Sample records for reacting flow simulation

  1. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.

  2. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.

    1992-01-01

    The basic objective of this research is to extend the capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. In the efforts related to LES, we were primarily involved with assessing the performance of the various modern methods based on the Probability Density Function (PDF) methods for providing closures for treating the subgrid fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we concentrated on understanding some of the relevant physics of compressible reacting flows by means of statistical analysis of the data generated by DNS of such flows. In the research conducted in the second year of this program, our efforts focused on the modeling of homogeneous compressible turbulent flows by PDF methods, and on DNS of non-equilibrium reacting high speed mixing layers. Some preliminary work is also in progress on PDF modeling of shear flows, and also on LES of such flows.

  3. Methodologies for extracting kinetic constants for multiphase reacting flow simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.L.; Lottes, S.A.; Golchert, B.

    1997-03-01

    Flows in industrial reactors often involve complex reactions of many species. A computational fluid dynamics (CFD) computer code, ICRKFLO, was developed to simulate multiphase, multi-species reacting flows. The ICRKFLO uses a hybrid technique to calculate species concentration and reaction for a large number of species in a reacting flow. This technique includes a hydrodynamic and reacting flow simulation with a small but sufficient number of lumped reactions to compute flow field properties followed by a calculation of local reaction kinetics and transport of many subspecies (order of 10 to 100). Kinetic rate constants of the numerous subspecies chemical reactions aremore » difficult to determine. A methodology has been developed to extract kinetic constants from experimental data efficiently. A flow simulation of a fluid catalytic cracking (FCC) riser was successfully used to demonstrate this methodology.« less

  4. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.

    1990-01-01

    This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.

  5. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.

    1993-01-01

    The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.

  6. Fictitious domain method for fully resolved reacting gas-solid flow simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Longhui; Liu, Kai; You, Changfu

    2015-10-01

    Fully resolved simulation (FRS) for gas-solid multiphase flow considers solid objects as finite sized regions in flow fields and their behaviours are predicted by solving equations in both fluid and solid regions directly. Fixed mesh numerical methods, such as fictitious domain method, are preferred in solving FRS problems and have been widely researched. However, for reacting gas-solid flows no suitable fictitious domain numerical method has been developed. This work presents a new fictitious domain finite element method for FRS of reacting particulate flows. Low Mach number reacting flow governing equations are solved sequentially on a regular background mesh. Particles are immersed in the mesh and driven by their surface forces and torques integrated on immersed interfaces. Additional treatments on energy and surface reactions are developed. Several numerical test cases validated the method and a burning carbon particles array falling simulation proved the capability for solving moving reacting particle cluster problems.

  7. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.

    1991-01-01

    This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.

  8. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1994-01-01

    The objective of this research is to continue our efforts in advancing the state of knowledge in Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), and Reynolds Averaged Navier Stokes (RANS) methods for the analysis of high-speed reacting turbulent flows. In the first phase of this research, conducted within the past six months, focus was in three directions: RANS of turbulent reacting flows by Probability Density Function (PDF) methods, RANS of non-reacting turbulent flows by advanced turbulence closures, and LES of mixing dominated reacting flows by a dynamics subgrid closure. A summary of our efforts within the past six months of this research is provided in this semi-annual progress report.

  9. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.

    1995-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.

  10. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows. We have just completed the third year of Phase III of this research. This is the Final Report of our activities on this research sponsored by the NASA LaRC.

  11. Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, Cyrus K.; Steinberger, C. J.; Frankel, S. H.

    1992-01-01

    The principal objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. A summary of work accomplished during the last six months is presented.

  12. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.

    1996-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.

  13. A numerical code for the simulation of non-equilibrium chemically reacting flows on hybrid CPU-GPU clusters

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Alexey N.; Kashkovsky, Alexander V.; Borisov, Semyon P.; Shershnev, Anton A.

    2017-10-01

    In the present work a computer code RCFS for numerical simulation of chemically reacting compressible flows on hybrid CPU/GPU supercomputers is developed. It solves 3D unsteady Euler equations for multispecies chemically reacting flows in general curvilinear coordinates using shock-capturing TVD schemes. Time advancement is carried out using the explicit Runge-Kutta TVD schemes. Program implementation uses CUDA application programming interface to perform GPU computations. Data between GPUs is distributed via domain decomposition technique. The developed code is verified on the number of test cases including supersonic flow over a cylinder.

  14. Assessment of the Partially Resolved Numerical Simulation (PRNS) Approach in the National Combustion Code (NCC) for Turbulent Nonreacting and Reacting Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2008-01-01

    This paper describes an approach which aims at bridging the gap between the traditional Reynolds-averaged Navier-Stokes (RANS) approach and the traditional large eddy simulation (LES) approach. It has the characteristics of the very large eddy simulation (VLES) and we call this approach the partially-resolved numerical simulation (PRNS). Systematic simulations using the National Combustion Code (NCC) have been carried out for fully developed turbulent pipe flows at different Reynolds numbers to evaluate the PRNS approach. Also presented are the sample results of two demonstration cases: nonreacting flow in a single injector flame tube and reacting flow in a Lean Direct Injection (LDI) hydrogen combustor.

  15. Assessment of chemistry models for compressible reacting flows

    NASA Astrophysics Data System (ADS)

    Lapointe, Simon; Blanquart, Guillaume

    2014-11-01

    Recent technological advances in propulsion and power devices and renewed interest in the development of next generation supersonic and hypersonic vehicles have increased the need for detailed understanding of turbulence-combustion interactions in compressible reacting flows. In numerical simulations of such flows, accurate modeling of the fuel chemistry is a critical component of capturing the relevant physics. Various chemical models are currently being used in reacting flow simulations. However, the differences between these models and their impacts on the fluid dynamics in the context of compressible flows are not well understood. In the present work, a numerical code is developed to solve the fully coupled compressible conservation equations for reacting flows. The finite volume code is based on the theoretical and numerical framework developed by Oefelein (Prog. Aero. Sci. 42 (2006) 2-37) and employs an all-Mach-number formulation with dual time-stepping and preconditioning. The numerical approach is tested on turbulent premixed flames at high Karlovitz numbers. Different chemical models of varying complexity and computational cost are used and their effects are compared.

  16. Chemical reacting flows

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Sockol, Peter M.

    1987-01-01

    Future aerospace propulsion concepts involve the combination of liquid or gaseous fuels in a highly turbulent internal air stream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at Lewis to better understand chemical reacting flows with the long term goal of establishing these reliable computer codes. The approach to understanding chemical reacting flows is to look at separate simple parts of this complex phenomena as well as to study the full turbulent reacting flow process. As a result research on the fluid mechanics associated with chemical reacting flows was initiated. The chemistry of fuel-air combustion is also being studied. Finally, the phenomena of turbulence-combustion interaction is being investigated. This presentation will highlight research, both experimental and analytical, in each of these three major areas.

  17. Chemical reacting flows

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Sockol, Peter M.

    1990-01-01

    Future aerospace propulsion concepts involve the combustion of liquid or gaseous fuels in a highly turbulent internal airstream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence-combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at LeRC to better understand chemical reacting flows with the long-term goal of establishing these reliable computer codes. Our approach to understand chemical reacting flows is to look at separate, more simple parts of this complex phenomenon as well as to study the full turbulent reacting flow process. As a result, we are engaged in research on the fluid mechanics associated with chemical reacting flows. We are also studying the chemistry of fuel-air combustion. Finally, we are investigating the phenomenon of turbulence-combustion interaction. Research, both experimental and analytical, is highlighted in each of these three major areas.

  18. Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Givi, P.; Madnia, C. K.; Gicquel, L. Y. M.; Sheikhi, M. R. H.; Drozda, T. G.

    2002-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high speed reacting turbulent flows. NASA is interested in the design of various components involved in air breathing propulsion systems such as the scramjet. There is a demand for development of robust tools that can aid in the design procedure. The physics of high speed reactive flows is rich with many complexities. LES is regarded as one of the most promising means of simulating turbulent reacting flows.

  19. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Taulbee, Dale B.; Adumitroaie, Virgil; Sabini, George J.; Shieh, Geoffrey S.

    1994-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122.

  20. Density Weighted FDF Equations for Simulations of Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2011-01-01

    In this report, we briefly revisit the formulation of density weighted filtered density function (DW-FDF) for large eddy simulation (LES) of turbulent reacting flows, which was proposed by Jaberi et al. (Jaberi, F.A., Colucci, P.J., James, S., Givi, P. and Pope, S.B., Filtered mass density function for Large-eddy simulation of turbulent reacting flows, J. Fluid Mech., vol. 401, pp. 85-121, 1999). At first, we proceed the traditional derivation of the DW-FDF equations by using the fine grained probability density function (FG-PDF), then we explore another way of constructing the DW-FDF equations by starting directly from the compressible Navier-Stokes equations. We observe that the terms which are unclosed in the traditional DW-FDF equations are now closed in the newly constructed DW-FDF equations. This significant difference and its practical impact on the computational simulations may deserve further studies.

  1. Modeling of high speed chemically reacting flow-fields

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Carpenter, Mark H.; Kamath, H.

    1989-01-01

    The SPARK3D and SPARK3D-PNS computer programs were developed to model 3-D supersonic, chemically reacting flow-fields. The SPARK3D code is a full Navier-Stokes solver, and is suitable for use in scramjet combustors and other regions where recirculation may be present. The SPARK3D-PNS is a parabolized Navier-Stokes solver and provides an efficient means of calculating steady-state combustor far-fields and nozzles. Each code has a generalized chemistry package, making modeling of any chemically reacting flow possible. Research activities by the Langley group range from addressing fundamental theoretical issues to simulating problems of practical importance. Algorithmic development includes work on higher order and upwind spatial difference schemes. Direct numerical simulations employ these algorithms to address the fundamental issues of flow stability and transition, and the chemical reaction of supersonic mixing layers and jets. It is believed that this work will lend greater insight into phenomenological model development for simulating supersonic chemically reacting flows in practical combustors. Currently, the SPARK3D and SPARK3D-PNS codes are used to study problems of engineering interest, including various injector designs and 3-D combustor-nozzle configurations. Examples, which demonstrate the capabilities of each code are presented.

  2. A random distribution reacting mixing layer model

    NASA Technical Reports Server (NTRS)

    Jones, Richard A.; Marek, C. John; Myrabo, Leik N.; Nagamatsu, Henry T.

    1994-01-01

    A methodology for simulation of molecular mixing, and the resulting velocity and temperature fields has been developed. The ideas are applied to the flow conditions present in the NASA Lewis Research Center Planar Reacting Shear Layer (PRSL) facility, and results compared to experimental data. A gaussian transverse turbulent velocity distribution is used in conjunction with a linearly increasing time scale to describe the mixing of different regions of the flow. Equilibrium reaction calculations are then performed on the mix to arrive at a new species composition and temperature. Velocities are determined through summation of momentum contributions. The analysis indicates a combustion efficiency of the order of 80 percent for the reacting mixing layer, and a turbulent Schmidt number of 2/3. The success of the model is attributed to the simulation of large-scale transport of fluid. The favorable comparison shows that a relatively quick and simple PC calculation is capable of simulating the basic flow structure in the reacting and nonreacting shear layer present in the facility given basic assumptions about turbulence properties.

  3. Numerical simulation of two-dimensional flow over a heated carbon surface with coupled heterogeneous and homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan Federick; Chelliah, Harsha Kumar

    2017-01-01

    For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.

  4. Numerical Prediction of Non-Reacting and Reacting Flow in a Model Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Davoudzadeh, Farhad; Liu, Nan-Suey

    2005-01-01

    The three-dimensional, viscous, turbulent, reacting and non-reacting flow characteristics of a model gas turbine combustor operating on air/methane are simulated via an unstructured and massively parallel Reynolds-Averaged Navier-Stokes (RANS) code. This serves to demonstrate the capabilities of the code for design and analysis of real combustor engines. The effects of some design features of combustors are examined. In addition, the computed results are validated against experimental data.

  5. Parallel ALLSPD-3D: Speeding Up Combustor Analysis Via Parallel Processing

    NASA Technical Reports Server (NTRS)

    Fricker, David M.

    1997-01-01

    The ALLSPD-3D Computational Fluid Dynamics code for reacting flow simulation was run on a set of benchmark test cases to determine its parallel efficiency. These test cases included non-reacting and reacting flow simulations with varying numbers of processors. Also, the tests explored the effects of scaling the simulation with the number of processors in addition to distributing a constant size problem over an increasing number of processors. The test cases were run on a cluster of IBM RS/6000 Model 590 workstations with ethernet and ATM networking plus a shared memory SGI Power Challenge L workstation. The results indicate that the network capabilities significantly influence the parallel efficiency, i.e., a shared memory machine is fastest and ATM networking provides acceptable performance. The limitations of ethernet greatly hamper the rapid calculation of flows using ALLSPD-3D.

  6. Three-dimensional computer simulation of non-reacting jet-gas flow mixing in an MHD second stage combustor

    NASA Astrophysics Data System (ADS)

    Chang, S. L.; Lottes, S. A.; Berry, G. F.

    Argonne National Laboratory is investigating the non-reacting jet-gas mixing patterns in a magnetohydrodynamics (MHD) second stage combustor by using a three-dimensional single-phase hydrodynamics computer program. The computer simulation is intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may improve downstream MHD channel performance. The code is used to examine the three-dimensional effects of the side walls and the distributed jet flows on the non-reacting jet-gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  7. Direct numerical simulations of a reacting turbulent mixing layer by a pseudospectral-spectral element method

    NASA Technical Reports Server (NTRS)

    Mcmurtry, Patrick A.; Givi, Peyman

    1992-01-01

    An account is given of the implementation of the spectral-element technique for simulating a chemically reacting, spatially developing turbulent mixing layer. Attention is given to experimental and numerical studies that have investigated the development, evolution, and mixing characteristics of shear flows. A mathematical formulation is presented of the physical configuration of the spatially developing reacting mixing layer, in conjunction with a detailed representation of the spectral-element method's application to the numerical simulation of mixing layers. Results from 2D and 3D calculations of chemically reacting mixing layers are given.

  8. The combustion program at CTR

    NASA Technical Reports Server (NTRS)

    Poinsot, Thierry J.

    1993-01-01

    Understanding and modeling of turbulent combustion are key problems in the computation of numerous practical systems. Because of the lack of analytical theories in this field and of the difficulty of performing precise experiments, direct numerical simulation (DNS) appears to be one of the most attractive tools to use in addressing this problem. The general objective of DNS of reacting flows is to improve our knowledge of turbulent combustion but also to use this information for turbulent combustion models. For the foreseeable future, numerical simulation of the full three-dimensional governing partial differential equations with variable density and transport properties as well as complex chemistry will remain intractable; thus, various levels of simplification will remain necessary. On one hand, the requirement to simplify is not necessarily a handicap: numerical simulations allow the researcher a degree of control in isolating specific physical phenomena that is inaccessible in experiments. CTR has pursued an intensive research program in the field of DNS for turbulent reacting flows since 1987. DNS of reacting flows is quite different from DNS of non-reacting flows: without reaction, the equations to solve are clearly the five conservation equations of the Navier Stokes system for compressible situations (four for incompressible cases), and the limitation of the approach is the Reynolds number (or in other words the number of points in the computation). For reacting flows, the choice of the equations, the species (each species will require one additional conservation equation), the chemical scheme, and the configuration itself is more complex.

  9. High speed turbulent reacting flows: DNS and LES

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1990-01-01

    Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.

  10. Modern CFD applications for the design of a reacting shear layer facility

    NASA Technical Reports Server (NTRS)

    Yu, S. T.; Chang, C. T.; Marek, C. J.

    1991-01-01

    The RPLUS2D code, capable of calculating high speed reacting flows, was adopted to design a compressible shear layer facility. In order to create reacting shear layers at high convective Mach numbers, hot air streams at supersonic speeds, rendered by converging-diverging nozzles, must be provided. A finite rate chemistry model is used to simulate the nozzle flows. Results are compared with one-dimensional solutions at chemical equilibrium. Additionally, a two equation turbulence model with compressibility effects was successfully incorporated with the RPLUS code. The model was applied to simulate a supersonic shear layer. Preliminary results show favorable comparisons with the experimental data.

  11. CAG12 - A CSCM based procedure for flow of an equilibrium chemically reacting gas

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.; Lombard, C. K.

    1985-01-01

    The Conservative Supra Characteristic Method (CSCM), an implicit upwind Navier-Stokes algorithm, is extended to the numerical simulation of flows in chemical equilibrium. The resulting computer code known as Chemistry and Gasdynamics Implicit - Version 2 (CAG12) is described. First-order accurate results are presented for inviscid and viscous Mach 20 flows of air past a hemisphere-cylinder. The solution procedure captures the bow shock in a chemically reacting gas, a technique that is needed for simulating high altitude, rarefied flows. In an initial effort to validate the code, the inviscid results are compared with published gasdynamic and chemistry solutions and satisfactorily agreement is obtained.

  12. Study of subgrid-scale velocity models for reacting and nonreacting flows

    NASA Astrophysics Data System (ADS)

    Langella, I.; Doan, N. A. K.; Swaminathan, N.; Pope, S. B.

    2018-05-01

    A study is conducted to identify advantages and limitations of existing large-eddy simulation (LES) closures for the subgrid-scale (SGS) kinetic energy using a database of direct numerical simulations (DNS). The analysis is conducted for both reacting and nonreacting flows, different turbulence conditions, and various filter sizes. A model, based on dissipation and diffusion of momentum (LD-D model), is proposed in this paper based on the observed behavior of four existing models. Our model shows the best overall agreements with DNS statistics. Two main investigations are conducted for both reacting and nonreacting flows: (i) an investigation on the robustness of the model constants, showing that commonly used constants lead to a severe underestimation of the SGS kinetic energy and enlightening their dependence on Reynolds number and filter size; and (ii) an investigation on the statistical behavior of the SGS closures, which suggests that the dissipation of momentum is the key parameter to be considered in such closures and that dilatation effect is important and must be captured correctly in reacting flows. Additional properties of SGS kinetic energy modeling are identified and discussed.

  13. Numerical simulation of electromagnetic wave attenuation in a nonequilibrium chemically reacting hypervelocity flow

    NASA Astrophysics Data System (ADS)

    Nusca, Michael Joseph, Jr.

    The effects of various gasdynamic phenomena on the attenuation of an electromagnetic wave propagating through the nonequilibrium chemically reacting air flow field generated by an aerodynamic body travelling at high velocity is investigated. The nonequilibrium flow field is assumed to consist of seven species including nitric oxide ions and free electrons. The ionization of oxygen and nitrogen atoms is ignored. The aerodynamic body considered is a blunt wedge. The nonequilibrium chemically reacting flow field around this body is numerically simulated using a computer code based on computational fluid dynamics. The computer code solves the Navier-Stokes equations including mass diffusion and heat transfer, using a time-marching, explicit Runge-Kutta scheme. A nonequilibrium air kinetics model consisting of seven species and twenty-eight reactions as well as an equilibrium air model consisting of the same seven species are used. The body surface boundaries are considered as adiabatic or isothermal walls, as well as fully-catalytic and non-catalytic surfaces. Both laminar and turbulent flows are considered; wall generated flow turbulence is simulated using an algebraic mixing length model. An electromagnetic wave is considered as originating from an antenna within the body and is effected by the free electrons in the chemically reacting flow. Analysis of the electromagnetics is performed separately from the fluid dynamic analysis using a series solution of Maxwell's equations valid for the propagation of a long-wavelength plane electromagnetic wave through a thin (i.e., in comparison to wavelength) inhomogeneous plasma layer. The plasma layer is the chemically reacting shock layer around the body. The Navier-Stokes equations are uncoupled from Maxwell's equations. The results of this computational study demonstrate for the first time and in a systematic fashion, the importance of several parameters including equilibrium chemistry, nonequilibrium chemical kinetics, the reaction mechanism, flow viscosity, mass diffusion, and wall boundary conditions on modeling wave attenuation resulting from the interaction of an electromagnetic wave with an aerodynamic plasma. Comparison is made with experimental data.

  14. Material point method of modelling and simulation of reacting flow of oxygen

    NASA Astrophysics Data System (ADS)

    Mason, Matthew; Chen, Kuan; Hu, Patrick G.

    2014-07-01

    Aerospace vehicles are continually being designed to sustain flight at higher speeds and higher altitudes than previously attainable. At hypersonic speeds, gases within a flow begin to chemically react and the fluid's physical properties are modified. It is desirable to model these effects within the Material Point Method (MPM). The MPM is a combined Eulerian-Lagrangian particle-based solver that calculates the physical properties of individual particles and uses a background grid for information storage and exchange. This study introduces chemically reacting flow modelling within the MPM numerical algorithm and illustrates a simple application using the AeroElastic Material Point Method (AEMPM) code. The governing equations of reacting flows are introduced and their direct application within an MPM code is discussed. A flow of 100% oxygen is illustrated and the results are compared with independently developed computational non-equilibrium algorithms. Observed trends agree well with results from an independently developed source.

  15. The Loci Multidisciplinary Simulation System

    NASA Technical Reports Server (NTRS)

    Luke, Ed

    2002-01-01

    Contents include the following: 1. An overview of the Loci Multidisciplinary Simulation System. 2. Topologically adaptive mesh generation. 3. Multidisciplinary simulations using Loci with the CHEM chemically reacting flow solver.

  16. Direct simulations of chemically reacting turbulent mixing layers, part 2

    NASA Technical Reports Server (NTRS)

    Metcalfe, Ralph W.; Mcmurtry, Patrick A.; Jou, Wen-Huei; Riley, James J.; Givi, Peyman

    1988-01-01

    The results of direct numerical simulations of chemically reacting turbulent mixing layers are presented. This is an extension of earlier work to a more detailed study of previous three dimensional simulations of cold reacting flows plus the development, validation, and use of codes to simulate chemically reacting shear layers with heat release. Additional analysis of earlier simulations showed good agreement with self similarity theory and laboratory data. Simulations with a two dimensional code including the effects of heat release showed that the rate of chemical product formation, the thickness of the mixing layer, and the amount of mass entrained into the layer all decrease with increasing rates of heat release. Subsequent three dimensional simulations showed similar behavior, in agreement with laboratory observations. Baroclinic torques and thermal expansion in the mixing layer were found to produce changes in the flame vortex structure that act to diffuse the pairing vortices, resulting in a net reduction in vorticity. Previously unexplained anomalies observed in the mean velocity profiles of reacting jets and mixing layers were shown to result from vorticity generation by baroclinic torques.

  17. Simulation of Reacting Flow with a Discontinuous Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Ghiasi, Zia; Mashayek, Farzad; Komperda, Jonathan

    2013-11-01

    While using high order methods is desirable in order to accurately capture the small scale mixing effects in reacting flows, the challenge is to develop and implement such methods for complex geometries. In this work, a high-order Discontinuous Spectral Element Method (DSEM) code, which solves for the Navier-Stokes equations, has been modified by adding the appropriate components to solve for scalar transport equations in order to simulate the chemical reaction. Dealing with discontinuous solution at element interfaces is a challenge that is met by patching the fluxes at mortars thus making them continuous on interfaces. The patching is performed using the Lax-Fredrichs numerical flux for scalars, whereas a generalized Riemann solver is used for the Navier-Stokes equations. Direct numerical simulation is conducted in a temporally developing mixing layer to validate the method for a single step reaction (F + rO --> [ 1 + r ] P). Next, the method is implemented to simulate a subsonic reacting flow in a slanted cavity combustor with gaseous fuel injectors to demonstrate the capability of the method to handle complex geometries. The results will be used for physical understanding of mixing and reaction in this type of combustors.

  18. Numerical Simulations of Two-Phase Reacting Flow in a Single-Element Lean Direct Injection (LDI) Combustor Using NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas

    2011-01-01

    A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.

  19. Model-free simulations of turbulent reactive flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1989-01-01

    The current computational methods for solving transport equations of turbulent reacting single-phase flows are critically reviewed, with primary attention given to those methods that lead to model-free simulations. In particular, consideration is given to direct numerical simulations using spectral (Galerkin) and pseudospectral (collocation) methods, spectral element methods, and Lagrangian methods. The discussion also covers large eddy simulations and turbulence modeling.

  20. Unstructured LES of Reacting Multiphase Flows in Realistic Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Ham, Frank; Apte, Sourabh; Iaccarino, Gianluca; Wu, Xiao-Hua; Herrmann, Marcus; Constantinescu, George; Mahesh, Krishnan; Moin, Parviz

    2003-01-01

    As part of the Accelerated Strategic Computing Initiative (ASCI) program, an accurate and robust simulation tool is being developed to perform high-fidelity LES studies of multiphase, multiscale turbulent reacting flows in aircraft gas turbine combustor configurations using hybrid unstructured grids. In the combustor, pressurized gas from the upstream compressor is reacted with atomized liquid fuel to produce the combustion products that drive the downstream turbine. The Large Eddy Simulation (LES) approach is used to simulate the combustor because of its demonstrated superiority over RANS in predicting turbulent mixing, which is central to combustion. This paper summarizes the accomplishments of the combustor group over the past year, concentrating mainly on the two major milestones achieved this year: 1) Large scale simulation: A major rewrite and redesign of the flagship unstructured LES code has allowed the group to perform large eddy simulations of the complete combustor geometry (all 18 injectors) with over 100 million control volumes; 2) Multi-physics simulation in complex geometry: The first multi-physics simulations including fuel spray breakup, coalescence, evaporation, and combustion are now being performed in a single periodic sector (1/18th) of an actual Pratt & Whitney combustor geometry.

  1. Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive Cartesian cut-cell method

    NASA Astrophysics Data System (ADS)

    Muralidharan, Balaji; Menon, Suresh

    2018-03-01

    A high-order adaptive Cartesian cut-cell method, developed in the past by the authors [1] for simulation of compressible viscous flow over static embedded boundaries, is now extended for reacting flow simulations over moving interfaces. The main difficulty related to simulation of moving boundary problems using immersed boundary techniques is the loss of conservation of mass, momentum and energy during the transition of numerical grid cells from solid to fluid and vice versa. Gas phase reactions near solid boundaries can produce huge source terms to the governing equations, which if not properly treated for moving boundaries, can result in inaccuracies in numerical predictions. The small cell clustering algorithm proposed in our previous work is now extended to handle moving boundaries enforcing strict conservation. In addition, the cell clustering algorithm also preserves the smoothness of solution near moving surfaces. A second order Runge-Kutta scheme where the boundaries are allowed to change during the sub-time steps is employed. This scheme improves the time accuracy of the calculations when the body motion is driven by hydrodynamic forces. Simple one dimensional reacting and non-reacting studies of moving piston are first performed in order to demonstrate the accuracy of the proposed method. Results are then reported for flow past moving cylinders at subsonic and supersonic velocities in a viscous compressible flow and are compared with theoretical and previously available experimental data. The ability of the scheme to handle deforming boundaries and interaction of hydrodynamic forces with rigid body motion is demonstrated using different test cases. Finally, the method is applied to investigate the detonation initiation and stabilization mechanisms on a cylinder and a sphere, when they are launched into a detonable mixture. The effect of the filling pressure on the detonation stabilization mechanisms over a hyper-velocity sphere launched into a hydrogen-oxygen-argon mixture is studied and a qualitative comparison of the results with the experimental data are made. Results indicate that the current method is able to correctly reproduce the different regimes of combustion observed in the experiments. Through the various examples it is demonstrated that our method is robust and accurate for simulation of compressible viscous reacting flow problems with moving/deforming boundaries.

  2. Radiative interactions in chemically reacting compressible nozzle flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, J.; Tiwari, Surendra N.

    1994-01-01

    The two-dimensional spatially elliptic Navier-Stokes equations have been used to investigate the radiative interactions in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The radiative heat transfer term in the energy equation is simulated using the Monte Carlo method (MCM). The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The spectral correlation has been considered in the Monte Carlo formulations. Results obtained demonstrate that the effect of radiation on the flow field is minimal but its effect on the wall heat transfer is significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and the nozzle size on the radiative and conductive wall fluxes.

  3. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutland, Christopher J.

    2009-04-26

    The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less

  4. A large eddy simulation scheme for turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Gao, Feng

    1993-01-01

    The recent development of the dynamic subgrid-scale (SGS) model has provided a consistent method for generating localized turbulent mixing models and has opened up great possibilities for applying the large eddy simulation (LES) technique to real world problems. Given the fact that the direct numerical simulation (DNS) can not solve for engineering flow problems in the foreseeable future (Reynolds 1989), the LES is certainly an attractive alternative. It seems only natural to bring this new development in SGS modeling to bear on the reacting flows. The major stumbling block for introducing LES to reacting flow problems has been the proper modeling of the reaction source terms. Various models have been proposed, but none of them has a wide range of applicability. For example, some of the models in combustion have been based on the flamelet assumption which is only valid for relatively fast reactions. Some other models have neglected the effects of chemical reactions on the turbulent mixing time scale, which is certainly not valid for fast and non-isothermal reactions. The probability density function (PDF) method can be usefully employed to deal with the modeling of the reaction source terms. In order to fit into the framework of LES, a new PDF, the large eddy PDF (LEPDF), is introduced. This PDF provides an accurate representation for the filtered chemical source terms and can be readily calculated in the simulations. The details of this scheme are described.

  5. Quadrature Moments Method for the Simulation of Turbulent Reactive Flows

    DTIC Science & Technology

    2003-12-01

    and Flame 117, 732. TSAI, K. & Fox, R. 0. 1998 The BMC/GIEM model for micromixing in non-premixed turbulent reacting flows. Industrial Engineering...L. & Fox, R. 0. 2003 Comparison of micromixing models for CFD simulation of nanoparticle formation by reactive precipitation. Submitted to AIChE

  6. Repartitioning Strategies for Massively Parallel Simulation of Reacting Flow

    NASA Astrophysics Data System (ADS)

    Pisciuneri, Patrick; Zheng, Angen; Givi, Peyman; Labrinidis, Alexandros; Chrysanthis, Panos

    2015-11-01

    The majority of parallel CFD simulators partition the domain into equal regions and assign the calculations for a particular region to a unique processor. This type of domain decomposition is vital to the efficiency of the solver. However, as the simulation develops, the workload among the partitions often become uneven (e.g. by adaptive mesh refinement, or chemically reacting regions) and a new partition should be considered. The process of repartitioning adjusts the current partition to evenly distribute the load again. We compare two repartitioning tools: Zoltan, an architecture-agnostic graph repartitioner developed at the Sandia National Laboratories; and Paragon, an architecture-aware graph repartitioner developed at the University of Pittsburgh. The comparative assessment is conducted via simulation of the Taylor-Green vortex flow with chemical reaction.

  7. Large eddy simulations of a bluff-body stabilized hydrogen-methane jet flame

    NASA Astrophysics Data System (ADS)

    Drozda, Tomasz; Pope, Stephen

    2005-11-01

    Large eddy simulation (LES) is conducted of the turbulent bluff-body stabilized hydrogen-methane flame as considered in the experiments of the Combustion Research Facility at the Sandia National Laboratories and of the Thermal Research Group at the University of Sydney [1]. Both, reacting and non-reacting flows are considered. The subgrid scale (SGS) closure in LES is based on the scalar filtered mass density function (SFMDF) methodology [2]. A flamelet model is used to relate the chemical composition to the mixture fraction. The modeled SFMDF transport equation is solved by a hybrid finite-difference (FD) / Monte Carlo (MC) scheme. The FD component of the hybrid solver is validated by comparisons of the experimentally available flow statistics with those predicted by LES. The results via this method capture important features of the flames as observed experimentally.[1] A. R. Masri, R. W. Dibble, and R. S. Barlow. The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Prog. Energy Combust. Sci., 22:307--362, 1996. [2] F. A. Jaberi, P. J. Colucci, S. James, P. Givi, and S. B. Pope. Filtered mass density function for large eddy simulation of turbulent reacting flows. J. Fluid Mech., 401:85--121, 1999.

  8. Studying Turbulence Using Numerical Simulation Databases. Proceedings of the 1987 Summer Program

    NASA Technical Reports Server (NTRS)

    Moin, Parviz (Editor); Reynolds, William C. (Editor); Kim, John (Editor)

    1987-01-01

    The focus was on the use of databases obtained from direct numerical simulations of turbulent flows, for study of turbulence physics and modeling. Topics addressed included: stochastic decomposition/chaos/bifurcation; two-point closure (or k-space) modeling; scalar transport/reacting flows; Reynolds stress modeling; and structure of turbulent boundary layers.

  9. Development of a Reduced-Order Model for Reacting Gas-Solids Flow using Proper Orthogonal Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Dwayne; Dulikravich, George; Cizmas, Paul

    2017-11-27

    This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providingmore » accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.« less

  10. SUPREM-DSMC: A New Scalable, Parallel, Reacting, Multidimensional Direct Simulation Monte Carlo Flow Code

    NASA Technical Reports Server (NTRS)

    Campbell, David; Wysong, Ingrid; Kaplan, Carolyn; Mott, David; Wadsworth, Dean; VanGilder, Douglas

    2000-01-01

    An AFRL/NRL team has recently been selected to develop a scalable, parallel, reacting, multidimensional (SUPREM) Direct Simulation Monte Carlo (DSMC) code for the DoD user community under the High Performance Computing Modernization Office (HPCMO) Common High Performance Computing Software Support Initiative (CHSSI). This paper will introduce the JANNAF Exhaust Plume community to this three-year development effort and present the overall goals, schedule, and current status of this new code.

  11. A two-dimensional numerical simulation of a supersonic, chemically reacting mixing layer

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    1988-01-01

    Research has been undertaken to achieve an improved understanding of physical phenomena present when a supersonic flow undergoes chemical reaction. A detailed understanding of supersonic reacting flows is necessary to successfully develop advanced propulsion systems now planned for use late in this century and beyond. In order to explore such flows, a study was begun to create appropriate physical models for describing supersonic combustion, and to develop accurate and efficient numerical techniques for solving the governing equations that result from these models. From this work, two computer programs were written to study reacting flows. Both programs were constructed to consider the multicomponent diffusion and convection of important chemical species, the finite rate reaction of these species, and the resulting interaction of the fluid mechanics and the chemistry. The first program employed a finite difference scheme for integrating the governing equations, whereas the second used a hybrid Chebyshev pseudospectral technique for improved accuracy.

  12. Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oran, E.S.; Boris, J.P.

    1991-01-01

    Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonationmore » transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.« less

  13. Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.

    1993-01-01

    The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the effects of scalar fluctuations. The implementation of the model requires the knowledge of the local values of the first two SGS moments. These are provided by additional modeled transport equations. In both a priori and a posteriori analyses, the predicted results are appraised by comparison with subgrid averaged results generated by DNS. Based on these results, the paths to be followed in future investigations are identified.

  14. Simulation of unsteady flows by the DSMC macroscopic chemistry method

    NASA Astrophysics Data System (ADS)

    Goldsworthy, Mark; Macrossan, Michael; Abdel-jawad, Madhat

    2009-03-01

    In the Direct Simulation Monte-Carlo (DSMC) method, a combination of statistical and deterministic procedures applied to a finite number of 'simulator' particles are used to model rarefied gas-kinetic processes. In the macroscopic chemistry method (MCM) for DSMC, chemical reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the particles within a cell, not just those selected for collisions, is used to determine a reaction rate coefficient for that cell. Unlike collision-based methods, MCM can be used with any viscosity or non-reacting collision models and any non-reacting energy exchange models. It can be used to implement any reaction rate formulations, whether these be from experimental or theoretical studies. MCM has been previously validated for steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady shock-expansion tube simulation. Close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged profiles of temperature, density and species mole fractions, as well as for the accumulated number of net reactions per cell.

  15. A stochastic particle method for the investigation of turbulence/chemistry interactions in large-eddy simulations of turbulent reacting flows

    NASA Astrophysics Data System (ADS)

    Ferrero, Pietro

    The main objective of this work is to investigate the effects of the coupling between the turbulent fluctuations and the highly non-linear chemical source terms in the context of large-eddy simulations of turbulent reacting flows. To this aim we implement the filtered mass density function (FMDF) methodology on an existing finite volume (FV) fluid dynamics solver. The FMDF provides additional statistical sub-grid scale (SGS) information about the thermochemical state of the flow - species mass fractions and enthalpy - which would not be available otherwise. The core of the methodology involves solving a transport equation for the FMDF by means of a stochastic, grid-free, Lagrangian particle procedure. Any moments of the distribution can be obtained by taking ensemble averages of the particles. The main advantage of this strategy is that the chemical source terms appear in closed form so that the effects of turbulent fluctuations on these terms are already accounted for and do not need to be modeled. We first validate and demonstrate the consistency of our implementation by comparing the results of the hybrid FV/FMDF procedure against model-free LES for temporally developing, non-reacting mixing layers. Consistency requires that, for non-reacting cases, the two solvers should yield identical solutions. We investigate the sensitivity of the FMDF solution on the most relevant numerical parameters, such as the number of particles per cell and the size of the ensemble domain. Next, we apply the FMDF modeling strategy to the simulation of chemically reacting, two- and three-dimensional temporally developing mixing layers and compare the results against both DNS and model-free LES. We clearly show that, when the turbulence/chemistry interaction is accounted for with the FMDF methodology, the results are in much better agreement to the DNS data. Finally, we perform two- and three-dimensional simulations of high Reynolds number, spatially developing, chemically reacting mixing layers, with the intent of reproducing a set of experimental results obtained at the California Institute of Technology. The mean temperature rise calculated by the hybrid FV/FMDF solver, which is associated with the amount of product formed, lies very close to the experimental profile. Conversely, when the effects of turbulence/chemistry coupling are ignored, the simulations clearly over predict the amount of product that is formed.

  16. Simulations of Spray Reacting Flows in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar PDF Method

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2012-01-01

    This paper presents the numerical simulations of the Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar probability density function (PDF) method. The flow field is calculated by using the Reynolds averaged Navier-Stokes equations (RANS and URANS) with nonlinear turbulence models, and when the scalar PDF method is invoked, the energy and compositions or species mass fractions are calculated by solving the equation of an ensemble averaged density-weighted fine-grained probability density function that is referred to here as the averaged probability density function (APDF). A nonlinear model for closing the convection term of the scalar APDF equation is used in the presented simulations and will be briefly described. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar PDF method in both improving the simulation quality and reducing the computing cost are observed.

  17. Impact of Flight Enthalpy, Fuel Simulant, and Chemical Reactions on the Mixing Characteristics of Several Injectors at Hypervelocity Flow Conditions

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Baurle, Robert A.; Drummond, J. Philip

    2016-01-01

    The high total temperatures or total enthalpies required to duplicate the high-speed flight conditions in ground experiments often place stringent requirements on the material selection and cooling needs for the test articles and intrusive flow diagnostic equipment. Furthermore, for internal flows, these conditions often complicate the use of nonintrusive diagnostics that need optical access to the test section and interior portions of the flowpath. Because of the technical challenges and increased costs associated with experimentation at high values of total enthalpy, an attempt is often made to reduce it. This is the case for the Enhanced Injection and Mixing Project (EIMP) currently underway in the Arc-Heated Scramjet Test Facility at the NASA Langley Research Center. The EIMP aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships between mixing performance and losses relevant to flight Mach numbers greater than 8. The experiments will consider a "direct-connect" approach and utilize a Mach 6 nozzle to simulate the combustor entrance flow of a scramjet engine. However, while the value of the Mach number is matched to that expected at the combustor entrance in flight, the maximum value of the total enthalpy for these experiments is limited by the thermal-structural limits of the uncooled experimental hardware. Furthermore, the fuel simulant is helium, not hydrogen. The use of "cold" flows and non-reacting mixtures of fuel simulants for mixing experiments is not new and has been extensively utilized as a screening technique for scramjet fuel injectors. In this study, Reynolds-averaged simulations are utilized (RAS) to systematically verify the implicit assumptions used by the EIMP. This is accomplished by first performing RAS of mixing for two injector configurations at planned nominal experimental conditions. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared to the values obtained from RAS under the true enthalpy conditions and using helium and hydrogen. Finally, the impact of combustion on mixing, often deemed small enough to neglect at hypervelocity conditions, is assessed by comparing the results obtained from the hydrogen-fueled reacting and non-reacting RAS. For reacting flows, in addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also considered. In all of the simulations, the incoming air Mach number and the fuel-to-air ratio are the same, while the total pressure, total enthalpy, and the fuel simulant vary depending on the case considered. It is found that under some conditions the "cold" flow experiments are a good approximation of the flight.

  18. 3D Reacting Flow Analysis of LANTR Nozzles

    NASA Astrophysics Data System (ADS)

    Stewart, Mark E. M.; Krivanek, Thomas M.; Hemminger, Joseph A.; Bulman, M. J.

    2006-01-01

    This paper presents performance predictions for LANTR nozzles and the system implications for their use in a manned Mars mission. The LANTR concept is rocket thrust augmentation by injecting Oxygen into the nozzle to combust the Hydrogen exhaust of a Nuclear Thermal Rocket. The performance predictions are based on three-dimensional reacting flow simulations using VULCAN. These simulations explore a range of O2/H2 mixture ratios, injector configurations, and concepts. These performance predictions are used for a trade analysis within a system study for a manned Mars mission. Results indicate that the greatest benefit of LANTR will occur with In-Situ Resource Utilization (ISRU). However, Hydrogen propellant volume reductions may allow greater margins for fitting tanks within the launch vehicle where packaging issues occur.

  19. Modeling of the reactant conversion rate in a turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Frankel, S. H.; Madnia, C. K.; Givi, P.

    1992-01-01

    Results are presented of direct numerical simulations (DNS) of spatially developing shear flows under the influence of infinitely fast chemical reactions of the type A + B yields Products. The simulation results are used to construct the compositional structure of the scalar field in a statistical manner. The results of this statistical analysis indicate that the use of a Beta density for the probability density function (PDF) of an appropriate Shvab-Zeldovich mixture fraction provides a very good estimate of the limiting bounds of the reactant conversion rate within the shear layer. This provides a strong justification for the implementation of this density in practical modeling of non-homogeneous turbulent reacting flows. However, the validity of the model cannot be generalized for predictions of higher order statistical quantities. A closed form analytical expression is presented for predicting the maximum rate of reactant conversion in non-homogeneous reacting turbulence.

  20. Direct simulations of chemically reacting turbulent mixing layers

    NASA Technical Reports Server (NTRS)

    Riley, J. J.; Metcalfe, R. W.

    1984-01-01

    The report presents the results of direct numerical simulations of chemically reacting turbulent mixing layers. The work consists of two parts: (1) the development and testing of a spectral numerical computer code that treats the diffusion reaction equations; and (2) the simulation of a series of cases of chemical reactions occurring on mixing layers. The reaction considered is a binary, irreversible reaction with no heat release. The reacting species are nonpremixed. The results of the numerical tests indicate that the high accuracy of the spectral methods observed for rigid body rotation are also obtained when diffusion, reaction, and more complex flows are considered. In the simulations, the effects of vortex rollup and smaller scale turbulence on the overall reaction rates are investigated. The simulation results are found to be in approximate agreement with similarity theory. Comparisons of simulation results with certain modeling hypotheses indicate limitations in these hypotheses. The nondimensional product thickness computed from the simulations is compared with laboratory values and is found to be in reasonable agreement, especially since there are no adjustable constants in the method.

  1. Progress Toward an Efficient and General CFD Tool for Propulsion Design/Analysis

    NASA Technical Reports Server (NTRS)

    Cox, C. F.; Cinnella, P.; Westmoreland, S.

    1996-01-01

    The simulation of propulsive flows inherently involves chemical activity. Recent years have seen substantial strides made in the development of numerical schemes for reacting flowfields, in particular those involving finite-rate chemistry. However, finite-rate calculations are computationally intensive and require knowledge of the actual kinetics, which are not always known with sufficient accuracy. Alternatively, flow simulations based on the assumption of local chemical equilibrium are capable of obtaining physically reasonable results at far less computational cost. The present study summarizes the development of efficient numerical techniques for the simulation of flows in local chemical equilibrium, whereby a 'Black Box' chemical equilibrium solver is coupled to the usual gasdynamic equations. The generalization of the methods enables the modelling of any arbitrary mixture of thermally perfect gases, including air, combustion mixtures and plasmas. As demonstration of the potential of the methodologies, several solutions, involving reacting and perfect gas flows, will be presented. Included is a preliminary simulation of the SSME startup transient. Future enhancements to the proposed techniques will be discussed, including more efficient finite-rate and hybrid (partial equilibrium) schemes. The algorithms that have been developed and are being optimized provide for an efficient and general tool for the design and analysis of propulsion systems.

  2. Comparison of Mixing Calculations for Reacting and Non-Reacting Flows in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.

    1994-01-01

    A production 3-D elliptic flow code has been used to calculate non-reacting and reacting flow fields in an experimental mixing section relevant to a rich burn/quick mix/lean burn (RQL) combustion system. A number of test cases have been run to assess the effects of the variation in the number of orifices, mass flow ratio, and rich-zone equivalence ratio on the flow field and mixing rates. The calculated normalized temperature profiles for the non-reacting flow field agree qualitatively well with the normalized conserved variable isopleths for the reacting flow field indicating that non-reacting mixing experiments are appropriate for screening and ranking potential rapid mixing concepts. For a given set of jet momentum-flux ratio, mass flow ratio, and density ratio (J, MR, and DR), the reacting flow calculations show a reduced level of mixing compared to the non-reacting cases. In addition, the rich-zone equivalence ratio has noticeable effect on the mixing flow characteristics for reacting flows.

  3. Annual research briefs, 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The primary objective of the Center for Turbulence Research (CTR) is to stimulate and produce advances in physical understanding of turbulence, in turbulence modeling and simulation, and in turbulence control. Topics addressed include: fundamental modeling of turbulence; turbulence structure and control; transition and turbulence in high-speed compressible flows; and turbulent reacting flows.

  4. Very Large Eddy Simulations of a Jet-A Spray Reacting Flow in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar DWFDF Method

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2013-01-01

    This paper presents the very large eddy simulations (VLES) of a Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar DWFDF method, in which DWFDF is defined as the density weighted time filtered fine grained probability density function. The flow field is calculated by using the time filtered compressible Navier-Stokes equations (TFNS) with nonlinear subscale turbulence models, and when the Eulerian scalar DWFDF method is invoked, the energy and species mass fractions are calculated by solving the equation of DWFDF. A nonlinear subscale model for closing the convection term of the Eulerian scalar DWFDF equation is used and will be briefly described in this paper. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar DWFDF method in both improving the simulation quality and maintaining economic computing cost are observed.

  5. Transient Macroscopic Chemistry in the DSMC Method

    NASA Astrophysics Data System (ADS)

    Goldsworthy, M. J.; Macrossan, M. N.; Abdel-Jawad, M.

