorporated in the Joint UK Land Environment Simulator (JULES) and tested at the continental-scale.

  18. Techniques d'inspection par ondes guidees ultrasonores d'assemblages brases dans des reacteurs aeronautiques =

    NASA Astrophysics Data System (ADS)

    Comot, Pierre

    L'industrie aeronautique, cherche a etudier la possibilite d'utiliser de maniere structurelle des joints brases, dans une optique de reduction de poids et de cout. Le developpement d'une methode d'evaluation rapide, fiable et peu couteuse pour evaluer l'integrite structurelle des joints apparait donc indispensable. La resistance mecanique d'un joint brase dependant principalement de la quantite de phase fragile dans sa microstructure. Les ondes guidees ultrasonores permettent de detecter ce type de phase lorsqu'elles sont couplees a une mesure spatio-temporelle. De plus la nature de ce type d'ondes permet l'inspection de joints ayant des formes complexes. Ce memoire se concentre donc sur le developpement d'une technique basee sur l'utilisation d'ondes guidees ultrasonores pour l'inspection de joints brases a recouvrement d'Inconel 625 avec comme metal d'apport du BNi-2. Dans un premiers temps un modele elements finis du joint a ete utilise pour simuler la propagation des ultrasons et optimiser les parametres d'inspection, la simulation a permis egalement de demontrer la faisabilite de la technique pour la detection de la quantite de phase fragile dans ce type de joints. Les parametres optimises sont la forme de signal d'excitation, sa frequence centrale et la direction d'excitation. Les simulations ont montre que l'energie de l'onde ultrasonore transmise a travers le joint aussi bien que celle reflechie, toutes deux extraites des courbes de dispersion, etaient proportionnelles a la quantite de phase fragile presente dans le joint et donc cette methode permet d'identifier la presence ou non d'une phase fragile dans ce type de joint. Ensuite des experimentations ont ete menees sur trois echantillons typiques presentant differentes quantites de phase fragile dans le joint, pour obtenir ce type d'echantillons differents temps de brasage ont ete utilises (1, 60 et 180 min). Pour cela un banc d'essai automatise a ete developpe permettant d'effectuer une analyse similaire a celle utilisee en simulation. Les parametres experimentaux ayant ete choisis en accord avec l'optimisation effectuee lors des simulations et apres une premiere optimisation du procede experimental. Finalement les resultats experimentaux confirment les resultats obtenus en simulation, et demontrent le potentiel de la methode developpee.

  19. KSC-2015-1020

    NASA Image and Video Library

    2015-01-06

    CAPE CANAVERAL, Fla. -- NASA Administrator Charlie Bolden, third from right, looked over the agency's Orion spacecraft this morning for the first time since it returned to Kennedy Space Center following the successful Orion flight test on Dec. 5. At far right is Jules Schneider, Lockheed Martin manager. Standing near Bolden is Paul Cooper, a Lockheed Martin manager. At far left is Kennedy Space Center Associate Director Kelvin Manning. Bearing the marks of a spacecraft that has returned to Earth through a searing plunge into the atmosphere, Orion is perched on a pedestal inside the Launch Abort System Facility at Kennedy where it is going through post-mission processing. Although the spacecraft Bolden looked over did not fly with a crew aboard during the flight test, Orion is designed to carry astronauts into deep space in the future setting NASA and the nation firmly on the journey to Mars. Photo credit: NASA/Cory Huston

  20. Cotard's Syndrome after breast surgery successfully treated with aripiprazole augmentation of escitalopram: a case report.

    PubMed

    De Berardis, Domenico; Brucchi, Maurizio; Serroni, Nicola; Rapini, Gabriella; Campanella, Daniela; Vellante, Federica; Valchera, Alessandro; Fornaro, Michele; Iasevoli, Felice; Mazza, Monica; Lucidi, Giuliana; Martinotti, Giovanni; di Giannantonio, Massimo

    2015-01-01

    In 1880 the French neurologist Jules Cotard described a condition characterized by delusion of negation (nihilistic delusion) in a melancholia context. Recently, there has been a resurgence of interest in Cotard's syndrome (CS), but the nosographical figure of CS remains unclear. It isn't determined if it pertains to the delusional themes area or if it is related to the sense of immanent ruin in some depressive episodes. For these reasons CS has recently been supposed to be an intermediate form. Furthermore, since even less is known about secondary CS in subjects who had never suffered of psychiatric disorders, in the present case we report the development of a secondary CS in a female patient who underwent a lumpectomy for the removal of a benign fibroadenoma. The patient responded well to aripiprazole augmentation of escitalopram and totally remitted.

  1. KSC-2013-2882

    NASA Image and Video Library

    2013-06-20

    CAPE CANAVERAL, Fla. – Representatives from the European Space Agency, or ESA, toured the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Pointing at thermal protection system tiles is Jules Schneider, Lockheed Martin senior manager. At right, in the blue suit, is Bernardo Patti, ESA manager of International Space Station Operations. Standing next to Patti is Nico Dettman, ESA Space Transportation Department director. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  2. The first international leprosy conference, Berlin, 1897: the politics of segregation.

    PubMed

    Pandya, S S

    2004-01-01

    The present paper examines the first attempts to internationalise the problem of leprosy, a subject hitherto overlooked by historians of imperialism and disease. The last decade of the nineteenth century saw many in the civilised countries of the imperialist West gripped by a paranoia about an invasion of leprosy via germ-laden immigrants and returning expatriates who had acquired the infection in leprosy endemic colonial possessions. Such alarmists clamoured for the adoption of vigorous leper segregation policies in such colonies. But the contagiousness of leprosy did not go unquestioned by other westerners. The convocation in Berlin of the first international meeting on leprosy revealed the interplay of differing and sometimes incompatible views about the containment of leprosy by segregation. The roles of officials from several countries, as well as the roles of five protagonists (Albert Ashmead, Jules Goldschmidt, Edvard Ehlers. Armauer Hansen, and Phineas Abraham) in the shaping of the Berlin Conference are here examined.

  3. The first international leprosy conference, Berlin, 1897: the politics of segregation.

    PubMed

    Pandya, Shubhada S

    2003-01-01

    The present paper examines the first attempts to internationalize the problem of leprosy, a subject hitherto overlooked by historians of imperialism and disease. The last decade of the nineteenth century saw many in the 'civilized countries' of the imperialist West gripped by a paranoia about an invasion of leprosy via germ-laden immigrants and returning expatriates who had acquired the infection in leprosy-endemic colonial possessions. Such alarmists clamoured for the adoption of vigorous leper segregation policies in such colonies. But the contagiousness of leprosy did not go unquestioned by other westerners. The convocation in Berlin of the first international meeting on leprosy revealed the interplay of differing and sometimes incompatible views about the containment of leprosy by segregation. The roles of officials from several countries, as well as the roles of five protagonists (Albert Ashmead, Jules Goldschmidt, Edvard Ehlers, Armauer Hansen, and Phineas Abraham) in the shaping of the Berlin Conference are here examined.

  4. Vision and the Nobel Prize.

    PubMed

    Morais, Fábio Barreto

    2018-04-01

    The Nobel Prize is the world's foremost honor for scientific advances in medicine and other areas. Founded by Alfred Nobel, the prizes have been awarded annually since 1901. We reviewed the literature on persons who have won or competed for this prize in subjects related to vision and ophthalmology. The topics were divided into vision physiology, diagnostic and therapeutic methods, disease mechanism, and miscellaneous categories. Allvar Gullstrand is the only ophthalmologist to win a Nobel Prize; he is also the only one to receive it for work in ophthalmology. Other ophthalmologists that have been nominated were Hjalmar Schiötz (tonometer), Karl Koller (topical anesthesia), and Jules Gonin (retinal detachment). Other scientists have won the prize for eye-related research: Ragnar Granit, Haldan Hartline and George Wald (chemistry and physiology of vision), and David Hubel and Torsten Wiesel (processing in the visual system). Peter Medawar is the only person born in Brazil to have won the Nobel Prize.

  5. Health support for the Raid of the Seven Stones : in the footsteps of Navy physician Jules Crevaux in French Guiana.

    PubMed

    Barthes, N; Boudsocq, J-P

    2017-06-01

    In the summer of 2015, soldiers of the 3rd Foreign Infantry Regiment and civilian scientists mounted a joint expedition on foot to reconnoiter and better define the southern frontier of French Guiana with Brazil. Three doctor-nurse pairs worked in relay to provide medical support for this unprecedented 42-day, 320-km journey through a hostile and isolated environment, a mission whose success was made possible by large-scale logistic and technical prowess. The army health department, using knowledge gained from previous large-scale missions and expeditions and from its staff's local experience, provided its technical support for personnel selection, organization of the health logistics, and field support. This article describes the difficulties encountered from a medical perspective, the diseases encountered, and the final assessments of the personnel who completed this expedition.

  6. On multi-level thinking and scientific understanding

    NASA Astrophysics Data System (ADS)

    McIntyre, Michael Edgeworth

    2017-10-01

    Professor Duzheng YE's name has been familiar to me ever since my postdoctoral years at MIT with Professors Jule CHARNEY and Norman PHILLIPS, back in the late 1960s. I had the enormous pleasure of meeting Professor YE personally in 1992 in Beijing. His concern to promote the very best science and to use it well, and his thinking on multi-level orderly human activities, reminds me not only of the communication skills we need as scientists but also of the multi-level nature of science itself. Here I want to say something (a) about what science is; (b) about why multi-level thinking—and taking more than one viewpoint—is so important for scientific as well as for other forms of understanding; and (c) about what is meant, at a deep level, by "scientific understanding" and trying to communicate it, not only with lay persons but also across professional disciplines. I hope that Professor YE would approve.

  7. A multiple scales approach to maximal superintegrability

    NASA Astrophysics Data System (ADS)

    Gubbiotti, G.; Latini, D.

    2018-07-01

    In this paper we present a simple, algorithmic test to establish if a Hamiltonian system is maximally superintegrable or not. This test is based on a very simple corollary of a theorem due to Nekhoroshev and on a perturbative technique called the multiple scales method. If the outcome is positive, this test can be used to suggest maximal superintegrability, whereas when the outcome is negative it can be used to disprove it. This method can be regarded as a finite dimensional analog of the multiple scales method as a way to produce soliton equations. We use this technique to show that the real counterpart of a mechanical system found by Jules Drach in 1935 is, in general, not maximally superintegrable. We give some hints on how this approach could be applied to classify maximally superintegrable systems by presenting a direct proof of the well-known Bertrand’s theorem.

  8. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency

    NASA Astrophysics Data System (ADS)

    Marthews, T.; Malhi, Y.; Girardin, C.; Silva-Espejo, J.; Aragão, L.; Metcalfe, D.; Rapp, J.; Mercado, L.; Fisher, R.; Galbraith, D.; Fisher, J.; Salinas-Revilla, N.; Friend, A.; Restrepo-Coupe, N.; Williams, R.

    2012-04-01

    A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the results to published field measurements. In the upper montane zone the model predicted a vegetation dieback, indicating a need for better parameterisation of cloud forest vegetation. In the lower montane and lowland zones simulated ecosystem productivity and respiration were predicted with reasonable accuracy, although not always within the error bounds of the observations. Model-predicted carbon use efficiency in this transect surprisingly did not increase with elevation, but remained close to the 'temperate' value 0.5. This may be explained by elevational changes in the balance between growth and maintenance respiration within the forest canopy, as controlled by both temperature- and pressure-mediated processes.

  9. Fundus autofluorescence imaging in dry AMD: 2014 Jules Gonin lecture of the Retina Research Foundation.

    PubMed

    Holz, Frank G; Steinberg, Julia S; Göbel, Arno; Fleckenstein, Monika; Schmitz-Valckenberg, Steffen

    2015-01-01

    Fundus autofluorescence (FAF) imaging allows for topographic mapping of intrisnic fluorophores in the retinal pigment epithelial cell monolayer, as well as mapping of other fluorophores that may occur with disease in the outer retina and the sub-neurosensory space. FAF imaging provides information not obtainable with other imaging modalities. Near-infrared fundus autofluorescence images can also be obtained in vivo, and may be largely melanin-derived. FAF imaging has been shown to be useful in a wide spectrum of macular and retinal diseases. The scope of applications now includes identification of diseased RPE in macular/retinal diseases, elucidating pathophysiological mechanisms, identification of early disease stages, refined phenotyping, identification of prognostic markers for disease progression, monitoring disease progression in the context of both natural history and interventional therapeutic studies, and objective assessment of luteal pigment distribution and density as well as RPE melanin distribution. Here, we review the use of FAF imaging in various phenotypic manifestations of dry AMD.

  10. Humidity influence on atomic force microscopy electrostatic nanolithography

    NASA Astrophysics Data System (ADS)

    Lyuksyutov, Sergei; Juhl, Shane; Vaia, Richard

    2006-03-01

    The formation and sustainability of water menisci and bridges between solid dielectric surface and nano-asperity under external electrostatic potential is a mystery, which must be adequately explained. The goal of our study is twofold: (i) To address the influence of an ambient humidity through the water meniscus formation on the nanostructure formation in soften polymeric surfaces; (ii) Estimate an electric charge generation and transport inside the water meniscus in vicinity of nanoscale asperity taking into consideration an induced water ionization in strong non-uniform electric field of magnitude up to 10^10 Vm-1. It is suspected that strong electric field inside a polymer matrix activates the hoping mechanism of conductivity. The electrons are supplied by tunneling of conductive tip, and also through water ionization. Electric current associated with these free carriers produces Jule heating of a small volume of polymer film heating it above the glass transition temperature. Nanostructures are created by mass transport of visco-elastic polymer melt enabling high structure densities on polymer film.

  11. Electrostatic nanolithography in polymer materials: an alternative technique for nanostructures formation

    NASA Astrophysics Data System (ADS)

    Lyuksyutov, Sergei F.; Paramonov, Pavel B.; Sigalov, Grigori; Vaia, Richard A.; Juhl, Shane; Sancaktar, Erol

    2003-10-01

    The combination of localized softening attolitres (10^2 -10^4) of polymer film by Jule heating, extremely non-uniform electric field gradients to polarize and manipulate the soften polymer, and single step technique using conventional atomic force microscopy (AFM), establishes a new paradigm for nanolithography in a broad class of polymer materials allowing rapid (order of milliseconds) creation of raised and depressed nanostructures without external heating of a polymer film of AFM tip-film contact [1]. In this work we present recent studies of AFM-assisted electrostatic nanolithography (AFMEN) such as amplitude-modulated AFMEN, and the humidity influence on nanostructures formation during contact mode AFMEN. It has been shown that the aspect ratio of nanostructures grows on the order of magnitude (0.2), while the lateral dimensions of nanodots decreases down to 10-15 nm. [1] S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, S. Juhl, L. Waterhouse, R.M. Ralich, G. Sigalov, and E. Sancaktar, "Electrostatic nanolithography in polymers using atomic force microscopy," Nature Materials 2, 468-472 (2003)

  12. Contested Waterlines: The Wave-Line Theory and Shipbuilding in the Nineteenth Century.

    PubMed

    Ferreiro, Larrie D; Pollara, Alexander

    2016-04-01

    Ship hydrodynamics in the nineteenth century was dominated by John Scott Russell's wave-line theory. Russell, a prominent British shipbuilder and scientist, argued that wavemaking was the primary source of resistance for ships, and that by designing ships according to trigonometric curves and proportions (the wave line) this resistance could effectively be eliminated. From the 1840s to the 1880s, shipbuilders such as John Willis Griffiths, Donald McKay and George Steers designed their clipper ships (like Sea Witch and Flying Cloud) and yachts (America) with wave-line hulls, while authors like Jules Verne referenced Russell's theory. The wave line slowly faded after William Froude developed his laws of ship resistance. The article examines how Russell's theory became accepted by technical experts and the wider public to become the most widely known ship hydrodynamic theory of the 1800s-a reminder of how a persuasive idea can take hold of an entire profession, and even the public, for a long time.

  13. Publications on Peripheral Nerve Injuries during World War I: A Dramatic Increase in Knowledge.

    PubMed

    Koehler, Peter J

    2016-01-01

    Publications from French (Jules Tinel and Chiriachitza Athanassio-Bénisty), English (James Purves-Stewart, Arthur Henry Evans and Hartley Sidney Carter), German (Otfrid Foerster and Hermann Oppenheim) and American (Charles Harrison Frazier and Byron Stookey) physicians from both sides of the front during World War I (WWI) contributed to a dramatic increase in knowledge about peripheral nerve injuries. Silas Weir Mitchell's original experience with respect to these injuries, and particularly causalgia, during the American Civil War was further expanded in Europe during WWI. Following the translation of one of his books, he was referred to mainly by French physicians. During WWI, several French books were in turn translated into English, which influenced American physicians, as was observed in the case of Byron Stookey. The establishment of neurological centres played an important role in the concentration of experience and knowledge. Several eponyms originated during this period (including the Hoffmann-Tinel sign and the Froment sign). Electrodiagnostic tools were increasingly used. © 2016 S. Karger AG, Basel.

  14. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    NASA Astrophysics Data System (ADS)

    Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.

    2015-07-01

    Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.

  15. Delayed Gamma Measurements in Different Nuclear Research Reactors Bringing Out the Importance of the Delayed Contribution in Gamma Flux Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourmentel, D.; Radulovic, V.; Barbot, L.

    Neutron and gamma flux levels are key parameters in nuclear research reactors. In Material Testing Reactors, such as the future Jules Horowitz Reactor, under construction at the French Alternative Energies and Atomic Energy Commission (CEA Cadarache, France), the expected gamma flux levels are very high (nuclear heating is of the order of 20 W/g at 100 MWth). As gamma rays deposit their energy in the reactor structures and structural materials it is important to take them into account when designing irradiation devices. There are only a few sensors which allow measurements of the nuclear heating ; a recent development atmore » the CEA Cadarache allows measurements of the gamma flux using a miniature ionization chamber (MIC). The measured MIC response is often compared with calculation using modern Monte Carlo (MC) neutron and photon transport codes, such as TRIPOLI-4 and MCNP6. In these calculations only the production of prompt gamma rays in the reactor is usually modelled thus neglecting the delayed gamma rays. Hence calculations and measurements are usually in better accordance for the neutron flux than for the gamma flux. In this paper we study the contribution of delayed gamma rays to the total MIC signal in order to estimate the systematic error in gamma flux MC calculations. In order to experimentally determine the delayed gamma flux contributions to the MIC response, we performed gamma flux measurements with CEA developed MIC at three different research reactors: the OSIRIS reactor (MTR - 70 MWth at CEA Saclay, France), the TRIGA MARK II reactor (TRIGA - 250 kWth at the Jozef Stefan Institute, Slovenia) and the MARIA reactor (MTR - 30 MWth at the National Center for Nuclear Research, Poland). In order to experimentally assess the delayed gamma flux contribution to the total gamma flux, several reactor shut down (scram) experiments were performed specifically for the purpose of the measurements. Results show that on average about 30 % of the MIC signal is due to the delayed gamma rays. In this paper we describe experiments in each of the three reactors and how we estimate delayed gamma rays with MIC measurements. The results and perspectives are discussed. (authors)« less

  16. Simulation of infiltration and redistribution of intense rainfall using Land Surface Models

    NASA Astrophysics Data System (ADS)

    Mueller, Anna; Verhoef, Anne; Cloke, Hannah

    2016-04-01

    Flooding from intense rainfall (FFIR) can cause widespread damage and disruption. Numerical Weather Prediction (NWP) models provide distributed information about atmospheric conditions, such as precipitation, that can lead to a flooding event. Short duration, high intensity rainfall events are generally poorly predicted by NWP models, because of the high spatiotemporal resolution required and because of the way the convective rainfall is described in the model. The resolution of NWP models is ever increasing. Better understanding of complex hydrological processes and the effect of scale is important in order to improve the prediction of magnitude and duration of such events, in the context of disaster management. Working as part of the NERC SINATRA project, we evaluated how the Land Surface Model (LSM) components of NWP models cope with high intensity rainfall input and subsequent infiltration problems. Both in terms of the amount of water infiltrated in the soil store, as well as the timing and the amount of surface and subsurface runoff generated. The models investigated are SWAP (Soil Water Air Plant, Alterra, the Netherlands, van Dam 1997), JULES (Joint UK Land Environment Simulator a component of Unified Model in UK Met Office, Best et al. 2011) and CHTESSEL (Carbon and Hydrology- Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al. 2009) We analysed the numerical aspects arising from discontinuities (or sharp gradients) in forcing and/or the model solution. These types of infiltration configurations were tested in the laboratory (Vachaud 1971), for some there are semi-analytical solutions (Philip 1957, Parlange 1972, Vanderborght 2005) or reference numerical solutions (Haverkamp 1977, van Dam 2000, Vanderborght 2005). The maximum infiltration by the surface, Imax, is in general dependent on atmospheric conditions, surface type, soil type, soil moisture content θ, and surface orographic factor σ. The models used differ in their approach to describe and deal with this top boundary condition definition. All three LSMs discretise the spatial derivative in the Richards equation (∂/∂z) using central finite differences, which is a 2nd order method, that according to Godunov's theorem is non-monotone. It is prone to producing non-physical oscillations in the solution. We performed a mesh and timestep dependence study for hypothetical soil columns and showed the presence of the oscillations in Jules and SWAP solutions. We also investigated the rainfall/runoff partition and redistribution in case of intense rainfall using these three models.

  17. Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models; implications for simulated land surface fluxes and variables at various spatiotemporal scales

    NASA Astrophysics Data System (ADS)

    Egea, G.; Verhoef, A.; Vidale, P. L.; Black, E.; Van den Hoof, C.

    2012-04-01

    Coupled photosynthesis-stomatal conductance (A-gs) models are commonly used in ecosystem models to represent the exchange rate of CO2 and H2O between vegetation and the atmosphere. The ways these models account for water stress differ greatly among modelling schemes. This study provides insight into the impact of contrasting model configurations of water stress on the simulated leaf-level values of net photosynthesis (A), stomatal conductance (gs), the functional relationship among them and their ratio, the intrinsic water use efficiency (A/gs), as soil dries. A simple, yet versatile, normalized soil moisture dependent function was used to account for the effects of water stress on gs, on mesophyll conductance (gm ) and on the biochemical capacity (Egea et al., 2011). Model output was compared to leaf-level values obtained from the literature. The sensitivity analyses emphasized the necessity to combine both stomatal and non-stomatal limitations of A in coupled A-gs models to accurately capture the observed functional relationships A vs. gs and A/gs vs. gs in response to drought. Accounting for water stress in coupled A-gs models by imposing either stomatal or biochemical limitations of A, as commonly practiced in most ecosystem models, failed to reproduce the observed functional relationship between key leaf gas exchange attributes. A quantitative limitation analysis revealed that the general pattern of C3 photosynthetic response to water stress can be represented in coupled A-gs models by imposing the highest limitation strength to mesophyll conductance, then to stomatal conductance and finally to the biochemical capacity. This more realistic representation of soil water stress on the simulated leaf-level values of A and gs was embedded in the JULES (Joint UK Land Environment Simulator; Best et al., 2011), model and tested for a number of vegetation types, for which driving and flux verification data were available. These simulations provide an insight into the effect that the revised parameterization will have on GCM simulations of climate variability and change. Best, M. J. et al. (2011). The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699. Egea, G., Verhoef, A., Vidale, P.L. (2011) Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models. Agricultural and Forest Meteorology, 151 (10), 1370-1384.

  18. Developpement de mesures non destructives, par ondes ultrasonores, d'epaisseurs de fronts de solidification dans les reacteurs metallurgiques

    NASA Astrophysics Data System (ADS)

    Floquet, Jimmy

    Dans les cuves d'electrolyse d'aluminium, le milieu de reaction tres corrosif attaque les parois de la cuve, ce qui diminue leur duree de vie et augmente les couts de production. Le talus, qui se forme sous l'effet des pertes de chaleur qui maintiennent un equilibre thermique dans la cuve, sert de protection naturelle a la cuve. Son epaisseur doit etre controlee pour maximiser cet effet. Advenant la resorption non voulue de ce talus, les degats generes peuvent s'evaluer a plusieurs centaines de milliers de dollars par cuve. Aussi, l'objectif est de developper une mesure ultrasonore de l'epaisseur du talus, car elle serait non intrusive et non destructive. La precision attendue est de l'ordre du centimetre pour des mesures d'epaisseurs comprenant 2 materiaux, allant de 5 a 20 cm. Cette precision est le facteur cle permettant aux industriels de controler l'epaisseur du talus de maniere efficace (maximiser la protection des parois tout en maximisant l'efficacite energetique du procede), par l'ajout d'un flux thermique. Cependant, l'efficacite d'une mesure ultrasonore dans cet environnement hostile reste a demontrer. Les travaux preliminaires ont permis de selectionner un transducteur ultrasonore a contact ayant la capacite a resister aux conditions de mesure (hautes temperatures, materiaux non caracterises...). Differentes mesures a froid (traite par analyse temps-frequence) ont permis d'evaluer la vitesse de propagation des ondes dans le materiau de la cuve en graphite et de la cryolite, demontrant la possibilite d'extraire l'information pertinente d'epaisseur du talus in fine. Fort de cette phase de caracterisation des materiaux sur la reponse acoustique des materiaux, les travaux a venir ont ete realises sur un modele reduit de la cuve. Le montage experimental, un four evoluant a 1050 °C, instrumente d'une multitude de capteurs thermique, permettra une comparaison de la mesure intrusive LVDT a celle du transducteur, dans des conditions proches de la mesure industrielle. Mots-cles : Ultrasons, CND, Haute temperature, Aluminium, Cuve d'electrolyse.

  19. A multi-model assessment of terrestrial biosphere model data needs

    NASA Astrophysics Data System (ADS)

    Gardella, A.; Cowdery, E.; De Kauwe, M. G.; Desai, A. R.; Duveneck, M.; Fer, I.; Fisher, R.; Knox, R. G.; Kooper, R.; LeBauer, D.; McCabe, T.; Minunno, F.; Raiho, A.; Serbin, S.; Shiklomanov, A. N.; Thomas, A.; Walker, A.; Dietze, M.

    2017-12-01

    Terrestrial biosphere models provide us with the means to simulate the impacts of climate change and their uncertainties. Going beyond direct observation and experimentation, models synthesize our current understanding of ecosystem processes and can give us insight on data needed to constrain model parameters. In previous work, we leveraged the Predictive Ecosystem Analyzer (PEcAn) to assess the contribution of different parameters to the uncertainty of the Ecosystem Demography model v2 (ED) model outputs across various North American biomes (Dietze et al., JGR-G, 2014). While this analysis identified key research priorities, the extent to which these priorities were model- and/or biome-specific was unclear. Furthermore, because the analysis only studied one model, we were unable to comment on the effect of variability in model structure to overall predictive uncertainty. Here, we expand this analysis to all biomes globally and a wide sample of models that vary in complexity: BioCro, CABLE, CLM, DALEC, ED2, FATES, G'DAY, JULES, LANDIS, LINKAGES, LPJ-GUESS, MAESPA, PRELES, SDGVM, SIPNET, and TEM. Prior to performing uncertainty analyses, model parameter uncertainties were assessed by assimilating all available trait data from the combination of the BETYdb and TRY trait databases, using an updated multivariate version of PEcAn's Hierarchical Bayesian meta-analysis. Next, sensitivity analyses were performed for all models across a range of sites globally to assess sensitivities for a range of different outputs (GPP, ET, SH, Ra, NPP, Rh, NEE, LAI) at multiple time scales from the sub-annual to the decadal. Finally, parameter uncertainties and model sensitivities were combined to evaluate the fractional contribution of each parameter to the predictive uncertainty for a specific variable at a specific site and timescale. Facilitated by PEcAn's automated workflows, this analysis represents the broadest assessment of the sensitivities and uncertainties in terrestrial models to date, and provides a comprehensive roadmap for constraining model uncertainties through model development and data collection.

  20. Use of the HadGEM2 climate-chemistry model to investigate interannual variability in methane sources

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; O'Connor, Fiona; Clark, Douglas; Huntingford, Chris; Gedney, Nicola

    2013-04-01

    The global mean atmospheric concentration of methane (CH4) has more than doubled during the industrial era [1] and now constitutes ? 20% of the anthropogenic climate forcing by greenhouse gases [2]. The globally-averaged CH4 growth rate, derived from surface measurements, has fallen significantly from a high of 16 ppb yr-1 in the late 1970s/early 1980s and was close to zero between 1999 and 2006 [1]. This overall period of declining or low growth was however interspersed with years of positive growth-rate anomalies (e.g., in 1991-1992, 1998-1999 and 2002-2003). Since 2007, renewed growth has been evident [1, 3], with the largest increases observed over polar northern latitudes and the Southern Hemisphere in 2007 and in the tropics in 2008. The observed inter-annual variability in atmospheric methane concentrations and the associated changes in growth rates have variously been attributed to changes in different methane sources and sinks [1, 4]. In this paper, we report results from runs of the HadGEM2 climate-chemistry model [5] using year- and month-specific emission datasets. The HadGEM2 model includes the comprehensive atmospheric chemistry and aerosol package, the UK Chemistry Aerosol community model (UKCA, http://www.ukca.ac.uk/wiki/index.php). The Standard Tropospheric Chemistry scheme was selected for this work. This chemistry scheme simulates the Ox, HOx and NOx chemical cycles and the oxidation of CO, methane, ethane and propane. Year- and month-specific emission datasets were generated for the period from 1997 to 2009 for the emitted species in the chemistry scheme (CH4, CO, NOx, HCHO, C2H6, C3H8, CH3CHO, CH3CHOCH3). The approach adopted varied depending on the source sector: Anthropogenic: The emissions from anthropogenic sources were based on decadal-averaged emission inventories compiled by [6] for the Coupled Carbon Cycle Climate Model Intercomparison Project (C4MIP). These were then used to derive year-specific emission datasets by scaling the emission totals for the different years and source sectors using sector and species-specific scaling factors based on the annual trends given in various EDGAR time series: (a) version 4.2 for all species (except NMVOCs) and version 4.1 for NMVOCs; (b) v3.2. This approach was also applied to the emissions from aviation (only for oxides of nitrogen) and international shipping. Biomass burning: Month-specific emission inventories are available from the Global Fire Emissions Database (GFED, v3.1) for the years 1997 to 2009 [7]. The emissions were rescaled to give the same decadal mean as used in the Hadley Centre's earlier HadGEM2 runs (25 Tg CH4 per annum). Other: Sources such as termites and hydrates for methane were taken from the GEIA website and the dataset of Fung et al. [8]. The datasets contain a single annual cycle, which was assumed to apply for all years. For CH4, there are also emissions from wetlands. These were either based on the dataset of Fung et al. [8] or derived from the JULES (Joint UK Land Earth Simulator) land surface model [9, 10]. The standard version of JULES uses a simple methane wetland emission parameterization, developed and tested by [11] for use at large spatial scales. The surface concentrations from the different model runs have been compared to surface atmospheric CH4 measurements. In addition, growth rates have been derived. These comparisons will be reported and used to assess the contribution of different methane sources to the interannual variations in the methane growth rate. References [1] Dlugokencky, E.J., et al.: Global atmospheric methane: budget, changes and dangers. Philosophical Transactions of the Royal Society A, 369, 2058-2072; doi: 10.1098/rsta.2010.0341, 2011. [2] Forster, P., et al.: Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007. [3] Rigby, M., et al.: Renewed growth of atmospheric methane. Geophysical Research Letters, 35, L22805, doi:10.1029/2008GL036037, 2008. [4] Bousquet, P., et al.: Contribution of anthropogenic and natural sources to atmospheric methane variability, Nature, 443, 439-443, doi:10.1038/nature05132, 2006. [5] Collins, W. J., et al.: Development and evaluation of an Earth-System model - HadGEM2, Geoscientific Model Development, 4, 1051-1075, doi:10.5194/gmd-4-1051-2011, 2011. [6] Lamarque, J.-F., et al.: Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmospheric Chemistry and Physics, 10, 7017-7039, doi:10.5194/acp-10-7017-2010, 2010. [7] van der Werf, G. R., et al.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009), Atmospheric Chemistry and Physics, 10, 11707-11735, doi:10.5194/acp-10-11707-2010, 2010. [8] Fung, I., et al.: Three-dimensional model synthesis of the Global Methane Cycle. Journal of Geophysical Research, 96, 13,033-13,065, 1991. [9] Best, M. J., et al.: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes, Geoscientific Model Development, 4, 677-699, doi:10.5194/gmd-4-677-2011, 2011. [10] Clark, D.B., et al.: The Joint UK Land Environment Simulator (JULES), Model description - Part 2: Carbon fluxes and vegetation. Geoscientific Model Development, 4, 701-722, doi:10.5194/gmd-4-701-2011, 2011. [11] Gedney, N., et al.: Climate feedback from wetland methane emissions. Geophysical Research Letters, 31, L20503, 2004.

  1. [A quarantine of plague at the lazaret of Frioul in 1901].

    PubMed

    Chevallier, Jacques

    2015-01-01

    In September 1901, a cruise for work and pleasure is organized in Mediterranean including VIP all firstclass (politicals, scientists, clergymen...) These were 174 passengers on the ship Senegal. After a departure from Marseille, the ship must quickly turn and go back on account of a sailor in the crew might be sicked with plague. A quarantine was organised in the lazaret of Frioul's island. This man died but an another actually ill will be cured. All the conference participents landed in the Frioul lazaret stayed only seven days on place and remained uninjured. This misadventure will be studied by scientific people and given to authorities. So, Pr Jules Buckoy' communication to the french Academy of medicine. Adrien Proust gave a report. In this doctoral thesis in 1902 Joseph Pellissier reported all the cases of plague cured in the Frioul lazaret. The physician Charles Leroux made an epidemiologic study about effects and troubles with plague serums. A lot of orig- inal and beautiful photographs, notably those by the famous passenger, Léon Gaumont, are joined in our presentation.

  2. Early Astronomical Sequential Photography, 1873-1923

    NASA Astrophysics Data System (ADS)

    Bonifácio, Vitor

    2011-11-01

    In 1873 Jules Janssen conceived the first automatic sequential photographic apparatus to observe the eagerly anticipated 1874 transit of Venus. This device, the 'photographic revolver', is commonly considered today as the earliest cinema precursor. In the following years, in order to study the variability or the motion of celestial objects, several instruments, either manually or automatically actuated, were devised to obtain as many photographs as possible of astronomical events in a short time interval. In this paper we strive to identify from the available documents the attempts made between 1873 and 1923, and discuss the motivations behind them and the results obtained. During the time period studied astronomical sequential photography was employed to determine the time of the instants of contact in transits and occultations, and to study total solar eclipses. The technique was seldom used but apparently the modern film camera invention played no role on this situation. Astronomical sequential photographs were obtained both before and after 1895. We conclude that the development of astronomical sequential photography was constrained by the reduced number of subjects to which the technique could be applied.

  3. A doctoral thesis about Carol Davila written in Paris in 1936.

    PubMed

    Rogozea, Liliana; Dumitrascu, Dinu I; Triff, Dorin; Leasu, Florin; Dumitraşcu, Dan L

    2014-01-01

    Carol Davila, the father of the Romanian modern medicine, made decisive contributions to the development of health sciences in the Romanian Principalities in the last decades of the nineteenth century. The merit of his scientific work was recognized beyond the borders of his country. His life (not devoid of anecdotic instances and unknown episodes) and especially his work have aroused considerable interest among numerous medical historians. This paper presents a historical study elaborated in France, but until recently ignored, dedicated to the biography of Carol Davila. It concerns the medical doctoral thesis (State Diploma) elaborated by Joseph Adler (born 1910 in Botoşani, Romania) under the supervision of professor Maxime Laignel-Lavastine, whose interest in Romania is well-known. Professor Laignel-Lavastine held the office of Secretary General of the International Society of History of Medicine (ISHM), founded in 1921, (replaced in this position by another French professor with links to Romania: Jules Guiart). The thesis comprises 48 pages and an exhaustive bibliography. It represents a token of the appreciation given to Davila's achievements by Europe's medical community.

  4. A doctoral thesis about Carol Davila written in Paris in 1936

    PubMed Central

    ROGOZEA, LILIANA; DUMITRASCU, DINU I.; TRIFF, DORIN; LEASU, FLORIN; DUMITRAŞCU, DAN L.

    2014-01-01

    Carol Davila, the father of the Romanian modern medicine, made decisive contributions to the development of health sciences in the Romanian Principalities in the last decades of the nineteenth century. The merit of his scientific work was recognized beyond the borders of his country. His life (not devoid of anecdotic instances and unknown episodes) and especially his work have aroused considerable interest among numerous medical historians. This paper presents a historical study elaborated in France, but until recently ignored, dedicated to the biography of Carol Davila. It concerns the medical doctoral thesis (State Diploma) elaborated by Joseph Adler (born 1910 in Botoşani, Romania) under the supervision of professor Maxime Laignel-Lavastine, whose interest in Romania is well-known. Professor Laignel-Lavastine held the office of Secretary General of the International Society of History of Medicine (ISHM), founded in 1921, (replaced in this position by another French professor with links to Romania: Jules Guiart). The thesis comprises 48 pages and an exhaustive bibliography. It represents a token of the appreciation given to Davila’s achievements by Europe’s medical community. PMID:26527997

  5. Figures and institutions of the neurological sciences in Paris from 1800 to 1950. Introduction and Part I: Neuroanatomy.

    PubMed

    Clarac, F; Barbara, J-G; Broussolle, E; Poirier, J

    2012-01-01

    We present a short historical review on the major institutions and figures that contributed to make Paris a renowned centre of physiology and neurology during the xixth and the first half of the xxth centuries. We purposely chose to focus on the period 1800-1950, as 1800 corresponds to the development of brain science and 1950 marks the true beginning of neuroscience. Our presentation is divided into four chapters, matching the main disciplines which have progressed and contributed the most to the knowledge we have of the brain sciences: anatomy, physiology, neurology, and psychiatry-psychology. The present article is the first of four parts of this review, which includes an introduction followed by the chapter on neuroanatomy and on anatomo-pathology, which includes biographical sketches of Félix Vicq d'Azyr, François-Xavier Bichat, Franz Joseph Gall, Jean Cruveilhier, Jules Bernard Luys, Paul Broca, Louis Ranvier, André-Victor Cornil, Albert Gombault, Jean Nageotte and René Couteaux. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. KSC-2014-3784

    NASA Image and Video Library

    2014-09-10

    CAPE CANAVERAL, Fla. – During a ceremony inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Jules Schneider, Lockheed Martin Orion Production Operations manager, holds the key to symbolically turn over the Orion spacecraft for Exploration Flight Test-1 to Ground Operations. Waiting to accept the key is Blake Hale, Lockheed Martin Ground Operations manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida in December to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  7. KSC-2014-3785

    NASA Image and Video Library

    2014-09-10

    CAPE CANAVERAL, Fla. – During a ceremony inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Jules Schneider, at right, Lockheed Martin Orion Production Operations manager, presents the key to symbolically turn over the Orion spacecraft for Exploration Flight Test-1 to Ground Operations. Accepting the key is Blake Hale, Lockheed Martin Ground Operations manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida in December to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  8. Convective Aggregation, Climate Sensitivity, and the Importance of Radiation Physics in Weather and Climate

    NASA Astrophysics Data System (ADS)

    Emanuel, K.

    2015-12-01

    Since the revolutionary work of Vilhelm Bjerknes, Jule Charney, and Eric Eady, geophysical fluid dynamics has dominated weather research and continues to play an important in climate dynamics. Although the physics of radiative transfer is central to understanding climate, it has played a far smaller role in weather research and is given only rudimentary attention in most educational programs in meteorology. Yet key contemporary problems in atmospheric science, such as the Madden-Julian Oscillation and the self-aggregation of moist convection, do not appear to have been solved by approaches based strictly on fluid dynamics and moist adiabatic thermodynamics. Here I will argue that many outstanding problems in meteorology and climate science involve a nontrivial coupling of circulation and radiation physics. In particular, the phenomenon of self-aggregation of moist convection depends on the interaction of radiation with time-varying water vapor and clouds, with strong implications for such diverse problems as the Madden-Julian Oscillation, tropical cyclones, and the relative insensitivity of tropical climate to radiative forcing. This argues for an augmentation of radiative transfer physics in graduate curricula in atmospheric sciences.

  9. KSC-2014-3783

    NASA Image and Video Library

    2014-09-10

    CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Jules Schneider, at right, Lockheed Martin Orion Production Operations manager, speaks to NASA and Lockheed Martin workers during a ceremony to turn over the Orion spacecraft for Exploration Flight Test-1 to Ground Operations. At left is Blake Hale, Lockheed Martin Ground Operations manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida in December to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  10. KSC-2013-2917

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, members of the media receive an on activities in NASA’s Ground Systems Development and Operations, or GSDO, Program, Space Launch System and Orion crew module for Exploration Test Flight 1. Speaking to the media, from left are Scott Wilson, manager of Orion Production Operations at Kennedy Larry Price, Lockheed Martin deputy program manager for Orion Tom Erdman, from Marshall Space Flight Center’s Kennedy resident office Jules Schneider, Lockheed Martin manager of Orion Production Operations and Jeremy Parsons, chief of the GSDO Operations Integration Office at Kennedy. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  11. KSC-2014-3786

    NASA Image and Video Library

    2014-09-10

    CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Jules Schneider, at right, Lockheed Martin Orion Production Operations manager, shakes hands with Blake Hale, Lockheed Martin Ground Operations manager, during a ceremony to officially turn over the Orion spacecraft for Exploration Flight Test-1 to Lockheed Martin Ground Operations. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida in December to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  12. A review of our understanding of the role played in the climate system by land surface processes (Invited)

    NASA Astrophysics Data System (ADS)

    Nicholson, S. E.

    2013-12-01

    The paper provides an historical review of research on the impact of the land surface on climate. It commences will the seminal work of Jule Charney on albedo as a potential cause of drought and follows the trail of follow-up studies on the question of desertification and its role in climate. With the exception of a very early paper by Namias, early work was limited mainly to modeling efforts. At the same time, several observational studies provided evidence that land surface feedbacks could enhance and prolong drought, especially in the African Sahel. Later work emphasized the role of soil moisture rather than albedo. Several important field studies also examined the role of the land surface. Examples include FIFE, HAPEX-Sahel and BOREAS. In recent years some major changes in the concept have occurred. There is now substantial observational evidence of an impact at the mesoscale. The role of land surface feedback on climate has become mainstream. Finally, a new subdiscipline has emerged that emphasizes feedbacks between the water cycle, vegetation and climate, namely ecohydrology.

  13. Desired machines: cinema and the world in its own image.

    PubMed

    Canales, Jimena

    2011-09-01

    In 1895 when the Lumière brothers unveiled their cinematographic camera, many scientists were elated. Scientists hoped that the machine would fulfill a desire that had driven research for nearly half a century: that of capturing the world in its own image. But their elation was surprisingly short-lived, and many researchers quickly distanced themselves from the new medium. The cinematographic camera was soon split into two machines, one for recording and one for projecting, enabling it to further escape from the laboratory. The philosopher Henri Bergson joined scientists, such as Etienne-Jules Marey, who found problems with the new cinematographic order. Those who had worked to make the dream come true found that their efforts had been subverted. This essay focuses on the desire to build a cinematographic camera, with the purpose of elucidating how dreams and reality mix in the development of science and technology. It is about desired machines and their often unexpected results. The interplay between what "is" (the technical), what "ought" (the ethical), and what "could" be (the fantastical) drives scientific research.

  14. A Selenological History of Lunar Poetics

    NASA Astrophysics Data System (ADS)

    von Chamier-Waite, C. T.

    2016-01-01

    The Moon. Centuries of human inquiry have engaged this mysterious object. The Moon embodies history, philosophy, cosmology, and passions; the nature of love, persecution, and our capacity for the sublime. This review considers a body of research on lunar poetics done for a series of artworks by the author. It will look at a few select writings that have profoundly influenced our epistemological, ontological, and poetic knowledge of the universe with the Moon as a central theme. Centered in the early seventeenth century at the time of Kepler and Galileo, this query follows the tendrils of lunar influences in both the sciences and literature that emanate from these two figures, forwards and backwards in time. Science, politics, theology, and the arts intertwine in this investigation. The works reviewed link the philosophy of Aristotle and the poetry of Lucian of Samosata to findings by Leonardo Da Vinci, Copernicus, Jules Verne, and others. The chosen philosophers have been selected because of their significant contributions to selenology and lunar poetics, and each of the figures reviewed have the honor of a namesake crater upon the Moon.

  15. Amazon Deforestation Fires Increase Plant Productivity through Changes in Diffuse Radiation

    NASA Astrophysics Data System (ADS)

    Rap, A.; Reddington, C.; Spracklen, D. V.; Mercado, L.; Haywood, J. M.; Bonal, D.; Butt, N.; Phillips, O.