    2008-12-01

    In the Direct Simulation Monte Carlo method, a combination of statistical and deterministic procedures applied to a finite number of `simulator' particles are used to model rarefied gas-kinetic processes. Traditionally, chemical reactions are modelled using information from specific colliding particle pairs. In the Macroscopic Chemistry Method (MCM), the reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the particles within a cell is used to determine a reaction rate coefficient for that cell. MCM has previously been applied to steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady shock-expansion tube simulation and during the unsteady development of 2-D flow through a cavity. For the shock tube simulation, close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged profiles of temperature and species mole fractions. For the cavity flow, a high degree of thermal non-equilibrium is present and non-equilibrium reaction rate correction factors are employed in MCM. Very close agreement is demonstrated for ensemble averaged mole fraction contours predicted by the particle and macroscopic methods at three different flow-times. A comparison of the accumulated number of net reactions per cell shows that both methods compute identical numbers of reaction events. For the 2-D flow, MCM required similar CPU and memory resources to the particle chemistry method. The Macroscopic Chemistry Method is applicable to any general DSMC code using any viscosity or non-reacting collision models and any non-reacting energy exchange models. MCM can be used to implement any reaction rate formulations, whether these be from experimental or theoretical studies.

  6. Hypersonic research at Stanford University

    NASA Technical Reports Server (NTRS)

    Candler, Graham; Maccormack, Robert

    1988-01-01

    The status of the hypersonic research program at Stanford University is discussed and recent results are highlighted. The main areas of interest in the program are the numerical simulation of radiating, reacting and thermally excited flows, the investigation and numerical solution of hypersonic shock wave physics, the extension of the continuum fluid dynamic equations to the transition regime between continuum and free-molecule flow, and the development of novel numerical algorithms for efficient particulate simulations of flowfields.

  7. Characterization of flame stabilization technologies

    NASA Astrophysics Data System (ADS)

    Bush, Scott Matthew

    To experimentally explore and characterize a V-gutter stabilized flame, this research study developed a Combustion Wind Tunnel Test Facility capable of effectively simulating the freestream Mach #'s and temperatures achieved within the back end of a gas turbine jet engine. After validating this facility, it was then used to gain a better understanding of the flow dynamics and combustion dynamics associated with the V-gutter configuration. The motivation for studying the V-gutter stabilized flame is due to the concern in industry today with combustion instabilities that are encountered in military aircraft. To gain a better understanding of the complex flow field associated with the V-gutter stabilized flame, this research study utilized Particle Image Velocimetry to capture both non-reacting and reacting instantaneous and mean flow structures formed in the wake region of the three dimensional V-gutter bluff body. The results of this study showed significant differences between the non-reacting and reacting flow fields. The non-reacting case resulted in asymmetric shedding of large scale vortices from the V-gutter edges while the reacting case resulted in a combination of both symmetric and asymmetric shedding of smaller scale vortical structures. A comparison of the mean velocity components shows that the reacting case results in a larger region of reversed flow, experiences an acceleration of the freestream flow due to combustion, and results in a slower dissipation of the wake region. Simultaneous dynamic pressure and CH* chemiluminescence measurements were also recorded to determine the coupling between the flow dynamics and combustion dynamics. The results of this study showed that only low frequency combustion instabilities were encountered at various conditions within the envelope of stable operation because of the interaction between longitudinal acoustic waves and unsteady heat release. When approaching rich blow out, rms pressure amplitudes were as high as 2 psi, and approaching lean blow out lead to rms pressure amplitudes around 0.2 psi. These studies also showed the instability frequency increasing with increases in either inlet temperature or inlet Mach #. Additionally, increasing the inlet velocity or the DeZubay parameter reduced the stability limits of operation for the V-gutter stabilized flame.

  8. 28th Lanchester Memorial Lecture - Experimental real-gas hypersonics

    NASA Astrophysics Data System (ADS)

    Hornung, H. G.

    1988-12-01

    It is possible to simulate a number of dissociative real-gas effects in the laboratory by means quite different from those of the perfect-gas Mach-Reynolds simulation, as presently demonstrated for two sets of results obtained in a free-piston shock tunnel experimental facility designed and built for this purpose. The results concern blunt body flows, which involve the phenomenon of dissociation quenching, and shock detachment from a wedge, which revealed a novel effect of reacting flows in which a thin subsonic layer exists after the shock, followed by a supersonic flow.

  9. Studying Turbulence Using Numerical Simulation Databases. 3: Proceedings of the 1990 Summer Program

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1990-01-01

    Papers that cover the following topics are presented: subgrid scale modeling; turbulence modeling; turbulence structure, transport, and control; small scales mixing; turbulent reacting flows; and turbulence theory.

  10. Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow

    NASA Astrophysics Data System (ADS)

    Holman, Timothy D.; Boyd, Iain D.

    2011-02-01

    This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.

  11. Spectral kinetic energy transfer in turbulent premixed reacting flows.

    PubMed

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  12. Vortex-scalar element calculations of a diffusion flame stabilized on a plane mixing layer

    NASA Technical Reports Server (NTRS)

    Ghoniem, Ahmed F.; Givi, Peyman

    1987-01-01

    The vortex-scalar element method, a scheme which utilizes vortex elements to discretize the region of high vorticity and scalar elements to represent species or temperature fields, is utilized in the numerical simulations of a two-dimensional reacting mixing layer. Computations are performed for a diffusion flame at high Reynolds and Peclet numbers without resorting to turbulence models. In the nonreacting flow, the mean and fluctuation profiles of a conserved scalar show good agreement with experimental measurements. Results for the reacting flow indicate that for temperature independent kinetics, the chemical reaction begins immediately downstream of the splitter plate where mixing starts. Results for the reacting flow with Arrhenius kinetics show an ignition delay, which depends on reactant temperature, before significant chemical reaction occurs. Harmonic forcing changes the structure of the layer, and concomitantly the rates of mixing and reaction, in accordance with experimental results. Strong stretch within the braids in the nonequilibrium kinetics case causes local flame quenching due to the temperature drop associated with the large convective fluxes.

  13. Flow effects in a vertical CVD reactor

    NASA Technical Reports Server (NTRS)

    Young, G. W.; Hariharan, S. I.; Carnahan, R.

    1992-01-01

    A model is presented to simulate the non-Boussinesq flow in a vertical, two-dimensional, chemical vapor deposition reactor under atmospheric pressure. Temperature-dependent conductivity, mass diffusivity, viscosity models, and reactive species mass transfer to the substrate are incorporated. In the limits of small Mach number and small aspect ratio, asymptotic expressions for the flow, temperature, and species fields are developed. Soret diffusion effects are also investigated. Analytical solutions predict an inverse relationship between temperature field and concentration field due to Soret effects. This finding is consistent with numerical simulations, assisting in the understanding of the complex interactions amongst the flow, thermal, and species fields in a chemically reacting system.

  14. A Novel Strategy for Numerical Simulation of High-speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Sheikhi, M. R. H.; Drozda, T. G.; Givi, P.

    2003-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high-speed reacting turbulent flows. We have just completed Year 1 of this research. This is the Final Report on our activities during the period: January 1, 2003 to December 31, 2003. 2002. In the efforts during the past year, LES is conducted of the Sandia Flame D, which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme.

  15. Direct Numerical Simulation of a Cavity-Stabilized Ethylene/Air Premixed Flame

    NASA Astrophysics Data System (ADS)

    Chen, Jacqueline; Konduri, Aditya; Kolla, Hemanth; Rauch, Andreas; Chelliah, Harsha

    2016-11-01

    Cavity flame holders have been shown to be important for flame stabilization in scramjet combustors. In the present study the stabilization of a lean premixed ethylene/air flame in a rectangular cavity at thermo-chemical conditions relevant to scramjet combustors is simulated using a compressible reacting multi-block direct numerical simulation solver, S3D, incorporating a 22 species ethylene-air reduced chemical model. The fuel is premixed with air to an equivalence ratio of 0.4 and enters the computational domain at Mach numbers between 0.3 and 0.6. An auxiliary inert channel flow simulation is used to provide the turbulent velocity profile at the inlet for the reacting flow simulation. The detailed interaction between intense turbulence, nonequilibrium concentrations of radical species formed in the cavity and mixing with the premixed main stream under density variations due to heat release rate and compressibility effects is quantified. The mechanism for flame stabilization is quantified in terms of relevant non-dimensional parameters, and detailed analysis of the flame and turbulence structure will be presented. We acknowledge the sponsorship of the AFOSR-NSF Joint Effort on Turbulent Combustion Model Assumptions and the DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  16. Annual research briefs, 1993. [Center for Turbulence Research

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The 1993 annual progress reports of the Research Fellow and students of the Center for Turbulence Research are included. The first group of reports are directed towards the theory and application of active control in turbulent flows including the development of a systematic mathematical procedure based on the Navier Stokes equations for flow control. The second group of reports are concerned with the prediction of turbulent flows. The remaining articles are devoted to turbulent reacting flows, turbulence physics, experiments, and simulations.

  17. Flame-conditioned turbulence modeling for reacting flows

    NASA Astrophysics Data System (ADS)

    Macart, Jonathan F.; Mueller, Michael E.

    2017-11-01

    Conventional approaches to turbulence modeling in reacting flows rely on unconditional averaging or filtering, that is, consideration of the momentum equations only in physical space, implicitly assuming that the flame only weakly affects the turbulence, aside from a variation in density. Conversely, for scalars, which are strongly coupled to the flame structure, their evolution equations are often projected onto a reduced-order manifold, that is, conditionally averaged or filtered, on a flame variable such as a mixture fraction or progress variable. Such approaches include Conditional Moment Closure (CMC) and related variants. However, recent observations from Direct Numerical Simulation (DNS) have indicated that the flame can strongly affect turbulence in premixed combustion at low Karlovitz number. In this work, a new approach to turbulence modeling for reacting flows is investigated in which conditionally averaged or filtered equations are evolved for the momentum. The conditionally-averaged equations for the velocity and its covariances are derived, and budgets are evaluated from DNS databases of turbulent premixed planar jet flames. The most important terms in these equations are identified, and preliminary closure models are proposed.

  18. Numerical Simulation of Vitiation Effects on a Hydrogen-Fueled Dual-Mode Scramjet

    NASA Technical Reports Server (NTRS)

    Vyas, Manan A.; Engblom, William A.; Georgiadis, Nicholas J.; Trefny, Charles J.; Bhagwandin, Vishal A.

    2010-01-01

    The Wind-US computational fluid dynamics (CFD) flow solver was used to simulate dual-mode direct-connect ramjet/scramjet engine flowpath tests conducted in the University of Virginia (UVa) Supersonic Combustion Facility (SCF). The objective was to develop a computational capability within Wind-US to aid current hypersonic research and provide insight to flow as well as chemistry details that are not resolved by instruments available. Computational results are compared with experimental data to validate the accuracy of the numerical modeling. These results include two fuel-off non-reacting and eight fuel-on reacting cases with different equivalence ratios, split between one set with a clean (non-vitiated) air supply and the other set with a vitiated air supply (12 percent H2O vapor). The Peters and Rogg hydrogen-air chemical kinetics model was selected for the scramjet simulations. A limited sensitivity study was done to investigate the choice of turbulence model and inviscid flux scheme and led to the selection of the k-epsilon model and Harten, Lax and van Leer (for contact waves) (HLLC) scheme for general use. Simulation results show reasonably good agreement with experimental data and the overall vitiation effects were captured.

  19. Large-eddy simulation of a bluff-body stabilised turbulent premixed flame using the transported flame surface density approach

    NASA Astrophysics Data System (ADS)

    Lee, Chin Yik; Cant, Stewart

    2017-07-01

    A premixed propane-air flame stabilised on a triangular bluff body in a model jet-engine afterburner configuration is investigated using large-eddy simulation (LES). The reaction rate source term for turbulent premixed combustion is closed using the transported flame surface density (TFSD) model. In this approach, there is no need to assume local equilibrium between the generation and destruction of subgrid FSD, as commonly done in simple algebraic closure models. Instead, the key processes that create and destroy FSD are accounted for explicitly. This allows the model to capture large-scale unsteady flame propagation in the presence of combustion instabilities, or in situations where the flame encounters progressive wrinkling with time. In this study, comprehensive validation of the numerical method is carried out. For the non-reacting flow, good agreement for both the time-averaged and root-mean-square velocity fields are obtained, and the Karman type vortex shedding behaviour seen in the experiment is well represented. For the reacting flow, two mesh configurations are used to investigate the sensitivity of the LES results to the numerical resolution. Profiles for the velocity and temperature fields exhibit good agreement with the experimental data for both the coarse and dense mesh. This demonstrates the capability of LES coupled with the TFSD approach in representing the highly unsteady premixed combustion observed in this configuration. The instantaneous flow pattern and turbulent flame behaviour are discussed, and the differences between the non-reacting and reacting flow are described through visualisation of vortical structures and their interaction with the flame. Lastly, the generation and destruction of FSD are evaluated by examining the individual terms in the FSD transport equation. Localised regions where straining, curvature and propagation are each dominant are observed, highlighting the importance of non-equilibrium effects of FSD generation and destruction in the model afterburner.

  20. A Nonlinear Dynamic Subscale Model for Partially Resolved Numerical Simulation (PRNS)/Very Large Eddy Simulation (VLES) of Internal Non-Reacting Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, nan-Suey

    2010-01-01

    A brief introduction of the temporal filter based partially resolved numerical simulation/very large eddy simulation approach (PRNS/VLES) and its distinct features are presented. A nonlinear dynamic subscale model and its advantages over the linear subscale eddy viscosity model are described. In addition, a guideline for conducting a PRNS/VLES simulation is provided. Results are presented for three turbulent internal flows. The first one is the turbulent pipe flow at low and high Reynolds numbers to illustrate the basic features of PRNS/VLES; the second one is the swirling turbulent flow in a LM6000 single injector to further demonstrate the differences in the calculated flow fields resulting from the nonlinear model versus the pure eddy viscosity model; the third one is a more complex turbulent flow generated in a single-element lean direct injection (LDI) combustor, the calculated result has demonstrated that the current PRNS/VLES approach is capable of capturing the dynamically important, unsteady turbulent structures while using a relatively coarse grid.

  1. Solution-limited time stepping method and numerical simulation of single-element rocket engine combustor

    NASA Astrophysics Data System (ADS)

    Lian, Chenzhou

    The focus of the research is to gain a better understanding of the mixing and combustion of propellants in a confined single element rocket engine combustor. The approach taken is to use the unsteady computational simulations of both liquid and gaseous oxygen reacting with gaseous hydrogen to study the effects of transient processes, recirculation regions and density variations under supercritical conditions. The physics of combustion involve intimate coupling between fluid dynamics, chemical kinetics and intense energy release and take place over an exceptionally wide range of scales. In the face of these monumental challenges, it remains the engineer's task to find acceptable simulation approach and reliable CFD algorithm for combustion simulations. To provide the computational robustness to allow detailed analyses of such complex problems, we start by investigating a method for enhancing the reliability of implicit computational algorithms and decreasing their sensitivity to initial conditions without adversely impacting their efficiency. Efficient convergence is maintained by specifying a large global CFL number while reliability is improved by limiting the local CFL number such that the solution change in any cell is less than a specified tolerance. The magnitude of the solution change is estimated from the calculated residual in a manner that requires negligible computational time. The method precludes unphysical excursions in Newton-like iterations in highly non-linear regions where Jacobians are changing rapidly as well as non-physical results during the computation. The method is tested against a series of problems to identify its characteristics and to verify the approach. The results reveal a substantial improvement in convergence reliability of implicit CFD applications that enables computations starting from simple initial conditions. The method is applied in the unsteady combustion simulations and allows long time running of the code without user intervention. The initial transient leading to stationary conditions in unsteady combustion simulations is investigated by considering flow establishment in model combustors. The duration of the transient is shown to be dependent on the characteristic turn-over time for recirculation zones and the time for the chamber pressure to reach steady conditions. Representative comparisons of the time-averaged, stationary results with experiment are presented to document the computations. The flow dynamics and combustion for two sizes of chamber diameters and two different wall thermal boundary conditions are investigated to assess the role of the recirculation regions on the mixing/combustion process in rocket engine combustors. Results are presented in terms of both instantaneous and time-averaged solutions. As a precursor to liquid oxygen/gaseous hydrogen (LO2/GH 2) combustion simulations, the evolution of a liquid nitrogen (LN 2) jet initially at a subcritical temperature and injected into a supercritical environment is first investigated and the results are validated against experimental data. Unsteady simulations of non-reacting LO2/GH 2 are then performed for a single element shear coaxial injector. These cold flow calculations are then extended to reacting LO2/GH 2 flows to demonstrate the capability of the numerical procedure for high-density-gradient supercritical reacting flows.

  2. A-Priori Tuning of Modified Magnussen Combustion Model

    NASA Technical Reports Server (NTRS)

    Norris, A. T.

    2016-01-01

    In the application of CFD to turbulent reacting flows, one of the main limitations to predictive accuracy is the chemistry model. Using a full or skeletal kinetics model may provide good predictive ability, however, at considerable computational cost. Adding the ability to account for the interaction between turbulence and chemistry improves the overall fidelity of a simulation but adds to this cost. An alternative is the use of simple models, such as the Magnussen model, which has negligible computational overhead, but lacks general predictive ability except for cases that can be tuned to the flow being solved. In this paper, a technique will be described that allows the tuning of the Magnussen model for an arbitrary fuel and flow geometry without the need to have experimental data for that particular case. The tuning is based on comparing the results of the Magnussen model and full finite-rate chemistry when applied to perfectly and partially stirred reactor simulations. In addition, a modification to the Magnussen model is proposed that allows the upper kinetic limit for the reaction rate to be set, giving better physical agreement with full kinetic mechanisms. This procedure allows a simple reacting model to be used in a predictive manner, and affords significant savings in computational costs for simulations.

  3. Large Eddy Simulation of Spatially Developing Turbulent Reacting Shear Layers with the One-Dimensional Turbulence Model

    NASA Astrophysics Data System (ADS)

    Hoffie, Andreas Frank

    Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky model. The chemical reaction is simulated with a global single-step, second-order equilibrium reaction with an Arrhenius reaction rate. The two benchmark cases of constant density reacting and variable density non-reacting shear layers used to determine ODT parameters yield perfect agreement with regards to first and second-order flow statistics as well as shear layer growth rate. The variable density non-reacting shear layer also serves as a testing case for the LES-ODT model to simulate passive scalar mixing. The variable density, reacting shear layer cases only agree reasonably well and indicate that more work is necessary to improve variable density coupling of ODT and LES. The disagreement is attributed to the fact that the ODT filtered density is kept constant across the Runge-Kutta steps. Furthermore, a more in-depth knowledge of large scale and subgrid turbulent kinetic energy (TKE) spectra at several downstream locations as well as TKE budgets need to be studied to obtain a better understanding about the model as well as about the flow under investigation. The local Reynolds number based on the one-percent thickness at the exit is Redelta ≈ 5300, for the constant density reacting and for the variable density non-reacting case. For the variable density reacting shear layer, the Reynolds number based on the 1% thickness is Redelta ≈ 2370. The variable density reacting shear layers show suppressed growth rates due to density variations caused by heat release. This has also been reported in literature. A Lewis number parameter study is performed to extract non-unity Lewis number effects. An increase in the Lewis number leads to a further suppression of the growth rate, however to an increase spread of second-order flow statistics. Major focus and challenge of this work is to improve and advance the three-dimensional coupling of the one-dimensional ODT domains while keeping the solution correct. This entails major restructuring of the model. The turbulent reacting shear layer poses a physical challenge to the model because of its nature being a statistically stationary, non-decaying inhomogeneous and anisotropic turbulent flow. This challenge also requires additions to the eddy sampling procedure. Besides physical advancements, the LES-ODT code is also improved regarding its ability to use general cuboid geometries, an array structure that allows to apply boundary conditions based on ghost-cells and non-uniform structured meshes. The use of transverse grid-stretching requires the implementation of the ODT triplet map on a stretched grid. Further, advancing subroutine structure handling with global variables that enable serial code speed-up and parallelization with OpenMP are undertaken. Porting the code to a higher-level language, object oriented, finite-volume based CFD platform, like OpenFoam for example that allows more advanced array and parallelization features with graphics processing units (GPUs) as well as parallelization with the message passing interface (MPI) to simulate complex geometries is recommended for future work.

  4. Annual research briefs, 1989

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1990-01-01

    This report contains the 1989 annual progress reports of the Research Fellows of the Center for Turbulence Research. It is intended as a year end report to NASA, Ames Research Center which supports this group through core funding and by making available physical and intellectual resources. The Center for Turbulence Research is devoted to the fundamental study of turbulent flows; its objectives are to simulate advances in the physical understanding of turbulence, in turbulence modeling and simulation, and in turbulence control. The reports appearing in the following pages are grouped in the general areas of modeling, experimental research, theory, simulation and numerical methods, and compressible and reacting flows.

  5. Simplified Modeling of Oxidation of Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2008-01-01

    A method of simplified computational modeling of oxidation of hydrocarbons is undergoing development. This is one of several developments needed to enable accurate computational simulation of turbulent, chemically reacting flows. At present, accurate computational simulation of such flows is difficult or impossible in most cases because (1) the numbers of grid points needed for adequate spatial resolution of turbulent flows in realistically complex geometries are beyond the capabilities of typical supercomputers now in use and (2) the combustion of typical hydrocarbons proceeds through decomposition into hundreds of molecular species interacting through thousands of reactions. Hence, the combination of detailed reaction- rate models with the fundamental flow equations yields flow models that are computationally prohibitive. Hence, further, a reduction of at least an order of magnitude in the dimension of reaction kinetics is one of the prerequisites for feasibility of computational simulation of turbulent, chemically reacting flows. In the present method of simplified modeling, all molecular species involved in the oxidation of hydrocarbons are classified as either light or heavy; heavy molecules are those having 3 or more carbon atoms. The light molecules are not subject to meaningful decomposition, and the heavy molecules are considered to decompose into only 13 specified constituent radicals, a few of which are listed in the table. One constructs a reduced-order model, suitable for use in estimating the release of heat and the evolution of temperature in combustion, from a base comprising the 13 constituent radicals plus a total of 26 other species that include the light molecules and related light free radicals. Then rather than following all possible species through their reaction coordinates, one follows only the reduced set of reaction coordinates of the base. The behavior of the base was examined in test computational simulations of the combustion of heptane in a stirred reactor at various initial pressures ranging from 0.1 to 6 MPa. Most of the simulations were performed for stoichiometric mixtures; some were performed for fuel/oxygen mole ratios of 1/2 and 2.

  6. Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation

    DTIC Science & Technology

    2016-04-30

    AFRL-AFOSR-VA-TR-2016-0195 Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Kenneth Yu MARYLAND UNIV COLLEGE...MARCH 2016 4. TITLE AND SUBTITLE FUNDAMENTAL STRUCTURE OF HIGH-SPEED REACTING FLOWS: SUPERSONIC COMBUSTION AND DETONATION 5a. CONTRACT NUMBER...public release. Final Report on Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Grant

  7. Simulations of Heterogeneous Detonations and Post Detonation Turbulent Mixing and Afterburning

    NASA Astrophysics Data System (ADS)

    Menon, Suresh; Gottiparthi, Kalyana

    2011-06-01

    Most metal-loaded explosives and thermobaric explosives exploit the afterburning of metals to maintain pressure and temperature conditions.The use of such explosives in complex environment can result in post detonation flow containing many scales of vortical motion, flow jetting and shear, as well as plume-surface interactions due to flow impingement and wall flows. In general, all these interactions can lead to highly turbulent flow fields even if the initial ambient conditions were quiescent. Thus, turbulent mixing can dominate initial mixing and impact the final afterburn. We conduct three-dimensional numerical simulations of the propagation of detonation resulting from metal-loaded (inert or reacting) explosives and analyze the afterburn process as well as the generation of multiple scales of mixing in the post detonation flow field. Impact of the detonation and post-detonation flow field on solid surface is also considered for a variety of initial conditions. Comparison with available data is carried out to demonstrate validity of the simulation method. Supported by Defense Threat Reduction Agency

  8. Lagrangian analysis of premixed turbulent combustion in hydrogen-air flames

    NASA Astrophysics Data System (ADS)

    Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2016-11-01

    Lagrangian analysis has long been a tool used to analyze non-reacting turbulent flows, and has recently gained attention in the reacting flow and combustion communities. The approach itself allows one to separate local molecular effects, such as those due to reactions or diffusion, from turbulent advective effects along fluid pathlines, or trajectories. Accurate calculation of these trajectories can, however, be rather difficult due to the chaotic nature of turbulent flows and the added complexity of reactions. In order to determine resolution requirements and verify the numerical algorithm, extensive tests are described in this talk for prescribed steady, unsteady, and chaotic flows, as well as for direct numerical simulations (DNS) of non-reacting homogeneous isotropic turbulence. The Lagrangian analysis is then applied to DNS of premixed hydrogen-air flames at two different turbulence intensities for both single- and multi-step chemical mechanisms. Non-monotonic temperature and fuel-mass fraction evolutions are found to exist along trajectories passing through the flame brush. Such non-monotonicity is shown to be due to molecular diffusion resulting from large spatial gradients created by turbulent advection. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0273, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.

  9. Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions

    NASA Technical Reports Server (NTRS)

    Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).

  10. National Combustion Code: Parallel Implementation and Performance

    NASA Technical Reports Server (NTRS)

    Quealy, A.; Ryder, R.; Norris, A.; Liu, N.-S.

    2000-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. CORSAIR-CCD is the current baseline reacting flow solver for NCC. This is a parallel, unstructured grid code which uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC flow solver to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This paper describes the parallel implementation of the NCC flow solver and summarizes its current parallel performance on an SGI Origin 2000. Earlier parallel performance results on an IBM SP-2 are also included. The performance improvements which have enabled a turnaround of less than 15 hours for a 1.3 million element fully reacting combustion simulation are described.

  11. A Conformal, Fully-Conservative Approach for Predicting Blast Effects on Ground Vehicles

    DTIC Science & Technology

    2014-04-01

    time integration  Approximate Riemann Fluxes (HLLE, HLLC) ◦ Robust mixture model for multi-material flows  Multiple Equations of State ◦ Perfect Gas...Loci/CHEM: Chemically reacting compressible flow solver . ◦ Currently in production use by NASA for the simulation of rocket motors, plumes, and...vehicles  Loci/DROPLET: Eulerian and Lagrangian multiphase solvers  Loci/STREAM: pressure-based solver ◦ Developed by Streamline Numerics and

  12. Turbulent diffusion of chemically reacting flows: Theory and numerical simulations

    NASA Astrophysics Data System (ADS)

    Elperin, T.; Kleeorin, N.; Liberman, M.; Lipatnikov, A. N.; Rogachevskii, I.; Yu, R.

    2017-11-01

    The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014), 10.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.

  13. Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.

    PubMed

    Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R

    2017-11-01

    The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.

  14. Detailed Studies on the Structure and Dynamics of Reacting Dusty Flows at Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Campbell, Charles S.

    1997-01-01

    Two-phase reacting flows are substantially less understood compared to gas phase flows. While extensive work has been done on sprays, less attention has been given to the details of dusty reacting flows. Dusty flows are of particular interest for a wide range of applications. Particles can be present in a gas intentionally or unintentionally, and they can be inert or reacting. Inert particles can be also present in an otherwise reacting gas flow, and that can lead to flame cooling and modification of the extinction limits of a combustible mixture. Reacting solid particles can release substantial amounts of heat upon oxidation, and can be used either for propulsion (e.g. Al, B, Mg) or power generation (coal). Furthermore, accidents can occur when a reacting dust accumulates in air and which, in the presence of an ignition source, can cause explosion. Such explosions can occur during lumber milling, in grain elevators, and in mine galleries.

  15. Modeling of Turbulent Free Shear Flows

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; DeBonis, James R.; Georgiadis, Nicolas J.

    2013-01-01

    The modeling of turbulent free shear flows is crucial to the simulation of many aerospace applications, yet often receives less attention than the modeling of wall boundary layers. Thus, while turbulence model development in general has proceeded very slowly in the past twenty years, progress for free shear flows has been even more so. This paper highlights some of the fundamental issues in modeling free shear flows for propulsion applications, presents a review of past modeling efforts, and identifies areas where further research is needed. Among the topics discussed are differences between planar and axisymmetric flows, development versus self-similar regions, the effect of compressibility and the evolution of compressibility corrections, the effect of temperature on jets, and the significance of turbulent Prandtl and Schmidt numbers for reacting shear flows. Large eddy simulation greatly reduces the amount of empiricism in the physical modeling, but is sensitive to a number of numerical issues. This paper includes an overview of the importance of numerical scheme, mesh resolution, boundary treatment, sub-grid modeling, and filtering in conducting a successful simulation.

  16. NETL - Chemical Looping Reactor

    ScienceCinema

    None

    2018-02-14

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  17. Gap Filler Induced Transition on the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Barnhardt, Michael D.; Tang, Chun Y.; Sozer, Emre; Candler, Graham

    2012-01-01

    Detached Eddy Simulations have been performed to investigate the effects of high-fidelity turbulence modeling on roughness-induced transition to turbulence during Mars entry. Chemically reacting flow solutions will be obtained for a gap filler of Mars Science Laboratory at the peak heating condition.

  18. Comparison of Mixing Characteristics for Several Fuel Injectors on an Open Plate and in a Ducted Flowpath Configuration at Hypervelocity Flow Conditions

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Shenoy, Rajiv R.; Passe, Bradley J.; Baurle, Robert A.; Drummond, J. Philip

    2017-01-01

    In order to reduce the cost and complexity associated with fuel injection and mixing experiments for high-speed flows, and to further enable optical access to the test section for nonintrusive diagnostics, the Enhanced Injection and Mixing Project (EIMP) utilizes an open flat plate configuration to characterize inert mixing properties of various fuel injectors for hypervelocity applications. The experiments also utilize reduced total temperature conditions to alleviate the need for hardware cooling. The use of "cold" flows and non-reacting mixtures for mixing experiments is not new, and has been extensively utilized as a screening technique for scramjet fuel injectors. The impact of reduced facility-air total temperature, and the use of inert fuel simulants, such as helium, on the mixing character of the flow has been assessed in previous numerical studies by the authors. Mixing performance was characterized for three different injectors: a strut, a ramp, and a flushwall. The present study focuses on the impact of using an open plate to approximate mixing in the duct. Toward this end, Reynolds-averaged simulations (RAS) were performed for the three fuel injectors in an open plate configuration and in a duct. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared for the two configurations. In addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also computed for the reacting simulations.

  19. Multi-GPU unsteady 2D flow simulation coupled with a state-to-state chemical kinetics

    NASA Astrophysics Data System (ADS)

    Tuttafesta, Michele; Pascazio, Giuseppe; Colonna, Gianpiero

    2016-10-01

    In this work we are presenting a GPU version of a CFD code for high enthalpy reacting flow, using the state-to-state approach. In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma and state-to-state kinetics is the most accurate approach used for this kind of problems. This model consists in writing a continuity equation for the population of each vibrational level of the molecules in the mixture, determining at the same time the species densities and the distribution of the population in internal levels. An explicit scheme is employed here to integrate the governing equations, so as to exploit the GPU structure and obtain an efficient algorithm. The best performances are obtained for reacting flows in state-to-state approach, reaching speedups of the order of 100, thanks to the use of an operator splitting scheme for the kinetics equations.

  20. Numerical Modeling of Fuel Injection into an Accelerating, Turning Flow with a Cavity

    NASA Astrophysics Data System (ADS)

    Colcord, Ben James

    Deliberate continuation of the combustion in the turbine passages of a gas turbine engine has the potential to increase the efficiency and the specific thrust or power of current gas-turbine engines. This concept, known as a turbine-burner, must overcome many challenges before becoming a viable product. One major challenge is the injection, mixing, ignition, and burning of fuel within a short residence time in a turbine passage characterized by large three-dimensional accelerations. One method of increasing the residence time is to inject the fuel into a cavity adjacent to the turbine passage, creating a low-speed zone for mixing and combustion. This situation is simulated numerically, with the turbine passage modeled as a turning, converging channel flow of high-temperature, vitiated air adjacent to a cavity. Both two- and three-dimensional, reacting and non-reacting calculations are performed, examining the effects of channel curvature and convergence, fuel and additional air injection configurations, and inlet conditions. Two-dimensional, non-reacting calculations show that higher aspect ratio cavities improve the fluid interaction between the channel flow and the cavity, and that the cavity dimensions are important for enhancing the mixing. Two-dimensional, reacting calculations show that converging channels improve the combustion efficiency. Channel curvature can be either beneficial or detrimental to combustion efficiency, depending on the location of the cavity and the fuel and air injection configuration. Three-dimensional, reacting calculations show that injecting fuel and air so as to disrupt the natural motion of the cavity stimulates three-dimensional instability and improves the combustion efficiency.

  1. LES, DNS, and RANS for the Analysis of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Colucci, P. J.; Jaberi, F. A.; Givi, P.

    1996-01-01

    A filtered density function (FDF) method suitable for chemically reactive flows is developed in the context of large eddy simulation. The advantage of the FDF methodology is its inherent ability to resolve subgrid scales (SGS) scalar correlations that otherwise have to be modeled. Because of the lack of robust models to accurately predict these correlations in turbulent reactive flows, simulations involving turbulent combustion are often met with a degree of skepticism. The FDF methodology avoids the closure problem associated with these terms and treats the reaction in an exact manner. The scalar FDF approach is particularly attractive since it can be coupled with existing hydrodynamic computational fluid dynamics (CFD) codes.

  2. 3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry

    NASA Astrophysics Data System (ADS)

    Özdemir, İ. Bedii; Akar, Fırat

    2018-05-01

    The aim of the present work is to develop a flow model which can be used to determine the paths of the polyurethane foam in the mold filling process of a refrigerator cabinet so that improvements in the distribution and the size of the venting holes can be achieved without the expensive prototyping and experiments. For this purpose, the multi-component, two-phase chemically reacting flow is described by Navier Stokes and 12 scalar transport equations. The air and the multi-component foam zones are separated by an interface, which moves only with advection since the mass diffusion of species are set zero in the air zone. The inverse density, viscosity and other diffusion coefficients are calculated by a mass fraction weighted average of the corresponding temperature-dependent values of all species. Simulations are performed in a real refrigerator geometry, are able to reveal the problematical zones where air bubbles and voids trapped in the solidified foam are expected to occur. Furthermore, the approach proves itself as a reliable design tool to use in deciding the locations of air vents and sizing the channel dimensions.

  3. Direct numerical simulation of turbulent, chemically reacting flows

    NASA Astrophysics Data System (ADS)

    Doom, Jeffrey Joseph

    This dissertation: (i) develops a novel numerical method for DNS/LES of compressible, turbulent reacting flows, (ii) performs several validation simulations, (iii) studies auto-ignition of a hydrogen vortex ring in air and (iv) studies a hydrogen/air turbulent diffusion flame. The numerical method is spatially non-dissipative, implicit and applicable over a range of Mach numbers. The compressible Navier-Stokes equations are rescaled so that the zero Mach number equations are discretely recovered in the limit of zero Mach number. The dependent variables are co--located in space, and thermodynamic variables are staggered from velocity in time. The algorithm discretely conserves kinetic energy in the incompressible, inviscid, non--reacting limit. The chemical source terms are implicit in time to allow for stiff chemical mechanisms. The algorithm is readily applicable to complex chemical mechanisms. Good results are obtained for validation simulations. The algorithm is used to study auto-ignition in laminar vortex rings. A nine species, nineteen reaction mechanism for H2/air combustion proposed by Mueller et al. [37] is used. Diluted H 2 at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratio, oxidizer temperature, Lewis number and stroke ratio (ratio of piston stroke length to diameter). Results show that auto--ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, zeta MR (Mastorakos et al. [32]). Subsequent evolution of the flame is not predicted by zetaMR; a most reactive temperature TMR is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke ratios greater than the formation number, ignition initially occurs behind the leading vortex ring, then occurs along the length of the trailing column and propagates towards the ring. Lewis number is seen to affect both the initial ignition as well as subsequent flame evolution significantly. Non-uniform Lewis number simulations provide faster ignition and burnout time but a lower maximum temperature. The fuel rich reacting vortex ring provides the highest maximum temperature and the higher oxidizer temperature provides the fastest ignition time. The fuel lean reacting vortex ring has little effect on the flow and behaves similar to a non--reacting vortex ring. We then study auto-ignition of turbulent H2/air diffusion flames using the Mueller et al. [37] mechanism. Isotropic turbulence is superimposed on an unstrained diffusion flame where diluted H 2 at ambient temperature interacts with hot air. Both, unity and non-unity Lewis number are studied. The results are contrasted to the homogeneous mixture problem and laminar diffusion flames. Results show that auto-ignition occurs in fuel lean, low vorticity, high temperature regions with low scalar dissipation around a most reactive mixture fraction, zetaMR (Mastorakos et al. [32]). However, unlike the laminar flame where auto-ignition occurs at zetaMR, the turbulent flame auto-ignites over a very broad range of zeta around zetaMR, which cannot completely predict the onset of ignition. The simulations also study the effects of three-dimensionality. Past two--dimensional simulations (Mastorakos et al. [32]) show that when flame fronts collide, extinction occurs. However, our three dimensional results show that when flame fronts collide; they can either increase in intensity, combine without any appreciable change in intensity or extinguish. This behavior is due to the three--dimensionality of the flow.

  4. Scalar flux modeling in turbulent flames using iterative deconvolution

    NASA Astrophysics Data System (ADS)

    Nikolaou, Z. M.; Cant, R. S.; Vervisch, L.

    2018-04-01

    In the context of large eddy simulations, deconvolution is an attractive alternative for modeling the unclosed terms appearing in the filtered governing equations. Such methods have been used in a number of studies for non-reacting and incompressible flows; however, their application in reacting flows is limited in comparison. Deconvolution methods originate from clearly defined operations, and in theory they can be used in order to model any unclosed term in the filtered equations including the scalar flux. In this study, an iterative deconvolution algorithm is used in order to provide a closure for the scalar flux term in a turbulent premixed flame by explicitly filtering the deconvoluted fields. The assessment of the method is conducted a priori using a three-dimensional direct numerical simulation database of a turbulent freely propagating premixed flame in a canonical configuration. In contrast to most classical a priori studies, the assessment is more stringent as it is performed on a much coarser mesh which is constructed using the filtered fields as obtained from the direct simulations. For the conditions tested in this study, deconvolution is found to provide good estimates both of the scalar flux and of its divergence.

  5. Reacting Flows Simulation with Applications to Ground to Flight Extrapolation

    DTIC Science & Technology

    2007-07-01

    P.zza Leonardo da Vinci 32, 20133 Milano, Italy barbante@mate.polimi.it Abstract The development of next generation reusable space vehicles requires a...Politecnico di Milano, Dept. of Mathematics P.zza Leonardo da Vinci 32, 20133 Milano, Italy 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  6. Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows

    NASA Astrophysics Data System (ADS)

    Safari, Mehdi

    Analysis of local entropy generation is an effective means to optimize the performance of energy and combustion systems by minimizing the irreversibilities in transport processes. Large eddy simulation (LES) is employed to describe entropy transport and generation in turbulent reacting flows. The entropy transport equation in LES contains several unclosed terms. These are the subgrid scale (SGS) entropy flux and entropy generation caused by irreversible processes: heat conduction, mass diffusion, chemical reaction and viscous dissipation. The SGS effects are taken into account using a novel methodology based on the filtered density function (FDF). This methodology, entitled entropy FDF (En-FDF), is developed and utilized in the form of joint entropy-velocity-scalar-turbulent frequency FDF and the marginal scalar-entropy FDF, both of which contain the chemical reaction effects in a closed form. The former constitutes the most comprehensive form of the En-FDF and provides closure for all the unclosed filtered moments. This methodology is applied for LES of a turbulent shear layer involving transport of passive scalars. Predictions show favor- able agreements with the data generated by direct numerical simulation (DNS) of the same layer. The marginal En-FDF accounts for entropy generation effects as well as scalar and entropy statistics. This methodology is applied to a turbulent nonpremixed jet flame (Sandia Flame D) and predictions are validated against experimental data. In both flows, sources of irreversibility are predicted and analyzed.

  7. Modeling Combustion in Supersonic Flows

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.

    2007-01-01

    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.

  8. Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.

    2016-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.

  9. Investigations of turbulent scalar fields using probability density function approach

    NASA Technical Reports Server (NTRS)

    Gao, Feng

    1991-01-01

    Scalar fields undergoing random advection have attracted much attention from researchers in both the theoretical and practical sectors. Research interest spans from the study of the small scale structures of turbulent scalar fields to the modeling and simulations of turbulent reacting flows. The probability density function (PDF) method is an effective tool in the study of turbulent scalar fields, especially for those which involve chemical reactions. It has been argued that a one-point, joint PDF approach is the one to choose from among many simulation and closure methods for turbulent combustion and chemically reacting flows based on its practical feasibility in the foreseeable future for multiple reactants. Instead of the multi-point PDF, the joint PDF of a scalar and its gradient which represents the roles of both scalar and scalar diffusion is introduced. A proper closure model for the molecular diffusion term in the PDF equation is investigated. Another direction in this research is to study the mapping closure method that has been recently proposed to deal with the PDF's in turbulent fields. This method seems to have captured the physics correctly when applied to diffusion problems. However, if the turbulent stretching is included, the amplitude mapping has to be supplemented by either adjusting the parameters representing turbulent stretching at each time step or by introducing the coordinate mapping. This technique is still under development and seems to be quite promising. The final objective of this project is to understand some fundamental properties of the turbulent scalar fields and to develop practical numerical schemes that are capable of handling turbulent reacting flows.

  10. Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) National Combustion Code (NCC) Calculations Against Experimental Data for a Turbulent Reacting Flow

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.; Moder, Jeffery P.

    2010-01-01

    Developing physics-based tools to aid in reducing harmful combustion emissions, like Nitrogen Oxides (NOx), Carbon Monoxide (CO), Unburnt Hydrocarbons (UHC s), and Sulfur Dioxides (SOx), is an important goal of aeronautics research at NASA. As part of that effort, NASA Glenn Research Center is performing a detailed assessment and validation of an in-house combustion CFD code known as the National Combustion Code (NCC) for turbulent reacting flows. To assess the current capabilities of NCC for simulating turbulent reacting flows with liquid jet fuel injection, a set of Single Swirler Lean Direct Injection (LDI) experiments performed at the University of Cincinnati was chosen as an initial validation data set. This Jet-A/air combustion experiment operates at a lean equivalence ratio of 0.75 at atmospheric pressure and has a 4 percent static pressure drop across the swirler. Detailed comparisons of NCC predictions for gas temperature and gaseous emissions (CO and NOx) against this experiment are considered in a previous work. The current paper is focused on detailed comparisons of the spray characteristics (radial profiles of drop size distribution and at several radial rakes) from NCC simulations against the experimental data. Comparisons against experimental data show that the use of the correlation for primary spray break-up implemented by Raju in the NCC produces most realistic results, but this result needs to be improved. Given the single or ten step chemical kinetics models, use of a spray size correlation gives similar, acceptable results

  11. Reacting Chemistry Based Burn Model for Explosive Hydrocodes

    NASA Astrophysics Data System (ADS)

    Schwaab, Matthew; Greendyke, Robert; Steward, Bryan

    2017-06-01

    Currently, in hydrocodes designed to simulate explosive material undergoing shock-induced ignition, the state of the art is to use one of numerous reaction burn rate models. These burn models are designed to estimate the bulk chemical reaction rate. Unfortunately, these models are largely based on empirical data and must be recalibrated for every new material being simulated. We propose that the use of an equilibrium Arrhenius rate reacting chemistry model in place of these empirically derived burn models will improve the accuracy for these computational codes. Such models have been successfully used in codes simulating the flow physics around hypersonic vehicles. A reacting chemistry model of this form was developed for the cyclic nitramine RDX by the Naval Research Laboratory (NRL). Initial implementation of this chemistry based burn model has been conducted on the Air Force Research Laboratory's MPEXS multi-phase continuum hydrocode. In its present form, the burn rate is based on the destruction rate of RDX from NRL's chemistry model. Early results using the chemistry based burn model show promise in capturing deflagration to detonation features more accurately in continuum hydrocodes than previously achieved using empirically derived burn models.

  12. Modeling and simulation of axisymmetric stagnation flames

    NASA Astrophysics Data System (ADS)

    Sone, Kazuo

    Laminar flame modeling is an important element in turbulent combustion research. The accuracy of a turbulent combustion model is highly dependent upon our understanding of laminar flames and their behavior in many situations. How much we understand combustion can only be measured by how well the model describes and predicts combustion phenomena. One of the most commonly used methane combustion models is GRI-Mech 3.0. However, how well the model describes the reacting flow phenomena is still uncertain even after many attempts to validate the model or quantify uncertainties. In the present study, the behavior of laminar flames under different aerodynamic and thermodynamic conditions is studied numerically in a stagnation-flow configuration. In order to make such a numerical study possible, the spectral element method is reformulated to accommodate the large density variations in methane reacting flows. In addition, a new axisymmetric basis function set for the spectral element method that satisfies the correct behavior near the axis is developed, and efficient integration techniques are developed to accurately model axisymmetric reacting flow within a reasonable amount of computational time. The numerical method is implemented using an object-oriented programming technique, and the resulting computer program is verified with several different verification methods. The present study then shows variances with the commonly used GRI-Mech 3.0 chemical kinetics model through a direct simulation of laboratory flames that allows direct comparison to experimental data. It is shown that the methane combustion model based on GRI-Mech 3.0 works well for methane-air mixtures near stoichiometry. However, GRI-Mech 3.0 leads to an overprediction of laminar flame speed for lean mixtures and an underprediction for rich mixtures. This result is slightly different from conclusion drawn in previous work, in which experimental data are compared with a one-dimensional numerical solutions. Detailed analysis reveals that flame speed is sensitive to even slight flame front curvature as well as its finite extension in the radial direction. Neither of these can be incorporated in one-dimensional flow modeli

  13. Real gas CFD simulations of hydrogen/oxygen supercritical combustion

    NASA Astrophysics Data System (ADS)

    Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.

    2013-03-01

    A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.

  14. Ensemble Averaged Probability Density Function (APDF) for Compressible Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2012-01-01

    In this paper, we present a concept of the averaged probability density function (APDF) for studying compressible turbulent reacting flows. The APDF is defined as an ensemble average of the fine grained probability density function (FG-PDF) with a mass density weighting. It can be used to exactly deduce the mass density weighted, ensemble averaged turbulent mean variables. The transport equation for APDF can be derived in two ways. One is the traditional way that starts from the transport equation of FG-PDF, in which the compressible Navier- Stokes equations are embedded. The resulting transport equation of APDF is then in a traditional form that contains conditional means of all terms from the right hand side of the Navier-Stokes equations except for the chemical reaction term. These conditional means are new unknown quantities that need to be modeled. Another way of deriving the transport equation of APDF is to start directly from the ensemble averaged Navier-Stokes equations. The resulting transport equation of APDF derived from this approach appears in a closed form without any need for additional modeling. The methodology of ensemble averaging presented in this paper can be extended to other averaging procedures: for example, the Reynolds time averaging for statistically steady flow and the Reynolds spatial averaging for statistically homogeneous flow. It can also be extended to a time or spatial filtering procedure to construct the filtered density function (FDF) for the large eddy simulation (LES) of compressible turbulent reacting flows.