    2013-12-01

    Over the past few decades a large increase in carbon storage has been observed in undisturbed forests across Amazonia. The reason for such a sink is unclear, although many possible mechanisms have been suggested, including changes in temperature, carbon dioxide, precipitation, clouds, and solar radiation. In this work we focus on one such mechanism, namely the increase in plant photosynthesis due to changes in diffuse radiation caused by atmospheric aerosols from large-scale deforestation fires that now occur throughout the Amazon region. We estimate that this mechanism has increased dry season (August-September) net primary productivity (NPP) by up to 30% across wide regions of the Amazon. We conclude that aerosol from deforestation fires may be responsible for a substantial fraction of the Amazon carbon sink that has been observed. Our approach is based on the combined use of three models: (i) the Global Model of Aerosol Processes (GLOMAP), (ii) the Edwards-Slingo radiation model, and (iii) the UK Met Office JULES land-surface scheme, constrained against in-situ aerosol and radiation observation datasets from several Amazonian sites. A 10 year (1999-2008) GLOMAP simulation using GFED3 biomass burning emissions is first evaluated against aerosol observations, indicating that the model is able to capture the Amazon aerosol seasonality, with enhanced concentrations during the dry season driven by biomass burning. The radiation scheme is then shown to be in good agreement with total and diffuse radiation in-situ observations, the model being able to capture the high total and low diffuse radiation flux in the dry season, as well as the low total and high diffuse radiation flux in the wet season. We then use our modelling framework to quantify the contribution of deforestation fires to diffuse/direct radiation fraction and forest productivity. We calculate that deforestation fires increase dry season diffuse radiation by up to 60% or 30 Wm-2. Finally, we use the JULES model to show that this increase in diffuse radiation is responsible for a substantial growth in gross primary productivity (GPP), enhancing Amazon-wide dry-season GPP by 5% with local increases of up to 15%. Most of this GPP response results in an increase in NPP, estimated in the dry season at 10% across the Amazon with local increases as large as 30%. This substantial NPP enhancement spatially matches observed increases in forest biomass storage across the Amazon. We thus suggest that deforestation fires have an important impact on the Amazon carbon budget and attempt to estimate the fraction of the observed forest carbon sink that can be attributed to this mechanism. Change [%] in diffuse radiation due to deforestation

  16. Advanced instrumentation and analysis methods for in-pile thermal and nuclear measurements: from out-of-pile studies to irradiation campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynard-Carette, C.; Lyoussi, A.

    Research and development on nuclear fuel behavior under irradiations and accelerated ageing of structure materials is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. A new Material Testing Reactor (MTR), the Jules Horowitz Reactor (JHR) currently under construction in the South of France in the CEA Cadarache research centre will offer a real opportunity to perform R and D programs and hence will crucially contribute to the selection, optimization and qualification of innovative materials and fuels. To perform such programs advanced accurate and innovative experiments, irradiation devices thatmore » contain material and fuel samples are required to be set up inside or beside the reactor core. These experiments needs beforehand in situ and on line sophisticated measurements to accurately reach specific and determining parameters such as thermal and fast neutron fluxes, nuclear heating and temperature conditions to precisely monitor and control the conducted assays. Consequently, since 2009 CEA and Aix-Marseille University collaborate in order to design and develop a new multi-sensor device which will be dedicated to measuring profiles of such conditions inside the experimental channels of the JHR. These works are performed in the framework of two complementary joint research programs called MAHRI-BETHY and INCORE. These programs couple experimental studies carried out both out-of nuclear fluxes (in laboratory) and under irradiation conditions (in OSIRIS MTR reactor in France and MARIA MTR reactor in Poland) with numerical works realized by thermal simulations (CAST3M code) and Monte Carlo simulations (MCNP code). These programs deal with three main aims. The first one corresponds to the design and/or the test of new in-pile instrumentation. The second one concerns the development of advanced calibration procedures in particular in the case of one specific sensor: a differential calorimeter used to quantify nuclear heating. The last one consists in the development of accurate measurement and analysis methods. The paper will be dedicated to a complete review of the experimental and numerical works performed since 2009 thanks to two parts. The first part will detail a new thermal approach implemented to improve nuclear heating measurements by radiometric calorimeters. New experimental tools (calorimeter prototypes and set-ups such BETHY Bench) developed to perform preliminary out-of-pile studies under suitable conditions will be presented (temperature and velocity of the external cooling fluid, heat source localization and intensity inside the calorimetric cells). Then the response of two kinds of sensors, their calibrations curves and their thermal behaviors will be compared for various parameters. Finally validated numerical thermal and Monte Carlo works will be discussed to propose new improvements. The second parts of the paper will focus on works realized in order to design, develop and test the first prototype of the multi-sensor device called CARMEN [7-9]. The two mock-ups dedicated respectively to neutron measurements and photon measurements will be detailed. The results obtained during two irradiation campaigns inside the periphery of OSIRIS reactor will be shown. The new analysis method will be discussed. (authors)« less

  17. Presence de Carbone-13 dans les elements combustibles de type (U,Pu)O 2 irradies en reacteur rapide

    NASA Astrophysics Data System (ADS)

    Kryger, Bernard; Hagemann, Robert

    1982-06-01

    Du carbone-13 produit par la réaction de capture neutronique 168O + 10n → 136C + 42He se forme dans les combustibles de type oxyde irradiés en neutrons rapides. Cette réaction, dont le seuil d'énergie se situe à 2.35 MeV, conduit à la formation d'une quantité de carbone-13 qui peut varier notablement suivant le spectre neutronique du réacteur (entre 20 et 40 × 10 -6g 13C/g (U,Pu)O 2 pour une fluence de 2 × 10 23 n/cm 2). DES mesures effectuées sur le combustible et la gaine par spectrométrie de masse après irradiation montrent qu'une fraction égale ou supérieure à la moitié du carbone-13 produit dans l'oxyde peut être transférée dans la gaine. Un tel comportement nous fait considérer le carbone-13 comme un véritable marqueur du carbone plus généralement contenu dans l'oxyde et, à ce titre, la détection de cet isotope devrait contribuer à élucider tout particulièrement les mécanismes de carburation de la gaine par les combustibles (U,Pu)O 2 des réacteurs surgénérateurs.

  18. Revisiting the PLUMBER Experiments from a Process-Diagnostics Perspective

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.; Ruddell, B. L.; Clark, M. P.; Nijssen, B.; Peters-Lidard, C. D.

    2017-12-01

    The PLUMBER benchmarking experiments [1] showed that some of the most sophisticated land models (CABLE, CH-TESSEL, COLA-SSiB, ISBA-SURFEX, JULES, Mosaic, Noah, ORCHIDEE) were outperformed - in simulations of half-hourly surface energy fluxes - by instantaneous, out-of-sample, and globally-stationary regressions with no state memory. One criticism of PLUMBER is that the benchmarking methodology was not derived formally, so that applying a similar methodology with different performance metrics can result in qualitatively different results. Another common criticism of model intercomparison projects in general is that they offer little insight into process-level deficiencies in the models, and therefore are of marginal value for helping to improve the models. We address both of these issues by proposing a formal benchmarking methodology that also yields a formal and quantitative method for process-level diagnostics. We apply this to the PLUMBER experiments to show that (1) the PLUMBER conclusions were generally correct - the models use only a fraction of the information available to them from met forcing data (<50% by our analysis), and (2) all of the land models investigated by PLUMBER have similar process-level error structures, and therefore together do not represent a meaningful sample of structural or epistemic uncertainty. We conclude by suggesting two ways to improve the experimental design of model intercomparison and/or model benchmarking studies like PLUMBER. First, PLUMBER did not report model parameter values, and it is necessary to know these values to separate parameter uncertainty from structural uncertainty. This is a first order requirement if we want to use intercomparison studies to provide feedback to model development. Second, technical documentation of land models is inadequate. Future model intercomparison projects should begin with a collaborative effort by model developers to document specific differences between model structures. This could be done in a reproducible way using a unified, process-flexible system like SUMMA [2]. [1] Best, M.J. et al. (2015) 'The plumbing of land surface models: benchmarking model performance', J. Hydrometeor. [2] Clark, M.P. et al. (2015) 'A unified approach for process-based hydrologic modeling: 1. Modeling concept', Water Resour. Res.

  19. Volcano art at Hawai`i Volcanoes National Park—A science perspective

    USGS Publications Warehouse

    Gaddis, Ben; Kauahikaua, James P.

    2018-03-26

    Long before landscape photography became common, artists sketched and painted scenes of faraway places for the masses. Throughout the 19th century, scientific expeditions to Hawaiʻi routinely employed artists to depict images for the people back home who had funded the exploration and for those with an interest in the newly discovered lands. In Hawaiʻi, artists portrayed the broad variety of people, plant and animal life, and landscapes, but a feature of singular interest was the volcanoes. Painters of early Hawaiian volcano landscapes created art that formed a cohesive body of work known as the “Volcano School” (Forbes, 1992). Jules Tavernier, Charles Furneaux, and D. Howard Hitchcock were probably the best known artists of this school, and their paintings can be found in galleries around the world. Their dramatic paintings were recognized as fine art but were also strong advertisements for tourists to visit Hawaiʻi. Many of these masterpieces are preserved in the Museum and Archive Collection of Hawaiʻi Volcanoes National Park, and in this report we have taken the opportunity to match the artwork with the approximate date and volcanological context of the scene.

  20. Characterisation of wax works of art by gas chromatographic procedures.

    PubMed

    Regert, M; Langlois, J; Colinart, S

    2005-10-14

    To identify the various natural and synthetic substances used by sculptors at the end of the 19th century, several contemporary reference samples were investigated by high temperature gas chromatography (HT GC) and HT GC-MS. Using specific chromatographic conditions and minimising sample preparation, we could separate, detect and identify a wide range of biomolecular markers covering a great variety of molecular weights and volatilities, with a minimum amount of sample, in a single run. Beeswax, spermaceti, carnauba, candellila and Japan waxes as well as pine resin derivatives, animal fats, paraffin, ozokerite and stearin, used as additives in wax works of art, were chemically investigated. In the case of low volatile compounds, transbutylation was performed. The structure of long-chain esters of spermaceti was elucidated for the first time by HT GC-MS analysis. Such a method was then carried out on 10 samples collected on a statuette of Junon by Antoine-Louis Barye (Louvre Museum, Paris, France) and on a sculpture by Aimé-Jules Dalou (Musée de la Révolution Française, Vizille, France). The analytical results obtained provide new data on the complex recipes elaborated by sculptors at the end of the 19th century.

  1. Cotard Syndrome.

    PubMed

    Dieguez, Sebastian

    2018-01-01

    Cotard's syndrome is often described as the delusional belief that one is dead or non-existent. However, Jules Cotard's initial description (1880) of the "delusion of negations" was much richer and also involved delusions and claims of immortality and enormity, feelings of damnation, and illusions of bodily dissolution and transformation. Alternatively conceived as an extreme case of depression, hypochondria, or psychosis, the condition is considered rare and remains poorly understood. Cotard himself provided a taxonomy and several explanations for the condition, focusing on its distinction from classical persecutory delusions and suggesting that it could be a kind of reversed grandiosity. He proposed a psychosensory basis in the dissolution of mental imagery, which he then extended to a more general psychomotor impairment of volition. Other early authors highlighted a disorder of the bodily self, and more recent theories postulated an impairment of right hemispheric functions, leading to perceptual and somatosensory feelings of unreality, which coupled with reasoning impairments and an internalized attributional style led in turn to beliefs of non-existence. However, despite its striking presentation and its relevance to our understanding of self-awareness, Cotard's syndrome remains an elusive condition, rarely reported and poorly researched. © 2018 S. Karger AG, Basel.

  2. International Systems Integration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, William H.; Ticker, Ronald L.

    2007-01-01

    Over the next few months, the International Space Station (ISS), and human spaceflight in general, will undergo momentous change. The European Columbus and Japanese Kibo Laboratories will be added to the station joining U.S. and Russian elements already on orbit. Columbus, Jules Vernes Automated Transfer Vehicle (ATV) and Kibo Control Centers will soon be joining control centers in the US and Russia in coordinating ISS operations and research. The Canadian Special Purpose Dexterous Manipulator (SPDM) will be performing extra vehicular activities that previously only astronauts on EVA could do, but remotely and with increased safety. This paper will address the integration of these international elements and operations into the ISS, both from hardware and human perspectives. Interoperability of on-orbit systems and ground control centers and their human operators from Europe, Japan, Canada, Russia and the U.S. pose significant and unique challenges. Coordination of logistical support and transportation of crews and cargo is also a major challenge. As we venture out into the cosmos and inhabit the Moon and other planets, it's the systems and operational experience and partnership development on ISS, humanity's orbiting outpost that is making these journeys possible.

  3. KSC-2013-2925

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, members of the media receive an on activities in NASA’s Ground Systems Development and Operations, or GSDO, Program, Space Launch System and Orion crew module for Exploration Test Flight 1. Speaking to the media is Larry Price, Lockheed Martin deputy program manager for Orion. In the background, from left are Scott Wilson, manager of Orion Production Operations at Kennedy Jeremy Parsons, chief of the GSDO Operations Integration Office at Kennedy Tom Erdman, from Marshall Space Flight Center’s Kennedy resident office and Jules Schneider, Lockheed Martin manager of Orion Production Operations. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  4. KSC-2014-3791

    NASA Image and Video Library

    2014-09-10

    CAPE CANAVERAL, Fla. – During a ceremony inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the Orion spacecraft for Exploration Flight Test-1 was officially turned over to Lockheed Martin Ground Operations from Orion Assembly, Integration and Production. Holding the key during the turn over, are Jules Schneider, at left, Lockheed Martin Orion Production Operations manager, and Blake Hale, Lockheed Martin Ground Operations manager. Behind them are members of the Brevard Police and Fire Pipes and Drums. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida in December to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  5. KSC-2014-3790

    NASA Image and Video Library

    2014-09-10

    CAPE CANAVERAL, Fla. – During a ceremony inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the Orion spacecraft for Exploration Flight Test-1 was officially turned over to Lockheed Martin Ground Operations from Orion Assembly, Integration and Production. Shaking hands during the turn over, are Jules Schneider, at left, Lockheed Martin Orion Production Operations manager, and Blake Hale, Lockheed Martin Ground Operations manager. Behind them are members of the Brevard Police and Fire Pipes and Drums. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida in December to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  6. KSC-2014-3813

    NASA Image and Video Library

    2014-09-11

    CAPE CANAVERAL, Fla. – Preparations are underway at the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida for the move of the Orion spacecraft for Exploration Flight Test-1 out of the high bay doors. Inside the high bay from left, are Jules Schneider, Lockheed Martin senior manager, and Kennedy Center Director Bob Cabana. The spacecraft will be transported to the Payload Hazardous Servicing Facility where it will be fueled ahead of its December flight test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  7. Beyond equilibrium climate sensitivity

    NASA Astrophysics Data System (ADS)

    Knutti, Reto; Rugenstein, Maria A. A.; Hegerl, Gabriele C.

    2017-10-01

    Equilibrium climate sensitivity characterizes the Earth's long-term global temperature response to increased atmospheric CO2 concentration. It has reached almost iconic status as the single number that describes how severe climate change will be. The consensus on the 'likely' range for climate sensitivity of 1.5 °C to 4.5 °C today is the same as given by Jule Charney in 1979, but now it is based on quantitative evidence from across the climate system and throughout climate history. The quest to constrain climate sensitivity has revealed important insights into the timescales of the climate system response, natural variability and limitations in observations and climate models, but also concerns about the simple concepts underlying climate sensitivity and radiative forcing, which opens avenues to better understand and constrain the climate response to forcing. Estimates of the transient climate response are better constrained by observed warming and are more relevant for predicting warming over the next decades. Newer metrics relating global warming directly to the total emitted CO2 show that in order to keep warming to within 2 °C, future CO2 emissions have to remain strongly limited, irrespective of climate sensitivity being at the high or low end.

  8. The Arago Laboratory of Banyuls and some of its Academicians.

    PubMed

    Soyer-Gobillard, Marie-Odile

    2016-12-01

    Since its founding in 1881 by Henri de Lacaze-Duthiers (1821-1901), the Arago Laboratory of Banyuls has been one of the three marine stations of the University Pierre and Marie Curie-Paris 6. It is located in Banyuls (Banyuls-sur-Mer) in Northern Catalonia. The center hosts researchers and students from all over the world. Some became famous, including four Nobel Prize winners: André Lwoff (1965), Pierre-Gilles de Gennes (1991), Albert Fert (2007) and Jules Hoffmann (2011). This article focuses on five scientists closely related to the center. The first three are Henri de Lacaze-Duthiers (1821-1901), the founder; Édouard Chatton (1883-1947), eminent director of the center; and André Lwoff (1902-1994), who before being known for his work in bacterial genetics and virology was an outstanding protozoologist under the direction of Chatton. Lynn Margulis (1938-2011), a great friend of the Arago Laboratory and personal friend of the author, is also remembered. Finally, there is a mention of Walter J. Gehring (1939-2014), professor at the University of Basel, Switzerland. [Int Microbiol 19(4): 183-190 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  9. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  10. The history of gait analysis before the advent of modern computers.

    PubMed

    Baker, Richard

    2007-09-01

    Aristotle (384-322 BCE) can be attributed with the earliest recorded comments regarding the manner in which humans walk. It was not until the renaissance that further progress was made through the experiments and theorising of Giovanni Borelli (1608-1679). Although several scientists wrote about walking through the enlightenment period it was the brothers Willhelm (1804-1891) and Eduard (1806-1871) Weber, working in Leipzig who made the next major contribution based on very simple measurements. Both Jules Etienne Marey (1830-1904), working in France, and Eadweard Muybridge (1830-1904), working in America, made significant advances in measurement technology. These were developed further by Otto Fischer (1861-1917) in collaboration with Willhelm Braune (1831-1892). The major developments in the early twentieth century were in the development of force plates and the understanding of kinetics. The team headed by Verne Inman (1905-1980) and Howard Eberhart (1906-1993) made major advances in America shortly after the Second War. David Sutherland (1923-2006) and Jacquelin Perry pioneered clinical applications in America and Jurg Baumann (1926-2000) in Europe. It was not until the advent of modern computers that clinical gait analysis became widely available.

  11. Model Evaluation with Multi-wavelength Satellite Observations Using a Neural Network

    NASA Astrophysics Data System (ADS)

    Kolassa, Jana; Jimenez, Carlos; Aires, Filipe

    2013-04-01

    A methodology has been developed to evaluate fields of modelled parameters against a set of satellite observations. The method employs a Neural Network (NN) to construct a statistical model capturing the relationship between the satellite observations and the parameter from a land surface model, in this case the Soil Moisture (SM). This statistical model is then used to estimate the parameter of interest from the set of satellite observations. These estimates are compared to the modelled parameter in order to detect local deviations indicating a possible problem in the model or in the satellite observations. Several synthetic tests, during which an artificial error was added to the"true" soil moisture fields, showed that the methodology is able to correct the errors (Jimenez et al., submitted, 2012). This evaluation technique is very general and can be applied to any modelled parameter for which sensitive satellite observations are available. The use of NNs simplifies the evaluation of the model against satellite observations and is particularly well-suited to utilize the synergy from the observations at different wavelengths (Aires et al., 2005, 2012). In this study the proposed methodology has been applied to evaluate SM fields from a number of land surface models against a synergy of satellite observations from passive and active microwave, infrared and visible sensors. In an inter-comparison of the performance of several land surface models (ORCHIDEE (de Rosnay et al., 2002), HTESSEL (Balsamo et al., 2009), JULES (Best et al., 2011) ) it was found that the soil moisture fields from JULES, HTESSEL and ORCHIDEE are very consistent with the observations, but ORCHIDEE soil moisture shows larger local deviations close to some river basins (Kolassa et al., in press, 2012; Jimenez et al., submitted, 2012). Differences between all models and the observations could also be observed in the Eastern US and over mountainous regions, however, the errors here are more likely linked to the retrieved SM uncertainties. The proposed methodology can also be used to evaluate the quality of the model forcings: two soil moisture fields from ORCHIDEE using WATCH (Weedon et al., 2011) and ERA-interim (Balsamo et al., 2010) forcings were analysed. It was shown that the WATCH forcing data are more optimal, underlining the importance of forcing data for the accuracy of model predictions (Kolassa et al., in press, 2012). References Aires, F., Prigent, C., and Rossow, W.B. (2005), Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: 2. Global statistical relationships, J. Geophys. Res., 110, D11103, doi:10.1029/2004JD005094. Aires, F., O. Aznay, C. Prigent, M. Paul, F. Bernardo, Synergetic multi-wavelegnth remote sensing versus a posteriori combination of retrieved products: Application for the retrieval of atmospheric profiles using MetOp measurements, J. Geophys. Res., 2011 Balsamo, G., Viterbo, P., Beljaars, A., van den Hurk, B., Hirschi, M., Betts, A. and Scipa,l K. (2009) A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System, J. Hydrol., 10, 623-643 Balsamo, G., Boussetta, S., Lopez, P., and Ferranti, L. (2010), Evaluation of ERA-Interim and ERA- Interim-GPCP-rescaled precipitation over the U.S.A., ERA-Report Series, 5, pp. 10. Best, M. J., M. Pryor, D. B. Clark, G. G. Rooney, R .L. H. Essery, C. B. Ménard, J. M. Edwards, M. A. Hendry, A. Porson, N. Gedney, L. M. Mercado, S. Sitch, E. Blyth, O. Boucher, P. M. Cox, C. S. B. Grimmond, and R. J. Harding (2011), The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes, Geosci. Model Dev., 4 Jimenez, C., Clark, D., Kolassa, J., Aires, F., Prigent, C., and Blyth, E. (2012), A joint analysis of modeled soil moisture fields and satellite observations (2012), J. Geophys. Res., Kolassa, J., Aires, F., Polcher, J., Prigent, C., and Pereira, J. (2012), Soil moisture Retrieval from Multi-instrument Observations: Information Content Analysis and Retrieval Methodology (2012), J. Geophys. Res., de Rosnay, P., Polcher, J., Bruen, M., Laval, K. (2002), Impact of a physically based soil water flow and soil-plant interaction representation for modeling large-scale land surface processes, J. Geophys. Res., 107, D11, 4118, 10.1029/2001JD000634 Weedon, G.P., Gomes, S., Viterbo, P., Shuttleworth, W.J., Blyth, E., O ̈sterle, H., Adam, J.C., Bellouin, N., Boucher, O., and Best, M. (2011), Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century, J. Hydrometeorology,12, 5, pp. 823-848.

  12. Obituary: Edward W. Burke, Jr. (1924-2011)

    NASA Astrophysics Data System (ADS)

    Bloomer, Raymond, Jr.

    2011-12-01

    Dr. Edward W. Burke Jr. passed away on June 15, 2011, after suffering a heart attack. Dr. Burke devoted his professional life to the research and teaching of physics and astronomy at King College in Bristol, Tennessee. Edward W. Burke, Jr., was born in Macon, Georgia, on September 16, 1924. He was a Navy veteran, having been commissioned as an ensign in 1944. He served in the Pacific near the end of World War II. He proceeded to complete his undergraduate degree in mathematics from Presbyterian College in 1947 and pursued the M.S. and Ph.D. in physics (1949 and 1954, respectively) at the University of Wisconsin. Under the direction of Professor Julian Mack, his thesis was titled "Isotope Shift in the Spectra of Boron." Although he did research in atomic spectra in the early part of his career, his interest in astronomy and variable stars in particular were his primary interests during his long academic career. Dr. Burke began his illustrious career at King College in 1949. He initiated the astronomy program there in 1950, included constructing a 12.5 inch Newtonian telescope, homemade as was most everything in those days. Many of his students learned about photometry at the Burke Observatory on the college campus. Burke was known for his trips to the Kitt Peak and Lowell observatories accompanied by undergraduate students on his trips, all of which were made by automobile which he preferred over flying. His initial interest in Ap stars later broadened into variable and especially eclipsing binary stars. His motivation was maintained by his desire to have his students experience basic research and to spark their interest in advanced degrees. Numerous students achieved advanced science and medical degrees because of Burke's encouragement and mentoring. In 1959, Dr. Burke was awarded a Fulbright professorship and traveled to Chile where he taught physics for a year in the Engineering School at the University of Chile in Santiago. He worked to establish a physics program there and upon a return visit in 2003 he found that the university physics program was thriving. In the 52 years of his association with King College, Dr. Burke served in many capacities. Over the years he was the tennis coach, Vice President for Academic Affairs, and Chairman of the Division of Natural Sciences and Mathematics for 31 years until his retirement in 1991. He continued to be involved on campus as a Professor Emeritus until his death. Throughout his career he engaged the public in the wonder of astronomy. He organized the Bristol Astronomy Club for the amateur astronomers in the region. In 1957 he spearheaded the King College Moonwatch program, an international man-made satellite observing program organized by the Smithsonian Astronomical Observatory. He initiated Science Open House at King College, a program which hosted hundreds of talented high school junior and senior students from the Appalachian region, to enjoy tours and demonstrations in the science departments. Throughout his career he opened the Burke Observatory for thousands of interested viewers. Burke was a southern gentleman, true to his roots in Macon, Georgia. At the same time he was also a man who never took "no" for an answer. He always found a way to recommend a way to solve a problem, to get a grant to do research, or to plan another observing trip. He was an eternal optimist who seemed to envision the possibilities rather than the limitations. In addition to his duties at King College, he was a long-time member of the Lions Club where he spent considerable time helping disadvantaged people obtain suitable eyeglasses. He also taught Sunday School at State Street United Methodist Church for many years. He was an avid birdwatcher with the Bristol Bird Club. In his later years he competed in badminton at the Senior Olympics and served as a line judge at the 1996 National Senior Olympics in Atlanta. He was married to Julee Struby Burke for 64 years. Julee was a participant in several research trips out west and served as a constant source of encouragement throughout his long career. Dr. Burke is survived by his wife, Julee, a son, Edward W. Burke, III, a daughter, Julia Burke Torbert (Edgar) and one grandson, Samuel Burke Torbert. An endowed chair has been established in his name at King College: The Edward W. Burke, Jr., Endowed Chair in Natural Science. His legacy to education in the natural sciences in the Appalachian region will continue to inspire future generations.

  13. Estimating the CO2 mitigation potential of horizontal Ground Source Heat Pumps in the UK

    NASA Astrophysics Data System (ADS)

    Garcia-Gonzalez, R.; Verhoef, A.; Vidale, P. L.; Gan, G.; Chong, A.; Clark, D.

    2012-04-01

    By 2020, the UK will need to generate 15% of its energy from renewables to meet our contribution to the EU renewable energy target. Heating and cooling systems of buildings account for 30%-50% of the global energy consumption; thus, alternative low-carbon technologies such as horizontal Ground Couple Heat Pumps (GCHPs) can contribute to the reduction of anthropogenic CO2 emissions. Horizontal GCHPs currently represent a small fraction of the total energy generation in the UK. However, the fact that semi-detached and detached dwellings represent approximately 40% of the total housing stocks in the UK could make the widespread implementation of this technology particularly attractive in the UK and so could significantly increase its renewable energy generation potential. Using a simulation model, we analysed the dynamic interactions between the environment, the horizontal GCHP heat exchanger and typical UK dwellings, as well as their combined effect on heat pump performance and CO2 mitigation potential. For this purpose, a land surface model (JULES, Joint UK Land Environment Simulator), which calculates coupled soil heat and water fluxes, was combined with a heat extraction model. The analyses took into account the spatio-temporal variability of soil properties (thermal and hydraulic) and meteorological variables, as well as different horizontal GCHP configurations and a variety of building loads and heat demands. Sensitivity tests were performed for four sites in the UK with different climate and soil properties. Our results show that an installation depth of 1.0m would give us higher heat extractions rates, however it would be preferable to install the pipes slightly deeper to avoid the seasonal influence of variable meteorological conditions. A value of 1.5m for the spacing between coils (S) for a slinky configuration type is recommended to avoid thermal disturbances between neighbouring coils. We also found that for larger values of the spacing between the coils (S > 2), a slinky coil diameter (D) of 0.8m might be a better choice in terms of heat extraction rate. The fluid temperature of the pipe had a direct effect on the heat extraction rates of the system. The coefficient of performance of a heat pump did not remain constant and depended on the operating conditions and outdoor temperatures. The outcomes of this study will allow us to give recommendations to installers and relevant government bodies concerning the optimal configuration of future installations of horizontal GCHPs at UK developments. Finally, long-term simulations with the coupled JULES-GCHP model, using high resolution (1 km) meteorological (historical and projected data), soil physical and land cover data over the entire UK-domain, will allow us to explore the effect that global warming will have on future surface and soil temperatures, as well as soil moisture contents, and therefore its impact on the energy demand of the buildings and the CO2 mitigation potential of this type of renewable energy.

  14. Voyager Interactive Web Interface to EarthScope

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Meertens, C. M.; Estey, L.; Weingroff, M.; Hamburger, M. W.; Holt, W. E.; Richard, G. A.

    2004-12-01

    Visualization of data is essential in helping scientists and students develop a conceptual understanding of relationships among many complex types of data and keep track of large amounts of information. Developed initially by UNAVCO for study of global-scale geodynamic processes, the Voyager map visualization tools have evolved into interactive, web-based map utilities that can make scientific results accessible to a large number and variety of educators and students as well as the originally targeted scientists. A portal to these map tools can be found at: http://jules.unavco.org. The Voyager tools provide on-line interactive data visualization through pre-determined map regions via a simple HTML/JavaScript interface (for large numbers of students using the tools simultaneously) or through student-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Students can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Students can also choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays, for example coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, and observed and model plate motion, as well as deformation velocity vectors representing a compilation of over 5000 geodetic measurements from around the world. The related educational website, "Exploring our Dynamic Planet", (http://www.dpc.ucar.edu/VoyagerJr/jvvjrtool.html) incorporates background materials and curricular activities that encourage students to explore Earth processes. One of the present curricular modules is designed for high school students or introductory-level undergraduate non-science majors. The purpose of the module is for students to examine real data to investigate how plate tectonic processes are reflected in observed geophysical phenomena. Constructing maps by controlling map parameters and answering open-ended questions which describe, compare relationships, and work with both observed and model data, promote conceptual understanding of plate tectonics and related processes. The goals of curricular development emphasize inquiry, development of critical thinking skills, and student-centered interests. Custom editions of the map utility have been made as the "Jules Verne Voyager" and "Voyager Junior", for the International Lithosphere Project's "Global Strain Rate Map", and for EarthScope Education and Outreach as "EarthScope Voyager Jr.". For the latter, a number of EarthScope-specific features have been added, including locations of proposed USArray (seismic), Plate Boundary Observatory (geodetic), and San Andreas Fault Observatory at Depth sites, plus detailed maps and geographically referenced examples of EarthScope-related scientific investigations. As EarthScope develops, maps will be updated in `real time' so that students of all ages can use the data in formal and informal educational settings.

  15. Study of the influence of heat sources on the out-of-pile calibration curve of calorimetric cells used for nuclear energy deposition quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vita, C.; Brun, J.; Reynard-Carette, C.

    2015-07-01

    At present the Jules Horowitz Reactor is under construction in Cadarache research center of CEA 'French Alternative Energies and Atomic Energy Commission' center located in the south-east of France. This new Material Testing Reactor (MTR) will be operational in late 2019 and will allow the generation of a new experimental potential (up to 20 irradiation devices simultaneously) and new harsh conditions such as higher neutron fluxes (5.10{sup 14} n.cm{sup -2}.s{sup -1} for E≥1 MeV), faster material ageing and higher nuclear heating (up to 20 W/g for nominal capacity of 100 MW). In nuclear research field, the control and the measurementmore » of the nuclear heating (energy deposition rate per mass unit induced by the interactions of radiations with matter) is crucial to carry out accurate studies on ageing of materials and on the behavior of nuclear fuels under irradiation. Several experiments need to know precisely this key parameter in order to establish dedicated thermal conditions. The measurement of the nuclear heating inside MTRs is realized by three kinds of sensors: single-cell calorimeter, differential calorimeter and gamma thermometer. One scientific objective of the IN-CORE program, between CEA and Aix-Marseille University in 2009, is to improve the nuclear heating measurement. In this context a new multi-sensor device, called CARMEN, was made. This device contains in particular a differential calorimeter which was designed to measure the nuclear heating in the periphery of OSIRIS reactor (a MTR located at Saclay, France) up to 2 W/g and tested during two irradiation campaigns. Results obtained during these campaigns showed that temperatures reached inside the calorimeter are higher than ones obtained during the preliminary out-of-pile calibration experiments. For instance for 1.74 W/g, the in-pile temperature of the calorimeter rod is equal to 305 deg. C against 225 deg. C in laboratory conditions by simulating the nuclear heating by Joule Effect inside the calorimeter cell head. This discrepancy is higher than in previous experiments because the calorimeter owns a high sensitivity. Consequently, a new prototype was created and instrumented by other heat sources in order to impose an energy deposition on the calorimetric cell structure (in particular in the base) and to improve the calibration step in out-of-pile conditions. In this paper, on the first part a detailed description of the new calorimetric sensor will be given. On the second part, the experimental response of the sensor obtained for several internal heating conditions will be shown. The influence of these conditions on the calibration curve will be discussed. Then the response of this prototype will be also presented for different external cooling fluid conditions (in particular flow temperature). In this part, the comparison between the in-pile and out-of-pile experimental results will be performed. On the last part, these out-of-pile experiments will be completed by 2D axisymmetrical thermal simulations with the CEA code CAST3M using Finite Elements Method. After a comparison between experimental and numerical works, improvements of the sensor prototype will be studied (new heat sources). (authors)« less

  16. A Spectral Evaluation of Models Performances in Mediterranean Oak Woodlands

    NASA Astrophysics Data System (ADS)

    Vargas, R.; Baldocchi, D. D.; Abramowitz, G.; Carrara, A.; Correia, A.; Kobayashi, H.; Papale, D.; Pearson, D.; Pereira, J.; Piao, S.; Rambal, S.; Sonnentag, O.

    2009-12-01

    Ecosystem processes are influenced by climatic trends at multiple temporal scales including diel patterns and other mid-term climatic modes, such as interannual and seasonal variability. Because interactions between biophysical components of ecosystem processes are complex, it is important to test how models perform in frequency (e.g. hours, days, weeks, months, years) and time (i.e. day of the year) domains in addition to traditional tests of annual or monthly sums. Here we present a spectral evaluation using wavelet time series analysis of model performance in seven Mediterranean Oak Woodlands that encompass three deciduous and four evergreen sites. We tested the performance of five models (CABLE, ORCHIDEE, BEPS, Biome-BGC, and JULES) on measured variables of gross primary production (GPP) and evapotranspiration (ET). In general, model performance fails at intermediate periods (e.g. weeks to months) likely because these models do not represent the water pulse dynamics that influence GPP and ET at these Mediterranean systems. To improve the performance of a model it is critical to identify first where and when the model fails. Only by identifying where a model fails we can improve the model performance and use them as prognostic tools and to generate further hypotheses that can be tested by new experiments and measurements.

  17. Performance assessment of imaging plates for the JHR transfer Neutron Imaging System

    NASA Astrophysics Data System (ADS)

    Simon, E.; Guimbal, P. AB(; )

    2018-01-01

    The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.

  18. Photosynthesis sensitivity to climate change in land surface models

    NASA Astrophysics Data System (ADS)

    Manrique-Sunen, Andrea; Black, Emily; Verhoef, Anne; Balsamo, Gianpaolo

    2016-04-01

    Accurate representation of vegetation processes within land surface models is key to reproducing surface carbon, water and energy fluxes. Photosynthesis determines the amount of CO2 fixated by plants as well as the water lost in transpiration through the stomata. Photosynthesis is calculated in land surface models using empirical equations based on plant physiological research. It is assumed that CO2 assimilation is either CO2 -limited, radiation -limited ; and in some models export-limited (the speed at which the products of photosynthesis are used by the plant) . Increased levels of atmospheric CO2 concentration tend to enhance photosynthetic activity, but the effectiveness of this fertilization effect is regulated by environmental conditions and the limiting factor in the photosynthesis reaction. The photosynthesis schemes at the 'leaf level' used by land surface models JULES and CTESSEL have been evaluated against field photosynthesis observations. Also, the response of photosynthesis to radiation, atmospheric CO2 and temperature has been analysed for each model, as this is key to understanding the vegetation response that climate models using these schemes are able to reproduce. Particular emphasis is put on the limiting factor as conditions vary. It is found that while at present day CO2 concentrations export-limitation is only relevant at low temperatures, as CO2 levels rise it becomes an increasingly important restriction on photosynthesis.

  19. Identification and characterization of a LTR retrotransposon from the genome of Cyprinus carpio var. Jian.

    PubMed

    Cao, Liping; Yin, Guojun; Cao, Zheming; Bing, Xuwen; Ding, Weidong

    2016-06-01

    A Ty3/gypsy-retrotransposon-type transposon was found in the genome of the Jian carp (Cyprinus carpio var. Jian) in a previous study (unpublished), and was designated a JRE retrotransposon (Jian retrotransposon). The full-length JRE retrotransposon is 5126 bp, which includes two long terminal repeats of 470 bp at the 5' end and 453 bp at the 3' end, and two open reading frames between them: 4203 bp encoding the group-specific antigen (GAG) and polyprotein (POL). The pol gene has a typical Ty3/gypsy retrotransposon structure, and the gene order is protease, reverse transcriptase, RNase H, and integrase (PR-RT-RH-IN). A phylogenetic analysis of the pol gene showed that it has similarities of 40.7, 40, and 32.8 %, to retrotransposons of Azumapecten farreri, Mizuhopecten yessoensis, and Xiphophorus maculatus, respectively. Therefore, JRE might belong to the JULE retrotransposon family. The copy number of the JRE transposon in the genome of the Jian carp is 124, determined with real-time quantitative PCR. The mRNA of the JRE retrotransposon is expressed in five Jian carp tissues, the liver, kidney, blood, muscle, and gonad, and slightly higher in the kidney and liver than in the other tissues.

  20. Carbon dioxide and climate: a second assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    For over a century, concern has been expressed that increases in atmospheric carbon dioxide (CO/sub 2/) concentration could affect global climate by changing the heat balance of the atmosphere and Earth. Observations reveal steadily increasing concentrations of CO/sub 2/, and experiments with numerical climate models indicate that continued increase would eventually produce significant climatic change. Comprehensive assessment of the issue will require projection of future CO/sub 2/ emissions and study of the disposition of this excess carbon in the atmosphere, ocean, and biota; the effect on climate; and the implications for human welfare. This study focuses on one aspect, estimationmore » of the effect on climate of assumed future increases in atmospheric CO/sub 2/. Conclusions are drawn principally from present-day numerical models of the climate system. To address the significant role of the oceans, the study also makes use of observations of the distributions of anthropogenic tracers other than CO/sub 2/. The rapid scientific developments in these areas suggest that periodic reassessments will be warranted. The starting point for the study was a similar 1979 review by a Climate Research Board panel chaired by the late Jule G. Charney. The present study has not found any new results that necessitate substantial revision of the conclusions of the Charney report.« less

  1. Lost and found: the Plecoptera types of Blanchard and Mabille, with further contributions to the stoneflies of Chile.

    PubMed

    Murányi, Dávid; Gamboa, Maribet; Vera, Alejandro

    2016-12-01

    Types of five of the six Plecoptera species described by Émile Blanchard and the holotype of the single stonefly described by Jules François Mabille were discovered in the National Museum Prague, Czech Republic. The identity of P. myrmidon Mabille, 1891 and P. pictetii Blanchard, 1854 are confirmed as Potamoperla myrmidon and Pictetoperla gayi (Pictet, 1841), respectively. Perla virescentipennis Blanchard, 1851 is considered as Diamphipnopsis virescentipennis comb. n., with Diamphipnosis samali Illies, 1960 syn. n. as a junior subjective synonym, and Diamphipnoa chillanae nom. n. is proposed for D. virescentipennis sensu Illies 1960. Lectotypes are designated for three species: Nemoura rufescens Blanchard, 1851 is redescribed as Austronemoura rufescens (Blanchard, 1851) comb. n., with Perla infuscata Blanchard, 1851 syn. n. and Perla blanchardi Jakobson & Bianchi, 1905 syn. n. designated as junior subjective synonyms, whereas Perla stictica Blanchard, 1851 is treated as Neonemura stictica (Blanchard, 1851) comb. n., nomen dubium. Paralectotypes of these three species belong to further four taxa. Due to the missing syntypes, Perla lineatocollis Blanchard, 1851 is treated as a nomen dubium of uncertain suborder assignment. Specimens of the Blanchard collections that cannot regarded as types are enumerated belonging to six species. Recent collections of 15 species from Chile are also reported.

  2. Heat production: Longitudinal versus torsional phacoemulsification.

    PubMed

    Han, Young Keun; Miller, Kevin M

    2009-10-01

    To compare the heat production of longitudinal versus torsional phacoemulsification under strict laboratory test conditions. Department of Ophthalmology, David Geffen School of Medicine at UCLA, and Jules Stein Eye Institute, Los Angeles, California, USA. Two Infiniti phacoemulsification handpieces were inserted into silicone test chambers filled with a balanced salt solution and imaged serially using a thermal camera. Incision compression was simulated by suspending 25.3 g weights from the silicone chambers. To simulate occlusion of the phacoemulsification tip, the aspiration line was clamped. Peak temperatures were measured 0, 10, 30, 60, and 120 seconds after the commencement of continuous ultrasound power. The 2 handpieces, operating exclusively in longitudinal or torsional modes, were compared 3 ways: (1) using the same power displayed on the instrument console, (2) using identical stroke lengths, and (3) using the same applied energy, a product of stroke length and frequency. For all 3 comparisons, torsional phacoemulsification resulted in lower temperatures at each time point. At the same displayed power setting, the scenario most familiar to cataract surgeons, longitudinal phacoemulsification elevated temperatures up to 41.5 degrees C more than torsional phacoemulsification. Torsional phacoemulsification generated less heat than longitudinal phacoemulsification in all 3 comparison tests. Lower operating temperatures indicate lower heat generation within the same volume of fluid, and this may provide additional thermal protection during cataract surgery.

  3. Photogenic Venus. The "cinematographic turn" and its alternatives in nineteenth-century France

    NASA Astrophysics Data System (ADS)

    Canales, Jimena

    2002-12-01

    During the late nineteenth century, scientists around the world disagreed as to the types of instruments and methods that should be used for determining the most important constant of celestial mechanics: the solar parallax. Venus's 1874 transit across the sun was seen as the best opportunity for ending decades of debate. However, a mysterious "black drop" that appeared between Venus and the sun and individual differences in observations of the phenomenon brought traditional methods into disrepute. To combat these difficulties, the astronomer Jules Janssen devised a controversial new instrument, the "photographic revolver", that photographed Venus at regular intervals. Another solution came from physicists, who rivaled the astronomers' dominance in precision measurements by deducing the solar parallax from physical measurements of the speed of light. Yet other astronomers relied on drawings and well-trained observers. The new space emerging from this debate was characterized by a decline in faith in (nonstandardized, nonreproducible) photography and in (pure) geometry and by the growing realization of the importance of alternative elements needed for establishing scientific truths: power and authority, skill and discipline, standardization, mechanical reproducibility, and theoreticality. By examining the "cinematographic turn" in science and its alternatives, this essay brings to light unexplored multi-disciplinary connections that contribute to the histories of psychology, philosophy, physics, and film studies.

  4. EMPIRE and pyenda: Two ensemble-based data assimilation systems written in Fortran and Python

    NASA Astrophysics Data System (ADS)

    Geppert, Gernot; Browne, Phil; van Leeuwen, Peter Jan; Merker, Claire

    2017-04-01

    We present and compare the features of two ensemble-based data assimilation frameworks, EMPIRE and pyenda. Both frameworks allow to couple models to the assimilation codes using the Message Passing Interface (MPI), leading to extremely efficient and fast coupling between models and the data-assimilation codes. The Fortran-based system EMPIRE (Employing Message Passing Interface for Researching Ensembles) is optimized for parallel, high-performance computing. It currently includes a suite of data assimilation algorithms including variants of the ensemble Kalman and several the particle filters. EMPIRE is targeted at models of all kinds of complexity and has been coupled to several geoscience models, eg. the Lorenz-63 model, a barotropic vorticity model, the general circulation model HadCM3, the ocean model NEMO, and the land-surface model JULES. The Python-based system pyenda (Python Ensemble Data Assimilation) allows Fortran- and Python-based models to be used for data assimilation. Models can be coupled either using MPI or by using a Python interface. Using Python allows quick prototyping and pyenda is aimed at small to medium scale models. pyenda currently includes variants of the ensemble Kalman filter and has been coupled to the Lorenz-63 model, an advection-based precipitation nowcasting scheme, and the dynamic global vegetation model JSBACH.

  5. Chronicler's Induction Ceremony

    NASA Image and Video Library

    2017-05-05

    "The Chroniclers," a program at NASA’s Kennedy Space Center, Florida, recognizing those who helped spread news of American space exploration, officially added six new names to its wall of fame in a ceremony on May 5, 2017. This year’s honorees are, in alphabetical order: Bruce Hall, veteran CBS News and NBC News correspondent and producer (deceased); Scott Harris, veteran Orlando TV reporter and anchor (deceased); Bill Johnson, NASA Kennedy Public Affairs (retired); Warren Leary, science writer and correspondent for the Associated Press and The New York Times (retired); Robert B. (Bob) Murray, NASA videographer and technician (retired); and Phil Sandlin, photographer for UPI and The Associated Press (retired). Brass strips engraved with each awardee’s name and affiliation were unveiled on “The Chroniclers” wall in the newsroom at the Kennedy Space Center Press Site. Sixty-six past honorees include Walter Cronkite of CBS News, Jules Bergman of ABC News and two-time Pulitzer winner John Noble Wilford of The New York Times. Today’s ceremony came on the 56th anniversary of Alan Shepard’s historic flight as America’s first human in space. Coincidentally, it was Shepard from whom the first “Chroniclers” received their award certificates in 1996. KSC Contact - Al Feinberg (321)867-2468, al.feinberg@nasa.gov

  6. The Contributions - and Collapse - of Lamarckian Heredity in Pasteurian Molecular Biology: 1. Lysogeny, 1900-1960.

    PubMed

    Loison, Laurent; Gayon, Jean; Burian, Richard M

    2017-02-01

    This article shows how Lamarckism was essential in the birth of the French school of molecular biology. We argue that the concept of inheritance of acquired characters positively shaped debates surrounding bacteriophagy and lysogeny in the Pasteurian tradition during the interwar period. During this period the typical Lamarckian account of heredity treated it as the continuation of protoplasmic physiology in daughter cells. Félix d'Hérelle applied this conception to argue that there was only one species of bacteriophage and Jules Bordet applied it to develop an account of bacteriophagy as a transmissible form of autolysis and to analyze the new phenomenon of lysogeny. In a long-standing controversy with Bordet, Eugène Wollman deployed a more morphological understanding of the inheritance of acquired characters, yielding a particulate, but still Lamarckian, account of lysogeny. We then turn to André Lwoff who, with several colleagues, completed Wollman's research program from 1949 to 1953. We examine how he gradually set aside the Lamarckian background, finally removing inheritance of acquired characters from the resulting account of bacteriophagy and lysogeny. In the conclusion, we emphasize the complex dual role of Lamarckism as it moved from an assumed explanatory framework to a challenge that the nascent molecular biology had to overcome.