  15. High Order Finite Difference Methods with Subcell Resolution for 2D Detonation Waves

    NASA Technical Reports Server (NTRS)

    Wang, W.; Shu, C. W.; Yee, H. C.; Sjogreen, B.

    2012-01-01

    In simulating hyperbolic conservation laws in conjunction with an inhomogeneous stiff source term, if the solution is discontinuous, spurious numerical results may be produced due to different time scales of the transport part and the source term. This numerical issue often arises in combustion and high speed chemical reacting flows.

  16. High-Fidelity Thermal Radiation Models and Measurements for High-Pressure Reacting Laminar and Turbulent Flows

    DTIC Science & Technology

    2013-06-26

    flow code used ( OpenFOAM ) to include differential diffusion and cell-based stochastic RTE solvers. The models were validated by simulation of laminar...wavenumber selection is improved about by a factor of 10. (5) OpenFOAM Improvements for Laminar Flames A laminar-diffusion combustion solver, taking into...account the effects of differential diffusion, was developed within the open source CFD package OpenFOAM [18]. In addition, OpenFOAM was augmented to take

  17. Numerical simulation of air hypersonic flows with equilibrium chemical reactions

    NASA Astrophysics Data System (ADS)

    Emelyanov, Vladislav; Karpenko, Anton; Volkov, Konstantin

    2018-05-01

    The finite volume method is applied to solve unsteady three-dimensional compressible Navier-Stokes equations on unstructured meshes. High-temperature gas effects altering the aerodynamics of vehicles are taken into account. Possibilities of the use of graphics processor units (GPUs) for the simulation of hypersonic flows are demonstrated. Solutions of some test cases on GPUs are reported, and a comparison between computational results of equilibrium chemically reacting and perfect air flowfields is performed. Speedup of solution on GPUs with respect to the solution on central processor units (CPUs) is compared. The results obtained provide promising perspective for designing a GPU-based software framework for practical applications.

  18. A Step Towards CO2-Neutral Aviation

    NASA Technical Reports Server (NTRS)

    Brankovic, Andreja; Ryder, Robert C.; Hendricks, Robert C.; Huber, Marcia L.

    2008-01-01

    An approximation method for evaluation of the caloric equations used in combustion chemistry simulations is described. The method is applied to generate the equations of specific heat, static enthalpy, and Gibb's free energy for fuel mixtures of interest to gas turbine engine manufacturers. Liquid-phase fuel properties are also derived. The fuels investigated include JP-8, synthetic fuel, and two blends of JP-8 and synthetic fuel. The complete set of fuel property equations for both phases are implemented into a computational fluid dynamics (CFD) flow solver database, and multiphase, reacting flow simulations of a well-tested liquid-fueled combustor are performed. The simulations are a first step in understanding combustion system performance and operational issues when using alternate fuels, at practical engine operating conditions.

  19. Numerical Simulation of Tuff Dissolution and Precipitation Experiments: Validation of Thermal-Hydrologic-Chemical (THC) Coupled-Process Modeling

    NASA Astrophysics Data System (ADS)

    Dobson, P. F.; Kneafsey, T. J.

    2001-12-01

    As part of an ongoing effort to evaluate THC effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation. To replicate mineral dissolution by condensate in fractured tuff, deionized water equilibrated with carbon dioxide was flowed for 1,500 hours through crushed Yucca Mountain tuff at 94° C. The reacted water was collected and sampled for major dissolved species, total alkalinity, electrical conductivity, and pH. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/L; silica was the dominant dissolved constituent. A portion of the steady-state reacted water was flowed at 10.8 mL/hr into a 31.7-cm tall, 16.2-cm wide vertically oriented planar fracture with a hydraulic aperture of 31 microns in a block of welded Topopah Spring tuff that was maintained at 80° C at the top and 130° C at the bottom. The fracture began to seal within five days. A 1-D plug-flow model using the TOUGHREACT code developed at Berkeley Lab was used to simulate mineral dissolution, and a 2-D model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The fracture-plugging simulations result in the precipitation of amorphous silica at the base of the boiling front, leading to a hundred-fold decrease in fracture permeability in less than 6 days, consistent with the laboratory experiment. These results help validate the use of the TOUGHREACT code for THC modeling of the Yucca Mountain system. The experiment and simulations indicate that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. The TOUGHREACT code will be used to evaluate larger-scale silica sealing observed in a portion of the Yellowstone geothermal system, a natural analog for the precipitation-experiment processes.

  20. Velocity Measurement in a Dual-Mode Supersonic Combustor using Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Goyne, C. P.; McDaniel, J. C.; Krauss, R. H.; Day, S. W.; Reubush, D. E. (Technical Monitor); McClinton, C. R. (Technical Monitor); Reubush, D. E.

    2001-01-01

    Temporally and spatially-resolved, two-component measurements of velocity in a supersonic hydrogen-air combustor are reported. The combustor had a single unswept ramp fuel injector and operated with an inlet Mach number of 2 and a flow total temperature approaching 1200 K. The experiment simulated the mixing and combustion processes of a dual-mode scramjet operating at a flight Mach number near 5. The velocity measurements were obtained by seeding the fuel with alumina particles and performing Particle Image Velocimetry on the mixing and combustion wake of the ramp injector. To assess the effects of combustion on the fuel air-mixing process, the distribution of time-averaged velocity and relative turbulence intensity was determined for the cases of fuel-air mixing and fuel-air reacting. Relative to the mixing case, the near field core velocity of the reacting fuel jet had a slower streamwise decay. In the far field, downstream of 4 to 6 ramp heights from the ramp base, the heat release of combustion resulted in decreased flow velocity and increased turbulence levels. The reacting measurements were also compared with a computational fluid dynamics solution of the flow field. Numerically predicted velocity magnitudes were higher than that measured and the jet penetration was lower.

  1. Progress Toward Affordable High Fidelity Combustion Simulations Using Filtered Density Functions for Hypersonic Flows in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent

    2012-01-01

    Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce the number of transported reactive species and remove numerical stiffness. This paper briefly introduces the SFMDF model (highlighting key benefits and challenges), and discusses particle tracking for flows with shocks, the hybrid coupled RAS/PDF and LES/FDF model, flamelet generated manifolds (FGM) model, and the Irregularly Portioned Lagrangian Monte Carlo Finite Difference (IPLMCFD) methodology for scalable simulation of high-speed reacting compressible flows.

  2. The flame structure and vorticity generated by a chemically reacting transverse jet

    NASA Technical Reports Server (NTRS)

    Karagozian, A. R.

    1986-01-01

    An analytical model describing the behavior of a turbulent fuel jet injected normally into a cross flow is developed. The model places particular emphasis on the contrarotating vortex pair associated with the jet, and predicts the flame length and shape based on entrainment of the oxidizer by the fuel jet. Effects of buoyancy and density variations in the flame are neglected in order to isolate the effects of large-scale mixing. The results are compared with a simulation of the transverse reacting jet in a liquid (acid-base) system. For a wide range of ratios of the cross flow to jet velocity, the model predicts flame length quite well. In particular, the observed transitional behavior in the flame length between cross-flow velocity to jet velocity of orifice ratios of 0.0 to 0.1, yielding an approximate minimum at the ratio 0.05, is reproduced very clearly by the present model. The transformation in flow structure that accounts for this minimum arises from the differing components of vorticity dominant in the near-field and far-field regions of the jet.

  3. Numerical mixing calculations of confined reacting jet flows in a cylindrical duct

    NASA Technical Reports Server (NTRS)

    Oechsle, Victor L.; Holdeman, J. D.

    1995-01-01

    The results reported in this paper describe some of the main flow characteristics and NOx production results which develop in the mixing process in a constant cross-sectional cylindrical duct. A 3-dimensional numerical model has been used to predict the mixing flow field and NOx characteristics in a mixing section of an RQL combustor. Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameter: (1) jet-to-mainstream momentum-flux ration (J), (2) orifice shape or orifice aspect ratio, and (3) slot slant angle. The results indicate that the mixing flow field and NOx production significantly vary with the value of the jet penetration and subsequently, slanting elongated slots generally improve the NOx production at high J conditions. Round orifices produce low NOx at low J due to the strong jet penetration. The NOx production trends do not correlate with the mixing non-uniformity parameters described herein.

  4. Detailed Studies on the Structure and Dynamics of Reacting Dusty Flows at Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    Andac, M. Gurhan; Cracchiola, Brad; Egolfopoulos, Fokion N.; Campbell, Charles S.

    1999-01-01

    Dusty reacting flows are of particular interest for a wide range of applications. Inert particles can alter the flammability and extinction limits of a combustible mixture. Reacting particles can release substantial amount of heat and can be used either for power generation or propulsion. Accumulation of combustible particles in air can result in explosions which, for example, can occur in grain elevators, during lumber milling and in mine galleries. Furthermore, inert particles are used as flow velocity markers in reacting flows, and their velocity is measured by non-intrusive laser diagnostic techniques. Despite their importance, dusty reacting flows have been less studied and understood compared to gas phase as well as sprays. The addition of solid particles in a flowing gas stream can lead to strong couplings between the two phases, which can be of dynamic, thermal, and chemical nature. The dynamic coupling between the two phases is caused by the inertia that causes the phases to move with different velocities. Furthermore, gravitational, thermophoretic, photophoretic, electrophoretic, diffusiophoretic, centrifugal, and magnetic forces can be exerted on the particles. In general, magnetic, electrophoretic, centrifugal, photophoretic, and diffusiophoretic can be neglected. On the other hand, thermophoretic forces, caused by steep temperature gradients, can be important. The gravitational forces are almost always present and can affect the dynamic response of large particles. Understanding and quantifying the chemical coupling between two phases is a challenging task. However, all reacting particles begin this process as inert particles, and they must be heated before they participate in the combustion process. Thus, one must first understand the interactions of inert particles in a combustion environment. The in-detail understanding of the dynamics and structure of dusty flows can be only advanced by considering simple flow geometries such as the opposed-jet, stagnation-type. In such configurations the imposed strain rate is well characterized, and the in-depth understanding of the details of the physico-chemical processes can be systematically obtained. A number of computational and experimental studies on spray and particle flows have been conducted in stagnation-type configurations. Numerically, the need for a hybrid Eulerian-Lagrangian approach has been identified by Continillo and Sirignano, and the use of such approach has allowed for the prediction of the phenomenon of droplet flow reversal. Gomez and Rosner have conducted a detailed study on the particle response in the opposed-jet configuration, and the particle thermophoretic diffusivities were determined experimentally. Sung, Law and co-workers have conducted numerical studies on the effect of strain rate and temperature gradients on the dynamics of inert particles, as a way of understanding potential errors in experimental LDV data that may arise from thermophoretic forces. This investigation is a combined experimental and numerical study on the details of reacting dusty flows. The specific tasks are: (1) Experimental determination of laminar flame speeds, and extinction strain rates of dusty flows at normal- and micro-gravity as functions of the particle type, particle initial diameter, particle initial number density, and gas phase chemical composition; (2) Detailed numerical simulation of the experiments. Results are compared with experiments and the adequacy of theoretical models is assessed; and (3) Provision of enhanced insight into the thermo-chemical coupling between the two phases.

  5. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marxen, Olaf, E-mail: olaf.marxen@vki.ac.be; Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse; Magin, Thierry E.

    2013-12-15

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as wellmore » as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.« less

  6. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Oliveira, Justin

    2011-01-01

    This paper describes the Computation Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing test of the Taurus II launch vehicle. The finite rate chemistry is used to model the combustion process involving rocket propellant (RP 1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  7. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Oliveira, Justin

    2011-01-01

    This paper describes the Computational Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing tests of the Taurus-II launch vehicle. The finite-rate chemistry is used to model the combustion process involving rocket propellant (RP-1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region, thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  8. A method to determine the acoustical properties of locally and nonlocally reacting duct liners in grazing flow

    NASA Technical Reports Server (NTRS)

    Succi, G.

    1982-01-01

    The acoustical properties of locally and nonlocally reacting acoustical liners in grazing flow are described. The effect of mean flow and shear flow are considered as well as the application to rigid and limp bulk reacting materials. The axial wavenumber of the least attenuated mode in a flow duct is measured. The acoustical properties of duct liners is then deduced from the measured axial wavenumber and known flow profile and boundary conditions. This method is a natural extension of impedance-like measurements.

  9. Effect of Air Swirler Configuration on Lean Direct Injector Flow Structure and Combustion Performance with a 7-Point Lean Direct Injector Array

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2017-01-01

    Studies of various injector configurations in a 7-point Lean Direct Injector (LDI) array are reported for both non-reacting (cold) flow and for Jet-A/air reacting flows. For cold flow, central recirculation zone (CRZ) formation is investigated and for reacting flows, combustor operability and dynamics are of interest. 2D Particle Image Velocimetry (PIV) measurements are described for the cold flow experiments and flame chemiluminescence imaging and dynamic pressure results are discussed for the reacting flow cases. PIV results indicate that for this configuration the close spacing between swirler elements leads to strong interaction that affects whether a CRZ forms, and pilot recess and counter-swirl helps to isolate swirlers from one another. Dynamics results focus on features identified near 500-Hz.

  10. Structure of hydrogen-rich transverse jets in a vitiated turbulent flow

    DOE PAGES

    Lyra, Sgouria; Wilde, Benjamin; Kolla, Hemanth; ...

    2014-11-24

    Our paper reports the results of a joint experimental and numerical study of the flow characteristics and flame structure of a hydrogen rich jet injected normal to a turbulent, vitiated crossflow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/COH2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air crossflow, the present conditions lead to a burner-attached flame that initiates uniformly around the burner edge. Significantmore » asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/crossflow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the inert and reacting JICF. The paper concludes with an analysis of the ignition, flame characteristics, and global structure of the burner-attached flame. FurthermoreChemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is examined by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.« less

  11. LES of Swirling Reacting Flows via the Unstructured scalar-FDF Solver

    NASA Astrophysics Data System (ADS)

    Ansari, Naseem; Pisciuneri, Patrick; Strakey, Peter; Givi, Peyman

    2011-11-01

    Swirling flames pose a significant challenge for computational modeling due to the presence of recirculation regions and vortex shedding. In this work, results are presented of LES of two swirl stabilized non-premixed flames (SM1 and SM2) via the FDF methodology. These flames are part of the database for validation of turbulent-combustion models. The scalar-FDF is simulated on a domain discretized by unstructured meshes, and is coupled with a finite volume flow solver. In the SM1 flame (with a low swirl number) chemistry is described by the flamelet model based on the full GRI 2.11 mechanism. The SM2 flame (with a high swirl number) is simulated via a 46-step 17-species mechanism. The simulated results are assessed via comparison with experimental data.

  12. A Step Towards CO2-Neutral Aviation

    NASA Technical Reports Server (NTRS)

    Brankovic, Andreja; Ryder, Robert C.; Hendricks, Robert C.; Huber, Marcia L.

    2007-01-01

    An approximation method for evaluation of the caloric equations used in combustion chemistry simulations is described. The method is applied to generate the equations of specific heat, static enthalpy, and Gibb's free energy for fuel mixtures of interest to gas turbine engine manufacturers. Liquid-phase fuel properties are also derived. The fuels include JP-8, synthetic fuel, and two fuel blends consisting of a mixture of JP-8 and synthetic fuel. The complete set of fuel property equations for both phases are implemented into a computational fluid dynamics (CFD) flow solver database, and multi-phase, reacting flow simulations of a well-tested liquid-fueled combustor are performed. The simulations are a first step in understanding combustion system performance and operational issues when using alternate fuels, at practical engine operating conditions.

  13. Mitigation of Autoignition Due to Premixing in a Hypervelocity Flow Using Active Wall Cooling

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2013-01-01

    Preinjection of fuel on the forebody of an airbreathing vehicle is a proposed method to gain access to hypervelocity flight Mach numbers. However, this creates the possibility of autoignition either near the wall or in the core of the flow, thereby consuming fuel prematurely as well as increasing the amount of pressure drag on the vehicle. The computational fluid dynamics code VULCAN was used to conduct three dimensional simulations of the reacting flow in the vicinity of hydrogen injectors on a flat plate at conditions relevant to a Mach 12 notional flight vehicle forebody to determine the location where autoignition occurs. Active wall cooling strategies were formulated and simulated in response to regions of autoignition. It was found that tangential film cooling using hydrogen or helium were both able to nearly or completely eliminate wall autoignition in the flow domain of interest.

  14. Chemical reacting flows

    NASA Astrophysics Data System (ADS)

    Lezberg, Erwin A.; Mularz, Edward J.; Liou, Meng-Sing

    1991-03-01

    The objectives and accomplishments of research in chemical reacting flows, including both experimental and computational problems are described. The experimental research emphasizes the acquisition of reliable reacting-flow data for code validation, the development of chemical kinetics mechanisms, and the understanding of two-phase flow dynamics. Typical results from two nonreacting spray studies are presented. The computational fluid dynamics (CFD) research emphasizes the development of efficient and accurate algorithms and codes, as well as validation of methods and modeling (turbulence and kinetics) for reacting flows. Major developments of the RPLUS code and its application to mixing concepts, the General Electric combustor, and the Government baseline engine for the National Aerospace Plane are detailed. Finally, the turbulence research in the newly established Center for Modeling of Turbulence and Transition (CMOTT) is described.

  15. Comparing volume of fluid and level set methods for evaporating liquid-gas flows

    NASA Astrophysics Data System (ADS)

    Palmore, John; Desjardins, Olivier

    2016-11-01

    This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.

  16. DNS of High Pressure Supercritical Combustion

    NASA Astrophysics Data System (ADS)

    Chong, Shao Teng; Raman, Venkatramanan

    2016-11-01

    Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.

  17. Annual Research Briefs, 1998

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1998-01-01

    The topics contained in this progress report are direct numerical simulation of turbulent non-premixed combustion with realistic chemistry; LES of non-premixed turbulent reacting flows with conditional source term estimation; measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets; direct simulation of a jet diffusion flame; on the use of interpolating wavelets in the direct numerical simulation of combustion; on the use of a dynamically adaptive wavelet collocation algorithm in DNS (direct numerical simulation) of non-premixed turbulent combustion; 2D simulations of Hall thrusters; computation of trailing-edge noise at low mach number using LES and acoustic analogy; weakly nonlinear modeling of the early stages of bypass transition; interactions between freestream turbulence and boundary layers; interfaces at the outer boundaries of turbulent motions; largest scales of turbulent wall flows; the instability of streaks in near-wall turbulence; an implementation of the v(sup 2) - f model with application to transonic flows; heat transfer predictions in cavities; a structure-based model with stropholysis effects; modeling a confined swirling coaxial jet; subgrid-scale models based on incremental unknowns for large eddy simulations; subgrid scale modeling taking the numerical error into consideration; towards a near-wall model for LES of a separated diffuser flow; on the feasibility of merging LES with RANS (Reynolds Averaging Numerical simulation) for the near-wall region of attached turbulent flows; large-eddy simulation of a separated boundary layer; numerical study of a channel flow with variable properties; on the construction of high order finite difference schemes on non-uniform meshes with good conservation properties; development of immersed boundary methods for complex geometries; and particle methods for micro and macroscale flow simulations.

  18. An experimental study of combustion: The turbulent structure of a reacting shear layer formed at a rearward-facing step. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.

    1981-01-01

    A premixed propane-air flame is stabilized in a turbulent free shear layer formed at a rearward-facing step. The mean and rms averages of the turbulent velocity flow field were determined by LDV for both reacting and non-reacting flows. The reaching flow was visualized by high speed schlieren photography. Large scale structures dominate the reacting shear layer. The growth of the large scale structures is tied to the propagation of the flame. The linear growth rate of the reacting shear layer defined by the mean velocity profiles is unchanged by combustion but the virtual origin is shifted downstream. The reacting shear layer based on the mean velocity profiles is shifted toward the recirculation zone and the reattachments lengths are shortened by 30%.

  19. Mixing and non-equilibrium chemical reaction in a compressible mixing layer. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Steinberger, Craig J.

    1991-01-01

    The effects of compressibility, chemical reaction exothermicity, and non-equilibrium chemical modeling in a reacting plane mixing layer were investigated by means of two dimensional direct numerical simulations. The chemical reaction was irreversible and second order of the type A + B yields Products + Heat. The general governing fluid equations of a compressible reacting flow field were solved by means of high order finite difference methods. Physical effects were then determined by examining the response of the mixing layer to variation of the relevant non-dimensionalized parameters. The simulations show that increased compressibility generally results in a suppressed mixing, and consequently a reduced chemical reaction conversion rate. Reaction heat release was found to enhance mixing at the initial stages of the layer growth, but had a stabilizing effect at later times. The increased stability manifested itself in the suppression or delay of the formation of large coherent structures within the flow. Calculations were performed for a constant rate chemical kinetics model and an Arrhenius type kinetic prototype. The choice of the model was shown to have an effect on the development of the flow. The Arrhenius model caused a greater temperature increase due to reaction than the constant kinetic model. This had the same effect as increasing the exothermicity of the reaction. Localized flame quenching was also observed when the Zeldovich number was relatively large.

  20. Supersonic Flow of Chemically Reacting Gas-Particle Mixtures. Volume 2: RAMP - A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary.

  1. Convergence of the flow of a chemically reacting gaseous mixture to incompressible Euler equations in a unbounded domain

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam

    2017-12-01

    The flow of chemically reacting gaseous mixture is associated with a variety of phenomena and processes. We study the combined quasineutral and inviscid limit from the flow of chemically reacting gaseous mixture governed by Poisson equation to incompressible Euler equations with the ill-prepared initial data in the unbounded domain R^2× T. Furthermore, the convergence rates are obtained.

  2. A PDF closure model for compressible turbulent chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Kollmann, W.

    1992-01-01

    The objective of the proposed research project was the analysis of single point closures based on probability density function (pdf) and characteristic functions and the development of a prediction method for the joint velocity-scalar pdf in turbulent reacting flows. Turbulent flows of boundary layer type and stagnation point flows with and without chemical reactions were be calculated as principal applications. Pdf methods for compressible reacting flows were developed and tested in comparison with available experimental data. The research work carried in this project was concentrated on the closure of pdf equations for incompressible and compressible turbulent flows with and without chemical reactions.

  3. Numerical investigations of hybrid rocket engines

    NASA Astrophysics Data System (ADS)

    Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.

    2018-03-01

    Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.

  4. Dynamic simulations of under-rib convection-driven flow-field configurations and comparison with experiment in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Duy, Vinh Nguyen; Lee, Jungkoo; Kim, Kyungcheol; Ahn, Jiwoong; Park, Seongho; Kim, Taeeun; Kim, Hyung-Man

    2015-10-01

    The under-rib convection-driven flow-field design for the uniform distribution of reacting gas and the generation of produced water generates broad scientific interest, especially among those who study the performance of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we simulate the effects of an under-rib convection-driven serpentine flow-field with sub-channel and by-pass (SFFSB) and a conventional advanced serpentine flow-field (CASFF) on single cell performance, and we compare the simulation results with experimental measurements. In the under-rib convection-driven flow-field configuration with SFFSB, the pressure drop is decreased because of the greater cross-sectional area for gas flow, and the decreased pressure drop results in the reduction of the parasitic loss. The anode liquid water mass fraction increases with increasing channel height because of increased back diffusion, while the cathode liquid water mass fraction does not depend upon the sub-channels but is ascribed mainly to the electro-osmotic drag. Simulation results verify that the maximum current and the power densities of the SFFSB are increased by 18.85% and 23.74%, respectively, due to the promotion of under-rib convection. The findings in this work may enable the optimization of the design of under-rib convection-driven flow-fields for efficient PEMFCs.

  5. ''A Parallel Adaptive Simulation Tool for Two Phase Steady State Reacting Flows in Industrial Boilers and Furnaces''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael J. Bockelie

    2002-01-04

    This DOE SBIR Phase II final report summarizes research that has been performed to develop a parallel adaptive tool for modeling steady, two phase turbulent reacting flow. The target applications for the new tool are full scale, fossil-fuel fired boilers and furnaces such as those used in the electric utility industry, chemical process industry and mineral/metal process industry. The type of analyses to be performed on these systems are engineering calculations to evaluate the impact on overall furnace performance due to operational, process or equipment changes. To develop a Computational Fluid Dynamics (CFD) model of an industrial scale furnace requiresmore » a carefully designed grid that will capture all of the large and small scale features of the flowfield. Industrial systems are quite large, usually measured in tens of feet, but contain numerous burners, air injection ports, flames and localized behavior with dimensions that are measured in inches or fractions of inches. To create an accurate computational model of such systems requires capturing length scales within the flow field that span several orders of magnitude. In addition, to create an industrially useful model, the grid can not contain too many grid points - the model must be able to execute on an inexpensive desktop PC in a matter of days. An adaptive mesh provides a convenient means to create a grid that can capture both fine flow field detail within a very large domain with a ''reasonable'' number of grid points. However, the use of an adaptive mesh requires the development of a new flow solver. To create the new simulation tool, we have combined existing reacting CFD modeling software with new software based on emerging block structured Adaptive Mesh Refinement (AMR) technologies developed at Lawrence Berkeley National Laboratory (LBNL). Specifically, we combined: -physical models, modeling expertise, and software from existing combustion simulation codes used by Reaction Engineering International; -mesh adaption, data management, and parallelization software and technology being developed by users of the BoxLib library at LBNL; and -solution methods for problems formulated on block structured grids that were being developed in collaboration with technical staff members at the University of Utah Center for High Performance Computing (CHPC) and at LBNL. The combustion modeling software used by Reaction Engineering International represents an investment of over fifty man-years of development, conducted over a period of twenty years. Thus, it was impractical to achieve our objective by starting from scratch. The research program resulted in an adaptive grid, reacting CFD flow solver that can be used only on limited problems. In current form the code is appropriate for use on academic problems with simplified geometries. The new solver is not sufficiently robust or sufficiently general to be used in a ''production mode'' for industrial applications. The principle difficulty lies with the multi-level solver technology. The use of multi-level solvers on adaptive grids with embedded boundaries is not yet a mature field and there are many issues that remain to be resolved. From the lessons learned in this SBIR program, we have started work on a new flow solver with an AMR capability. The new code is based on a conventional cell-by-cell mesh refinement strategy used in unstructured grid solvers that employ hexahedral cells. The new solver employs several of the concepts and solution strategies developed within this research program. The formulation of the composite grid problem for the new solver has been designed to avoid the embedded boundary complications encountered in this SBIR project. This follow-on effort will result in a reacting flow CFD solver with localized mesh capability that can be used to perform engineering calculations on industrial problems in a production mode.« less

  6. Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations

    NASA Technical Reports Server (NTRS)

    Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.

    2015-01-01

    Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.

  7. Numerical simulation of flow through the Langley parametric scramjet engine

    NASA Technical Reports Server (NTRS)

    Srinivasan, Shivakumar; Kamath, Pradeep S.; Mcclinton, Charles R.

    1989-01-01

    The numerical simulation of a three-dimensional turbulent, reacting flow through the entire Langley parametric scramjet engine has been obtained using a piecewise elliptic approach. The last section in the combustor has been analyzed using a parabolized Navier-Stokes code. The facility nozzle flow was analyzed as a first step. The outflow conditions from the nozzle were chosen as the inflow conditions of the scramjet inlet. The nozzle and the inlet simulation were accomplished by solving the three-dimensional Navier-Stokes equations with a perfect gas assumption. The inlet solution downstream of the scramjet throat was used to provide inflow conditions for the combustor region. The first two regions of the combustor were analyzed using the MacCormack's explicit scheme. However, the source terms in the species equations were solved implicitly. The finite rate chemistry was modeled using the two-step reaction model of Rogers and Chinitz. A complete reaction model was used in the PNS code to solve the last combustor region. The numerical solutions provide an insight of the flow details in a complete hydrogen-fueled scramjet engine module.

  8. Development of an Efficient CFD Model for Nuclear Thermal Thrust Chamber Assembly Design

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed thermo-fluid environments and global characteristics of the internal ballistics for a hypothetical solid-core nuclear thermal thrust chamber assembly (NTTCA). Several numerical and multi-physics thermo-fluid models, such as real fluid, chemically reacting, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver as the underlying computational methodology. The numerical simulations of detailed thermo-fluid environment of a single flow element provide a mechanism to estimate the thermal stress and possible occurrence of the mid-section corrosion of the solid core. In addition, the numerical results of the detailed simulation were employed to fine tune the porosity model mimic the pressure drop and thermal load of the coolant flow through a single flow element. The use of the tuned porosity model enables an efficient simulation of the entire NTTCA system, and evaluating its performance during the design cycle.

  9. Multi-dimensional computer simulation of MHD combustor hydrodynamics

    NASA Astrophysics Data System (ADS)

    Berry, G. F.; Chang, S. L.; Lottes, S. A.; Rimkus, W. A.

    1991-04-01

    Argonne National Laboratory is investigating the nonreacting jet gas mixing patterns in an MHD second stage combustor by using a 2-D multiphase hydrodynamics computer program and a 3-D single phase hydrodynamics computer program. The computer simulations are intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may lead to improvement of the downstream MHD channel performance. A 2-D steady state computer model, based on mass and momentum conservation laws for multiple gas species, is used to simulate the hydrodynamics of the combustor in which a jet of oxidizer is injected into an unconfined cross stream gas flow. A 3-D code is used to examine the effects of the side walls and the distributed jet flows on the non-reacting jet gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  10. Mass-conserving advection-diffusion Lattice Boltzmann model for multi-species reacting flows

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Darabiha, N.; Thévenin, D.

    2018-06-01

    Given the complex geometries usually found in practical applications, the Lattice Boltzmann (LB) method is becoming increasingly attractive. In addition to the simple treatment of intricate geometrical configurations, LB solvers can be implemented on very large parallel clusters with excellent scalability. However, reacting flows and especially combustion lead to additional challenges and have seldom been studied by LB methods. Indeed, overall mass conservation is a pressing issue in modeling multi-component flows. The classical advection-diffusion LB model recovers the species transport equations with the generalized Fick approximation under the assumption of an incompressible flow. However, for flows involving multiple species with different diffusion coefficients and density fluctuations - as is the case with weakly compressible solvers like Lattice Boltzmann -, this approximation is known not to conserve overall mass. In classical CFD, as the Fick approximation does not satisfy the overall mass conservation constraint a diffusion correction velocity is usually introduced. In the present work, a local expression is first derived for this correction velocity in a LB framework. In a second step, the error due to the incompressibility assumption is also accounted for through a modified equilibrium distribution function. Theoretical analyses and simulations show that the proposed scheme performs much better than the conventional advection-diffusion Lattice Boltzmann model in terms of overall mass conservation.

  11. Computation of wake/exhaust mixing downstream of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Teske, Milton E.; Bilanin, Alan J.

    1993-01-01

    The mixing of engine exhaust with the vortical wake of high speed aircraft operating in the stratosphere can play an important role in the formation of chemical products that deplete atmospheric ozone. An accurate analysis of this type of interaction is therefore necessary as a part of the assessment of the impact of proposed High Speed Civil Transport (HSCT) designs on atmospheric chemistry. This paper describes modifications to the parabolic Navier-Stokes flow field analysis in the UNIWAKE unified aircraft wake model to accommodate the computation of wake/exhaust mixing and the simulation of reacting flow. The present implementation uses a passive chemistry model in which the reacting species are convected and diffused by the fluid dynamic solution but in which the evolution of the species does not affect the flow field. The resulting analysis, UNIWAKE/PCHEM (Passive CHEMistry) has been applied to the analysis of wake/exhaust flows downstream of representative HSCT configurations. The major elements of the flow field model are described, as are the results of sample calculations illustrating the behavior of the thermal exhaust plume and the production of species important to the modeling of condensation in the wake. Appropriate steps for further development of the UNIWAKE/PCHEM model are also outlined.

  12. Supersonic Combustion Research at NASA

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Danehy, Paul M.; Gaffney, Richard L., Jr.; Tedder, Sarah A.; Cutler, Andrew D.; Bivolaru, Daniel

    2007-01-01

    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flowpaths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.

  13. A Novel Multi-scale Simulation Strategy for Turbulent Reacting Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Sutherland C.

    In this project, a new methodology was proposed to bridge the gap between Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). This novel methodology, titled Lattice-Based Multiscale Simulation (LBMS), creates a lattice structure of One-Dimensional Turbulence (ODT) models. This model has been shown to capture turbulent combustion with high fidelity by fully resolving interactions between turbulence and diffusion. By creating a lattice of ODT models, which are then coupled, LBMS overcomes the shortcomings of ODT, which are its inability to capture large scale three dimensional flow structures. However, by spacing these lattices significantly apart, LBMS can avoid the cursemore » of dimensionality that creates untenable computational costs associated with DNS. This project has shown that LBMS is capable of reproducing statistics of isotropic turbulent flows while coarsening the spacing between lines significantly. It also investigates and resolves issues that arise when coupling ODT lines, such as flux reconstruction perpendicular to a given ODT line, preservation of conserved quantities when eddies cross a course cell volume and boundary condition application. Robust parallelization is also investigated.« less

  14. Incorporation of a Chemical Equilibrium Equation of State into LOCI-Chem

    NASA Technical Reports Server (NTRS)

    Cox, Carey F.

    2005-01-01

    Renewed interest in development of advanced high-speed transport, reentry vehicles and propulsion systems has led to a resurgence of research into high speed aerodynamics. As this flow regime is typically dominated by hot reacting gaseous flow, efficient models for the characteristic chemical activity are necessary for accurate and cost effective analysis and design of aerodynamic vehicles that transit this regime. The LOCI-Chem code recently developed by Ed Luke at Mississippi State University for NASA/MSFC and used by NASA/MSFC and SSC represents an important step in providing an accurate, efficient computational tool for the simulation of reacting flows through the use of finite-rate kinetics [3]. Finite rate chemistry however, requires the solution of an additional N-1 species mass conservation equations with source terms involving reaction kinetics that are not fully understood. In the equilibrium limit, where the reaction rates approach infinity, these equations become very stiff. Through the use of the assumption of local chemical equilibrium the set of governing equations is reduced back to the usual gas dynamic equations, and thus requires less computation, while still allowing for the inclusion of reacting flow phenomenology. The incorporation of a chemical equilibrium equation of state module into the LOCI-Chem code was the primary objective of the current research. The major goals of the project were: (1) the development of a chemical equilibrium composition solver, and (2) the incorporation of chemical equilibrium solver into LOCI-Chem. Due to time and resource constraints, code optimization was not considered unless it was important to the proper functioning of the code.

  15. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    NASA Astrophysics Data System (ADS)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  16. Parallelization of Lower-Upper Symmetric Gauss-Seidel Method for Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Jost, Gabriele; Chang, Sherry

    2005-01-01

    Development of technologies for exploration of the solar system has revived an interest in computational simulation of chemically reacting flows since planetary probe vehicles exhibit non-equilibrium phenomena during the atmospheric entry of a planet or a moon as well as the reentry to the Earth. Stability in combustion is essential for new propulsion systems. Numerical solution of real-gas flows often increases computational work by an order-of-magnitude compared to perfect gas flow partly because of the increased complexity of equations to solve. Recently, as part of Project Columbia, NASA has integrated a cluster of interconnected SGI Altix systems to provide a ten-fold increase in current supercomputing capacity that includes an SGI Origin system. Both the new and existing machines are based on cache coherent non-uniform memory access architecture. Lower-Upper Symmetric Gauss-Seidel (LU-SGS) relaxation method has been implemented into both perfect and real gas flow codes including Real-Gas Aerodynamic Simulator (RGAS). However, the vectorized RGAS code runs inefficiently on cache-based shared-memory machines such as SGI system. Parallelization of a Gauss-Seidel method is nontrivial due to its sequential nature. The LU-SGS method has been vectorized on an oblique plane in INS3D-LU code that has been one of the base codes for NAS Parallel benchmarks. The oblique plane has been called a hyperplane by computer scientists. It is straightforward to parallelize a Gauss-Seidel method by partitioning the hyperplanes once they are formed. Another way of parallelization is to schedule processors like a pipeline using software. Both hyperplane and pipeline methods have been implemented using openMP directives. The present paper reports the performance of the parallelized RGAS code on SGI Origin and Altix systems.

  17. Parameter Optimization for Turbulent Reacting Flows Using Adjoints

    NASA Astrophysics Data System (ADS)

    Lapointe, Caelan; Hamlington, Peter E.

    2017-11-01

    The formulation of a new adjoint solver for topology optimization of turbulent reacting flows is presented. This solver provides novel configurations (e.g., geometries and operating conditions) based on desired system outcomes (i.e., objective functions) for complex reacting flow problems of practical interest. For many such problems, it would be desirable to know optimal values of design parameters (e.g., physical dimensions, fuel-oxidizer ratios, and inflow-outflow conditions) prior to real-world manufacture and testing, which can be expensive, time-consuming, and dangerous. However, computational optimization of these problems is made difficult by the complexity of most reacting flows, necessitating the use of gradient-based optimization techniques in order to explore a wide design space at manageable computational cost. The adjoint method is an attractive way to obtain the required gradients, because the cost of the method is determined by the dimension of the objective function rather than the size of the design space. Here, the formulation of a novel solver is outlined that enables gradient-based parameter optimization of turbulent reacting flows using the discrete adjoint method. Initial results and an outlook for future research directions are provided.

  18. A Streamline-Upwind Petrov-Galerkin Finite Element Scheme for Non-Ionized Hypersonic Flows in Thermochemical Nonequilibrium

    NASA Technical Reports Server (NTRS)

    Kirk, Benjamin S.; Bova, Stephen W.; Bond, Ryan B.

    2011-01-01

    Presentation topics include background and motivation; physical modeling including governing equations and thermochemistry; finite element formulation; results of inviscid thermal nonequilibrium chemically reacting flow and viscous thermal equilibrium chemical reacting flow; and near-term effort.

  19. A stochastic model of particle dispersion in turbulent reacting gaseous environments

    NASA Astrophysics Data System (ADS)

    Sun, Guangyuan; Lignell, David; Hewson, John

    2012-11-01

    We are performing fundamental studies of dispersive transport and time-temperature histories of Lagrangian particles in turbulent reacting flows. The particle-flow statistics including the full particle temperature PDF are of interest. A challenge in modeling particle motions is the accurate prediction of fine-scale aerosol-fluid interactions. A computationally affordable stochastic modeling approach, one-dimensional turbulence (ODT), is a proven method that captures the full range of length and time scales, and provides detailed statistics of fine-scale turbulent-particle mixing and transport. Limited results of particle transport in ODT have been reported in non-reacting flow. Here, we extend ODT to particle transport in reacting flow. The results of particle transport in three flow configurations are presented: channel flow, homogeneous isotropic turbulence, and jet flames. We investigate the functional dependence of the statistics of particle-flow interactions including (1) parametric study with varying temperatures, Reynolds numbers, and particle Stokes numbers; (2) particle temperature histories and PDFs; (3) time scale and the sensitivity of initial and boundary conditions. Flow statistics are compared to both experimental measurements and DNS data.

  20. Characteristics of the Swirling Flow Generated by an Axial Swirler

    NASA Technical Reports Server (NTRS)

    Fu, Yongqiang; Jeng, San-Mou; Tacina, Robert

    2005-01-01

    An experimental investigation was conducted to study the aerodynamic characteristics of the confined, non-reacting, swirling flow field. The flow was generated by a helicoidal axial-vaned swirler with a short internal convergent-divergent venturi, which was confined within 2-inch square test section. A series of helicoidal axial-vaned swirlers have been designed with tip vane angles of 40 deg., 45 deg., 50 deg., 55 deg., 60 deg. and 65 deg.. The swirler with the tip vane angle of 60 deg. was combined with several simulated fuel nozzle insertions of varying lengths. A two-component Laser Doppler Velocimetry (LDV) system was employed to measure the three-component mean velocities and Reynolds stresses. Detailed data are provided to enhance understanding swirling flow with different swirl degrees and geometries and to support the development of more accurate physicaVnumerica1 models. The data indicated that the degree of swirl had a clear impact on the mean and turbulent flow fields. The swirling flow fields changed significantly with the addition of a variety of simulated fuel nozzle insertion lengths

  1. Application of Spontaneous Raman Scattering to the Flowfield in a Scramjet Combustor

    NASA Astrophysics Data System (ADS)

    Sander, T.; Sattelmayer, T.

    2002-07-01

    For the investigation of the ignition and reaction of fuel injected into the combustor of a Scramjet at a flight Mach number of 8 high temperature test air at supersonic speed is required. One economic possibility to simulate these inlet conditions experimentally is the use of vitiators which preheat the air by the burning of hydrogen. Downstream of the precombustor the flow is accelerated in a Laval nozzle to a Mach number of 2.15 and enters the combustor. For the numerical simulation of a supersonic reacting flow precise information concerning the physical properties during ignition and reaction are required. Optical measurements are best suited for delivering this information as they do not disturb the supersonic flow like probes and as their application is not limited by thermal stress. Raman scattering offers the possibility of measuring the static temperature and the concentration of majority species.

  2. Direct numerical simulation of auto-ignition of a hydrogen vortex ring reacting with hot air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doom, Jeff; Mahesh, Krishnan

    2009-04-15

    Direct numerical simulation (DNS) is used to study chemically reacting, laminar vortex rings. A novel, all-Mach number algorithm developed by Doom et al. [J. Doom, Y. Hou, K. Mahesh, J. Comput. Phys. 226 (2007) 1136-1151] is used. The chemical mechanism is a nine species, nineteen reaction mechanism for H{sub 2}/air combustion proposed by Mueller et al. [M.A. Mueller, T.J. Kim, R.A. Yetter, F.L. Dryer, Int. J. Chem. Kinet. 31 (1999) 113-125]. Diluted H{sub 2} at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratios, oxidizer temperature, Lewis number and stroke ratio (ratiomore » of piston stroke length to diameter). Results show that auto-ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, {zeta}{sub MR} (Mastorakos et al. [E. Mastorakos, T.A. Baritaud, T.J. Poinsot, Combust. Flame 109 (1997) 198-223]). Subsequent evolution of the flame is not predicted by {zeta}{sub MR}; a most reactive temperature T{sub MR} is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke ratios greater than the formation number, ignition initially occurs behind the leading vortex ring, then occurs along the length of the trailing column and propagates toward the ring. Lewis number is seen to affect both the initial ignition as well as subsequent flame evolution significantly. Non-uniform Lewis number simulations provide faster ignition and burnout time but a lower maximum temperature. The fuel rich reacting vortex ring provides the highest maximum temperature and the higher oxidizer temperature provides the fastest ignition time. The fuel lean reacting vortex ring has little effect on the flow and behaves similar to a non-reacting vortex ring. (author)« less

  3. Investigation of chemically-reacting supersonic internal flows

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Tiwari, S. N.

    1985-01-01

    This report covers work done on the research project Analysis and Computation of Internal Flow Field in a Scramjet Engine. The work is supported by the NASA Langley Research Center (Computational Methods Branch of the High-Speed Aerodynamics Division) through research grant NAG1-423. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.

  4. AFOSR/ONR Contractors Meeting - Combustion, Rocket Propulsion, Diagnostics of Reacting Flow

    DTIC Science & Technology

    1990-06-15

    GASIFICATION KINETICS OF SOLID BORON AND PYROLITIC GRAPHrrE Because of the energetic potential of boron as a solid fuel (or fuel additive) and the likely...87 Kinetic Studies of Metal Combustion in Propulsion, A. Fontijn, P. M. Futerko and A. G. Slavejkov .............................. 90...Measurements and Chemical Kinetic Simulation of the Structure of Model Propellant Flames, M. C. Branch and H. Dindi .......... 94 High-Rate Thermal

  5. Flame Kernel Interactions in a Turbulent Environment

    DTIC Science & Technology

    2001-08-01

    contours ranging from 1 ( fully burned) at the centre to 0 (unburned) on the outer contour. In each case the flames can clearly be seen to propagate outwards...called SENGA. The code solves a fully compressible reacting flow in three dimensions. High accuracy numerical schemes have been employed which are...Finally, results are presented and discussed for simulations with different initial non-dimensional turbulence intensities ranging from 5 to 23. 1

  6. Numerical Simulation of Chemically Reacting Flows

    DTIC Science & Technology

    2015-09-03

    62 (1986) 1-25. 6. O.L. Burchett, M.R. Birnbaum, and C.T. Oien, “ Compaction studies of palladium/aluminum powder ,” Sandia National Laboratories...interest to the Air Force. 15. SUBJECT TERMS Numerical methods, Diffusion Flames, Adaptive Gridding, Velocity-Vorticity, Compact Methods 16...discussed ab ot require th sure mass c mputational city formula e spectrum soot forma formulation lent agreem ing MC-Sm ork will lik ith compact iled

  7. Ignition and structure of a laminar diffusion flame in the field of a vortex

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Jackson, T. L.; Hussaini, M. Y.

    1991-01-01

    The distortion of flames in flows with vortical motion is examined via asymptotic analysis and numerical simulation. The model consists of a constant density, one step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are then allowed to mix and react in the presence of a vortex. The evolution in time of the temperature and mass fraction fields is followed. Emphasis is placed on the ignition time and location as a function of vortex Reynolds number and initial temperature differences of the reacting species. The study brings out the influence of the vortex on the chemical reaction. In all phases, good agreement is observed between asymptotic analysis and the full numerical solution of the model equations.

  8. National Combustion Code Parallel Performance Enhancements

    NASA Technical Reports Server (NTRS)

    Quealy, Angela; Benyo, Theresa (Technical Monitor)

    2002-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. The unstructured grid, reacting flow code uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC code to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This report describes recent parallel processing modifications to NCC that have improved the parallel scalability of the code, enabling a two hour turnaround for a 1.3 million element fully reacting combustion simulation on an SGI Origin 2000.

  9. The direct simulation of high-speed mixing-layers without and with chemical heat release

    NASA Technical Reports Server (NTRS)

    Sekar, B.; Mukunda, H. S.; Carpenter, M. H.

    1991-01-01

    A direct numerical simulation of high speed reacting and non-reacting flows for H2-air systems is presented. The calculations are made for a convective Mach number of 0.38 with hyperbolic tangent initial profile and finite rate chemical reactions. A higher-order numerical method is used in time accurate mode to time advance the solution to a statistical steady state. About 600 time slices of all the variables are then stored for statistical analysis. It is shown that most of the problems of high-speed combustion with air are characterized by relatively weak heat release. The present study shows that: (1) the convective speed is reduced by heat release by about 10 percent at this convective Mach number M(sub c) = 0.38; (2) the variation of the mean and rms fluctuation of temperature can be explained on the basis of temperature fluctuation between the flame temperature and the ambient; (3) the growth rate with heat release is reduced by 7 percent; and (4) the entrainment is reduced by 25 percent with heat release. These differences are small in comparison with incompressible flow dynamics, and are argued to be due to the reduced importance of heat release in comparison with the large enthalpy gradients resulting from the large-scale vortex dynamics. It is finally suggested that the problems of reduced mixing in high-speed flows are not severely complicated by heat release.

  10. A computer program for two-dimensional and axisymmetric nonreacting perfect gas and equilibrium chemically reacting laminar, transitional and-or turbulent boundary layer flows

    NASA Technical Reports Server (NTRS)

    Miner, E. W.; Anderson, E. C.; Lewis, C. H.