  7. Metals and magnets in medicine: hysteria, hypnosis and medical culture in fin-de-siècle Paris.

    PubMed

    Harrington, A

    1988-02-01

    It is well known that the end of the nineteenth century represented a 'golden age' of hysteria and hypnosis research under Jean-Martin Charcot in Paris, but the extent to which metals and magnets figured in this strange and provocative world has been very incompletely told. This paper offers itself as a first corrective to this neglect. In 1876 a certain elderly physician and mesmerist, Victor Burq, asked the Parisian Société de Biologie formally to establish the validity of his so-called 'metallotherapy' (later 'metalloscopy') treatment for hysteria. The paper argues that Charcot's participation in the investigation of Burq's work--undertaken in conjunction with two other leading French neurologists, Amédée Dumontpallier and Jules Bernard Luys--served as a major catalyst in arousing the great neurologist's interest in hypnosis in the first place, and was subsequently responsible for several of his key beliefs about the underlying physiological link between hypnosis and hysteria. It is also shown how these early metalloscopy studies--and especially the discovery by Charcot and his colleagues of so-called metalloscopic 'transfer'--opened the door to the rise of a neo-mesmeric, and increasingly occult, branch of hypnosis research in French psychiatry, which has to date, in the secondary literature, gone almost wholly unremarked.

  8. Covariance generation and uncertainty propagation for thermal and fast neutron induced fission yields

    NASA Astrophysics Data System (ADS)

    Terranova, Nicholas; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Sumini, Marco

    2017-09-01

    Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered.

  9. Birth of the science of immunology.

    PubMed

    Schmalstieg, Frank C; Goldman, Armond S

    2010-05-01

    The science of immunology emerged in the last of the 19th and the first of the 20th century. Substantial progress in physics, chemistry and microbiology was essential for its development. Indeed, microorganisms became one of the principal investigative tools of the major founders of that science - Louis Pasteur, Robert Koch, Ilya Ilich Metchnikoff, Paul Ehrlich and Jules Bordet. It is pertinent that these pioneering scientists were born when questioning and exploration were encouraged because of the legacies of the previous century of enlightenment. Mentors greatly aided their development. Their discoveries were shaped by their individual personalities. In turn they developed other contributors to the nascent field. Their discoveries included the types of leukocytes, the roles of neutrophils in inflammation and defence, cellular lysis due to complement, the principles of humoral and cellular immunology, passive and active immunization, tissue antigens, anaphylaxis, anaphylactoid reactions and autoimmunity. Their work formed the basis of modern immunology that developed many decades later. Immunology has enormously impacted our understanding of the pathogenesis, diagnosis and treatment of infections, immune-mediated disorders and inflammation. Burgeoning advances forecast further important clinical applications of immunology. Yet, their applications will be problematic because few physicians sufficiently understand the science. We propose that understanding modern immunology requires a grasp of how that science developed - who made the discoveries, how they were made, their successes and failures, their interactions and debates all reveal the foundation of modern immunology.

  10. Numerical analysis and modeling of atmospheric phenomena

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.

    1994-01-01

    For the past 22 years Grant NGR 22-009-727 has been supporting research in the Center for Meteorology and Physical Oceanography (and its predecessors) in a wide variety of diagnostic and modeling studies of atmospheric and ocean phenomena. Professor Jule Charney was the initial Principal Investigator. Professor Peter Stone joined him as co-Principal Investigator in 1975 and became the sole Principal Investigator in 1981. During its lifetime the Grant has supported in whole or in part 11 Master's theses, 14 Ph.D. theses, and 45 papers published in refereed scientific journals. All of these theses and papers (with bibliographic references) are listed below. All but one of the theses were used to fulfill the requirements for MIT (Massachusetts Institute of Technology) degrees and are available from the MIT libraries. The one exception is F. Chen's Ph.D. thesis which was for a Harvard degree and is available from the Harvard libraries. In addition to the work described in the citations listed below, the Grant has supported Research Assistant Amy Solomon during the past two years to carry out a study of how baroclinic adjustment is affected by vertical resolution, vertical temperature structure, and dissipation. Ms. Solomon plans to use this project for her Ph.D. thesis. Support for this project will continue under NASA Grant NAG 5-2490, 'The Factors Controlling Poleward Heat Transport in Climate Models.'

  11. Assessing Ecosystem Model Performance in Semiarid Systems

    NASA Astrophysics Data System (ADS)

    Thomas, A.; Dietze, M.; Scott, R. L.; Biederman, J. A.

    2017-12-01

    In ecosystem process modelling, comparing outputs to benchmark datasets observed in the field is an important way to validate models, allowing the modelling community to track model performance over time and compare models at specific sites. Multi-model comparison projects as well as models themselves have largely been focused on temperate forests and similar biomes. Semiarid regions, on the other hand, are underrepresented in land surface and ecosystem modelling efforts, and yet will be disproportionately impacted by disturbances such as climate change due to their sensitivity to changes in the water balance. Benchmarking models at semiarid sites is an important step in assessing and improving models' suitability for predicting the impact of disturbance on semiarid ecosystems. In this study, several ecosystem models were compared at a semiarid grassland in southwestern Arizona using PEcAn, or the Predictive Ecosystem Analyzer, an open-source eco-informatics toolbox ideal for creating the repeatable model workflows necessary for benchmarking. Models included SIPNET, DALEC, JULES, ED2, GDAY, LPJ-GUESS, MAESPA, CLM, CABLE, and FATES. Comparison between model output and benchmarks such as net ecosystem exchange (NEE) tended to produce high root mean square error and low correlation coefficients, reflecting poor simulation of seasonality and the tendency for models to create much higher carbon sources than observed. These results indicate that ecosystem models do not currently adequately represent semiarid ecosystem processes.

  12. Comparison of vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification systems.

    PubMed

    Han, Young Keun; Miller, Kevin M

    2009-08-01

    To compare vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification machines. Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA. The vacuum rise time under normal and enhanced aspiration modes, vacuum limit accuracy, and occlusion break surge of the Infiniti Vision System, Stellaris Vision Enhancement System, and WhiteStar Signature Phacoemulsification System were tested. Vacuum rise time and limit accuracy were measured at limit settings of 400 mm Hg and 600 mm Hg. Surge area was recorded at vacuum limit settings of 200 mm Hg, 300 mm Hg, 400 mm Hg, and 500 mm Hg. The Infiniti had the fastest vacuum rise times under normal and enhanced aspiration modes. At 4 seconds, the vacuum limit accuracy was greatest with the Infiniti at the 400 mm Hg limit and the Signature at the 600 mm Hg limit. The Stellaris did not reach either vacuum target. The Infiniti performed better than the other 2 machines during testing of occlusion break surge at all vacuum limit settings above 200 mm Hg. Under controlled laboratory test conditions, the Infiniti had the fastest vacuum rise time, greatest vacuum limit accuracy at 400 mm Hg, and least occlusion break surge. These results can be explained by the lower compliance of the Infiniti system.

  13. Honors

    NASA Astrophysics Data System (ADS)

    Anonymous

    2012-10-01

    Many AGU members are among the American Meteorological Society's (AMS) 2013 honorary members, awardees, lecturers, and fellows. Among the AMS honorary members is Susan Solomon, the Ellen Swallow Richards Professor of Atmospheric Chemistry and Climate Science at the Massachusetts Institute of Technology (MIT). Dennis Hartmann, of the University of Washington, Seattle, is the recipient of AMS's Carl-Gustaf Rossby Research Medal "for significant contributions to the synthesis of knowledge of radiative and dynamical processes leading to a deeper understanding of the climate system." R. Alan Plumb, professor of meteorology at MIT, receives the Jule G. Charney Award "for fundamental contributions to the understanding of geophysical fluid dynamics, stratospheric dynamics, chemical transport, and the general circulation of the atmosphere and oceans." The Verner E. Suomi Award has been given to Richard Johnson, professor of atmospheric science at Colorado State University, Fort Collins, "for exquisite design of rawinsonde networks in field campaigns and insightful analysis of interactions between convective clouds and the largescale atmospheric circulation." W. Kendall Melville, professor of oceanography at the Scripps Institution of Oceanography, University of California, San Diego, has been awarded the Sverdrup Gold Medal Award "for pioneering contributions in advancing knowledge on the role of surface wave breaking and related processes in air-sea interaction." AMS announced that Laurence Armi, also a professor of oceanography at Scripps, is recipient of the Henry Stommel Research Award "for his deeply insightful studies of stratified flow, his pioneering work on boundary mixing and other turbulent mechanisms."

  14. Figures and institutions of the neurological sciences in Paris from 1800 to 1950. Part III: neurology.

    PubMed

    Broussolle, E; Poirier, J; Clarac, F; Barbara, J-G

    2012-04-01

    We present a short historical review of the major figures, their administrative functions and their works that contributed to make Paris a renowned centre of physiology and neurology during the xixth and the first half of the xxth century. We purposely chose to focus on the period 1800-1950, as 1800 corresponds to the actual beginning of neurosciences, and 1950 marks their exponential rise. Our presentation is divided into four chapters, matching the main disciplines which have progressed and contributed the most to the knowledge we have of the brain sciences: anatomy, physiology, neurology, and psychiatry-psychology. The present article is the third of four parts of this review, and deals with neurology. A special credit should be given to Jean-Martin Charcot who founded the Salpêtrière School of neurology and became one of the world's most important neurologists of the xixth century. We provide below the biographical sketches of Armand Trousseau, Guillaume Benjamin Amand Duchenne, Jean-Martin Charcot, Alfred Vulpian, Désiré-Magloire Bourneville, Paul Richer, Henri Parinaud, Albert Pitres, Jules Joseph Dejerine, Mrs. Augusta Dejerine-Klumpke, Édouard Brissaud, Pierre Marie, Georges Édouard Brutus Gilles de la Tourette, Joseph Babinski, André Thomas, Georges Marinesco, Achille Alexandre Souques, Georges Guillain and Charles Foix. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. The GNC Measurement System for the Automated Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Roux, Y.; da Cunha, P.

    The Automated Transfer Vehicle (ATV) is a European Space Agency (ESA) funded spacecraft developed by EADS Space Transportation as prime contractor for the space segment together with major European industrial partners, in the frame of the International Space Station (ISS). Its mission objective is threefold : to supply the station with fret and propellant, to reboost ISS to a higher orbit and to dispose of waste from the station. The ATV first flight, called Jules Verne and planned on 2005, will be the first European Vehicle to perform an orbital rendezvous. The GNC Measurement System (GMS) is the ATV on board function in charge of the measurement data collection and preconditioning for the navigation, guidance and control (GNC) algorithms. The GMS is made up of hardware which are the navigation sensors (with a certain level of hardware redundancy for each of them), and of an on-board software that manages, monitors and performs consistency checks to detect and isolate potential sensor failures. The GMS relies on six kinds of navigation sensors, used during various phases of the mission : the gyrometers assembly (GYRA), the accelerometers assembly (ACCA), the star trackers (STR), the GPS receivers, the telegoniometers (TGM) and the videometers (VDM), the last two being used for the final rendezvous phase. The GMS function is developed by EADS Space Transportation together with other industrial partners: EADS Astrium, EADS Sodern, Laben and Dasa Jena Optronik.

  16. Implications of plant acclimation for future climate-carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    Mercado, Lina; Kattge, Jens; Cox, Peter; Sitch, Stephen; Knorr, Wolfgang; Lloyd, Jon; Huntingford, Chris

    2010-05-01

    The response of land ecosystems to climate change and associated feedbacks are a key uncertainty in future climate prediction (Friedlingstein et al. 2006). However global models generally do not account for the acclimation of plant physiological processes to increased temperatures. Here we conduct a first global sensitivity study whereby we modify the Joint UK land Environment Simulator (JULES) to account for temperature acclimation of two main photosynthetic parameters, Vcmax and Jmax (Kattge and Knorr 2007) and plant respiration (Atkin and Tjoelker 2003). The model is then applied over the 21st Century within the IMOGEN framework (Huntingford et al. 2004). Model simulations will provide new and improved projections of biogeochemical cycling, forest resilience, and thus more accurate projections of climate-carbon cycle feedbacks and the future evolution of the Earth System. Friedlingstein P, Cox PM, Betts R et al. (2006) Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. Journal of Climate, 19, 3337-3353. Kattge J and Knorr W (2007): Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell and Environment 30, 1176-1190 Atkin O.K and Tjoelker, M. G. (2003): Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science 8 (7), 343-351 Huntingford C, et al. (2004) Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology, 78, 177-185.

  17. Recent progress on the application of 2H solid-state NMR to probe the interaction of antimicrobial peptides with intact bacteria.

    PubMed

    Booth, Valerie; Warschawski, Dror E; Santisteban, Nury P; Laadhari, Marwa; Marcotte, Isabelle

    2017-11-01

    Discoveries relating to innate immunity and antimicrobial peptides (AMPs) granted Bruce Beutler and Jules Hoffmann a Nobel prize in medicine in 2011, and opened up new avenues for the development of therapies against infections, and even cancers. The mechanisms by which AMPs interact with, and ultimately disrupt, bacterial cell membranes is still, to a large extent, incompletely understood. Up until recently, this mechanism was studied using model lipid membranes that failed to reproduce the complexity of molecular interactions present in real cells comprising lipids but also membrane proteins, a cell wall containing peptidoglycan or lipopolysaccharides, and other molecules. In this review, we focus on recent attempts to study, at the molecular level, the interaction between cationic AMPs and intact bacteria, by 2 H solid-state NMR. Specifically-labeled lipids allow us to focus on the interaction of AMPs with the heart of the bacterial membrane, and measure the lipid order and its variation upon interaction with various peptides. We will review the important parameters to consider in such a study, and summarize the results obtained in the past 5years on various peptides, in particular aurein 1.2, caerin 1.1, MSI-78 and CA(1-8)M(1-10). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Key Challenges and New Trends in Battery Research (2011 EFRC Forum)

    ScienceCinema

    Tarascon, Jean Marie

    2018-02-13

    Jean-Marie Tarascon, Professor at the University de Picardie Jules Verne, France, was the fourth speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Tarascon recounted European basic research activates in electrical energy storage. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  19. Two novel elements (CFG1 and PYG1) of Mag lineage of Ty3/Gypsy retrotransposons from Zhikong scallop (Chlamys farreri) and Japanese scallop (Patinopecten yessoensis).

    PubMed

    Wang, Shi; Bao, Zhenmin; Hu, Xiaoli; Shao, Mingyu; Zhang, Lingling; Hu, Jingjie

    2008-05-01

    Two novel elements (CFG1 and PYG1) of Mag lineage of Ty3/Gypsy retrotransposons were cloned from Zhikong scallop (Chlamys farreri) and Japanese scallop (Patinopecten yessoensis). The total length of the CFG1 element is 4826 bp, including 5'-LTR (192 bp), the entire ORF (4047 bp) and 3'-LTR (189 bp). The entire ORFs of both CFG1 and PYG1 elements are composed of 1348 aa and do not have any frameshifts. Their closest relative is Jule element from the poeciliid fish (Xiphophorus maculatus). On average, the diploid genome of C. farreri contains approximately 84 copies of CFG1 elements. We summarize the major features of CFG1, PYG1 and other elements of Mag lineage of the Ty3/Gypsy group. mRNA expression of CFG1 element in larvae increases gradually before the gastrulae stage and decreases gradually afterward, whereas in adductor such expression in adductor muscle and digestive gland are lower than those in other tissues. Overall, mRNA expression of CFG1 element in the early larvae is significantly higher than that in adult tissues. In muscle tissue, while the promoter and partial GAG domain of CFG1 element are unmethylated, the partial RT domain is highly methylated. These results suggest that CFG1 expression may be controlled by a post-transcriptional gene silencing mechanism that is associated with coding-region (RT domain) methylation.

  20. [Pharmacy, one of the emerging sources of new science of technology].

    PubMed

    Charlot, Colette

    2015-01-01

    Linking pharmacy and oenology seems to be paradox. The school of Medicine and Pharmacy owe their fame to the historical context of the Languedocian Universities. The role of their naturalist professors is less known. Dr Chaptal's thesis discusses the wine chemical constituents. In 1801 he published a book entitled "the Art of making, managing and perfecting wine", inventor of a distillation machine, his name become an eponym "the chaptalisation", which is specific process, for regions less exposed to sunlight, showing that sugar in the must is needed to obtain alcohol. Jules Emile Planchon, professor of botanic science at the Superior School of Pharmacy will discoverer the parasite disease of the phylloxera, a parasite that destroy vineyards. The cure will be the American grafting. The list of professors who worked on vineyards related frauds and diseases is long. Once Analytical chemistry has become part of the curriculum universities, pharmacists, started investigating wine analysis. It will be part of Bromatology, the science of food ingredients. Pharmacists were then able to carry out the first wine analyses sin their laboratory. It is at that time that Paul Jaulmes, professor of Analytical Chemistry who became Director of the international office of vineyards and Wine (OIV) proposed alongside Prof Nègre, director of the National School of Agronomy, the initiation in 1955 of a new diploma oenology. As a renowned toxicologist, Prof. Jaulmes will lead the committee in charge of the oenology Standards.

  1. Bacterial keratitis: a prospective clinical and microbiological study

    PubMed Central

    Schaefer, F.; Bruttin, O.; Zografos, L.; Guex-Crosier, Y.

    2001-01-01

    AIM—To define the clinical and microbiological profile of bacterial keratitis at the Jules Gonin Eye Hospital and to test the in vitro bacterial resistance.
METHODS—Patients presenting with bacterial keratitis were prospectively followed; clinical features (age, risk factors, visual acuity) and response to therapy were analysed. Bacteriological profile was determined and the sensitivity/resistance of isolated strains were tested towards 12 ocular antibiotics (NCCLS disc diffusion test).
RESULTS—85 consecutive patients (mean age 44.3 (SD 20.7) years) were prospectively enrolled from 1 March 1997 to 30 November 1998. The following risk factors were identified: contact lens wear, 36%; blepharitis, 21%; trauma, 20%; xerophthalmia, 15%; keratopathies, 8%; and eyelid abnormalities, 6%. The most commonly isolated bacteria were Staphylococcus epidermidis, 40%; Staphylococcus aureus, 22%; Streptococcus pneumoniae, 8%; others Streptococcus species, 5%; Pseudomonas, 9%; Moraxella and Serratia marcescens, 5% each; Bacillus, Corynebacterium, Alcaligenes xyloxidans, Morganella morganii, and Haemophilus influenza, 1% each. 1-15% of strains were resistant to fluoroquinolones, 13-22% to aminoglycosides, 37% to cefazolin, 18% to chloramphenicol, 54% to polymyxin B, 51% to fusidic acid, and 45% to bacitracin. Five of the 85 patients (5.8%) had a poor clinical outcome with a visual loss of one or more lines of visual acuity.
CONCLUSION—Fluoroquinolones appear to be the therapy of choice for bacterial keratitis, but, based upon these in vitro studies, some strains may be resistant.

 PMID:11423460

  2. Imaging lidar technology: development of a 3D-lidar elegant breadboard for rendezvous and docking, test results, and prospect to future sensor application

    NASA Astrophysics Data System (ADS)

    Moebius, B.; Pfennigbauer, M.; Pereira do Carmo, J.

    2017-11-01

    During the previous 15 years, Rendezvous and Docking Sensors (RVS) were developed, manufactured and qualified. In the mean time they were successfully applied in some space missions: For automatic docking of the European ATV "Jules Verne" on the International Space Station in 2008; for automatic berthing of the first Japanese HTV in 2009, and even the precursor model ARP-RVS for measurements during Shuttle Atlantis flights STS-84 and STS-86 to the MIR station. Up to now, about twenty RVS Flight Models for application on ATV, HTV and the American Cygnus Spacecraft were manufactured and delivered to the respective customers. RVS is designed for tracking of customer specific, cooperative targets (i.e. retro reflectors that are arranged in specific geometries). Once RVS has acquired the target, the sensor measures the distance to the target by timeof- flight determination of a pulsed laser beam. Any echo return provokes an interrupt signal and thus the readout of the according encoder positions of the two scan mirrors that represent Azimuth and Elevation measurement direction to the target. [2], [3]. The capability of the RVS for 3D mapping of the scene makes the fully space qualified RVS to be real 3D Lidar sensors; thus they are a sound technical base for the compact 3D Lidar breadboard that was developed in the course of the Imaging Lidar Technology (ILT) project.

  3. George Ellery Hale's Early Solar Research at Chicago, Kenwood, Harvard, and Yerkes Observatories, 1882-1904

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1999-05-01

    Growing up in Chicago, George Ellery Hale, later the prime spirit in founding the AAS, was a precocious boy scientist. He was deeply interested in spectroscopy and astrophysics from an early age. His wealthy parents encouraged Hale's aspirations with magazines, books, and instruments, and he acquired his first telescope when he was 14. He knew as mentors classical astronomers S. W. Burnham and George W. Hough, but he preferred astrophysics and designed his own Kenwood Physical Obseervatory around a grating in a Rowland circle mounting, fed by a heliostat, both built for him by instrument-maker John A. Brashear. For his undergraduate thesis at MIT, Hale invented and (at Harvard College Observatory) demonstrated the spectroheliograph. With it, and a high-quality 12-in refractor at his later Kenwood Astrophysical Observatory (at the same site, the Hale family home, 4 miles from the present Hilton Hotel where the SPD, HAD and AAS are meeting) Hale did excellent solar research, especially on promineneces, flocculi, and the near-ultraviolet spectrum of the chromosphere. As a teen-ager and a young adult Hale traveled widely, and met several important piuoneer solar physicists, including Charles A. Young, Jules Janssen, Samuel P. Langley, and Henry Rowland. Hale designed Yerkes Observatory for solar and stellar research, and headed the solar work himself. One of his aims always was to compare other stars with the sun. Hale's telescopes, instruments, methods, and resulting papers will be described and illustrated by numerous slides.

  4. Honors

    NASA Astrophysics Data System (ADS)

    2012-10-01

    Many AGU members are among the American Meteorological Society's (AMS) 2013 honorary members, awardees, lecturers, and fellows. Among the AMS honorary members is Susan Solomon, the Ellen Swallow Richards Professor of Atmospheric Chemistry and Climate Science at the Massachusetts Institute of Technology (MIT). Dennis Hartmann, of the University of Washington, Seattle, is the recipient of AMS's Carl-Gustaf Rossby Research Medal “for significant contributions to the synthesis of knowledge of radiative and dynamical processes leading to a deeper understanding of the climate system.” R. Alan Plumb, professor of meteorology at MIT, receives the Jule G. Charney Award “for fundamental contributions to the understanding of geophysical fluid dynamics, stratospheric dynamics, chemical transport, and the general circulation of the atmosphere and oceans.” The Verner E. Suomi Award has been given to Richard Johnson, professor of atmospheric science at Colorado State University, Fort Collins, “for exquisite design of rawinsonde networks in field campaigns and insightful analysis of interactions between convective clouds and the largescale atmospheric circulation.” W. Kendall Melville, professor of oceanography at the Scripps Institution of Oceanography, University of California, San Diego, has been awarded the Sverdrup Gold Medal Award “for pioneering contributions in advancing knowledge on the role of surface wave breaking and related processes in air-sea interaction.” AMS announced that Laurence Armi, also a professor of oceanography at Scripps, is recipient of the Henry Stommel Research Award “for his deeply insightful studies of stratified flow, his pioneering work on boundary mixing and other turbulent mechanisms.”

  5. Evaluating the UK's carbon budget using a dense network of tall-tower observations

    NASA Astrophysics Data System (ADS)

    White, E.; Rigby, M. L.; Manning, A.; Lunt, M. F.; Ganesan, A.; O'Doherty, S.; Stavert, A.; Stanley, K. M.; Williams, M. D.; Smallman, T. L.; Comyn-Platt, E.; Levy, P. E.

    2017-12-01

    The UK has committed to reducing greenhouse gas (GHG) emissions to 80% of 1990 levels by 2050. Evaluating the UK's GHG emissions, and in particular those of carbon dioxide, is imperative to the UK's ability to track progress towards these goals. Making top-down estimates of regional carbon dioxide emissions is challenging due to the rapid temporal variability in the biogenic flux, and the co-location of anthropogenic and biogenic sources and sinks. We present a hierarchical Bayesian inverse modelling framework, which is able to estimate a yearly total (anthropogenic and biogenic) carbon dioxide budget for the UK. Using observations from a high-density GHG monitoring network, combined with high temporal resolution prior information and a Lagrangian atmospheric transport model (NAME, developed by the UK Met Office), we derive a net positive flux for the UK of 0.39 Pg/yr in 2014. We will compare the outcome of inversions that used prior information from two different biosphere models, CARDAMOM and JULES. This comparison helps to understand more about the biogenic processes contributing to the UK's carbon dioxide budget, limitations with different modelling approaches and the sensitivity of the inversion framework to the choice of prior. A better understanding of how the biogenic flux changes throughout the year can, in turn, help to improve the UK's anthropogenic carbon dioxide inventory by identifying times in the year when the anthropogenic signal may be possible to detect.

  6. Une alternative au cobalt pour la synthese de nanotubes de carbone monoparoi par plasma inductif thermique

    NASA Astrophysics Data System (ADS)

    Carrier, Jean-Francois

    Les nanotubes de carbone de type monoparoi (C-SWNT) sont une classe recente de nanomateriaux qui ont fait leur apparition en 1991. L'interet qu'on leur accorde provient des nombreuses proprietes d'avant-plan qu'ils possedent. Leur resistance mecanique serait des plus rigide, tout comme ils peuvent conduire l'electricite et la chaleur d'une maniere inegalee. Non moins, les C-SWNT promettent de devenir une nouvelle classe de plateforme moleculaire, en servant de site d'attache pour des groupements reactifs. Les promesses de ce type particulier de nanomateriau sont nombreuses, la question aujourd'hui est de comment les realiser. La technologie de synthese par plasma inductif thermique se situe avantageusement pour la qualite de ses produits, sa productivite et les faibles couts d'operation. Par contre, des recherches recentes ont permis de mettre en lumiere des risques d'expositions reliees a l'utilisation du cobalt, comme catalyseur de synthese; son elimination ou bien son remplacement est devenu une preoccupation importante. Quatre recettes alternatives ont ete mises a l'essai afin de trouver une alternative plus securitaire a la recette de base; un melange catalytique ternaire, compose de nickel, de cobalt et d'oxyde d'yttrium. La premiere consiste essentiellement a remplacer la proportion massique de cobalt par du nickel, qui etait deja present dans la recette de base. Les trois options suivantes contiennent de nouveaux catalyseurs, en remplacement au Co, qui sont apparus dans plusieurs recherches scientifiques au courant des dernieres annees: le dioxyde de zircone (ZrO2), dioxyde de manganese (MnO2) et le molybdene (Mo). La methode utilisee consiste a vaporiser la matiere premiere, sous forme solide, dans un reacteur plasma a haute frequence (3 MHz) a paroi refroidi. Apres le passage dans le plasma, le systeme traverse une section dite de "croissance", isolee thermiquement a l'aide de graphite, afin de maintenir une certaine plage de temperature favorable a la synthese de C-SWNT. Le produit final est par la suite recolte sur des filtres metalliques poreux, une fois le systeme mis a l'arret. Dans un premier temps, une analyse thermodynamique, calculee avec le logiciel Fact-Sage, a permis de mettre en lumiere l'etat des differentes produits et reactifs, tout au long de leur passage dans le systeme. Elle a permis de reveler la similitude de composition de la phase liquide du melange catalytique ternaire de base, avec celui du melange binaire, avec nickel et oxyde d'yttrium. Par la suite, une analyse du bilan d'energie, a l'aide d'un systeme d'acquisition de donnees, a permis de determiner que les conditions operatoires des cinq echantillons mis a l'essai etaient similaires. Au total, le produit final a ete caracterise a l'aide de six methodes de caracterisations differentes : l'analyse thermogravimetrique, la diffraction de rayons X, la microscopie electronique a balayage a haute resolution (HRSEM), la microscopie electronique a transmission (MET), la spectroscopie RAMAN, ainsi que la mesure de la surface specifique (BET). Les resultats de ces analyses ont permis de constater, de facon coherente, que le melange a base de molybdene etait celui qui produisait la moins bonne qualite de produit. Ensuite, en ordre croissant, s'en suivait du melange a base de MnO2 et de ZrO2. Le melange de reference, a base de cobalt, est au deuxieme rang en matiere de qualite. La palme revient au melange binaire, dont la proportion est double en nickel. Les resultats de ce travail de recherche permettent d'affirmer qu'il existe une alternative performante au cobalt pour effectuer la synthese de nanotubes de carbone monoparoi, par plasma inductif thermique. Cette alternative est l'utilisation d'un melange catalytique binaire a base de nickel et d'oxyde d'yttrium. Il est suggere que les performances plus faibles des recettes alternatives, moins performantes, pourraient etre expliquees par le profil thermique fixe du reacteur. Ceci pourrait favoriser certains melanges, au detriment des autres, qui possedent des proprietes thermodynamiques differentes. Le montage, l'equipement, ainsi que les parametres d'operations, pourraient etre modifies en fonction de ces catalyseurs afin d'optimiser la synthese. Mots cles : nanotubes de carbone mono paroi, plasma inductif thermique, cobalt, nickel, dioxyde de zirconium, dioxyde de manganese, molybdene, trioxyde d'yttrium et noir de carbone

  7. Conception et calibration d'un sonoreacteur pour l'oxydation de la cellulose par le systeme TEMPO/NaOCl/NaBr

    NASA Astrophysics Data System (ADS)

    Paquin, Michel

    Avec le contexte economique actuel dans le domaine des pates et papiers au Canada, l'industrie se doit de diversifier ses produits mis en marche. La fermeture de plus de 20 usines depuis 2005, une baisse du PIB de l'industrie de 1,4 milliard CAD entre 1999--2008, une baisse de la demande de 2,4 %, une diminution du prix de la pate de 20,9 % depuis juillet 2009. La delocalisation du secteur vers l'Asie et l'hemisphere sud sont autant de raisons pour laquelle l'industrie se doit d'etre a l'avant plan de nouvelle technologie a base de fibre de bois. Pour augmenter leur rentabilite, l'industrie se doit de diversifier ses produits dans d'autres secteurs que le simple fabricant de papier impression-ecriture. Sa diversification passe par l'elaboration de nouveaux papiers a valeur ajoutee (papier conducteur, papier bioactif, etc.), par l'utilisation de la biomasse forestiere pour la production d'energie, par l'utilisation de la biomasse forestiere pour l'elaboration d'une plateforme de chimie verte, par l'utilisation de la lignine pour le developpement de polymeres et par l'utilisation de la fibre cellulosique pour la fabrication de nanomateriaux. La fabrication de nanofibrille de cellulose peut devenir un des produits qui servira a diversifier la production des usines de pates et papiers. Les nanofibrilles de cellulose possedent des proprietes mecaniques et chimiques exceptionnelles. Les nanofibrilles de cellulose sont fabriquees a partir d'une oxydation selective de la pate kraft de feuillu avec le systeme TEMPO-NaOCl-NaBr. L'oxydation selective de l'alcool primaire en C6 du monomere de glucose sous forme de carboxylates engendre une modification chimique de la cellulose qui accroit l'hydrophilicite des fibrilles. Suite a cette oxydation, nous devons effectuer une desintegration mecanique de la fibre kraft de feuillu oxydee pour separer les fibrilles. Le processus d'oxydation de la fibre par le systeme TEMPO-NaOCl-NaBr et sa defibrillation par la suite engendre une grande consommation d'energie et de reactif qui rend le procede difficilement accessible au milieu industriel. L'utilisation des ultrasons lors de la reaction d'oxydation permet de reduire de 50% le temps de reaction et d'autant la consommation de produits chimiques. Actuellement le processus d'oxydation s'effectue en mode discontinu pour une quantite de 20 grammes de pate dans un reacteur en verre dans un bain a ultrason. L'objectif principal de ce travail est d'elaborer un sonoreacteur en mode semi-continu afin d'etre en mesure de transferer une reaction d'oxydation du mode discontinu en mode semi-continu. Le transfert de reaction sera effectue en realisant la calibration de l'activite acoustique des deux differents reacteurs, discontinu et semi-continu, par la methode de Weissler. La methode de Weissler quantifie le taux de production radicalaire en mesurant la formation d'iode moleculaire d'une solution aqueuse d'iodure de potassium sous ultrason. Suite a sa calibration, le sonoreacteur pilote (mode semi-continu) a demontre une augmentation de la production radicalaire de 683 % a 170 kHz en comparaison avec l'utilisation d'un bain a ultrason a la meme frequence. Lors de la reaction d'oxydation, la puissance optimale utilisee dans le bain a ultrason a 170 kHz est de 1000 W. La puissance utilisee selon les resultats de calibration obtenue dans le sonoreacteur pilote est de 125 W soit une diminution de l'energie appliquee de 87,5 %. Lors de la reaction d'oxydation, le taux de production des groupements carboxylates est de 2,6 mmol COOH kg/min dans le bain a ultrason et de 6,87 mmol COOH kg/min dans le sonoreacteur pilote soit une augmentation de 164% du taux de formation. Selon les resultats obtenus, l'utilisation d'un sonoreacteur en mode continu peut etre envisageable pour la reaction d'oxydation de la cellulose par le systeme TEMPO-NaOCl-NaBr en industrie au niveau industriel.

  8. Large-Scale Variation in Forest Carbon Turnover Rate and its Relation to Climate - Remote Sensing vs. Global Vegetation Models

    NASA Astrophysics Data System (ADS)

    Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.

    2015-12-01

    While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.

  9. History of endonasal skull base surgery.

    PubMed

    Wang, Amy J; Zaidi, Hasan A; Laws, Edward D

    2016-12-01

    While the endonasal approach to the skull base continues to advance, this paper invokes its long history. The centuries of medieval neuroanatomy and early neurosurgery enabled the conception of the first transfacial approaches in the late 1800s; Henry Schloffer performed the first transsphenoidal surgery in 1907. Although the procedure was initially met with much interest, Harvey Cushing eventually led the field of neurosurgery to abandon the transsphenoidal approach in the 1920s. The following three generations of neurosurgeons contained several key figures including Norman Dott, Gerard Guiot, and Jules Hardy who were steadfast in preserving the technique as well as in addressing its shortcomings. The endoscopic approach developed simultaneously, and advances in magnifying and fiberoptics further resolved limitations previously inherent to the transsphenoidal approach. At last, in the 1960s, the transsphenoidal approach entered its renaissance. Today, the momentum of its development persists in the endoscopic endonasal approach, which has recently expanded the indications for transsphenoidal surgery across the skull base, far beyond its original jurisdiction of the sella. Continued progress must not take for granted the rich history of the transsphenoidal approach, which was developed over centuries by surgeons around the world. The authors present the evolution of modern endonasal surgery as a dynamic interplay between technology, medicine, and surgery over the past 100 years. Progress can be attributed to courageous surgeons who affirmed their contemporary practices despite gaps in technology or medicine, and to visionary individuals who produced and incorporated new elements into transsphenoidal surgery. And so while the new endoscopic technique brings forth new challenges, its development reaffirms the principles laid down by the pioneers of transsphenoidal surgery.

  10. The ambiguity of drought events, a bottleneck for Amazon forest drought response modelling

    NASA Astrophysics Data System (ADS)

    De Deurwaerder, Hannes; Verbeeck, Hans; Baker, Timothy; Christoffersen, Bradley; Ciais, Philippe; Galbraith, David; Guimberteau, Matthieu; Kruijt, Bart; Langerwisch, Fanny; Meir, Patrick; Rammig, Anja; Thonicke, Kirsten; Von Randow, Celso; Zhang, Ke

    2016-04-01

    Considering the important role of the Amazon forest in the global water and carbon cycle, the prognosis of altered hydrological patterns resulting from climate change provides strong incentive for apprehending the direct implications of drought on the vegetation of this ecosystem. Dynamic global vegetation models have the potential of providing a useful tool to study drought impacts on various spatial and temporal scales. This however assumes the models being able to properly represent drought impact mechanisms. But how well do the models succeed in meeting this assumption? Within this study meteorological driver data and model output data of 4 different DGVMs, i.e. ORCHIDEE, JULES, INLAND and LPGmL, are studied. Using the palmer drought severity index (PDSI) and the mean cumulative water deficit (MWD), temporal and spatial representation of drought events are studied in the driver data and are referenced to historical extreme drought events in the Amazon. Subsequently, within the resulting temporal and spatial frame, we studied the drought impact on the above ground biomass (AGB) and gross primary production (GPP) fluxes. Flux tower data, field inventory data and the JUNG data-driven GPP product for the Amazon region are used for validation. Our findings not only suggest that the current state of the studied DGVMs is inadequate in representing Amazon droughts in general, but also highlights strong inter-model differences in drought responses. Using scatterplot-studies and input-output correlations, we provide insight in the origin of these encountered inter-model differences. In addition, we present directives of model development and improvement in scope of Amazon forest drought response modelling.

  11. Irrigation as an important anthropogenic forcing on the mean and intra-seasonal variability of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Agrawal, Shubhi; Chakraborty, Arindam; Karmakar, Nirupam; Moulds, Simon; Mijic, Ana; Buytaert, Wouter

    2017-04-01

    Decreasing trend in rainfall in the last few decades over Indo-Gangetic Plains of northern India as seen from ground-based observations, parallels stressed ground water resources, with irrigation utilising up to 90%. The decrease in mean rainfall is co-incidental with an increasing trend in irrigation. In this work, we have analysed the effect of the extensive irrigation over Gangetic Plains (GP) on monsoon climate. In the first step, the effect of irrigation on soil moisture was accessed using a high-resolution land surface model (JULES). The model was run over Gangetic basin in two scenarios: with and without irrigation. It was seen that the mean soil moisture over GP in the irrigated scenario is higher as compared to non-irrigated scenario. These soil moisture fields were then used as forcing to a state-of-the-art general circulation model with realistic land-atmosphere coupling. A decrease in June-September precipitation over GP, significant at 95% level, is noted in the model simulation with irrigation as compared to simulation without irrigation. In specific, these changes show a remarkable similarity to the long-term trend in observed rainfall spatial pattern. Moreover, weakening of the variability of intra-seasonal oscillations in the high (10-20 days) and low (30-60 days) frequency bands is noted with irrigation. Our results suggest that with shrinking ground water resources in the GP region and a decline in the summer precipitation, the water crisis could exacerbate, with irrigation contributing in a positive feedback mechanism on these tendencies.

  12. MPL Guwahati and extraction of aerosol and dust features

    NASA Astrophysics Data System (ADS)

    Devi, M.; Baishy, R.; Barbara, A.

    Aerosols emitted directly from natural and anthropogenic sources are responsible for bringing changes in atmospheric conditions and in modifying physical and dynamical processes therein. With the aim to correlate such changes in atmospheric environments with aerosols, a MPL Lidar has been put into operation at Gauhati University a subtropical station, where atmospheric variabilities are subjected to the influence of its complex local topography and man made system inhomogenities. The Lidar that is in operation at Gauhati University since January 2001, has been developed in collaboration with Chiba University, Japan. This portable instrument consists of a low power (>20 μ Jule) 10 ns pulse laser at 532 nm with PRF varying from 1 to 5 KHz. The receiver consists of a 0.2 m aperture case grain telescope with 1nm filter and the PMT working in photon counting mode. The signal acquisition is done in LabVIEW environment and processing is made through a user-friendlyn software also in LabVIEW environment developed by this group. The aerosol and dust signatures received through routine sounding are analyzed for extinction and backscattered cross section parameters and attempts are made for evaluating significant features in backscattered signal from dust particles which are well detected in the lidar echogram during early spring. The paper also discusses the techniques for evaluation of system constant "C" before presenting cross section parameters. The approach is through horizontal probing of the atmosphere and assuming same type of aerosol population over a defined (near surface) altitude. The "C" value so obtained, comes close to the figure calculated from relation,

  13. Wave behaviour of sporadic E-layer variations at the latitudes 30-70N

    NASA Astrophysics Data System (ADS)

    Ryabchenko, E. Yu.; Sherstyukov, O. N.

    A wave behaviour of sporadic E-layer variations was investigated by analysing time series of twenty European ionosonde stations (30°N--80°N, 15°W--45°E) for 1985-1988. Wavelet transform was used to explore 3-30 periodicities in variations of Es-layer relative electron density δ NEs defined here as (foEs2--foE2)/foE2. Such compound parameter allowed us to partly exclude solar ionisation factor and concentrate on meteorological nature of Es-layer synoptical oscillations. A typical synoptical atmospheric 3-30 day oscillations were discovered in foEs and also in δ NEs. Due to nonorthgonal wavelet transform used in this work, it is advisable to divide frequency domain into several optimal intervals. Five periods 4,6,10,16 and 24 day were chosen which cover 3-5, 5-7, 8-12, 13-20 and 20-30 day intervals. Low value of oscillation amplitude not greater than 1.5 is typical for most of European ionospheric stations in January-March and September-December. A higher values were observed at latitudes higher than 60°N. A wave vortex were discovered during the analysis of dynamics of δ NEs spatio-temporal variations in summer for each period interval. In May and June we observed wave penetration from north and south into the middle latitudes 45°N--55°N with amplitudes up to 5.0 for the most of considered years. In Jule and August all amplitudes reach their average values.

  14. DART: A Community Facility Providing State-of-the-Art, Efficient Ensemble Data Assimilation for Large (Coupled) Geophysical Models

    NASA Astrophysics Data System (ADS)

    Hoar, T. J.; Anderson, J. L.; Collins, N.; Kershaw, H.; Hendricks, J.; Raeder, K.; Mizzi, A. P.; Barré, J.; Gaubert, B.; Madaus, L. E.; Aydogdu, A.; Raeder, J.; Arango, H.; Moore, A. M.; Edwards, C. A.; Curchitser, E. N.; Escudier, R.; Dussin, R.; Bitz, C. M.; Zhang, Y. F.; Shrestha, P.; Rosolem, R.; Rahman, M.

    2016-12-01

    Strongly-coupled ensemble data assimilation with multiple high-resolution model components requires massive state vectors which need to be efficiently stored and accessed throughout the assimilation process. Supercomputer architectures are tending towards increasing the number of cores per node but have the same or less memory per node. Recent advances in the Data Assimilation Research Testbed (DART), a freely-available community ensemble data assimilation facility that works with dozens of large geophysical models, have addressed the need to run with a smaller memory footprint on a higher node count by utilizing MPI-2 one-sided communication to do non-blocking asynchronous access of distributed data. DART runs efficiently on many computational platforms ranging from laptops through thousands of cores on the newest supercomputers. Benefits of the new DART implementation will be shown. In addition, overviews of the most recently supported models will be presented: CAM-CHEM, WRF-CHEM, CM1, OpenGGCM, FESOM, ROMS, CICE5, TerrSysMP (COSMO, CLM, ParFlow), JULES, and CABLE. DART provides a comprehensive suite of software, documentation, and tutorials that can be used for ensemble data assimilation research, operations, and education. Scientists and software engineers at NCAR are available to support DART users who want to use existing DART products or develop their own applications. Current DART users range from university professors teaching data assimilation, to individual graduate students working with simple models, through national laboratories and state agencies doing operational prediction with large state-of-the-art models.

  15. The UKC2 regional coupled prediction system

    NASA Astrophysics Data System (ADS)

    Castillo, Juan; Lewis, Huw; Graham, Jennifer; Saulter, Andrew; Arnold, Alex; Fallmann, Joachim; Martinez de la Torre, Alberto; Blyth, Eleanor; Bricheno, Lucy

    2017-04-01

    It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather through the environment, requires a more integrated approach to forecasting. This approach also delivers research benefits through providing tools with which to explore the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land. This hypothesis is being tested in a UK regional context at km-scale through the UK Environmental Prediction Project. This presentation will provide an introduction to the UKC2 UK Environmental Prediction research system. This incorporates models of the atmosphere (Met Office Unified Model), land surface (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled (via OASIS3-MCT libraries) at unprecedentedly high resolution across the UK and the wider north-west European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a unique new research tool for UK environmental science. The presentation will highlight work undertaken to review and improve the computational cost of running these systems for efficient research application. Research will be presented highlighting case study evaluation on the sensitivity of the ocean and surface waves to the representation of feedbacks to the atmosphere, and on the sensitivity of weather systems and boundary layer cloud development to the exchange of heat and momentum at the ocean surface modified through sea surface temperature and wave-induced roughness. The presentation will discuss plans for future development through UKC3 and beyond.

  16. Cyclophosphamide dose intensification may circumvent anthracycline resistance of p53 mutant breast cancers.

    PubMed

    Lehmann-Che, Jacqueline; André, Fabrice; Desmedt, Christine; Mazouni, Chafika; Giacchetti, Sylvie; Turpin, Elisabeth; Espié, Marc; Plassa, Louis-François; Marty, Michel; Bertheau, Philippe; Sotiriou, Christos; Piccart, Martine; Symmans, W Fraser; Pusztai, Lajos; de Thé, Hugues

    2010-01-01

    The predictive value of p53 for the efficacy of front-line anthracycline-based chemotherapy regimens has been a matter of significant controversy. Anthracyclines are usually combined with widely different doses of alkylating agents, which may significantly modulate tumor response to these combinations. We analyzed three series of de novo stage II-III breast cancer patients treated front line with anthracycline-based regimens of various cyclophosphamide dose intensities: 65 patients with estrogen receptor (ER)(-) tumors treated with anthracyclines alone (Institut Jules Bordet, Brussels), 51 unselected breast cancer patients treated with intermediate doses of cyclophosphamide (MD Anderson Cancer Center, Houston, TX), and 128 others treated with a dose-dense anthracycline-cyclophosphamide combination (St. Louis, Paris). After chemotherapy and surgery, pathologic complete response (pCR) was evaluated. p53 status was determined by a yeast functional assay on the pretreatment tumor sample. In a multivariate analysis of the pooled results, a lack of ER expression and high-dose cyclophosphamide administration were associated with a higher likelihood of pCR. A sharp statistical interaction was detected between p53 status and cyclophosphamide dose intensity. Indeed, when restricting our analysis to patients with ER(-) tumors, we confirmed that a mutant p53 status was associated with anthracycline resistance, but found that p53 inactivation was required for response to the dose-intense alkylating regimen. The latter allowed very high levels of pCR in triple-negative tumors. Thus, our data strongly suggest that cyclophosphamide dose intensification in ER(-) p53-mutated breast cancer patients could significantly improve their response.

  17. Methane mitigation shows significant benefits towards achieving the 1.5 degree target.

    NASA Astrophysics Data System (ADS)

    Collins, W.; Webber, C.; Cox, P. M.; Huntingford, C.; Lowe, J. A.; Sitch, S.

    2017-12-01

    Most analyses of allowable carbon emissions to achieve the 1.5 degree target implicitly assume that the ratio of CO2 to non-CO2 greenhouse gases remains near constant, and that all radiative forcing factors have similar impacts on land and ocean carbon storage. Here we determine how plausible reductions in methane emissions will make the carbon targets more feasible. We account for the latest estimates of the methane radiative effect as well as the indirect effects of methane on ozone. We particularly address the differing effects of methane and CO2 mitigation on the land carbon storage including via reduced concentrations of surface ozone. The methodology uses an intermediate complexity climate model (IMOGEN) coupled to a land surface model (JULES) which represents the details of the terrestrial carbon cycle. The carbon emissions inputs to IMOGEN are varied to find allowable pathways consistent with the Paris 1.5 K or 2.0 K targets. The IMOGEN physical parameters are altered to represent the climate characteristics of 38 CMIP5 models (such as climate sensitivity) to provide bounds on the range of allowable CO2 emissions. We examine the effects of three different methane mitigation options that are broadly consistent with the ranges in the SSP scenarios: little mitigation, cost-optimal mitigation, and maximal mitigation. The land and ocean carbon storage increases with methane mitigation, allowing more flexibility in CO2 emission reduction. This is mostly since CO2 fertilisation is reduced less with high methane mitigation, with a small contribution from reduced plant damage with lower surface ozone levels.

  18. Monte-Carlo Simulations of the Nuclear Energy Deposition Inside the CARMEN-1P Differential Calorimeter Irradiated into OSIRIS Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amharrak, H.; Reynard-Carette, C.; Carette, M.

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. These measurements are then used for other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. Nuclear heating is a great deal of interest at the moment as the measurement of such heating is an important issue for MTRs reactors. This need is especially generated by the new Jules Horowitz Reactor (JHR),more » under construction at CEA/Cadarache 'French Alternative Energies and Atomic Energy Commission'. This new reactor, that will be operational in late 2019, is a new facility for the nuclear research on materials and fuels. Indeed the expected nuclear heating rate is about 20 W/g for nominal capacity of 100 MW. The present Monte Carlo calculation works belong to the IN-CORE (Instrumentation for Nuclear radiation and Calorimetry On line in Reactor): a joint research program between the CEA and Aix- Marseille University in 2009. One scientific aim of this program is to design and develop a multi-sensors device, called CARMEN, dedicated to the measurements of main physical parameters simultaneously encountered inside JHR's experimental channels (core and reflector) such as neutron fluxes, photon fluxes, temperature, and nuclear heating. A first prototype was already developed. This prototype includes two mock-ups dedicated respectively to neutronic measurements (CARMEN-1N) and to photonic measurements (CARMEN-1P) with in particular a specific differential calorimeter. Two irradiation campaigns were performed successfully in the periphery of OSIRIS reactor (a MTR located at Saclay, France) in 2012 for nuclear heating levels up to 2 W/g. First Monte Carlo calculations reduced to the graphite sample of the calorimeter were carried out. A preliminary analysis shows that the numerical results overestimate the measurements by about 20 %. A new approach has been developed in order to estimate the nuclear heating by two methods (energy deposition or KERMA) by considering the whole complete geometry of the sensor. This new approach will contribute to the interpretation of the irradiation campaign and will be useful to improve the out-of-pile calibration procedure of the sensor and its thermal response during irradiations. The aim of this paper is to present simulations made by using MCNP5 Monte-Carlo transport code (using ENDF/B-VI nuclear data library) for the nuclear heating inside the different parts of the calorimeter (head, rod and base). Calculations into two steps will be realized. We will use as an input source in the model new spectra (neutrons, prompt-photons and delayed-photons) calculated with the Monte Carlo code TRIPOLI-4{sup R} inside different experimental channels (water) located into the OSIRIS periphery and used during the CARMEN-1P irradiation campaign. We will consider Neutrons- Photons-Electrons and Photons-Electrons modes. We will begin by a brief description of the differential-calorimeter device geometry. Then the MCNP5 model used for the calculations of nuclear heating inside the calorimeter elements will be introduced. The energy deposition due to the prompt-gamma, delayed-gamma and neutrons, the neutron-activation of the device will be considered. The different components of the nuclear heating inside the different parts of the calorimeter will be detailed. Moreover, a comparison between KERMA and nuclear energy deposition estimations will be given. Finally, a comparison between this total nuclear heating Calculation and Experiment in graphite sample will be determined. (authors)« less

  19. Methodology comparison for gamma-heating calculations in material-testing reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A.

    2015-07-01

    The Jules Horowitz Reactor (JHR) is a Material-Testing Reactor (MTR) under construction in the south of France at CEA Cadarache (French Alternative Energies and Atomic Energy Commission). It will typically host about 20 simultaneous irradiation experiments in the core and in the beryllium reflector. These experiments will help us better understand the complex phenomena occurring during the accelerated ageing of materials and the irradiation of nuclear fuels. Gamma heating, i.e. photon energy deposition, is mainly responsible for temperature rise in non-fuelled zones of nuclear reactors, including JHR internal structures and irradiation devices. As temperature is a key parameter for physicalmore » models describing the behavior of material, accurate control of temperature, and hence gamma heating, is required in irradiation devices and samples in order to perform an advanced suitable analysis of future experimental results. From a broader point of view, JHR global attractiveness as a MTR depends on its ability to monitor experimental parameters with high accuracy, including gamma heating. Strict control of temperature levels is also necessary in terms of safety. As JHR structures are warmed up by gamma heating, they must be appropriately cooled down to prevent creep deformation or melting. Cooling-power sizing is based on calculated levels of gamma heating in the JHR. Due to these safety concerns, accurate calculation of gamma heating with well-controlled bias and associated uncertainty as low as possible is all the more important. There are two main kinds of calculation bias: bias coming from nuclear data on the one hand and bias coming from physical approximations assumed by computer codes and by general calculation route on the other hand. The former must be determined by comparison between calculation and experimental data; the latter by calculation comparisons between codes and between methodologies. In this presentation, we focus on this latter kind of bias. Nuclear heating is represented by the physical quantity called absorbed dose (energy deposition induced by particle-matter interactions, divided by mass). Its calculation with Monte Carlo codes is possible but computationally expensive as it requires transport simulation of charged particles, along with neutrons and photons. For that reason, the calculation of another physical quantity, called KERMA, is often preferred, as KERMA calculation with Monte Carlo codes only requires transport of neutral particles. However, KERMA is only an estimator of the absorbed dose and many conditions must be fulfilled for KERMA to be equal to absorbed dose, including so-called condition of electronic equilibrium. Also, Monte Carlo computations of absorbed dose still present some physical approximations, even though there is only a limited number of them. Some of these approximations are linked to the way how Monte Carlo codes apprehend the transport simulation of charged particles and the productive and destructive interactions between photons, electrons and positrons. There exists a huge variety of electromagnetic shower models which tackle this topic. Differences in the implementation of these models can lead to discrepancies in calculated values of absorbed dose between different Monte Carlo codes. The magnitude of order of such potential discrepancies should be quantified for JHR gamma-heating calculations. We consequently present a two-pronged plan. In a first phase, we intend to perform compared absorbed dose / KERMA Monte Carlo calculations in the JHR. This way, we will study the presence or absence of electronic equilibrium in the different JHR structures and experimental devices and we will give recommendations for the choice of KERMA or absorbed dose when calculating gamma heating in the JHR. In a second phase, we intend to perform compared TRIPOLI4 / MCNP absorbed dose calculations in a simplified JHR-representative geometry. For this comparison, we will use the same nuclear data library for both codes (the European library JEFF3.1.1 and photon library EPDL97) so as to isolate the effects from electromagnetic shower models on absorbed dose calculation. This way, we hope to get insightful feedback on these models and their implementation in Monte Carlo codes. (authors)« less

  20. [The expression of MMP-2 and MMP-9 in adenoid cystic carcinoma of lacrimal gland].

    PubMed

    Zhang, Lei; Zhang, Hong; Song, Guo-xiang; Lin, Ting-ting; Xu, Guang-chang; Zhu, Li-min

    2013-01-01

    To investigate the expression of matrix metal proteinase (MMP)-2 and MMP-9 in adenoid cystic carcinoma of lacrimal gland as well as their relation with biological behaviour of adenoid cystic carcinoma. Experimental study. The research objects were 60 cases of adenoid cystic carcinoma of lacrimal gland which were collected from No.2 Hospital of Tianjin Medical University from January 1991 to Jule 2011. There were 25 males and 35 females aged from 29 to 42 years. Based on histological revision, there were 36 cases of cribriform-tubular subtype and 24 cases of solid subtype. Forty-five cases were primary lesions and 15 cases were recurrent lesions. Ten samples of normal lacrimal gland around polymorphic adenoma were selected as the control group. The expression of CD105, MMP-2 and MMP-9 were evaluated by immunohistochemistry. The microvessel density (MVD) was defined by expression of CD105. One way ANOVA, χ(2)-test and spearman correlation test were used to analyzed the data. The number of MVD [(17.71 ± 5.63)/100 folds field of vision] and the positive rates of MMP-2 (45.0%, 27/60) and MMP-9 (55.0%, 33/60) in the samples of adenoid cystic carcinoma of lacrimal gland were higher than those in the normal lacrimal gland [the number of MVD was (0.70 ± 0.95)/100 folds field of vision, the expressions of MMP-2 and MMP-9 were negative] (t' = 2.039, P < 0.05; χ(2) = 5.550, P < 0.05; χ(2) = 8.315, P < 0.01), the solid subtypes had more MVD [(26.12 ± 5.32)/100 folds field of vision] and higher positive rates of MMP-2 (62.5%, 15/24) and MMP-9 (79.2%, 19/24) than the cribriform-tubular subtypes (t' = 2.060, P < 0.05; χ(2) = 4.950, P < 0.05; χ(2) = 9.439, P < 0.05); the recurrent lesions had more MVD and higher positive rate of MMP-2 and MMP-9 than the primary lesions (t' = 2.129, P < 0.05; χ(2) = 9.899, P < 0.05; χ(2) = 8.103, P < 0.05). The number of MVD in ACC of lacrimal gland patients was correlated with the positive rate of MMP-2 and MMP-9 respectively (rs = 0.636, P < 0.05; rs = 0.524, P < 0.05). The number of MVD and the expression of MMP-2 and MMP-9 are higher level in adenoid cystic carcinoma of lacrimal gland and are significantly correlated with pathological type and recurrence. Detecting the number of MVD and the expression of MMP-2 and MMP-9 may become biological indexes for malignancy, recurrence and metastasis of adenoid cystic carcinoma of lacrimal gland.

  1. Snow drift: acoustic sensors for avalanche warning and research

    NASA Astrophysics Data System (ADS)

    Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.

    Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long-term monitoring. Optical sensors (Schmidt, 1977; Brown and Pomeroy, 1989; Sato and Kimura, 1993) have been very successful for research applications, but suffer from the fact that they give a single flux value at one specific height. In addition, they have not been used, to our knowledge, for long-term monitoring applications or at remote sites. New developments of acoustic sensors have taken place recently (Chritin et al., 1999; Font et al., 1998). Jaedicke (2001) gives examples of possible applications of acoustic snow drift sensors. He emphasizes the advantages of acoustic sensors for snow drift monitoring at remote locations, but could not present any evaluation of the accuracy of the measurements. We present a complete evaluation of the new acoustic sensors for snow drift and discuss their applications for research or avalanche warning. We compare the suitability of sensors for operational applications.

  2. Trends in evaporation loss over the UK: 1962 to 2013

    NASA Astrophysics Data System (ADS)

    Blyth, Eleanor; Robinson, Emma; Martinez de la Torre, Alberto

    2017-04-01

    Many models of hydrology assume that an increase in air temperature will result in an increase in evaporation. However, there are some processes involved in transpiration (evaporation through the vegetation) that make the relationship more complicated: in a bid to conserve water, vegetation will reduce their stomata in response to drier soils and warmer drier air which leads to lower transpiration rates despite higher evaporative demands. In addition, the vegetation responds to increases in atmospheric carbon dioxide by closing their stomata, and this further reduces the transpiration. The JULES (Joint UK Land Environment Simulator) model, used widely in the UK to study the impacts of climate change on the environment, includes many of the processes that are likely to affect changes in water loss and its impact on large scale hydrology. A new assessment of the UK wide water balance for the last 52 years (1961 to 2013) at a 1km grid-scale has been made using this model in a system called CHESS (Climate Hydrology and Ecology research Support System). Some data is available to check the overall water balance. For instance, river flow data can be used at an annual time scale to capture the water balance, while evaporation data from flux towers can be used at some locations around the UK for the few years that it is available to evaluate the seasonal variations of evaporation. Both of these methods provide imperfect but useful evidence. Here we present the results of the modelling exercise and the evaluation: long term increasing evaporation loss trends are clearly present in the model output and these are discussed with respect to the different drivers of change.

  3. The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use.

    PubMed

    Zhang, Ke; de Almeida Castanho, Andrea D; Galbraith, David R; Moghim, Sanaz; Levine, Naomi M; Bras, Rafael L; Coe, Michael T; Costa, Marcos H; Malhi, Yadvinder; Longo, Marcos; Knox, Ryan G; McKnight, Shawna; Wang, Jingfeng; Moorcroft, Paul R

    2015-02-20

    There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO 2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO 2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO 2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land-use change and climate-driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO 2 impacts varies considerably, depending on both the climate and land-use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors - climate change, CO 2 fertilization effects, fire, and land use - to the fate of the Amazon over the coming century. © 2015 John Wiley & Sons Ltd.

  4. Uncertainty Propagation of Non-Parametric-Derived Precipitation Estimates into Multi-Hydrologic Model Simulations

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. A. E.; Nikolopoulos, E. I.; Anagnostou, E. N.

    2017-12-01

    Quantifying the uncertainty of global precipitation datasets is beneficial when using these precipitation products in hydrological applications, because precipitation uncertainty propagation through hydrologic modeling can significantly affect the accuracy of the simulated hydrologic variables. In this research the Iberian Peninsula has been used as the study area with a study period spanning eleven years (2000-2010). This study evaluates the performance of multiple hydrologic models forced with combined global rainfall estimates derived based on a Quantile Regression Forests (QRF) technique. In QRF technique three satellite precipitation products (CMORPH, PERSIANN, and 3B42 (V7)); an atmospheric reanalysis precipitation and air temperature dataset; satellite-derived near-surface daily soil moisture data; and a terrain elevation dataset are being utilized in this study. A high-resolution, ground-based observations driven precipitation dataset (named SAFRAN) available at 5 km/1 h resolution is used as reference. Through the QRF blending framework the stochastic error model produces error-adjusted ensemble precipitation realizations, which are used to force four global hydrological models (JULES (Joint UK Land Environment Simulator), WaterGAP3 (Water-Global Assessment and Prognosis), ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) and SURFEX (Stands for Surface Externalisée) ) to simulate three hydrologic variables (surface runoff, subsurface runoff and evapotranspiration). The models are forced with the reference precipitation to generate reference-based hydrologic simulations. This study presents a comparative analysis of multiple hydrologic model simulations for different hydrologic variables and the impact of the blending algorithm on the simulated hydrologic variables. Results show how precipitation uncertainty propagates through the different hydrologic model structures to manifest in reduction of error in hydrologic variables.

  5. The genesis of neurosurgery and the evolution of the neurosurgical operative environment: part II--concepts for future development, 2003 and beyond.

    PubMed

    Liu, Charles Y; Spicer, Mark; Apuzzo, Michael L J

    2003-01-01

    The future development of the neurosurgical operative environment is driven principally by concurrent development in science and technology. In the new millennium, these developments are taking on a Jules Verne quality, with the ability to construct and manipulate the human organism and its surroundings at the level of atoms and molecules seemingly at hand. Thus, an examination of currents in technology advancement from the neurosurgical perspective can provide insight into the evolution of the neurosurgical operative environment. In the future, the optimal design solution for the operative environment requirements of specialized neurosurgery may take the form of composites of venues that are currently mutually distinct. Advances in microfabrication technology and laser optical manipulators are expanding the scope and role of robotics, with novel opportunities for bionic integration. Assimilation of biosensor technology into the operative environment promises to provide neurosurgeons of the future with a vastly expanded set of physiological data, which will require concurrent simplification and optimization of analysis and presentation schemes to facilitate practical usefulness. Nanotechnology derivatives are shattering the maximum limits of resolution and magnification allowed by conventional microscopes. Furthermore, quantum computing and molecular electronics promise to greatly enhance computational power, allowing the emerging reality of simulation and virtual neurosurgery for rehearsal and training purposes. Progressive minimalism is evident throughout, leading ultimately to a paradigm shift as the nanoscale is approached. At the interface between the old and new technological paradigms, issues related to integration may dictate the ultimate emergence of the products of the new paradigm. Once initiated, however, history suggests that the process of change will proceed rapidly and dramatically, with the ultimate neurosurgical operative environment of the future being far more complex in functional capacity but strikingly simple in apparent form.

  6. How much rainfall sustained a Green Sahara during the mid-Holocene?

    NASA Astrophysics Data System (ADS)

    Hopcroft, Peter; Valdes, Paul; Harper, Anna

    2016-04-01

    The present-day Sahara desert has periodically transformed to an area of lakes and vegetation during the Quaternary in response to orbitally-induced changes in the monsoon circulation. Coupled atmosphere-ocean general circulation model simulations of the mid-Holocene generally underestimate the required monsoon shift, casting doubt on the fidelity of these models. However, the climatic regime that characterised this period remains unclear. To address this, we applied an ensemble of dynamic vegetation model simulations using two different models: JULES (Joint UK Land Environment Simulator) a comprehensive land surface model, and LPJ (Lund-Potsdam-Jena model) a widely used dynamic vegetation model. The simulations are forced with a number of idealized climate scenarios, in which an observational climatology is progressively altered with imposed anomalies of precipitation and other related variables, including cloud cover and humidity. The applied anomalies are based on an ensemble of general circulation model simulations, and include seasonal variations but are spatially uniform across the region. When perturbing precipitation alone, a significant increase of at least 700mm/year is required to produce model simulations with non-negligible vegetation coverage in the Sahara region. Changes in related variables including cloud cover, surface radiation fluxes and humidity are found to be important in the models, as they modify the water balance and so affect plant growth. Including anomalies in all of these variables together reduces the precipitation change required for a Green Sahara compared to the case of increasing precipitation alone. We assess whether the precipitation changes implied by these vegetation model simulations are consistent with reconstructions for the mid-Holocene from pollen samples. Further, Earth System models predict precipitation increases that are significantly smaller than that inferred from these vegetation model simulations. Understanding this difference presents an ongoing challenge.

  7. Cotard's syndrome: analysis of 100 cases.

    PubMed

    Berrios, G E; Luque, R

    1995-03-01

    In 1880, Jules Cotard reported a clinical state he believed was a new type of agitated melancholia. A statistical analysis has been carried out of 100 cases of Cotard's syndrome to determine how this clinical concept has fared since its inception. In terms of clinical profile, no difference was found between men and women or between underlying diagnostic categories; age seemed to increase the likelihood of developing délire des négations. Depression was reported in 89% of subjects; the most common nihilistic delusions concerned the body (86%) and existence (69%). Anxiety (65%) and guilt (63%) were also common, followed by hypochondriacal delusions (58%) and delusions of immortality (55). An exploratory factor analysis extracted 3 factors: psychotic depression, Cotard type I and Cotard type II. The psychotic depression factor included patients with melancholia and few nihilistic delusions. Cotard type 1 patients, on the other hand, showed no loadings for depression or other disease and are likely to constitute a pure Cotard syndrome whose nosology may be closer to the delusional than the affective disorders. Type II patients showed anxiety, depression and auditory hallucinations and constitute a mixed group. This new grouping cuts across the more traditional view and may have therapeutic implications. Authors, in general, have considered délire des négations as a syndrome rather than a new disease and do not seem to support the view that the completeness of the syndrome is a function of presence or severity of depression. The view that délire des négations refers only to the delusion of being dead has also carried little favour as its likely to waste information.

  8. Simulated permafrost soil thermal dynamics during 1960-2009 in eight offline processed-based models

    NASA Astrophysics Data System (ADS)

    Peng, S.; Gouttevin, I.; Krinner, G.; Ciais, P.

    2013-12-01

    Permafrost soil thermal dynamics not only determine the status of permafrost, but also have large impacts on permafrost organic carbon decomposition. Here, we used eight processed based models that participated in the Vulnerability Permafrost Carbon Research Coordination Network (RCN) project to investigate: (1) the trends in soil temperature at different depths over the northern hemisphere permafrost region during the past five decades, and (2) which factors drive trends and inter-annual variability of permafrost soil temperature? The simulated annual soil temperature at 20cm increases by ~0.02 °C per year from 1960 to 2009 (ranging from 0.00 °C per year in CoLM to 0.04 °C per year in ISBA). Most models simulated more warming of soil in spring and winter than in summer and autumn, although there were different seasonal trends in different models. Trends in soil temperature decrease with soil depth in all models. To quantify the contributions of various factors (air temperature, precipitation, downward longwave radiation etc.) to trends and inter-annual variation in soil temperature, we ran offline models with detrended air temperature, precipitation, downward longwave radiation, respectively. Our results suggest that both annual air temperature and downward longwave radiation significantly correlate with annual soil temperature. Moreover, trend in air temperature and downward longwave radiation contribute 30% and 60% to trends in soil temperature (0 - 200cm), respectively, during the period 1960-2009. Spatial distributions of trend in annual soil temperature at 20cm from R01 simulations of (a) CLM4, (b) CoLM, (c) ISBA, (d) JULES, (e) LPJ_GUESS, (f) ORCHIDEE, (g) UVic and (h) UW-VIC during the period 1960-2009.

  9. Future Projections of ENSO and Drought (Invited)

    NASA Astrophysics Data System (ADS)

    Cane, M. A.

    2009-12-01

    Jule Charney, who was my advisor, worked very broadly - and profoundly - on climate dynamics. In this discussion of the present state of knowledge I will focus on two aspects of climate that I view as legacies of his work: our ability to project climate variability in the tropics and to project drought. (I have in mind his work with Shukla on predictability of monsoons, and Charney 1975, Dynamics of deserts and drought in the Sahel., Q. J. Roy. Meteor. Soc., 101, 193-202). First, I will consider the projections of ENSO (El Niño and Southern Oscillation) in a warming world. (My own interest in ENSO was piqued in discussions with Charney and others during the ENSO-influenced blocking events in the late 1970s; in good measure, the approach I took to understanding and modeling ENSO was based in my thesis work.) Current IPCC models differ markedly in their projections of the mean state of the equatorial Pacific, some favoring a more “El Niño- like”, some the opposite. Possible reasons for these disagreements will be considered in the light of our understanding of ENSO and tropical climate more generally. Observational data for the past century and a half will figure prominently. Droughts in the US Southwest have a strong ENSO signal, but IPCC models are fairly consistent in projecting enhanced drought there. The reasons for this will be discussed. Models are less consistent in their predictions of the future Sahel. I will discuss what is understood about causes of drought in the Sahel, which appear to point toward sea surface temperature as the controlling influence, in contrast to Charney’s albedo hypothesis.

  10. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2015-03-01

    We perform a land surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies between 6 modern stand-alone land surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by 5 different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99-135 x 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the best current observation-based estimate of actual permafrost area (101 x 104 km2). However the uncertainty (1-128 x 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air temperature based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification and snow cover. Models are particularly poor at simulating permafrost distribution using definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in permafrost distribution can be made for the Tibetan Plateau.

  11. CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C

    NASA Astrophysics Data System (ADS)

    Burke, Eleanor J.; Chadburn, Sarah E.; Huntingford, Chris; Jones, Chris D.

    2018-02-01

    Large amounts of carbon are stored in the permafrost of the northern high latitude land. As permafrost degrades under a warming climate, some of this carbon will decompose and be released to the atmosphere. This positive climate-carbon feedback will reduce the natural carbon sinks and thus lower anthropogenic CO2 emissions compatible with the goals of the Paris Agreement. Simulations using an ensemble of the JULES-IMOGEN intermediate complexity climate model (including climate response and process uncertainty) and a stabilization target of 2 °C, show that including the permafrost carbon pool in the model increases the land carbon emissions at stabilization by between 0.09 and 0.19 Gt C year-1 (10th to 90th percentile). These emissions are only slightly reduced to between 0.08 and 0.16 Gt C year-1 (10th to 90th percentile) when considering 1.5 °C stabilization targets. This suggests that uncertainties caused by the differences in stabilization target are small compared with those associated with model parameterisation uncertainty. Inertia means that permafrost carbon loss may continue for many years after anthropogenic emissions have stabilized. Simulations suggest that between 225 and 345 Gt C (10th to 90th percentile) are in thawed permafrost and may eventually be released to the atmosphere for stabilization target of 2 °C. This value is 60-100 Gt C less for a 1.5 °C target. The inclusion of permafrost carbon will add to the demands on negative emission technologies which are already present in most low emissions scenarios.

  12. Lewis M. Rutherfurd and the First Photograph of Solar Granulation

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Briggs, John W.; Prosser, Sian

    2017-08-01

    A major astronomical controversy of the mid-19th century was discordant descriptions of the small scale structure of the solar surface. Visual observers contradicted each other by describing the surface as consisting of “corrugations”, “willow leaves”, “rice grains”, “cumuli”, “thatch”, “granules”, etc. Early photographs of the solar surface were not good enough to settle the controversy. The French astronomer Jules Janssen is credited with the first 1876 photographs that clearly showed what we now call solar granulation (1876, CRAS 82, 1363). Upon seeing these images, New Yorker Lewis M. Rutherfurd (1878, MNRAS 38, 410) praised the high quality of Janssen’s images but asserted that he had also photographed granulation as early as 1871 using collodion wet plates. He sent copies of his best photograph to the Royal Astronomical Society to support his assertion. Curious about his claim, Briggs and Harvey set up Rutherfurd’s 13-inch achromatic refractor on Kitt Peak and found that it easily showed well-resolved solar granulation, so his claim might well have been justified. But without his plates we could not confirm the claim. For 140 years the copies of Rutherfurd’s best solar photograph remained in the archives of the Royal Astronomical Society and were recently discovered by Prosser (RAS Photographs A3/001B and A3/002). By coincidence a few days later, Briggs found the original August 11, 1871 plate. Despite poor condition these photographs show solar granulation. There are at least two other possible early claimants (Reade; Vogel) but their plates are almost certainly lost. Rutherfurd was a master of astronomical instrumentation and photography. He was reticent about his work, letting results speak for themselves, so it is satisfying to find that he was justified in making his claim of priority.

  13. A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.

    2008-12-01

    Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).

  14. Methodology for Developing a Probabilistic Risk Assessment Model of Spacecraft Rendezvous and Dockings

    NASA Technical Reports Server (NTRS)

    Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael

    2011-01-01

    In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.

  15. Effect of mitomycin-C on the variance in refractive outcomes after photorefractive keratectomy.

    PubMed

    Sy, Mary Ellen; Zhang, Lijun; Yeroushalmi, Allen; Huang, Derek; Hamilton, D Rex

    2014-12-01

    To compare the variance in manifest refraction spherical equivalent (MRSE) after photorefractive keratectomy (PRK) with mitomycin-C (MMC), PRK without MMC, and laser in situ keratomileusis (LASIK) for the treatment of myopic astigmatism. Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, California, USA. Retrospective case series. Patients were classified into 3 groups of preoperative refraction-matched eyes as follows: PRK with MMC 0.02%, PRK without MMC, and LASIK. The preoperative and postoperative MRSE, preoperative corrected distance visual acuity, and postoperative uncorrected distance visual acuity (UDVA) were analyzed. Each group comprised 30 eyes. Follow-up was at least 6 months in the LASIK group and 12 months in the 2 PRK groups. There were no statistically significant differences in the mean preoperative MRSE (P=.95) or postoperative MRSE (P=.06) between the 3 groups. The mean postoperative MRSE was -0.07 diopter (D) ± 0.47 (SD), -0.14 ± 0.26 D, and 0.02 ± 0.25 D in the PRK with MMC 0.02% group, PRK without MMC group, and LASIK group, respectively. The variance in the postoperative MRSE in the PRK with MMC 0.02% group was significantly higher than that in the PRK without MMC group (P=.002) and in the LASIK group (P=.001). There was no statistically significant difference in the mean postoperative UDVA between the 3 groups (P=.47). Refractive outcomes after PRK for myopia were more variable when MMC 0.02% was used. This should be weighed against the advantage of intraoperative MMC use in reducing haze after PRK. Copyright © 2014 ASCRS and ESCRS. All rights reserved.

  16. Effect of posterior corneal astigmatism on refractive outcomes after toric intraocular lens implantation.

    PubMed

    Zhang, Lijun; Sy, Mary Ellen; Mai, Harry; Yu, Fei; Hamilton, D Rex

    2015-01-01

    To compare the prediction error after toric intraocular lens (IOL) (Acrysof IQ) implantation using corneal astigmatism measurements obtained with an IOLMaster automated keratometer and a Galilei dual rotating camera Scheimpflug-Placido tomographer. Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, USA. Retrospective case series. The predicted residual astigmatism after toric IOL implantation was calculated using preoperative astigmatism values from an automated keratometer and the total corneal power (TCP) determined by ray tracing through the measured anterior and posterior corneal surfaces using dual Scheimpflug-Placido tomography. The prediction error was calculated as the difference between the predicted astigmatism and the manifest astigmatism at least 1 month postoperatively. The calculations included vector analysis. The study evaluated 35 eyes (35 patients). The preoperative corneal posterior astigmatism mean magnitude was 0.33 diopter (D) ± 0.16 (SD) (vector mean 0.23 × 176). Twenty-six eyes (74.3%) had with-the-rule (WTR) posterior astigmatism. The postoperative manifest refractive astigmatism mean magnitude was 0.38 ± 0.18 D (vector mean 0.26 × 171). There was no statistically significant difference in the mean magnitude prediction error between the automated keratometer and TCP techniques. However, the automated keratometer method tended to overcorrect WTR astigmatism and undercorrect against-the-rule (ATR) astigmatism. The TCP technique lacked these biases. The automated keratometer and TCP methods for estimating the magnitude of corneal astigmatism gave similar results. However, the automated keratometer method tended to overcorrect WTR astigmatism and undercorrect ATR astigmatism. Dr. Hamilton has received honoraria for educational lectures from Ziemer Ophthalmic Systems. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. A two stream radiative transfer model for scaling solar induced fluorescence from leaf to canopy

    NASA Astrophysics Data System (ADS)

    Quaife, T. L.

    2017-12-01

    Solar induced fluorescence (SIF) is becoming widely used as a proxy for gross primary productivity (GPP), in particular with the advent of its measurement by Earth Observation satellites such as OCO and GOSAT. A major attraction of SIF is that it is independent of the assumptions embedded in light use efficiency based GPP products derived from satellite missions such as MODIS. The assumptions in such products are likely not compatible with any given land surface model and hence comparing the two is problematic. On the other hand to compare land surface model predictions of GPP to satellite based SIF data requires either (a) translation of SIF into estimates of GPP, or (b) direct predictions of SIF from the land surface model itself. The former typically relies on empirical relationships, whereas the latter can make direct use of our physiological understanding of the link between photosynthesis and fluorescence at the leaf scale and is therefore preferable. Here I derive a two stream model for fluorescence that is capable of translating between leaf scale models of SIF and the canopy leaving radiance taking into account all levels of photon scattering. Other such models have been developed previously but the model described here is physically consistent with the Sellers' two stream radiative transfer scheme which is widely used in modern land surface models. Consequently any model that already employs the Sellers's scheme can use the new model without requiring modification. This includes, for example, JULES, the land surface model of the new UK Earth System Model (UKESM) and CLM, the US Community Land Model (part of the NCAR Earth System Model). The new canopy SIF model is extremely computationally efficient and can be applied to vertically inhomogeneous canopies.

  18. Prise en compte d'un couplage fin neutronique-thermique dans les calculs d'assemblage pour les reacteurs a eau pressurisee

    NASA Astrophysics Data System (ADS)

    Greiner, Nathan

    Core simulations for Pressurized Water Reactors (PWR) is insured by a set of computer codes which allows, under certain assumptions, to approximate the physical quantities of interest, such as the effective multiplication factor or the power or temperature distributions. The neutronics calculation scheme relies on three great steps : -- the production of an isotopic cross-sections library ; -- the production of a reactor database through the lattice calculation ; -- the full-core calculation. In the lattice calculation, in which Boltzmann's transport equation is solved over an assembly geometry, the temperature distribution is uniform and constant during irradiation. This represents a set of approximations since, on the one hand, the temperature distribution in the assembly is not uniform (strong temperature gradients in the fuel pins, discrepancies between the fuel pins) and on the other hand, irradiation causes the thermal properties of the pins to change, which modifies the temperature distribution. Our work aims at implementing and introducing a neutronics-thermomechanics coupling into the lattice calculation to finely discretize the temperature distribution and to study its effects. To perform the study, CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) lattice code APOLLO2 was used for neutronics and EDF (Electricite De France) code C3THER was used for the thermal calculations. We show very small effects of the pin-scaled coupling when comparing the use of a temperature profile with the use of an uniform temperature over UOX-type and MOX-type fuels. We next investigate the thermal feedback using an assembly-scaled coupling taking into account the presence of large water gaps on an UOX-type assembly at burnup 0. We show the very small impact on the calculation of the hot spot factor. Finally, the coupling is introduced into the isotopic depletion calculation and we show that reactivity and isotopic number densities deviations remain small albeit not negligible for UOX-type and MOX-type assemblies. The specific behavior of gadolinium-stuffed fuel pins in an UO2Gd2O 3-type assembly is highlighted.

  19. Simulation des fuites neutroniques a l'aide d'un modele B1 heterogene pour des reacteurs a neutrons rapides et a eau legere

    NASA Astrophysics Data System (ADS)

    Faure, Bastien

    The neutronic calculation of a reactor's core is usually done in two steps. After solving the neutron transport equation over an elementary domain of the core, a set of parameters, namely macroscopic cross sections and potentially diffusion coefficients, are defined in order to perform a full core calculation. In the first step, the cell or assembly is calculated using the "fundamental mode theory", the pattern being inserted in an infinite lattice of periodic structures. This simple representation allows a precise modeling for the geometry and the energy variable and can be treated within transport theory with minimalist approximations. However, it supposes that the reactor's core can be treated as a periodic lattice of elementary domains, which is already a big hypothesis, and cannot, at first sight, take into account neutron leakage between two different zones and out of the core. The leakage models propose to correct the transport equation with an additional leakage term in order to represent this phenomenon. For historical reasons, numerical methods for solving the transport equation being limited by computer's features (processor speeds and memory sizes), the leakage term is, in most cases, modeled by a homogeneous and isotropic probability within a "homogeneous leakage model". Driven by technological innovation in the computer science field, "heterogeneous leakage models" have been developed and implemented in several neutron transport calculation codes. This work focuses on a study of some of those models, including the TIBERE model from the DRAGON-3 code developed at Ecole Polytechnique de Montreal, as well as the heterogeneous model from the APOLLO-3 code developed at Commissariat a l'Energie Atomique et aux energies alternatives. The research based on sodium cooled fast reactors and light water reactors has allowed us to demonstrate the interest of those models compared to a homogeneous leakage model. In particular, it has been shown that a heterogeneous model has a significant impact on the calculation of the out of core leakage rate that permits a better estimation of the transport equation eigenvalue Keff . The neutron streaming between two zones of different compositions was also proven to be better calculated.

  20. Le Laboratoire de Mécanique Appliquée Raymond Chaléat a 40 ans !

    NASA Astrophysics Data System (ADS)

    Comité D'Organisation Du Colloque Ime 2002, Le

    2002-12-01

    Le LMARC a été créé par Raymond Chaléat dans les locaux de l'École Nationale d'Horlogerie (a présent Lycée Technique Jules Haag).L'équipe de recherche était alors constituée de 2 enseignants-chercheurs (Raymond Chaléat et Gérard Lallement) et d'un technicien (Bernard Prêtre). Les travaux de recherche se situaient naturellement dans le domaine de la chronométrie et en particulier dans la mécanique non linéaire analytique inhérente à la montre en fonctionnement. En effet, Raymond Chaléat fut l'élève, puis le collaborateur du Professeur Jules Haag, mathématicien et mécanicien, lui-même élève de Poincarré.Le LMARC a étendu ses activités avec l'arrivée de Claude Oudet, puis de Claude Oytana à la rhéologie des matériaux solides qui est devenue plus tard l'Équipe Propriétés Mécaniques des Matériaux. En parallèle, G. Lallement a créé une équipe Vibrations devenue à ce jour Dynamique des Structures. À ce jour, le Laboratoire compte plus de 110 personnes dont 40 doctorants.Il a depuis diversifié ses activités avec 3 nouvelles équipes tournées vers la Modélisation et la Mise en Forme des Matériaux, les Micromachines et la Biomécanique et les Mécanismes. Il a su également prendre toute sa place au sein de l'Institut des Microtechniques de Franche-Comté en contribuant à plusieurs thèmes.Notre Laboratoire a été l'un des premiers laboratoires associé au CNRS (4ème) et a toujours été rattaché à l'Université de Franche-Comté (Présidence par C. Oytana de 1996 a 2001) par l'entremise de I'UFR Sciences et Techniques. Il a toujours maintenu des liens forts avec I'ENSMM (École Nationale Supérieure de Mécanique et des Microtechniques) d'une part par ses enseignants-chercheurs et d'autre part deux de ses directeurs, Raymond Chaléat et actuellement Jean-Claude Gelin.En plus de ses relations constantes avec l'industrie régionale, le LMARC a développé des actions contractuelles avec de grands groupes tels que EDF, Peugeot SA, Renault, SNECMA, EADS, ...Il a su s'ouvrir aux collaborations internationales tout d'abord avec la Tchécoslovaquie, le Brésil, la Pologne, maintenant la Chine, la Russie, Corée du Sud, la Hongrie, la Roumanie ...Tout ce travail n'aurait pas pu se faire sans des ingénieurs, techniciens et des services techniques et administratifs épaulant efficacement les chercheurs CNRS et les enseignants-chercheurs.Globalement, si les aspects appliqués en mécanique sont un point fort du laboratoire, ce qui justifie son nom, son activité de recherche est restée plus généralement orientée vers les interactions entre expériences et modélisation en mécanique du solide.À l'occasion de ses 40 ans Le LMARC a souhaité organiser une conférence sur ce thème regroupant des chercheurs, collègues et amis pour faire le point sur ce sujet. Grâce à 6 conférences plénières et de 52 conférences en deux sessions, des sujets traitant du comportement des matériaux, de leur mise en forme, de la dynamique des structures, de la biomécanique et de la robotique ont pu être abordés. Ce livre regroupe l'ensemble des papiers présentés lors de cette conférence.

  1. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.

    PubMed

    Krause, Andreas; Pugh, Thomas A M; Bayer, Anita D; Li, Wei; Leung, Felix; Bondeau, Alberte; Doelman, Jonathan C; Humpenöder, Florian; Anthoni, Peter; Bodirsky, Benjamin L; Ciais, Philippe; Müller, Christoph; Murray-Tortarolo, Guillermo; Olin, Stefan; Popp, Alexander; Sitch, Stephen; Stehfest, Elke; Arneth, Almut

    2018-07-01

    Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land-based mitigation scenarios from two land-use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land-use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land-use change. Differences between land-use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land-based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy. © 2018 John Wiley & Sons Ltd.

  2. The environmental sustainability of sugarcane cultivation under scenarios of climate change: case studies for Brazil and Ghana

    NASA Astrophysics Data System (ADS)

    Black, E.; Vidale, P. L.; Verhoef, A.; Cuadro, S. V.

    2012-04-01

    Over the next decades increasing oil and carbon prices will lead to a proliferation of energy crop cultivation initiatives. Many of these will be based in developing countries, and hence will affect some of the poorest people in the world. The capacity of such initiatives to alleviate poverty in the long term depends on their environmental sustainability. Specifically, the exploitation of water resources in an unsustainable manner may permanently damage vulnerable ecosystems and ultimately deepen poverty. These issues have motivated a collaborative project - Integrated Carbon, Water and Land Management for Poverty Alleviation (ICWALPA), which asks whether the export of bio-fuel technology from Brazil to Ghana will alleviate poverty. This presentation will describe the initial results from ICWALPA - including the development of an integrated environmental modelling framework and its application to sugarcane cultivation under scenarios of climate change. The environmental model used to represent the biophysical interactions is process-based and implemented in the framework of the Joint UK Land Environment Simulator (JULES). Crop growth is predicted dynamically by accumulating the carbon assimilated during photosynthesis and is then allocated according to well-established allometric principles. Two contrasting case studies will be presented: the Sao Paulo region of Brazil (where there is an established sugarcane industry) and the Daka River region of Ghana (where commercial sugarcane cultivation is planned). We show that our model is capable of reproducing both the spatial and temporal variability in sugarcane yield for the Sao Paulo province of Brazil - lending credence to the projections for Ghana. For Ghana, we show that, providing there is sufficient irrigation, it is possible to generate approximately 75% of the yield achieved in the Sao Paulo province. In the final part of the study, the behaviour of sugarcane under an idealized climate change scenario is explored. It is shown that the increased drought tolerance that results from higher CO2 concentrations mitigates the greater water stress associated with higher evaporation.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Rashid; Zhao, Fang; de Jong, Rogier

    The net primary productivity (NPP) is commonly used for understanding the dynamics of terrestrial ecosystems and their role in carbon cycle. We used a combination of the most recent NDVI and model–based NPP estimates (from five models of the TRENDY project) for the period 1982-2012, to study the role of terrestrial ecosystems in carbon cycle under the prevailing climate conditions. We found that 80% and 67% of the global land area showed positive NPP and NDVI values, respectively, for this period. The global NPP was estimated to be about 63 Pg C y -1, with an increase of 0.214 Pgmore » C y -1 y -1. Similarly, the global mean NDVI was estimated to be 0.33, with an increasing trend of 0.00041 y-1. The spatial patterns of NPP and NDVI demonstrated substantial variability, especially at the regional level, for most part of the globe. However, on temporal scale, both global NPP and NDVI showed a corresponding pattern of increase (decrease) for the duration of this study except for few years (e.g. 1990 and 1995-98). Generally, the Northern Hemisphere showed stronger NDVI and NPP increasing trends over time compared to the Southern Hemisphere; however, NDVI showed larger trends in Temperate regions while NPP showed larger trends in Boreal regions. Among the five models, the maximum and minimum NPP were produced by JULES (72.4 Pg C y -1) and LPJ (53.72 Pg C y -1) models, respectively. At latitudinal level, the NDVI and NPP ranges were ~0.035 y -1 to ~-0.016 y -1 and ~0.10 Pg C y -1 y -1 to ~-0.047 Pg C y -1 y -1, respectively. Overall, the results of this study suggest that the modeled NPP generally correspond to the NDVI trends in the temporal dimension. Lastly, the significant variability in spatial patterns of NPP and NDVI trends points to a need for research to understand the causes of these discrepancies between molded and observed ecosystem dynamics, and the carbon cycle.« less

  4. Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests.