    1971-01-01

    A computer program is described in detail for laminar, transitional, and/or turbulent boundary-layer flows of non-reacting (perfect gas) and reacting gas mixtures in chemical equilibrium. An implicit finite difference scheme was developed for both two dimensional and axisymmetric flows over bodies, and in rocket nozzles and hypervelocity wind tunnel nozzles. The program, program subroutines, variables, and input and output data are described. Also included is the output from a sample calculation of fully developed turbulent, perfect gas flow over a flat plate. Input data coding forms and a FORTRAN source listing of the program are included. A method is discussed for obtaining thermodynamic and transport property data which are required to perform boundary-layer calculations for reacting gases in chemical equilibrium.

  11. Supersonic reacting internal flow fields

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    1989-01-01

    The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flow fields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.

  12. Qualitative evaluation of water displacement in simulated analytical breaststroke movements.

    PubMed

    Martens, Jonas; Daly, Daniel

    2012-05-01

    One purpose of evaluating a swimmer is to establish the individualized optimal technique. A swimmer's particular body structure and the resulting movement pattern will cause the surrounding water to react in differing ways. Consequently, an assessment method based on flow visualization was developed complimentary to movement analysis and body structure quantification. A fluorescent dye was used to make the water displaced by the body visible on video. To examine the hypothesis on the propulsive mechanisms applied in breaststroke swimming, we analyzed the movements of the surrounding water during 4 analytical breaststroke movements using the flow visualization technique.

  13. Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yiguang Ju; Frederick Dryer

    2009-02-07

    Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

  14. Sound attenuation and absorption by anisotropic fibrous materials: Theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Bravo, Teresa; Maury, Cédric

    2018-03-01

    This paper describes analytical and experimental studies carried out to examine the attenuation and absorption properties of rigidly-backed fibrous anisotropic materials in contact with a uniform mean flow. The aim is to provide insights for the development of non-locally reacting wall-treatments able to dissipate the noise induced by acoustic excitations over in-duct or external lining systems. A model of sound propagation in anisotropic bulk-reacting liners is presented that fully accounts for anisotropic losses due to heat conduction, viscous dissipation and diffusion processes along and across the material fibres as well as for the convective effect of an external flow. The propagation constant for the least attenuated mode of the coupled system is obtained using a simulated annealing search method. The predicted acoustical performance is validated in the no-flow case for a wide range of fibre diameters. They are assessed against impedance tube and free-field pressure-velocity measurements of the normal incidence absorption coefficient and surface impedance. Parametric studies are then conducted to determine the key constitutive parameters such as the fibres orientation or the amount of anisotropy that mostly influence the axial attenuation or the normal absorption. They are supported by a low-frequency approximation to the axial attenuation under a low-speed flow.

  15. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  16. A positivity-preserving, implicit defect-correction multigrid method for turbulent combustion

    NASA Astrophysics Data System (ADS)

    Wasserman, M.; Mor-Yossef, Y.; Greenberg, J. B.

    2016-07-01

    A novel, robust multigrid method for the simulation of turbulent and chemically reacting flows is developed. A survey of previous attempts at implementing multigrid for the problems at hand indicated extensive use of artificial stabilization to overcome numerical instability arising from non-linearity of turbulence and chemistry model source-terms, small-scale physics of combustion, and loss of positivity. These issues are addressed in the current work. The highly stiff Reynolds-averaged Navier-Stokes (RANS) equations, coupled with turbulence and finite-rate chemical kinetics models, are integrated in time using the unconditionally positive-convergent (UPC) implicit method. The scheme is successfully extended in this work for use with chemical kinetics models, in a fully-coupled multigrid (FC-MG) framework. To tackle the degraded performance of multigrid methods for chemically reacting flows, two major modifications are introduced with respect to the basic, Full Approximation Storage (FAS) approach. First, a novel prolongation operator that is based on logarithmic variables is proposed to prevent loss of positivity due to coarse-grid corrections. Together with the extended UPC implicit scheme, the positivity-preserving prolongation operator guarantees unconditional positivity of turbulence quantities and species mass fractions throughout the multigrid cycle. Second, to improve the coarse-grid-correction obtained in localized regions of high chemical activity, a modified defect correction procedure is devised, and successfully applied for the first time to simulate turbulent, combusting flows. The proposed modifications to the standard multigrid algorithm create a well-rounded and robust numerical method that provides accelerated convergence, while unconditionally preserving the positivity of model equation variables. Numerical simulations of various flows involving premixed combustion demonstrate that the proposed MG method increases the efficiency by a factor of up to eight times with respect to an equivalent single-grid method, and by two times with respect to an artificially-stabilized MG method.

  17. Experimental study of combustion in a turbulent free shear layer formed at a rearward facing step

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.; Daily, J. W.

    1981-01-01

    A premixed propane-air flame is stabilized in a turbulent free shear layer formed at a rearward facing step. The mean and rms averages of the turbulent velocity flow field are determined by LDV for both reacting (equivalence ratio 0.57) and nonreacting flows (Reynolds number 15,000-37,000 based on step height). The effect of combustion is to shift the layer toward the recirculation zone and reduce the flame spread. For reacting flow, the growth rate is unchanged except very near the step. The probability density function of the velocity is bimodial near the origin of the reacting layer and single-peaked but often skewed elsewhere. Large-scale structures dominate the reacting shear layer. Measurements of their passing frequency from LDV are consistent with high-speed Schlieren movies of the reacting layer and indicate that the coalescence rate of the eddies in the shear layer is reduced by combustion.

  18. High altitude chemically reacting gas particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    The overall contractual effort and the theory and numerical solution for the Reacting and Multi-Phase (RAMP2) computer code are described. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. Fundamental equations for steady flow of reacting gas-particle mixtures, method of characteristics, mesh point construction, and numerical integration of the conservation equations are considered herein.

  19. Numerical Simulations of High-Speed Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Ton, V. T.; Karagozian, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.

    1994-01-01

    The essentially nonoscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.

  20. Numerical Simulations of High-Speed Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Ton, V. T.; Karagozin, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.

    1994-01-01

    The Essentially NonOscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.

  1. Advancing EDL Technologies for Future Space Missions: From Ground Testing Facilities to Ablative Heatshields

    NASA Astrophysics Data System (ADS)

    Rabinovitch, Jason

    Motivated by recent MSL results where the ablation rate of the PICA heatshield was over-predicted, and staying true to the objectives outlined in the NASA Space Technology Roadmaps and Priorities report, this work focuses on advancing EDL technologies for future space missions. Due to the difficulties in performing flight tests in the hypervelocity regime, a new ground testing facility called the vertical expansion tunnel is proposed. The adverse effects from secondary diaphragm rupture in an expansion tunnel may be reduced or eliminated by orienting the tunnel vertically, matching the test gas pressure and the accelerator gas pressure, and initially separating the test gas from the accelerator gas by density stratification. If some sacrifice of the reservoir conditions can be made, the VET can be utilized in hypervelocity ground testing, without the problems associated with secondary diaphragm rupture. The performance of different constraints for the Rate-Controlled Constrained-Equilibrium (RCCE) method is investigated in the context of modeling reacting flows characteristic to ground testing facilities, and re-entry conditions. The effectiveness of different constraints are isolated, and new constraints previously unmentioned in the literature are introduced. Three main benefits from the RCCE method were determined: 1) the reduction in number of equations that need to be solved to model a reacting flow; 2) the reduction in stiffness of the system of equations needed to be solved; and 3) the ability to tabulate chemical properties as a function of a constraint once, prior to running a simulation, along with the ability to use the same table for multiple simulations. Finally, published physical properties of PICA are compiled, and the composition of the pyrolysis gases that form at high temperatures internal to a heatshield is investigated. A necessary link between the composition of the solid resin, and the composition of the pyrolysis gases created is provided. This link, combined with a detailed investigation into a reacting pyrolysis gas mixture, allows a much needed consistent, and thorough description of many of the physical phenomena occurring in a PICA heatshield, and their implications, to be presented. Through the use of computational fluid mechanics and computational chemistry methods, significant contributions have been made to advancing ground testing facilities, computational methods for reacting flows, and ablation modeling.

  2. Turbulent Chemically Reacting Flows According to a Kinetic Theory. Ph.D. Thesis; [statistical analysis/gas flow

    NASA Technical Reports Server (NTRS)

    Hong, Z. C.

    1975-01-01

    A review of various methods of calculating turbulent chemically reacting flow such as the Green Function, Navier-Stokes equation, and others is presented. Nonequilibrium degrees of freedom were employed to study the mixing behavior of a multiscale turbulence field. Classical and modern theories are discussed.

  3. Modeling study of rarefied gas effects on hypersonic reacting stagnation flows

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Bao, Lin

    2014-12-01

    Recent development of the near space hypersonic sharp leading vehicles has raised a necessity to fast and accurately predict the aeroheating in hypersonic rarefied flows, which challenges our understanding of the aerothermodynamics and aerothermochemistry. The present flow and heat transfer problem involves complex rarefied gas effects and nonequilibrium real gas effects which are beyond the scope of the traditional prediction theory based on the continuum hypothesis and equilibrium assumption. As a typical example, it has been found that the classical Fay-Riddell equation fails to predict the stagnation point heat flux, when the flow is either rarefied or chemical nonequilibrium. In order to design a more general theory covering the rarefied reacting flow cases, an intuitive model is proposed in this paper to describe the nonequilibrium dissociation-recombination flow along the stagnation streamline towards a slightly blunted nose in hypersonic rarefied flows. Some characteristic flow parameters are introduced, and based on these parameters, an explicitly analytical bridging function is established to correct the traditional theory to accurately predict the actual aeroheating performance. It is shown that for a small size nose in medium density flows, the flow at the outer edge of the stagnation point boundary layer could be highly nonequilibrium, and the aeroheating performance is distinguished from that of the big blunt body reentry flows at high altitudes. As a result, when the rarefied gas effects and the nonequilibrium real gas effects are both significant, the classical similarity law could be questionable, and it is inadequate to directly analogize results from the classical blunt body reentry problems to the present new generation sharp-leading vehicles. In addition, the direct simulation Monte Carlo method is also employed to validate the conclusion.

  4. Large-Eddy / Reynolds-Averaged Navier-Stokes Simulations of a Dual-Mode Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Fulton, Jesse A.; Edwards, Jack R.; Hassan, Hassan A.; Rockwell, Robert; Goyne, Christopher; McDaniel, James; Smith, Chad; Cutler, Andrew; Johansen, Craig; Danehy, Paul M.; hide

    2012-01-01

    Numerical simulations of reacting and non-reacting flows within a scramjet combustor configuration experimentally mapped at the University of Virginia s Scramjet Combustion Facility (operating with Configuration A ) are described in this paper. Reynolds-Averaged Navier-Stokes (RANS) and hybrid Large Eddy Simulation / Reynolds-Averaged Navier-Stokes (LES / RANS) methods are utilized, with the intent of comparing essentially blind predictions with results from non-intrusive flow-field measurement methods including coherent anti-Stokes Raman spectroscopy (CARS), hydroxyl radical planar laser-induced fluorescence (OH-PLIF), stereoscopic particle image velocimetry (SPIV), wavelength modulation spectroscopy (WMS), and focusing Schlieren. NC State's REACTMB solver was used both for RANS and LES / RANS, along with a 9-species, 19- reaction H2-air kinetics mechanism by Jachimowski. Inviscid fluxes were evaluated using Edwards LDFSS flux-splitting scheme, and the Menter BSL turbulence model was utilized in both full-domain RANS simulations and as the unsteady RANS portion of the LES / RANS closure. Simulations were executed and compared with experiment at two equivalence ratios, PHI = 0.17 and PHI = 0.34. Results show that the PHI = 0.17 flame is hotter near the injector while the PHI = 0.34 flame is displaced further downstream in the combustor, though it is still anchored to the injector. Reactant mixing was predicted to be much better at the lower equivalence ratio. The LES / RANS model appears to predict lower overall heat release compared to RANS (at least for PHI = 0.17), and its capability to capture the direct effects of larger turbulent eddies leads to much better predictions of reactant mixing and combustion in the flame stabilization region downstream of the fuel injector. Numerical results from the LES/RANS model also show very good agreement with OH-PLIF and SPIV measurements. An un-damped long-wave oscillation of the pre-combustion shock train, which caused convergence problems in some RANS simulations, was also captured in LES / RANS simulations, which were able to accommodate its effects accurately.

  5. Simulation of a shock tube with a small exit nozzle

    NASA Astrophysics Data System (ADS)

    Luan, Yigang; Olzmann, Matthias; Magagnato, Franco

    2018-02-01

    Shock tubes are frequently used to rapidly heat up reaction mixtures to study chemical reaction mechanisms and kinetics in the field of combustion chemistry [1]. In the present work, the flow field inside a shock tube with a small nozzle in the end plate has been investigated to support the analysis of reacting chemical mixtures with an attached mass spectrometer and to clarify whether the usual assumptions for the flow field and the related thermodynamics are fulfilled. In the present work, the details of the flow physics inside the tube and the flow out of the nozzle in the end plate have been investigated. Due to the large differences in the typical length scales and the large pressure ratios of this special device, a very strong numerical stiffness prevails during the simulation process. Second-order ROE numerical schemes have been employed to simulate the flow field inside the shock tube. The simulations were performed with the commercial code ANSYS Fluent [2]. Axial-symmetric boundary conditions are employed to reduce the consumption of CPU time. A density-based transient scheme has been used and validated in terms of accuracy and efficiency. The simulation results for pressure and density are compared with analytical solutions. Numerical results show that a density-based numerical scheme performs better when dealing with shock-tube problems [5]. The flow field near the nozzle is studied in detail, and the effects of the nozzle to pressure and temperature variations inside the tube are investigated. The results show that this special shock-tube setup can be used to study high-temperature gas-phase chemical reactions with reasonable accuracy.

  6. Frozen Chemistry Effects on Nozzle Performance Simulations

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; Georgiadis, Nicholas J.; O'Gara, Michael R.

    2009-01-01

    Simulations of exhaust nozzle flows are typically conducted assuming the gas is calorically perfect, and typically modeled as air. However the gas inside a real nozzle is generally composed of combustion products whose thermodynamic properties may differ. In this study, the effect of gas model assumption on exhaust nozzle simulations is examined. The three methods considered model the nozzle exhaust gas as calorically perfect air, a calorically perfect exhaust gas mixture, and a frozen exhaust gas mixture. In the latter case the individual non-reacting species are tracked and modeled as a gas which is only thermally perfect. Performance parameters such as mass flow rate, gross thrust, and thrust coefficient are compared as are mean flow and turbulence profiles in the jet plume region. Nozzles which operate at low temperatures or have low subsonic exit Mach numbers experience relatively minor temperature variations inside the nozzle, and may be modeled as a calorically perfect gas. In those which operate at the opposite extreme conditions, variations in the thermodynamic properties can lead to different expansion behavior within the nozzle. Modeling these cases as a perfect exhaust gas flow rather than air captures much of the flow features of the frozen chemistry simulations. Use of the exhaust gas reduces the nozzle mass flow rate, but has little effect on the gross thrust. When reporting nozzle thrust coefficient results, however, it is important to use the appropriate gas model assumptions to compute the ideal exit velocity. Otherwise the values obtained may be an overly optimistic estimate of nozzle performance.

  7. Simulation Experiments of Reacting Two-Phase Flow

    DTIC Science & Technology

    1987-04-06

    to 50 % of the lower gas explosion limit (4 % ofhydrogen in the surrounding air ). Then, this device automatically stops the filling procedure...and the discharge of the rifle into air 68 36. Final chamber pressure versus time (Charge pr’,ssure P, = 12 MPa; closed bomb mode) 70 37. Final...surrounding air , which is entrained turbulently, a combustion process can take place that results in a high intensity flash, called muzzle flash [6

  8. Spurious Numerical Solutions Of Differential Equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  9. AdapChem

    NASA Technical Reports Server (NTRS)

    Oluwole, Oluwayemisi O.; Wong, Hsi-Wu; Green, William

    2012-01-01

    AdapChem software enables high efficiency, low computational cost, and enhanced accuracy on computational fluid dynamics (CFD) numerical simulations used for combustion studies. The software dynamically allocates smaller, reduced chemical models instead of the larger, full chemistry models to evolve the calculation while ensuring the same accuracy to be obtained for steady-state CFD reacting flow simulations. The software enables detailed chemical kinetic modeling in combustion CFD simulations. AdapChem adapts the reaction mechanism used in the CFD to the local reaction conditions. Instead of a single, comprehensive reaction mechanism throughout the computation, a dynamic distribution of smaller, reduced models is used to capture accurately the chemical kinetics at a fraction of the cost of the traditional single-mechanism approach.

  10. Numerical Simulation of the Detonation of Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Ye, Ting; Ning, Jianguo

    Detonation process of a condensed explosive was simulated using a finite difference method. Euler equations were applied to describe the detonation flow field, an ignition and growth model for the chemical reaction and Jones-Wilkins-Lee (JWL) equations of state for the state of explosives and detonation products. Based on the simple mixture rule that assumes the reacting explosives to be a mixture of the reactant and product components, 1D and 2D codes were developed to simulate the detonation process of high explosive PBX9404. The numerical results are in good agreement with the experimental results, which demonstrates that the finite difference method, mixture rule and chemical reaction proposed in this paper are adequate and feasible.

  11. System and method for treatment of a medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Surinder Prabhjot; Acharya, Harish Radhakrishna; Perry, Robert James

    2017-05-23

    A system and method for treatment of a medium is disclosed. The system includes a plurality of separator zones and a plurality of heat transfer zones. Each of the separator zone and the heat transfer zone among the plurality of separator zones and heat transfer zones respectively, are disposed alternatively in a flow duct. Further, each separator zone includes an injector device for injecting a sorbent into the corresponding separator zone. Within the corresponding separator zone, the injected sorbent is reacted with a gaseous medium flowing in the flow duct, so as to generate a reacted gaseous medium and amore » reacted sorbent. Further, each heat transfer zone exchanges heat between the reacted gaseous medium fed from the corresponding separator zone and a heat transfer medium.« less

  12. An application of a two-equation model of turbulence to three-dimensional chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1994-01-01

    A numerical study of three dimensional chemically reacting and non-reacting flowfields is conducted using a two-equation model of turbulence. A generalized flow solver using an implicit Lower-Upper (LU) diagonal decomposition numerical technique and finite-rate chemistry has been coupled with a low-Reynolds number two-equation model of turbulence. This flow solver is then used to study chemically reacting turbulent supersonic flows inside combustors with synergetic fuel injectors. The reacting and non-reacting turbulent combustor solutions obtained are compared with zero-equation turbulence model solutions and with available experimental data. The hydrogen-air chemistry is modeled using a nine-species/eighteen reaction model. A low-Reynolds number k-epsilon model was used to model the effect of turbulence because, in general, the low-Reynolds number k-epsilon models are easier to implement numerically and are far more general than algebraic models. However, low-Reynolds number k-epsilon models require a much finer near-wall grid resolution than high-Reynolds number models to resolve accurately the near-wall physics. This is especially true in complex flowfields, where the stiff nature of the near-wall turbulence must be resolved. Therefore, the limitations imposed by the near-wall characteristics and compressible model corrections need to be evaluated further. The gradient-diffusion hypothesis is used to model the effects of turbulence on the mass diffusion process. The influence of this low-Reynolds number turbulence model on the reacting flowfield predictions was studied parametrically.

  13. A comprehensive model to determine the effects of temperature and species fluctuations on reactions in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Antaki, P. J.

    1981-01-01

    The joint probability distribution function (pdf), which is a modification of the bivariate Gaussian pdf, is discussed and results are presented for a global reaction model using the joint pdf. An alternative joint pdf is discussed. A criterion which permits the selection of temperature pdf's in different regions of turbulent, reacting flow fields is developed. Two principal approaches to the determination of reaction rates in computer programs containing detailed chemical kinetics are outlined. These models represent a practical solution to the modeling of species reaction rates in turbulent, reacting flows.

  14. Grid Effects on LES Thermo-Acoustic Limit-Cycle of a Full Annular Aeronautical Engine

    NASA Astrophysics Data System (ADS)

    Wolf, Pierre; Gicquel, Laurent Y. M.; Staffelbach, Gabriel; Poinsot, Thierry

    Recent developments in large scale computer architectures allow Large Eddy Simulation (LES) to be considered for the prediction of turbulent reacting flows in geometries encountered in industry. To do so, various difficulties must be overcome and the first one is to ensure that proper meshes can be used for LES. Indeed, the quality of meshes is known to be a critical factor in LES of reacting flows. This issue becomes even more crucial when LES is used to compute large configurations such as full annular combustion chambers. Various analysis of mesh effects on LES results have been published before but all are limited to single-sector computational domains. However, real annular gas-turbine engines contain ten to twenty of such sectors and LES must also be used in such full chambers for the study of ignition or azimuthal thermo-acoustic interactions. Instabilities (mostly azimuthal modes involving the full annular geometry) remain a critical issue to aeronautical or power-generation industries and LES seems to be a promising path to properly apprehend such complex unsteady couplings. Based on these observations, mesh effects on LES in a full annular gas-turbine combustion chamber (including its casing) is studied here in the context of its azimuthal thermo-acoustic response. To do so, a fully compressible, multi-species reacting LES is used on two meshes yielding two fully unsteady turbulent reacting predictions of the same configuration. The two tetrahedra meshes contain respectively 38 and 93 millions cells. Limit-cycles as obtained by the two LES are gauged against each other for various flow quantities such as mean velocity profiles, flame position and temperature fields. The thermo-acoustic limit-cycles are observed to be relatively indepedent of the grid resolution which comforts the use of LES tools to provide insights and understanding of the mechanisms triggering the coupling between the system acoustic eigenmodes and combustion.

  15. Development and Validation of a Supersonic Helium-Air Coannular Jet Facility

    NASA Technical Reports Server (NTRS)

    Carty, Atherton A.; Cutler, Andrew D.

    1999-01-01

    Data are acquired in a simple coannular He/air supersonic jet suitable for validation of CFD (Computational Fluid Dynamics) codes for high speed propulsion. Helium is employed as a non-reacting hydrogen fuel simulant, constituting the core of the coannular flow while the coflow is composed of air. The mixing layer interface between the two flows in the near field and the plume region which develops further downstream constitute the primary regions of interest, similar to those present in all hypersonic air breathing propulsion systems. A computational code has been implemented from the experiment's inception, serving as a tool for model design during the development phase.

  16. Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets

    NASA Astrophysics Data System (ADS)

    Pouransari, Z.; Biferale, L.; Johansson, A. V.

    2015-02-01

    The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar, and reactive species fields are studied using their probability density functions (PDFs) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor, the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damköhler numbers are examined and the comparison revealed that the Damköhler number effects are most dominant in the near-wall region, where the wall cooling effects are influential. In addition, with the aid of PDFs conditioned on the mixture fraction, the significance of the reactive scalar characteristics in the reaction zone is illustrated. We argue that the combined effects of strong intermittency and strong persistency of anisotropy at the small scales in the entire domain can affect mixing and ultimately the combustion characteristics of the reacting flow.

  17. Dynamic behavior of turbulent flow in a widely-spaced co-axial jet diffusion flame combustor

    NASA Astrophysics Data System (ADS)

    Sturgess, G. J.; Syed, S. A.

    1983-01-01

    Reacting flows in a bluff-body stabilized diffusion flame research combustor operated by the Wright Aeronautical Propulsion Laboratory exhibit the presence of coherent structures where, because of dynamic behavior the flame consists of large, discrete flame eddies passing down the combustion tunnel separated in time by axial regions where no flame is visible. It is proposed that the formation of these structures and their subsequent behavior are the result of vortex-shedding from the flameholder and, in the main, interaction with the organ-pipe natural frequencies of the long combustion tunnel. A simulation of the flow is made based on a finite difference solution of the time-average, steady state, elliptic form of the Reynolds equations using the two-equation turbulence model and a 'mixed is burned' combustion model for closure. The simulation of the eddies and, in conjunction with a universal Strouhal number-Reynolds number correlation, provides successful prediction of the flame frequencies.

  18. Factors influencing flow steadiness in laminar boundary layer shock interactions

    NASA Astrophysics Data System (ADS)

    Tumuklu, Ozgur; Levin, Deborah A.; Gimelshein, Sergey F.; Austin, Joanna M.

    2016-11-01

    The Direct Simulation Monte Carlo method has been used to model laminar shock wave boundary interactions of hypersonic flow over a 30/55-deg double-wedge and "tick-shaped" model configurations studied in the Hypervelocity Expansion Tube facility and T-ADFA free-piston shock tunnel, respectively. The impact of thermochemical effects on these interactions by changing the chemical composition from nitrogen to air as well as argon for a stagnation enthalpy of 8.0 MJ/kg flow are investigated using the 2-D wedge model. The simulations are found to reproduce many of the classic features related to Edney Type V strong shock interactions that include the attached, oblique shock formed over the first wedge, the detached bow shock from the second wedge, the separation zone, and the separation and reattachment shocks that cause complex features such as the triple point for both cases. However, results of a reacting air flow case indicate that the size of the separation length, and the movement of the triple point toward to the leading edge is much less than the nitrogen case.

  19. Loci-STREAM Version 0.9

    NASA Technical Reports Server (NTRS)

    Wright, Jeffrey; Thakur, Siddharth

    2006-01-01

    Loci-STREAM is an evolving computational fluid dynamics (CFD) software tool for simulating possibly chemically reacting, possibly unsteady flows in diverse settings, including rocket engines, turbomachines, oil refineries, etc. Loci-STREAM implements a pressure- based flow-solving algorithm that utilizes unstructured grids. (The benefit of low memory usage by pressure-based algorithms is well recognized by experts in the field.) The algorithm is robust for flows at all speeds from zero to hypersonic. The flexibility of arbitrary polyhedral grids enables accurate, efficient simulation of flows in complex geometries, including those of plume-impingement problems. The present version - Loci-STREAM version 0.9 - includes an interface with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library for access to enhanced linear-equation-solving programs therein that accelerate convergence toward a solution. The name "Loci" reflects the creation of this software within the Loci computational framework, which was developed at Mississippi State University for the primary purpose of simplifying the writing of complex multidisciplinary application programs to run in distributed-memory computing environments including clusters of personal computers. Loci has been designed to relieve application programmers of the details of programming for distributed-memory computers.

  20. Development of a Chemically Reacting Flow Solver on the Graphic Processing Units

    DTIC Science & Technology

    2011-05-10

    been implemented on the GPU by Schive et al. (2010). The outcome of their work is the GAMER code for astrophysical simulation. Thibault and...Euler equations at each cell. For simplification, consider the Euler equations in one dimension with no source terms; the discretized form of the...is known to be more diffusive than the other fluxes due to the large bound of the numerical signal velocities: b+, b-. 3.4 Time Marching Methods

  1. Fuel Effects on Nozzle Flow and Spray Using Fully Coupled Eulerian Simulations

    DTIC Science & Technology

    2015-09-01

    Density of liquid fuel, kg/m 3 = Density of ambient gas , kg/m 3 VOF = Volume of Fluid model = Volume of Fluid Scalar ROI = Rate of...have been reported arising from individual refinery processes, crude oil source, and also varying with season, year and age of the fuel. This myriad...configurations. Under reacting conditions, Violi et al. (6) presented a surrogate mixture of six pure hydrocarbon ( Utah surrogate) and found that it

  2. Numerical computation of space shuttle orbiter flow field

    NASA Technical Reports Server (NTRS)

    Tannehill, John C.

    1988-01-01

    A new parabolized Navier-Stokes (PNS) code has been developed to compute the hypersonic, viscous chemically reacting flow fields around 3-D bodies. The flow medium is assumed to be a multicomponent mixture of thermally perfect but calorically imperfect gases. The new PNS code solves the gas dynamic and species conservation equations in a coupled manner using a noniterative, implicit, approximately factored, finite difference algorithm. The space-marching method is made well-posed by special treatment of the streamwise pressure gradient term. The code has been used to compute hypersonic laminar flow of chemically reacting air over cones at angle of attack. The results of the computations are compared with the results of reacting boundary-layer computations and show excellent agreement.

  3. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    NASA Astrophysics Data System (ADS)

    Chao, Yei-Chin; Chou, Wen-Fuh; Liu, Sheng-Shyang

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder's ASM incorporated with Sarkar's modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield.

  4. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Y.; Chou, W.; Liu, S.

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined bymore » studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder`s ASM incorporated with Sarkar`s modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield. 36 refs.« less

  5. Characterization of Swirl-Venturi Lean Direct Injection Designs for Aviation Gas-Turbine Combustion

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.

    2013-01-01

    Injector geometry, physical mixing, chemical processes, and engine cycle conditions together govern performance, operability and emission characteristics of aviation gas-turbine combustion systems. The present investigation explores swirl-venturi lean direct injection combustor fundamentals, characterizing the influence of key geometric injector parameters on reacting flow physics and emission production trends. In this computational study, a design space exploration was performed using a parameterized swirl-venturi lean direct injector model. From the parametric geometry, 20 three-element lean direct injection combustor sectors were produced and simulated using steady-state, Reynolds-averaged Navier-Stokes reacting computations. Species concentrations were solved directly using a reduced 18-step reaction mechanism for Jet-A. Turbulence closure was obtained using a nonlinear ?-e model. Results demonstrate sensitivities of the geometric perturbations on axially averaged flow field responses. Output variables include axial velocity, turbulent kinetic energy, static temperature, fuel patternation and minor species mass fractions. Significant trends have been reduced to surrogate model approximations, intended to guide future injector design trade studies and advance aviation gas-turbine combustion research.

  6. Nonholonomic Hamiltonian Method for Meso-macroscale Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Lee, Sangyup

    2015-06-01

    The seamless integration of macroscale, mesoscale, and molecular scale models of reacting shock physics has been hindered by dramatic differences in the model formulation techniques normally used at different scales. In recent research the authors have developed the first unified discrete Hamiltonian approach to multiscale simulation of reacting shock physics. Unlike previous work, the formulation employs reacting themomechanical Hamiltonian formulations at all scales, including the continuum. Unlike previous work, the formulation employs a nonholonomic modeling approach to systematically couple the models developed at all scales. Example applications of the method show meso-macroscale shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  7. Simulation of Unsteady Hypersonic Combustion Around Projectiles in an Expansion Tube

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Radhakrishnan, K.

    1999-01-01

    The temporal evolution of combustion flowfields established by the interaction between wedge-shaped bodies and explosive hydrogen-oxygen-nitrogen mixtures accelerated to hypersonic speeds in an expansion tube is investigated. The analysis is carried out using a fully implicit, time-accurate, computational fluid dynamics code that we developed recently for solving the Navier-Stokes equations for a chemically reacting gas mixture. The numerical results are compared with experimental data from the Stanford University expansion tube for two different gas mixtures at Mach numbers of 4.2 and 5.2. The experimental work showed that flow unstart occurred for the Mach 4.2 cases. These results are reproduced by our numerical simulations and, more significantly, the causes for unstart are explained. For the Mach 5.2 mixtures, the experiments and numerical simulations both produced stable combustion. However, the computations indicate that in one case the experimental data were obtained during the transient phase of the flow; that is, before steady state had been attained.

  8. Tip-to-tail numerical simulation of a hypersonic air-breathing engine with ethylene fuel

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2016-11-01

    End to end CFD simulations of external and internal flow paths of an ethylene fueled hypersonic airbreathing vehicle with including forebody, horizontal fins, vertical fins, intake, combustor, single expansion ramp nozzle are carried out. The performance of the scramjet combustor and vehicle net thrust-drag is calculated for hypersonic cruise condition. Three-dimensional Navier-Stokes equations are solved along with SST-k-ω turbulence model using the commercial CFD software CFX-14. Single step chemical reaction based on fast chemistry assumption is used for combustion of gaseous ethylene fuel. Simulations captured complex shock structures including the shocks generated from the vehicle nose and compression ramps, impingement of cowl-shock on vehicle undersurface and its reflection in the intake and combustor etc. Various thermochemical parameters are analyzed and performance parameters are evaluated for nonreacting and reacting cases. Very good mixing ( 98%) of fuel with incoming air stream is observed. Positive thrust-drag margins are obtained for fuel equivalence ratio of 0.6 and computed combustion efficiency is observed to be 94 %. Effect of equivalence ratio on the vehicle performance is studied parametrically. Though the combustion efficiency has come down by 8% for fuel equivalence ratio of 0.8, net vehicle thrust is increased by 44%. Heat flux distribution on the various walls of the whole vehicle including combustor is estimated for the isothermal wall condition of 1000 K in reacting flow. Higher local heat flux values are observed at all the leading edges of the vehicle (i.e., nose, wing, fin and cowl leading edges) and strut regions of the combustor.

  9. Implicit Coupling Approach for Simulation of Charring Carbon Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2013-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption

  10. Reacting Multi-Species Gas Capability for USM3D Flow Solver

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Schuster, David M.

    2012-01-01

    The USM3D Navier-Stokes flow solver contributed heavily to the NASA Constellation Project (CxP) as a highly productive computational tool for generating the aerodynamic databases for the Ares I and V launch vehicles and Orion launch abort vehicle (LAV). USM3D is currently limited to ideal-gas flows, which are not adequate for modeling the chemistry or temperature effects of hot-gas jet flows. This task was initiated to create an efficient implementation of multi-species gas and equilibrium chemistry into the USM3D code to improve its predictive capabilities for hot jet impingement effects. The goal of this NASA Engineering and Safety Center (NESC) assessment was to implement and validate a simulation capability to handle real-gas effects in the USM3D code. This document contains the outcome of the NESC assessment.

  11. PDF approach for turbulent scalar field: Some recent developments

    NASA Technical Reports Server (NTRS)

    Gao, Feng

    1993-01-01

    The probability density function (PDF) method has been proven a very useful approach in turbulence research. It has been particularly effective in simulating turbulent reacting flows and in studying some detailed statistical properties generated by a turbulent field There are, however, some important questions that have yet to be answered in PDF studies. Our efforts in the past year have been focused on two areas. First, a simple mixing model suitable for Monte Carlo simulations has been developed based on the mapping closure. Secondly, the mechanism of turbulent transport has been analyzed in order to understand the recently observed abnormal PDF's of turbulent temperature fields generated by linear heat sources.

  12. Advanced laser modeling with BLAZE multiphysics

    NASA Astrophysics Data System (ADS)

    Palla, Andrew D.; Carroll, David L.; Gray, Michael I.; Suzuki, Lui

    2017-01-01

    The BLAZE Multiphysics™ software simulation suite was specifically developed to model highly complex multiphysical systems in a computationally efficient and highly scalable manner. These capabilities are of particular use when applied to the complexities associated with high energy laser systems that combine subsonic/transonic/supersonic fluid dynamics, chemically reacting flows, laser electronics, heat transfer, optical physics, and in some cases plasma discharges. In this paper we present detailed cw and pulsed gas laser calculations using the BLAZE model with comparisons to data. Simulations of DPAL, XPAL, ElectricOIL (EOIL), and the optically pumped rare gas laser were found to be in good agreement with experimental data.

  13. Recent advances in PDF modeling of turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Leonard, Andrew D.; Dai, F.

    1995-01-01

    This viewgraph presentation concludes that a Monte Carlo probability density function (PDF) solution successfully couples with an existing finite volume code; PDF solution method applied to turbulent reacting flows shows good agreement with data; and PDF methods must be run on parallel machines for practical use.

  14. Continuum approach for aerothermal flow through ablative porous material using discontinuous Galerkin discretization.

    NASA Astrophysics Data System (ADS)

    Schrooyen, Pierre; Chatelain, Philippe; Hillewaert, Koen; Magin, Thierry E.

    2014-11-01

    The atmospheric entry of spacecraft presents several challenges in simulating the aerothermal flow around the heat shield. Predicting an accurate heat-flux is a complex task, especially regarding the interaction between the flow in the free stream and the erosion of the thermal protection material. To capture this interaction, a continuum approach is developed to go progressively from the region fully occupied by fluid to a receding porous medium. The volume averaged Navier-Stokes equations are used to model both phases in the same computational domain considering a single set of conservation laws. The porosity is itself a variable of the computation, allowing to take volumetric ablation into account through adequate source terms. This approach is implemented within a computational tool based on a high-order discontinuous Galerkin discretization. The multi-dimensional tool has already been validated and has proven its efficient parallel implementation. Within this platform, a fully implicit method was developed to simulate multi-phase reacting flows. Numerical results to verify and validate the methodology are considered within this work. Interactions between the flow and the ablated geometry are also presented. Supported by Fund for Research Training in Industry and Agriculture.

  15. Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model

    NASA Astrophysics Data System (ADS)

    Borges Sebastião, Israel; Alexeenko, Alina

    2016-10-01

    The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.

  16. Annual Research Briefs, 1992

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1993-01-01

    This report contains the 1992 annual progress reports of the Research Fellows and students of the Center for Turbulence Research. Considerable effort was focused on the large eddy simulation technique for computing turbulent flows. This increased activity has been inspired by the recent predictive successes of the dynamic subgrid scale modeling procedure which was introduced during the 1990 Summer Program. Several Research Fellows and students are presently engaged in both the development of subgrid scale models and their applications to complex flows. The first group of papers in this report contain the findings of these studies. They are followed by reports grouped in the general areas of modeling, turbulence physics, and turbulent reacting flows. The last contribution in this report outlines the progress made on the development of the CTR post-processing facility.

  17. SSME thrust chamber simulation using Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.

    1984-01-01

    The capability of the PHOENICS fluid dynamics code in predicting two-dimensional, compressible, and reacting flow in the combustion chamber and nozzle of the space shuttle main engine (SSME) was evaluated. A non-orthogonal body fitted coordinate system was used to represent the nozzle geometry. The Navier-Stokes equations were solved for the entire nozzle with a turbulence model. The wall boundary conditions were calculated based on the wall functions which account for pressure gradients. Results of the demonstration test case reveal all expected features of the transonic nozzle flows. Of particular interest are the locations of normal and barrel shocks, and regions of highest temperature gradients. Calculated performance (global) parameters such as thrust chamber flow rate, thrust, and specific impulse are also in good agreement with available data.

  18. Water, Energy, and Biogeochemical Model (WEBMOD), user’s manual, version 1

    USGS Publications Warehouse

    Webb, Richard M.T.; Parkhurst, David L.

    2017-02-08

    The Water, Energy, and Biogeochemical Model (WEBMOD) uses the framework of the U.S. Geological Survey (USGS) Modular Modeling System to simulate fluxes of water and solutes through watersheds. WEBMOD divides watersheds into model response units (MRU) where fluxes and reactions are simulated for the following eight hillslope reservoir types: canopy; snowpack; ponding on impervious surfaces; O-horizon; two reservoirs in the unsaturated zone, which represent preferential flow and matrix flow; and two reservoirs in the saturated zone, which also represent preferential flow and matrix flow. The reservoir representing ponding on impervious surfaces, currently not functional (2016), will be implemented once the model is applied to urban areas. MRUs discharge to one or more stream reservoirs that flow to the outlet of the watershed. Hydrologic fluxes in the watershed are simulated by modules derived from the USGS Precipitation Runoff Modeling System; the National Weather Service Hydro-17 snow model; and a topography-driven hydrologic model (TOPMODEL). Modifications to the standard TOPMODEL include the addition of heterogeneous vertical infiltration rates; irrigation; lateral and vertical preferential flows through the unsaturated zone; pipe flow draining the saturated zone; gains and losses to regional aquifer systems; and the option to simulate baseflow discharge by using an exponential, parabolic, or linear decrease in transmissivity. PHREEQC, an aqueous geochemical model, is incorporated to simulate chemical reactions as waters evaporate, mix, and react within the various reservoirs of the model. The reactions that can be specified for a reservoir include equilibrium reactions among water; minerals; surfaces; exchangers; and kinetic reactions such as kinetic mineral dissolution or precipitation, biologically mediated reactions, and radioactive decay. WEBMOD also simulates variations in the concentrations of the stable isotopes deuterium and oxygen-18 as a result of varying inputs, mixing, and evaporation. This manual describes the WEBMOD input and output files, along with the algorithms and procedures used to simulate the hydrology and water quality in a watershed. Examples are presented that demonstrate hydrologic processes, weathering reactions, and isotopic evolution in an alpine watershed and the effect of irrigation on water flows and salinity in an intensively farmed agricultural area.

  19. Dichotomous-noise-induced pattern formation in a reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Ray, Deb Shankar

    2013-06-01

    We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR) -membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.

  20. Stochastic modeling of turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Fox, R. O.; Hill, J. C.; Gao, F.; Moser, R. D.; Rogers, M. M.

    1992-01-01

    Direct numerical simulations of a single-step irreversible chemical reaction with non-premixed reactants in forced isotropic turbulence at R(sub lambda) = 63, Da = 4.0, and Sc = 0.7 were made using 128 Fourier modes to obtain joint probability density functions (pdfs) and other statistical information to parameterize and test a Fokker-Planck turbulent mixing model. Preliminary results indicate that the modeled gradient stretching term for an inert scalar is independent of the initial conditions of the scalar field. The conditional pdf of scalar gradient magnitudes is found to be a function of the scalar until the reaction is largely completed. Alignment of concentration gradients with local strain rate and other features of the flow were also investigated.

  1. Aerodynamic drag characterization and deposition studies of irregular particles. Part 3: Analysis of flow and temperature field inside the Combustion Deposition Entrained Reactor (CDER)

    NASA Astrophysics Data System (ADS)

    Celik, I.; Katragadda, S.; Nagarajan, R.

    1990-01-01

    An experimental and numerical analysis was performed of the temperature and flow field involved in co-axial, confined, non-reacting heated jets in a drop tube reactor. An electrically heated 2-inch (50.8 mm) diameter drop tube reactor was utilized to study the jet characteristics. Profiles of gas temperature, typically in the range of 800 to 1600 K were measured in the mixing zone of the jet with a K-Type thermocouple. Measured temperatures were corrected for conduction, convection, and radiation heat losses. Because of limited access to the mixing zone, characterization of the flow field at high temperatures with laser Doppler or hot wire anemometry were impractical. A computer program which solves the full equations of motion and energy was employed to simulate the temperature and flow fields. The location of the recirculation region, the flow regimes, and the mixing phenomena were studied. The wall heating, laminar and turbulent flow regimes were considered in the simulations. The predictions are in fairly good agreement with the corrected temperature measurements provided that the flow is turbulent. The results of this study demonstrate how a numerical method and measurement can be used together to analyze the flow conditions inside a reactor which has limited access because of very high temperatures.

  2. Dissolution-precipitation reactions and permeability evolution from reactions of CO2-rich aqueous solutions with fractured basalt

    NASA Astrophysics Data System (ADS)

    Wells, R. K.; Xiong, W.; Bae, Y.; Sesti, E.; Skemer, P. A.; Giammar, D.; Conradi, M.; Ellis, B. R.; Hayes, S. E.

    2015-12-01

    The injection of CO2 into fractured basalts is one of several possible solutions to mitigate global climate change; however, research on carbonation in natural basalts in relation to carbon sequestration is limited, which impedes our understanding of the processes that may influence the viability of this strategy. We are conducting bench-scale experiments to characterize the mineral dissolution and precipitation and the evolution of permeability in synthetic and natural basalts exposed to CO2-rich fluids. Analytical methods include optical and electron microscopy, electron microprobe, Raman spectroscopy, nuclear magnetic resonance (NMR), and micro X-ray computed tomography (μCT) with variable flow rates. Reactive rock and mineral samples consist of 1) packed powders of olivine or natural basalt, and 2) sintered cores of olivine or a synthetic basalt mixture. Each sample was reacted in a batch reactor at 100 °C, and 100 bars CO2. Magnesite is detected within one day in olivine packed beds, and within 15 days in olivine sintered cores. Forsterite and synthetic basalt sinters were also reacted in an NMR apparatus at 102 °C and 65 bars CO2. Carbonate signatures are observed within 72 days of reaction. Longer reaction times are needed for carbonate precipitation in natural basalt samples. Cores from the Columbia River flood basalt flows that contain Mg-rich olivine and a serpentinized basalt from Colorado were cut lengthwise, the interface mechanically roughened or milled, and edges sealed with epoxy to simulate a fractured interface. The cores were reacted in a batch reactor at 50-150 °C and 100 bars CO2. At lower temperatures, calcite precipitation is rare within the fracture after 4 weeks. At higher temperatures, numerous calcite and aragonite crystals are observed within 1 mm of the fracture entrance along the roughened fracture surface. In flow-through experiments, permeability decreased along the fracture paths within a few hours to several days of flow.

  3. A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows

    NASA Astrophysics Data System (ADS)

    Doisneau, François; Arienti, Marco; Oefelein, Joseph C.

    2017-01-01

    For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier-Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle-particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.

  4. A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov

    For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barelymore » influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.« less

  5. Experimental and numerical investigation on the ignition and combustion stability in solid fuel ramjet with swirling flow

    NASA Astrophysics Data System (ADS)

    Musa, Omer; Xiong, Chen; Changsheng, Zhou

    2017-08-01

    The present article investigates experimentally and numerically the ignition and flame stability of high-density polyethylene solid fuel with incoming swirling air through a solid fuel ramjet (SFRJ). A new design of swirler is proposed and used in this work. Experiments on connected pipes test facility were performed for SFRJ with and without swirl. An in-house code has been developed to simulate unsteady, turbulent, reacting, swirling flow in the SFRJ. Four different swirl intensities are utilized to study experimentally and numerically the effect of swirl number on the transient regression, ignition of the solid fuel in a hot-oxidizing flow and combustion phenomenon in the SFRJ. The results showed that using swirl flow decreases the ignition time delay, recirculation zone length, and the distance between the flame and the wall, meanwhile, increases the residence time, heat transfer, regression rate and mixing degree, thus, improving the combustion efficiency and stability.

  6. Modeling and testing of reactive contaminant transport in drinking water pipes: chlorine response and implications for online contaminant detection.

    PubMed

    Jeffrey Yang, Y; Goodrich, James A; Clark, Robert M; Li, Sylvana Y

    2008-03-01

    A modified one-dimensional Danckwerts convection-dispersion-reaction (CDR) model is numerically simulated to explain the observed chlorine residual loss for a "slug" of reactive contaminants instantaneously introduced into a drinking water pipe of assumed no or negligible wall demand. In response to longitudinal dispersion, a contaminant propagates into the bulk phase where it reacts with disinfectants in the water. This process generates a U-shaped pattern of chlorine residual loss in a time-series concentration plot. Numerical modeling indicates that the residual loss curve geometry (i.e., slope, depth, and width) is a function of several variables such as axial Péclet number, reaction rate constants, molar fraction of the fast- and slow-reacting contaminants, and the quasi-steady-state chlorine decay inside the "slug" which serves as a boundary condition of the CDR model. Longitudinal dispersion becomes dominant for less reactive contaminants. Pilot-scale pipe flow experiments for a non-reactive sodium fluoride tracer and the fast-reacting aldicarb, a pesticide, were conducted under turbulent flow conditions (Re=9020 and 25,000). Both the experimental results and the CDR modeling are in agreement showing a close relationship among the aldicarb contaminant "slug", chlorine residual loss and its variations, and a concentration increase of chloride as the final reaction product. Based on these findings, the residual loss curve and its geometry are useful tools to identify the presence of a contaminant "slug" and infer its reactive properties in adaptive contaminant detections.

  7. CARS Temperature Measurements in a Hypersonic Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    Jarrett, Olin, Jr.; Smith, M. W.; Antcliff, R. R.; Northam, G. Burt; Cutler, A. D.; Capriotti, D. P.; Taylor, D. J.

    1990-01-01

    Nonintrusive diagnostic measurements were performed in the supersonic reacting flow of the Hypersonic Propulsion Test Cell 2 at NASA-Langley. A Coherent Anti-stokes Raman Spectroscopy (CARS) system was assembled specifically for the test cell environment. System design considerations were: (1) test cell noise and vibration; (2) contamination from flow field or atmospheric borne dust; (3) unwanted laser or electrically induced combustion (inside or outside the duct); (4) efficient signal collection; (5) signal splitting to span the wide dynamic range present throughout the flow field; (6) movement of the sampling volume in the flow; and (7) modification of the scramjet model duct to permit optical access to the reacting flow with the CARS system. The flow in the duct was a nominal Mach 2 flow with static pressure near one atmosphere. A single perpendicular injector introduced hydrogen into the flow behind a rearward facing step. CARS data was obtained in three planes downstream of the injection region. At least 20 CARS data points were collected at each of the regularly spaced sampling locations in each data plane. Contour plots of scramjet combustor static temperature in a reacting flow region are presented.

  8. Semi-implicit iterative methods for low Mach number turbulent reacting flows: Operator splitting versus approximate factorization

    NASA Astrophysics Data System (ADS)

    MacArt, Jonathan F.; Mueller, Michael E.

    2016-12-01

    Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.

  9. High altitude chemically reacting gas particle mixtures. Volume 2: Program manual for RAMP2. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    All of the elements used in the Reacting and Multi-Phase (RAMP2) computer code are described in detail. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields.

  10. Computation of Reacting Flows in Combustion Processes

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Chen, K.-H.

    2001-01-01

    The objective of this research is to develop an efficient numerical algorithm with unstructured grids for the computation of three-dimensional chemical reacting flows that are known to occur in combustion components of propulsion systems. During the grant period (1996 to 1999), two companion codes have been developed and various numerical and physical models were implemented into the two codes.

  11. Effect of Turbulent Fluctuations on Infrared Radiation from a Tactical Missile Plume

    DTIC Science & Technology

    1982-02-01

    Reacting Flows ...... 21 Reacting Flow Calculations ..................................... 21 Turbulence- Chemistry Interaction...a two-equation, turbulence kinetic energy model. The code is capable of handling multi-species, multi-step chemistry . However, it does not calculate...that are expected to be important in turbulence- chemistry and turbulence-radiation interactions. The program calculates only two turbulence guantities

  12. Initiation structure of oblique detonation waves behind conical shocks

    NASA Astrophysics Data System (ADS)

    Yang, Pengfei; Ng, Hoi Dick; Teng, Honghui; Jiang, Zonglin

    2017-08-01

    The understanding of oblique detonation dynamics has both inherent basic research value for high-speed compressible reacting flow and propulsion application in hypersonic aerospace systems. In this study, the oblique detonation structures formed by semi-infinite cones are investigated numerically by solving the unsteady, two-dimensional axisymmetric Euler equations with a one-step irreversible Arrhenius reaction model. The present simulation results show that a novel wave structure, featured by two distinct points where there is close-coupling between the shock and combustion front, is depicted when either the cone angle or incident Mach number is reduced. This structure is analyzed by examining the variation of the reaction length scale and comparing the flow field with that of planar, wedge-induced oblique detonations. Further simulations are performed to study the effects of chemical length scale and activation energy, which are both found to influence the formation of this novel structure. The initiation mechanism behind the conical shock is discussed to investigate the interplay between the effect of the Taylor-Maccoll flow, front curvature, and energy releases from the chemical reaction in conical oblique detonations. The observed flow fields are interpreted by means of the energetic limit as in the critical regime for initiation of detonation.

  13. Computations of non-reacting and reacting viscous blunt body flows, volume 2

    NASA Technical Reports Server (NTRS)

    Li, C. P.

    1973-01-01

    Computer programs for calculating the flow distribution in the nose region of a blunt body at arbitrary speed and altitude are discussed. The programs differ from each other in their ability to consider either thin shock or thick shock conditions and in the use of either ideal, equilibrium air, or nonequilibrium air chemistry. The application of the programs to analyzing the flow distribution around the nose of the shuttle orbiter during reentry is reported.

  14. (DURIP 10) High Speed Intensified Imaging System For Studies Of Mixing And Combustion In Supersonic Flows And Hydrocarbon Flame Structure Measurements At Elevated Pressures

    DTIC Science & Technology

    2016-11-09

    software, and their networking to augment optical diagnostics employed in supersonic reacting and non-reacting flow experiments . A high-speed...facility at Caltech. Experiments to date have made use of this equipment, extending previous capabilities to high-speed schlieren quantitative flow...visualization and image correlation velocimetry, with further experiments currently in progress. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  15. Assessment of two-phase flow on the chemical alteration and sealing of leakage pathways in cemented wellbores

    DOE PAGES

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...

    2018-01-08

    Wellbore leakage tops the list of perceived risks to the long-term geologic storage of CO 2, because wells provide a direct path between the CO 2 storage reservoir and the atmosphere. In this paper, we have coupled a two-phase flow model with our original framework that combined models for reactive transport of carbonated brine, geochemistry of reacting cement, and geomechanics to predict the permeability evolution of cement fractures. Additionally, this makes the framework suitable for field conditions in geological storage sites, permitting simulation of contact between cement and mixtures of brine and supercritical CO 2. Due to lack of conclusivemore » experimental data, we tried both linear and Corey relative permeability models to simulate flow of the two phases in cement fractures. The model also includes two options to account for the inconsistent experimental observations regarding cement reactivity with two-phase CO 2-brine mixtures. One option assumes that the reactive surface area is independent of the brine saturation and the second option assumes that the reactive surface area is proportional to the brine saturation. We have applied the model to predict the extent of cement alteration, the conditions under which fractures seal, the time it takes to seal a fracture, and the leakage rates of CO 2 and brine when damage zones in the wellbore are exposed to two-phase CO 2-brine mixtures. Initial brine residence time and the initial fracture aperture are critical parameters that affect the fracture sealing behavior. We also evaluated the importance of the model assumptions regarding relative permeability and cement reactivity. These results illustrate the need to understand how mixtures of carbon dioxide and brine flow through fractures and react with cement to make reasonable predictions regarding well integrity. For example, a reduction in the cement reactivity with two-phase CO 2-brine mixture can not only significantly increase the sealing time for fractures but may also prevent fracture sealing.« less

  16. Assessment of two-phase flow on the chemical alteration and sealing of leakage pathways in cemented wellbores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue

    Wellbore leakage tops the list of perceived risks to the long-term geologic storage of CO 2, because wells provide a direct path between the CO 2 storage reservoir and the atmosphere. In this paper, we have coupled a two-phase flow model with our original framework that combined models for reactive transport of carbonated brine, geochemistry of reacting cement, and geomechanics to predict the permeability evolution of cement fractures. Additionally, this makes the framework suitable for field conditions in geological storage sites, permitting simulation of contact between cement and mixtures of brine and supercritical CO 2. Due to lack of conclusivemore » experimental data, we tried both linear and Corey relative permeability models to simulate flow of the two phases in cement fractures. The model also includes two options to account for the inconsistent experimental observations regarding cement reactivity with two-phase CO 2-brine mixtures. One option assumes that the reactive surface area is independent of the brine saturation and the second option assumes that the reactive surface area is proportional to the brine saturation. We have applied the model to predict the extent of cement alteration, the conditions under which fractures seal, the time it takes to seal a fracture, and the leakage rates of CO 2 and brine when damage zones in the wellbore are exposed to two-phase CO 2-brine mixtures. Initial brine residence time and the initial fracture aperture are critical parameters that affect the fracture sealing behavior. We also evaluated the importance of the model assumptions regarding relative permeability and cement reactivity. These results illustrate the need to understand how mixtures of carbon dioxide and brine flow through fractures and react with cement to make reasonable predictions regarding well integrity. For example, a reduction in the cement reactivity with two-phase CO 2-brine mixture can not only significantly increase the sealing time for fractures but may also prevent fracture sealing.« less

  17. Vortex dynamics studies in supersonic flow

    NASA Astrophysics Data System (ADS)

    Vergine, Fabrizio

    This dissertation covers the study of selected vortex interaction scenarios both in cold and high enthalpy reacting flows. Specifically, the experimental results and the analysis of the flowfields resulting from two selected supersonic vortex interaction modes in a Mach 2.5 cold flow are presented. Additionally, the experiment design, based on vortex dynamics concepts, and the reacting plume survey of two pylon injectors in a Mach 2.4 high enthalpy flow are shown. All the cold flow experiments were conducted in the supersonic wind tunnel of the Aerodynamics Research Center at the University of Texas at Arlington. A strut injector equipped with specified ramp configurations was designed and used to produce the flowfields of interest. The reacting flow experiments were conducted in the the Expansion Tube Facility located in the High Temperature Gasdynamics Laboratory of Stanford University. A detailed description of the supersonic wind tunnel, the instrumentation, the strut injector and the supersonic wake flow downstream is shown as part of the characterization of the facility. As Stereoscopic Particle Image Velocimetry was the principal flow measurement technique used in this work to probe the streamwise vortices shed from ramps mounted on the strut, this dissertation provides a deep overview of the challenges and the application of the aforementioned technique to the survey of vortical flows. Moreover, the dissertation provides the comprehensive analysis of the mean and fluctuating velocity flowfields associated with two distinct vortex dynamics scenarios, as chosen by means of the outcomes of the simulations of a reduced order model developed in the research group. Specifically, the same streamwise vortices (strength, size and Reynolds number) were used experimentally to investigate both a case in which the resulting dynamics evolve in a vortex merging scenario and a case where the merging process is voluntarily avoided in order to focus the analysis on the fundamental differences associated with the amalgamation processes alone. The results from the mean flow highlight major differences between the two cases and will justify the use of the inviscid reduced order model used to predict the main flow physics. The analysis of the turbulence quantities based on concepts borrowed from incompressible turbulence theory explains interesting features of the fluctuating flowfields, suggesting that turbulence associated with the inspected flow conditions is essentially incompressible. Once the interactions among the vortical structures in cold flow were assessed, these vortex dynamics concepts were probed in a reacting environment. The dissertation describes the design phase of two pylon injectors based on the prediction capabilities of the aforementioned model. Then, the results of a set of combustion experiments conducted utilizing hydrogen fuel injected into Mach 2.4, high-enthalpy (2.8˜MJ/kg) air flow are discussed. The results show that, for the heat release levels considered in this study, the morphology of the plume and its evolution is very similar to the results produced by the code, enabling an interpretation of the phenomena based on vortex dynamics considerations. The persistence of the streamwise vortical structures created by the selected ramp configurations is shown together with the effectiveness of the coherent structures in successfully anchoring the flame very close to the injection point. The work shows the possibility of a new approach in the design of injection strategies (i.e., not limited to injection devices) suitable for adoption in scramjet combustors based on the ability to predict, with basic vortex dynamics concepts and a highly reduced computational cost, the main features of flows of technological interest.

  18. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri

    2014-01-01

    This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.

  19. Parametric Design of Injectors for LDI-3 Combustors

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2015-01-01

    Application of a partially calibrated National Combustion Code (NCC) for providing guidance in the design of the 3rd generation of the Lean-Direct Injection (LDI) multi-element combustion configuration (LDI-3) is summarized. NCC was used to perform non-reacting and two-phase reacting flow computations on several LDI-3 injector configurations in a single-element and a five-element injector array. All computations were performed with a consistent approach for mesh-generation, turbulence, spray simulations, ignition and chemical kinetics-modeling. Both qualitative and quantitative assessment of the computed flowfield characteristics of the several design options led to selection of an optimal injector LDI- 3 design that met all the requirements including effective area, aerodynamics and fuel-air mixing criteria. Computed LDI-3 emissions (namely, NOx, CO and UHC) will be compared with the prior generation LDI- 2 combustor experimental data at relevant engine cycle conditions.

  20. Heterogeneous interactions of chlorine nitrate, hydrogen chloride, and nitric acid with sulfuric acid surfaces at stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Rossi, Michel J.; Golden, David M.

    1988-01-01

    The heterogeneous interactions of ClONO2, HCl, and HNO3 with sulfuric acid surfaces were studied using a Knudsen cell flow reactor. The surfaces studied, chosen to simulate global stratospheric particulate, were composed of 65-75 percent H2SO4 solutions at temperatures in the range -63 to -43 C. Heterogeneous loss, but not reaction, of HNO3 and HCl occurred on these surfaces; the measured sticking coefficients are reported. Chlorine nitrate reacted on the cold sulfuric acid surfaces, producing gas-phase HOCl and condensed HNO3. CLONO2 also reacted with HCl dissolved in the 65-percent H2SO4 solution at -63 C, forming gaseous Cl2. In all cases studied, the sticking and/or reaction coefficients were much larger for the 65-percent H2SO4 solution at -63 C than for the 75-percent solution at -43 C.

  1. Mixing and NO(x) Emission Calculations of Confined Reacting Jet Flows in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Oechsle, Victor L.

    2003-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A 3-dimensional tool has been used to predict the mixing flow field characteristics and NOx emission in a quench section of an RQL combustor, Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameters: 1) jet-to-mainstream momentum-flux ratio (J), 2) orifice shape or orifice aspect ratio, and 3) slot slant angle. The results indicate that the mixing flow field significantly varies with the value of the jet penetration and subsequently, slanting elongated slots generally improve the mixing uniformity at high J conditions. Round orifices produce more uniform mixing and low NO(x) emissions at low J due to the strong and adequate jet penetration. No significant correlation was found between the NO(x) production rates and the mixing deviation parameters, however, strong correlation was found between NO(x) formation and jet penetration. In the computational results, most of the NO(x) formation occurred behind the orifice starting at the orifice wake region. Additional NO(x) is formed upstream of the orifice in certain configurations with high J conditions due to the upstream recirculation.

  2. A spectral multi-domain technique applied to high-speed chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Streett, Craig L.; Hussaini, M. Yousuff

    1989-01-01

    The first applications of a spectral multidomain method for viscous compressible flow is presented. The method imposes a global flux balance condition at the interface so that high-order continuity of the solution is preserved. The global flux balance is imposed in terms of a spectral integral of the discrete equations across adjoining domains. Since the discretized equations interior to each domain solved are uncoupled from each other, and since the interface relation has a block structure, the solution scheme can be adapted to the particular requirements of each subdomain. The spectral multidomain technique presented is well-suited for the multiple scales associated with the chemically reacting and transition flows in hypersonic research. A nonstaggered multidomain discretization is used for the chemically reacting flow calculation, and the first implementation of a staggered multidomain mesh is presented for accurately solving the stability equation for a viscous compressible fluid.

  3. Artificial acoustic stiffness reduction in fully compressible, direct numerical simulation of combustion

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Trouvé, Arnaud

    2004-09-01

    A pseudo-compressibility method is proposed to modify the acoustic time step restriction found in fully compressible, explicit flow solvers. The method manipulates terms in the governing equations of order Ma2, where Ma is a characteristic flow Mach number. A decrease in the speed of acoustic waves is obtained by adding an extra term in the balance equation for total energy. This term is proportional to flow dilatation and uses a decomposition of the dilatational field into an acoustic component and a component due to heat transfer. The present method is a variation of the pressure gradient scaling (PGS) method proposed in Ramshaw et al (1985 Pressure gradient scaling method for fluid flow with nearly uniform pressure J. Comput. Phys. 58 361-76). It achieves gains in computational efficiencies similar to PGS: at the cost of a slightly more involved right-hand-side computation, the numerical time step increases by a full order of magnitude. It also features the added benefit of preserving the hydrodynamic pressure field. The original and modified PGS methods are implemented into a parallel direct numerical simulation solver developed for applications to turbulent reacting flows with detailed chemical kinetics. The performance of the pseudo-compressibility methods is illustrated in a series of test problems ranging from isothermal sound propagation to laminar premixed flame problems.

  4. A Method for Large Eddy Simulation of Acoustic Combustion Instabilities

    NASA Astrophysics Data System (ADS)

    Wall, Clifton; Moin, Parviz

    2003-11-01

    A method for performing Large Eddy Simulation of acoustic combustion instabilities is presented. By extending the low Mach number pressure correction method to the case of compressible flow, a numerical method is developed in which the Poisson equation for pressure is replaced by a Helmholtz equation. The method avoids the acoustic CFL condition by using implicit time advancement, leading to large efficiency gains at low Mach number. The method also avoids artificial damping of acoustic waves. The numerical method is attractive for the simulation of acoustics combustion instabilities, since these flows are typically at low Mach number, and the acoustic frequencies of interest are usually low. Additionally, new boundary conditions based on the work of Poinsot and Lele have been developed to model the acoustic effect of a long channel upstream of the computational inlet, thus avoiding the need to include such a channel in the computational domain. The turbulent combustion model used is the Level Set model of Duchamp de Lageneste and Pitsch for premixed combustion. Comparison of LES results to the reacting experiments of Besson et al. will be presented.

  5. 2D simulation of active species and ozone production in a multi-tip DC air corona discharge

    NASA Astrophysics Data System (ADS)

    Meziane, M.; Eichwald, O.; Sarrette, J. P.; Ducasse, O.; Yousfi, M.

    2011-11-01

    The present paper shows for the first time in the literature a complete 2D simulation of the ozone production in a DC positive multi-tip to plane corona discharge reactor crossed by a dry air flow at atmospheric pressure. The simulation is undertaken until 1 ms and involves tens of successive discharge and post-discharge phases. The air flow is stressed by several monofilament corona discharges generated by a maximum of four anodic tips distributed along the reactor. The nonstationary hydrodynamics model for reactive gas mixture is solved using the commercial FLUENT software. During each discharge phase, thermal and vibrational energies as well as densities of radical and metastable excited species are locally injected as source terms in the gas medium surrounding each tip. The chosen chemical model involves 10 neutral species reacting following 24 reactions. The obtained results allow us to follow the cartography of the temperature and the ozone production inside the corona reactor as a function of the number of high voltage anodic tips.

  6. Laminar or turbulent boundary-layer flows of perfect gases or reacting gas mixtures in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Lewis, C. H.

    1971-01-01

    Turbulent boundary layer flows of non-reacting gases are predicted for both interal (nozzle) and external flows. Effects of favorable pressure gradients on two eddy viscosity models were studied in rocket and hypervelocity wind tunnel flows. Nozzle flows of equilibrium air with stagnation temperatures up to 10,000 K were computed. Predictions of equilibrium nitrogen flows through hypervelocity nozzles were compared with experimental data. A slender spherically blunted cone was studied at 70,000 ft altitude and 19,000 ft/sec. in the earth's atmosphere. Comparisons with available experimental data showed good agreement. A computer program was developed and fully documented during this investigation for use by interested individuals.

  7. Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis due to its high heat and mass transfer efficiency and well-controlled flow parameters. Experimental studies of CVD microreactor technology are slow and expensive. Analytical solution of the governing equations is impossible due to the complexity of intertwined non-linear physical and chemical processes. Computer simulation is the most effective tool for design and optimization of microreactors. Our computational fluid dynamics model employs mass, momentum and energy balance equations for a laminar transient flow of a chemically reacting gas mixture at low Reynolds number. Simulation results show the influence of microreactor configuration and process parameters on SiO2 deposition rate and uniformity. We simulated three microreactors with the central channel diameter of 5, 10, 20 micrometers, varying gas flow rate in the range of 5-100 microliters per hour and temperature in the range of 300-800 °C. For each microchannel diameter we found an optimal set of process parameters providing the best quality of deposited material. The model will be used for optimization of the microreactor configuration and technological parameters to facilitate the experimental stage of this research.

  8. Propel: A Discontinuous-Galerkin Finite Element Code for Solving the Reacting Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan; Kercher, Andrew; Schwer, Douglas; Corrigan, Andrew; Kailasanath, Kazhikathra

    2017-11-01

    This presentation focuses on the development of a Discontinuous Galerkin (DG) method for application to chemically reacting flows. The in-house code, called Propel, was developed by the Laboratory of Computational Physics and Fluid Dynamics at the Naval Research Laboratory. It was designed specifically for developing advanced multi-dimensional algorithms to run efficiently on new and innovative architectures such as GPUs. For these results, Propel solves for convection and diffusion simultaneously with detailed transport and thermodynamics. Chemistry is currently solved in a time-split approach using Strang-splitting with finite element DG time integration of chemical source terms. Results presented here show canonical unsteady reacting flow cases, such as co-flow and splitter plate, and we report performance for higher order DG on CPU and GPUs.

  9. Convection-driven aggregation of micron sized capsules

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Shum, Henry; Balazs, Anna

    Collective dynamics of microcapsules often serve as a model for understanding behavior observed in colonies of biological cells. Using computer simulations, we explore the capability of chemically generated convection to assemble microcapsules into a colony with neighbors close enough to facilitate chemical communication. The microcapsules are assumed to carry a supply of chemical fuel. When this fuel, leaking out of the capsules, reacts at enzyme-covered sites of the chamber, the reaction generates fluid density variations driving flows. These flows carry the microcapsules, which tend to aggregate into colonies on and near the enzyme-covered sites. This aggregation continues until the reagent has been depleted and convection stops. We show that capsule colonies of predesigned shapes can be assembled by patterning the enzyme-covered surface.

  10. CFD Techniques for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The symposium was composed of the following sessions: turbomachinery computations and validations; flow in ducts, intakes, and nozzles; and reacting flows. Forty papers were presented, and they covered full 3-D code validation and numerical techniques; multidimensional reacting flow; and unsteady viscous flow for the entire spectrum of propulsion system components. The capabilities of the various numerical techniques were assessed and significant new developments were identified. The technical evaluation spells out where progress has been made and concludes that the present state of the art has almost reached the level necessary to tackle the comprehensive topic of computational fluid dynamics (CFD) validation for propulsion.

  11. Does "Reacting to the Past" Increase Student Engagement? An Empirical Evaluation of the Use of Historical Simulations in Teaching Political Theory

    ERIC Educational Resources Information Center

    Weidenfeld, Matthew C.; Fernandez, Kenneth E.

    2017-01-01

    Within the teaching of political theory, an assumption is emerging that "Reacting to the Past" simulations are an effective tool because they encourage greater student engagement with ideas and history. While previous studies have assessed the advantages of simulations in other political science subfields or offered anecdotal evidence of…

  12. Confined Detonations and Pulse Detonation Engines

    DTIC Science & Technology

    2003-01-01

    chemically reacting flow was described by the 2D Euler equations &q OF(q) +G(q) W (1) 75 CONFINED DETONATIONS AND PULSE DETONATION ENGINES where q = (p...DETONATIONS AND PULSE DETONATION ENGINES 5 CONCLUDING REMARKS Numerical investigations of RR and MR in a supersonic chemically reacting flows have...formalism of hetero- geneous medium mechanics supplemented with an overall chemical reaction was 141 CONFINED DETONATIONS AND PULSE DETONATION ENGINES

  13. Dynamics of High Pressure Reacting Shear Flows

    DTIC Science & Technology

    2015-10-02

    liquid rockets, future gas turbines • When the combustion systems are for propulsion, limited tankage dictates that on-board propellants be stored in...system dynamics • Combustion dynamics always includes acoustic waves, which in enclosed systems can sometimes reach detrimental amplitudes – eg...a high pressure, chemically reacting, multiphase, acoustically driven, shear flow in the form of a coaxial jet flame • Explore how the presence of

  14. Investigating preferential flow processes in soils using anisotropy in electrical resistivity

    NASA Astrophysics Data System (ADS)

    Al-Hazaimay, S.; Huisman, J. A.; Zimmermann, E.; Kemna, A.; Vereecken, H.

    2012-12-01

    Macropores occupy a small volume fraction of the pore space in the vadose zone. Water and solutes can quickly bypass the vadose zone through these macropores in a process known as macropore preferential flow. In the last few decades, many efforts were made to improve understanding the macropore preferential flow processes because of their importance in transporting agrochemicals and contaminants to the groundwater. Unfortunately, very few measurement methods provide insights into these preferential flow processes. In this context, the objective of this study is to evaluate whether anisotropy in electrical resistivity can be used to identify the existence of flow in macropores and perhaps even to characterize the exchange between macropores and bulk soil. In a first step, infiltration into a soil column with an artificial macropore was simulated using the HYDRUS software package that solves the pseudo three-dimensional axisymmetric Richards equation. The simulated temporal development of the resistivity anisotropy was obtained by solving the Poisson equation in MATLAB after converting the simulated water content distributions to electrical resistivity distributions. At the beginning of the simulation, a small anisotropy ratio was simulated because of the presence of the empty ('deactivated') macropore in the moist matrix. As soon as the infiltration process started, macropore flow occurred and both the horizontal and vertical resistivity decreased strongly. However, the vertical and horizontal resistivity reacted differently because of the presence of the conductive ('activated') macropore, which led to anisotropy in the resistivity. As soon as infiltration into the macropore stopped, water re-distributed from the macropore to the matrix domain and contrasts in electrical resistivity decreased within the column. To verify the simulation results in the laboratory, we measured the temporal dynamics of the anisotropy in resistivity during water infiltration into a soil column of 9 cm diameter and 40 cm length with an artificial macropore of 2 cm diameter in the center of the column. The first experimental results confirmed that the anisotropy in electrical resistivity can indeed be used to identify and perhaps even quantify macropore flow.

  15. Computational study on UV curing characteristics in nanoimprint lithography: Stochastic simulation

    NASA Astrophysics Data System (ADS)

    Koyama, Masanori; Shirai, Masamitsu; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki

    2017-06-01

    A computational simulation model of UV curing in nanoimprint lithography based on a simplified stochastic approach is proposed. The activated unit reacts with a randomly selected monomer within a critical reaction radius. Cluster units are chained to each other. Then, another monomer is activated and the next chain reaction occurs. This process is repeated until a virgin monomer disappears within the reaction radius or until the activated monomers react with each other. The simulation model well describes the basic UV curing characteristics, such as the molecular weight distributions of the reacted monomers and the effect of the initiator concentration on the conversion ratio. The effects of film thickness on UV curing characteristics are also studied by the simulation.

  16. A priori and a posteriori analyses of the flamelet/progress variable approach for supersonic combustion

    NASA Astrophysics Data System (ADS)

    Saghafian, Amirreza; Pitsch, Heinz

    2012-11-01

    A compressible flamelet/progress variable approach (CFPV) has been devised for high-speed flows. Temperature is computed from the transported total energy and tabulated species mass fractions and the source term of the progress variable is rescaled with pressure and temperature. The combustion is thus modeled by three additional scalar equations and a chemistry table that is computed in a pre-processing step. Three-dimensional direct numerical simulation (DNS) databases of reacting supersonic turbulent mixing layer with detailed chemistry are analyzed to assess the underlying assumptions of CFPV. Large eddy simulations (LES) of the same configuration using the CFPV method have been performed and compared with the DNS results. The LES computations are based on the presumed subgrid PDFs of mixture fraction and progress variable, beta function and delta function respectively, which are assessed using DNS databases. The flamelet equation budget is also computed to verify the validity of CFPV method for high-speed flows.

  17. Supersonic reacting internal flowfields

    NASA Astrophysics Data System (ADS)

    Drummond, J. P.

    The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flowfields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.

  18. Corrugated and Composite Nozzle-Inlets for Thrust and Noise Benefits

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Blankson, I. M.; Gromov, V. G.; Sakharov, V. I.

    2004-01-01

    The following research results are based on development of an approach previously proposed and investigated in for optimum nozzle design to obtain maximum thrust. The design was denoted a Telescope nozzle. A Telescope nozzle contains one or several internal designs, which are inserted at certain locations into a divergent conical or planar main nozzle near its exit. Such a design provides additional thrust augmentation over 20% by comparison with the optimum single nozzle of equivalent lateral area, What is more, experimental acoustic tests have discovered an essential noise reduction due to application of Telescope nozzles. In this paper, some additional theoretical results are presented for Telescope nozzles and a similar approach is applied for aero-performance improvement of a supersonic inlet. Numerical simulations were conducted for supersonic flow into the divergent portion of a 2D or axisymmetric nozzle with several plane or conical designs as well as into a 2D or axisymmetric supersonic inlet with a forebody. The Kryko-Godunov marching numerical scheme for inviscid supersonic flows was used. Several cases were tested using the NASA CFL3d and IM/MSU Russian codes based on the full Navier-Stokes equations. Numerical simulations were conducted for non reacting flows (both codes) as well as for real high temperature gas flows with non-equilibrium chemical reactions (the latter code). In general, these simulations have confirmed essential benefits of Telescope design applications in propulsion system. Some preliminary numerical simulations of several typical inlet designs were conducted with the goal of inlet design optimization for maneuvering flight conditions.

  19. A second-order closure analysis of turbulent diffusion flames. [combustion physics

    NASA Technical Reports Server (NTRS)

    Varma, A. K.; Fishburne, E. S.; Beddini, R. A.

    1977-01-01

    A complete second-order closure computer program for the investigation of compressible, turbulent, reacting shear layers was developed. The equations for the means and the second order correlations were derived from the time-averaged Navier-Stokes equations and contain third order and higher order correlations, which have to be modeled in terms of the lower-order correlations to close the system of equations. In addition to fluid mechanical turbulence models and parameters used in previous studies of a variety of incompressible and compressible shear flows, a number of additional scalar correlations were modeled for chemically reacting flows, and a typical eddy model developed for the joint probability density function for all the scalars. The program which is capable of handling multi-species, multistep chemical reactions, was used to calculate nonreacting and reacting flows in a hydrogen-air diffusion flame.

  20. Aerodynamic heating on AFE due to nonequilibrium flow with variable entropy at boundary layer edge

    NASA Technical Reports Server (NTRS)

    Ting, P. C.; Rochelle, W. C.; Bouslog, S. A.; Tam, L. T.; Scott, C. D.; Curry, D. M.

    1991-01-01

    A method of predicting the aerobrake aerothermodynamic environment on the NASA Aeroassist Flight Experiment (AFE) vehicle is described. Results of a three dimensional inviscid nonequilibrium solution are used as input to an axisymmetric nonequilibrium boundary layer program to predict AFE convective heating rates. Inviscid flow field properties are obtained from the Euler option of the Viscous Reacting Flow (VRFLO) code at the boundary layer edge. Heating rates on the AFE surface are generated with the Boundary Layer Integral Matrix Procedure (BLIMP) code for a partially catalytic surface composed of Reusable Surface Insulation (RSI) times. The 1864 kg AFE will fly an aerobraking trajectory, simulating return from geosynchronous Earth orbit, with a 75 km perigee and a 10 km/sec entry velocity. Results of this analysis will provide principal investigators and thermal analysts with aeroheating environments to perform experiment and thermal protection system design.

  1. CFD for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1991-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  2. CFD for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1990-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  3. Non-equilibrium radiation from viscous chemically reacting two-phase exhaust plumes

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Mikatarian, R. R.; Ring, L. R.; Anderson, P. G.

    1976-01-01

    A knowledge of the structure of the rocket exhaust plumes is necessary to solve problems involving plume signatures, base heating, plume/surface interactions, etc. An algorithm is presented which treats the viscous flow of multiphase chemically reacting fluids in a two-dimensional or axisymmetric supersonic flow field. The gas-particle flow solution is fully coupled with the chemical kinetics calculated using an implicit scheme to calculate chemical production rates. Viscous effects include chemical species diffusion with the viscosity coefficient calculated using a two-equation turbulent kinetic energy model.

  4. Supersonic flow of chemically reacting gas-particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A numerical solution for chemically reacting supersonic gas-particle flows in rocket nozzles and exhaust plumes was described. The gas-particle flow solution is fully coupled in that the effects of particle drag and heat transfer between the gas and particle phases are treated. Gas and particles exchange momentum via the drag exerted on the gas by the particles. Energy is exchanged between the phases via heat transfer (convection and/or radiation). Thermochemistry calculations (chemical equilibrium, frozen or chemical kinetics) were shown to be uncoupled from the flow solution and, as such, can be solved separately. The solution to the set of governing equations is obtained by utilizing the method of characteristics. The equations cast in characteristic form are shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The particle distribution is represented in the numerical solution by a finite distribution of particle sizes.

  5. Operational Characteristics of an Ultra Compact Combustor

    DTIC Science & Technology

    2014-03-27

    to control this temperature profile to the turbine. A thermally non -uniform flow can create problems with power extraction and heat loading within...NOx) in an experimental rig set-up using air jet cross flows in non -reacting and reacting conditions at high pressure. NOx formation has become the...performance. One of the obstacles for implementing an UCC is the ability to control this temperature profile to the turbine. A thermally non

  6. A novel approach to predict the stability limits of combustion chambers with large eddy simulation

    NASA Astrophysics Data System (ADS)

    Pritz, B.; Magagnato, F.; Gabi, M.

    2010-06-01

    Lean premixed combustion, which allows for reducing the production of thermal NOx, is prone to combustion instabilities. There is an extensive research to develop a reduced physical model, which allows — without time-consuming measurements — to calculate the resonance characteristics of a combustion system consisting of Helmholtz resonator type components (burner plenum, combustion chamber). For the formulation of this model numerical investigations by means of compressible Large Eddy Simulation (LES) were carried out. In these investigations the flow in the combustion chamber is isotherm, non-reacting and excited with a sinusoidal mass flow rate. Firstly a combustion chamber as a single resonator subsequently a coupled system of a burner plenum and a combustion chamber were investigated. In this paper the results of additional investigations of the single resonator are presented. The flow in the combustion chamber was investigated without excitation at the inlet. It was detected, that the mass flow rate at the outlet cross section is pulsating once the flow in the chamber is turbulent. The fast Fourier transform of the signal showed that the dominant mode is at the resonance frequency of the combustion chamber. This result sheds light on a very important source of self-excited combustion instabilities. Furthermore the LES can provide not only the damping ratio for the analytical model but the eigenfrequency of the resonator also.

  7. Conjugate Analysis of Two-Dimensional Ablation and Pyrolysis in Rocket Nozzles

    NASA Astrophysics Data System (ADS)

    Cross, Peter G.

    The development of a methodology and computational framework for performing conjugate analyses of transient, two-dimensional ablation of pyrolyzing materials in rocket nozzle applications is presented. This new engineering methodology comprehensively incorporates fluid-thermal-chemical processes relevant to nozzles and other high temperature components, making it possible, for the first time, to rigorously capture the strong interactions and interdependencies that exist between the reacting flowfield and the ablating material. By basing thermal protection system engineering more firmly on first principles, improved analysis accuracy can be achieved. The computational framework developed in this work couples a multi-species, reacting flow solver to a two-dimensional material response solver. New capabilities are added to the flow solver in order to be able to model unique aspects of the flow through solid rocket nozzles. The material response solver is also enhanced with new features that enable full modeling of pyrolyzing, anisotropic materials with a true two-dimensional treatment of the porous flow of the pyrolysis gases. Verification and validation studies demonstrating correct implementation of these new models in the flow and material response solvers are also presented. Five different treatments of the surface energy balance at the ablating wall, with increasing levels of fidelity, are investigated. The Integrated Equilibrium Surface Chemistry (IESC) treatment computes the surface energy balance and recession rate directly from the diffusive fluxes at the ablating wall, without making transport coefficient or unity Lewis number assumptions, or requiring pre-computed surface thermochemistry tables. This method provides the highest level of fidelity, and can inherently account for the effects that recession, wall temperature, blowing, and the presence of ablation product species in the boundary layer have on the flowfield and ablation response. Multiple decoupled and conjugate ablation analysis studies for the HIPPO nozzle test case are presented. Results from decoupled simulations show sensitivity to the wall temperature profile used within the flow solver, indicating the need for conjugate analyses. Conjugate simulations show that the thermal response of the nozzle is relatively insensitive to the choice of the surface energy balance treatment. However, the surface energy balance treatment is found to strongly affect the surface recession predictions. Out of all the methods considered, the IESC treatment produces surface recession predictions with the best agreement to experimental data. These results show that the increased fidelity provided by the proposed conjugate ablation modeling methodology produces improved analysis accuracy, as desired.

  8. Base Flow Model Validation

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John

    2011-01-01

    A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.

  9. OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying

    NASA Astrophysics Data System (ADS)

    Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.

    2018-01-01

    In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.

  10. Numerical modeling study on the epitaxial growth of silicon from dichlorosilane

    NASA Astrophysics Data System (ADS)

    Zaidi, Imama; Jang, Yeon-Ho; Ko, Dong Guk; Im, Ik-Tae

    2018-02-01

    Computer simulations play an important role in determining the optimal design parameters for chemical vapor deposition (CVD) reactors, such as flow rates, positions of the inlet and outlet orifices, and rotational rates, etc. Reliability of the results of these simulations depends on the set of chemical reaction used to represent the process of deposition in the reactor. Aim of the present work is to validate the simple empirical reaction to model the epitaxial growth of silicon for a Dichlorosilane-H2 (DCS)-H2 system. Governing equations for continuity, momentum, energy, and reacting species are solved numerically using the finite volume method. The agreement between experimental and predicted growth rates for various DCS flow rates is shown to be satisfactory. The increase in growth rate with the increase in pressure is in accordance with the available data. Based on the validated chemical reaction model, a study was carried out to analyze the uniformity of the silicon layer thickness for two different flow rates in a planetary reactor. It was concluded that, based on the operating conditions, the uniformity of the silicon layer over the wafer is independent of the satellite rotational rate in the reactor.

  11. Simulation of mixing in the quick quench region of a rich burn-quick quench mix-lean burn combustor

    NASA Technical Reports Server (NTRS)

    Shih, Tom I.-P.; Nguyen, H. Lee; Howe, Gregory W.; Li, Z.

    1991-01-01

    A computer program was developed to study the mixing process in the quick quench region of a rich burn-quick quench mix-lean burn combustor. The computer program developed was based on the density-weighted, ensemble-averaged conservation equations of mass, momentum (full compressible Navier-Stokes), total energy, and species, closed by a k-epsilon turbulence model with wall functions. The combustion process was modeled by a two-step global reaction mechanism, and NO(x) formation was modeled by the Zeldovich mechanism. The formulation employed in the computer program and the essence of the numerical method of solution are described. Some results obtained for nonreacting and reacting flows with different main-flow to dilution-jet momentum flux ratios are also presented.

  12. DNS, LES and Stochastic Modeling of Turbulent Reacting Flows

    DTIC Science & Technology

    1994-03-01

    NY, 1972. 3 [181 Miller , R. S., Frankel, S. H., Madnia, C. K., and Givi, P., Johnson-Edgeworth Trans- lation for Probability Modeling of Binary Mixing...Givi, " Modeling of Isotropic are also grateful to Richard Miller for many useful discussions. This Reacting Turbulence by a Hybrid Mapping-EDQNM...United State of America * Johnson-Edgeworth Translation for Probability Modeling of Binary Scalar Mixing in Turbulent Flows I R. S. MILLER , S. H

  13. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  14. Beta Testing of CFD Code for the Analysis of Combustion Systems

    NASA Technical Reports Server (NTRS)

    Yee, Emma; Wey, Thomas

    2015-01-01

    A preliminary version of OpenNCC was tested to assess its accuracy in generating steady-state temperature fields for combustion systems at atmospheric conditions using three-dimensional tetrahedral meshes. Meshes were generated from a CAD model of a single-element lean-direct injection combustor, and the latest version of OpenNCC was used to calculate combustor temperature fields. OpenNCC was shown to be capable of generating sustainable reacting flames using a tetrahedral mesh, and the subsequent results were compared to experimental results. While nonreacting flow results closely matched experimental results, a significant discrepancy was present between the code's reacting flow results and experimental results. When wide air circulation regions with high velocities were present in the model, this appeared to create inaccurately high temperature fields. Conversely, low recirculation velocities caused low temperature profiles. These observations will aid in future modification of OpenNCC reacting flow input parameters to improve the accuracy of calculated temperature fields.

  15. Validation of an LES Model for Soot Evolution against DNS Data in Turbulent Jet Flames

    NASA Astrophysics Data System (ADS)

    Mueller, Michael

    2012-11-01

    An integrated modeling approach for soot evolution in turbulent reacting flows is validated against three-dimensional Direct Numerical Simulation (DNS) data in a set of n-heptane nonpremixed temporal jet flames. As in the DNS study, the evolution of the soot population is described statistically with the Hybrid Method of Moments (HMOM). The oxidation of the fuel and formation of soot precursors are described with the Radiation Flamelet/Progress Variable (RFPV) model that includes an additional transport equation for Polycyclic Aromatic Hydrocarbons (PAH) to account for the slow chemistry governing these species. In addition, the small-scale interactions between soot, chemistry, and turbulence are described with a presumed subfilter PDF approach that accounts for the very large spatial intermittency characterizing soot in turbulent reacting flows. The DNS dataset includes flames at three different Damköhler numbers to study the influence of global mixing rates on the evolution of PAH and soot. In this work, the ability of the model to capture these trends quantitatively as Damköhler number varies is investigated. In order to reliably assess the LES approach, the LES is initialized from the filtered DNS data after an initial transitional period in an effort to minimize the hydrodynamic differences between the DNS and the LES.

  16. Sound attenuation and absorption by micro-perforated panels backed by anisotropic fibrous materials: Theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Bravo, Teresa; Maury, Cédric

    2018-07-01

    Enhancing the attenuation or the absorption of low-frequency noise using lightweight bulk-reacting liners is still a demanding task in surface and air transport systems. The aim of this study is to understand the physical mechanisms involved in the attenuation and absorption properties of partitions made up of a thin micro-perforated panel (MPP) rigidly backed by a cavity filled with anisotropic fibrous material. Such a layout is denoted as a MPPF partition. Analytical models are formulated in the flow and no-flow cases to predict the axial damping of the least attenuated wave in a MPPF partition as well as the plane wave absorption coefficient. They account for a rigid or an elastic MPP facing a bulk-reacting fully-anisotropic material. A cost-efficient solution of the propagation constant for the least attenuated mode is obtained using a simulated annealing search method as well as a low-frequency approximation to the axial attenuation. The normal incidence absorption model is assessed in the no-flow case against pressure-velocity measurements of the surface impedance over a MPPF partition filled with fibreglass material. A parametric study is conducted to evaluate the MPP and the cavity constitutive parameters that mostly enhance the axial attenuation and sound absorption properties, with special interest on the MPP airframe relative velocity. This sensitivity study provides guidelines that could be used to further reduce the search space in parametric or impedance optimization studies.

  17. Deep Part Load Flow Analysis in a Francis Model turbine by means of two-phase unsteady flow simulations

    NASA Astrophysics Data System (ADS)

    Conrad, Philipp; Weber, Wilhelm; Jung, Alexander

    2017-04-01

    Hydropower plants are indispensable to stabilize the grid by reacting quickly to changes of the energy demand. However, an extension of the operating range towards high and deep part load conditions without fatigue of the hydraulic components is desirable to increase their flexibility. In this paper a model sized Francis turbine at low discharge operating conditions (Q/QBEP = 0.27) is analyzed by means of computational fluid dynamics (CFD). Unsteady two-phase simulations for two Thoma-number conditions are conducted. Stochastic pressure oscillations, observed on the test rig at low discharge, require sophisticated numerical models together with small time steps, large grid sizes and long simulation times to cope with these fluctuations. In this paper the BSL-EARSM model (Explicit Algebraic Reynolds Stress) was applied as a compromise between scale resolving and two-equation turbulence models with respect to computational effort and accuracy. Simulation results are compared to pressure measurements showing reasonable agreement in resolving the frequency spectra and amplitude. Inner blade vortices were predicted successfully in shape and size. Surface streamlines in blade-to-blade view are presented, giving insights to the formation of the inner blade vortices. The acquired time dependent pressure fields can be used for quasi-static structural analysis (FEA) for fatigue calculations in the future.

  18. Numerical exploration of mixing and combustion in ethylene fueled scramjet combustor

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2015-12-01

    Numerical simulations are performed for full scale scramjet combustor of a hypersonic airbreathing vehicle with ethylene fuel at ground test conditions corresponding to flight Mach number, altitude and stagnation enthalpy of 6.0, 30 km and 1.61 MJ/kg respectively. Three dimensional RANS equations are solved along with species transport equations and SST-kω turbulence model using Commercial CFD software CFX-11. Both nonreacting (with fuel injection) and reacting flow simulations [using a single step global reaction of ethylene-air with combined combustion model (CCM)] are carried out. The computational methodology is first validated against experimental results available in the literature and the performance parameters of full scale combustor in terms of thrust, combustion efficiency and total pressure loss are estimated from the simulation results. Parametric studies are conducted to study the effect of fuel equivalence ratio on the mixing and combustion behavior of the combustor.

  19. Symposium on Turbulence (12th) Held in Rolla, Missouri on 24-26 September 1990

    DTIC Science & Technology

    1992-11-01

    over Zrag Reduc.,ng Surraces.’ 3:0pm S.-merments on :rre :ý!ec: ot ’Aean ’:ow ~jnsreao:- A. :3. Scnwarzvan Manen . R. Hoogstze".n. C. Stouthart. mess on...Laooratory. the Netnertancs: and M. van Lent. FoKker Aircrart S.V. 12= a3J. ’trge-=ddy Simulation of Turmuient Reac:ting P•umes. 11:20 a.n. ’A New...20 a&m. "Vortex Street in a Confined Slurry Flow." C. 0. Popiell andi Scalar Bisoet-ra.’ J. q. Heirinn, National Canter and 0. F. Van DOe Merwo

  20. Fundamental Properties of Non-equilibrium Laser-Supported Detonation Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraishi, Hiroyuki

    For developing laser propulsion, it is very important to analyze the mechanism of Laser-Supported Detonation (LSD), because it can generate high pressure and high temperature to be used by laser propulsion can be categorized as one type of hypersonic reacting flows, where exothermicity is supplied not by chemical reaction but by radiation absorption. I have numerically simulated the 1-D and Quasi-1-D LSD waves propagating through an inert gas, which absorbs CO2 gasdynamic laser, using a 2-temperature model. Calculated results show the fundamental properties of the non-equilibrium LSD Waves.

  1. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries

    PubMed Central

    Secomb, Timothy W.

    2016-01-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10–30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. PMID:26443811

  2. Low-Dissipation Advection Schemes Designed for Large Eddy Simulations of Hypersonic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.

    2012-01-01

    The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.

  3. CFD code evaluation for internal flow modeling

    NASA Technical Reports Server (NTRS)

    Chung, T. J.