    PubMed

    Thurner, Martin; Beer, Christian; Ciais, Philippe; Friend, Andrew D; Ito, Akihiko; Kleidon, Axel; Lomas, Mark R; Quegan, Shaun; Rademacher, Tim T; Schaphoff, Sibyll; Tum, Markus; Wiltshire, Andy; Carvalhais, Nuno

    2017-08-01

    Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and pathogens are not explicitly treated in these models. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  5. Assessment of model behavior and acceptable forcing data uncertainty in the context of land surface soil moisture estimation

    NASA Astrophysics Data System (ADS)

    Dumedah, Gift; Walker, Jeffrey P.

    2017-03-01

    The sources of uncertainty in land surface models are numerous and varied, from inaccuracies in forcing data to uncertainties in model structure and parameterizations. Majority of these uncertainties are strongly tied to the overall makeup of the model, but the input forcing data set is independent with its accuracy usually defined by the monitoring or the observation system. The impact of input forcing data on model estimation accuracy has been collectively acknowledged to be significant, yet its quantification and the level of uncertainty that is acceptable in the context of the land surface model to obtain a competitive estimation remain mostly unknown. A better understanding is needed about how models respond to input forcing data and what changes in these forcing variables can be accommodated without deteriorating optimal estimation of the model. As a result, this study determines the level of forcing data uncertainty that is acceptable in the Joint UK Land Environment Simulator (JULES) to competitively estimate soil moisture in the Yanco area in south eastern Australia. The study employs hydro genomic mapping to examine the temporal evolution of model decision variables from an archive of values obtained from soil moisture data assimilation. The data assimilation (DA) was undertaken using the advanced Evolutionary Data Assimilation. Our findings show that the input forcing data have significant impact on model output, 35% in root mean square error (RMSE) for 5cm depth of soil moisture and 15% in RMSE for 15cm depth of soil moisture. This specific quantification is crucial to illustrate the significance of input forcing data spread. The acceptable uncertainty determined based on dominant pathway has been validated and shown to be reliable for all forcing variables, so as to provide optimal soil moisture. These findings are crucial for DA in order to account for uncertainties that are meaningful from the model standpoint. Moreover, our results point to a proper treatment of input forcing data in general land surface and hydrological model estimation.

  6. [Diagnostic approach of an IgM monoclonal gammopathy and clinical importance of gene MYD88 L265P mutation].

    PubMed

    Cilla, N; Vercruyssen, M; Ameye, L; Paesmans, M; de Wind, A; Heimann, P; Meuleman, N; Bron, D

    2018-05-30

    An IgM monoclonal gammopathy points to a diagnosis of Waldenstrom's Macroglobulinemia. Other B lymphoproliferatives disorders should be ruled out but the limits are sometimes difficult to define. The discovery of the L265P mutation of the MYD88 gene simplified potentially the situation. 383 patients of the Jules Bordet Institute with an IgM level above 2 g/L were reviewed. For the 49 who had a monoclonal peak, we analysed the underlying pathology in termes of general, clinical and biological characteristics. We checked if the MYD88 mutation had been detected. The overall survival rate was studied. 5 histological groups were identified: Waldenstrom's Macroglobulinemia (MW, N = 27), lymphoplasmacytic lymphoma (LLP, N = 10), marginal zone lymphoma (LMZ, N = 7), monoclonal gammopathy of unknown significance and multiple myeloma (MGUS/MM, N = 5). The MW group was compared to the other groups. Regarding biological characteristics, the IgM level upon diagnosis was statistically higher in the MW group with a median level at 19.5 g/L (2.3-101 g/L) (p-value = 0,0001). Concerning the clinical characteristics, a splenomegaly was more frequent in the LMZ group (p-value = 0,04). The L265P mutation of the MYD88 gene was found in 77 % of patients in the MW group, 60 % of patients in the LLP group and 67 % in the LMZ group (p-value = 0,38). For the 49 patients, the 10-yearoverall survival was 85 % (CI 95 %, 67 % to 94 %) and the 15-year-overall survival was 65 % (CI 95 %, 41 % to 81 %). A monoclonal IgM peak suggests a MW but other B lymphoproliferatives disorders should be excluded. Even if the L265P mutation is frequent in the LLP/MW, it is not specific. A precise diagnosis requires collating clinical, histological, immunophenotypical and genetical data.

  7. Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Zaehle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Heumann, B. W.; Ramankutty, N.; Rödenbeck, C.; Heimann, M.; Jones, C.

    2010-03-01

    European ecosystems are thought to uptake significant amounts of carbon, but neither the rate nor the contributions of the underlying processes are well known. In the second half of the 20th century, carbon dioxide concentrations have risen by more than 100 ppm, atmospheric nitrogen deposition has more than doubled, and European mean temperatures were increasing by 0.02 °C per year. The extents of forest and grasslands have increase with the respective rates of 5800 km2 yr-1 and 1100 km2 yr-1 as agricultural land has been abandoned at a rate of 7000 km2 yr-1. In this study, we analyze the responses of European land ecosystems to the aforementioned environmental changes using results from four process-based ecosystem models: BIOME-BGC, JULES, ORCHIDEE, and O-CN. All four models suggest that European terrestrial ecosystems sequester carbon at a rate of 100 TgC yr-1 (1980-2007 mean) with strong interannual variability (± 85 TgC yr-1) and a substantial inter-model uncertainty (± 45 TgC yr-1). Decadal budgets suggest that there has been a slight increase in terrestrial net carbon storage from 85 TgC yr-1 in 1980-1989 to 114 TgC yr-1 in 2000-2007. The physiological effect of rising CO2 in combination with nitrogen deposition and forest re-growth have been identified as the important explanatory factors for this net carbon storage. Changes in the growth of woody vegetation are an important contributor to the European carbon sink. Simulated ecosystem responses were more consistent for the two models accounting for terrestrial carbon-nitrogen dynamics than for the two models which only accounted for carbon cycling and the effects of land cover change. Studies of the interactions of carbon-nitrogen dynamics with land use changes are needed to further improve the quantitative understanding of the driving forces of the European land carbon balance.

  8. Intravenous sotalol decreases transthoracic cardioversion energy requirement for chronic atrial fibrillation in humans: assessment of the electrophysiological effects by biatrial basket electrodes.

    PubMed

    Lai, L P; Lin, J L; Lien, W P; Tseng, Y Z; Huang, S K

    2000-05-01

    This study was undertaken to assess the effects of sotalol on the transthoracic cardioversion energy requirement for chronic atrial fibrillation (AF) and on the atrial electrograms during AF recorded by two basket electrodes. The effects of sotalol infusion on transthoracic electrical cardioversion for chronic atrial fibrillation in humans have not been well investigated. We included 18 patients with persistent AF for more than three months. Atrial electrograms were recorded by two basket electrodes positioned in each atrium respectively. Transthoracic cardioversion was performed before and after sotalol 1.5 mg/kg i.v. infusion. In the 14 patients whose AF could be terminated by cardioversion before sotalol infusion, the atrial defibrillation energy was significantly reduced after sotalol infusion (236 +/- 74 jules [J] vs. 186 +/- 77 J; p < 0.01). Atrial fibrillation was refractory to cardioversion in four patients at baseline and was converted to sinus rhythm by cardioversion after sotalol infusion in two of them. We further divided the patients into two groups. Group A consisted of 10 patients in whom the energy requirement was decreased by sotalol while group B consisted of eight patients in whom the energy requirement was not decreased. The mean A-A (atrial local electrogram) intervals during AF were significantly increased after sotalol infusion in both groups, but the increment of A-A interval was significantly larger in group A than it was in group B patients (36 +/- 13 ms vs. 22 +/- 8 ms for the right atrium; 19 +/- 7 ms vs. 9 +/- 7 ms for the left atrium; both p < 0.05). The spatial and temporal dispersions of A-A intervals were not significantly changed after sotalol infusion in both atria in both groups. Sotalol decreases the atrial defibrillation energy requirement by increasing atrial refractoriness but not by decreasing the dispersion of refractoriness.

  9. The Fate of Amazonian Ecosystems over the Coming Century Arising from Changes in Climate, Atmospheric CO2 and Land-use

    NASA Astrophysics Data System (ADS)

    Moorcroft, P. R.; Zhang, K.; Castanho, A. D. D. A.; Galbraith, D.; Moghim, S.; Levine, N. M.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Malhi, Y.; Longo, M.; Knox, R. G.; McKnight, S. L.; Wang, J.

    2014-12-01

    There is considerable interest and uncertainty regarding the expected fate of the Amazon over the coming century in face of the combined impacts of climate change, rising atmospheric CO2 levels, and on-going land transformation in the region. In this analysis, we explore the fate of Amazonian ecosystems under projected climate, CO2 and land-use change in the 21st century using three state-of-the-art terrestrial biosphere models (ED2, IBIS, and JULES) driven by three representative, bias-corrected GCM climate projections (PCM1, CCSM3, and HadCM3) under the SRES A2 scenario, coupled with two land-use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change depend strongly on the direction and severity of projected changes in precipitation regimes within the region: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%; however, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and as a result sustain high biomass forests, even under the driest climate scenario. Land-use change and changes in fire frequency are predicted cause additional aboveground live biomass loss and changes in forest extent. The relative impact of land-use and fire dynamics versus the impacts of climate and CO2 on the Amazon varies considerably, depending on both the climate and land-use scenarios used and on the terrestrial biosphere model, highlighting the importance of improved understanding of all four factors -- future climate, CO2 fertilization effects, fire and land-use -- to the fate of the Amazon over the coming century.

  10. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    USGS Publications Warehouse

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  11. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-02-01

    We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  12. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2014-11-01

    Accurately predicting the response of Amazonia to climate change is important for predicting changes across the globe. However, changes in multiple climatic factors simultaneously may result in complex non-linear responses, which are difficult to predict using vegetation models. Using leaf and canopy scale observations, this study evaluated the capability of five vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA) to simulate the responses of canopy and leaf scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation. There was greater model-data consistency in the response of net ecosystem exchange to changes in temperature, than in the response to temperature of leaf area index (LAI), net photosynthesis (An) and stomatal conductance (gs). Modelled canopy scale fluxes are calculated by scaling leaf scale fluxes to LAI, and therefore in this study similarities in modelled ecosystem scale responses to drought and temperature were the result of inconsistent leaf scale and LAI responses among models. Across the models, the response of An to temperature was more closely linked to stomatal behaviour than biochemical processes. Consequently all the models predicted that GPP would be higher if tropical forests were 5 °C colder, closer to the model optima for gs. There was however no model consistency in the response of the An-gs relationship when temperature changes and drought were introduced simultaneously. The inconsistencies in the An-gs relationships amongst models were caused by to non-linear model responses induced by simultaneous drought and temperature change. To improve the reliability of simulations of the response of Amazonian rainforest to climate change the mechanistic underpinnings of vegetation models need more complete validation to improve accuracy and consistency in the scaling of processes from leaf to canopy.

  13. Ecology of Alpine Macrofungi - Combining Historical with Recent Data

    PubMed Central

    Brunner, Ivano; Frey, Beat; Hartmann, Martin; Zimmermann, Stephan; Graf, Frank; Suz, Laura M.; Niskanen, Tuula; Bidartondo, Martin I.; Senn-Irlet, Beatrice

    2017-01-01

    Historical datasets of living communities are important because they can be used to document creeping shifts in species compositions. Such a historical data set exists for alpine fungi. From 1941 to 1953, the Swiss geologist Jules Favre visited yearly the region of the Swiss National Park and recorded the occurring fruiting bodies of fungi >1 mm (so-called “macrofungi”) in the alpine zone. Favre can be regarded as one of the pioneers of alpine fungal ecology not least because he noted location, elevation, geology, and associated plants during his numerous excursions. However, some relevant information is only available in his unpublished field-book. Overall, Favre listed 204 fungal species in 26 sampling sites, with 46 species being previously unknown. The analysis of his data revealed that the macrofungi recorded belong to two major ecological groups, either they are symbiotrophs and live in ectomycorrhizal associations with alpine plant hosts, or they are saprotrophs and decompose plant litter and soil organic matter. The most frequent fungi were members of Inocybe and Cortinarius, which form ectomycorrhizas with Dryas octopetala or the dwarf alpine Salix species. The scope of the present study was to combine Favre's historical dataset with more recent data, either with the “SwissFungi” database or with data from major studies of the French and German Alps, and with the data from novel high-throughput DNA sequencing techniques of soils from the Swiss Alps. Results of the latter application revealed, that problems associated with these new techniques are manifold and species determination remains often unclear. At this point, the fungal taxa collected by Favre and deposited as exsiccata at the “Conservatoire et Jardin Botaniques de la Ville de Genève” could be used as a reference sequence dataset for alpine fungal studies. In conclusion, it can be postulated that new improved databases are urgently necessary for the near future, particularly, with regard to investigating fungal communities from alpine regions using new techniques. PMID:29123508

  14. Quantifying the impact of land use change on hydrological responses in the Upper Ganga Basin, India

    NASA Astrophysics Data System (ADS)

    Tsarouchi, Georgia-Marina; Mijic, Ana; Moulds, Simon; Chawla, Ila; Mujumdar, Pradeep; Buytaert, Wouter

    2013-04-01

    Quantifying how changes in land use affect the hydrological response at the river basin scale is a challenge in hydrological science and especially in the tropics where many regions are considered data sparse. Earlier work by the authors developed and used high-resolution, reconstructed land cover maps for northern India, based on satellite imagery and historic land-use maps for the years 1984, 1998 and 2010. Large-scale land use changes and their effects on landscape patterns can impact water supply in a watershed by altering hydrological processes such as evaporation, infiltration, surface runoff, groundwater discharge and stream flow. Three land use scenarios were tested to explore the sensitivity of the catchment's response to land use changes: (a) historic land use of 1984 with integrated evolution to 2010; (b) land use of 2010 remaining stable; and (c) hypothetical future projection of land use for 2030. The future scenario was produced with Markov chain analysis and generation of transition probability matrices, indicating transition potentials from one land use class to another. The study used socio-economic (population density), geographic (distances to roads and rivers, and location of protected areas) and biophysical drivers (suitability of soil for agricultural production, slope, aspect, and elevation). The distributed version of the land surface model JULES was integrated at a resolution of 0.01° for the years 1984 to 2030. Based on a sensitivity analysis, the most sensitive parameters were identified. Then, the model was calibrated against measured daily stream flow data. The impact of land use changes was investigated by calculating annual variations in hydrological components, differences in annual stream flow and surface runoff during the simulation period. The land use changes correspond to significant differences on the long-term hydrologic fluxes for each scenario. Once analysed from a future water resources perspective, the results will be beneficial in constructing decision support tools for regional land-use planning and management.

  15. Seasonal variations of soil erosion in UK under climate change: simulations with the use of high-resolution regional climatic models

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Kendon, Elizabeth; Constantine, José Antonio; Schindewolf, Marcus; Hall, Ian

    2017-04-01

    Climate change is expected to have a significant impact on the hydrological cycle, twenty-first century climate change simulations for Great Britain forecast an increase of surface runoff and flooding frequency. Once quality and resolution of the simulated rainfall deeply influence the results, we adopted rainfall simulations issued of a high-resolution climate model recently carried out for extended periods (13 years for present-day and future periods 2100) at 1.5 km grid scale over the south of the United Kingdom (simulations, which for the future period use the Intergovernmental Panel on Climate Change RCP 8.5 scenario, Kendon et al., 2014). We simulated soil erosion with 3D soil erosion model Schmidt (1990) on two catchments of Great Britain: the Rother catchment (350 km2) in West Sussex, England, because it has reported some of the most erosive events observed during the last 50 years in the UK, and the Conwy catchment (628 Km2) in North Wales, which is extremely resilient to soil erosion because of the abundant natural vegetation. Estimation of changes in soil moisture, saturation deficit as well as vegetation cover at daily time step have been done with the Joint UK Land Environment Simulator (JULES) (Best et al, 2011). Our results confirm the Rother catchment is the most erosive, while the Conwy catchment is the more resilient to soil erosion. Sediment production is perceived increase in both cases for the end of the century (27% and 50%, respectively). Seasonal disaggregation of the results revels that, while the most part of soil erosion is produced in winter months (DJF), the higher soil erosion variability for future periods is observed in summer (JJA). This behaviour is supported by the rainfall simulation analyse which highlighted this dual behaviour in precipitations.

  16. Plant Nitrogen Uptake in Terrestrial Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Marti, Alejandro; Cox, Peter; Sitch, Stephen; Jones, Chris; Liddicoat, spencer

    2013-04-01

    Most terrestrial biogeochemical models featured in the last Intergovernmental Panel on Climate Change (IPPC) Assessment Report highlight the importance of the terrestrial Carbon sequestration and feedbacks between the terrestrial Carbon cycle and the climate system. However, these models have been criticized for overestimating predicted Carbon sequestration and its potential climate feedback when calculating the rate of future climate change because they do not account for the Carbon sequestration constraints caused by nutrient limitation, particularly Nitrogen (N). This is particularly relevant considering the existence of a substantial deficit of Nitrogen for plants in most areas of the world. To date, most climate models assume that plants have access to as much Nitrogen as needed, but ignore the nutrient requirements for new vegetation growth. Determining the natural demand and acquisition for Nitrogen and its associated resource optimization is key when accounting for the Carbon sequestration constrains caused by nutrient limitation. The few climate models that include C-N dynamics have illustrated that the stimulation of plant growth over the coming century may be two to three times smaller than previously predicted. This reduction in growth is partially offset by an increase in the availability of nutrients resulting from an accelerated rate of decomposition of dead plants and other organic matter that occurring with a rise in temperature. However, this offset does not counterbalance the reduced level of plant growth calculated by natural nutrient limitations. Additionally, Nitrogen limitation is also expected to become more pronounced in some ecosystems as atmospheric CO2 concentration increases; resulting in less new growth and higher atmospheric CO2 concentrations than originally expected. This study compares alternative models of plant N uptake as found in different terrestrial biogeochemical models against field measurements, and introduces a new N-uptake model to the Joint UK Land Environment Simulator (JULES).. Acknowledgements This work has been funded by the European Commission FP7-PEOPLE-ITN-2008 Marie Curie Action: "Greencycles II: FP7-PEOPLE-ITN-2008 Marie Curie Action: "Networks for Initial Training"

  17. Ecology of Alpine Macrofungi - Combining Historical with Recent Data.

    PubMed

    Brunner, Ivano; Frey, Beat; Hartmann, Martin; Zimmermann, Stephan; Graf, Frank; Suz, Laura M; Niskanen, Tuula; Bidartondo, Martin I; Senn-Irlet, Beatrice

    2017-01-01

    Historical datasets of living communities are important because they can be used to document creeping shifts in species compositions. Such a historical data set exists for alpine fungi. From 1941 to 1953, the Swiss geologist Jules Favre visited yearly the region of the Swiss National Park and recorded the occurring fruiting bodies of fungi >1 mm (so-called "macrofungi") in the alpine zone. Favre can be regarded as one of the pioneers of alpine fungal ecology not least because he noted location, elevation, geology, and associated plants during his numerous excursions. However, some relevant information is only available in his unpublished field-book. Overall, Favre listed 204 fungal species in 26 sampling sites, with 46 species being previously unknown. The analysis of his data revealed that the macrofungi recorded belong to two major ecological groups, either they are symbiotrophs and live in ectomycorrhizal associations with alpine plant hosts, or they are saprotrophs and decompose plant litter and soil organic matter. The most frequent fungi were members of Inocybe and Cortinarius , which form ectomycorrhizas with Dryas octopetala or the dwarf alpine Salix species. The scope of the present study was to combine Favre's historical dataset with more recent data, either with the "SwissFungi" database or with data from major studies of the French and German Alps, and with the data from novel high-throughput DNA sequencing techniques of soils from the Swiss Alps. Results of the latter application revealed, that problems associated with these new techniques are manifold and species determination remains often unclear. At this point, the fungal taxa collected by Favre and deposited as exsiccata at the "Conservatoire et Jardin Botaniques de la Ville de Genève" could be used as a reference sequence dataset for alpine fungal studies. In conclusion, it can be postulated that new improved databases are urgently necessary for the near future, particularly, with regard to investigating fungal communities from alpine regions using new techniques.

  18. Lunar farside volcanism in and around the South Pole-Aitken basin

    NASA Astrophysics Data System (ADS)

    Pasckert, Jan Hendrik; Hiesinger, Harald; van der Bogert, Carolyn H.

    2018-01-01

    We identified and mapped 129 mare basalt deposits in and around the South Pole-Aitken (SPA) basin, and determined absolute model ages (AMAs) for 101 of these units by performing crater size-frequency distribution (CSFD) measurements. The derived AMAs range from 2.2 Ga to 3.7 Ga, with the youngest deposits within Antoniadi crater and the oldest deposits at Jules Verne crater. Our investigations indicate a major peak in volcanic activity between 3.6 Ga and 3.2 Ga, which is a similar time range as the major volcanic activity on the nearside, and the rest of the farside. However, a second peak in volcanic activity (2.2-2.5 Ga), as observed for the nearside and parts of the farside, is not observed for the mare deposits within the SPA basin. Combining all AMAs derived for farside mare basalts reveals that volcanic activity was more abundant and lasted longer on the nearside than on the farside. We propose that the stripping of insulating crust by the large SPA-forming impact event, in combination with lower amounts of heat producing elements like Th, might be responsible for the reduced volcanic activity in the SPA basin. In addition, we estimated the thicknesses and volumes of the investigated mare deposits. With thicknesses between ∼31 m and ∼273 m and volumes of ∼1 km³ to ∼2630 km³, the mare basalt deposits in and around the SPA basin show a wide range of dimensions, similar to other mare basalts of the near- and farsides. A trend between the AMAs and the estimated volumes was not observed, but the mare deposits within the large northern craters (e.g., Apollo, Ingenii, or Leibnitz) seem to be generally larger and more voluminous than the mare basalt deposits at the center of the SPA basin.

  19. The UKC2 regional coupled environmental prediction system

    NASA Astrophysics Data System (ADS)

    Lewis, Huw W.; Castillo Sanchez, Juan Manuel; Graham, Jennifer; Saulter, Andrew; Bornemann, Jorge; Arnold, Alex; Fallmann, Joachim; Harris, Chris; Pearson, David; Ramsdale, Steven; Martínez-de la Torre, Alberto; Bricheno, Lucy; Blyth, Eleanor; Bell, Victoria A.; Davies, Helen; Marthews, Toby R.; O'Neill, Clare; Rumbold, Heather; O'Dea, Enda; Brereton, Ashley; Guihou, Karen; Hines, Adrian; Butenschon, Momme; Dadson, Simon J.; Palmer, Tamzin; Holt, Jason; Reynard, Nick; Best, Martin; Edwards, John; Siddorn, John

    2018-01-01

    It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, require a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere-land-ocean-wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-western European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for six contrasting case studies of 5-day duration is presented. Results demonstrate that performance can be achieved with the UKC2 system that is at least comparable to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and mean wave period highlight the potential benefits of coupling between environmental model components. Results also illustrate that the coupling itself is not sufficient to address all known model issues. Priorities for future development of the UK Environmental Prediction framework and component systems are discussed.

  20. Second-generation corneal deformation signal waveform analysis in normal, forme fruste keratoconic, and manifest keratoconic corneas after statistical correction for potentially confounding factors.

    PubMed

    Zhang, Lijun; Danesh, Jennifer; Tannan, Anjali; Phan, Vivian; Yu, Fei; Hamilton, D Rex

    2015-10-01

    To evaluate the difference in corneal biomechanical waveform parameters between manifest keratoconus, forme fruste keratoconus, and healthy eyes with a second-generation biomechanical waveform analyzer (Ocular Response Analyzer 2). Jules Stein Eye Institute, University of California, Los Angeles, California, USA. Retrospective chart review. The biomechanical waveform analyzer was used to obtain corneal hysteresis (CH), corneal resistance factor (CRF), and 37 biomechanical waveform parameters in manifest keratoconus eyes, forme fruste keratoconus eyes, and healthy eyes. Useful distinguishing parameters were found using t tests and a multivariable logistic regression model with stepwise variable selection. Potential confounders were controlled for. The study included 68 manifest keratoconus eyes, 64 forme fruste keratoconus eyes, and 249 healthy eyes. There was a statistical difference in the mean CRF between the normal group (10.2 mm Hg ± 1.7 [SD]) and keratoconus group (6.3 ± 1.9 mm Hg) (P = .003), and between the normal group and the forme fruste keratoconus group (7.8 ± 1.4 mm Hg) (P < .0001). There was no statistical difference in the mean CH between the normal group and the keratoconus group or the forme fruste keratoconus group. The CRF, height of peak 1 (P1) (P = .001), downslope of P1 (dslope1) (P = .027), upslope of peak 2 (P2) (P = .004), and downslope of P2 (P = .006) distinguished the normal group from the keratoconus groups. The CRF, downslope of P2 derived from upper 50% of applanation peak (P = .035), dslope1 (P = .014), and upslope of P1 (P = .008) distinguished the normal group from the forme fruste keratoconus group. Differences in multiple biomechanical waveform parameters can differentiate between healthy and diseased conditions and might improve early diagnosis of keratoconus and forme fruste keratoconus. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Response to droughts and heat waves of the productivity of natural and agricultural ecosystems in Europe within ISI-MIP2 historical simulations

    NASA Astrophysics Data System (ADS)

    François, Louis; Henrot, Alexandra-Jane; Dury, Marie; Jacquemin, Ingrid; Munhoven, Guy; Friend, Andrew; Rademacher, Tim T.; Hacket Pain, Andrew J.; Hickler, Thomas; Tian, Hanqin; Morfopoulos, Catherine; Ostberg, Sebastian; Chang, Jinfeng; Rafique, Rashid; Nishina, Kazuya

    2016-04-01

    According to the projections of climate models, extreme events such as droughts and heat waves are expected to become more frequent and more severe in the future. Such events are known to severely impact the productivity of both natural and agricultural ecosystems, and hence to affect ecosystem services such as crop yield and ecosystem carbon sequestration potential. Dynamic vegetation models are conventional tools to evaluate the productivity and carbon sequestration of ecosystems and their response to climate change. However, how far are these models able to correctly represent the sensitivity of ecosystems to droughts and heat waves? How do the responses of natural and agricultural ecosystems compare to each other, in terms of drought-induced changes in productivity and carbon sequestration? In this contribution, we use ISI-MIP2 model historical simulations from the biome sector to tentatively answer these questions. Nine dynamic vegetation models have participated in the biome sector intercomparison of ISI-MIP2: CARAIB, DLEM, HYBRID, JULES, LPJ-GUESS, LPJml, ORCHIDEE, VEGAS and VISIT. We focus the analysis on well-marked droughts or heat waves that occured in Europe after 1970, such as the 1976, 2003 and 2010 events. For most recent studied events, the model results are compared to the response observed at several eddy covariance sites in Europe, and, at a larger scale, to the changes in crop productivities reported in national statistics or to the drought impacts on gross primary productivity derived from satellite data (Terra MODIS instrument). The sensitivity of the models to the climatological dataset used in the simulations, as well as to the inclusion or not of anthropogenic land use, is also analysed within the studied events. Indeed, the ISI-MIP simulations have been run with four different historical climatic forcings, as well as for several land use/land cover configurations (natural vegetation, fixed land use and variable land use).

  2. Ecosystem composition changes over the past millennium: model simulations and comparison with paleoecological observations

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Rollinson, C.; Dietze, M.; McLachlan, J. S.; Poulter, B.; Quaife, T. L.; Raiho, A.; Ricciuto, D. M.; Schaefer, K. M.; Steinkamp, J.; Moore, D. J.

    2015-12-01

    Over multi-decadal to multi-centennial timescales, ecosystem function and carbon storage is largely influenced by vegetation composition. The predictability of ecosystem responses to climate change thus depends on the understanding of long-term community dynamics. Our study aims to quantify the influence of the most relevant ecological factors that control plant distribution and abundance, in contemporary terrestrial biosphere models and in paleo-records, and constrain the model processes and parameters with paleoecological data. We simulated vegetation changes at 6 sites in the northeastern United States over the past 1160 years using 7 terrestrial biosphere models and variations (CLM4.5-CN, ED2, ED2-LU, JULES-TRIFFID, LINKAGES, LPJ-GUESS, LPJ-wsl) driven by common paleoclimatic drivers. We examined plant growth, recruitment, and mortality (including other carbon turnover) of the plant functional types (PFTs) in the models, attributed the responses to three major factors (climate, competition, and disturbance), and estimated the relative effect of each factor. We assessed the model responses against plant-community theories (bioclimatic limits, niche difference, temporal variation and storage effect, and disturbance). We found that vegetation composition were sensitive to realized niche differences (e.g. differential growth response) among PFTs. Because many models assume unlimited dispersal and sometimes recruitment, the "storage effect" constantly affects community composition. Fire was important in determining the ecosystem composition, yet the vegetation to fire feedback was weak in the models. We also found that vegetation-composition changes in the simulations were driven to a much greater degree by growth as opposed to by turnover/mortality, when compared with those in paleoecological records. Our work suggest that 1) for forecasting slow changes in vegetation composition, we can use paleo-data to better quantify the realized niches of PFTs and associated uncertainties, and 2) for predicting abrupt changes in vegetation composition, we need to better implement processes of dynamic turnover and fire in current ecosystem models.

  3. Nuclear heating measurements by in-pile calorimetry: prospective works for a microsensor design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynard-Carette, C.; Carette, M.; Aguir, K.

    Since 2009 works have been performed in the framework of joint research programs between CEA and Aix-Marseille University. The main aim of these programs is to design and develop in-pile instrumentations, advanced calibration procedure and accurate measurement methods in particular for the new Material Testing Reactor (MTR) under construction in the South of France: Jules Horowitz Reactor (JHR). One major sensor is a specific radiometric calorimeter, which was studied out-of-pile from a thermal point of view and in-pile during irradiation campaigns. This sensor type is dedicated to measurements of nuclear heating (energy deposition rate per mass unit induced by interactionsmore » between nuclear rays and matter) inside experimental channels of MTRs. This kind of in-pile calorimeter corresponds to heat flux calorimeter exchanging with the external cooling fluid. This thermal running mode allows the establishment of steady thermal conditions inside the sensor to carry out online continuous measurements inside the reactor (core or reflector). Two main types of calorimeters exist. The first type consists of a single cell calorimeter. It is divided into a sample of material to be tested and a jacket instrumented with two thermocouples or a single thermocouple (Gamma Thermometer). The second, called a differential calorimeter, is composed of two superposed twin cells (a measurement cell containing a sample of material, and a reference cell to remove the heating of the cell body) instrumented with four thermocouples and two electrical heaters. Contrary to a single-cell calorimeter, a differential calorimeter allows the compensation of the parasite nuclear heating of the sensor body or jacket. Moreover, it possesses interesting advantages: thanks to the heaters embedded in the cells, three different measurement methods can be applied during irradiations to quantify nuclear heating. The first one is based on the use of out-of-pile calibration curves obtained by generating a heat source by the Joule Effect inside each calorimetric cell. The second one is a zero method consisting in cancelling the difference in cell responses with an additional energy into the reference cell. The last measurement method is based on current additions in the two calorimetric cells. However, one drawback of the existing differential calorimeter is the size of the sensor: a great length equal to 220 mm and a diameter equal to 18 mm. This current size leads to measurement limitations. This paper will begin with a presentation of these measurement limitations from a bibliographic state. Each limitation will be detailed and in particular in the case of a high nuclear heating level expected, for instance, inside the JHR's core at its highest nominal power. The second part of the paper will develop the scientific skills of each partner in heat sciences, micro technology and nuclear physics necessary to design a new calorimetric micro-system: the advantages of studied microelements such as micro-thermocouples, micro- fluxmeters and micro-heaters will be presented. The last part will discuss preliminary designs. (authors)« less

  4. The General Formulation and Practical Calculation of the Diffusion Coefficient in a Lattice Containing Cavities; FORMULATION GENERALE ET CALCUL PRATIQUE DU COEFFICIENT DE DIFFUSION DANS UN RESEAU COMPORTANT DES CAVITES (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoist, P.

    The calculation of diffusion coefficients in a lattice necessitates the knowledge of a correct method of weighting the free paths of the different constituents. An unambiguous definition of this weighting method is given here, based on the calculation of leakages from a zone of a reactor. The formulation obtained, which is both simple and general, reduces the calculation of diffusion coefficients to that of collision probabilities in the different media; it reveals in the expression for the radial coefficient the series of the terms of angular correlation (cross terms) recently shown by several authors. This formulation is then used tomore » calculate the practical case of a classical type of lattice composed of a moderator and a fuel element surrounded by an empty space. Analytical and numerical comparison of the expressions obtained with those inferred from the theory of BEHRENS shows up the importance of several new terms some of which are linked with the transparency of the fuel element. Cross terms up to the second order are evaluated. A practical formulary is given at the end of the paper. (author) [French] Le calcul des coefficients de diffusion dans un reseau suppose la connaissance d'un mode de ponderation correct des libres parcours des differents constituants. On definit ici sans ambiguite ce mode de ponderation a partir du calcul des fuites hors d'une zone de reacteur. La formulation obtenue, simple et generale, ramene le calcul des coefficients de diffusion a celui des probabilites de collision dans les differents milieux; elle fait apparaitre dans l'expression du coefficient radial la serie des termes de correlation angulaire (termes rectangles), mis en evidence recemment par plusieurs auteurs. Cette formulation est ensuite appliquee au calcul pratique d'un reseau classique, compose d'un moderateur et d'un element combustible entoure d'une cavite; la comparaison analytique et numerique des expressions obtenues avec celles deduites de la theorie de BEHRENS fait apparaitre l'importance de plusieurs termes nouveaux, dont certains sont lies a la transparence de l'element combustible; les termes rectangles sont calcules jusqu'a l'ordre 2. Un formulaire pratique est donne a la fin de cette etude. (auteur)« less

  5. Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Zaehle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Heumann, B. W.; Ramankutty, N.; Heimann, M.; Jones, C.

    2010-09-01

    European ecosystems are thought to take up large amounts of carbon, but neither the rate nor the contributions of the underlying processes are well known. In the second half of the 20th century, carbon dioxide concentrations have risen by more that 100 ppm, atmospheric nitrogen deposition has more than doubled, and European mean temperatures were increasing by 0.02 °C yr-1. The extents of forest and grasslands have increased with the respective rates of 5800 km2 yr-1 and 1100 km2 yr-1 as agricultural land has been abandoned at a rate of 7000 km2 yr-1. In this study, we analyze the responses of European land ecosystems to the aforementioned environmental changes using results from four process-based ecosystem models: BIOME-BGC, JULES, ORCHIDEE, and O-CN. The models suggest that European ecosystems sequester carbon at a rate of 56 TgC yr-1 (mean of four models for 1951-2000) with strong interannual variability (±88 TgC yr-1, average across models) and substantial inter-model uncertainty (±39 TgC yr-1). Decadal budgets suggest that there has been a continuous increase in the mean net carbon storage of ecosystems from 85 TgC yr-1 in 1980s to 108 TgC yr-1 in 1990s, and to 114 TgC yr-1 in 2000-2007. The physiological effect of rising CO2 in combination with nitrogen deposition and forest re-growth have been identified as the important explanatory factors for this net carbon storage. Changes in the growth of woody vegetation are suggested as an important contributor to the European carbon sink. Simulated ecosystem responses were more consistent for the two models accounting for terrestrial carbon-nitrogen dynamics than for the two models which only accounted for carbon cycling and the effects of land cover change. Studies of the interactions of carbon-nitrogen dynamics with land use changes are needed to further improve the quantitative understanding of the driving forces of the European land carbon balance.

  6. First-line intra-arterial versus intravenous chemotherapy in unilateral sporadic group D retinoblastoma: evidence of better visual outcomes, ocular survival and shorter time to success with intra-arterial delivery from retrospective review of 20 years of treatment.

    PubMed

    Munier, Francis L; Mosimann, Pascal; Puccinelli, Francesco; Gaillard, Marie-Claire; Stathopoulos, Christina; Houghton, Susan; Bergin, Ciara; Beck-Popovic, Maja

    2017-08-01

    The introduction of intra-arterial chemotherapy (IAC) as salvage treatment has improved the prognosis for eye conservation in group D retinoblastoma. The aim of this study was to compare the outcomes of consecutive patients with advanced unilateral disease treated with either first-line intravenous chemotherapy (IVC) or first-line IAC. This is a retrospective mono-centric comparative review of consecutive patients. Sporadic unilateral retinoblastoma group D cases treated conservatively at Jules-Gonin Eye Hospital and CHUV between 1997 and 2014. From January 1997 to August 2008, IVC, combined with focal treatments, was the primary treatment approach. From September 2008 to October 2014, IAC replaced IVC as first-line therapy. 48 patients met the inclusion criteria, receiving only either IAC or IVC as primary treatment modality. Outcomes of 23 patients treated by IVC were compared with those of 25 treated by IAC; mean follow-up was 105.3 months (range 29.2-218.6) and 41.7 months (range 19.6-89.5), respectively. Treatment duration was significantly shorter in the IAC group (p<0.001). Ten eyes in the IVC group underwent enucleation. Recordable visual acuity of the salvaged eyes was significantly better in the IAC group (0.9 vs 1.4 logarithm of the minimum angle of resolution, p<0.01). No extraocular disease, metastases or long-term systemic complications were observed in either group. The difference in the time frame between treatment groups had an impact on the availability of intravitreal chemotherapy treatment. Despite this, the results reported here imply that eyes treated with first-line IAC will have shorter treatment period, better ocular survival and visual acuity than first-line IVC. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. [Salvage cryotherapy of prostate cancer after failed external radiotherapy and brachytherapy: Morbidity and mid-term oncological results].

    PubMed

    Gevorgyan, A; Hétet, J-F; Robert, M; Duchattelle-Dussaule, V; Corno, L; Boulay, I; Baumert, H

    2018-04-01

    To study the oncologic and functional results of salvage cryotherapy after failure of external radiotherapy and brachytherapy. Patients treated by total salvage cryotherapy (3rd generation) in 2 centers (Groupe Hospitalier Saint-Joseph in Paris and Clinique Jule-Verne Nantes) in between January 2008 and April 2016 were included. The biochemical recurrence-free survival (BRFS) was calculated using the Phoenix criteria (PSA>nadir+2ng/mL). The functional results were assessed clinically. Ninety-seven patients with an average follow up of 39.4months were evaluated retrospectively. The 5-year biochemical recurrence-free survival (5y-BRFS) among all patients was 58.1% (IC à 95% [45.9-68.5]). Low and intermediate risk patients (d'Amico classification) were less prone to biochemical recurrence than high risk (81.05% (IC à 95% [64.1-90.5]) 5y-BRFS as opposed to 35.09% (IC à 95% [20.1-50.4]) respectively) (P<0.0001). As were patients with a Gleason score≤7 75.35% (IC à 95% [59.7-85.6]) compared to 32.31% (IC à 95% [16.5-49.2]) for higher Gleason (>7 scores [P=0.0002]). A Gleason score>7 (OR=6.9; P=0.002), PSA nadir>1ng/mL (OR=25.8; P=0.0026) and peri-urethral invasion (OR=35.8; P<0.001) were major risk factors for local recurrence in univariate analysis. In multivariate analysis, only PSA nadir>1ng/mL (OR=12.9; P=0.042) and peri-urethral invasion (OR=21.6; P=0.0003) remain major risk factors for recurrence. About 13 (16.46%) patients were incontinent of which 3 (3.79%) required placement of an artificial urinary sphincter. Erectile dysfunction was present in 66 (83.5%) patients. Recto-urethral fistula was uncommon in 1 patient (1.27%). Salvage cryotherapy after failure of external radiotherapy and brachytherapy is a reliable and reproducible technique with promising oncological and functional results. Study of prognostic factors will help better select eligible patients in the future. 4. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Global and regional variability and change in terrestrial ecosystems net primary production and NDVI: A model-data comparison

    DOE PAGES

    Rafique, Rashid; Zhao, Fang; de Jong, Rogier; ...

    2016-02-25

    The net primary productivity (NPP) is commonly used for understanding the dynamics of terrestrial ecosystems and their role in carbon cycle. We used a combination of the most recent NDVI and model–based NPP estimates (from five models of the TRENDY project) for the period 1982-2012, to study the role of terrestrial ecosystems in carbon cycle under the prevailing climate conditions. We found that 80% and 67% of the global land area showed positive NPP and NDVI values, respectively, for this period. The global NPP was estimated to be about 63 Pg C y -1, with an increase of 0.214 Pgmore » C y -1 y -1. Similarly, the global mean NDVI was estimated to be 0.33, with an increasing trend of 0.00041 y-1. The spatial patterns of NPP and NDVI demonstrated substantial variability, especially at the regional level, for most part of the globe. However, on temporal scale, both global NPP and NDVI showed a corresponding pattern of increase (decrease) for the duration of this study except for few years (e.g. 1990 and 1995-98). Generally, the Northern Hemisphere showed stronger NDVI and NPP increasing trends over time compared to the Southern Hemisphere; however, NDVI showed larger trends in Temperate regions while NPP showed larger trends in Boreal regions. Among the five models, the maximum and minimum NPP were produced by JULES (72.4 Pg C y -1) and LPJ (53.72 Pg C y -1) models, respectively. At latitudinal level, the NDVI and NPP ranges were ~0.035 y -1 to ~-0.016 y -1 and ~0.10 Pg C y -1 y -1 to ~-0.047 Pg C y -1 y -1, respectively. Overall, the results of this study suggest that the modeled NPP generally correspond to the NDVI trends in the temporal dimension. Lastly, the significant variability in spatial patterns of NPP and NDVI trends points to a need for research to understand the causes of these discrepancies between molded and observed ecosystem dynamics, and the carbon cycle.« less

  9. Modelling land-atmosphere interactions in tropical African wetlands

    NASA Astrophysics Data System (ADS)

    Dadson, S.

    2012-04-01

    Wetlands interact with the climate system in two ways. First, the availability of water at the land surface introduces important feedbacks on climate via surface fluxes of energy and water [1]. Over wet surfaces, high daytime evaporation rates and suppressed sensible heat fluxes induce a shallower, moister planetary boundary layer, which affects atmospheric instability and favours the initiation of new storms [2]. Second, wetlands form a key link between the hydrological and carbon cycles, via anoxic degradation of organic matter to release methane (CH4). Wetlands are the largest, but least well quantified, single source of CH4, with recent emission estimates ranging from 105-278 Tg yr-1, ~75% of which comes from the tropics [3]. Although the emissions of methane from boreal wetlands and lakes are less than those from tropical wetlands [3], their size and remoteness pose significant challenges to the quantification of their feedbacks to regional and global climate. In this paper, I present a summary of recent work on modelling hydrological and biogeochemical aspects of wetland formation and the associated land-atmosphere feedbacks in African and boreal environments. We have added an overbank inundation model to the Joint UK Land Environment Simulator (JULES). Sub-grid topographic data were used to derive a two-parameter frequency distribution of inundated areas. Our predictions of inundated area are in good agreement with observed estimates of the extent of inundation obtained using satellite infrared and microwave remote sensing [4,5]. The model predicts significant evaporative losses from the inundated region accounting for doubling of the total land-atmosphere water flux during periods of greatest flooding. I also present new parameterisations of methane generation from wetlands. 1. Koster, R.D., et al., 2004, Science, 305(5687): 1138-40. 2. Taylor, C.M., 2010, Geophys. Res. Lett., 37: L05406. 3. US EPA, 2010, Methane and Nitrous Oxide Emissions From Natural Sources, Report EPA 430-R-10-001. 4. S.J. Dadson, et al., 2010, Journal of Geophysical Research, 115, D23114 5. F. Papa, et al., 2010, Journal of Geophysical Research, 115, D12111, doi:10.1029/2009JD012674.

  10. Simulating fire-induced ecological succession with the dynamically coupled fire-vegetation model, ED-SPIFTIRE

    NASA Astrophysics Data System (ADS)

    Spessa, A.; Fisher, R.

    2009-04-01

    The simulation of fire-vegetation feedbacks is crucial for determining fire-induced changes to ecosystem structure and function, and emissions of trace gases and aerosols under future climate change. A new global fire model SPITFIRE (SPread and InTensity of FIRE) has been designed to overcome many of the limitations in existing fire models set within DGVM frameworks (Thonicke et al. 2008). SPITFIRE has been applied in coupled mode globally (Thonicke et al. 2008) and northern Australia (Spessa et al. unpubl.) as part of the LPJ DGVM. It has also been driven with MODIS burnt area data applied to sub-Saharan Africa (Lehsten et al. 2008) as part of the LPJ-GUESS vegetation model (Smith et al. 2001). Recently, Spessa & Fisher (unpubl.) completed the coupling of SPIFTIRE to the Ecosystem Demography (ED) model (Moorecroft et al. 2001), which has been globalised by Dr R. Fisher as part of the development of the new land surface scheme JULES (Joint UK Environment Simulator) within the QUEST Earth System Model (http://www.quest-esm.ac.uk/). In contrast to the LPJ DGVM, ED is a ‘size and age structured' approximation of an individual based gap model. The major innovation of the ED-SPITFIRE model compared with LPJ-SPITFIRE is the categorisation of each climatic grid cell into a series of non-spatially contiguous patches which are defined by a common ‘age since last disturbance'. In theory, the age-class structure of ED facilitates ecologically realistic processes of succession and re-growth to be represented. By contrast, LPJ DGVM adopts an ‘area-based approach' that implicitly averages individual and patch differences across a wider area and across ‘populations' of PFTs. This presentation provides an overview of SPITFIRE, and provides preliminary results from ED-SPITFIRE applied to northern Australian savanna ecosystems which, due to spatio-temporal variation in fire disturbance, comprise a patchwork of grasses and trees at different stages of post-fire succession. Comparisons with similar simulations undertaken with LPJ-SPITFIRE are also presented.