    1990-01-01

    Research on the computational fluid dynamics (CFD) code evaluation with emphasis on supercomputing in reacting flows is discussed. Advantages of unstructured grids, multigrids, adaptive methods, improved flow solvers, vector processing, parallel processing, and reduction of memory requirements are discussed. As examples, researchers include applications of supercomputing to reacting flow Navier-Stokes equations including shock waves and turbulence and combustion instability problems associated with solid and liquid propellants. Evaluation of codes developed by other organizations are not included. Instead, the basic criteria for accuracy and efficiency have been established, and some applications on rocket combustion have been made. Research toward an ultimate goal, the most accurate and efficient CFD code, is in progress and will continue for years to come.

  4. Computational simulations of supersonic magnetohydrodynamic flow control, power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Wan, Tian

    This work is motivated by the lack of fully coupled computational tool that solves successfully the turbulent chemically reacting Navier-Stokes equation, the electron energy conservation equation and the electric current Poisson equation. In the present work, the abovementioned equations are solved in a fully coupled manner using fully implicit parallel GMRES methods. The system of Navier-Stokes equations are solved using a GMRES method with combined Schwarz and ILU(0) preconditioners. The electron energy equation and the electric current Poisson equation are solved using a GMRES method with combined SOR and Jacobi preconditioners. The fully coupled method has also been implemented successfully in an unstructured solver, US3D, and convergence test results were presented. This new method is shown two to five times faster than the original DPLR method. The Poisson solver is validated with analytic test problems. Then, four problems are selected; two of them are computed to explore the possibility of onboard MHD control and power generation, and the other two are simulation of experiments. First, the possibility of onboard reentry shock control by a magnetic field is explored. As part of a previous project, MHD power generation onboard a re-entry vehicle is also simulated. Then, the MHD acceleration experiments conducted at NASA Ames research center are simulated. Lastly, the MHD power generation experiments known as the HVEPS project are simulated. For code validation, the scramjet experiments at University of Queensland are simulated first. The generator section of the HVEPS test facility is computed then. The main conclusion is that the computational tool is accurate for different types of problems and flow conditions, and its accuracy and efficiency are necessary when the flow complexity increases.

  5. Simulation of Prebiotic Processing by Comet and Meteoroid Impact: Implications for Life on Early Earth and Other Planets

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.

    2003-01-01

    We develop a reacting flow model to simulate the shock induced chemistry of comets and meteoroids entering planetary atmospheres. Various atmospheric compositions comprising of simpler molecules (i.e., CH4, CO2, H2O, etc.) are investigated to determine the production efficiency of more complex prebiotic molecules as a function of composition, pressure, and entry velocity. The possible role of comets and meteoroids in creating the inventory of prebiotic material necessary for life on Early Earth is considered. Comets and meteoroids can also introduce new materials from the Interstellar Medium (ISM) to planetary atmospheres. The ablation of water from comets, introducing the element oxygen into Titan's atmosphere will also be considered and its implications for the formation of organic and prebiotic material.

  6. Chemically reacting supersonic flow calculation using an assumed PDF model

    NASA Technical Reports Server (NTRS)

    Farshchi, M.

    1990-01-01

    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  7. Nonholonomic Hamiltonian Method for Molecular Dynamics Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Bass, Joseph

    2015-06-01

    Conventional molecular dynamics simulations of reacting shocks employ a holonomic Hamiltonian formulation: the breaking and forming of covalent bonds is described by potential functions. In general these potential functions: (a) are algebraically complex, (b) must satisfy strict smoothness requirements, and (c) contain many fitted parameters. In recent research the authors have developed a new noholonomic formulation of reacting molecular dynamics. In this formulation bond orders are determined by rate equations and the bonding-debonding process need not be described by differentiable functions. This simplifies the representation of complex chemistry and reduces the number of fitted model parameters. Example applications of the method show molecular level shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  8. Simplified ozone detection by chemiluminescence

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Rogowski, R. S.; Richards, R. R.

    1977-01-01

    Ozone is detected by film coated with solid, such as rubrene, that reacts with ozone to degree proportional to concentration in sample gas. Gas flow is stopped, and film is heated to produce light (chemiluminescence) in proportion to amount of reacted material on sensor.

  9. A numerical study of mixing in stationary, nonpremixed, turbulent reacting flows

    NASA Astrophysics Data System (ADS)

    Overholt, Matthew Ryan

    1998-10-01

    In this work a detailed numerical study is made of a statistically-stationary, non-premixed, turbulent reacting model flow known as Periodic Reaction Zones. The mixture fraction-progress variable approach is used, with a mean gradient in the mixture fraction and a model, single-step, reversible, finite-rate thermochemistry, yielding both stationary and local extinction behavior. The passive scalar is studied first, using a statistical forcing scheme to achieve stationarity of the velocity field. Multiple independent direct numerical simulations (DNS) are performed for a wide range of Reynolds numbers with a number of results including a bilinear model for scalar mixing jointly conditioned on the scalar and x2-component of velocity, Gaussian scalar probability density function tails which were anticipated to be exponential, and the quantification of the dissipation of scalar flux. A new deterministic forcing scheme for DNS is then developed which yields reduced fluctuations in many quantities and a more natural evolution of the velocity fields. This forcing method is used for the final portion of this work. DNS results for Periodic Reaction Zones are compared with the Conditional Moment Closure (CMC) model, the Quasi-Equilibrium Distributed Reaction (QEDR) model, and full probability density function (PDF) simulations using the Euclidean Minimum Spanning Tree (EMST) and the Interaction by Exchange with the Mean (IEM) mixing models. It is shown that CMC and QEDR results based on the local scalar dissipation match DNS wherever local extinction is not present. However, due to the large spatial variations of scalar dissipation, and hence local Damkohler number, local extinction is present even when the global Damkohler number is twenty-five times the critical value for extinction. Finally, in the PDF simulations the EMST mixing model closely reproduces CMC and DNS results when local extinction is not present, whereas the IEM model results in large error.

  10. Reacting flow studies in a dump combustor: Enhanced volumetric heat release rates and flame anchorability

    NASA Astrophysics Data System (ADS)

    Behrens, Alison Anne

    Reacting flow studies in a novel dump combustor facility focused on increasing volumetric heat release rates, under stable burning conditions, and understanding the physical mechanisms governing flame anchoring in an effort to extend range and maneuverability of compact, low drag, air-breathing engines. Countercurrent shear flow was enhanced within the combustor as the primary control variable. Experiments were performed burning premixed JP10/air and methane/air in a dump combustor using reacting flow particle image velocimetry (PIV) and chemiluminescence as the primary diagnostics. Stable combustion studies burning lean mixtures of JP10/air aimed to increase volumetric heat release rates through the implementation of countercurrent shear control. Countercurrent shear flow was produced by creating a suction flow from a low pressure cavity connected to the dump combustor via a gap directly below the trailing edge. Chemiluminescence measurements showed that enhancing countercurrent shear within the combustor doubles volumetric heat release rates. PIV measurements indicate that counterflow acts to increase turbulent kinetic energy while maintaining constant strain rates. This acts to increase flame surface area through flame wrinkling without disrupting the integrity of the flame. Flame anchorability is one of the most important fundamental aspects to understand when trying to enhance turbulent combustion in a high-speed engine without increasing drag. Studies burning methane/air mixtures used reacting flow PIV to study flame anchoring. The operating point with the most stable flame anchor exhibited a correspondingly strong enthalpy flux of products into reactants via a single coherent structure positioned downstream of the step. However, the feature producing a strong flame anchor, i.e. a single coherent structure, also is responsible for combustion instabilities, therefore making this operating point undesirable. Counterflow control was found to create the best flow features for stable, robust, compact combustion. Enhancing countercurrent shear flow within a dump combustor enhances burning rates, provides a consistent pump of reaction-initiating combustion products required for sustained combustion, while maintaining flow three dimensionality needed to disrupt combustion instabilities. Future studies will focus on geometric and control scenarios that further reduce drag penalties while creating these same flow features found with countercurrent shear thus producing robust operating points.

  11. Probability density function approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1994-01-01

    The objective of the present work is to extend the probability density function (PDF) tubulence model to compressible reacting flows. The proability density function of the species mass fractions and enthalpy are obtained by solving a PDF evolution equation using a Monte Carlo scheme. The PDF solution procedure is coupled with a compression finite-volume flow solver which provides the velocity and pressure fields. A modeled PDF equation for compressible flows, capable of treating flows with shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed. Two super sonic diffusion flames are studied using the proposed PDF model and the results are compared with experimental data; marked improvements over solutions without PDF are observed.

  12. Computation of Reacting Flows in Combustion Processes

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Chen, Kuo-Huey

    1997-01-01

    The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.

  13. Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Caba, Aaron C.; Furrow, Keith W.

    2000-01-01

    This investigation completed the verification of a three-dimensional resin transfer molding/resin film infusion (RTM/RFI) process simulation model. The model incorporates resin flow through an anisotropic carbon fiber preform, cure kinetics of the resin, and heat transfer within the preform/tool assembly. The computer model can predict the flow front location, resin pressure distribution, and thermal profiles in the modeled part. The formulation for the flow model is given using the finite element/control volume (FE/CV) technique based on Darcy's Law of creeping flow through a porous media. The FE/CV technique is a numerically efficient method for finding the flow front location and the fluid pressure. The heat transfer model is based on the three-dimensional, transient heat conduction equation, including heat generation. Boundary conditions include specified temperature and convection. The code was designed with a modular approach so the flow and/or the thermal module may be turned on or off as desired. Both models are solved sequentially in a quasi-steady state fashion. A mesh refinement study was completed on a one-element thick model to determine the recommended size of elements that would result in a converged model for a typical RFI analysis. Guidelines are established for checking the convergence of a model, and the recommended element sizes are listed. Several experiments were conducted and computer simulations of the experiments were run to verify the simulation model. Isothermal, non-reacting flow in a T-stiffened section was simulated to verify the flow module. Predicted infiltration times were within 12-20% of measured times. The predicted pressures were approximately 50% of the measured pressures. A study was performed to attempt to explain the difference in pressures. Non-isothermal experiments with a reactive resin were modeled to verify the thermal module and the resin model. Two panels were manufactured using the RFI process. One was a stepped panel and the other was a panel with two 'T' stiffeners. The difference between the predicted infiltration times and the experimental times was 4% to 23%.

  14. Flow Through Cement Fracture Under Geological Carbon Sequestration Conditions: Critical Residence Time as a Unifying Parameter for Fracture Opening or Self-Sealing Behavior

    NASA Astrophysics Data System (ADS)

    Li, L.; Brunet, J. P. L.; Karpyn, Z.; Huerta, N. J.

    2016-12-01

    During geological carbon sequestration (GCS) large quantities of CO2 are injected in underground formations. Cement fractures represent preferential leakage pathways in abandoned wells upon exposure to CO2-rich fluid. Contrasting self- healing and fracture opening behavior have been observed while a unifying framework is still missing. The modelling of this process is challenging as it involves complex chemical, mechanical and transport interactions. We developed a process-based reactive transport model that explicitly simulates flow and multi-component reactive transport in fractured cement by reproducing experimental observations of sharp flow rate reduction during exposure to carbonated water. Mechanical interactions have not been included. The simulation shows a similar reaction network as in diffusion-controlled systems without flow. That is, CO2-rich water induced portlandite dissolution, releasing calcium that further reacted with carbonate to form calcite. This created localized changes in porosity and permeability inducing large differences in the long term response of the system through a complex positive feedback loop (e.g., a decrease in local permeability induces a decrease in flow that in turn amplifies the precipitation of calcite through a reduced acidic brine flow). The calibrated model was used to generate 250 numerical experiments of CO2-flooding in cement fractures with varying initial hydraulic apertures (b) and residence times (τ) defined as the ratio of fracture volume over flow rate. A long τ leads to slow replenishment of carbonated water, calcite precipitation, and self-sealing. The opposite occurs when τ is small with short fractures and fast flow rates. Simulation results indicate that a critical residence time τc - the minimum τ required for self-sealing -divides the conditions that trigger the diverging opening and self-sealing behavior. The τc value depends on the initial aperture size (see figure). Among the 250 simulated fracture cases, significant changes in effective permeability - self-healing or opening - typically occurs within hours to a day, thus providing a supporting argument for the extrapolation of short-term laboratory observations (hours to months) to long-term predictions at relevant GCS time scales (years to hundreds of years).

  15. Modeling of turbulent chemical reaction

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  16. An experimental study of interacting swirl flows in a model gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Vishwanath, Rahul B.; Tilak, Paidipati Mallikarjuna; Chaudhuri, Swetaprovo

    2018-03-01

    In this experimental work, we analyze the flow structures emerging from the mutual interaction between adjacent swirling flows at variable degrees of swirl, issued into a semi-confined chamber, as it could happen in a three cup sector of an annular premixed combustor of a modern gas turbine engine. Stereoscopic particle image velocimetry ( sPIV) is used to characterize both the non-reacting and reacting flow fields in the central diametrical (vertical) plane of the swirlers and the corresponding transverse (horizontal) planes at different heights above the swirlers. A central swirling flow with a fixed swirl vane angle is allowed to interact with its neighboring flows of varied swirl levels, with constant inlet bulk flow velocity through the central port. It is found that the presence of straight jets with zero swirl or co-rotating swirling jets with increasing swirl on both sides of the central swirling jet, significantly alters its structures. As such, an increase in the amount of swirl in the neighboring flows increases the recirculation levels in central swirling flow leading to a bubble-type vortex breakdown, not formed otherwise. It is shown with the aid of Helmholtz decomposition that the transition from conical to bubble-type breakdown is captured well by the radial momentum induced by the azimuthal vorticity. Simultaneous sPIV and OH-planar laser-induced fluorescence (PLIF) are employed to identify the influence of the neighboring jets on the reacting vortex breakdown states. Significant changes in the vortex breakdown size and structure are observed due to variation in swirl levels of the neighboring jets alongside reaction and concomitant flow dilatation.

  17. New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow

    NASA Astrophysics Data System (ADS)

    Zakeri, Ramin; Kamali Moghadam, Ramin; Mani, Mahmoud

    2017-04-01

    The modified quantum kinetic (MQK) chemical reaction model introduced by Zakeri et al. is developed for applicable cases in axisymmetric reactive rarefied gas flows using the direct simulation Monte Carlo (DSMC) method. Although, the MQK chemical model uses some modifications in the quantum kinetic (QK) method, it also employs the general soft sphere collision model and Stockmayer potential function to properly select the collision pairs in the DSMC algorithm and capture both the attraction and repulsion intermolecular forces in rarefied gas flows. For assessment of the presented model in the simulation of more complex and applicable reacting flows, first, the air dissociation is studied in a single cell for equilibrium and non-equilibrium conditions. The MQK results agree well with the analytical and experimental data and they accurately predict the characteristics of the rarefied flowfield with chemical reaction. To investigate accuracy of the MQK chemical model in the simulation of the axisymmetric flow, air dissociation is also assessed in an axial hypersonic flow around two geometries, the sphere as a benchmark case and the blunt body (STS-2) as an applicable test case. The computed results including the transient, rotational and vibrational temperatures, species concentration in the stagnation line, and also the heat flux and pressure coefficient on the surface are compared with those of the other chemical methods like the QK and total collision energy (TCE) models and available analytical and experimental data. Generally, the MQK chemical model properly simulates the chemical reactions and predicts flowfield characteristics more accurate rather than the typical QK model. Although in some cases, results of the MQK approaches match with those of the TCE method, the main point is that the MQK does not need any experimental data or unrealistic assumption of specular boundary condition as used in the TCE method. Another advantage of the MQK model is the significant reduction of computational cost rather than the QK chemical model to reach the same accuracy because of applying more proper collision model and consequently, decrease of the particles collision number.

  18. Investigating the impact of oxygen concentration and blood flow variation on photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    Type II photodynamic therapy (PDT) is used for cancer treatment based on the combined action of a photosensitizer, a special wavelength of light, oxygen (3O2) and generation of singlet oxygen (1O2). Intra-patient and inter-patient variability of oxygen concentration ([3O2]) before and after the treatment as well as photosensitizer concentration and hemodynamic parameters such as blood flow during PDT has been reported. Simulation of these variations is valuable, as it would be a means for the rapid assessment of treatment effect. A mathematical model has been previously developed to incorporate the diffusion equation for light transport in tissue and the macroscopic kinetic equations for simulation of [3O2], photosensitizers in ground and triplet states and concentration of the reacted singlet oxygen ([1O₂]rx) during PDT. In this study, the finite-element based calculation of the macroscopic kinetic equations is done for 2-(1- Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH)-mediated PDT by incorporating the information of the photosensitizer photochemical parameters as well as the tissue optical properties, photosensitizer concentration, initial oxygen concentration ([3O2]0), blood flow changes and Φ that have been measured in mice bearing radiation-induced fibrosarcoma (RIF) tumors. Then, [1O2]rx calculated by using the measured [3O2] during the PDT is compared with [1O2]rx calculated based on the simulated [3O₂]; both calculations showed a reasonably good agreement. Moreover, the impacts of the blood flow changes and [3O2]0 on [1O2]rx have been investigated, which showed no pronounced effect of the blood flow changes on the long-term 1O2 generation. When [3O2]0 becomes limiting, small changes in [3O₂] have large effects on [1O2]rx.

  19. Calculation of three-dimensional compressible laminar and turbulent boundary flows. Three-dimensional compressible boundary layers of reacting gases over realistic configurations

    NASA Technical Reports Server (NTRS)

    Kendall, R. M.; Bonnett, W. S.; Nardo, C. T.; Abbett, M. J.

    1975-01-01

    A three-dimensional boundary-layer code was developed for particular application to realistic hypersonic aircraft. It is very general and can be applied to a wide variety of boundary-layer flows. Laminar, transitional, and fully turbulent flows of compressible, reacting gases are efficiently calculated by use of the code. A body-oriented orthogonal coordinate system is used for the calculation and the user has complete freedom in specifying the coordinate system within the restrictions that one coordinate must be normal to the surface and the three coordinates must be mutually orthogonal.

  20. Adaptation of multidimensional group particle tracking and particle wall-boundary condition model to the FDNS code

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.; Farmer, R. C.

    1992-01-01

    A particulate two-phase flow CFD model was developed based on the FDNS code which is a pressure based predictor plus multi-corrector Navier-Stokes flow solver. Turbulence models with compressibility correction and the wall function models were employed as submodels. A finite-rate chemistry model was used for reacting flow simulation. For particulate two-phase flow simulations, a Eulerian-Lagrangian solution method using an efficient implicit particle trajectory integration scheme was developed in this study. Effects of particle-gas reaction and particle size change to agglomeration or fragmentation were not considered in this investigation. At the onset of the present study, a two-dimensional version of FDNS which had been modified to treat Lagrangian tracking of particles (FDNS-2DEL) had already been written and was operational. The FDNS-2DEL code was too slow for practical use, mainly because it had not been written in a form amenable to vectorization on the Cray, nor was the full three-dimensional form of FDNS utilized. The specific objective of this study was to reorder to calculations into long single arrays for automatic vectorization on the Cray and to implement the full three-dimensional version of FDNS to produce the FDNS-3DEL code. Since the FDNS-2DEL code was slow, a very limited number of test cases had been run with it. This study was also intended to increase the number of cases simulated to verify and improve, as necessary, the particle tracking methodology coded in FDNS.

  1. PDF approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1993-01-01

    The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.

  2. Instrumentation development for study of Reynolds Analogy in reacting flows

    NASA Technical Reports Server (NTRS)

    Deturris, Dianne J.

    1995-01-01

    Boundary layers in supersonic reacting flows are not well understood. Recently a technique has been developed which makes more extensive surface measurements practical, increasing the capability to understand the turbulent boundary layer. A significant advance in this understanding would be the formulation of an analytic relation between the transfer of momentum and the transfer of heat for this flow, similar to the Reynolds Analogy that exists for laminar flow. A gauge has been designed and built which allows a thorough experimental investigation of the relative effects of heat transfer and skin friction in the presence of combustion. Direct concurrent measurements made at the same location, combined with local flow conditions, enable a quantitative analysis to obtain a relation between the surface drag and wall heating, as well as identifying possible ways of reducing both.

  3. Development of a 3-D upwind PNS code for chemically reacting hypersonic flowfields

    NASA Technical Reports Server (NTRS)

    Tannehill, J. C.; Wadawadigi, G.

    1992-01-01

    Two new parabolized Navier-Stokes (PNS) codes were developed to compute the three-dimensional, viscous, chemically reacting flow of air around hypersonic vehicles such as the National Aero-Space Plane (NASP). The first code (TONIC) solves the gas dynamic and species conservation equations in a fully coupled manner using an implicit, approximately-factored, central-difference algorithm. This code was upgraded to include shock fitting and the capability of computing the flow around complex body shapes. The revised TONIC code was validated by computing the chemically-reacting (M(sub infinity) = 25.3) flow around a 10 deg half-angle cone at various angles of attack and the Ames All-Body model at 0 deg angle of attack. The results of these calculations were in good agreement with the results from the UPS code. One of the major drawbacks of the TONIC code is that the central-differencing of fluxes across interior flowfield discontinuities tends to introduce errors into the solution in the form of local flow property oscillations. The second code (UPS), originally developed for a perfect gas, has been extended to permit either perfect gas, equilibrium air, or nonequilibrium air computations. The code solves the PNS equations using a finite-volume, upwind TVD method based on Roe's approximate Riemann solver that was modified to account for real gas effects. The dissipation term associated with this algorithm is sufficiently adaptive to flow conditions that, even when attempting to capture very strong shock waves, no additional smoothing is required. For nonequilibrium calculations, the code solves the fluid dynamic and species continuity equations in a loosely-coupled manner. This code was used to calculate the hypersonic, laminar flow of chemically reacting air over cones at various angles of attack. In addition, the flow around the McDonnel Douglas generic option blended-wing-body was computed and comparisons were made between the perfect gas, equilibrium air, and the nonequilibrium air results.

  4. Turbulent reacting flow computations including turbulence-chemistry interactions

    NASA Technical Reports Server (NTRS)

    Narayan, J. R.; Girimaji, S. S.

    1992-01-01

    A two-equation (k-epsilon) turbulence model has been extended to be applicable for compressible reacting flows. A compressibility correction model based on modeling the dilatational terms in the Reynolds stress equations has been used. A turbulence-chemistry interaction model is outlined. In this model, the effects of temperature and species mass concentrations fluctuations on the species mass production rates are decoupled. The effect of temperature fluctuations is modeled via a moment model, and the effect of concentration fluctuations is included using an assumed beta-pdf model. Preliminary results obtained using this model are presented. A two-dimensional reacting mixing layer has been used as a test case. Computations are carried out using the Navier-Stokes solver SPARK using a finite rate chemistry model for hydrogen-air combustion.

  5. Upscaling transport of a reacting solute through a peridocially converging-diverging channel at pre-asymptotic times

    NASA Astrophysics Data System (ADS)

    Sund, Nicole L.; Bolster, Diogo; Dawson, Clint

    2015-11-01

    In this study we extend the Spatial Markov model, which has been successfully used to upscale conservative transport across a diverse range of porous media flows, to test if it can accurately upscale reactive transport, defined by a spatially heterogeneous first order degradation rate. We test the model in a well known highly simplified geometry, commonly considered as an idealized pore or fracture structure, a periodic channel with wavy boundaries. The edges of the flow domain have a layer through which there is no flow, but in which diffusion of a solute still occurs. Reactions are confined to this region. We demonstrate that the Spatial Markov model, an upscaled random walk model that enforces correlation between successive jumps, can reproduce breakthrough curves measured from microscale simulations that explicitly resolve all pertinent processes. We also demonstrate that a similar random walk model that does not enforce successive correlations is unable to reproduce all features of the measured breakthrough curves.

  6. Cytoskeletal Dynamics and Fluid Flow in Drosophila Oocytes

    NASA Astrophysics Data System (ADS)

    de Canio, Gabriele; Goldstein, Raymond; Lauga, Eric

    2015-11-01

    The biological world includes a broad range of phenomena in which transport in a fluid plays a central role. Among these is the fundamental issue of cell polarity arising during development, studied historically using the model organism Drosophila melanogaster. The polarity of the oocyte is known to be induced by the translocation of mRNAs by kinesin motor proteins along a dense microtubule cytoskeleton, a process which also induces cytoplasmic streaming. Recent experimental observations have revealed the remarkable fluid-structure interactions that occur as the streaming flows back-react on the microtubules. In this work we use a combination of theory and simulations to address the interplay between the fluid flow and the configuration of cytoskeletal filaments leading to the directed motion inside the oocyte. We show in particular that the mechanical coupling between the fluid motion and the orientation of the microtubules can lead to a transition to coherent motion within the oocyte, as observed. Supported by EPSRC and ERC Advanced Investigator Grant 247333.

  7. Qualitative CFD for Rapid Learning in Industrial and Academic Applications

    NASA Astrophysics Data System (ADS)

    Variano, Evan

    2010-11-01

    We present a set of tools that allow CFD to be used at an early stage in the design process. Users can rapidly explore the qualitative aspects of fluid flow using real-time simulations that react immediately to design changes. This can guide the design process by fostering an intuitive understanding of fluid dynamics at the prototyping stage. We use an extremely stable Navier-Stokes solver that is available commercially (and free to academic users) plus a custom user interface. The code is designed for the animation and gaming industry, and we exploit the powerful graphical display capabilities to develop a unique human-machine interface. This interface allows the user to efficiently explore the flow in 3D + real time, fostering an intuitive understanding of steady and unsteady flow patterns. There are obvious extensions to use in an academic setting. The trade-offs between accuracy and speed will be discussed in the context of CFD's role in design and education.

  8. Ignition dynamics of a laminar diffusion flame in the field of a vortex embedded in a shear flow

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Jackson, T. L.; Hussaini, M. Y.

    1994-01-01

    The role of streamwise-spanwise vorticity interactions that occur in turbulent shear flows on flame/vortex interactions is examined by means of asymptotic analysis and numerical simulation in the limit of small Mach number. An idealized model is employed to describe the interaction process. The model consists of a one-step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are then allowed to mix and react in the presence of a streamwise vortex embedded in a shear flow. It is found that the interaction of the streamwise vortex with shear gives rise to small-scale velocity oscillations which increase in magnitude with shear strength. These oscillations give rise to regions of strong temperature gradients via viscous heating, which can lead to multiple ignition points and substantially decrease ignition times. The evolution in time of the temperature and mass-fraction fields is followed, and emphasis is placed on the ignition time and structure as a function of vortex and shear strength.

  9. Social Studies: Application Units. Course II, Teachers. Computer-Oriented Curriculum. REACT (Relevant Educational Applications of Computer Technology).

    ERIC Educational Resources Information Center

    Tecnica Education Corp., San Carlos, CA.

    This book is one of a series in Course II of the Relevant Educational Applications of Computer Technology (REACT) Project. It is designed to point out to teachers two of the major applications of computers in the social sciences: simulation and data analysis. The first section contains a variety of simulation units organized under the following…

  10. Establishment of H2Mab-119, an Anti-Human Epidermal Growth Factor Receptor 2 Monoclonal Antibody, Against Pancreatic Cancer.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Chang, Yao-Wen; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kaneko, Mika K; Kato, Yukinari

    2017-12-01

    Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast cancer and is associated with poor clinical outcomes. In addition, HER2 expression has been reported in other cancers, such as gastric, colorectal, lung, and pancreatic cancers. An anti-HER2 humanized antibody, trastuzumab, leads to significant survival benefits in patients with HER2-overexpressing breast cancers and gastric cancers. Herein, we established a novel anti-HER2 monoclonal antibody (mAb), H 2 Mab-119 (IgG 1 , kappa), and characterized its efficacy against pancreatic cancers using flow cytometry, Western blot, and immunohistochemical analyses. H 2 Mab-119 reacted with pancreatic cancer cell lines, such as KLM-1, Capan-2, and MIA PaCa-2, but did not react with PANC-1 in flow cytometry analysis. Western blot analysis also revealed a moderate signal for KLM-1 and a weak signal for MIA PaCa-2, although H 2 Mab-119 reacted strongly with LN229/HER2 cells. Finally, immunohistochemical analyses with H 2 Mab-119 revealed sensitive and specific reactions against breast and colon cancers but did not react with pancreatic cancers, indicating that H 2 Mab-119 is useful for detecting HER2 overexpression in pancreatic cancers using flow cytometry and Western blot analyses.

  11. CARS Temperature Measurements in Turbulent and Supersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Antcliff, R. R.; Smith, M. W.; Cutler, A. D.; Diskin, G. S.; Northam, G. B.

    1991-01-01

    This paper documents the development of the National Aeronautics and Space Administration s (NASA) Langley Research Center ( LaRC) Coherent Antistokes Raman Spectroscopy (CARS) systems for measurements of temperature in a turbulent subsonic or supersonic reacting hydrogen-air environment. Spectra data provides temperature data when compared to a precalculated library of nitrogen CARS spectra. Library validity was confirmed by comparing CARS temperatures derived through the library with three different techniques for determination of the temperature in hydrogen-air combustion and an electrically heated furnace. The CARS system has been used to survey temperature profiles in the simulated flow of a supersonic combustion ramjet (scramjet) model. Measurement results will be discussed.

  12. Numerical study of shock-induced combustion in methane-air mixtures

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Rabinowitz, Martin J.

    1993-01-01

    The shock-induced combustion of methane-air mixtures in hypersonic flows is investigated using a new reaction mechanism consisting of 19 reacting species and 52 elementary reactions. This reduced model is derived from a full kinetic mechanism via the Detailed Reduction technique. Zero-dimensional computations of several shock-tube experiments are presented first. The reaction mechanism is then combined with a fully implicit Navier-Stokes computational fluid dynamics (CFD) code to conduct numerical simulations of two-dimensional and axisymmetric shock-induced combustion experiments of stoichiometric methane-air mixtures at a Mach number of M = 6.61. Applications to the ram accelerator concept are also presented.

  13. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE PAGES

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; ...

    2016-08-01

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P 32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less

  14. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P 32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less

  15. Computational Investigation of Soot and Radiation in Turbulent Reacting Flows

    NASA Astrophysics Data System (ADS)

    Lalit, Harshad

    This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of scalars from the LES are used in conjunction with the radiation heat transfer equation and a narrow band radiation model to compute time dependent and time averaged images of infrared radiation intensity in spectral bands corresponding to molecular radiation from gas phase carbon dioxide and soot particles exclusively. While qualitative and quantitative comparisons with measured images in the CO2 radiation band show that the flame structure is correctly computed, images computed in the soot radiation band illustrate that the soot volume fraction is under predicted by the computations. The effect of the soot model and cause of under prediction is investigated further by correcting the soot volume fraction using an empirical state relationship. By comparing default simulations with computations using the state relation, it is shown that while the soot model under-estimates the soot concentration, it correctly computes the intermittency of soot in the flame. The study of sooting flames is extended further by performing a parametric analysis of physical and numerical parameters that affect soot formation and transport in two laboratory scale turbulent sooting flames, one fueled by natural gas and the other by ethylene. The study is focused on investigating the effect of molecular diffusion of species, dilution of fuel with hydrogen gas and the effect of chemical reaction mechanism on the soot concentration in the flame. The effect of species Lewis numbers on soot evolution and transport is investigated by carrying out simulations, first with the default equal diffusivity (ED) assumption and then by incorporating a differential diffusion (DD) model. Computations using the DD model over-estimate the concentration of the soot precursor and soot oxidizer species, leading to inconsistencies in the estimate of the soot concentration. The linear differential diffusion (LDD) model, reported previously to consistently model differential diffusion effects is implemented to correct the over prediction effect of the DD model. It is shown that the effect of species Lewis number on soot evolution is a secondary phenomenon and that soot is primarily transported by advection of the fluid in a turbulent flame. The effect of hydrogen dilution on the soot formation and transport process is also studied. It is noted that the decay of soot volume fraction and flame length with hydrogen addition follows trends observed in laminar sooting flame measurements. While hydrogen enhances mixing shown by the laminar flamelet solutions, the mixing effect does not significantly contribute to differential molecular diffusion effects in the soot nucleation regions downstream of the flame and has a negligible effect on soot transport. The sensitivity of computations of soot volume fraction towards the chemical reaction mechanism is shown. It is concluded that modeling reaction pathways of C3 and C4 species that lead up to Polycyclic Aromatic Hydrocarbon (PAH) molecule formation is paramount for accurate predictions of soot in the flame. (Abstract shortened by ProQuest.).

  16. A New LES/PDF Method for Computational Modeling of Turbulent Reacting Flows

    NASA Astrophysics Data System (ADS)

    Turkeri, Hasret; Muradoglu, Metin; Pope, Stephen B.

    2013-11-01

    A new LES/PDF method is developed for computational modeling of turbulent reacting flows. The open source package, OpenFOAM, is adopted as the LES solver and combined with the particle-based Monte Carlo method to solve the LES/PDF model equations. The dynamic Smagorinsky model is employed to account for the subgrid-scale motions. The LES solver is first validated for the Sandia Flame D using a steady flamelet method in which the chemical compositions, density and temperature fields are parameterized by the mean mixture fraction and its variance. In this approach, the modeled transport equations for the mean mixture fraction and the square of the mixture fraction are solved and the variance is then computed from its definition. The results are found to be in a good agreement with the experimental data. Then the LES solver is combined with the particle-based Monte Carlo algorithm to form a complete solver for the LES/PDF model equations. The in situ adaptive tabulation (ISAT) algorithm is incorporated into the LES/PDF method for efficient implementation of detailed chemical kinetics. The LES/PDF method is also applied to the Sandia Flame D using the GRI-Mech 3.0 chemical mechanism and the results are compared with the experimental data and the earlier PDF simulations. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant No. 111M067.

  17. Pdf - Transport equations for chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Kollmann, W.

    1989-01-01

    The closure problem for the transport equations for pdf and the characteristic functions of turbulent, chemically reacting flows is addressed. The properties of the linear and closed equations for the characteristic functional for Eulerian and Lagrangian variables are established, and the closure problem for the finite-dimensional case is discussed for pdf and characteristic functions. It is shown that the closure for the scalar dissipation term in the pdf equation developed by Dopazo (1979) and Kollmann et al. (1982) results in a single integral, in contrast to the pdf, where double integration is required. Some recent results using pdf methods obtained for turbulent flows with combustion, including effects of chemical nonequilibrium, are discussed.

  18. Special Course on Three-Dimensional Supersonic/Hypersonic Flows Including Separation

    DTIC Science & Technology

    1990-01-01

    STAGE, AIRBREATHING VEHICLE. ALSO SHOWN ON THE FIGURE ARE TWO DATA POINTS FOR THE ACCELERATION OF THE X-15. THE X-15 WAS PROPELLED BY AIR NH3 - 02 ROCKET...FUEL IS INJECTED PARALLEL TO THE FLOW FROM THE BASE OF THE STRUTS AND MIXES AND REACTS SLOWLY WITH THE AIR . AS THE SPEED IS INCREASED, FUEL IS ALSO...INJECTED FROM THE SIDES OF THE STRUTS TO ACHIEVE MORE RAPID MIXING. AT THE HIGHEST SPEEDS, IT IS DESIRABLE TO HAVE THE FUEL AND AIR MIX AND REACT AS

  19. Comparison of Orbiter PRCS Plume Flow Fields Using CFD and Modified Source Flow Codes

    NASA Technical Reports Server (NTRS)

    Rochelle, Wm. C.; Kinsey, Robin E.; Reid, Ethan A.; Stuart, Phillip C.; Lumpkin, Forrest E.

    1997-01-01

    The Space Shuttle Orbiter will use Reaction Control System (RCS) jets for docking with the planned International Space Station (ISS). During approach and backout maneuvers, plumes from these jets could cause high pressure, heating, and thermal loads on ISS components. The object of this paper is to present comparisons of RCS plume flow fields used to calculate these ISS environments. Because of the complexities of 3-D plumes with variable scarf-angle and multi-jet combinations, NASA/JSC developed a plume flow-field methodology for all of these Orbiter jets. The RCS Plume Model (RPM), which includes effects of scarfed nozzles and dual jets, was developed as a modified source-flow engineering tool to rapidly generate plume properties and impingement environments on ISS components. This paper presents flow-field properties from four PRCS jets: F3U low scarf-angle single jet, F3F high scarf-angle single jet, DTU zero scarf-angle dual jet, and F1F/F2F high scarf-angle dual jet. The RPM results compared well with plume flow fields using four CFD programs: General Aerodynamic Simulation Program (GASP), Cartesian (CART), Unified Solution Algorithm (USA), and Reacting and Multi-phase Program (RAMP). Good comparisons of predicted pressures are shown with STS 64 Shuttle Plume Impingement Flight Experiment (SPIFEX) data.

  20. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries.

    PubMed

    Secomb, Timothy W

    2016-12-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10-30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  1. Computational reacting gas dynamics

    NASA Technical Reports Server (NTRS)

    Lam, S. H.

    1993-01-01

    In the study of high speed flows at high altitudes, such as that encountered by re-entry spacecrafts, the interaction of chemical reactions and other non-equilibrium processes in the flow field with the gas dynamics is crucial. Generally speaking, problems of this level of complexity must resort to numerical methods for solutions, using sophisticated computational fluid dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics can be classified into three distinct headings: (1) the usually inadequate knowledge of the reaction rate coefficients in the non-equilibrium reaction system; (2) the vastly larger number of unknowns involved in the computation and the expected stiffness of the equations; and (3) the interpretation of the detailed reacting CFD numerical results. The research performed accepts the premise that reacting flows of practical interest in the future will in general be too complex or 'untractable' for traditional analytical developments. The power of modern computers must be exploited. However, instead of focusing solely on the construction of numerical solutions of full-model equations, attention is also directed to the 'derivation' of the simplified model from the given full-model. In other words, the present research aims to utilize computations to do tasks which have traditionally been done by skilled theoreticians: to reduce an originally complex full-model system into an approximate but otherwise equivalent simplified model system. The tacit assumption is that once the appropriate simplified model is derived, the interpretation of the detailed numerical reacting CFD numerical results will become much easier. The approach of the research is called computational singular perturbation (CSP).

  2. Optimal stretching in the reacting wake of a bluff body.

    PubMed

    Wang, Jinge; Tithof, Jeffrey; Nevins, Thomas D; Colón, Rony O; Kelley, Douglas H

    2017-12-01

    We experimentally study spreading of the Belousov-Zhabotinsky reaction behind a bluff body in a laminar flow. Locations of reacted regions (i.e., regions with high product concentration) correlate with a moderate range of Lagrangian stretching and that range is close to the range of optimal stretching previously observed in topologically different flows [T. D. Nevins and D. H. Kelley, Phys. Rev. Lett. 117, 164502 (2016)]. The previous work found optimal stretching in a closed, vortex dominated flow, but this article uses an open flow and only a small area of appreciable vorticity. We hypothesize that optimal stretching is common in advection-reaction-diffusion systems with an excitation threshold, including excitable and bistable systems, and that the optimal range depends on reaction chemistry and not on flow shape or characteristic speed. Our results may also give insight into plankton blooms behind islands in ocean currents.

  3. Vorticity Dynamics in Single and Multiple Swirling Reacting Jets

    NASA Astrophysics Data System (ADS)

    Smith, Travis; Aguilar, Michael; Emerson, Benjamin; Noble, David; Lieuwen, Tim

    2015-11-01

    This presentation describes an analysis of the unsteady flow structures in two multinozzle swirling jet configurations. This work is motivated by the problem of combustion instabilities in premixed flames, a major concern in the development of modern low NOx combustors. The objective is to compare the unsteady flow structures in these two configurations for two separate geometries and determine how certain parameters, primarily distance between jets, influence the flow dynamics. The analysis aims to differentiate between the flow dynamics of single nozzle and triple nozzle configurations. This study looks at how the vorticity in the shear layers of one reacting swirling jet can affect the dynamics of a nearby similar jet. The distance between the swirling jets is found to have an effect on the flow field in determining where swirling jets merge and on the dynamics upstream of the merging location. Graduate Student, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA.

  4. A Finite Element Theory for Predicting the Attenuation of Extended-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2009-01-01

    A non-modal finite element theory for predicting the attenuation of an extended-reacting liner containing a porous facesheet and located in a no-flow duct is presented. The mathematical approach is to solve separate wave equations in the liner and duct airway and to couple these two solutions by invoking kinematic constraints at the facesheet that are consistent with a continuum theory of fluid motion. Given the liner intrinsic properties, a weak Galerkin finite element formulation with cubic polynomial basis functions is used as the basis for generating a discrete system of acoustic equations that are solved to obtain the coupled acoustic field. A state-of-the-art, asymmetric, parallel, sparse equation solver is implemented that allows tens of thousands of grid points to be analyzed. A grid refinement study is presented to show that the predicted attenuation converges. Excellent comparison of the numerically predicted attenuation to that of a mode theory (using a Haynes 25 metal foam liner) is used to validate the computational approach. Simulations are also presented for fifteen porous plate, extended-reacting liners. The construction of some of the porous plate liners suggest that they should behave as resonant liners while the construction of others suggest that they should behave as broadband attenuators. In each case the finite element theory is observed to predict the proper attenuation trend.

  5. Investigation of radiative interactions in supersonic internal flows

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.; Thomas, A. M.

    1991-01-01

    Analyses and numerical procedures are presented to study the radiative interactions of absorbing emitting species in chemically reacting supersonic flow in various ducts. The 2-D time dependent Navier-Stokes equations in conjunction with radiative flux equation are used to study supersonic flows undergoing finite rate chemical reaction in a hydrogen air system. The specific problem considered is the flow of premixed radiating gas between parallel plates. Specific attention was directed toward studying the radiative contribution of H2O, OH, and NO under realistic physical and flow conditions. Results are presented for the radiative flux obtained for different gases and for various combination of these gases. The problem of chemically reacting and radiating flows was solved for the flow of premixed hydrogen-air through a 10 deg compression ramp. Results demonstrate that the radiative interaction increases with an increase in pressure, temperature, amount of participating species, plate spacing, and Mach number. Most of the energy, however, is transferred by convection in the flow direction. In general the results indicate that radiation can have a significant effect on the entire flow field.

  6. LES-ODT Simulations of Turbulent Reacting Shear Layers

    NASA Astrophysics Data System (ADS)

    Hoffie, Andreas; Echekki, Tarek

    2012-11-01

    Large-eddy simulations (LES) combined with the one-dimensional turbulence (ODT) simulations of a spatially developing turbulent reacting shear layer with heat release and high Reynolds numbers were conducted and compared to results from direct numerical simulations (DNS) of the same configuration. The LES-ODT approach is based on LES solutions for momentum on a coarse grid and solutions for momentum and reactive scalars on a fine ODT grid, which is embedded in the LES computational domain. The shear layer is simulated with a single-step, second-order reaction with an Arrhenius reaction rate. The transport equations are solved using a low Mach number approximation. The LES-ODT simulations yield reasonably accurate predictions of turbulence and passive/reactive scalars' statistics compared to DNS results.

  7. Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction

    NASA Astrophysics Data System (ADS)

    Sid, S.; Terrapon, V. E.; Dubief, Y.

    2018-02-01

    The goal of the present study is threefold: (i) to demonstrate the two-dimensional nature of the elasto-inertial instability in elasto-inertial turbulence (EIT), (ii) to identify the role of the bidimensional instability in three-dimensional EIT flows, and (iii) to establish the role of the small elastic scales in the mechanism of self-sustained EIT. Direct numerical simulations of viscoelastic fluid flows are performed in both two- and three-dimensional straight periodic channels using the Peterlin finitely extensible nonlinear elastic model (FENE-P). The Reynolds number is set to Reτ=85 , which is subcritical for two-dimensional flows but beyond the transition for three-dimensional ones. The polymer properties selected correspond to those of typical dilute polymer solutions, and two moderate Weissenberg numbers, Wiτ=40 ,100 , are considered. The simulation results show that sustained turbulence can be observed in two-dimensional subcritical flows, confirming the existence of a bidimensional elasto-inertial instability. The same type of instability is also observed in three-dimensional simulations where both Newtonian and elasto-inertial turbulent structures coexist. Depending on the Wi number, one type of structure can dominate and drive the flow. For large Wi values, the elasto-inertial instability tends to prevail over the Newtonian turbulence. This statement is supported by (i) the absence of typical Newtonian near-wall vortices and (ii) strong similarities between two- and three-dimensional flows when considering larger Wi numbers. The role of small elastic scales is investigated by introducing global artificial diffusion (GAD) in the hyperbolic transport equation for polymers. The aim is to measure how the flow reacts when the smallest elastic scales are progressively filtered out. The study results show that the introduction of large polymer diffusion in the system strongly damps a significant part of the elastic scales that are necessary to feed turbulence, eventually leading to flow laminarization. A sufficiently high Schmidt number (weakly diffusive polymers) is necessary to allow self-sustained turbulence to settle. Although EIT can withstand a low amount of diffusion and remains in a nonlaminar chaotic state, adding a finite amount of GAD in the system can have an impact on the dynamics and lead to important quantitative changes, even for Schmidt numbers as large as 102. The use of GAD should therefore be avoided in viscoelastic flow simulations.

  8. High-Speed Turbulent Reacting Flows: Intrinsic Flame Instability and its Effects on the Turbulent Cascade

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei

    2016-11-01

    Turbulent reacting flows are pervasive both in our daily lives on Earth and in the Universe. They power modern society being at the heart of many energy generation and propulsion systems, such as gas turbines, internal combustion and jet engines. On astronomical scales, thermonuclear turbulent flames are the driver of some of the most powerful explosions in the Universe, knows as Type Ia supernovae. Despite this ubiquity in Nature, turbulent reacting flows still pose a number of fundamental questions often exhibiting surprising and unexpected behavior. In this talk, we will discuss several such phenomena observed in direct numerical simulations of high-speed, premixed, turbulent flames. We show that turbulent flames in certain regimes are intrinsically unstable even in the absence of the surrounding combustor walls or obstacles, which can support the thermoacoustic feedback. Such instability can fundamentally change the structure and dynamics of the turbulent cascade, resulting in a significant (and anisotropic) redistribution of kinetic energy from small to large scales. In particular, three effects are observed. 1) The turbulent burning velocity can develop pulsations with significant peak-to-peak amplitudes. 2) Unstable burning can result in pressure build-up and the formation of pressure waves or shocks when the flame speed approaches or exceeds the speed of a Chapman-Jouguet deflagration. 3) Coupling of pressure and density gradients across the flame can lead to the anisotropic generation of turbulence inside the flame volume and flame acceleration. We extend our earlier analysis, which relied on a simplified single-step reaction model, by demonstrating existence of these effects in realistic chemical flames (hydrogen and methane) and in thermonuclear flames in degenerate, relativistic plasmas found in stellar interiors. Finally, we discuss the implications of these results for subgrid-scale LES combustion models. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. F4FGA06055G001, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.

  9. Effects of Langmuir Turbulence on Reactive Tracers in the Upper Ocean

    NASA Astrophysics Data System (ADS)

    Smith, K.; Hamlington, P.; Niemeyer, K.; Fox-Kemper, B.; Lovenduski, N. S.