  11. Climate Change-Induced Shifts in the Hydrological Regime of the Upper Amazon Basin and Its Impacts on Local Eco-Hydrology

    NASA Astrophysics Data System (ADS)

    Zulkafli, Z. D.; Buytaert, W.; Veliz, C.

    2014-12-01

    The potential impact of a changing climate on Andean-Amazonian hydrology is an important question for scientists and policymakers alike, because of its implications for local ecosystem services such as water resources availability, river flow regulation, and eco-hydrology. This study presents new projections of climate change impacts on the hydrological regime of the upper Amazon river in Peru, and the consequent effect on two vulnerable species of freshwater turtle populations Podocnemis expansa (Amazon turtle) and Podocnemis unilis (yellow-spotted side neck turtle), which nest on its banks. To do this, the global climate model outputs of radiation, temperature, precipitation, wind, and humidity data from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) are propagated through a hydrological model to simulate changes in river flow. The model consists of a land surface scheme called the Joint-UK Land Environment Simulator (JULES) that is coupled to a distributed river flow routing routine, which also accounts for floodplain attenuation of flood peaks. It is parameterized using a combination of remote sensing (TRMM, MODIS, an Landsat) and ground observational data to reproduce reliably the historical floodplain regime. The climate-induced shifts are inferred from a comparison between the RCP 4.5 and 8.5 projections against the historical scenario. Changes in the 10th and 95th percentile of flows, as well as the distributions in the length of the dry and wet seasons are analysed. These parameters are then used to construct probability models of biologically significant events (BSEs - extreme dry year, extreme wet year and repiquete), which are negative drivers of the turtle-egg ovipositioning, nesting and hatching. The results indicate that the projected increase in wet-season precipitation overcome the increase in evapotranspirative demand from an increase in temperature, resulting in more frequent and longer term flooding that causes a net loss of total turtle-egg counts. Additionally, changes in air and water temperature may alter the male / female ratio of the turtles.

  12. Pioneering Concepts of Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Raulin Cerceau, Florence

    Famous astronomers such as Richard A. Proctor (1837-1888), Jules Janssen (1824-1907), and Camille Flammarion (1842-1925) studied the concept of planetary habitability a century before this concept was updated in the context of the recent discoveries of exoplanets and the development of planetary exploration in the solar system. They independently studied the conditions required for other planets to be inhabited, and these considerations led them to specify the term "habitability." Naturally, the planet Mars was at the heart of the discussion. Our neighboring planet, regarded as a sister planet of Earth, looked like a remarkable abode for life. During the second part of the nineteenth century, the possibility of Martian intelligent life was intensively debated, and hopes were still ardent to identify a kind of vegetation specific to the red planet. In such a context, the question of Mars' habitability seemed to be very valuable, especially when studying hypothetical Martian vegetation. At the dawn of the Space Age, German-born physician and pioneer of space medicine Hubertus Strughold (1898-1987) proposed in the book The Green and Red Planet: A Physiological Study of the Possibility of Life on Mars (1954) to examine the planets of the solar system through a "planetary ecology." This innovative notion, which led to a fresh view of the concept of habitability, was supposed to designate a new field involving biology: "the science of planets as an environment for life" (Strughold 1954). This notion was very close to the concept of habitability earlier designated by our nineteenth-century pioneers. Strughold also coined the term "ecosphere" to name the region surrounding a star where conditions allowed life-bearing planets to exist. We highlight in this chapter the historical aspects of the emergence of the (modern) concept of habitability. We will consider the different formulations proposed by the pioneers, and we will see in what way it can be similar to our contemporary notion of planetary habitability. This study also shows the convergence of the methodological aspects used to examine the concept of habitability, mainly based on analogy.

  13. Evaluating soil moisture constraints on surface fluxes in land surface models globally

    NASA Astrophysics Data System (ADS)

    Harris, Phil; Gallego-Elvira, Belen; Taylor, Christopher; Folwell, Sonja; Ghent, Darren; Veal, Karen; Hagemann, Stefan

    2016-04-01

    Soil moisture availability exerts a strong control over land evaporation in many regions. However, global climate models (GCMs) disagree on when and where evaporation is limited by soil moisture. Evaluation of the relevant modelled processes has suffered from a lack of reliable, global observations of land evaporation at the GCM grid box scale. Satellite observations of land surface temperature (LST) offer spatially extensive but indirect information about the surface energy partition and, under certain conditions, about soil moisture availability on evaporation. Specifically, as soil moisture decreases during rain-free dry spells, evaporation may become limited leading to increases in LST and sensible heat flux. We use MODIS Terra and Aqua observations of LST at 1 km from 2000 to 2012 to assess changes in the surface energy partition during dry spells lasting 10 days or longer. The clear-sky LST data are aggregated to a global 0.5° grid before being composited as a function dry spell day across many events in a particular region and season. These composites are then used to calculate a Relative Warming Rate (RWR) between the land surface and near-surface air. This RWR can diagnose the typical strength of short term changes in surface heat fluxes and, by extension, changes in soil moisture limitation on evaporation. Offline land surface model (LSM) simulations offer a relatively inexpensive way to evaluate the surface processes of GCMs. They have the benefits that multiple models, and versions of models, can be compared on a common grid and using unbiased forcing. Here, we use the RWR diagnostic to assess global, offline simulations of several LSMs (e.g., JULES and JSBACH) driven by the WATCH Forcing Data-ERA Interim. Both the observed RWR and the LSMs use the same 0.5° grid, which allows the observed clear-sky sampling inherent in the underlying MODIS LST to be applied to the model outputs directly. This approach avoids some of the difficulties in analysing free-running simulations in which land and atmosphere are coupled and, as such, it provides a flexible intermediate step in the assessment of surface processes in GCMs.

  14. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison

    DOE PAGES

    Restrepo-Coupe, Natalia; Levine, Naomi M.; Christoffersen, Bradley O.; ...

    2016-08-29

    To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry-season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of othermore » fluxes and pools. Models simulated consistent dry-season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry-season GPP reductions were driven by an external environmental factor, ‘soil water stress’ and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (Re) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry-season declines in GPP and Re consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light-harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. In conclusion, correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments.« less

  15. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Restrepo-Coupe, Natalia; Levine, Naomi M.; Christoffersen, Bradley O.

    To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry-season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of othermore » fluxes and pools. Models simulated consistent dry-season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry-season GPP reductions were driven by an external environmental factor, ‘soil water stress’ and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (Re) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry-season declines in GPP and Re consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light-harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. In conclusion, correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments.« less

  16. A short history of nitroglycerine and nitric oxide in pharmacology and physiology.

    PubMed

    Marsh, N; Marsh, A

    2000-04-01

    1. Nitroglycerine (NG) was discovered in 1847 by Ascanio Sobrero in Turin, following work with Theophile-Jules Pelouze. Sobrero first noted the 'violent headache' produced by minute quantities of NG on the tongue. 2. Constantin Hering, in 1849, tested NG in healthy volunteers, observing that headache was caused with 'such precision'. Hering pursued NG ('glonoine') as a homeopathic remedy for headache, believing that its use fell within the doctrine of 'like cures like'. 3. Alfred Nobel joined Pelouze in 1851 and recognized the potential of NG. He began manufacturing NG in Sweden, overcoming handling problems with his patent detonator. Nobel suffered acutely from angina and was later to refuse NG as a treatment. 4. During the mid-19th century, scientists in Britain took an interest in the newly discovered amyl nitrite, recognized as a powerful vasodilator. Lauder Brunton, the father of modern pharmacology, used the compound to relieve angina in 1867, noting the pharmacological resistance to repeated doses. 5. William Murrell first used NG for angina in 1876, although NG entered the British Pharmacopoeia as a remedy for hypertension. William Martindale, the pharmaceutical chemist, prepared '...a more stable and portable preparation': 1/100th of a grain in chocolate. 6. In the early 20th century, scientists worked on in vitro actions of nitrate-containing compounds although little progress was made towards understanding the cellular mode of action. 7. The NG industry flourished from 1900, exposing workers to high levels of organic nitrites; the phenomena of nitrate tolerance was recognized by the onset of 'Monday disease' and of nitrate-withdrawal/overcompensation by 'Sunday Heart Attacks'. 8. Ferid Murad discovered the release of nitric oxide (NO) from NG and its action on vascular smooth muscle (in 1977). Robert Furchgott and John Zawadski recognized the importance of the endothelium in acetylcholine-induced vasorelaxation (in 1980) and Louis Ignarro and Salvador Moncada identified endothelial-derived relaxing factor (EDRF) as NO (in 1987). 9. Glycerol trinitrate remains the treatment of choice for relieving angina; other organic esters and inorganic nitrates are also used, but the rapid action of NG and its established efficacy make it the mainstay of angina pectoris relief.

  17. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    NASA Astrophysics Data System (ADS)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in models and estimating their impact on the land carbon balance.

  18. New estimates of temperature response of leaf photosynthesis in Amazon forest trees, its acclimation to mean temperature change and consequences for modelling climate response to rain forests.

    NASA Astrophysics Data System (ADS)

    Kruijt, B.; Jans, W.; Vasconcelos, S.; Tribuzy, E. S.; Felsemburgh, C.; Eliane, M.; Rowland, L.; da Costa, A. C. L.; Meir, P.

    2014-12-01

    In many dynamic vegetation models, degradation of the tropical forests is induced because they assume that productivity falls rapidly when temperatures rise in the region of 30-40°C. Apart plant respiration, this is due to the assumptions on the temperature optima of photosynthetic capacity, which are low and can differ widely between models, where in fact hardly any empirical information is available for tropical forests. Even less is known about the possibility that photosynthesis will acclimate to changing temperatures. The objective of this study to is to provide better estimates for optima, as well as to determine whether any acclimation to temperature change is to be expected. We present both new and hitherto unpublished data on the temperature response of photosynthesis of Amazon rainforest trees, encompassing three sites, several species and five field campaigns. Leaf photosynthesis and its parameters were determined at a range of temperatures. To study the long-term (seasonal) acclimation of this response, this was combined with an artificial, in situ, multi-season leaf heating experiment. The data show that, on average for all non-heated cases, the photosynthetic parameter Vcmax weakly peaks between 35 and 40 ˚C, while heating does not have a clearly significant effect. Results for Jmax are slightly different, with sharper peaks. Scatter was relatively high, which could indicate weak overall temperature dependence. The combined results were used to fit new parameters to the various temperature response curve functions in a range of DGVMs. The figure shows a typical example: while the default Jules model assumes a temperature optimum for Vcmax at around 33 ˚C, the data suggest that Vcmax keeps rising up to at least 40 ˚C. Of course, calculated photosynthesis, obtained by applying this Vcmax in the Farquhar model, peaks at lower temperature. Finally, the implication of these new model parameters for modelled climate change impact on modelled Amazon forests will be assessed, where it is expected that predicted die-back will be less.

  19. EarthScope Plate Boundary Observatory Data in the College Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Olds, S. E.

    2009-12-01

    The Plate Boundary Observatory (PBO) is the geodetic component of the EarthScope project, designed to study the 3-D strain field across the active boundary zone between the Pacific and North American tectonics plates in the western United States. All PBO data are freely available to scientific and educational communities and have been incorporated into a variety of activities for college and university classrooms. UNAVCO Education and Outreach program staff have worked closely with faculty users, scientific researchers, and facility staff to create materials that are scientifically and technically accurate as well as useful to the classroom user. Availability of processed GPS data is not new to the geoscience community. However, PBO data staff have worked with education staff to deliver data that are readily accessible to educators. The UNAVCO Data for Educators webpage, incorporating an embedded Google Map with PBO GPS locations and providing current GPS time series plots and downloadable data, extends and updates the datasets available to our community. Google Earth allows the visualization GPS data with other types of datasets, e.g. LiDAR, while maintaining the self-contained and easy-to-use interface of UNAVCO’s Jules Verne Voyager map tools, which have multiple sets of geological and geophysical data. Curricular materials provide scaffolds for using EarthScope data in a variety of forms for different learning goals. Simple visualization of earthquake epicenters and locations of volcanoes can be used with velocity vectors to make simple deductions of plate boundary behaviors. Readily available time series plots provide opportunities for additional science skills, and there are web and paper-based support materials for downloading data, manipulating tables, and using plotting programs for processed GPS data. Scientists have provided contextual materials to explore the importance of these data in interpreting the structure and dynamics of the Earth. These data and their scientific context are now incorporated into the Active Earth Display developed by IRIS. Formal and informal evaluations during the past five years have provided useful data for revision and on-line implementation.

  20. Wisconsin builds a distributed resources collaborative: Looking for local solutions that work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, C.

    I`d like to tell you how I got involved in the DR Collaborative and why I`m here. John Nesbitt asked me to come, to be the public advocate, the bumblebee on the EPRI body politic. What follows is my own thought, not that of John or my fellow collaborators, who may or may not agree with me. How did I come to know John Nesbitt? In August 1991, I found that some Wisconsin utilities intended to run a 138 kV transmission line across my property, along the driveway where my kids ride their bikes, along the high ground where wemore » walk to escape the mosquitoes in the summer, where we ski cross-country and admire the snowy view in the winter. As a result, I became intensely interested in the electric power business. One thing led to another. I got on the Board of Wisconsin Demand-Side Demonstrations (WDSD), representing a group called the Citizens` Utility Board (CUB). I met Mr. Nesbitt. We shared an interest in distributed resources (DR). Along with some others, we conspired to initiate the Targeted Area Planning (TAP) collaborative. TAP is what we call DR in Wisconsin. I began to talk in acronyms. The simple truth is, I detest transmission lines. And, since transmission lines are invariably hooked up to central generation, I have no love for big power plants either. That whole system approach looks excessive and outdated to me, a vestige of the nineteenth century, Jules Verne without the romance. My opinion is, who needs it? I am aware that my opinion is not shared by everyone. I grant you that transmission lines might be a mite more acceptable if the thousands of landowners like me who presently subsidize their existence were receiving compensation, say an annual commodity transfer fee, that reflected some small portion of the value of transmission lines in the present system. That is certainly not the case, and if it were, the present system, when and if deregulated, would price itself out of existence all the more quickly.« less

  1. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well underway, and integrated flight testing will begin in 2009. This white paper summarizes 3 years of Constellation Program progress and accomplishments, and it describes the foundation set for human lunar return in 2020.

  2. Can Dynamic Global Vegetation Models Reproduce Satellite Observed Extreme Browning and Greening Events in Vegetation Productivity?

    NASA Astrophysics Data System (ADS)

    van Eck, C. M.; Morfopoulos, C.; Betts, R. A.; Chang, J.; Ciais, P.; Friedlingstein, P.; Regnier, P. A. G.

    2016-12-01

    The frequency and severity of extreme climate events such as droughts, extreme precipitation and heatwaves are expected to increase in our changing climate. These extreme climate events will have an effect on vegetation either by enhanced or reduced productivity. Subsequently, this can have a substantial impact on the terrestrial carbon sink and thus the global carbon cycle, especially as extreme climate events are expected to increase in frequency and severity. Connecting observational datasets with modelling studies provides new insights into these climate-vegetation interactions. This study aims to compare extremes in vegetation productivity as derived from observations with that of Dynamic Global Vegetation Models (DGVMs). In this case GIMMS-NDVI 3g is selected as the observational dataset and both JULES (Joint UK Land Environment Simulator) and ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) as the DGVMs. Both models are forced with PGFv2 Global Meteorological Forcing Dataset according to the ISI-MIP2 protocol for historical runs. Extremes in vegetation productivity are the focal point, which are identified as NDVI anomalies below the 10th percentile or above the 90th percentile during the growing season, referred to as browning or greening events respectively. The monthly NDVI dataset GIMMS-NDVI 3g is used to obtain the location in time and space of the vegetation extremes. The global GIMMS-NDVI 3g dataset has been subdivided into IPCC's SREX-regions for which the NDVI anomalies are calculated and the extreme thresholds are determined. With this information we can identify the location in time and space of the browning and greening events in remotely-sensed vegetation productivity. The same procedure is applied to the modelled Gross Primary Productivity (GPP) allowing a comparison between the spatial and temporal occurrence of the browning and greening events in the observational dataset and the models' output. The capacity of the models to catch observed extremes in vegetation productivity is assessed and compared. Factors contributing to observed and modelled vegetation browning/greening extremes are analysed. The results of this study provide a stepping stone to modelling future extremes in vegetation productivity.

  3. UNAVCO Software and Services for Visualization and Exploration of Geoscience Data

    NASA Astrophysics Data System (ADS)

    Meertens, C.; Wier, S.

    2007-12-01

    UNAVCO has been involved in visualization of geoscience data to support education and research for several years. An early and ongoing service is the Jules Verne Voyager, a web browser applet built on the GMT that displays any area on Earth, with many data set choices, including maps, satellite images, topography, geoid heights, sea-floor ages, strain rates, political boundaries, rivers and lakes, earthquake and volcano locations, focal mechanisms, stress axes, and observed and modeled plate motion and deformation velocity vectors from geodetic measurements around the world. As part of the GEON project, UNAVCO has developed the GEON IDV, a research-level, 4D (earth location, depth and/or altitude, and time), Java application for interactive display and analysis of geoscience data. The GEON IDV is designed to meet the challenge of investigating complex, multi-variate, time-varying, three-dimensional geoscience data anywhere on earth. The GEON IDV supports simultaneous displays of data sets from differing sources, with complete control over colors, time animation, map projection, map area, point of view, and vertical scale. The GEON IDV displays gridded and point data, images, GIS shape files, and several other types of data. The GEON IDV has symbols and displays for GPS velocity vectors, seismic tomography, earthquake focal mechanisms, earthquake locations with magnitude or depth, seismic ray paths in 3D, seismic anisotropy, convection model visualization, earth strain axes and strain field imagery, and high-resolution 3D topographic relief maps. Multiple data sources and display types may appear in one view. As an example of GEON IDV utility, it can display hypocenters under a volcano, a surface geology map of the volcano draped over 3D topographic relief, town locations and political boundaries, and real-time 3D weather radar clouds of volcanic ash in the atmosphere, with time animation. The GEON IDV can drive a GeoWall or other 3D stereo system. IDV output includes imagery, movies, and KML files for Google Earth use of IDV static images, where Google Earth can handle the display. The IDV can be scripted to create display images on user request or automatically on data arrival, offering the use of the IDV as a back end to support a data web site. We plan to extend the power of the IDV by accepting new data types and data services, such as GeoSciML. An active program of online and video training in GEON IDV use is planned. UNAVCO will support users who need assistance converting their data to the standard formats used by the GEON IDV. The UNAVCO Facility provides web-accessible support for Google Earth and Google Maps display of any of more than 9500 GPS stations and survey points, including metadata for each installation. UNAVCO provides corresponding Open Geospatial Consortium (OGC) web services with the same data. UNAVCO's goal is to facilitate data access, interoperability, and efficient searches, exploration, and use of data by promoting web services, standards for GEON IDV data formats and metadata, and software able to simultaneously read and display multiple data sources, formats, and map locations or projections. Retention and propagation of semantics and metadata with observational and experimental values is essential for interoperability and understanding diverse data sources.

  4. The visual difficulties of selected artists and limitations of ophthalmological care during the 19th and early 20th centuries (an AOS thesis).

    PubMed

    Ravin, James G

    2008-01-01

    To investigate the effects of eye diseases on several important artists who have been given little attention from a medical-historical viewpoint. The examples chosen demonstrate problems artists have had to face from different types of eye disease, including cataract, glaucoma, and retinal diseases. The ophthalmological care provided is described in terms of scientific knowledge at the time. Investigation of primary and secondary source material. Discussion with art historians and ophthalmic historians. Examination of work by the artists. Artists can be markedly affected by ocular diseases that change their ability to see the world. The individuals described here worked during the 19th century and first half of the 20th century. Homer Martin suffered from cataracts, and his works reveal changes in details and color as he aged. Henri Harpignies, who had an extremely long career, undoubtedly had cataracts and may also have had macular degeneration. Angle-closure glaucoma blinded Jules Chéret. Auguste Ravier suffered from neovascular glaucoma in one eye and was able to work with his remaining eye, which developed a cataract. Louis Valtat suffered from what was in all likelihood open-angle glaucoma, but specific changes due to this disease are not apparent in his work. Roger Bissière developed glaucoma and did well following filtration surgery. George Du Maurier lost one eye from what was probably a retinal detachment and later suffered from a central retinal problem in the other eye. Diseases of the eye may profoundly influence artists by altering their perception of the world. The specific effects may vary, depending on the disease, its severity, and the psychology of the artist. Cataracts typically affect an artist's ability to depict color and detail. The effect of glaucoma generally depends on whether central vision is preserved. Disease that affects the center of the retina has a substantial effect on an artist's ability to depict fine details. Ophthalmological care was limited during the lifetimes of the artists under consideration, by comparison to 21st century standards. When medical or surgical therapy was ineffective, the most important thing a physician could offer these artists was consolation against anxiety and depression.

  5. The Impact of Pre-Industrial Land Use Change on Atmospheric Composition and Aerosol Radiative Forcing.

    NASA Astrophysics Data System (ADS)

    Hamilton, D. S.; Carslaw, K. S.; Spracklen, D. V.; Folberth, G.; Kaplan, J. O.; Pringle, K.; Scott, C.

    2015-12-01

    Anthropogenic land use change (LUC) has had a major impact on the climate by altering the amount of carbon stored in vegetation, changing surface albedo and modifying the levels of both biogenic and pyrogenic emissions. While previous studies of LUC have largely focused on the first two components, there has recently been a recognition that changes to aerosol and related pre-cursor gas emissions from LUC are equally important. Furthermore, it has also recently been recognised that the pre-industrial (PI) to present day (PD) radiative forcing (RF) of climate from aerosol cloud interactions (ACI) due to anthropogenic emissions is highly sensitive to the amount of natural aerosol that was present in the PI. This suggests that anthropogenic RF from ACI may be highly sensitive to land-use in the PI. There are currently two commonly used baseline reference years for the PI; 1750 and 1860. Rapid LUC occurred between 1750 and 1860, with large reductions in natural vegetation cover in Eastern Northern America, Europe, Central Russia, India and Eastern China as well as lower reductions in parts of Brazil and Africa. This LUC will have led to significant changes in biogenic and fire emissions with implications for natural aerosol concentrations and PI-to-PD RF. The focus of this study is therefore to quantify the impact of LUC between 1750 and 1860 on aerosol concentrations and PI-to-PD RF calculations from ACI. We use the UK Met Office HadGEM3-UKCA coupled-chemistry-climate model to calculate the impacts of anthropogenic emissions and anthropogenic LUC on aerosol size distributions in both 1750 and 1860. We prescribe LUC using the KK10 historical dataset of land cover change. Monoterpene emissions are coupled directly to the prescribed LUC through the JULES land surface scheme in HadGEM3. Fire emissions from LUC were calculated offline using the fire module LPJ-LMfire in the Lund-Potsdam-Jena dynamic global vegetation model. To separate out the impacts of LUC from anthropogenic emissions a further simulation where only LUC and natural emissions are considered is undertaken. We then explore the sensitivity of PI-to-PD aerosol number concentrations, cloud drop number concentrations and the RF on assumed land-cover in the PI. This work will help determine the need for accurate descriptions of historical LUC in calculations of ACI.

  6. An Earth Observation Land Data Assimilation System for Data from Multiple Wavelength Domains: Water and Energy Balance Components

    NASA Astrophysics Data System (ADS)

    Quaife, T. L.; Davenport, I. J.; Lines, E.; Styles, J.; Lewis, P.; Gurney, R. J.

    2012-12-01

    Satellite observations offer a spatially and temporally synoptic data source for constraining models of land surface processes, but exploitation of these data for such purposes has been largely ad-hoc to date. In part this is because traditional land surface models, and hence most land surface data assimilation schemes, have tended to focus on a specific component of the land surface problem; typically either surface fluxes of water and energy or biogeochemical cycles such as carbon and nitrogen. Furthermore the assimilation of satellite data into such models tends to be restricted to a single wavelength domain, for example passive microwave, thermal or optical, depending on the problem at hand. The next generation of land surface schemes, such as the Joint UK Land Environment Simulator (JULES) and the US Community Land Model (CLM) represent a broader range of processes but at the expense of increasing overall model complexity and in some cases reducing the level of detail in specific processes to accommodate this. Typically, the level of physical detail used to represent the interaction of electromagnetic radiation with the surface is not sufficient to enable prediction of intrinsic satellite observations (reflectance, brightness temperature and so on) and consequently these are not assimilated directly into the models. A seemingly attractive alternative is to assimilate high-level products derived from satellite observations but these are often only superficially related to the corresponding variables in land surface models due to conflicting assumptions between the two. This poster describes the water and energy balance modeling components of a project funded by the European Space Agency to develop a data assimilation scheme for the land surface and observation operators to translate between models and the intrinsic observations acquired by satellite missions. The rationale behind the design of the underlying process model is to represent the physics of the water and energy balance in as parsimonious manner as possible, using a force-restore approach, but describing the physics of electromagnetic radiation scattering at the surface sufficiently well that it is possible to assimilate the intrinsic observations made by remote sensing instruments. In this manner the initial configuration of the resulting scheme will be able to make optimal use of available satellite observations at arbitrary wavelengths and geometries. Model complexity can then be built up from this point whilst ensuring consistency with satellite observations.

  7. Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS)

    NASA Astrophysics Data System (ADS)

    Turner, A. G.; Bhat, G. S.; Evans, J. G.; Madan, R.; Marsham, J. H.; Martin, G.; Mitra, A. K.; Mrudula, G.; Parker, D. J.; Pattnaik, S.; Rajagopal, E. N.; Taylor, C.; Tripathi, S. N.

    2016-12-01

    INCOMPASS will build on a field and aircraft measurement campaign from the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. This presentation will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles together with detailed information on the timing of monsoon rain. We also outline our future plans for nested modelling of specific case studies of the 2016 monsoon, at resolutions at of 4km, 2km and 1km with explicit convection, as well as test development of a new 100m model over India. Observations will also be combined with further work using the Joint UK Land Environment Simulator (JULES) model.

  8. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2015-04-01

    Accurately predicting the response of Amazonia to climate change is important for predicting climate change across the globe. Changes in multiple climatic factors simultaneously result in complex non-linear ecosystem responses, which are difficult to predict using vegetation models. Using leaf- and canopy-scale observations, this study evaluated the capability of five vegetation models (Community Land Model version 3.5 coupled to the Dynamic Global Vegetation model - CLM3.5-DGVM; Ecosystem Demography model version 2 - ED2; the Joint UK Land Environment Simulator version 2.1 - JULES; Simple Biosphere model version 3 - SiB3; and the soil-plant-atmosphere model - SPA) to simulate the responses of leaf- and canopy-scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation, but all the models were consistent with the prediction that GPP would be higher if tropical forests were 5 °C cooler than current ambient temperatures. There was greater model-data consistency in the response of net ecosystem exchange (NEE) to changes in temperature than in the response to temperature by net photosynthesis (An), stomatal conductance (gs) and leaf area index (LAI). Modelled canopy-scale fluxes are calculated by scaling leaf-scale fluxes using LAI. At the leaf-scale, the models did not agree on the temperature or magnitude of the optimum points of An, Vcmax or gs, and model variation in these parameters was compensated for by variations in the absolute magnitude of simulated LAI and how it altered with temperature. Across the models, there was, however, consistency in two leaf-scale responses: (1) change in An with temperature was more closely linked to stomatal behaviour than biochemical processes; and (2) intrinsic water use efficiency (IWUE) increased with temperature, especially when combined with drought. These results suggest that even up to fairly extreme temperature increases from ambient levels (+6 °C), simulated photosynthesis becomes increasingly sensitive to gs and remains less sensitive to biochemical changes. To improve the reliability of simulations of the response of Amazonian rainforest to climate change, the mechanistic underpinnings of vegetation models need to be validated at both leaf- and canopy-scales to improve accuracy and consistency in the quantification of processes within and across an ecosystem.

  9. Integrating 3D geological information with a national physically-based hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved development of software to allow for easy incorporation of geological information into SHETRAN for any model setup. The addition of more realistic subsurface representation following this approach is shown to greatly improve model performance in areas dominated by groundwater processes. The resulting modelling system has great potential to be used as a resource at national, regional and local scales in an array of different applications, including climate change impact assessments, land cover change studies and integrated assessments of groundwater and surface water resources.

  10. Investigations of Ceres's Craters with Straightened Rim

    NASA Astrophysics Data System (ADS)

    Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Raponi, A.; Formisano, M.; Ciarniello, M.; Magni, G.; Combe, J. P.; Marchi, S.; Raymond, C. A.; Schwartz, S. J.

    2017-12-01

    Dwarf planet Ceres hosts some geological features that are unique in the solar system because its composition, rich in aqueously-altered silicates, is usually found on full-size planets, whereas its mean radius is smaller than most natural satellites in the solar system. For example, the local high-albedo, carbonate-rich areas or faculaeare specific to Ceres; also, the absence of big impact crater structures is key to understand the overall mechanical behaviour of the Cerean crust. After the first findings of water ice occurring in the shadowed areas of craters on Ceres by the NASA/Dawn mission (1, 2), we analyzed the morphology of craters looking for features similar to the ones where the water ice composition has been detected analyzing the data from the VIR spectrometer (3). These craters fall outside of the family of polygonal craters which are mainly related to regional or global scale tectonics (4). We analyzed the morphology on the base of the global mosaic, the digital terrain model derived by using the stereo photogrammetry method and the single data frames of the Framing Camera. Our investigation started from crater Juling, which is characterized by a portion of the rim which forms a straight segment instead of a portion of a circle. This linear crater wall is also steep enough that it forms a cliff that is in the shadowed area in all images acquired by Dawn. Very smooth and bright deposits lay at the foot of this crater-wall cliff. Then, we identified several other craters, relatively fresh, with radius of 2 to 10 kilometers, showing one or two sectors of the crater-rim being truncated by a mass-wasting process, probably a rockfall. Our first analysis show that in the selected craters, the truncated sectors are always in the north-eastern sector of the rim for the craters in the southern hemisphere. Conversely, the craters on the northern hemisphere exhibit a truncated rim in their south-eastern sector. Although a more detailed analysis is mandatory, these first observation are particularly intriguing as they would correlate the mechanical behaviour of the Cerean cust with the presence of ground-ice and the illumination conditions. (1) Platz et al., 2016, Nature Communications. (2) Raponi et al. submitted to Science Advances. (3) Combe et al., submitted to Icarus. (4) Otto et al., LPSC 2017

  11. The International Space Station and the Space Debris Environment: 10 Years On

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas; Klinkrad, Heiner

    2009-01-01

    For just over a decade the International Space Station (ISS), the most heavily protected vehicle in Earth orbit, has weathered the space debris environment well. Numerous hypervelocity impact features on the surface of ISS caused by small orbital debris and meteoroids have been observed. In addition to typical impacts seen on the large solar arrays, craters have been discovered on windows, hand rails, thermal blankets, radiators, and even a visiting logistics module. None of these impacts have resulted in any degradation of the operation or mission of the ISS. Validating the rate of small particle impacts on the ISS as predicted by space debris environment models is extremely complex. First, the ISS has been an evolving structure, from its original 20 metric tons to nearly 300 metric tons (excluding logistics vehicles) ten years later. Hence, the anticipated space debris impact rate has grown with the increasing size of ISS. Secondly, a comprehensive visual or photographic examination of the complete exterior of ISS has never been accomplished. In fact, most impact features have been discovered serendipitously. Further complications include the estimation of the size of an impacting particle without knowing its mass, velocity, and angle of impact and the effect of shadowing by some ISS components. Inadvertently and deliberately, the ISS has also been the source of space debris. The U.S. Space Surveillance Network officially cataloged 65 debris from ISS from November 1998 to November 2008: from lost cameras, sockets, and tool bags to intentionally discarded equipment and an old space suit. Fortunately, the majority of these objects fall back to Earth quickly with an average orbital lifetime of less than two months and a maximum orbital lifetime of a little more than 15 months. The cumulative total number of debris object-years is almost exactly 10, the equivalent of one piece of debris remaining in orbit for 10 years. An unknown number of debris too small to be tracked and cataloged have also been generated, but normally with even shorter orbital lifetimes. Finally, eight collision avoidance maneuvers have been performed to avoid potential collisions between ISS and large, tracked space debris. The most recent such maneuver was accomplished by ESA's Automated Transfer Vehicle, the Jules Verne, just three months before the 10th anniversary of the launch of ISS's first element.

  12. Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS)

    NASA Astrophysics Data System (ADS)

    Turner, Andrew; Bhat, Gs; Evans, Jonathan; Marsham, John; Martin, Gill; Parker, Douglas; Taylor, Chris; Bhattacharya, Bimal; Madan, Ranju; Mitra, Ashis; Mrudula, Gm; Muddu, Sekhar; Pattnaik, Sandeep; Rajagopal, En; Tripathi, Sachida

    2015-04-01

    The monsoon supplies the majority of water in South Asia, making understanding and predicting its rainfall vital for the growing population and economy. However, modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly, with significant inter-model differences pointing to errors in physical parametrizations such as convection, the boundary layer and land surface. These errors persist into climate projections and many of these errors persist even when increasing resolution. At the same time, a lack of detailed observations is preventing a more thorough understanding of monsoon circulation and its interaction with the land surface: a process governed by the boundary layer and convective cloud dynamics. The INCOMPASS project will support and develop modelling capability in Indo-UK monsoon research, including test development of a new Met Office Unified Model 100m-resolution domain over India. The first UK detachment of the FAAM research aircraft to India, in combination with an intensive ground-based observation campaign, will gather new observations of the surface, boundary layer structure and atmospheric profiles to go with detailed information on the timing of monsoon rainfall. Observations will be focused on transects in the northern plains of India (covering a range of surface types from irrigated to rain-fed agriculture, and wet to dry climatic zones) and across the Western Ghats and rain shadow in southern India (including transitions from land to ocean and across orography). A pilot observational campaign is planned for summer 2015, with the main field campaign to take place during spring/summer 2016. This project will advance our ability to forecast the monsoon, through a programme of measurements and modelling that aims to capture the key surface-atmosphere feedback processes in models. The observational analysis will allow a unique and unprecedented characterization of monsoon processes that will feed directly into model development at the UK Met Office and Indian NCMRWF, through model evaluation at a range of scales and leading to model improvement by working directly with parametrization developers. The project will institute a new long-term series of measurements of land surface fluxes, a particularly unconstrained observation for India, through eddy covariance flux towers. Combined with detailed land surface modelling using the Joint UK Land Environment Simulator (JULES) model, this will allow testing of land surface initialization in monsoon forecasts and improved land-atmosphere coupling.

  13. Soil hydrophobicity - relating effects at atomic, molecular, core and national scales

    NASA Astrophysics Data System (ADS)

    Matthews, Peter; Doerr, Stefan; Van Keulen, Geertje; Dudley, Ed; Francis, Lewis; Whalley, Richard; Gazze, Andrea; Hallin, Ingrid; Quinn, Gerry; Sinclair, Kat; Ashton, Rhys

    2016-04-01

    The detrimental impacts of soil hydrophobicity include increased runoff, erosion and flooding, reduced biomass production, inefficient use of irrigation water and preferential leaching of pollutants. Its impacts may exacerbate flood risk associated with more extreme drought and precipitation events predicted with UK climate change scenarios. The UK's Natural Environment Research Council (NERC) has therefore funded a major research programme to investigate soil hydrophobicity over length scales ranging from atomic through molecular, core and landscape scale. This presentation gives an overview of the findings to date. The programme is predicated on the hypothesis that changes in soil protein abundance and localization, induced by variations in soil moisture and temperature, are crucial driving forces for transitions between hydrophobic and hydrophilic conditions at soil particle surfaces. Three soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (Cefn Bryn, Gower, Wales), intermediate to severe (National Botanical Garden, Wales), and subcritical (Park Grass, Rothamsted Research near London). The latter is already highly characterised so was also used as a control. Hydrophobic/ hydrophilic transitions were measured from water droplet penetration times. Scientific advances in the following five areas will be described: (i) the identification of these soil proteins by proteomic methods, using a novel separation method which reduces interference by humic acids, and allows identification by ESI and MALDI TOF mass spectrometry and database searches, (ii) the examination of such proteins, which form ordered hydrophobic ridges, and measurement of their elasticity, stickiness and hydrophobicity at nano- to microscale using atomic force microscopy adapted for the rough surfaces of soil particles, (iii) the novel use of a picoliter goniometer to show hydrophobic effects at a 1 micron diameter droplet level, which avoids the averaging over soil cores and particles evident in microliter goniometry, with which the results are compared, (iv) measurements at core scale using water retention and wicking experiments, and (v) the interpretation, integration and upscaling of the results using a development of the PoreXpert void network model, a significant advance on the Van Genuchten approach. An explanation will also be given as to how the results will be incorporated into the JULES hydrological model of the UK Meteorological Office, used to predict flooding for different soil types and usage.

  14. Improving rainfall representation for large-scale hydrological modelling of tropical mountain basins

    NASA Astrophysics Data System (ADS)

    Zulkafli, Zed; Buytaert, Wouter; Onof, Christian; Lavado, Waldo; Guyot, Jean-Loup

    2013-04-01

    Errors in the forcing data are sometimes overlooked in hydrological studies even when they could be the most important source of uncertainty. The latter particularly holds true in tropical countries with short historical records of rainfall monitoring and remote areas with sparse rain gauge network. In such instances, alternative data such as the remotely sensed precipitation from the TRMM (Tropical Rainfall Measuring Mission) satellite have been used. These provide a good spatial representation of rainfall processes but have been established in the literature to contain volumetric biases that may impair the results of hydrological modelling or worse, are compensated during model calibration. In this study, we analysed precipitation time series from the TMPA (TRMM Multiple Precipitation Algorithm, version 6) against measurements from over 300 gauges in the Andes and Amazon regions of Peru and Ecuador. We found moderately good monthly correlation between the pixel and gauge pairs but a severe underestimation of rainfall amounts and wet days. The discrepancy between the time series pairs is particularly visible over the east side of the Andes and may be attributed to localized and orographic-driven high intensity rainfall, which the satellite product may have limited skills at capturing due to technical and scale issues. This consequently results in a low bias in the simulated streamflow volumes further downstream. In comparison, with the recently released TMPA, version 7, the biases reduce. This work further explores several approaches to merge the two sources of rainfall measurements, each of a different spatial and temporal support, with the objective of improving the representation of rainfall in hydrological simulations. The methods used are (1) mean bias correction (2) data assimilation using Kalman filter Bayesian updating. The results are evaluated by means of (1) a comparison of runoff ratios (the ratio of the total runoff and the total precipitation over an extended period) in multiple basins, and (2) a comparison of the outcome of hydrological modelling using the distributed JULES (Joint-UK Land Environment Simulator) land surface model. First results indicate an improvement in the water balance that directly translates into an increased hydrological performance. The more interesting aspect of the study, however, will be the insights into the nature of satellite precipitation errors in this extreme environment and the optimal means of improving the data to generate increased confidence in hydrological predictions.

  15. Permafrost thaw strongly reduces allowable CO2 emissions for 1.5°C and 2°C

    NASA Astrophysics Data System (ADS)

    Kechiar, M.; Gasser, T.; Kleinen, T.; Ciais, P.; Huang, Y.; Burke, E.; Obersteiner, M.

    2017-12-01

    We quantify how the inclusion of carbon emission from permafrost thaw impacts the budgets of allowable anthropogenic CO2 emissions. We use the compact Earth system model OSCAR v2.2 which we expand with a permafrost module calibrated to emulate the behavior of the complex models JSBACH, ORCHIDEE and JULES. When using the "exceedance" method and with permafrost thaw turned off, we find budgets very close to the CMIP5 models' estimates reported by IPCC. With permafrost thaw turned on, the total budgets are reduced by 3-4%. This corresponds to a 33-45% reduction of the remaining budget for 1.5°C, and a 9-13% reduction for 2°C. When using the "avoidance" method, however, permafrost thaw reduces the total budget by 3-7%, which corresponds to reductions by 33-56% and 56-79% of the remaining budget for 1.5°C and 2°C, respectively. The avoidance method relies on many scenarios that actually peak below the target whereas the exceedance method overlooks the carbon emitted by thawed permafrost after the temperature target is reached, which explains the difference. If we use only the subset of scenarios in which there is no net negative emissions, the permafrost-induced reduction in total budgets rises to 6-15%. Permafrost thaw therefore makes the emission budgets strongly path-dependent. We also estimate budgets of needed carbon capture in scenarios overshooting the temperature targets. Permafrost thaw strongly increases these capture budgets: in the case of a 1.5°C target overshot by 0.5°C, which is in line with the Paris agreement, about 30% more carbon must be captured. Our conclusions are threefold. First, inclusion of permafrost thaw systematically reduces the emission budgets, and very strongly so if the temperature target is overshot. Second, the exceedance method, that is the only one that complex models can follow, only partially accounts for the effect of slow non-linear processes such as permafrost thaw, leading to overestimated budgets. Third, the newfound strong path-dependency of the budgets renders the concept more delicate to use. For instance, using a budget that implicitly assumes a large development of negative emission technologies may lead to missing the target if these are not as scalable as anticipated.

  16. The Visual Difficulties of Selected Artists and Limitations of Ophthalmological Care During The 19th and Early 20th Centuries (An AOS Thesis)

    PubMed Central

    Ravin, James G.

    2008-01-01

    Purpose To investigate the effects of eye diseases on several important artists who have been given little attention from a medical-historical viewpoint. The examples chosen demonstrate problems artists have had to face from different types of eye disease, including cataract, glaucoma, and retinal diseases. The ophthalmological care provided is described in terms of scientific knowledge at the time. Methods Investigation of primary and secondary source material. Discussion with art historians and ophthalmic historians. Examination of work by the artists. Results Artists can be markedly affected by ocular diseases that change their ability to see the world. The individuals described here worked during the 19th century and first half of the 20th century. Homer Martin suffered from cataracts, and his works reveal changes in details and color as he aged. Henri Harpignies, who had an extremely long career, undoubtedly had cataracts and may also have had macular degeneration. Angle-closure glaucoma blinded Jules Chéret. Auguste Ravier suffered from neovascular glaucoma in one eye and was able to work with his remaining eye, which developed a cataract. Louis Valtat suffered from what was in all likelihood open-angle glaucoma, but specific changes due to this disease are not apparent in his work. Roger Bissière developed glaucoma and did well following filtration surgery. George Du Maurier lost one eye from what was probably a retinal detachment and later suffered from a central retinal problem in the other eye. Conclusions Diseases of the eye may profoundly influence artists by altering their perception of the world. The specific effects may vary, depending on the disease, its severity, and the psychology of the artist. Cataracts typically affect an artist’s ability to depict color and detail. The effect of glaucoma generally depends on whether central vision is preserved. Disease that affects the center of the retina has a substantial effect on an artist’s ability to depict fine details. Ophthalmological care was limited during the lifetimes of the artists under consideration, by comparison to 21st century standards. When medical or surgical therapy was ineffective, the most important thing a physician could offer these artists was consolation against anxiety and depression. PMID:19277248

  17. Validation d'un nouveau calcul de reference en evolution pour les reacteurs thermiques

    NASA Astrophysics Data System (ADS)

    Canbakan, Axel

    Resonance self-shielding calculations are an essential component of a deterministic lattice code calculation. Even if their aim is to correct the cross sections deviation, they introduce a non negligible error in evaluated parameters such as the flux. Until now, French studies for light water reactors are based on effective reaction rates obtained using an equivalence in dilution technique. With the increase of computing capacities, this method starts to show its limits in precision and can be replaced by a subgroup method. Originally used for fast neutron reactor calculations, the subgroup method has many advantages such as using an exact slowing down equation. The aim of this thesis is to suggest a validation as precise as possible without burnup, and then with an isotopic depletion study for the subgroup method. In the end, users interested in implementing a subgroup method in their scheme for Pressurized Water Reactors can rely on this thesis to justify their modelization choices. Moreover, other parameters are validated to suggest a new reference scheme for fast execution and precise results. These new techniques are implemented in the French lattice scheme SHEM-MOC, composed of a Method Of Characteristics flux calculation and a SHEM-like 281-energy group mesh. First, the libraries processed by the CEA are compared. Then, this thesis suggests the most suitable energetic discretization for a subgroup method. Finally, other techniques such as the representation of the anisotropy of the scattering sources and the spatial representation of the source in the MOC calculation are studied. A DRAGON5 scheme is also validated as it shows interesting elements: the DRAGON5 subgroup method is run with a 295-eenergy group mesh (compared to 361 groups for APOLLO2). There are two reasons to use this code. The first involves offering a new reference lattice scheme for Pressurized Water Reactors to DRAGON5 users. The second is to study parameters that are not available in APOLLO2 such as self-shielding in a temperature gradient and using a flux calculation based on MOC in the self-shielding part of the simulation. This thesis concludes that: (1) The subgroup method is at least more precise than a technique based on effective reaction rates, only if we use a 361-energy group mesh; (2) MOC with a linear source in a geometrical region gives better results than a MOC with a constant model. A moderator discretization is compulsory; (3) A P3 choc law is satisfactory, ensuring a coherence with 2D full core calculations; (4) SHEM295 is viable with a Subgroup Projection Method for DRAGON5.