    2017-12-01

    Reactive tracers such as carbonate chemical species play important roles in the oceanic carbon cycle, allowing the ocean to hold 60 times more carbon than the atmosphere. However, uncertainties in regional ocean sinks for anthropogenic CO2 are still relatively high. Many carbonate species are non-conserved, flux across the air-sea interface, and react on time scales similar to those of ocean turbulent processes, such as small-scale wave-driven Langmuir turbulence. All of this complexity gives rise to heterogeneous tracer distributions that are not fully understood and can greatly affect the rate at which CO2 fluxes across the air-sea interface. In order to more accurately model the biogeochemistry of the ocean in Earth system models (ESMs), a better understanding of the fundamental interactions between these reactive tracers and relevant turbulent processes is required. Research on reacting flows in other contexts has shown that the most significant tracer-flow couplings occur when coherent structures in the flow have timescales that rival reaction time scales. Langmuir turbulence, a 3D, small-scale, wave-driven process, has length and time scales on the order of O(1-100m) and O(1-10min), respectively. Once CO2 transfers across the air-sea interface, it reacts with seawater in a series of reactions whose rate limiting steps have time scales of 10-25s. This similarity in scales warrants further examination into interactions between these small-scale physical and chemical processes. In this presentation, large eddy simulations are used to examine the evolution of reactive tracers in the presence of realistic upper ocean wave- and shear-driven turbulence. The reactive tracers examined are those specifically involved in non-biological carbonate chemistry. The strength of Langmuir turbulence is varied in order to determine a relationship between the degree of enhancement (or reduction) of carbon that is fluxed across the air-sea interface due to the presence of Langmuir turbulence. By examining different reaction chemistry and surface forcing scenarios, the coupled turbulence-reactive tracer dynamics are connected with spatial and statistical properties of the resulting tracer fields. These results, along with implications for development of reduced order reactive tracer models, are discussed.

  10. Investigation of Grid Adaptation to Reduce Computational Efforts for a 2-D Hydrogen-Fueled Dual-Mode Scramjet

    NASA Astrophysics Data System (ADS)

    Foo, Kam Keong

    A two-dimensional dual-mode scramjet flowpath is developed and evaluated using the ANSYS Fluent density-based flow solver with various computational grids. Results are obtained for fuel-off, fuel-on non-reacting, and fuel-on reacting cases at different equivalence ratios. A one-step global chemical kinetics hydrogen-air model is used in conjunction with the eddy-dissipation model. Coarse, medium and fine computational grids are used to evaluate grid sensitivity and to investigate a lack of grid independence. Different grid adaptation strategies are performed on the coarse grid in an attempt to emulate the solutions obtained from the finer grids. The goal of this study is to investigate the feasibility of using various mesh adaptation criteria to significantly decrease computational efforts for high-speed reacting flows.

  11. Wind-US User's Guide, Version 2.0

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.

    2009-01-01

    Wind-US is a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Currently, the code supports the solution of the Euler and Navier-Stokes equations of fluid mechanics, along with supporting equation sets governing turbulent and chemically reacting flows. Wind-US is a product of the NPARC Alliance, a partnership between the NASA Glenn Research Center (GRC) and the Arnold Engineering Development Center (AEDC) dedicated to the establishment of a national, applications-oriented flow simulation capability. The Boeing Company has also been closely associated with the Alliance since its inception, and represents the interests of the NPARC User's Association. The "Wind-US User's Guide" describes the operation and use of Wind-US, including: a basic tutorial; the physical and numerical models that are used; the boundary conditions; monitoring convergence; the files that are read and/or written; parallel execution; and a complete list of input keywords and test options.

  12. Numerical simulations of the superdetonative ram accelerator combusting flow field

    NASA Technical Reports Server (NTRS)

    Soetrisno, Moeljo; Imlay, Scott T.; Roberts, Donald W.

    1993-01-01

    The effects of projectile canting and fins on the ram accelerator combusting flowfield and the possible cause of the ram accelerator unstart are investigated by performing axisymmetric, two-dimensional, and three-dimensional calculations. Calculations are performed using the INCA code for solving Navier-Stokes equations and a guasi-global combustion model of Westbrook and Dryer (1981, 1984), which includes N2 and nine reacting species (CH4, CO, CO2, H2, H, O2, O, OH, and H2O), which are allowed to undergo a 12-step reaction. It is found that, without canting, interactions between the fins, boundary layers, and combustion fronts are insufficient to unstart the projectile at superdetonative velocities. With canting, the projectile will unstart at flow conditions where it appears to accelerate without canting. Unstart occurs at some critical canting angle. It is also found that three-dimensionality plays an important role in the overall combustion process.

  13. Lessons Learned from Predicting the Poorly Gauged Sweetwater Creek Basin, in Central Idaho

    NASA Astrophysics Data System (ADS)

    Morehead, M. D.; Peckham, S.; Muskatirovic, J.

    2005-12-01

    The flow regime of a poorly gauged basin in central Idaho was modeled in response to Agency, Tribal and Irrigation District needs to provide water for irrigation while still providing flows for a healthy ecosystem in Sweetwater Creek. This modeling effort shows some strengths and weakness of our present state of knowledge in simulating the hydrology of a basin. The spring freshet of a normal and a high flow year were simulated relatively successfully. However, the low flow year and summer thunderstorm events were not simulated as well, with the model over simulating the flow rates for these events. Improvements in a number of areas would increase the accuracy of the modeled flows. Improved meteorological data collection may help considerably. It is known that storm systems are funneled up the valley of Clearwater River where the present meteorological gauging sites are. Having meteorological gauging sites further into Sweetwater Creek Basin and away from the effects of the Clearwater River would improve the input conditions. Additionally, this semi-arid watershed commonly breaks the assumption of a moist soil profile. When these soils are dry, a wetting front must establish and propagate its way through the soil before a shallow groundwater flow system can be set up. Much of the precipitation input from the intermittent summer rainstorms can be absorbed into the soil profile and evaporated without having a significant discharge signal. An improved, semiarid groundwater model is needed for this type of environment. An irrigation project exists on Sweetwater Creek near Lewiston Idaho that decreases the flows on the creek, particularly during low flow periods, including late summer and early fall. There are concerns over the effects of the operation of the irrigation system on in-stream habitat. Limited data have been collected, which would allow an evaluation of the natural flow regime of Sweetwater Creek. Due to the lack of natural flow data, a numerical model was used to simulate the natural flow regime of Sweetwater Creek. This study provided information on the natural flow regime that is being used in the decision making process to balance ecosystem health with irrigation demands by determining the volumes of flows needed to provide for a healthy river system with high-quality physical conditions. A spatially distributed river basin simulation model TopoFlow was used to generate stream flows under a variety of meteorological conditions. In order to capture the range of variability present in flows of Sweetwater Creek, three years were modeled representing high (1996), low (1992) and near average (1986) modern flow conditions. The model results show that the low flow conditions during the late summer and fall months and during dry years are controlled from falling below certain levels by the Twenty One Ranch springs. These springs are feed through a groundwater flow system from Lake Waha. Lake Waha is a naturally dammed lake created by a very large landslide and has no surface flow outlet. The low flows are naturally controlled by this spring system and the magnitude of the flows depend on the lake level and the efficiency of the groundwater flow system. The modeling effort shows that the higher winter and spring flows are controlled by the weather during the immediate time period and the snow accumulations and fast reacting ground water pool levels controlled by previous weather and hydrologic conditions.

  14. Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil K.; Adamovich, Igor; Gord, James R.; Roy, Sukesh

    2017-10-01

    Reacting flows and plasmas are prevalent in a wide array of systems involving defense, commercial, space, energy, medical, and consumer products. Understanding the complex physical and chemical processes involving reacting flows and plasmas requires measurements of key parameters, such as temperature, pressure, electric field, velocity, and number densities of chemical species. Time-resolved measurements of key chemical species and temperature are required to determine kinetics related to the chemical reactions and transient phenomena. Laser-based, noninvasive linear and nonlinear spectroscopic approaches have proved to be very valuable in providing key insights into the physico-chemical processes governing reacting flows and plasmas as well as validating numerical models. The advent of kilohertz rate amplified femtosecond lasers has expanded the multidimensional imaging of key atomic species such as H, O, and N in a significant way, providing unprecedented insight into preferential diffusion and production of these species under chemical reactions or electric-field driven processes. These lasers not only provide 2D imaging of chemical species but have the ability to perform measurements free of various interferences. Moreover, these lasers allow 1D and 2D temperature-field measurements, which were quite unimaginable only a few years ago. The rapid growth of the ultrafast-laser-based spectroscopic measurements has been fueled by the need to achieve the following when measurements are performed in reacting flows and plasmas. They are: (1) interference-free measurements (collision broadening, photolytic dissociation, Stark broadening, etc), (2) time-resolved single-shot measurements at a rate of 1-10 kHz, (3) spatially-resolved measurements, (4) higher dimensionality (line, planar, or volumetric), and (5) simultaneous detection of multiple species. The overarching goal of this article is to review the current state-of-the-art ultrafast-laser-based spectroscopic techniques and their remarkable development in the past two decades in meeting one or all of the above five goals for the spectroscopic measurement of temperature, number density of the atomic and molecular species, and electric field.

  15. Flow Velocity Computation, from Temperature and Number Density Measurements using Spontaneous Raman Scattering, for Supersonic Chemically Reacting Flows.

    NASA Astrophysics Data System (ADS)

    Satish Jeyashekar, Nigil; Seiner, John

    2006-11-01

    The closure problem in chemically reacting turbulent flows would be solved when velocity, temperature and number density (transport variables) are known. The transport variables provide input to momentum, heat and mass transport equations leading to analysis of turbulence-chemistry interaction, providing a pathway to improve combustion efficiency. There are no measurement techniques to determine all three transport variables simultaneously. This paper shows the formulation to compute flow velocity from temperature and number density measurements, made from spontaneous Raman scattering, using kinetic theory of dilute gases coupled with Maxwell-Boltzmann velocity distribution. Temperature and number density measurements are made in a mach 1.5 supersonic air flow with subsonic hydrogen co-flow. Maxwell-Boltzmann distribution can be used to compute the average molecular velocity of each species, which in turn is used to compute the mass-averaged velocity or flow velocity. This formulation was validated by Raman measurements in a laminar adiabatic burner where the computed flow velocities were in good agreement with hot-wire velocity measurements.

  16. Fuel Spray Diagnostics

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.; Bosque, M. A.

    1983-01-01

    Fundamental experimental data base for turbulent flow mixing models is provided and better prediction of the more complex turbulent chemical reacting flows. Analytical application to combustor design is provided and a better fundamental understanding of the combustion process.

  17. Influence of Geometry and Flow Variation on Jet Mixing and NO Formation in a Model Staged Combustor Mixer with Eight Orifices

    NASA Technical Reports Server (NTRS)

    Samuelsen, G. S.; Sowa, W. A.; Hatch, M. S.

    1996-01-01

    A series of non-reacting parametric experiments was conducted to investigate the effect of geometric and flow variations on mixing of cold jets in an axis-symmetric, heated cross flow. The confined, cylindrical geometries tested represent the quick mix region of a Rich-Burn/Quick-Mix/Lean-Burn (RQL) combustor. The experiments show that orifice geometry and jet to mainstream momentum-flux ratio significantly impact the mixing characteristic of jets in a cylindrical cross stream. A computational code was used to extrapolate the results of the non-reacting experiments to reacting conditions in order to examine the nitric oxide (NO) formation potential of the configurations examined. The results show that the rate of NO formation is highest immediately downstream of the injection plane. For a given momentum-flux ratio, the orifice geometry that mixes effectively in both the immediate vicinity of the injection plane, and in the wall regions at downstream locations, has the potential to produce the lowest NO emissions. The results suggest that further study may not necessarily lead to a universal guideline for designing a low NO mixer. Instead, an assessment of each application may be required to determine the optimum combination of momentum-flux ratio and orifice geometry to minimize NO formation. Experiments at reacting conditions are needed to verify the present results.

  18. Using CLIPS to represent knowledge in a VR simulation

    NASA Technical Reports Server (NTRS)

    Engelberg, Mark L.

    1994-01-01

    Virtual reality (VR) is an exciting use of advanced hardware and software technologies to achieve an immersive simulation. Until recently, the majority of virtual environments were merely 'fly-throughs' in which a user could freely explore a 3-dimensional world or a visualized dataset. Now that the underlying technologies are reaching a level of maturity, programmers are seeking ways to increase the complexity and interactivity of immersive simulations. In most cases, interactivity in a virtual environment can be specified in the form 'whenever such-and-such happens to object X, it reacts in the following manner.' CLIPS and COOL provide a simple and elegant framework for representing this knowledge-base in an efficient manner that can be extended incrementally. The complexity of a detailed simulation becomes more manageable when the control flow is governed by CLIPS' rule-based inference engine as opposed to by traditional procedural mechanisms. Examples in this paper will illustrate an effective way to represent VR information in CLIPS, and to tie this knowledge base to the input and output C routines of a typical virtual environment.

  19. New approach in direct-simulation of gas mixtures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren

    1991-01-01

    Results are reported for an investigation of a new direct-simulation Monte Carlo method by which energy transfer and chemical reactions are calculated. The new method, which reduces to the variable cross-section hard sphere model as a special case, allows different viscosity-temperature exponents for each species in a gas mixture when combined with a modified Larsen-Borgnakke phenomenological model. This removes the most serious limitation of the usefulness of the model for engineering simulations. The necessary kinetic theory for the application of the new method to mixtures of monatomic or polyatomic gases is presented, including gas mixtures involving chemical reactions. Calculations are made for the relaxation of a diatomic gas mixture, a plane shock wave in a gas mixture, and a chemically reacting gas flow along the stagnation streamline in front of a hypersonic vehicle. Calculated results show that the introduction of different molecular interactions for each species in a gas mixture produces significant differences in comparison with a common molecular interaction for all species in the mixture. This effect should not be neglected for accurate DSMC simulations in an engineering context.

  20. Hybrid finite-volume/transported PDF method for the simulation of turbulent reactive flows

    NASA Astrophysics Data System (ADS)

    Raman, Venkatramanan

    A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow Chlorination Reactor. Detailed kinetics involving 37 species and 158 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique in discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.

  1. SIERRA/Aero Theory Manual Version 4.46.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    2017-09-01

    SIERRA/Aero is a two and three dimensional, node-centered, edge-based finite volume code that approximates the compressible Navier-Stokes equations on unstructured meshes. It is applicable to inviscid and high Reynolds number laminar and turbulent flows. Currently, two classes of turbulence models are provided: Reynolds Averaged Navier-Stokes (RANS) and hybrid methods such as Detached Eddy Simulation (DES). Large Eddy Simulation (LES) models are currently under development. The gas may be modeled either as ideal, or as a non-equilibrium, chemically reacting mixture of ideal gases. This document describes the mathematical models contained in the code, as well as certain implementation details. First, themore » governing equations are presented, followed by a description of the spatial discretization. Next, the time discretization is described, and finally the boundary conditions. Throughout the document, SIERRA/ Aero is referred to simply as Aero for brevity.« less

  2. SIERRA/Aero Theory Manual Version 4.44

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    2017-04-01

    SIERRA/Aero is a two and three dimensional, node-centered, edge-based finite volume code that approximates the compressible Navier-Stokes equations on unstructured meshes. It is applicable to inviscid and high Reynolds number laminar and turbulent flows. Currently, two classes of turbulence models are provided: Reynolds Averaged Navier-Stokes (RANS) and hybrid methods such as Detached Eddy Simulation (DES). Large Eddy Simulation (LES) models are currently under development. The gas may be modeled either as ideal, or as a non-equilibrium, chemically reacting mixture of ideal gases. This document describes the mathematical models contained in the code, as well as certain implementation details. First, themore » governing equations are presented, followed by a description of the spatial discretization. Next, the time discretization is described, and finally the boundary conditions. Throughout the document, SIERRA/ Aero is referred to simply as Aero for brevity.« less

  3. Hypersonic simulations using open-source CFD and DSMC solvers

    NASA Astrophysics Data System (ADS)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  4. Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Direct numerical simulation databases were used to study turbulence physics and modeling issues at the fifth Summer Program of the Center for Turbulence Research. The largest group, comprising more than half of the participants, was the Turbulent Reacting Flows and Combustion group. The remaining participants were in three groups: Fundamentals, Modeling & LES, and Rotating Turbulence. For the first time in the CTR Summer Programs, participants included engineers from the U.S. aerospace industry. They were exposed to a variety of problems involving turbulence, and were able to incorporate the models developed at CTR in their company codes. They were exposed to new ideas on turbulence prediction, methods which already appear to have had an impact on their capabilities at their laboratories. Such interactions among the practitioners in the government, academia, and industry are the most meaningful way of transferring technology.

  5. Model free simulations of a high speed reacting mixing layer

    NASA Technical Reports Server (NTRS)

    Steinberger, Craig J.

    1992-01-01

    The effects of compressibility, chemical reaction exothermicity and non-equilibrium chemical modeling in a combusting plane mixing layer were investigated by means of two-dimensional model free numerical simulations. It was shown that increased compressibility generally had a stabilizing effect, resulting in reduced mixing and chemical reaction conversion rate. The appearance of 'eddy shocklets' in the flow was observed at high convective Mach numbers. Reaction exothermicity was found to enhance mixing at the initial stages of the layer's growth, but had a stabilizing effect at later times. Calculations were performed for a constant rate chemical rate kinetics model and an Arrhenius type kinetics prototype. The Arrhenius model was found to cause a greater temperature increase due to reaction than the constant kinetics model. This had the same stabilizing effect as increasing the exothermicity of the reaction. Localized flame quenching was also observed when the Zeldovich number was relatively large.

  6. Multiphysics Model of Palladium Hydride Isotope Exchange Accounting for Higher Dimensionality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharagozloo, Patricia E.; Eliassi, Mehdi; Bon, Bradley Luis

    2015-03-01

    This report summarizes computational model developm ent and simulations results for a series of isotope exchange dynamics experiments i ncluding long and thin isothermal beds similar to the Foltz and Melius beds and a lar ger non-isothermal experiment on the NENG7 test bed. The multiphysics 2D axi-symmetr ic model simulates the temperature and pressure dependent exchange reactio n kinetics, pressure and isotope dependent stoichiometry, heat generation from the r eaction, reacting gas flow through porous media, and non-uniformities in the bed perme ability. The new model is now able to replicate the curved reaction front and asy mmetry of themore » exit gas mass fractions over time. The improved understanding of the exchange process and its dependence on the non-uniform bed properties and te mperatures in these larger systems is critical to the future design of such sy stems.« less

  7. Radiative interactions in multi-dimensional chemically reacting flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, Surendra N.

    1994-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The amount and transfer of the emitted radiative energy in a finite volume element within a medium are considered in an exact manner. The spectral correlation between transmittances of two different segments of the same path in a medium makes the statistical relationship different from the conventional relationship, which only provides the non-correlated results for nongray methods is discussed. Validation of the Monte Carlo formulations is conducted by comparing results of this method of other solutions. In order to further establish the validity of the MCM, a relatively simple problem of radiative interactions in laminar parallel plate flows is considered. One-dimensional correlated Monte Carlo formulations are applied to investigate radiative heat transfer. The nongray Monte Carlo solutions are also obtained for the same problem and they also essentially match the available analytical solutions. the exact correlated and non-correlated Monte Carlo formulations are very complicated for multi-dimensional systems. However, by introducing the assumption of an infinitesimal volume element, the approximate correlated and non-correlated formulations are obtained which are much simpler than the exact formulations. Consideration of different problems and comparison of different solutions reveal that the approximate and exact correlated solutions agree very well, and so do the approximate and exact non-correlated solutions. However, the two non-correlated solutions have no physical meaning because they significantly differ from the correlated solutions. An accurate prediction of radiative heat transfer in any nongray and multi-dimensional system is possible by using the approximate correlated formulations. Radiative interactions are investigated in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The governing equations are based on the fully elliptic Navier-Stokes equations. Chemical reaction mechanisms were described by a finite rate chemistry model. The correlated Monte Carlo method developed earlier was employed to simulate multi-dimensional radiative heat transfer. Results obtained demonstrate that radiative effects on the flowfield are minimal but radiative effects on the wall heat transfer are significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and nozzle size on the radiative and conductive wall fluxes.

  8. Monte Carlo PDF method for turbulent reacting flow in a jet-stirred reactor

    NASA Astrophysics Data System (ADS)

    Roekaerts, D.

    1992-01-01

    A stochastic algorithm for the solution of the modeled scalar probability density function (PDF) transport equation for single-phase turbulent reacting flow is described. Cylindrical symmetry is assumed. The PDF is represented by ensembles of N representative values of the thermochemical variables in each cell of a nonuniform finite-difference grid and operations on these elements representing convection, diffusion, mixing and reaction are derived. A simplified model and solution algorithm which neglects the influence of turbulent fluctuations on mean reaction rates is also described. Both algorithms are applied to a selectivity problem in a real reactor.

  9. Detailed Studies on Flame Extinction by Inert Particles in Normal- and Micro-gravity

    NASA Technical Reports Server (NTRS)

    Andac, M. G.; Egolfopoulos, F. N.; Campbell, C. S.

    2001-01-01

    The combustion of dusty flows has been studied to lesser extent than pure gas phase flows and sprays. Particles can have a strong effect by modifying the dynamic response and detailed structure of flames through the dynamic, thermal, and chemical couplings between the two phases. A rigorous understanding of the dynamics and structure of two-phase flows can be attained in stagnation flow configurations, which have been used by others to study spray combustion as well as reacting dusty flows. In earlier studies on reacting dusty flows, the thermal coupling between the two phases as well as the effect of gravity on the flame response were not considered. However, in Ref. 6, the thermal coupling between chemically inert particles and the gas was addressed in premixed flames. The effects of gravity was also studied showing that it can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature. The results showed a strong dynamic and thermal dependence of reacting dusty flows to particle number density. However, the work was only numerical and limited to twin-flames, stagnation, premixed flames. In Ref. 7 the effects of chemically inert particle clouds on the extinction of strained premixed and non-premixed flames were studied both experimentally and numerically at 1-g. It was shown and explained that large particles can cause more effective flame cooling compared to smaller particles. The effects of flame configuration and particle injection orientation were also addressed. The complexity of the coupling between the various parameters in such flows was demonstrated and it was shown that it was impossible to obtain a simple and still meaningful scaling that captured all the pertinent physics.

  10. Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts

    NASA Technical Reports Server (NTRS)

    Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)

    2000-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be common for all hole configurations and mixer types (circular or annular). The performance of any orifice shape (in producing minimum NOx) appears to be acceptable if the number of orifices can be freely varied in order to attain the optimum jet penetration.

  11. Investigation of shock-induced combustion past blunt projectiles

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Tiwari, S. N.

    1996-01-01

    A numerical study is conducted to simulate shock-induced combustion in premixed hydrogen-air mixtures at various free-stream conditions and parameters. Two-dimensional axisymmetric, reacting viscous flow over blunt projectiles is computed to study shock-induced combustion at Mach 5.11 and Mach 6.46 in hydrogen-air mixture. A seven-species, seven reactions finite rate hydrogen-air chemical reaction mechanism is used combined with a finite-difference, shock-fitting method to solve the complete set of Navier-Stokes and species conservation equations. The study has allowed an improved understanding of the physics of shock-induced combustion over blunt projectiles and the numerical results can now be explained more readily with one-dimensional wave-interaction model.

  12. Modeling of High Speed Reacting Flows: Established Practices and Future Challenges

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.

    2004-01-01

    Computational fluid dynamics (CFD) has proven to be an invaluable tool for the design and analysis of high- speed propulsion devices. Massively parallel computing, together with the maturation of robust CFD codes, has made it possible to perform simulations of complete engine flowpaths. Steady-state Reynolds-Averaged Navier-Stokes simulations are now routinely used in the scramjet engine development cycle to determine optimal fuel injector arrangements, investigate trends noted during testing, and extract various measures of engine efficiency. Unfortunately, the turbulence and combustion models used in these codes have not changed significantly over the past decade. Hence, the CFD practitioner must often rely heavily on existing measurements (at similar flow conditions) to calibrate model coefficients on a case- by-case basis. This paper provides an overview of the modeled equations typically employed by commercial- quality CFD codes for high-speed combustion applications. Careful attention is given to the approximations employed for each of the unclosed terms in the averaged equation set. The salient features (and shortcomings) of common models used to close these terms are covered in detail, and several academic efforts aimed at addressing these shortcomings are discussed.

  13. Fully Coupled Aero-Thermochemical-Elastic Simulations of an Eroding Graphite Nozzle

    NASA Technical Reports Server (NTRS)

    Blades, E. L.; Reveles, N. D.; Nucci, M.; Maclean, M.

    2017-01-01

    A multiphysics simulation capability has been developed that incorporates mutual interactions between aerodynamics, structural response from aero/thermal loading, ablation/pyrolysis, heating, and surface-to-surface radiation to perform high-fidelity, fully coupled aerothermoelastic ablation simulations, which to date had been unattainable. The multiphysics framework couples CHAR (a 3-D implicit charring ablator solver), Loci/CHEM (a computational fluid dynamics solver for high-speed chemically reacting flows), and Abaqus (a nonlinear structural dynamics solver) to create a fully coupled aerothermoelastic charring ablative solver. The solvers are tightly coupled in a fully integrated fashion to resolve the effects of the ablation pyrolysis and charring process and chemistry products upon the flow field, the changes in surface geometry due to recession upon the flow field, and thermal-structural analysis of the body from the induced aerodynamic heating from the flow field. The multiphysics framework was successfully demonstrated on a solid rocket motor graphite nozzle erosion application. Comparisons were made with available experimental data that measured the throat erosion during the motor firing. The erosion data is well characterized, as the test rig was equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle initially undergoes a nozzle contraction due to thermal expansion before ablation effects are able to widen the throat. A series of parameters studies were conducted using the coupled simulation capability to determine the sensitivity of the nozzle erosion to different parameters. The parameter studies included the shape of the nozzle throat (flat versus rounded), the material properties, the effect of the choice of turbulence model, and the inclusion or exclusion of the mechanical thermal expansion. Overall, the predicted results match the experiment very well, and the predictions were able to bound the data within acceptable limits.

  14. Reactant conversion in homogeneous turbulence: Mathematical modeling, computational validations and practical applications

    NASA Technical Reports Server (NTRS)

    Madnia, C. K.; Frankel, S. H.; Givi, P.

    1992-01-01

    Closed form analytical expressions are obtained for predicting the limited rate of reactant conversion in a binary reaction of the type F + rO yields (1 + r) Product in unpremixed homogeneous turbulence. These relations are obtained by means of a single point Probability Density Function (PDF) method based on the Amplitude Mapping Closure. It is demonstrated that with this model, the maximum rate of the reactants' decay can be conveniently expressed in terms of definite integrals of the Parabolic Cylinder Functions. For the cases with complete initial segregation, it is shown that the results agree very closely with those predicted by employing a Beta density of the first kind for an appropriately defined Shvab-Zeldovich scalar variable. With this assumption, the final results can also be expressed in terms of closed form analytical expressions which are based on the Incomplete Beta Functions. With both models, the dependence of the results on the stoichiometric coefficient and the equivalence ratio can be expressed in an explicit manner. For a stoichiometric mixture, the analytical results simplify significantly. In the mapping closure, these results are expressed in terms of simple trigonometric functions. For the Beta density model, they are in the form of Gamma Functions. In all the cases considered, the results are shown to agree well with data generated by Direct Numerical Simulations (DNS). Due to the simplicity of these expressions and because of nice mathematical features of the Parabolic Cylinder and the Incomplete Beta Functions, these models are recommended for estimating the limiting rate of reactant conversion in homogeneous reacting flows. These results also provide useful insights in assessing the extent of validity of turbulence closures in the modeling of unpremixed reacting flows. Some discussions are provided on the extension of the model for treating more complicated reacting systems including realistic kinetics schemes and multi-scalar mixing with finite rate chemical reactions in more complex configurations.

  15. Subgrid Combustion Modeling for the Next Generation National Combustion Code

    NASA Technical Reports Server (NTRS)

    Menon, Suresh; Sankaran, Vaidyanathan; Stone, Christopher

    2003-01-01

    In the first year of this research, a subgrid turbulent mixing and combustion methodology developed earlier at Georgia Tech has been provided to researchers at NASA/GRC for incorporation into the next generation National Combustion Code (called NCCLES hereafter). A key feature of this approach is that scalar mixing and combustion processes are simulated within the LES grid using a stochastic 1D model. The subgrid simulation approach recovers locally molecular diffusion and reaction kinetics exactly without requiring closure and thus, provides an attractive feature to simulate complex, highly turbulent reacting flows of interest. Data acquisition algorithms and statistical analysis strategies and routines to analyze NCCLES results have also been provided to NASA/GRC. The overall goal of this research is to systematically develop and implement LES capability into the current NCC. For this purpose, issues regarding initialization and running LES are also addressed in the collaborative effort. In parallel to this technology transfer effort (that is continuously on going), research has also been underway at Georgia Tech to enhance the LES capability to tackle more complex flows. In particular, subgrid scalar mixing and combustion method has been evaluated in three distinctly different flow field in order to demonstrate its generality: (a) Flame-Turbulence Interactions using premixed combustion, (b) Spatially evolving supersonic mixing layers, and (c) Temporal single and two-phase mixing layers. The configurations chosen are such that they can be implemented in NCCLES and used to evaluate the ability of the new code. Future development and validation will be in spray combustion in gas turbine engine and supersonic scalar mixing.

  16. Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis

    2017-10-01

    In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.

  17. Influence of Geometry and Flow Variations on NO Formation in the Quick Mixer of a Staged Combustor

    NASA Technical Reports Server (NTRS)

    Hatch, M. S.; Sowa, W. A.; Samuelsen, G. S.; Holdeman, J. D.

    1995-01-01

    Staged combustion, such as Rich-Burn/Quick-Mix/Lean-Burn (RQL), is a viable strategy to meet nitric oxide (NO) emission goals for both stationary and propulsion gas turbine engines. A critical element of the design is the quick mixer section where the potential for NO production is high. While numerical calculations of the quick mixer under reacting conditions have been conducted, the hostile environment and lack of appropriate diagnostics have, to date, precluded experimental probing of the reacting case. As an alternative to understanding the effect of geometry and flow variations on the production of NO in the quick mixer, the present paper presents (1) a series of non-reacting parametric studies, and (2) a computational method to extrapolate the results of the non-reacting experiments to reacting conditions. The results show that the rate of NO production is highest in the immediate vicinity of the injection plane. For a given momentum flux ratio between the jets and mainstream, the most effective mixing geometry is that which mixes effectively in both (1) the plane of injection, and (2) the wall regions downstream of the plan of injection. The tailoring of the mixing is key to minimize the NO formed. As a result, the best overall mixer with respect to the minimization of NO production may depend on the system specific characteristics of the particular application.

  18. A two-phase restricted equilibrium model for combustion of metalized solid propellants

    NASA Technical Reports Server (NTRS)

    Sabnis, J. S.; Dejong, F. J.; Gibeling, H. J.

    1992-01-01

    An Eulerian-Lagrangian two-phase approach was adopted to model the multi-phase reacting internal flow in a solid rocket with a metalized propellant. An Eulerian description was used to analyze the motion of the continuous phase which includes the gas as well as the small (micron-sized) particulates, while a Lagrangian description is used for the analysis of the discrete phase which consists of the larger particulates in the motor chamber. The particulates consist of Al and Al2O3 such that the particulate composition is 100 percent Al at injection from the propellant surface with Al2O3 fraction increasing due to combustion along the particle trajectory. An empirical model is used to compute the combustion rate for agglomerates while the continuous phase chemistry is treated using chemical equilibrium. The computer code was used to simulate the reacting flow in a solid rocket motor with an AP/HTPB/Al propellant. The computed results show the existence of an extended combustion zone in the chamber rather than a thin reaction region. The presence of the extended combustion zone results in the chamber flow field and chemical being far from isothermal (as would be predicted by a surface combustion assumption). The temperature in the chamber increases from about 2600 K at the propellant surface to about 3350 K in the core. Similarly the chemical composition and the density of the propellant gas also show spatially non-uniform distribution in the chamber. The analysis developed under the present effort provides a more sophisticated tool for solid rocket internal flow predictions than is presently available, and can be useful in studying apparent anomalies and improving the simple correlations currently in use. The code can be used in the analysis of combustion efficiency, thermal load in the internal insulation, plume radiation, etc.

  19. Enhancement of fine-scale mixing for fuel-rich plume combustion

    NASA Astrophysics Data System (ADS)

    Schadow, K. C.; Gutmark, E.; Parr, T. P.; Parr, D. M.; Wilson, K. J.; Ferrell, G. B.

    1987-01-01

    The effect of enhancing small-scale turbulent structures on the combustion intensity and flame stability was studied in nonreacting and reacting flows. Hot-wire anemometry was used to map the mean and turbulent flow fields of the nonreacting flows. Reacting flows were studied in a free flame and in a ducted gas-generator fuel-rich plume using Planar Laser Induced Fluorescence, a rake of thermocouples and high speed photography. A modified circular nozzle having several backward facing steps upstream of its exit was used to introduce numerous inflection points in the initial mean velocity profiles, thus producing multiple corresponding sources of small-scale turbulence generators. Cold flow tests showed turbulence increases of up to six times the initial turbulence level relative to a circular nozzle. The ensuing result was that the flame of this nozzle was more intense with a homogeneous heat release. The fuel-rich plume was stable even in supersonic speeds, and secondary ignition was obtained under conditions that prevented sustained afterburning using the circular nozzle.

  20. Population dynamics in non-homogeneous environments

    NASA Astrophysics Data System (ADS)

    Alards, Kim M. J.; Tesser, Francesca; Toschi, Federico

    2014-11-01

    For organisms living in aquatic ecosystems the presence of fluid transport can have a strong influence on the dynamics of populations and on evolution of species. In particular, displacements due to self-propulsion, summed up with turbulent dispersion at larger scales, strongly influence the local densities and thus population and genetic dynamics. Real marine environments are furthermore characterized by a high degree of non-homogeneities. In the case of population fronts propagating in ``fast'' turbulence, with respect to the population duplication time, the flow effect can be studied by replacing the microscopic diffusivity with an effective turbulent diffusivity. In the opposite case of ``slow'' turbulence the advection by the flow has to be considered locally. Here we employ numerical simulations to study the influence of non-homogeneities in the diffusion coefficient of reacting individuals of different species expanding in a 2 dimensional space. Moreover, to explore the influence of advection, we consider a population expanding in the presence of simple velocity fields like cellular flows. The output is analyzed in terms of front roughness, front shape, propagation speed and, concerning the genetics, by means of heterozygosity and local and global extinction probabilities.

  1. Wind-US Code Physical Modeling Improvements to Complement Hypersonic Testing and Evaluation

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.; Towne, Charles S.; Engblom, William A.; Bhagwandin, Vishal A.; Power, Greg D.; Lankford, Dennis W.; Nelson, Christopher C.

    2009-01-01

    This report gives an overview of physical modeling enhancements to the Wind-US flow solver which were made to improve the capabilities for simulation of hypersonic flows and the reliability of computations to complement hypersonic testing. The improvements include advanced turbulence models, a bypass transition model, a conjugate (or closely coupled to vehicle structure) conduction-convection heat transfer capability, and an upgraded high-speed combustion solver. A Mach 5 shock-wave boundary layer interaction problem is used to investigate the benefits of k- s and k-w based explicit algebraic stress turbulence models relative to linear two-equation models. The bypass transition model is validated using data from experiments for incompressible boundary layers and a Mach 7.9 cone flow. The conjugate heat transfer method is validated for a test case involving reacting H2-O2 rocket exhaust over cooled calorimeter panels. A dual-mode scramjet configuration is investigated using both a simplified 1-step kinetics mechanism and an 8-step mechanism. Additionally, variations in the turbulent Prandtl and Schmidt numbers are considered for this scramjet configuration.

  2. Investigation of chemically reacting and radiating supersonic internal flows

    NASA Technical Reports Server (NTRS)

    Mani, M.; Tiwari, S. N.

    1986-01-01

    The two-dimensional spatially elliptic Navier-Stokes equations are used to investigate the chemically reacting and radiating supersonic flow of the hydrogen-air system between two parallel plates and in a channel with a ten degree compression-expansion ramp at the lower boundary. The explicit unsplit finite-difference technique of MacCormack is used to advance the governing equations in time until convergence is achieved. The chemistry source term in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The tangent slab approximation is employed in the radiative flux formation. Both pseudo-gray and nongray models are used to represent the absorption characteristics of the participating species. Results obtained for specific conditions indicate that the radiative interaction can have a significant influence on the flow field.

  3. Cascade redox flow battery systems

    DOEpatents

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  4. Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg

    2006-01-01

    Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the backpressure. This paper provides a short review of the appropriate literature, as well as descriptions of plans for experimental hardware, test chamber instrumentation, diagnostics, and testing.

  5. A spectral radius scaling semi-implicit iterative time stepping method for reactive flow simulations with detailed chemistry

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Xiao, Zhixiang; Ren, Zhuyin

    2018-09-01

    A spectral radius scaling semi-implicit time stepping scheme has been developed for simulating unsteady compressible reactive flows with detailed chemistry, in which the spectral radius in the LUSGS scheme has been augmented to account for viscous/diffusive and reactive terms and a scalar matrix is proposed to approximate the chemical Jacobian using the minimum species destruction timescale. The performance of the semi-implicit scheme, together with a third-order explicit Runge-Kutta scheme and a Strang splitting scheme, have been investigated in auto-ignition and laminar premixed and nonpremixed flames of three representative fuels, e.g., hydrogen, methane, and n-heptane. Results show that the minimum species destruction time scale can well represent the smallest chemical time scale in reactive flows and the proposed scheme can significantly increase the allowable time steps in simulations. The scheme is stable when the time step is as large as 10 μs, which is about three to five orders of magnitude larger than the smallest time scales in various tests considered. For the test flames considered, the semi-implicit scheme achieves second order of accuracy in time. Moreover, the errors in quantities of interest are smaller than those from the Strang splitting scheme indicating the accuracy gain when the reaction and transport terms are solved coupled. Results also show that the relative efficiency of different schemes depends on fuel mechanisms and test flames. When the minimum time scale in reactive flows is governed by transport processes instead of chemical reactions, the proposed semi-implicit scheme is more efficient than the splitting scheme. Otherwise, the relative efficiency depends on the cost in sub-iterations for convergence within each time step and in the integration for chemistry substep. Then, the capability of the compressible reacting flow solver and the proposed semi-implicit scheme is demonstrated for capturing the hydrogen detonation waves. Finally, the performance of the proposed method is demonstrated in a two-dimensional hydrogen/air diffusion flame.

  6. Studies on nonequilibrium phenomena in supersonic chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Chandrasekhar, Rajnish

    1993-01-01

    This study deals with a systematic investigation of nonequilibrium processes in supersonic combustion. The two-dimensional, elliptic Navier-Stokes equations are used to investigate supersonic flows with nonequilibrium chemistry and thermodynamics, coupled with radiation, for hydrogen-air systems. The explicit, unsplit MacCormack finite-difference scheme is used to advance the governing equations in time, until convergence is achieved. For a basic understanding of the flow physics, premixed flows undergoing finite rate chemical reactions are investigated. Results obtained for specific conditions indicate that the radiative interactions vary substantially, depending on reactions involving HO2 and NO species, and that this can have a noticeable influence on the flowfield. The second part of this study deals with premixed reacting flows under thermal nonequilibrium conditions. Here, the critical problem is coupling of the vibrational relaxation process with the radiative heat transfer. The specific problem considered is a premixed expanding flow in a supersonic nozzle. Results indicate the presence of nonequilibrium conditions in the expansion region of the nozzle. This results in reduction of the radiative interactions in the flowfield. Next, the present study focuses on investigation of non-premixed flows under chemical nonequilibrium conditions. In this case, the main problem is the coupled turbulence-chemistry interaction. The resulting formulation is validated by comparison with experimental data on reacting supersonic coflowing jets. Results indicate that the effect of heat release is to lower the turbulent shear stress and the mean density. The last part of this study proposes a new theoretical formulation for the coupled turbulence-radiation interactions. Results obtained for the coflowing jets experiment indicate that the effect of turbulence is to enhance the radiative interactions.

  7. A multipumping flow system for in vitro screening of peroxynitrite scavengers.

    PubMed

    Ribeiro, Marta F T; Dias, Ana C B; Santos, João L M; Fernandes, Eduarda; Lima, José L F C; Zagatto, Elias A G

    2007-09-01

    Peroxynitrite anion is a reactive nitrogen species formed in vivo by the rapid, controlled diffusion reaction between nitric oxide and superoxide radicals. By reacting with several biological molecules, peroxynitrite may cause important cellular and tissue deleterious effects, which have been associated with many diseases. In this work, an automated flow-based procedure for the in vitro generation of peroxynitrite and subsequent screening of the scavenging activity of selected compounds is developed. This procedure involves a multipumping flow system (MPFS) and exploits the ability of compounds such as lipoic acid, dihydrolipoic acid, cysteine, reduced glutathione, oxidized glutathione, sulindac, and sulindac sulfone to inhibit the chemiluminescent reaction of luminol with peroxynitrite under physiological simulated conditions. Peroxynitrite was generated in the MPFS by the online reaction of acidified hydrogen peroxide with nitrite, followed by a subsequent stabilization by merging with a sodium hydroxide solution to rapidly quench the developing reaction. The pulsed flow and the timed synchronized insertion of sample and reagent solutions provided by the MPFS ensure the establishment of the reaction zone only inside the flow cell, thus allowing maximum chemiluminescence emission detection. The results obtained for the assayed compounds show that, with the exception of oxidized glutathione, all are highly potent scavengers of peroxynitrite at the studied concentrations.

  8. Modelling reactive transport in a phosphogypsum dump, Venezia, Italia

    NASA Astrophysics Data System (ADS)

    Calcara, Massimo; Borgia, Andrea; Cattaneo, Laura; Bartolo, Sergio; Clemente, Gianni; Glauco Amoroso, Carlo; Lo Re, Fabio; Tozzato, Elena

    2013-04-01

    We develop a reactive-transport porous media flow model for a phosphogypsum dump located on the intertidal deposits of the Venetian Lagoon: 1. we construct a complex conceptual and geologic model from field data using the GMS™ graphical user interface; 2. the geological model is mapped onto a rectangular MODFLOW grid; 3. using the TMT2 FORTRAN90 code we translate this grid into the MESH, INCON and GENER input files for the TOUGH2 series of codes; 4. we run TOUGH-REACT to model flow and reactive transport in the dump and the sediments below it. The model includes 3 different dump materials (phosphogypsum, bituminous and hazardous wastes) with the pores saturated by specific fluids. The sediments below the dump are formed by an intertidal sequence of calcareous sands and silts, in addition to clays and organic deposits, all of which are initially saturated with lagoon salty waters. The recharge rain-water dilutes the dump fluids. In turn, the percolates from the dump react with the underlying sediments and the sea water that saturates them. Simulation results have been compared with chemical sampled analyses. In fact, in spite of the simplicity of our model we are able to show how the pH becomes neutral at a short distance below the dump, a fact observed during aquifer monitoring. The spatial and temporal evolution of dissolution and precipitation reactions occur in our model much alike reality. Mobility of some elements, such as divalent iron, are reduced by specific and concurrent conditions of pH from near-neutrality to moderately high values and positive redox potential; opposite conditions favour mobility of potentially toxic metals such as Cr, As Cd and Pb. Vertical movement are predominant. Trend should be therefore heavily influenced by pH and Eh values. If conditions are favourable to mobility, concentration of these substances in the bottom strata could be high. However, simulation suggest that the sediments tend to reduce the transport potential of contaminants.

  9. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    DOE PAGES

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; ...

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much lower than that of CO2-saturated brine. The study suggests that in deep geological reservoirs the geochemical and geomechanical processes have coupled effects on the wellbore cement fracture evolution and fluid flow along the fracture surfaces.« less

  10. A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction

    NASA Technical Reports Server (NTRS)

    Cho, S. Y.; Yetter, R. A.; Dryer, F. L.

    1992-01-01

    Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.

  11. Nonlinear Stability and Structure of Compressible Reacting Mixing Layers

    NASA Technical Reports Server (NTRS)

    Day, M. J.; Mansour, N. N.; Reynolds, W. C.

    2000-01-01

    The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.

  12. Direct numerical simulation of an isothermal reacting turbulent wall-jet

    NASA Astrophysics Data System (ADS)

    Pouransari, Zeinab; Brethouwer, Geert; Johansson, Arne V.

    2011-08-01

    In the present investigation, Direct Numerical Simulation (DNS) is used to study a binary irreversible and isothermal reaction in a plane turbulent wall-jet. The flow is compressible and a single-step global reaction between an oxidizer and a fuel species is solved. The inlet based Reynolds, Schmidt, and Mach numbers of the wall-jet are Re = 2000, Sc = 0.72, and M = 0.5, respectively, and a constant coflow velocity is applied above the jet. At the inlet, fuel and oxidizer enter the domain separately in a non-premixed manner. The turbulent structures of the velocity field show the common streaky patterns near the wall, while a somewhat patchy or spotty pattern is observed for the scalars and the reaction rate fluctuations in the near-wall region. The reaction mainly occurs in the upper shear layer in thin highly convoluted reaction zones, but it also takes place close to the wall. Analysis of turbulence and reaction statistics confirms the observations in the instantaneous snapshots, regarding the intermittent character of the reaction rate near the wall. A detailed study of the probability density functions of the reacting scalars and comparison to that of the passive scalar throughout the domain reveals the significance of the reaction influence as well as the wall effects on the scalar distributions. The higher order moments of both the velocities and the scalar concentrations are analyzed and show a satisfactory agreement with experiments. The simulations show that the reaction can both enhance and reduce the dissipation of fuel scalar, since there are two competing effects; on the one hand, the reaction causes sharper scalar gradients and thus a higher dissipation rate, on the other hand, the reaction consumes the fuel scalar thereby reducing the scalar dissipation.

  13. Development of Comprehensive Reduced Kinetic Models for Supersonic Reacting Shear Layer Simulations

    NASA Technical Reports Server (NTRS)

    Zambon, A. C.; Chelliah, H. K.; Drummond, J. P.

    2006-01-01

    Large-scale simulations of multi-dimensional unsteady turbulent reacting flows with detailed chemistry and transport can be computationally extremely intensive even on distributed computing architectures. With the development of suitable reduced chemical kinetic models, the number of scalar variables to be integrated can be decreased, leading to a significant reduction in the computational time required for the simulation with limited loss of accuracy in the results. A general MATLAB-based automated mechanism reduction procedure is presented to reduce any complex starting mechanism (detailed or skeletal) with minimal human intervention. Based on the application of the quasi steady-state (QSS) approximation for certain chemical species and on the elimination of the fast reaction rates in the mechanism, several comprehensive reduced models, capable of handling different fuels such as C2H4, CH4 and H2, have been developed and thoroughly tested for several combustion problems (ignition, propagation and extinction) and physical conditions (reactant compositions, temperatures, and pressures). A key feature of the present reduction procedure is the explicit solution of the concentrations of the QSS species, needed for the evaluation of the elementary reaction rates. In contrast, previous approaches relied on an implicit solution due to the strong coupling between QSS species, requiring computationally expensive inner iterations. A novel algorithm, based on the definition of a QSS species coupling matrix, is presented to (i) introduce appropriate truncations to the QSS algebraic relations and (ii) identify the optimal sequence for the explicit solution of the concentration of the QSS species. With the automatic generation of the relevant source code, the resulting reduced models can be readily implemented into numerical codes.