  18. Adalimumab as steroid-sparing treatment of inflammatory-stage thyroid eye disease.

    PubMed

    Ayabe, Reed; Rootman, Dan B; Hwang, Catherine J; Ben-Artzi, Ami; Goldberg, Robert

    2014-01-01

    Steroids are often used as medical therapy for active thyroid eye disease (TED). While high-dose steroids have been shown to be effective in reducing the severity of TED symptoms, the side effects of steroids can be severe. As the pathogenesis of TED is thought to involve the upregulation of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), it has been postulated that anti-TNF agents may be used as steroid-sparing agents in the treatment of TED. This retrospective study was conducted to examine the efficacy of adalimumab, a subcutaneously administered TNF-α antagonist, in treating the inflammatory symptoms of active TED. All patients in the inflammatory phase of TED who were treated with adalimumab at the Jules Stein Eye Institute over a 2-year period were reviewed. Data concerning visual acuity, optic nerve function, extraocular motility restriction, binocular visual fields, and proptosis were extracted from patient charts. Clinical photographs from baseline and 3-month follow-up visits were reviewed by masked orbital specialists. Each photograph was graded on the severity of conjunctival injection, chemosis, eyelid erythema, and eyelid edema on a scale from 1 to 4. An inflammatory score was calculated as the sum of these 4 elements. Groups were compared using paired t tests. Six of 10 patients showed a decrease in inflammatory score while on adalimumab, whereas 3 showed an increase and 1 stayed the same. One patient experienced a significant complication (hospital admission for sepsis). Eight patients received concomitant tapering steroids during the first 6 weeks of therapy as the adalimumab reached maximum efficacy. When data from all 10 subjects were analyzed together, there was no significant change in inflammatory index after 3 months of treatment with adalimumab. However, when the 5 patients with a high baseline inflammatory index (>4) were considered separately, there was a significant improvement (mean decrease of 5.2±2.7; p<0.01) after adalimumab treatment. Four of 5 patients also reported a subjective improvement in symptoms while on adalimumab. This study suggests that adalimumab may have a role in the treatment of active TED with prominent inflammatory symptoms. The use of adalimumab and other immunosuppressive agents in the treatment of TED may help to mitigate some of the metabolic and psychiatric side effects of pulsed steroid treatment. A future randomized controlled study will be necessary to determine the efficacy of adalimumab as a primary therapy for TED.

  19. Secondary structure adventures with Carl Woese

    PubMed Central

    Noller, Harry F

    2014-01-01

    Not long after my arrival at UCSC as an assistant professor, I came across Carl Woese's paper “Molecular Mechanics of Translation: A Reciprocating Ratchet Mechanism.”1 In the days before the crystal structure of tRNA was known, Fuller and Hodgson2 had proposed two alternative conformations for its anticodon loop; one was stacked on the 3′ side (as later found in the crystal structure) and the other on the 5′ side. In an ingenious and elegant model, Woese proposed that the conformation of the loop flips between Fuller and Hodgson's 5′- and 3′-stacked forms during protein synthesis, changing the local direction of the mRNA such that the identities of the tRNA binding sites alternated between binding aminoacyl-tRNA and peptidyl-tRNA. The model predicted that there are no A and P sites, only two binding sites whose identities changed following translation of each codon, and that there would be no translocation of tRNAs in the usual sense—only binding and release. I met Carl in person the following year when he presented a seminar on his ratchet model in Santa Cruz. He was chatting in my colleague Ralph Hinegardner's office in what Carl termed a “Little Jack Horner appointment” (the visitor sits and listens to his host describing “What a good boy am I”). He was of compact stature, and bore a striking resemblance to Oskar Werner in Truffaut's film “Jules and Jim.” He projected the impression of a New-Age guru—a shiny black amulet suspended over the front of his black turtleneck sweater and a crown of prematurely white hair. Ralph asked me to explain to Carl what we were doing with ribosomes. I quickly summarized our early experiments that were pointing to a functional role for 16S rRNA. Carl regarded me silently, with a penetrating stare. He then turned to Ralph and said, in an ominous low voice, “I'm going to have some more tanks made as soon as I get back.” Carl's beautiful model was, unfortunately, wrong—it was simpler and more elegant than the complex mechanism that Nature actually uses. Unyielding, Carl railed against the A-site-P-site model at every opportunity,3,4 and although we ended up enjoying a long, intense, and fruitful collaboration, and became close, life-long friends, I finally gave up trying to describe to him our biochemical and crystallographic results on the A, P, and E sites. PMID:24637459

  20. Plant Nitrogen Uptake in Terrestrial Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Marti Donati, A.; Cox, P.; Smith, M. J.; Purves, D.; Sitch, S.; Jones, C. D.

    2013-12-01

    Most terrestrial biogeochemical models featured in the last Intergovernmental Panel on Climate Change (IPPC) Assessment Report highlight the importance of the terrestrial Carbon sequestration and feedbacks between the terrestrial Carbon cycle and the climate system. However, these models have been criticized for overestimating predicted Carbon sequestration and its potential climate feedback when calculating the rate of future climate change because they do not account for the Carbon sequestration constraints caused by nutrient limitation, particularly Nitrogen (N). This is particularly relevant considering the existence of a substantial deficit of Nitrogen for plants in most areas of the world. To date, most climate models assume that plants have access to as much Nitrogen as needed, but ignore the nutrient requirements for new vegetation growth. Determining the natural demand and acquisition for Nitrogen and its associated resource optimization is key when accounting for the Carbon sequestration constrains caused by nutrient limitation. The few climate models that include C-N dynamics have illustrated that the stimulation of plant growth over the coming century may be significantly smaller than previously predicted. However, models exhibit wide differences in their predictive accuracy and lead to widely diverging and inconsistent projections accounting for an uncertain Carbon sequestration decrease due to Nitrogen limitation ranging from 7 to 64%. This reduction in growth is partially offset by an increase in the availability of nutrients resulting from an accelerated rate of decomposition of dead plants and other organic matter that occurring with a rise in temperature. However, this offset does not counterbalance the reduced level of plant growth calculated by natural nutrient limitations. Additionally, Nitrogen limitation is also expected to become more pronounced in some ecosystems as atmospheric CO2 concentration increases; resulting in less new growth and higher atmospheric CO2 concentrations than originally expected. This study compares the differences in the predictions of alternative models of plant N uptake found in different terrestrial biogeochemical models with the predictions from a new N-uptake model developed under the Joint UK Land Environment Simulator (JULES) framework. We implement a methodology for the construction, parameterization and evaluation of N uptake models to fully decompose all the N uptake component processes in terms of their parameter uncertainty and the accuracy of their predictions with respect to different empirical data sets. Acknowledgements This work has been funded by the European Commission FP7-PEOPLE-ITN-2008 Marie Curie Action: "Greencycles II: FP7-PEOPLE-ITN-2008 Marie Curie Action: "Networks for Initial Training"

  1. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    NASA Astrophysics Data System (ADS)

    Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Van Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.

    2017-11-01

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.

  2. Pain Management: Road Map to Revolution.

    PubMed

    George, Steven Z

    2017-02-01

    Steven Z. George, PT, PhD, is a profound scholar whose contributions to the science of musculoskeletal pain rehabilitation have been both impactful and innovative to the area of clinical practice, as well as the profession at large. Highly regarded as an expert in pain-related psychosocial factors and their impact on rehabilitative outcomes, George is a clinical researcher decorated with accolades, ranging from substantial grant funding to high-impact publications. After 14 years at the University of Florida, George is currently Director of Musculoskeletal Research, Duke Clinical Research Institute, and Vice Chair of Clinical Research, Orthopaedic Surgery, at Duke University. He completed postdoctoral training in pain science and rehabilitation outcomes at the University of Florida and holds a PhD in rehabilitation science and MS in orthopedic physical therapy from the University of Pittsburgh and a BS in physical therapy from the West Virginia University School of Medicine. In his research, George has a primary theme focused on the use of biopsychosocial models to prevent and treat chronic musculoskeletal pain. Specific research areas include the effects of manual therapy on pain sensitivity, genetic and psychological risk factors associated with persistent pain and disability, and behavioral interventions for low back pain. Having authored over 185 peer-reviewed publications in physical therapy, orthopedic, rehabilitation, and pain research journals, George exemplifies a noteworthy level of compassion to improving the profession's, as well as society's, understanding of how to effectively provide pain relief. He is an editorial board member for Physical Therapy and Journal of Pain. He is also an International Editorial Review Board member for the Journal of Orthopaedic & Sports Physical Therapy. George's dedication has been highlighted through various awards, including the John C. Liebeskind Early Career Scholar Award from the American Pain Society, the Ulf Lindblom Young Investigator Award for Clinical Sciences from the International Association for the Study of Pain, the Florida Physical Therapy Association's Award for Scholarly Impact on Practice, and APTA's Jules M. Rothstein Golden Pen Award and Eugene Michels New Investigator Award. In 2014, George's innovative knowledge contributed to being identified by Expertscape as the 10th-ranked world expert for scholarly contributions to the understanding and treatment of back pain. Expertscape's ranking, based on the quantity and quality of peer-reviewed clinical research publications in the National Library of Medicine's MEDLINE database, highlights George's status as a visionary in the profession. For his advocacy toward conducting meaningful research, expertise on pain management, and profound impact beyond published works, APTA is pleased to honor Steven Z. George as the 2016 John H.P. Maley Lecturer. © 2017 American Physical Therapy Association

  3. An integrated, cross-disciplinary study of soil hydrophobicity at atomic, molecular, core and landscape scales

    NASA Astrophysics Data System (ADS)

    Matthews, G. Peter; Doerr, Stefan; Van Keulen, Geertje; Dudley, Ed; Francis, Lewis; Whalley, Richard; Gazze, Andrea; Hallin, Ingrid; Quinn, Gerry; Sinclair, Kat; Ashton, Rhys

    2017-04-01

    Soil hydrophobicity can lead to reduced soil fertility and heightened flood risk caused by increased run-off. Soil hydrophobicity is a well-known phenomenon when induced by natural events such as wildfires and anthropogenic causes including adding organic wastes or hydrocarbon contaminants. This presentation concerns a much more subtle effect - the naturally occurring changes between hydrophilic and hydrophobic states caused by periods of wetness and drought. Although subtle, they nevertheless affect vast areas of soil, and so their effects can be very significant, and are predicted to increase under climate change conditions. To understand the effect, a major interdisciplinary study has been commissioned by the UK's Natural Environment Research Council (NERC) to investigate soil hydrophobicity over length scales ranging from atomic through molecular, core and landscape scale. We present the key findings from the many publications currently in preparation. The programme is predicated on the hypothesis that changes in soil protein abundance and localization, induced by variations in soil moisture and temperature, are crucial driving forces for transitions between hydrophobic and hydrophilic conditions at soil particle surfaces, and that these effects can be meaningfully upscaled from molecular to landscape scale. Three soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (natural rough pasture, Wales), intermediate to severe (pasture, Wales), and subcritical (managed research grassland, Rothamsted Research, England). The latter is already highly characterised so was also used as a control. Hydrophobic/ hydrophilic transitions were determined from water droplet penetration times. Scientific advances in the following five areas will be described: (i) the identification of these soil proteins by proteomic methods, using novel separation methods which reduces interference by humic acids, and allows identification by ESI and MALDI TOF mass spectrometry and database searches, (ii) the examination of such proteins, which form ordered hydrophobic ridges, and measurement of their elasticity, stickiness and hydrophobicity at nano- to microscale using atomic force microscopy adapted for the rough surfaces of soil particles, (iii) the novel use of a picoliter goniometer to show hydrophobic effects at a 1 micron diameter droplet level, which avoids the averaging over soil cores and particles evident in microliter goniometry, with which the results are compared, (iv) measurements at core scale using water retention and wicking experiments, and (v) the modelling and upscaling of the results from molecular to core scale using the PoreXpert void network model of dynamic wetting and Haines jumps. An explanation will also be given as to how the results will be further upscaled by incorporation into the JULES hydrological model of the UK Meteorological Office, used to predict flooding for different soil types and usage.

  4. How well do we characterize the biophysical effects of vegetation cover change? Benchmarking land surface models against satellite observations.

    NASA Astrophysics Data System (ADS)

    Duveiller, Gregory; Forzieri, Giovanni; Robertson, Eddy; Georgievski, Goran; Li, Wei; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro

    2017-04-01

    Changes in vegetation cover can affect the climate by altering the carbon, water and energy cycles. The main tools to characterize such land-climate interactions for both the past and future are land surface models (LSMs) that can be embedded in larger Earth System models (ESMs). While such models have long been used to characterize the biogeochemical effects of vegetation cover change, their capacity to model biophysical effects accurately across the globe remains unclear due to the complexity of the phenomena. The result of competing biophysical processes on the surface energy balance varies spatially and seasonally, and can lead to warming or cooling depending on the specific vegetation change and on the background climate (e.g. presence of snow or soil moisture). Here we present a global scale benchmarking exercise of four of the most commonly used LSMs (JULES, ORCHIDEE, JSBACH and CLM) against a dedicated dataset of satellite observations. To facilitate the understanding of the causes that lead to discrepancies between simulated and observed data, we focus on pure transitions amongst major plant functional types (PFTs): from different tree types (evergreen broadleaf trees, deciduous broadleaf trees and needleleaf trees) to either grasslands or crops. From the modelling perspective, this entails generating a separate simulation for each PFT in which all 1° by 1° grid cells are uniformly covered with that PFT, and then analysing the differences amongst them in terms of resulting biophysical variables (e.g net radiation, latent and sensible heat). From the satellite perspective, the effect of pure transitions is obtained by unmixing the signal of different 0.05° spatial resolution MODIS products (albedo, latent heat, upwelling longwave radiation) over a local moving window using PFT maps derived from the ESA Climate Change Initiative land cover map. After aggregating to a common spatial support, the observation and model-driven datasets are confronted and analysed across different climate zones. Results indicate that models tend to catch better radiative than non-radiative energy fluxes. However, for various vegetation transitions, models do not agree amongst themselves on the magnitude nor the sign of the change. In particular, predicting the impact of land cover change on the partitioning of the available energy between latent and sensible heat proves to be a challenging task for vegetation models. We expect that this benchmarking exercise will shed a light on where to prioritize the efforts in model development as well as inform where consensus between model and observations is already met. Improving the robustness and consistency of land-model is essential to develop and inform land-based mitigation and adaptation policies that account for both biogeochemical and biophysical vegetation impacts on climate.

  5. Developpement d'un catalyseur nickel-alumine efficace pour le reformage de diesel a la vapeur d'eau et etude du systeme reactionnel

    NASA Astrophysics Data System (ADS)

    Fauteux-Lefebvre, Clemence

    Le developpement de sources d'energie alternatives fiables et efficaces est aujourd'hui une necessite. L' interet dans le reformage d'hydrocarbures liquides est ainsi croissant puisqu'il s'agit d'une voie pour l'alimentation des piles a combustible. Les piles a combustible ont une efficacite pour la conversion d'energie en electricite plus grande que celle des moteurs a combustion et font ainsi partie de la recherche de solution en efficacite energetique. Ces piles consomment de l'hydrogene comme combustible pour produire de l'electricite, d'ou l'interet pour le reformage. En effet, cette reaction permet de produire de l'hydrogene et du monoxyde de carbone (un autre combustible des piles a combustible a electrolyte solide) a partir d'hydrocarbure liquide, notamment le diesel. Les piles pourraient donc etre integrees avec une unite de reformage leur fournissant directement le combustible necessaire a partir de diesel. Dans ce projet de recherche, un nouveau catalyseur de nickel sous forme de spinelle nickel-alumine (spinelle NiAl2O4 sur support d'alumine et de zircone stabilisee avec yttria) a ete developpe et teste en laboratoire pour du reformage de propane, d'hydrocarbures liquides et de diesel, a la vapeur d'eau. Par ailleurs, une methode d'ajout des reactifs novatrice a ete utilisee afin de diminuer la pyrolyse precedant le reformage, en utilisant une emulsion. Les resultats de reformage d'hydrocarbures purs ont montre des concentrations tres pres de l'equilibre thermodynamique et une activite constante sans desactivation du catalyseur ni formation de carbone, et ce avec des ratios H2O/C de moins de 2.5 et des temperatures d'operation variant entre 630 °C et 750 °C. Lors de tests effectues en utilisant du diesel fossile, a 705°C, avec un debit volumique des reactifs de plus de 50 000 cm3gcat-1h-1 et un ratio H2O/C de moins de 2.5, l'activite a ete maintenue pendant plus de 15 heures, malgre une operation en cycles. L'analyse du catalyseur apres cette utilisation n'a montre aucun carbone significatif sur la surface.- En comparaison, un catalyseur de nickel metallique sur support d'Al2O3 et YSZ a ete utilise dans des conditions similaires. Il y a eu desactivation du catalyseur et obstruction du reacteur par du carbone apres trois heures d'operation. L'analyse de ce catalyseur a permis de verifier qu'il etait recouvert de carbone en filament. L'analyse du systeme reactionnel a montre que la reaction est controlee par la reaction de. surface et non par le transfert de masse. Par ailleurs, les analyses des catalyseurs de spinelle ont demontre qu'il n'y avait pas de modification de sa forme chimique ni de reduction du spinelle en nickel metallique apres l'utilisation. Mots cles : Reformage a la vapeur, diesel, hydrocarbure liquide, catalyseur, spinelle nickel-alumine, equilibre thermodynamique

  6. The 100th anniversary of Wassermann-Neisser-Bruck reaction.

    PubMed

    Bialynicki-Birula, Rafal

    2008-01-01

    August Paul von Wassermann (1866-1925), German bacteriologist, together with Albert Neisser (1855-1916), German dermatologist and venereologist, and Carl Bruck (1879-1944), German dermatologist and venereologist, developed the first serologic test for the diagnosis of syphilis. They published their first article about it on May 10, 1906 (Dtsch Med Wochenschr 1906;32:745). They made use of the idea of the complement fixation test of Jules Bordet (1870-1961) and Octave Gengou (1875-1957), so the Wassermann reaction is sometimes called Bordet-Wassermann reaction. The study was done at the Berlin Institute of Infectious Diseases (Berliner Institut für Infektionskrankheiten) and at the Breslau (Wroclaw) Department of Dermatology. The Wassermann reaction was used in the diagnosis of syphilis. The antigen used in it was prepared empirically. Originally, the so-called antigens were extracts of human or monkey tissue rich in Treponema pallidum. The most active one was a liver extract of a syphilitic fetus. Later on, the active substance, referred to as cardiolipin, was found in normal nonsyphilitic tissues, including the heart (usually bovine heart). Karl Landsteiner (1868-1943) identified the antigen involved in the Wassermann reaction as a lipoid substance, which finally was identified as diphosphatidylglycerol. Wassermann antibodies, produced in the course of syphilis infection, are reactive with cardiolipin in the presence of lecithin and cholesterol. The antigen-antibody reaction produces immune complexes, which results in complement fixation via the classic pathway; this may be used to determine the serum level of antibodies (if <1 microg/mL). In the final step, indicator cells (erythrocytes) together with a subagglutinating amount of antibodies (antierythrocyte antibodies) are added to the mixture. If there remains any complement left, these cells will be lysed; if it has been consumed by immune complexes, the amount of the remaining complement will be insufficient to produce the lysis of the red cells. In the first experiment of Wassermann et al, the reaction was positive exclusively with the sera of patients with syphilis, but it was soon discovered that some other diseases gave positive results in nonsyphilitic individuals. First such cases were reported in 1909. With the discovery of new and more specific tests for syphilis, the complement fixation tests of Wassermann type gradually went into oblivion. A new era in venereology was started with the discovery of T pallidum by Fritz Schaudinn (1871-1906) and Erich Hoffmann (1868-1954) in 1905, and the development of serology of syphilis by Wassermann, Neisser, and Bruck in 1906. Although the Wassermann reaction is no longer in use now, it should be emphasized that it was one of the very first serodiagnostic tests ever used in medical practice. Carl Bruck said in the 1920s: "This fortunate and unique mistake constituted the basis of a very important discovery, whose significance was both theoretical and practical."

  7. Earthquakes in Action: Incorporating Multimedia, Internet Resources, Large-scale Seismic Data, and 3-D Visualizations into Innovative Activities and Research Projects for Today's High School Students

    NASA Astrophysics Data System (ADS)

    Smith-Konter, B.; Jacobs, A.; Lawrence, K.; Kilb, D.

    2006-12-01

    The most effective means of communicating science to today's "high-tech" students is through the use of visually attractive and animated lessons, hands-on activities, and interactive Internet-based exercises. To address these needs, we have developed Earthquakes in Action, a summer high school enrichment course offered through the California State Summer School for Mathematics and Science (COSMOS) Program at the University of California, San Diego. The summer course consists of classroom lectures, lab experiments, and a final research project designed to foster geophysical innovations, technological inquiries, and effective scientific communication (http://topex.ucsd.edu/cosmos/earthquakes). Course content includes lessons on plate tectonics, seismic wave behavior, seismometer construction, fault characteristics, California seismicity, global seismic hazards, earthquake stress triggering, tsunami generation, and geodetic measurements of the Earth's crust. Students are introduced to these topics through lectures-made-fun using a range of multimedia, including computer animations, videos, and interactive 3-D visualizations. These lessons are further enforced through both hands-on lab experiments and computer-based exercises. Lab experiments included building hand-held seismometers, simulating the frictional behavior of faults using bricks and sandpaper, simulating tsunami generation in a mini-wave pool, and using the Internet to collect global earthquake data on a daily basis and map earthquake locations using a large classroom map. Students also use Internet resources like Google Earth and UNAVCO/EarthScope's Jules Verne Voyager Jr. interactive mapping tool to study Earth Science on a global scale. All computer-based exercises and experiments developed for Earthquakes in Action have been distributed to teachers participating in the 2006 Earthquake Education Workshop, hosted by the Visualization Center at Scripps Institution of Oceanography (http://siovizcenter.ucsd.edu/workshop). In addition to daily lecture and lab exercises, COSMOS students also conduct a mini-research project of their choice that uses data ranging from the 2004 Parkfield Earthquake, to Southern California seismicity, to global seismicity. Students collect seismic data from the Internet and evaluate earthquake locations, magnitudes, temporal sequence of seismic activity, active fault planes, and plate tectonic boundaries using research quality techniques. Students are given the opportunity to build 3-D visualizations of their research data sets and archive these at the SIO Visualization Center's online library, which is globally accessible to students, teachers, researchers, and the general public (http://www.siovizcenter.ucsd.edu/library.php). These student- generated visualizations have become a practical resource for not only students and teachers, but also geophysical researchers that use the visual objects as research tools to better explore and understand their data. Through Earthquakes in Action, we offer both the tools for scientific exploration and the thrills of scientific discovery, providing students with valuable knowledge, novel research experience, and a unique sense of scientific contribution.

  8. The philosophy of scientific experimentation: a review

    PubMed Central

    2009-01-01

    Practicing and studying automated experimentation may benefit from philosophical reflection on experimental science in general. This paper reviews the relevant literature and discusses central issues in the philosophy of scientific experimentation. The first two sections present brief accounts of the rise of experimental science and of its philosophical study. The next sections discuss three central issues of scientific experimentation: the scientific and philosophical significance of intervention and production, the relationship between experimental science and technology, and the interactions between experimental and theoretical work. The concluding section identifies three issues for further research: the role of computing and, more specifically, automating, in experimental research, the nature of experimentation in the social and human sciences, and the significance of normative, including ethical, problems in experimental science. PMID:20098589

  9. Graphical Models for Quasi-Experimental Designs

    ERIC Educational Resources Information Center

    Kim, Yongnam; Steiner, Peter M.; Hall, Courtney E.; Su, Dan

    2016-01-01

    Experimental and quasi-experimental designs play a central role in estimating cause-effect relationships in education, psychology, and many other fields of the social and behavioral sciences. This paper presents and discusses the causal graphs of experimental and quasi-experimental designs. For quasi-experimental designs the authors demonstrate…

  10. True and Quasi-Experimental Designs. ERIC/AE Digest.

    ERIC Educational Resources Information Center

    Gribbons, Barry; Herman, Joan

    Among the different types of experimental design are two general categories: true experimental designs and quasi- experimental designs. True experimental designs include more than one purposively created group, common measured outcomes, and random assignment. Quasi-experimental designs are commonly used when random assignment is not practical or…

  11. The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF)

    DTIC Science & Technology

    2015-10-01

    ARL-TR-7506 ● OCT 2015 US Army Research Laboratory The Automation of the Transonic Experimental Facility (TEF) and the...Laboratory The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF) by Charith R Ranawake Weapons...To) 05/2015–08/2015 4. TITLE AND SUBTITLE The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility

  12. 75 FR 2197 - Western Pacific Fisheries; Regulatory Restructuring

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ....16 Vessel identification. Sec. 665.17 Experimental fishing..... Sec. 665.17 Experimental fishing. Sec.... 0586, and -0589. Sec. 665.17 Experimental Sec. 665.17 0648-0214 and -0490. fishing. Experimental...) experimental fishing reports estimated at 4 hours (hr) per reporting action; (d) sales and transshipment...

  13. Physical versus Virtual Manipulative Experimentation in Physics Learning

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; Olympiou, Georgios

    2011-01-01

    The aim of this study was to investigate whether physical or virtual manipulative experimentation can differentiate physics learning. There were four experimental conditions, namely Physical Manipulative Experimentation (PME), Virtual Manipulative Experimentation (VME), and two sequential combinations of PME and VME, as well as a control condition…

  14. 78 FR 79622 - Endangered and Threatened Species: Designation of a Nonessential Experimental Population of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... Experimental Population of Central Valley Spring-Run Chinook Salmon Below Friant Dam in the San Joaquin River..., the National Marine Fisheries Service (NMFS), designate a nonessential experimental population of... experimental population for particular activities inside the experimental population's geographic range and...

  15. 14 CFR 437.9 - Issuance of an experimental permit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Issuance of an experimental permit. 437.9..., DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.9 Issuance of an experimental permit. The FAA issues an experimental permit authorizing an unlimited number of launches or...

  16. 14 CFR 437.5 - Eligibility for an experimental permit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Eligibility for an experimental permit. 437... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.5 Eligibility for an experimental permit. The FAA will issue an experimental permit to a person to launch or...

  17. 14 CFR 437.5 - Eligibility for an experimental permit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Eligibility for an experimental permit. 437... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.5 Eligibility for an experimental permit. The FAA will issue an experimental permit to a person to launch or...

  18. 14 CFR 437.5 - Eligibility for an experimental permit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Eligibility for an experimental permit. 437... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.5 Eligibility for an experimental permit. The FAA will issue an experimental permit to a person to launch or...

  19. 14 CFR 437.9 - Issuance of an experimental permit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Issuance of an experimental permit. 437.9..., DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.9 Issuance of an experimental permit. The FAA issues an experimental permit authorizing an unlimited number of launches or...

  20. 14 CFR 437.5 - Eligibility for an experimental permit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Eligibility for an experimental permit. 437... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.5 Eligibility for an experimental permit. The FAA will issue an experimental permit to a person to launch or...

  1. 14 CFR 437.9 - Issuance of an experimental permit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Issuance of an experimental permit. 437.9..., DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.9 Issuance of an experimental permit. The FAA issues an experimental permit authorizing an unlimited number of launches or...

  2. 14 CFR 437.9 - Issuance of an experimental permit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Issuance of an experimental permit. 437.9..., DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.9 Issuance of an experimental permit. The FAA issues an experimental permit authorizing an unlimited number of launches or...

  3. 14 CFR 437.5 - Eligibility for an experimental permit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Eligibility for an experimental permit. 437... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.5 Eligibility for an experimental permit. The FAA will issue an experimental permit to a person to launch or...

  4. 14 CFR 437.9 - Issuance of an experimental permit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Issuance of an experimental permit. 437.9..., DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS General Information § 437.9 Issuance of an experimental permit. The FAA issues an experimental permit authorizing an unlimited number of launches or...

  5. 78 FR 3381 - Endangered and Threatened Species: Designation of a Nonessential Experimental Population of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... Experimental Population of Central Valley Spring-Run Chinook Salmon Below Friant Dam in the San Joaquin River... Fisheries Service (NMFS), propose a rule to designate a nonessential experimental population of Central... nonessential experimental population for particular activities inside the experimental population's geographic...

  6. 75 FR 48672 - Pesticides; Revised Fee Schedule for Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... follows B772 118 Amend or extend Experimental 3 11,577 Use Permit; minor changes to experimental design...,942 Experimental Use Permit; minor changes to experimental design; extend established temporary... revision of experimental design B780 121 New active ingredient; non- 12 144,704 food/feed; no SAP review...

  7. Relation between experimental and non-experimental study designs. HB vaccines: a case study.

    PubMed

    Jefferson, T; Demicheli, V

    1999-01-01

    To examine the relation between experimental and non-experimental study design in vaccinology. Assessment of each study design's capability of testing four aspects of vaccine performance, namely immunogenicity (the capacity to stimulate the immune system), duration of immunity conferred, incidence and seriousness of side effects, and number of infections prevented by vaccination. Experimental and non-experimental studies on hepatitis B (HB) vaccines in the Cochrane Vaccines Field Database. Experimental and non-experimental vaccine study designs are frequently complementary but some aspects of vaccine quality can only be assessed by one of the types of study. More work needs to be done on the relation between study quality and its significance in terms of effect size.

  8. 75 FR 81979 - Proposed Notice of Funding Opportunity (NOFO) for Social Innovation Fund 2011 Awards; Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... well-implemented experimental or quasi-experimental studies that demonstrate the program has a sizeable... study or well- designed and well-implemented quasi-experimental study that supports the effectiveness of... moderate evidence: (1) At least one well-designed and well-implemented experimental or quasi-experimental...

  9. Plate Boundary Observatory Infrastructure and Data Products in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Barbour, K.; Lee, E.

    2005-12-01

    As one of three major components of NSF's EarthScope program, the Plate Boundary Observatory (PBO) encourages the integration of research and education. Informing various communities about the current work of PBO and the scientific discoveries related to the use of this instrumentation has contributed to the success of PBO during the first two years of the EarthScope project. UNAVCO(PBO), IRIS (USArray), and the EarthScope project office work together to integrate Education and Outreach (E&O) opportunities into a program that is greater than the sum of its parts and yet maintains the identity of each organization. Building and maintaining the PBO website, documenting and archiving activities of PBO, providing short courses for professional development of scientists using EarthScope data, and developing higher level data products with an appropriate educational framework are a few of the activities that provide both challenges and opportunities. The internet, particularly the World Wide Web, has become the primary tool for disseminating information to various audiences. The primary goals of the PBO website are to provide current information on the progress of GPS and Strainmeter facility construction; to provide access to different levels of data products; and to facilitate networking with and among scientists. Challenges for the PBO website include publishing current stories on installation projects while coordinating with field engineers on a regular basis; providing near to real time updates and maintaining quality assurance processes; and defining personnel requirements for a maintaining a dynamic website. Currently, archived photographs, web diaries, and numerous web highlights document PBO's success and provide a visual record of PBO's accomplishments and behind-the-scene activities over the last two years. The community charged PBO with increasing the number of scientists using its data. UNAVCO does this by providing short courses for professional development of young scientists and more established scientists broadening their research interests. In addition, collecting, manipulating, and aggregating real scientific data for classroom use is a current priority in science education. Educators want their students to use these data to draw conclusions following the logical processes characteristic of the scientific endeavor. Hence, PBO is a natural source of data for use in the classroom. Staff and community members are designing higher level data products for a variety of audiences in formal education (students and instructors in middle/high school, community colleges, undergraduate science majors and students in general science education, graduate students) and in informal education (museums, park information centers, science centers, and media. PBO is working on a chapter for the Earth Exploration Toolbox (http://serc.carleton.edu/eet/) for undergraduate general science education, and the Jules Verne Voyager will include a user-friendly interface and associated educational materials. Evaluation of the effectiveness of this entire program and of individual projects and products is a major undertaking. The multitude of tasks, integration of these tasks into a coherent program, and identification of resources for evaluation are both opportunities and challenges in helping build a program with measurable impact.

  10. Figures and Institutions of the neurological sciences in Paris from 1800 to 1950. Part IV: Psychiatry and psychology.

    PubMed

    Poirier, J; Clarac, F; Barbara, J-G; Broussolle, E

    2012-05-01

    We present a short historical review on the major institutions and figures who contributed to make Paris a renowned centre of physiology and neurology during the XIXth and the first half of the XXth century. We purposely chose to focus on the period 1800-1950, as 1800 corresponds to the actual beginning of neurosciences, and as 1950 marks their exponential rise. Our presentation is divided into four chapters, matching the main disciplines that have progressed and contributed most to the knowledge we have of the brain sciences: anatomy, physiology, neurology, and psychiatry-psychology. The present article is the fourth of the four parts of this review, which deals with the chapter on psychiatry and psychology. When the French Revolution occurred, only a few institutions were taking care of the mentally ill. In the Paris area, these included Maison Royale de Charenton, Les Petites Maisons, and one of the departments of larger hospitals such as Hôtel-Dieu, the Salpêtrière Hospital and Bicêtre Hospital. One of the founders of psychiatry in Paris at that time and thereafter was Philippe Pinel (1745-1826) who was the first to distinguish insane/alienated patients from misfits, beggars, and other vagabonds. During the first half of the XIXth century, his student Jean-Étienne Esquirol (1772-1840) also played a major role with his treatise on mental diseases and the 1838 law and the creation of asylums in all parts of France. Alienists were in general caregivers and learned by themselves. In contrast, at the academic level, the emerging disciplines psychiatry and neurology were very close to each other in the second half of the XIXth century, the best example being Jules Baillarger (1809-1890). The actual development of psychiatry and psychology and the foundation of psychoanalysis later in the XIXth century and in the first half of the XXth century owed much to several European doctors and scientists, particularly those from British institutions and from German-speaking universities in Central Europe. In France, important advances were once again initiated in Paris by Jean-Martin Charcot (1825-1893) and some of his pupils who renewed the concept of hysteria and the use of hypnosis. Sainte-Anne Hospital was created in 1867. This new institution located in the southern part of Paris became (and is still) one of the most important places in France for the treatment, research and teaching of mental diseases. Thereafter started new disciplines such as clinical psychology and neuropsychology; the scientific basis of psychology and notably the psychopathology hypothesis were established. A major revolutionary step occurred in Paris in the early 1950s with the discovery of neuroleptics and the birth of psychopharmacology. Here we present the biographical sketches of the most important Parisian scientists of these disciplines from that era, Philippe Pinel, Jean-Étienne Esquirol, Théodule Armand Ribot, Pierre Janet, Henri Louis Charles Piéron, Henry Ey, Jean Delay, Henri Laborit and Henri Hécaen. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Flooding from Intense Rainfall: an overview of project SINATRA

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah

    2014-05-01

    Project SINATRA (Susceptibility of catchments to INTense RAinfall and flooding) is part of the UK NERC's Flooding From Intense Rainfall (FFIR) research programme which aims to reduce the risks of damage and loss of life caused by surface water and flash floods through improved identification, characterisation and prediction of interacting meteorological, hydrological and hydro-morphological processes that contribute to flooding associated with high-intensity rainfall events. Extreme rainfall events may only last for a few hours at most, but can generate terrifying and destructive floods. Their impact can be affected by a wide range factors (or processes) such as the location and intensity of the rainfall, the shape and steepness of the catchment it falls on, how much sediment is moved by the water and the vulnerability of the communities in the flood's path. Furthermore, FFIR are by their nature rapid, making it very difficult for researchers to 'capture' measurements during events. The complexity, speed and lack of field measurements on FFIR make it difficult to create computer models to predict flooding and often we are uncertain as to their accuracy. In addition there is no consensus on how to identify how particular catchments may be vulnerable to FFIR, due to factors such as catchment area, shape, geology and soil type as well as land-use. Additionally, the catchments most susceptible to FFIR are often small and un-gauged. Project SINATRA will: (1) Increase our understanding of what factors cause FFIR and gathering new, high resolution measurements of FFIR by: assembling an archive of past FFIR events in Britain and their impacts, as a prerequisite for improving our ability to predict future occurrences of FFIR; making real time observations of flooding during flood events as well as post-event surveys and historical event reconstruction, using fieldwork and crowd-sourcing methods; and characterizing the physical drivers for UK summer flooding events by identifying the large-scale atmospheric conditions associated with FFIR events, and linking them to catchment type. (2) Use this new understanding and data to improve models of FFIR so we can predict where they may happen nationwide by: employing an integrated catchment/urban scale modelling approach to FFIR at high spatial and temporal scales, modelling rapid catchment response to flash floods and their impacts in urban areas; scaling up to larger catchments by improving the representation of fast riverine and surface water flooding and hydromorphic change (including debris flow) in regional scale models of FFIR; improving the representation of FFIR in the JULES land surface model by integrating river routing and fast runoff processes, and performing assimilation of soil moisture and river discharge into the model run (3) Use these new findings and predictions to provide the Environment Agency and other professionals with information and software they can use to manage FFIR, reducing their damage and impact to communities by: developing tools to enable prediction of future FFIR impacts to support the Flood Forecasting Centre in issuing new 'impacts-based' warnings about their occurrence; developing a FFIR analysis tool to assess risks associated with rare events in complex situations involving incomplete knowledge, analogous to those developed for safety assessment in radioactive waste management.

  12. Benchmarking sensitivity of biophysical processes to leaf area changes in land surface models

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Duveiller, Gregory; Georgievski, Goran; Li, Wei; Robestson, Eddy; Kautz, Markus; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro

    2017-04-01

    Land surface models (LSM) are widely applied as supporting tools for policy-relevant assessment of climate change and its impact on terrestrial ecosystems, yet knowledge of their performance skills in representing the sensitivity of biophysical processes to changes in vegetation density is still limited. This is particularly relevant in light of the substantial impacts on regional climate associated with the changes in leaf area index (LAI) following the observed global greening. Benchmarking LSMs on the sensitivity of the simulated processes to vegetation density is essential to reduce their uncertainty and improve the representation of these effects. Here we present a novel benchmark system to assess model capacity in reproducing land surface-atmosphere energy exchanges modulated by vegetation density. Through a collaborative effort of different modeling groups, a consistent set of land surface energy fluxes and LAI dynamics has been generated from multiple LSMs, including JSBACH, JULES, ORCHIDEE, CLM4.5 and LPJ-GUESS. Relationships of interannual variations of modeled surface fluxes to LAI changes have been analyzed at global scale across different climatological gradients and compared with satellite-based products. A set of scoring metrics has been used to assess the overall model performances and a detailed analysis in the climate space has been provided to diagnose possible model errors associated to background conditions. Results have enabled us to identify model-specific strengths and deficiencies. An overall best performing model does not emerge from the analyses. However, the comparison with other models that work better under certain metrics and conditions indicates that improvements are expected to be potentially achievable. A general amplification of the biophysical processes mediated by vegetation is found across the different land surface schemes. Grasslands are characterized by an underestimated year-to-year variability of LAI in cold climates, ultimately affecting the amount of absorbed radiation. In addition patterns of simulated turbulent fluxes appear opposite to observations. Such systematic errors shed light on the current partial understanding of some of the mechanisms controlling the surface energy balance. In contrast forests appear reasonably well represented with respect to the interactions between LAI and turbulent fluxes across most climatological gradients, while for net radiation this is only true for warm climates. These proven strengths increase the confidence on how certain processes are simulated in LSMs. The model capacity to mimic the vegetation-biophysics interplay has been tested over the real scenario of greening that occurred in the last 30 years. We found that the modeled trends in surface heat fluxes associated with the long-term changes in leaf area could vary largely from those observed, with different discrepancies across models and climate zones. Our findings help to identify knowledge gaps and improve model representation of the sensitivity of biophysical processes to changes in leaf area density. In particular, comparing models and observations over a wide range of climate and vegetation conditions, as analyzed here, allowed capturing non-linearity of system responses that may emerge more frequently in future climate scenarios.

  13. Birmingham Urban Climate Change with Neighbourhood Estimates of Environmental Risk (buccaneer)

    NASA Astrophysics Data System (ADS)

    Bassett, R.; Thornes, J.; Cai, X.; Rees, R.

    2011-12-01

    The BUCCANEER project is a knowledge transfer partnership between the University of Birmingham and Birmingham City Council to help ensure that the city is prepared for the impacts of climate change. The project will equip service areas such as planners and health protection agencies with the necessary information and tools needed to adapt. UK climate projections indicate a 3.7oC temperature increase for Birmingham, UK by 2080 (medium emissions scenario). The 2003 heat-wave that caused over 2000 deaths in England and Wales will become an average summer by 2040. By the end of the century, the 2003 heat wave will be considered a cool summer. The dense urban fabric of Birmingham, the UK's second largest city, creates a warming effect when compared to surrounding rural areas. Past studies have found the nature of this urban heat island (UHI) to be related to city size, moisture availability, land-use, anthropogenic emissions, building materials and geometry. The UHI effect can lead to heat stress and air pollution problems which are a major health concern. Birmingham's UHI is not currently modelled. More specifically the UK climate projections treat Birmingham as a homogeneous slab of grassland. The inclusions of the urban areas in a climate model will show an intensification of the likely heat risk in future projections. In the present study, the JULES (Joint UK Land Environment Simulator) model has been setup and run for Birmingham and surrounding areas. The UHI was found to be greater than 3.5oC in Birmingham when modelled during heat waves. The model's performance is evaluated against data from two UK Met Office standard sites: Edgbaston (urban) and Winterbourne (rural). The temperatures predicted by the model over a 12 month (2010) simulation show a strong correlation with the observations. The model also reproduces the diurnal UHI intensity averaged over a year reasonably well. The model evaluation is also complemented by a data set of tiny-tag data logger temperature measurements around Birmingham and an on-going project (HiTemp) which aims to establish a high-density urban climate network in Birmingham. Once fully validated, UKCP09 weather generator data will be used to drive the model up to 2100 to assess future changes in Birmingham's climate and UHI. The findings of the research are transferred to Birmingham City Council so as to directly inform policy. In order for this to be achieved, a user-friendly web interface has been created - The BUCCANEER Planning Tool. The tool visually displays the combined impacts of the urban heat island, climate change and vulnerability on different temporal and spatial scales across the city. The vulnerability aspect uses layers developed from a risk mapping project at the University of Birmingham using social, economic and environmental data to create a spatial risk assessment with a particular focus on health and demographics. For example proportion of people with ill health in high density housing that will be exposed to excess heat. Additionally model parameters will be adjusted to allow for adaptation strategies to be assessed, for example the effectiveness of inserting green infrastructure in areas to combat excess heat in the city.

  14. 30 CFR 785.13 - Experimental practices mining.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... practice shall contain descriptions, maps, plans, and data which show— (1) The nature of the experimental....S. Department of Agriculture, Soil Conservation Service. (f) Each person undertaking an experimental...

  15. 30 CFR 785.13 - Experimental practices mining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... practice shall contain descriptions, maps, plans, and data which show— (1) The nature of the experimental....S. Department of Agriculture, Soil Conservation Service. (f) Each person undertaking an experimental...

  16. 30 CFR 785.13 - Experimental practices mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... practice shall contain descriptions, maps, plans, and data which show— (1) The nature of the experimental....S. Department of Agriculture, Soil Conservation Service. (f) Each person undertaking an experimental...

  17. Relation between experimental and non-experimental study designs. HB vaccines: a case study

    PubMed Central

    Jefferson, T.; Demicheli, V.

    1999-01-01

    STUDY OBJECTIVE: To examine the relation between experimental and non- experimental study design in vaccinology. DESIGN: Assessment of each study design's capability of testing four aspects of vaccine performance, namely immunogenicity (the capacity to stimulate the immune system), duration of immunity conferred, incidence and seriousness of side effects, and number of infections prevented by vaccination. SETTING: Experimental and non-experimental studies on hepatitis B (HB) vaccines in the Cochrane Vaccines Field Database. RESULTS: Experimental and non-experimental vaccine study designs are frequently complementary but some aspects of vaccine quality can only be assessed by one of the types of study. More work needs to be done on the relation between study quality and its significance in terms of effect size.   PMID:10326054

  18. "Exploratory experimentation" as a probe into the relation between historiography and philosophy of science.

    PubMed

    Schickore, Jutta

    2016-02-01

    This essay utilizes the concept "exploratory experimentation" as a probe into the relation between historiography and philosophy of science. The essay traces the emergence of the historiographical concept "exploratory experimentation" in the late 1990s. The reconstruction of the early discussions about exploratory experimentation shows that the introduction of the concept had unintended consequences: Initially designed to debunk philosophical ideas about theory testing, the concept "exploratory experimentation" quickly exposed the poverty of our conceptual tools for the analysis of experimental practice. Looking back at a number of detailed analyses of experimental research, we can now appreciate that the concept of exploratory experimentation is too vague and too elusive to fill the desideratum whose existence it revealed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Studies on Experimental Ontology and Knowledge Service Development in Bio-Environmental Engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Yunliang

    2018-01-01

    The existing domain-related ontology and information service patterns are analyzed, and the main problems faced by the experimental scheme knowledge service were clarified. The ontology framework model for knowledge service of Bio-environmental Engineering was proposed from the aspects of experimental materials, experimental conditions and experimental instruments, and this ontology will be combined with existing knowledge organization systems to organize scientific and technological literatures, data and experimental schemes. With the similarity and priority calculation, it can improve the related domain research.

  20. Using the Git Software Tool on the Peregrine System | High-Performance

    Science.gov Websites

    branch workflow. Create a local branch called "experimental" based on the current master... git branch experimental Use your branch (start working on that experimental branch....) git checkout experimental git pull origin experimental # work, work, work, commit.... Send local branch to the repo git push

  1. A Robust Adaptive Autonomous Approach to Optimal Experimental Design

    NASA Astrophysics Data System (ADS)

    Gu, Hairong

    Experimentation is the fundamental tool of scientific inquiries to understand the laws governing the nature and human behaviors. Many complex real-world experimental scenarios, particularly in quest of prediction accuracy, often encounter difficulties to conduct experiments using an existing experimental procedure for the following two reasons. First, the existing experimental procedures require a parametric model to serve as the proxy of the latent data structure or data-generating mechanism at the beginning of an experiment. However, for those experimental scenarios of concern, a sound model is often unavailable before an experiment. Second, those experimental scenarios usually contain a large number of design variables, which potentially leads to a lengthy and costly data collection cycle. Incompetently, the existing experimental procedures are unable to optimize large-scale experiments so as to minimize the experimental length and cost. Facing the two challenges in those experimental scenarios, the aim of the present study is to develop a new experimental procedure that allows an experiment to be conducted without the assumption of a parametric model while still achieving satisfactory prediction, and performs optimization of experimental designs to improve the efficiency of an experiment. The new experimental procedure developed in the present study is named robust adaptive autonomous system (RAAS). RAAS is a procedure for sequential experiments composed of multiple experimental trials, which performs function estimation, variable selection, reverse prediction and design optimization on each trial. Directly addressing the challenges in those experimental scenarios of concern, function estimation and variable selection are performed by data-driven modeling methods to generate a predictive model from data collected during the course of an experiment, thus exempting the requirement of a parametric model at the beginning of an experiment; design optimization is performed to select experimental designs on the fly of an experiment based on their usefulness so that fewest designs are needed to reach useful inferential conclusions. Technically, function estimation is realized by Bayesian P-splines, variable selection is realized by Bayesian spike-and-slab prior, reverse prediction is realized by grid-search and design optimization is realized by the concepts of active learning. The present study demonstrated that RAAS achieves statistical robustness by making accurate predictions without the assumption of a parametric model serving as the proxy of latent data structure while the existing procedures can draw poor statistical inferences if a misspecified model is assumed; RAAS also achieves inferential efficiency by taking fewer designs to acquire useful statistical inferences than non-optimal procedures. Thus, RAAS is expected to be a principled solution to real-world experimental scenarios pursuing robust prediction and efficient experimentation.

  2. Development of a Model for Measuring Scientific Processing Skills Based on Brain-Imaging Technology: Focused on the Experimental Design Process

    ERIC Educational Resources Information Center

    Lee, Il-Sun; Byeon, Jung-Ho; Kim, Young-shin; Kwon, Yong-Ju

    2014-01-01

    The purpose of this study was to develop a model for measuring experimental design ability based on functional magnetic resonance imaging (fMRI) during biological inquiry. More specifically, the researchers developed an experimental design task that measures experimental design ability. Using the developed experimental design task, they measured…

  3. 30 CFR 18.82 - Permit to use experimental electric face equipment in a gassy mine or tunnel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permit to use experimental electric face... Modifications of Approved Machines, and Permits To Use Experimental Equipment § 18.82 Permit to use experimental... to use experimental electric face equipment in a gassy mine or tunnel will be considered only when...

  4. 30 CFR 18.82 - Permit to use experimental electric face equipment in a gassy mine or tunnel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permit to use experimental electric face... Modifications of Approved Machines, and Permits To Use Experimental Equipment § 18.82 Permit to use experimental... to use experimental electric face equipment in a gassy mine or tunnel will be considered only when...

  5. 30 CFR 18.82 - Permit to use experimental electric face equipment in a gassy mine or tunnel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Permit to use experimental electric face... Modifications of Approved Machines, and Permits To Use Experimental Equipment § 18.82 Permit to use experimental... to use experimental electric face equipment in a gassy mine or tunnel will be considered only when...

  6. 30 CFR 18.82 - Permit to use experimental electric face equipment in a gassy mine or tunnel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permit to use experimental electric face... Modifications of Approved Machines, and Permits To Use Experimental Equipment § 18.82 Permit to use experimental... to use experimental electric face equipment in a gassy mine or tunnel will be considered only when...

  7. 30 CFR 18.82 - Permit to use experimental electric face equipment in a gassy mine or tunnel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Permit to use experimental electric face... Modifications of Approved Machines, and Permits To Use Experimental Equipment § 18.82 Permit to use experimental... to use experimental electric face equipment in a gassy mine or tunnel will be considered only when...

  8. Constitutive Model Calibration via Autonomous Multiaxial Experimentation (Postprint)

    DTIC Science & Technology

    2016-09-17

    test machine. Experimental data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain...data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain conditions. Optimization methods...be used directly in finite element simulations of more complex geometries. Keywords Axial/torsional experimentation • Plasticity • Constitutive model

  9. Adaptive design of visual perception experiments

    NASA Astrophysics Data System (ADS)

    O'Connor, John D.; Hixson, Jonathan; Thomas, James M., Jr.; Peterson, Matthew S.; Parasuraman, Raja

    2010-04-01

    Meticulous experimental design may not always prevent confounds from affecting experimental data acquired during visual perception experiments. Although experimental controls reduce the potential effects of foreseen sources of interference, interaction, or noise, they are not always adequate for preventing the confounding effects of unforeseen forces. Visual perception experimentation is vulnerable to unforeseen confounds because of the nature of the associated cognitive processes involved in the decision task. Some confounds are beyond the control of experimentation, such as what a participant does immediately prior to experimental participation, or the participant's attitude or emotional state. Other confounds may occur through ignorance of practical control methods on the part of the experiment's designer. The authors conducted experiments related to experimental fatigue and initially achieved significant results that were, upon re-examination, attributable to a lack of adequate controls. Re-examination of the original results and the processes and events that led to them yielded a second experimental design with more experimental controls and significantly different results. The authors propose that designers of visual perception experiments can benefit from planning to use a test-fix-test or adaptive experimental design cycle, so that unforeseen confounds in the initial design can be remedied.

  10. Metacognitive and multimedia support of experiments in inquiry learning for science teacher preparation

    NASA Astrophysics Data System (ADS)

    Bruckermann, Till; Aschermann, Ellen; Bresges, André; Schlüter, Kirsten

    2017-04-01

    Promoting preservice science teachers' experimentation competency is required to provide a basis for meaningful learning through experiments in schools. However, preservice teachers show difficulties when experimenting. Previous research revealed that cognitive scaffolding promotes experimentation competency by structuring the learning process, while metacognitive and multimedia support enhance reflection. However, these support measures have not yet been tested in combination. Therefore, we decided to use cognitive scaffolding to support students' experimental achievements and supplement it by metacognitive and multimedia scaffolds in the experimental groups. Our research question is to what extent supplementing cognitive support by metacognitive and multimedia scaffolding further promotes experimentation competency. The intervention has been applied in a two-factorial design to a two-month experimental course for 63 biology teacher students in their first bachelor year. Pre-post-test measured experimentation competency in a performance assessment. Preservice teachers worked in groups of four. Therefore, measurement took place at group level (N = 16). Independent observers rated preservice teachers' group performance qualitatively on a theory-based system of categories. Afterwards, experimentation competency levels led to quantitative frequency analysis. The results reveal differing gains in experimentation competency but contrary to our hypotheses. Implications of combining scaffolding measures on promoting experimentation competency are discussed.

  11. SPRUCE Epiphytic Lichen Annual Biomass Growth in Experimental Plots, 2013-2016.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.J.; Nelson, P.R.; Jovan, S.

    This data set provides annual biomass growth rates of epiphytic lichen transplants in the SPRUCE experimental plots at the S1 Bog of the Marcell Experimental Forest. Epiphytic lichens (Evernia mesomorpha, a boreal forest indicator species) were collected at S1 Bog outside the experimental enclosures and mounted on Picea mariana branches inside the 10 experimental enclosures and the 2 ambient plots without enclosures using transplant techniques. Lichen transplants were weighed annually, in August of 2013-2016, to measure biomass growth rates as a function of experimental temperature and CO2 treatments.

  12. Reform and practice for photoelectric specialty experimental teaching based on virtual simulation experiment platform

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Lv, Qingsong; Wu, Maocheng; Xu, Yishen; Gu, Jihua

    2017-08-01

    In view of some problems about the traditional photoelectric specialty experimental teaching process, such as separation of theoretical teaching and practical teaching, immobilization of experimental teaching contents, low quality of experiments and no obvious effect, we explored and practiced a new experimental teaching model of "theoretical teaching, virtual simulation and physical experiment", which combined the characteristics of photoelectric information science and engineering major and the essential requirements of engineering innovation talents cultivation. The virtual simulation experiment platform has many advantages, such as high performance-to-price ratio, easy operation and open experimental process, which makes virtual simulation combine physical experiment, complete each other with virtual for practical. After the users log into the virtual simulation experimental platform, they will first study the contents of the experiment, clarify the purpose and requirements of the experiment, master the method of using the instrument and the relevant notes, and then use the experimental instruments provided by the platform to build the corresponding experimental system. Once the experimenter's optical path is set incorrectly or the instrument parameters are set incorrectly, the error or warning message will be automatically triggered, and the reference information will be given instructing the student to complete the correct experimental operation. The results of our practice in recent years show that the teaching reform of the photoelectric specialty experiments has not only brought great convenience to the experimental teaching management, broadened the students' thinking and vision, enhanced the students' experimental skills and comprehensive qualities, but also made the students participate in the experiment with their enthusiasm. During the construction of experiment programs, the students' engineering practical ability and independent innovation awareness has been improved greatly. In the next time, based on the development trend of optoelectronic discipline and our own major characteristics, we will further perfect and enrich the construction of virtual simulation experimental platform and continuously improve the quality of experimental teaching.

  13. Assessing effects of a semi-customized experimental cervical pillow on symptomatic adults with chronic neck pain with and without headache

    PubMed Central

    Erfanian, Parham; Tenzif, Siamak; Guerriero, Rocco C

    2004-01-01

    Objective To determine the effects of a semi-customized experimental cervical pillow on symptomatic adults with chronic neck pain (with and without headache) during a four week study. Design A randomized controlled trial. Sample size Thirty-six adults were recruited for the trial, and randomly assigned to experimental or non-experimental groups of 17 and 19 participants respectively. Subjects Adults with chronic biomechanical neck pain who were recruited from the Canadian Memorial Chiropractic College (CMCC) Walk-in Clinic. Outcome measures Subjective findings were assessed using a mail-in self-report daily pain diary, and the CMCC Neck Disability Index (NDI). Statistical analysis Using repeated measure analysis of variance weekly NDI scores, average weekly AM and PM pain scores between the experimental and non-experimental groups were compared throughout the study. Results The experimental group had statistically significant lower NDI scores (p < 0.05) than the non-experimental group. The average weekly AM scores were lower and statistically significant (p < 0.05) in the experimental group. The PM scores in the experimental group were lower but not statistically significant than the other group. Conclusions The study results show that compared to conventional pillows, this experimental semi-customized cervical pillow was effective in reducing low-level neck pain intensity, especially in the morning following its use in a 4 week long study. PMID:17549216

  14. Methodological convergence of program evaluation designs.

    PubMed

    Chacón-Moscoso, Salvador; Anguera, M Teresa; Sanduvete-Chaves, Susana; Sánchez-Martín, Milagrosa

    2014-01-01

    Nowadays, the confronting dichotomous view between experimental/quasi-experimental and non-experimental/ethnographic studies still exists but, despite the extensive use of non-experimental/ethnographic studies, the most systematic work on methodological quality has been developed based on experimental and quasi-experimental studies. This hinders evaluators and planners' practice of empirical program evaluation, a sphere in which the distinction between types of study is changing continually and is less clear. Based on the classical validity framework of experimental/quasi-experimental studies, we carry out a review of the literature in order to analyze the convergence of design elements in methodological quality in primary studies in systematic reviews and ethnographic research. We specify the relevant design elements that should be taken into account in order to improve validity and generalization in program evaluation practice in different methodologies from a practical methodological and complementary view. We recommend ways to improve design elements so as to enhance validity and generalization in program evaluation practice.

  15. Optimization of an angle-beam ultrasonic approach for characterization of impact damage in composites

    NASA Astrophysics Data System (ADS)

    Henry, Christine; Kramb, Victoria; Welter, John T.; Wertz, John N.; Lindgren, Eric A.; Aldrin, John C.; Zainey, David

    2018-04-01

    Advances in NDE method development are greatly improved through model-guided experimentation. In the case of ultrasonic inspections, models which provide insight into complex mode conversion processes and sound propagation paths are essential for understanding the experimental data and inverting the experimental data into relevant information. However, models must also be verified using experimental data obtained under well-documented and understood conditions. Ideally, researchers would utilize the model simulations and experimental approach to efficiently converge on the optimal solution. However, variability in experimental parameters introduce extraneous signals that are difficult to differentiate from the anticipated response. This paper discusses the results of an ultrasonic experiment designed to evaluate the effect of controllable variables on the anticipated signal, and the effect of unaccounted for experimental variables on the uncertainty in those results. Controlled experimental parameters include the transducer frequency, incidence beam angle and focal depth.

  16. Comparisons of hydrology, geology, and physical characteristics between Tenderfoot Creek Experimental Forest (east side) Montana, and Coram Experimental Forest (west side) Montana

    Treesearch

    Phillip E. Farnes; Raymond C. Shearer; Ward W. McCaughey; Katherine J. Hansen

    1995-01-01

    There are two experimental forests in Montana established by the U.S. Department of Agriculture, Forest Service, Intermountain Research Station (INT). Both experimental forests are administered by INT's Research work Unit, RWU-4151, Silviculture of Subalpine Forest Ecosystems. Tenderfoot Creek Experimental Forest (TCEF) is east of the continental Divide and is...

  17. Reform of experimental teaching based on quality cultivation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yan, Xingwei; Liu, Wei; Yao, Tianfu; Shi, Jianhua; Lei, Bing; Hu, Haojun

    2017-08-01

    Experimental teaching plays an import part in quality education which devotes to cultivating students with innovative spirit, strong technological talents and practical ability. However, in the traditional experimental teaching mode, the experiments are treated as a vassal or supplementary mean of theoretical teaching, and students prefer focus on theory to practice. Therefore, the traditional experimental teaching mode is difficult to meet the requirements of quality education. To address this issue, the reform of experimental teaching is introduced in this paper taking the photoelectric detector experiment as the example. The new experimental teaching mode is designed from such aspects as experimental content, teaching method and experimental evaluation. With the purpose of cultivating students' practical ability, two different-level experimental content is designed. Not only the basic experiments used to verify the theory are set to consolidate the students' learned theoretical knowledge, but also comprehensive experiments are designed to encourage the students to apply their learned knowledge to solve practical problems. In the teaching process, heuristic teaching thought is adopt and the traditional `teacher-centered' teaching form is replaced by `student-centered' form, which aims to encourage students to design the experimental systems by their own with the teacher's guidance. In addition to depending on stimulating the students' interest of science research, experimental evaluation is necessary to urge students to complete the experiments efficiently. Multifaceted evaluation method is proposed to test the students' mastery of theoretical knowledge, practice ability, troubleshooting and problem solving skills, and innovation capability comprehensively. Practices demonstrated the satisfying effect of our experimental teaching mode.

  18. Is animal experimentation fundamental?

    PubMed

    d'Acampora, Armando José; Rossi, Lucas Félix; Ely, Jorge Bins; de Vasconcellos, Zulmar Acciolli

    2009-01-01

    The understanding about the utilization of experimental animals in scientific research and in teaching is many times a complex issue. Special attention needs to be paid to attain the understanding by the general public of the importance of animal experimentation in experimental research and in undergraduate medical teaching. Experimental teaching and research based on the availability of animals for experimentation is important and necessary for the personal and scientific development of the physician-to-be. The technological arsenal which intends to mimic experimentation animals and thus fully replace their use many times does not prove to be compatible with the reality of the living animal. The purpose of this paper is to discuss aspects concerning this topic, bringing up an issue which is complex and likely to arouse in-depth reflections.

  19. Preface of "The Second Symposium on Border Zones Between Experimental and Numerical Application Including Solution Approaches By Extensions of Standard Numerical Methods"

    NASA Astrophysics Data System (ADS)

    Ortleb, Sigrun; Seidel, Christian

    2017-07-01

    In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.

  20. The '3Is' of animal experimentation.

    PubMed

    2012-05-29

    Animal experimentation in scientific research is a good thing: important, increasing and often irreplaceable. Careful experimental design and reporting are at least as important as attention to welfare in ensuring that the knowledge we gain justifies using live animals as experimental tools.

  1. [Some notes on the history of the experimental surgery laboratory. Reflections on its relevance in education and surgical research].

    PubMed

    de la Garza-Rodea, Anabel Sofía; Padilla-Sánchez, Luis; de la Garza-Aguilar, Javier; Neri-Vela, Rolando

    2007-01-01

    The progress of medicine has largely been due to research, and for surgery, in particular, the experimental surgical laboratory has been considered fundamental to the surgeon's education. In this study, a general view of experimental surgery is given in animal models based on bioethical norms as well as to design, create and apply different surgical procedures before performing in humans. Experimental surgery also facilitates surgical teaching and promotes the surgeon's scientific reasoning. Methods. This is a retrospective and descriptive study. Data were collected from direct and indirect sources of available publications on the historical, bioethical and educational aspects of medicine, focusing on surgery. The important facts corresponding to the field of experimental surgery and applicable in Mexico were selected. Concepts of experimental surgical models and of the experimental surgery laboratory were described. Bioethical considerations are emphasized for care of experimental animals. Finally, this work focuses on the importance of surgical experimentation in current and future development of the surgical researcher. Conclusions. Experimentation with animal models in a surgical laboratory is essential for surgical teaching and promotes development of the scientific thought in the surgeon. It is necessary for surgical research and is fundamental for making progress in surgery, treatment and medicine as science.

  2. 14 CFR 21.275 - Experimental certificates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Experimental certificates. 21.275 Section... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Delegation Option Authorization Procedures § 21.275 Experimental certificates. (a) The manufacturer shall, before issuing an experimental certificate, obtain from the...

  3. 14 CFR 21.275 - Experimental certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Experimental certificates. 21.275 Section... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Delegation Option Authorization Procedures § 21.275 Experimental certificates. (a) The manufacturer shall, before issuing an experimental certificate, obtain from the...

  4. 75 FR 12003 - Investing in Innovation Fund

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ..., Proposed Practice, Strategy, or implemented experimental implemented strategy, or program, Program. study or well-designed experimental or quasi- or one similar to it, and well-implemented experimental study, has been attempted quasi-experimental with small sample sizes previously, albeit on a study; or (2...

  5. 77 FR 18250 - Agency Information Collection Activities; Proposed Collection; Comment Request; Experimental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... of information technology. Experimental Study of Graphic Cigarette Warning Labels--(OMB Control... graphic warnings required by the Tobacco Control Act. The experimental study data will be collected from...] Agency Information Collection Activities; Proposed Collection; Comment Request; Experimental Study of...

  6. 78 FR 51678 - Market Tests of Experimental Postal Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ...] Market Tests of Experimental Postal Products AGENCY: Postal Regulatory Commission. ACTION: Proposed rule... tests of experimental products. The proposed rules address the contents of market test filings, describe... Tests I. Introduction The Commission proposes to establish rules governing market tests of experimental...

  7. Theoretical and experimental researches of the liquid evaporation during thermal vacuum influences

    NASA Astrophysics Data System (ADS)

    Trushlyakov, V.; Panichkin, A.; Prusova, O.; Zharikov, K.; Dron, M.

    2018-01-01

    The mathematical model of the evaporation process of model liquid with the free surface boundary conditions of the "mirror" type under thermal vacuum influence and the numerical estimates of the evaporation process parameters are developed. An experimental stand, comprising a vacuum chamber, an experimental model tank with a heating element is designed; the experimental data are obtained. A comparative analysis of numerical and experimental results showed their close match.

  8. 9 CFR 103.1 - Preparation of experimental biological products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Preparation of experimental biological... PRODUCTION, DISTRIBUTION, AND EVALUATION OF BIOLOGICAL PRODUCTS PRIOR TO LICENSING § 103.1 Preparation of experimental biological products. Except as otherwise provided in this section, experimental biological...

  9. 9 CFR 103.1 - Preparation of experimental biological products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Preparation of experimental biological... PRODUCTION, DISTRIBUTION, AND EVALUATION OF BIOLOGICAL PRODUCTS PRIOR TO LICENSING § 103.1 Preparation of experimental biological products. Except as otherwise provided in this section, experimental biological...

  10. Experimental and Quasi-Experimental Design.

    ERIC Educational Resources Information Center

    Cottrell, Edward B.

    With an emphasis on the problems of control of extraneous variables and threats to internal and external validity, the arrangement or design of experiments is discussed. The purpose of experimentation in an educational institution, and the principles governing true experimentation (randomization, replication, and control) are presented, as are…

  11. NNDC Databases

    Science.gov Websites

    radiation. It includes an interactive chart of nuclides and a level plotting tool. XUNDL Experimental Unevaluated Nuclear Data List Experimental nuclear structure and decay data, covering more than 2,500 recent parameters* Retrieved information CSISRS alias EXFOR Nuclear reaction experimental data Experimental nuclear

  12. 9 CFR 103.1 - Preparation of experimental biological products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Preparation of experimental biological... PRODUCTION, DISTRIBUTION, AND EVALUATION OF BIOLOGICAL PRODUCTS PRIOR TO LICENSING § 103.1 Preparation of experimental biological products. Except as otherwise provided in this section, experimental biological...

  13. Identifying controlling variables for math computation fluency through experimental analysis: the interaction of stimulus control and reinforcing consequences.

    PubMed

    Hofstadter-Duke, Kristi L; Daly, Edward J

    2015-03-01

    This study investigated a method for conducting experimental analyses of academic responding. In the experimental analyses, academic responding (math computation), rather than problem behavior, was reinforced across conditions. Two separate experimental analyses (one with fluent math computation problems and one with non-fluent math computation problems) were conducted with three elementary school children using identical contingencies while math computation rate was measured. Results indicate that the experimental analysis with non-fluent problems produced undifferentiated responding across participants; however, differentiated responding was achieved for all participants in the experimental analysis with fluent problems. A subsequent comparison of the single-most effective condition from the experimental analyses replicated the findings with novel computation problems. Results are discussed in terms of the critical role of stimulus control in identifying controlling consequences for academic deficits, and recommendations for future research refining and extending experimental analysis to academic responding are made. © The Author(s) 2014.

  14. [Research-oriented experimental course of plant cell and gene engineering for undergraduates].

    PubMed

    Xiaofei, Lin; Rong, Zheng; Morigen, Morigen

    2015-04-01

    Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.

  15. The experimenters' regress reconsidered: Replication, tacit knowledge, and the dynamics of knowledge generation.

    PubMed

    Feest, Uljana

    2016-08-01

    This paper revisits the debate between Harry Collins and Allan Franklin, concerning the experimenters' regress. Focusing my attention on a case study from recent psychology (regarding experimental evidence for the existence of a Mozart Effect), I argue that Franklin is right to highlight the role of epistemological strategies in scientific practice, but that his account does not sufficiently appreciate Collins's point about the importance of tacit knowledge in experimental practice. In turn, Collins rightly highlights the epistemic uncertainty (and skepticism) surrounding much experimental research. However, I will argue that his analysis of tacit knowledge fails to elucidate the reasons why scientists often are (and should be) skeptical of other researchers' experimental results. I will present an analysis of tacit knowledge in experimental research that not only answers to this desideratum, but also shows how such skepticism can in fact be a vital enabling factor for the dynamic processes of experimental knowledge generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship-Quasi-Experimental Designs.

    PubMed

    Schweizer, Marin L; Braun, Barbara I; Milstone, Aaron M

    2016-10-01

    Quasi-experimental studies evaluate the association between an intervention and an outcome using experiments in which the intervention is not randomly assigned. Quasi-experimental studies are often used to evaluate rapid responses to outbreaks or other patient safety problems requiring prompt, nonrandomized interventions. Quasi-experimental studies can be categorized into 3 major types: interrupted time-series designs, designs with control groups, and designs without control groups. This methods paper highlights key considerations for quasi-experimental studies in healthcare epidemiology and antimicrobial stewardship, including study design and analytic approaches to avoid selection bias and other common pitfalls of quasi-experimental studies. Infect Control Hosp Epidemiol 2016;1-6.

  17. Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship – Quasi-Experimental Designs

    PubMed Central

    Schweizer, Marin L.; Braun, Barbara I.; Milstone, Aaron M.

    2016-01-01

    Quasi-experimental studies evaluate the association between an intervention and an outcome using experiments in which the intervention is not randomly assigned. Quasi-experimental studies are often used to evaluate rapid responses to outbreaks or other patient safety problems requiring prompt non-randomized interventions. Quasi-experimental studies can be categorized into three major types: interrupted time series designs, designs with control groups, and designs without control groups. This methods paper highlights key considerations for quasi-experimental studies in healthcare epidemiology and antimicrobial stewardship including study design and analytic approaches to avoid selection bias and other common pitfalls of quasi-experimental studies. PMID:27267457

  18. Effects of weak electromagnetic fields on Escherichia coli and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Smith, Derek A.

    Previous studies of electromagnetic field effects on bacteria are examined, and new experimental procedures and their results are discussed. Experimental samples of Escherichia coli and Staphylococcus aureus were prepared in different conditions, and measurements of optical density were used to track growth rates after removing the samples from their associated experimental environments. Experimental environments varied in magnetic field intensities and frequencies, including a control environment of minimal field intensity. Plots of experimental data sets and their associated averages are used to visualize the experimental outcomes, and differences in growth patterns are evaluated. Results are then used to hypothesize the mechanisms and consequences of the potentially observed field effects.

  19. Curriculum system for experimental teaching in optoelectronic information

    NASA Astrophysics Data System (ADS)

    Di, Hongwei; Chen, Zhenqiang; Zhang, Jun; Luo, Yunhan

    2017-08-01

    The experimental curriculum system is directly related to talent training quality. Based on the careful investigation of the developing request of the optoelectronic information talents in the new century, the experimental teaching goal and the content, the teaching goal was set to cultivate students' innovative consciousness, innovative thinking, creativity and problem solving ability. Through straightening out the correlation among the experimental teaching in the main courses, the whole structure design was phased out, as well as the hierarchical curriculum connotation. According to the ideas of "basic, comprehensive, applied and innovative", the construction of experimental teaching system called "triple-three" was put forward for the optoelectronic information experimental teaching practice.

  20. Experimental measurement of flexion-extension movement in normal and corpse prosthetic elbow joint.

    PubMed

    TarniŢă, Daniela; TarniŢă, DănuŢ Nicolae

    2016-01-01

    This paper presents a comparative experimental study of flexion-extension movement in healthy elbow and in the prosthetic elbow joint fixed on an original experimental bench. Measurements were carried out in order to validate the functional morphology and a new elbow prosthesis type ball head. The three-dimensional (3D) model and the physical prototype of our experimental bench used to test elbow endoprosthesis at flexion-extension and pronation-supination movements is presented. The measurements were carried out on a group of nine healthy subjects and on the prosthetic corpse elbow, the experimental data being obtained for flexion-extension movement cycles. Experimental data for the two different flexion-extension tests for the nine subjects and for the corpse prosthetic elbow were acquired using SimiMotion video system. Experimental data were processed statistically. The corresponding graphs were obtained for all subjects in the experimental group, and for corpse prosthetic elbow for both flexion-extension tests. The statistical analysis has proved that the flexion angles of healthy elbows were significantly close to the values measured at the prosthetic elbow fixed on the experimental bench. The studied elbow prosthesis manages to re-establish the mobility for the elbow joint as close to the normal one.

  1. An experimental and computational investigation of flow in a radial inlet of an industrial pipeline centrifugal compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flathers, M.B.; Bache, G.E.; Rainsberger, R.

    1996-04-01

    The flow field of a complex three-dimensional radial inlet for an industrial pipeline centrifugal compressor has been experimentally determined on a half-scale model. Based on the experimental results, inlet guide vanes have been designed to correct pressure and swirl angle distribution deficiencies. The unvaned and vaned inlets are analyzed with a commercially available fully three-dimensional viscous Navier-Stokes code. Since experimental results were available prior to the numerical study, the unvaned analysis is considered a postdiction while the vaned analysis is considered a prediction. The computational results of the unvaned inlet have been compared to the previously obtained experimental results. Themore » experimental method utilized for the unvaned inlet is repeated for the vaned inlet and the data have been used to verify the computational results. The paper will discuss experimental, design, and computational procedures, grid generation, boundary conditions, and experimental versus computational methods. Agreement between experimental and computational results is very good, both in prediction and postdiction modes. The results of this investigation indicate that CFD offers a measurable advantage in design, schedule, and cost and can be applied to complex, three-dimensional radial inlets.« less

  2. Development and Validation of a Rubric for Diagnosing Students’ Experimental Design Knowledge and Difficulties

    PubMed Central

    Dasgupta, Annwesa P.; Anderson, Trevor R.

    2014-01-01

    It is essential to teach students about experimental design, as this facilitates their deeper understanding of how most biological knowledge was generated and gives them tools to perform their own investigations. Despite the importance of this area, surprisingly little is known about what students actually learn from designing biological experiments. In this paper, we describe a rubric for experimental design (RED) that can be used to measure knowledge of and diagnose difficulties with experimental design. The development and validation of the RED was informed by a literature review and empirical analysis of undergraduate biology students’ responses to three published assessments. Five areas of difficulty with experimental design were identified: the variable properties of an experimental subject; the manipulated variables; measurement of outcomes; accounting for variability; and the scope of inference appropriate for experimental findings. Our findings revealed that some difficulties, documented some 50 yr ago, still exist among our undergraduate students, while others remain poorly investigated. The RED shows great promise for diagnosing students’ experimental design knowledge in lecture settings, laboratory courses, research internships, and course-based undergraduate research experiences. It also shows potential for guiding the development and selection of assessment and instructional activities that foster experimental design. PMID:26086658

  3. 16 CFR 1702.9 - Relevant experimental data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Relevant experimental data. 1702.9 Section... AND REQUIREMENTS § 1702.9 Relevant experimental data. Experimental data are generated in both animals.... Certain toxicological effects cannot generally be evaluated in human beings. This is especially true of...

  4. 16 CFR 1702.9 - Relevant experimental data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Relevant experimental data. 1702.9 Section... AND REQUIREMENTS § 1702.9 Relevant experimental data. Experimental data are generated in both animals.... Certain toxicological effects cannot generally be evaluated in human beings. This is especially true of...

  5. 16 CFR 1702.9 - Relevant experimental data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Relevant experimental data. 1702.9 Section... AND REQUIREMENTS § 1702.9 Relevant experimental data. Experimental data are generated in both animals.... Certain toxicological effects cannot generally be evaluated in human beings. This is especially true of...

  6. 16 CFR 1702.9 - Relevant experimental data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Relevant experimental data. 1702.9 Section... AND REQUIREMENTS § 1702.9 Relevant experimental data. Experimental data are generated in both animals.... Certain toxicological effects cannot generally be evaluated in human beings. This is especially true of...

  7. 14 CFR 91.319 - Aircraft having experimental certificates: Operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft having experimental certificates... RULES Special Flight Operations § 91.319 Aircraft having experimental certificates: Operating limitations. (a) No person may operate an aircraft that has an experimental certificate— (1) For other than...

  8. 14 CFR 91.319 - Aircraft having experimental certificates: Operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aircraft having experimental certificates... RULES Special Flight Operations § 91.319 Aircraft having experimental certificates: Operating limitations. (a) No person may operate an aircraft that has an experimental certificate— (1) For other than...

  9. 14 CFR 91.319 - Aircraft having experimental certificates: Operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aircraft having experimental certificates... RULES Special Flight Operations § 91.319 Aircraft having experimental certificates: Operating limitations. (a) No person may operate an aircraft that has an experimental certificate— (1) For other than...

  10. 14 CFR 91.319 - Aircraft having experimental certificates: Operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aircraft having experimental certificates... RULES Special Flight Operations § 91.319 Aircraft having experimental certificates: Operating limitations. (a) No person may operate an aircraft that has an experimental certificate— (1) For other than...

  11. 14 CFR 91.319 - Aircraft having experimental certificates: Operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aircraft having experimental certificates... RULES Special Flight Operations § 91.319 Aircraft having experimental certificates: Operating limitations. (a) No person may operate an aircraft that has an experimental certificate— (1) For other than...

  12. 50 CFR 648.12 - Experimental fishing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Experimental fishing. 648.12 Section 648... Experimental fishing. The Regional Administrator may exempt any person or vessel from the requirements of... red crab), N (tilefish), and O (skates) of this part for the conduct of experimental fishing...

  13. 50 CFR 648.12 - Experimental fishing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Experimental fishing. 648.12 Section 648... Experimental fishing. The Regional Administrator may exempt any person or vessel from the requirements of... red crab), N (tilefish), and O (skates) of this part for the conduct of experimental fishing...

  14. 50 CFR 648.12 - Experimental fishing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Experimental fishing. 648.12 Section 648... Experimental fishing. The Regional Administrator may exempt any person or vessel from the requirements of... red crab), N (tilefish), and O (skates) of this part for the conduct of experimental fishing...

  15. 50 CFR 648.12 - Experimental fishing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Experimental fishing. 648.12 Section 648... Experimental fishing. The Regional Administrator may exempt any person or vessel from the requirements of... red crab), N (tilefish), and O (skates) of this part for the conduct of experimental fishing...

  16. 75 FR 7604 - Agency Information Collection Activities; Proposed Collection; Comment Request; Experimental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... implement the mandatory graphic warnings required by the Tobacco Control Act. The experimental study data...] Agency Information Collection Activities; Proposed Collection; Comment Request; Experimental Study of... on the Experimental Study of Graphic Cigarette Warning Labels that is being conducted in support of...

  17. 9 CFR 103.2 - Disposition of animals administered experimental biological products or live organisms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... research sponsor to control disposition of all animals administered experimental biological products or... experimental biological products or live organisms. 103.2 Section 103.2 Animals and Animal Products ANIMAL AND... PRODUCTS; ORGANISMS AND VECTORS EXPERIMENTAL PRODUCTION, DISTRIBUTION, AND EVALUATION OF BIOLOGICAL...

  18. Electrical stimulation attenuates morphological alterations and prevents atrophy of the denervated cranial tibial muscle.

    PubMed

    Bueno, Cleuber Rodrigo de Souza; Pereira, Mizael; Favaretto, Idvaldo Aparecido; Bortoluci, Carlos Henrique Fachin; Santos, Thais Caroline Pereira Dos; Dias, Daniel Ventura; Daré, Letícia Rossi; Rosa, Geraldo Marco

    2017-01-01

    To investigate if electrical stimulation through Russian current is able to maintain morphology of the cranial tibial muscle of experimentally denervated rats. Thirty-six Wistar rats were divided into four groups: the Initial Control Group, Final Control Group, Experimental Denervated and Treated Group, Experimental Denervated Group. The electrostimulation was performed with a protocol of Russian current applied three times per week, for 45 days. At the end, the animals were euthanized and histological and morphometric analyses were performed. Data were submitted to statistical analysis with a significance level of p<0.05. The Experimental Denervated Group and the Experimental Denervated and Treated Group had cross-sectional area of smaller fiber compared to the Final Control Group. However, there was significant difference between the Experimental Denervated Group and Experimental Denervated and Treated Group, showing that electrical stimulation minimized muscle atrophy. The Experimental Denervated and Treated Group and Initial Control Group showed similar results. Electrical stimulation through Russian current acted favorably in maintaining morphology of the cranial tibial muscle that was experimentally denervated, minimizing muscle atrophy. Investigar se a estimulação elétrica pela corrente russa é capaz de manter a morfologia do músculo tibial cranial de ratos desnervados experimentalmente. Foram utilizados 36 ratos Wistar, distribuídos em quatro grupos: Grupo Controle Inicial, Grupo Controle Final, Grupo Experimental Desnervado Tratado, Grupo Experimental Desnervado. A eletroestimulação foi realizada com um protocolo de corrente russa aplicada três vezes por semanas, durante 45 dias. Ao final, os animais foram eutanasiados e, em seguida, foram realizadas as análises histológica e morfométrica. Os dados foram submetidos à análise estatística, com nível de significância de p<0,05. Os Grupos Experimental Desnervado e o Grupo Experimental Desnervado Tratado apresentaram área de secção transversal da fibra menor quando comparados ao Grupo Controle Final. Entretanto, constatou-se diferença significativa entre o Grupo Experimental Desnervado e o Grupo Experimental Desnervado Tratado, mostrando que a estimulação elétrica minimizou atrofia muscular. Ainda, observou-se que o Grupo Experimental Desnervado Tratado apresentou resultados semelhantes ao Grupo Controle Inicial. A estimulação elétrica por meio da corrente russa foi favorável na manutenção da morfologia do músculo tibial cranial desnervado experimentalmente, minimizando a atrofia muscular.

  19. A multiscale strength model for tantalum over an extended range of strain rates

    NASA Astrophysics Data System (ADS)

    Barton, N. R.; Rhee, M.

    2013-09-01

    A strength model for tantalum is developed and exercised across a range of conditions relevant to various types of experimental observations. The model is based on previous multiscale modeling work combined with experimental observations. As such, the model's parameterization includes a hybrid of quantities that arise directly from predictive sub-scale physics models and quantities that are adjusted to align the model with experimental observations. Given current computing and experimental limitations, the response regions for sub-scale physics simulations and detailed experimental observations have been largely disjoint. In formulating the new model and presenting results here, attention is paid to integrated experimental observations that probe strength response at the elevated strain rates where a previous version of the model has generally been successful in predicting experimental data [Barton et al., J. Appl. Phys. 109(7), 073501 (2011)].

  20. "They Sweat for Science": The Harvard Fatigue Laboratory and Self-Experimentation in American Exercise Physiology.

    PubMed

    Johnson, Andi

    2015-08-01

    In many scientific fields, the practice of self-experimentation waned over the course of the twentieth century. For exercise physiologists working today, however, the practice of self-experimentation is alive and well. This paper considers the role of the Harvard Fatigue Laboratory and its scientific director, D. Bruce Dill, in legitimizing the practice of self-experimentation in exercise physiology. Descriptions of self-experimentation are drawn from papers published by members of the Harvard Fatigue Lab. Attention is paid to the ethical and practical justifications for self-experimentation in both the lab and the field. Born out of the practical, immediate demands of fatigue protocols, self-experimentation performed the long-term, epistemological function of uniting physiological data across time and space, enabling researchers to contribute to a general human biology program.

  1. Physiotherapists use a small number of behaviour change techniques when promoting physical activity: A systematic review comparing experimental and observational studies.

    PubMed

    Kunstler, Breanne E; Cook, Jill L; Freene, Nicole; Finch, Caroline F; Kemp, Joanne L; O'Halloran, Paul D; Gaida, James E

    2018-06-01

    Physiotherapists promote physical activity as part of their practice. This study reviewed the behaviour change techniques physiotherapists use when promoting physical activity in experimental and observational studies. Systematic review of experimental and observational studies. Twelve databases were searched using terms related to physiotherapy and physical activity. We included experimental studies evaluating the efficacy of physiotherapist-led physical activity interventions delivered to adults in clinic-based private practice and outpatient settings to individuals with, or at risk of, non-communicable diseases. Observational studies reporting the techniques physiotherapists use when promoting physical activity were also included. The behaviour change techniques used in all studies were identified using the Behaviour Change Technique Taxonomy. The behaviour change techniques appearing in efficacious and inefficacious experimental interventions were compared using a narrative approach. Twelve studies (nine experimental and three observational) were retained from the initial search yield of 4141. Risk of bias ranged from low to high. Physiotherapists used seven behaviour change techniques in the observational studies, compared to 30 behaviour change techniques in the experimental studies. Social support (unspecified) was the most frequently identified behaviour change technique across both settings. Efficacious experimental interventions used more behaviour change techniques (n=29) and functioned in more ways (n=6) than did inefficacious experimental interventions (behaviour change techniques=10 and functions=1). Physiotherapists use a small number of behaviour change techniques. Less behaviour change techniques were identified in observational studies compared to experimental studies, suggesting physiotherapists use less BCTs clinically than experimentally. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. 76 FR 71087 - Market Test of Experimental Product: “First-Class Tracer”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... POSTAL SERVICE Market Test of Experimental Product: ``First-Class Tracer'' AGENCY: Postal Service \\TM\\. ACTION: Notice. SUMMARY: The Postal Service gives notice of a market test of an experimental... ``First-Class Tracer'' experimental product on or after December 7, 2011. The Postal Service has filed...

  3. 26 CFR 1.174-1 - Research and experimental expenditures; in general.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (continued) § 1.174-1 Research and experimental expenditures; in general. Section 174 provides two methods for treating research or experimental expenditures paid or incurred by the taxpayer in connection with... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Research and experimental expenditures; in...

  4. The Question of Education Science: "Experiment"ism Versus "Experimental"ism

    ERIC Educational Resources Information Center

    Howe, Kenneth R.

    2005-01-01

    The ascendant view in the current debate about education science -- experimentism -- is a reassertion of the randomized experiment as the methodological gold standard. Advocates of this view have ignored, not answered, long-standing criticisms of the randomized experiment: its frequent impracticality, its lack of external validity, its confinement…

  5. Leader Positivity and Follower Creativity: An Experimental Analysis

    ERIC Educational Resources Information Center

    Avey, James B.; Richmond, F. Lynn; Nixon, Don R.

    2012-01-01

    Using an experimental research design, 191 working adults were randomly assigned to two experimental conditions in order to test a theoretical model linking leader and follower positive psychological capital (PsyCap). Multiple methods were used to gather information from the participants. We found when leader PsyCap was manipulated experimentally,…

  6. 34 CFR 387.1 - What is the Experimental and Innovative Training Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true What is the Experimental and Innovative Training Program...) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EXPERIMENTAL AND INNOVATIVE TRAINING General § 387.1 What is the Experimental and Innovative Training Program? This program is...

  7. 34 CFR 387.1 - What is the Experimental and Innovative Training Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true What is the Experimental and Innovative Training Program...) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EXPERIMENTAL AND INNOVATIVE TRAINING General § 387.1 What is the Experimental and Innovative Training Program? This program is...

  8. 78 FR 42702 - Endangered and Threatened Wildlife and Plants; Establishment of a Nonessential Experimental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ...; Establishment of a Nonessential Experimental Population of Topeka Shiner (Notropis topeka) in Northern Missouri... reestablished population as a nonessential experimental population (NEP) within portions of the species... listed species as ``experimental populations.'' Under section 10(j) of the Act and our regulations at 50...

  9. 14 CFR 437.85 - Allowable design changes; modification of an experimental permit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Conditions of an Experimental Permit § 437.85 Allowable design changes; modification of an experimental... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Allowable design changes; modification of an experimental permit. 437.85 Section 437.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION...

  10. 14 CFR 437.85 - Allowable design changes; modification of an experimental permit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Conditions of an Experimental Permit § 437.85 Allowable design changes; modification of an experimental... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Allowable design changes; modification of an experimental permit. 437.85 Section 437.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION...

  11. 50 CFR 648.12 - Experimental fishing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Experimental fishing. 648.12 Section 648... Experimental fishing. Link to an amendment published at 76 FR 60649, Sept. 29, 2011. The Regional Administrator... part for the conduct of experimental fishing beneficial to the management of the resources or fishery...

  12. 34 CFR 387.1 - What is the Experimental and Innovative Training Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What is the Experimental and Innovative Training... (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EXPERIMENTAL AND INNOVATIVE TRAINING General § 387.1 What is the Experimental and Innovative Training Program? This program is...

  13. 34 CFR 387.1 - What is the Experimental and Innovative Training Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What is the Experimental and Innovative Training... (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EXPERIMENTAL AND INNOVATIVE TRAINING General § 387.1 What is the Experimental and Innovative Training Program? This program is...

  14. 14 CFR 437.85 - Allowable design changes; modification of an experimental permit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Conditions of an Experimental Permit § 437.85 Allowable design changes; modification of an experimental... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Allowable design changes; modification of an experimental permit. 437.85 Section 437.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION...

  15. 14 CFR 437.85 - Allowable design changes; modification of an experimental permit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Conditions of an Experimental Permit § 437.85 Allowable design changes; modification of an experimental... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Allowable design changes; modification of an experimental permit. 437.85 Section 437.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION...

  16. 14 CFR 437.85 - Allowable design changes; modification of an experimental permit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Conditions of an Experimental Permit § 437.85 Allowable design changes; modification of an experimental... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Allowable design changes; modification of an experimental permit. 437.85 Section 437.85 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION...

  17. 34 CFR 387.1 - What is the Experimental and Innovative Training Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false What is the Experimental and Innovative Training... (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EXPERIMENTAL AND INNOVATIVE TRAINING General § 387.1 What is the Experimental and Innovative Training Program? This program is...

  18. High-Throughput Experimental Approach Capabilities | Materials Science |

    Science.gov Websites

    NREL High-Throughput Experimental Approach Capabilities High-Throughput Experimental Approach by yellow and is for materials in the upper right sector. NREL's high-throughput experimental ,Te) and oxysulfide sputtering Combi-5: Nitrides and oxynitride sputtering We also have several non

  19. 40 CFR 158.2081 - Experimental use permit biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Experimental use permit biochemical... Pesticides § 158.2081 Experimental use permit biochemical pesticides product chemistry data requirements...: (d) Table. The following table shows the data requirements for experimental use permit biochemical...

  20. 40 CFR 158.2081 - Experimental use permit biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Experimental use permit biochemical... Pesticides § 158.2081 Experimental use permit biochemical pesticides product chemistry data requirements...: (d) Table. The following table shows the data requirements for experimental use permit biochemical...

Top