  14. Characterizing 3-D flow velocity in evolving pore networks driven by CaCO3 precipitation and dissolution

    NASA Astrophysics Data System (ADS)

    Chojnicki, K. N.; Yoon, H.; Martinez, M. J.

    2015-12-01

    Understanding reactive flow in geomaterials is important for optimizing geologic carbon storage practices, such as using pore space efficiently. Flow paths can be complex in large degrees of geologic heterogeneities across scales. In addition, local heterogeneity can evolve as reactive transport processes alter the pore-scale morphology. For example, dissolved carbon dioxide may react with minerals in fractured rocks, confined aquifers, or faults, resulting in heterogeneous cementation (and/or dissolution) and evolving flow conditions. Both path and flow complexities are important and poorly characterized, making it difficult to determine their evolution with traditional 2-D transport models. Here we characterize the development of 3-D pore-scale flow with an evolving pore configuration due to calcium carbonate (CaCO3) precipitation and dissolution. A simple pattern of a microfluidic pore network is used initially and pore structures will become more complex due to precipitation and dissolution processes. At several stages of precipitation and dissolution, we directly visualize 3-D velocity vectors using micro particle image velocimetry and a laser scanning confocal microscope. Measured 3-D velocity vectors are then compared to 3-D simulated flow fields which will be used to simulate reactive transport. Our findings will highlight the importance of the 3-D flow dynamics and its impact on estimating reactive surface area over time. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.

  15. Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets

    NASA Astrophysics Data System (ADS)

    Asaithambi, Rajapandiyan

    Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the flame base. Mass-fraction of the hydroperoxyl radical, HO2, peaks in magnitude upstream of the flame's stabilization point indicating autoignition. A flame structure similar to a triple-flame, with a lean premixed flame and a rich premixed flame flanking a thick diffusion flame is identified by the flame index. Radicals formed in the shear layer ahead of ignition and oxygen from the coflow do not get fully consumed by the flame and are transported along the edges of the flame brush into the core of the jet. Ignition delays from a well-stirred reactor model and an autoigniting diffusion flame model are able predict the lift-off height of the turbulent flame. The local entrainment rate was observed to increase with axial distance until the flame stabilization point and then decrease downstream. Data from probes placed along the flame reveals a highly turbulent flow field with variable composition at a given location. In general however, it is observed that the turbulent kinetic energy (TKE) is very high in cold fuel rich mixtures and is lowest in hot fuel lean mixtures. Autoignition occurs at the most-reactive hot and lean mixture fractions where the TKE is the lowest.

  16. Investigation of Atomization and Combustion Performance of Renewable Biofuels and the Effects of Ethanol Blending in Biodiesel

    NASA Astrophysics Data System (ADS)

    Silver, Adam Gregory

    This thesis presents results from an experimental investigation of the macroscopic and microscopic atomization and combustion behavior of B99 biodiesel, ethanol, B99-ethanol blends, methanol, and an F-76-Algae biodiesel blend. In addition, conventional F-76 and Diesel #2 sprays were characterized as a base case to compare with. The physical properties and chemical composition of each fuel were measured in order to characterize and predict atomization performance. A variety of B99-ethanol fuel blends were used which demonstrate a tradeoff between lower density, surface tension, and viscosity with a decrease in the air to liquid ratio. A plain jet air-blast atomizer was used for both non-reacting and reacting tests. The flow rates for the alternative fuels were set by matching the power input provided by the baseline fossil fuels in order to simulate use as a drop in replacement. For this study, phase Doppler interferometry is employed to gain information on drop size, SMD, velocity, and volume flux distribution across the spray plume. A high speed camera is used to gather high speed cinematography of the sprays for observing breakup characteristics and providing additional insight. Reacting flow tests captured NOx, CO, and UHC emissions along with high speed footage used to predict soot levels based on flame luminosity. The results illustrate how the fuel type impacts the atomization and spray characteristics. The air-blast atomizer resulted in similar atomization performance among the DF2, F-76, and the F-76/Algae blend. While methanol and ethanol are not suitable candidates for this air-blast configuration and B99 produces significantly larger droplets, the addition of ethanol decreased drop sizes for all B99-ethanol blends by approximately 5 microns. In regards to reacting conditions, increased ethanol blending to B99 consistently lowered NOx emissions while decreasing combustion efficiency. Overall, lower NOx and CO emissions were achieved with the fuel blends than for conventional diesels, while the neat biofuels emitted overall less NOx per CO than the baseline fuels. This research clearly demonstrated that blends of two renewable fuels (B99 and ethanol improved (1) atomization and (2) emissions performance for the burner studied when compared to the baseline fossil fuels DF2 and F-76.

  17. Tactical Applications (TACAPPS) JavaScript Framework Investigation

    DTIC Science & Technology

    2017-02-01

    frameworks explored were Angular JavaScript (AngularJS), jQuery UI, Meteor, Ember, React JavaScript (ReactJS) and Web Components. The team evaluated the...10 Issues and Risks 11 Web Components 11 Benefits 13 Issues and Risks 13 Conclusions 14 Bibliography 15 Distribution List 19...3 Basic Flux flow 10 4 Shadow DOM tree hierarchy 12 5 Web Components browser support 13 UNCLASSIFIED Approved for

  18. Advanced laser diagnostics for diamond deposition research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, C.H.; Owano, T.G.; Wahl, E.H.

    Chemical Vapor Deposition (CVD) using thermal plasmas is attractive for diamond synthesis applications due to the inherently high reactant densities and throughput, but the associated high gas-phase collision rates in the boundary layer above the substrate produce steep thermal and species gradients which can drive the complex plasma chemistry away from optimal conditions. To understand and control these environments, accurate measurements of temperature and species concentrations within the reacting boundary layer are needed. This is challenging in atmospheric pressure reactors due to the highly luminous environment, steep thermal and species gradients, and small spatial scales. The applicability of degenerate four-wavemore » mixing (DFWM) as a spectroscopic probe of atmospheric pressure reacting plasmas has been investigated. This powerful, nonlinear technique has been applied to the measurement of temperature and radical species concentrations in the boundary layer of a diamond growth substrate immersed in a flowing atmospheric pressure plasma. In-situ measurements of CH and C{sub 2} radicals have been performed to determine spatially resolved profiles of vibrational temperature, rotational temperature, and species concentration. Results of these measurements are compared with the predictions of a detailed numerical simulation.« less

  19. On the formulation and assessment of flamelet-generated manifolds applied to two-phase turbulent combustion

    NASA Astrophysics Data System (ADS)

    Bojko, Brian T.

    Accounting for the effects of finite rate chemistry in reacting flows is intractable when considering the number of species and reactions to be solved for during a large scale flow simulation. This is especially complicated when solid/liquid fuels are also considered. While modeling the reacting boundary layer with the use of finite-rate chemistry may allow for a highly accurate description of the coupling between the flame and fuel surface, it is not tractable in large scale simulations when considering detailed chemical kinetics. It is the goal of this research to investigate a Flamelet-Generated Manifold (FGM) method in order to reduce the finite rate chemistry to a lookup table cataloged by progress variables and queried during runtime. In this study, simplified unsteady 1D flames with mass blowing are considered for a solid biomass fuel where the FGM method is employed as a model reduction strategy for potential application to multidimensional calculations. Two types of FGM are considered. The first are a set of steady-state flames differentiated by their scalar dissipation rate. Results show the use of steady flames produce unacceptable errors compared to the finite-rate chemistry solution, with temperature errors in excess of 45%. To avoid these errors, a new methodology for developing an unsteady FGM (UFGM) is presented that accounts for unsteady diffusion effects and greatly reduces errors in temperature with differences that are under 10%. The FGM modeling is then extended to individual droplet combustion with the development of a Droplet Flamelet-Generated Manifold (DFGM) to account for the effects of finite-rate chemistry of individual droplets. A spherically symmetric droplet model is developed for methanol and aluminum. The inclusion of finite-rate chemistry allows the capturing of the transition from diffusion to kinetically controlled combustion as the droplet diameter decreases. The droplet model is then used to create a DFGM by successively solving the 1D flame equations at varying drop sizes, where the source terms for energy, mixture fraction, and progress variable are cataloged as a function of normalized diameter. A unique coupling of the DFGM and planar UFGM is developed and is used to account for individual and gas phase combustion processes in turbulent combustion situations, such as spray flames, particle laden blasts, etc. The DFGM for the methanol and aluminum droplets are used in mixed Eulerian and Eulerian-Lagrangian formulations of compressible multiphase flows. System level simulations are conducted and compared experimental data for a methanol spray flame and an aluminized blast studied at the Explosives Components Facility (ECF) at Sandia National Laboratories.

  20. Flow process in combustors

    NASA Technical Reports Server (NTRS)

    Gouldin, F. C.

    1982-01-01

    Fluid mechanical effects on combustion processes in steady flow combustors, especially gas turbine combustors were investigated. Flow features of most interest were vorticity, especially swirl, and turbulence. Theoretical analyses, numerical calculations, and experiments were performed. The theoretical and numerical work focused on noncombusting flows, while the experimental work consisted of both reacting and nonreacting flow studies. An experimental data set, e.g., velocity, temperature and composition, was developed for a swirl flow combustor for use by combustion modelers for development and validation work.

  1. High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaolin

    1998-08-01

    Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition need to consider the effects of bow shocks, entropy layers, surface curvature, and finite-rate chemistry. It is necessary that numerical methods for such studies are robust and high-order accurate both in resolving wide ranges of flow time and length scales and in resolving the interaction between the bow shocks and flow disturbance waves. This paper presents a new high-order shock-fitting finite-difference method for the DNS of the stability and transition of hypersonic boundary layers over blunt bodies with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The proposed method includes a set of new upwind high-order finite-difference schemes which are stable and are less dissipative than a straightforward upwind scheme using an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order semi-implicit Runge-Kutta schemes for temporal discretization of stiff reacting flow equations. The accuracy and stability of the new schemes are validated by numerical experiments of the linear wave equation and nonlinear Navier-Stokes equations. The algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers over a parabolic leading edge to freestream acoustic disturbances.

  2. Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

    NASA Astrophysics Data System (ADS)

    Shamshuddin, MD.; Anwar Bég, O.; Sunder Ram, M.; Kadir, A.

    2018-02-01

    Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic, incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland's diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.

  3. Numerical study of supersonic combustion using a finite rate chemistry model

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Tiwari, S. N.; Kumar, A.; Drummond, J. P.

    1986-01-01

    The governing equations of two-dimensional chemically reacting flows are presented together with a global two-step chemistry model for H2-air combustion. The explicit unsplit MacCormack finite difference algorithm is used to advance the discrete system of the governing equations in time until convergence is attained. The source terms in the species equations are evaluated implicitly to alleviate stiffness associated with fast reactions. With implicit source terms, the species equations give rise to a block-diagonal system which can be solved very efficiently on vector-processing computers. A supersonic reacting flow in an inlet-combustor configuration is calculated for the case where H2 is injected into the flow from the side walls and the strut. Results of the calculation are compared against the results obtained by using a complete reaction model.

  4. Numerical study of supersonic combustors by multi-block grids with mismatched interfaces

    NASA Technical Reports Server (NTRS)

    Moon, Young J.

    1990-01-01

    A three dimensional, finite rate chemistry, Navier-Stokes code was extended to a multi-block code with mismatched interface for practical calculations of supersonic combustors. To ensure global conservation, a conservative algorithm was used for the treatment of mismatched interfaces. The extended code was checked against one test case, i.e., a generic supersonic combustor with transverse fuel injection, examining solution accuracy, convergence, and local mass flux error. After testing, the code was used to simulate the chemically reacting flow fields in a scramjet combustor with parallel fuel injectors (unswept and swept ramps). Computational results were compared with experimental shadowgraph and pressure measurements. Fuel-air mixing characteristics of the unswept and swept ramps were compared and investigated.

  5. Capillary flow of amorphous metal for high performance electrode

    PubMed Central

    Kim, Se Yun; Kim, Suk Jun; Jee, Sang Soo; Park, Jin Man; Park, Keum Hwan; Park, Sung Chan; Cho, Eun Ae; Lee, Jun Ho; Song, In Yong; Lee, Sang Mock; Han, In Taek; Lim, Ka Ram; Kim, Won Tae; Park, Ju Cheol; Eckert, Jürgen; Kim, Do Hyang; Lee, Eun-Sung

    2013-01-01

    Metallic glass (MG) assists electrical contact of screen-printed silver electrodes and leads to comparable electrode performance to that of electroplated electrodes. For high electrode performance, MG needs to be infiltrated into nanometer-scale cavities between Ag particles and reacts with them. Here, we show that the MG in the supercooled state can fill the gap between Ag particles within a remarkably short time due to capillary effect. The flow behavior of the MG is revealed by computational fluid dynamics and density funtional theory simulation. Also, we suggest the formation mechanism of the Ag electrodes, and demonstrate the criteria of MG for higher electrode performance. Consequently, when Al85Ni5Y8Co2 MG is added in the Ag electrodes, cell efficiency is enhanced up to 20.30% which is the highest efficiency reported so far for screen-printed interdigitated back contact solar cells. These results show the possibility for the replacement of electroplating process to screen-printing process. PMID:23851671

  6. Modeling and simulation of combustion dynamics in lean-premixed swirl-stabilized gas-turbine engines

    NASA Astrophysics Data System (ADS)

    Huang, Ying

    This research focuses on the modeling and simulation of combustion dynamics in lean-premixed gas-turbines engines. The primary objectives are: (1) to establish an efficient and accurate numerical framework for the treatment of unsteady flame dynamics; and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations in a lean-premixed gas-turbine combustor. The energy transfer mechanisms among mean flow motions, periodic motions and background turbulent motions in turbulent reacting flow are first explored using a triple decomposition technique. Then a comprehensive numerical study of the combustion dynamics in a lean-premixed swirl-stabilized combustor is performed. The analysis treats the conservation equations in three dimensions and takes into account finite-rate chemical reactions and variable thermophysical properties. Turbulence closure is achieved using a large-eddy-simulation (LES) technique. The compressible-flow version of the Smagorinsky model is employed to describe subgrid-scale turbulent motions and their effect on large-scale structures. A level-set flamelet library approach is used to simulate premixed turbulent combustion. In this approach, the mean flame location is modeled using a level-set G-equation, where G is defined as a distance function. Thermophysical properties are obtained using a presumed probability density function (PDF) along with a laminar flamelet library. The governing equations and the associated boundary conditions are solved by means of a four-step Runge-Kutta scheme along with the implementation of the message passing interface (MPI) parallel computing architecture. The analysis allows for a detailed investigation into the interaction between turbulent flow motions and oscillatory combustion of a swirl-stabilized injector. Results show good agreement with an analytical solution and experimental data in terms of acoustic properties and flame evolution. A study of flame bifurcation from a stable state to an unstable state indicates that the inlet flow temperature and equivalence ratio are the two most important variables determining the stability characteristics of the combustor. Under unstable operating conditions, several physical processes responsible for driving combustion instabilities in the chamber have been identified and quantified. These processes include vortex shedding and acoustic interaction, coupling between the flame evolution and local flow oscillations, vortex and flame interaction and coupling between heat release and acoustic motions. The effects of inlet swirl number on the flow development and flame dynamics in the chamber are also carefully studied. In the last part of this thesis, an analytical model is developed using triple decomposition techniques to model the combustion response of turbulent premixed flames to acoustic oscillations.

  7. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOEpatents

    Dolbeare, F.A.; Gray, J.W.

    1983-10-18

    A method for the simultaneous flow cylometric measurement of total cellular DNA content and of the uptake of DNA precursors as a measure of DNA synthesis during various phases of the cell cycle in normal and malignant cells in vitro and in vivo is described. The method comprises reacting cells with labelled halodeoxyuridine (HdU), partially denaturing cellular DNA, adding to the reaction medium monoclonal antibodies (mabs) reactive with HdU, reacting the bound mabs with a second labelled antibody, incubating the mixture with a DNA stain, and measuring simultaneously the intensity of the DNA stain as a measure of the total cellular DNA and the HdU incorporated as a measure of DNA synthesis. (ACR)

  8. Split Space-Marching Finite-Volume Method for Chemically Reacting Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Rizzi, Arthur W.; Bailey, Harry E.

    1976-01-01

    A space-marching finite-volume method employing a nonorthogonal coordinate system and using a split differencing scheme for calculating steady supersonic flow over aerodynamic shapes is presented. It is a second-order-accurate mixed explicit-implicit procedure that solves the inviscid adiabatic and nondiffusive equations for chemically reacting flow in integral conservation-law form. The relationship between the finite-volume and differential forms of the equations is examined and the relative merits of each discussed. The method admits initial Cauchy data situated on any arbitrary surface and integrates them forward along a general curvilinear coordinate, distorting and deforming the surface as it advances. The chemical kinetics term is split from the convective terms which are themselves dimensionally split, thereby freeing the fluid operators from the restricted step size imposed by the chemical reactions and increasing the computational efficiency. The accuracy of this splitting technique is analyzed, a sufficient stability criterion is established, a representative flow computation is discussed, and some comparisons are made with another method.

  9. Reverse electron transport effects on NADH formation and metmyoglobin reduction.

    PubMed

    Belskie, K M; Van Buiten, C B; Ramanathan, R; Mancini, R A

    2015-07-01

    The objective was to determine if NADH generated via reverse electron flow in beef mitochondria can be used for electron transport-mediated reduction and metmyoglobin reductase pathways. Beef mitochondria were isolated from bovine hearts (n=5) and reacted with combinations of succinate, NAD, and mitochondrial inhibitors to measure oxygen consumption and NADH formation. Mitochondria and metmyoglobin were reacted with succinate, NAD, and mitochondrial inhibitors to measure electron transport-mediated metmyoglobin reduction and metmyoglobin reductase activity. Addition of succinate and NAD increased oxygen consumption, NADH formation, electron transport-mediated metmyoglobin reduction, and reductase activity (p<0.05). Addition of antimycin A prevented electron flow beyond complex III, therefore, decreasing oxygen consumption and electron transport-mediated metmyoglobin reduction. Addition of rotenone prevented reverse electron flow, increased oxygen consumption, increased electron transport-mediated metmyoglobin reduction, and decreased NADH formation. Succinate and NAD can generate NADH in bovine tissue postmortem via reverse electron flow and this NADH can be used by both electron transport-mediated and metmyoglobin reductase pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. An analysis of artificial viscosity effects on reacting flows using a spectral multi-domain technique

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.; Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    Standard techniques used to model chemically-reacting flows require an artificial viscosity for stability in the presence of strong shocks. The resulting shock is smeared over at least three computational cells, so that the thickness of the shock is dictated by the structure of the overall mesh and not the shock physics. A gas passing through a strong shock is thrown into a nonequilibrium state and subsequently relaxes down over some finite distance to an equilibrium end state. The artificial smearing of the shock envelops this relaxation zone which causes the chemical kinetics of the flow to be altered. A method is presented which can investigate these issues by following the chemical kinetics and flow kinetics of a gas passing through a fully resolved shock wave at hypersonic Mach numbers. A nonequilibrium chemistry model for air is incorporated into a spectral multidomain Navier-Stokes solution method. Since no artificial viscosity is needed for stability of the multidomain technique, the precise effect of this artifice on the chemical kinetics and relevant flow features can be determined.

  11. An Investigation of the Reacting and Non-Reacting Flow Characteristics of Solid Fuel Ramjets.

    DTIC Science & Technology

    1980-09-01

    which was run on the IBM-360 computer at the Naval 23 Postgraduate School. Programs for Texas Instruments TI - 59 programmable calculator were utilized...Pc’ F P A e 12 = g(y+l) F + PA e-TT 2(R F (9) lil Equations 7, 8, and 9 were solved for each run by software programs written for the TI - 59 programmable calculator . The

  12. International Congress of Fluid Mechanics, 3rd, Cairo, Egypt, Jan. 2-4, 1990, Proceedings. Volumes 1, 2, 3, & 4

    NASA Astrophysics Data System (ADS)

    Nayfeh, A. H.; Mobarak, A.; Rayan, M. Abou

    This conference presents papers in the fields of flow separation, unsteady aerodynamics, fluid machinery, boundary-layer control and stability, grid generation, vorticity dominated flows, and turbomachinery. Also considered are propulsion, waves and sound, rotor aerodynamics, computational fluid dynamics, Euler and Navier-Stokes equations, cavitation, mixing and shear layers, mixing layers and turbulent flows, and fluid machinery and two-phase flows. Also addressed are supersonic and reacting flows, turbulent flows, and thermofluids.

  13. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  14. Space-Time Conservation Element and Solution Element Method Being Developed

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Himansu, Ananda; Jorgenson, Philip C. E.; Loh, Ching-Yuen; Wang, Xiao-Yen; Yu, Sheng-Tao

    1999-01-01

    The engineering research and design requirements of today pose great computer-simulation challenges to engineers and scientists who are called on to analyze phenomena in continuum mechanics. The future will bring even more daunting challenges, when increasingly complex phenomena must be analyzed with increased accuracy. Traditionally used numerical simulation methods have evolved to their present state by repeated incremental extensions to broaden their scope. They are reaching the limits of their applicability and will need to be radically revised, at the very least, to meet future simulation challenges. At the NASA Lewis Research Center, researchers have been developing a new numerical framework for solving conservation laws in continuum mechanics, namely, the Space-Time Conservation Element and Solution Element Method, or the CE/SE method. This method has been built from fundamentals and is not a modification of any previously existing method. It has been designed with generality, simplicity, robustness, and accuracy as cornerstones. The CE/SE method has thus far been applied in the fields of computational fluid dynamics, computational aeroacoustics, and computational electromagnetics. Computer programs based on the CE/SE method have been developed for calculating flows in one, two, and three spatial dimensions. Results have been obtained for numerous problems and phenomena, including various shock-tube problems, ZND detonation waves, an implosion and explosion problem, shocks over a forward-facing step, a blast wave discharging from a nozzle, various acoustic waves, and shock/acoustic-wave interactions. The method can clearly resolve shock/acoustic-wave interactions, wherein the difference of the magnitude between the acoustic wave and shock could be up to six orders. In two-dimensional flows, the reflected shock is as crisp as the leading shock. CE/SE schemes are currently being used for advanced applications to jet and fan noise prediction and to chemically reacting flows.

  15. Effect of simulated weightlessness on the expression of Cbfα1 induced by fluid shear stress in MG-63 osteosarcoma cells.

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Zhang, S.; Wang, B.; Sun, X. Q.

    Objective The role of mechanical load in the functional regulation of osteoblasts becomes an emphasis in osseous biomechanical researches recently This study was aim to explore the effect of flow shear stress on the expression of Cbf alpha 1 in human osteosarcoma cells and to survey its functional alteration in simulated weightlessness Method After cultured for 72 h in two different gravitational environments i e 1G terrestrial gravitational condition and simulated weightlessness condition human osteosarcoma cells MG-63 were treated with 0 5 Pa or 1 5 Pa fluid shear stress FSS in a flow chamber for 15 30 60 min respectively The total RNA in cells was isolated Transcription PCR analysis was made to examine the gene expression of Cbf alpha 1 And the total protein of cells was extracted and the expression of Cbf alpha 1 protein was detected by means of Western Blotting Results MG-63 cultured in 1G condition reacted to FSS treatment with an enhanced expression of Cbf alpha 1 Compared with no FSS control group Cbf alpha 1 mRNA and protein expression increased significantly at 30 and 60 min with the treatment of FSS P 0 01 And there was remarkable difference on the Cbf alpha 1 mRNA and protein expression between the treatments of 0 5 Pa and 1 5 Pa FSS at 30 min or 60 min P 0 01 As to the osteoblasts cultured in simulated weightlessness by using clinostat the expression of Cbf alpha 1 was significantly different between 1G and simulated weightlessness conditions at each test time P 0 05 Compared with no FSS

  16. CIRF.B Reaction-Transport-Mechanical Simulator: Applications to CO2 Injection and Reservoir Integrity Prediction

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Tuncay, K.; Ortoleva, P. J.

    2003-12-01

    An important component of CO2 sequestration in geologic formations is the reactions between the injected fluid and the resident geologic material. In particular, carbonate mineral reaction rates are several orders of magnitude faster than those of siliciclastic minerals. The reactions between resident and injected components can create complex flow regime modifications, and potentially undermine the reservoir integrity by changing their mineralogic and textural compositions on engineering time scale. This process can be further enhanced due to differences in pH and temperature of the injectant from the resident sediments and fluids. CIRF.B is a multi-process simulator originally developed for basin simulations. Implemented processes include kinetic and thermodynamic reactions between minerals and fluid, fluid flow, mass-transfer, composite-media approach to sediment textural description and dynamics, elasto-visco-plastic rheology, and fracturing dynamics. To test the feasibility of applying CIRF.B to CO2 sequestration, a number of engineering scale simulations are carried out to delineate the effects of changing injectant chemistry and injection rates on both carbonate and siliciclastic sediments. Initial findings indicate that even moderate amounts of CO2 introduced into sediments can create low pH environments, which affects feldspar-clay interactions. While the amount of feldspars reacting in engineering time scale may be small, its consequence to clay alteration and permeability modfication can be significant. Results also demonstrate that diffusion-imported H+ can affect sealing properties of both siliciclastic and carbonate formations. In carbonate systems significant mass transfer can occur due to dissolution and reprecipitation. The resulting shifts in in-situ stresses can be sufficient to initiate fracturing. These simulations allow characterization of injectant fluids, thus assisting in the implementation of effective sequestration procedures.

  17. Effect of chemical heat release in a temporally evolving mixing layer

    NASA Technical Reports Server (NTRS)

    Higuera, F. J.; Moser, R. D.

    1994-01-01

    Two-dimensional numerical simulations of a temporally evolving mixing layer with an exothermic infinitely fast diffusion flame between two unmixed reactants have been carried out in the limit of zero Mach number to study the effect of the heat release on the early stages of the evolution of the flow. Attention has been directed to relatively large values of the oxidizer-to-fuel mass stoichiometric ratio typical of hydrocarbon flames, and initial vorticity distributions thicker than the temperature and species distributions have been chosen to mimic the situation at the outlet of a jet. The results show that, during the stages of the evolution covered by the present simulations, enhancement of combustion occurs by local stretching of the flame without much augmentation of its area. The rate of product generation depends strongly on the initial conditions, which suggests the possibility of controlling the combustion by acting on the flow. Rollup and vortex amalgamation still occur in these reacting flows but are very much affected by the production of new vorticity by baroclinic torques. These torques lead to counter rotating vortex pairs around the flame and, more importantly, in thin layers of light fluid that leave the vicinity of the flame when the Kelvin-Helmholtz instability begins to develop. Propelled by the vortex pairs, these layers wind around, split on reaching high pressure regions, and originate new vortex pairs in a process that ends up building large-scale vortices with a vorticity distribution more complex than for a constant density fluid.

  18. Optical and Probe Diagnostics Applied to Reacting Flows

    NASA Technical Reports Server (NTRS)

    Ticich, Thomas M.

    2003-01-01

    The general theme of the research my NASA colleague and I have planned is "Optical and probe diagnostics applied to reacting flows". We plan to explore three major threads during the fellowship period. The first interrogates the flame synthesis of carbon nanotubes using aerosol catalysts. Having demonstrated the viability of the technique for nanotube synthesis, we seek to understand the details of this reacting system which are important to its practical application. Laser light scattering will reveal changes in particle size at various heights above the burner. Analysis of the flame gas by mass spectroscopy will reveal the chemical composition of the mixture. Finally, absorption measurements will map the nanotube concentration within the flow. The second thread explores soot oxidation kinetics. Despite the impact of soot on engine performance, fire safety and pollution, models for its oxidation are inhibited by uncertainty in the values of the oxidation rate. We plan to employ both optical and microscopic measurements to refine this rate. Cavity ring-down absorption measurements of the carbonaceous aerosol can provide a measure of the mass concentration with time and, hence, an oxidation rate. Spectroscopic and direct probe measurements will provide the temperature of the system needed for subsequent modeling. These data will be benchmarked against changes in soot nanostructures as revealed by transmission electron microscopic images from directly sampled material.

  19. Computational flow field in energy efficient engine (EEE)

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-11-01

    In this paper, preliminary results for the recently-updated Open National Combustor Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the Eusing different ways to introduce the fuel injection. Supported by NASA's Transformational Tools and Technologies project.

  20. Qualitative Flow Visualization of a 110-N Hydrogen/Oxygen Laboratory Model Thruster

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; McGuire, Thomas J.; Schneider, Steven J.

    1997-01-01

    The flow field inside a 110 N gaseous hydrogen/oxygen thruster was investigated using an optically accessible, two-dimensional laboratory test model installed in a high altitude chamber. The injector for this study produced an oxidizer-rich core flow, which was designed to fully mix and react inside a fuel-film sleeve insert before emerging into the main chamber section, where a substantial fuel film cooling layer was added to protect the chamber wall. Techniques used to investigate the flow consisted of spontaneous Raman spectra measurements, visible emission imaging, ultraviolet hydroxyl spectroscopy, and high speed schlieren imaging. Experimental results indicate that the oxygen rich core flow continued to react while emerging from the fuel-film sleeve, suggesting incomplete mixing of the hydrogen in the oxygen rich core flow. Experiments also showed that the fuel film cooling protective layer retained its integrity throughout the straight section of the combustion chamber. In the converging portion of the chamber, however, a turbulent reaction zone near the wall destroyed the integrity of the film layer, a result which implies that a lower contraction angle may improve the fuel film cooling in the converging section and extend the hardware lifetime.

  1. Computational Flow Field in Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-01-01

    In this paper, preliminary results for the recently-updated Open National Combustion Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the EEE using different ways to introduce the fuel injection.

  2. Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    2014-01-01

    Research to develop high-speed airbreathing aerospace propulsion systems was underway in the late 1950s. A major part of the effort involved the supersonic combustion ramjet, or scramjet, engine. Work had also begun to develop computational techniques for solving the equations governing the flow through a scramjet engine. However, scramjet technology and the computational methods to assist in its evolution would remain apart for another decade. The principal barrier was that the computational methods needed for engine evolution lacked the computer technology required for solving the discrete equations resulting from the numerical methods. Even today, computer resources remain a major pacing item in overcoming this barrier. Significant advances have been made over the past 35 years, however, in modeling the supersonic chemically reacting flow in a scramjet combustor. To see how scramjet development and the required computational tools finally merged, we briefly trace the evolution of the technology in both areas.

  3. Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles

    NASA Astrophysics Data System (ADS)

    Ripley, Robert; Zhang, Fan; Lien, Fue-Sang

    2009-06-01

    Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone have been expressed in terms of velocity and temperature transmission factors, which are a function of metal to explosive density ratio, metal volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow and macroscopic simulation is then applied to detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are reproduced. Various spherical particle diameters from 3 -- 30 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to the existing experiments.

  4. Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles

    NASA Astrophysics Data System (ADS)

    Ripley, R. C.; Zhang, F.; Lien, F.-S.

    2009-12-01

    Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone are expressed in terms of velocity and temperature transmission factors, which are a function of the metal to explosive density ratio, solid volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow, and then applied to macroscopic simulation of detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are demonstrated. Various spherical particle diameters from 3-350 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to existing experiments.

  5. Calculation of Propulsive Nozzle Flowfields in Multidiffusing Chemically Reacting Environments. Ph.D. Thesis - Purdue Univ.

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth John

    1994-01-01

    An advanced engineering model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multispecies, chemically reacting and multidiffusing Navier-Stokes equations are modelled, including the Soret thermal diffusion and the Dufour energy transfer terms. In addition to the spectrum of multispecies aspects developed, the model developed in this study is also conservative in axisymmetric flow for both inviscid and viscous flow environments and the boundary conditions employ a viscous, chemically reacting, reference plane characteristics method. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and a transpiration cooled plug and spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 and the 25 lbf film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent flow plug and spool nozzle analysis cases performed. Further, the Soret term was shown to represent an important fraction of the diffusion fluxes occurring in a transpiration cooled rocket engine.

  6. Computational method to predict thermodynamic, transport, and flow properties for the modified Langley 8-foot high-temperature tunnel

    NASA Technical Reports Server (NTRS)

    Venkateswaran, S.; Hunt, L. Roane; Prabhu, Ramadas K.

    1992-01-01

    The Langley 8 foot high temperature tunnel (8 ft HTT) is used to test components of hypersonic vehicles for aerothermal loads definition and structural component verification. The test medium of the 8 ft HTT is obtained by burning a mixture of methane and air under high pressure; the combustion products are expanded through an axisymmetric conical contoured nozzle to simulate atmospheric flight at Mach 7. This facility was modified to raise the oxygen content of the test medium to match that of air and to include Mach 4 and Mach 5 capabilities. These modifications will facilitate the testing of hypersonic air breathing propulsion systems for a wide range of flight conditions. A computational method to predict the thermodynamic, transport, and flow properties of the equilibrium chemically reacting oxygen enriched methane-air combustion products was implemented in a computer code. This code calculates the fuel, air, and oxygen mass flow rates and test section flow properties for Mach 7, 5, and 4 nozzle configurations for given combustor and mixer conditions. Salient features of the 8 ft HTT are described, and some of the predicted tunnel operational characteristics are presented in the carpet plots to assist users in preparing test plans.

  7. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, M., E-mail: mathieu.blanchard@ladhyx.polytechnique.fr; Schuller, T.; Centrale-Supélec, Grande Voie des Vignes, 92290 Châtenay-Malabry

    2015-04-15

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in themore » numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.« less

  8. ENVIRONMENT: a computational platform to stochastically simulate reacting and self-reproducing lipid compartments

    NASA Astrophysics Data System (ADS)

    Mavelli, Fabio; Ruiz-Mirazo, Kepa

    2010-09-01

    'ENVIRONMENT' is a computational platform that has been developed in the last few years with the aim to simulate stochastically the dynamics and stability of chemically reacting protocellular systems. Here we present and describe some of its main features, showing how the stochastic kinetics approach can be applied to study the time evolution of reaction networks in heterogeneous conditions, particularly when supramolecular lipid structures (micelles, vesicles, etc) coexist with aqueous domains. These conditions are of special relevance to understand the origins of cellular, self-reproducing compartments, in the context of prebiotic chemistry and evolution. We contrast our simulation results with real lab experiments, with the aim to bring together theoretical and experimental research on protocell and minimal artificial cell systems.

  9. Computational study of generic hypersonic vehicle flow fields

    NASA Technical Reports Server (NTRS)

    Narayan, Johnny R.

    1994-01-01

    The geometric data of the generic hypersonic vehicle configuration included body definitions and preliminary grids for the forebody (nose cone excluded), midsection (propulsion system excluded), and afterbody sections. This data was to be augmented by the nose section geometry (blunt conical section mated with the noncircular cross section of the forebody initial plane) along with a grid and a detailed supersonic combustion ramjet (scramjet) geometry (inlet and combustor) which should be merged with the nozzle portion of the afterbody geometry. The solutions were to be obtained by using a Navier-Stokes (NS) code such as TUFF for the nose portion, a parabolized Navier-Stokes (PNS) solver such as the UPS and STUFF codes for the forebody, a NS solver with finite rate hydrogen-air chemistry capability such as TUFF and SPARK for the scramjet and a suitable solver (NS or PNS) for the afterbody and external nozzle flows. The numerical simulation of the hypersonic propulsion system for the generic hypersonic vehicle is the major focus of this entire work. Supersonic combustion ramjet is such a propulsion system, hence the main thrust of the present task has been to establish a solution procedure for the scramjet flow. The scramjet flow is compressible, turbulent, and reacting. The fuel used is hydrogen and the combustion process proceeds at a finite rate. As a result, the solution procedure must be capable of addressing such flows.

  10. Investigation of supersonic chemically reacting and radiating channel flow

    NASA Technical Reports Server (NTRS)

    Mani, Mortaza; Tiwari, Surendra N.

    1988-01-01

    The 2-D time-dependent Navier-Stokes equations are used to investigate supersonic flows undergoing finite rate chemical reaction and radiation interaction for a hydrogen-air system. The explicit multistage finite volume technique of Jameson is used to advance the governing equations in time until convergence is achieved. The chemistry source term in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The multidimensional radiative transfer equations for a nongray model are provided for a general configuration and then reduced for a planar geometry. Both pseudo-gray and nongray models are used to represent the absorption-emission characteristics of the participating species. The supersonic inviscid and viscous, nonreacting flows are solved by employing the finite volume technique of Jameson and the unsplit finite difference scheme of MacCormack. The specified problem considered is of the flow in a channel with a 10 deg compression-expansion ramp. The calculated results are compared with those of an upwind scheme. The problem of chemically reacting and radiating flows are solved for the flow of premixed hydrogen-air through a channel with parallel boundaries, and a channel with a compression corner. Results obtained for specific conditions indicate that the radiative interaction can have a significant influence on the entire flow field.

  11. Exhaust plume impingement of chemically reacting gas-particle flows

    NASA Technical Reports Server (NTRS)

    Smith, S. D.; Penny, M. M.; Greenwood, T. F.; Roberts, B. B.

    1975-01-01

    A series of computer codes has been developed to predict gas-particle flows and resulting impingement forces, moments and heating rates to surfaces immersed in the flow. The gas-particle flow solution is coupled via heat transfer and drag between the phases with chemical effects included in the gas phase. The flow solution and impingement calculations are discussed. Analytical results are compared with test data obtained to evaluate gas-particle effects on the Space Shuttle thermal protection system during the staging maneuver.

  12. Montmorillonite Dissolution in Simulated Lung Fluids

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Wendlandt, R. F.

    2008-12-01

    Because lung fluids" first interaction is with the surface of inhaled grains, the surface properties of inhaled mineral dusts may have a generally mitigating effect on cytotoxicity and carcinogenicity. Wendlandt et al. (Appl. Geochem. 22, 2007) investigated the surface properties of respirable-sized quartz grains in bentonites and recognized pervasive montmorillonite surface coatings on silica grains. The purpose of this study was to determine the dissolution rate and biodurability of montmorillonite in simulated lung fluids and to assess its potential to mitigate silica cytotoxicity. Modified batch reaction experiments were conducted on purified and size fractionated calcic (SAz-2; 0.4-5 μm) and sodic (DC-2; 0.4-2 μm) montmorillonites for 120 to 160 days of reaction time at 37°C in both simulated extracellular lung fluid (Lu) and simulated lysosomal fluid (Ly). Modified batch experiments simulated a flow-through setup and minimized sample handling difficulties. Reacted Lu and Ly fluid was analyzed for Mg, Al, and Si on an ICP-OE spectrometer. Steady state dissolution was reached 90-100 days after the start of the experiment and maintained for 40-60 days. Measured montmorillonite dissolution rates based on BET surface areas and Si steady state release range from 4.1x10-15 mol/m2/s at the slowest to 1.0x10-14 mol/m2/s at the fastest with relative uncertainties of less than 10%. Samples reacting in Ly (pH = 4.55) dissolved faster than those in Lu (pH = 7.40), and DC-2 dissolved faster than SAz-2. The measured range of biodurabilities was 1,300 to 3,400 years for a 1 μm grain assuming a spherical volume and a molar volume equal to that of illite. The difference in salinities of the two fluids was too slight to draw conclusions about the relationship of ionic strength to dissolution rate. Results indicate that montmorillonite dissolution is incongruent and edge controlled. Dissolution rates for DC- 2 and SAz-2 clays were comparable to those reported in the literature. Biodurability results fall well beyond the lifespan of humans confirming montmorillonite's potential to mitigate silica cytotoxicity.

  13. Fuel-Air Mixing and Combustion in Scramjets. Chapter 6

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Diskin, Glenn S.; Cutler, Andrew D.

    2006-01-01

    At flight speeds, the residence time for atmospheric air ingested into a scramjet inlet and exiting from the engine nozzle is on the order of a millisecond. Therefore, fuel injected into the air must efficiently mix within tens of microseconds and react to release its energy in the combustor. The overall combustion process should be mixing controlled to provide a stable operating environment; in reality, however, combustion in the upstream portion of the combustor, particularly at higher Mach numbers, is kinetically controlled where ignition delay times are on the same order as the fluid scale. Both mixing and combustion time scales must be considered in a detailed study of mixing and reaction in a scramjet to understand the flow processes and to ultimately achieve a successful design. Although the geometric configuration of a scramjet is relatively simple compared to a turbomachinery design, the flow physics associated with the simultaneous injection of fuel from multiple injector configurations, and the mixing and combustion of that fuel downstream of the injectors is still quite complex. For this reason, many researchers have considered the more tractable problem of a spatially developing, primarily supersonic, chemically reacting mixing layer or jet that relaxes only the complexities introduced by engine geometry. All of the difficulties introduced by the fluid mechanics, combustion chemistry, and interactions between these phenomena can be retained in the reacting mixing layer, making it an ideal problem for the detailed study of supersonic reacting flow in a scramjet. With a good understanding of the physics of the scramjet internal flowfield, the designer can then return to the actual scramjet geometry with this knowledge and apply engineering design tools that more properly account for the complex physics. This approach will guide the discussion in the remainder of this section.

  14. Detonation Velocity Calculations of Explosives with Slowly-Burning Constituents

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael; Souers, P. Clark; Fried, Laurence E.

    1997-07-01

    The thermochemical code Equilbrium CHEETAH has been modified to allow partial reaction of constituents and partial flow of heat. Solid or liquid reactants are described by Einstein oscillators, whose temperatures can be changed to allow heat transfer. Hydroxy-terminated-poly-budadiene, mixed with RDX or HMX, does not react, as shown by the effect on the calculated detonation velocity. Aluminum and ammonium perchlorate in composites also do not react. Only partial heat flow also takes place in the unreacted materials. These results show that the usual assumption of total burn in a thermochemical code is probably incorrect, at least in the sonic reaction zone that drives the detonation velocity. A kinetic code would be the logical extension of this work.

  15. A shock capturing technique for hypersonic, chemically relaxing flows

    NASA Technical Reports Server (NTRS)

    Eberhardt, S.; Brown, K.

    1986-01-01

    A fully coupled, shock capturing technique is presented for chemically reacting flows at high Mach numbers. The technique makes use of a total variation diminishing (TVD) dissipation operator which results in sharp, crisp shocks. The eigenvalues and eigenvectors of the fully coupled system, which includes species conversion equations in addition to the gas dynamics equations, are analytically derived for a general reacting gas. Species production terms for a model dissociating gas are introduced and are included in the algorithm. The convective terms are solved using a first-order TVD scheme while the source terms are solved using a fourth-order Runge-Kutta scheme to enhance stability. Results from one-dimensional numerical experiments are shown for a two species and a three species gas.

  16. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Foy, E.; Ronan, G.; Chinitz, W.

    1982-01-01

    A principal element to be derived from modeling turbulent reacting flows is an expression for the reaction rates of the various species involved in any particular combustion process under consideration. A temperature-derived most-likely probability density function (pdf) was used to describe the effects of temperature fluctuations on the Arrhenius reaction rate constant. A most-likely bivariate pdf described the effects of temperature and species concentrations fluctuations on the reaction rate. A criterion is developed for the use of an "appropriate" temperature pdf. The formulation of models to calculate the mean turbulent Arrhenius reaction rate constant and the mean turbulent reaction rate is considered and the results of calculations using these models are presented.

  17. Application of PDF methods to compressible turbulent flows

    NASA Astrophysics Data System (ADS)

    Delarue, B. J.; Pope, S. B.

    1997-09-01

    A particle method applying the probability density function (PDF) approach to turbulent compressible flows is presented. The method is applied to several turbulent flows, including the compressible mixing layer, and good agreement is obtained with experimental data. The PDF equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic variables such as the pressure and the internal energy. The mean pressure, the determination of which has been the object of active research over the last few years, is obtained directly from the particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type solver. The stochastic differential equations (SDE) which model the evolution of particle properties are based on existing second-order closures for compressible turbulence, limited in application to low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare the performances of the PDF method with the Reynolds-stress closures from which it is derived, and in homogeneous shear flows, at which stage comparison with direct numerical simulation (DNS) data is conducted. The model is then applied to the plane compressible mixing layer, reproducing the well-known decrease in the spreading rate with increasing compressibility. It must be emphasized that the goal of this paper is not as much to assess the performance of models of compressibility effects, as it is to present an innovative and consistent PDF formulation designed for turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with supersonic reacting flows.

  18. Controlled nitric oxide production via O( 1D)+N 2O reactions for use in oxidation flow reactor studies

    DOE PAGES

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; ...

    2017-06-22

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O 3) is photolyzed at 254 nm to produce O( 1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O 3 hinders the ability of oxidation flow reactors to simulate NO x-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NO x (NO+NO 2) to nitric acid (HNO 3), making it impossible to sustain NOmore » x at levels that are sufficient to compete with hydroperoxy (HO 2) radicals as a sink for organic peroxy (RO 2) radicals. We developed a new method that is well suited to the characterization of NO x-dependent SOA formation pathways in oxidation flow reactors. NO and NO 2 are produced via the reaction O( 1D) + N 2O → 2NO, followed by the reaction NO + O 3 → NO 2+O 2. Laboratory measurements coupled with photochemical model simulations suggest that O( 1D) + N 2O reactions can be used to systematically vary the relative branching ratio of RO 2 + NO reactions relative to RO 2 + HO 2 and/or RO 2 + RO 2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO 3 -) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NO x-influenced environments and in laboratory chamber experiments.« less

  19. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William

    2017-06-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  20. Controlled nitric oxide production via O( 1D)+N 2O reactions for use in oxidation flow reactor studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O 3) is photolyzed at 254 nm to produce O( 1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O 3 hinders the ability of oxidation flow reactors to simulate NO x-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NO x (NO+NO 2) to nitric acid (HNO 3), making it impossible to sustain NOmore » x at levels that are sufficient to compete with hydroperoxy (HO 2) radicals as a sink for organic peroxy (RO 2) radicals. We developed a new method that is well suited to the characterization of NO x-dependent SOA formation pathways in oxidation flow reactors. NO and NO 2 are produced via the reaction O( 1D) + N 2O → 2NO, followed by the reaction NO + O 3 → NO 2+O 2. Laboratory measurements coupled with photochemical model simulations suggest that O( 1D) + N 2O reactions can be used to systematically vary the relative branching ratio of RO 2 + NO reactions relative to RO 2 + HO 2 and/or RO 2 + RO 2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO 3 -) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NO x-influenced environments and in laboratory chamber experiments.« less

  1. Controlled Nitric Oxide Production via O(1D) + N2O Reactions for Use in Oxidation Flow Reactor Studies

    NASA Technical Reports Server (NTRS)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; hide

    2017-01-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO+NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D)+N2O->2NO, followed by the reaction NO+O3->NO2+O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D)+N2O reactions can be used to systematically vary the relative branching ratio of RO2 +NO reactions relative to RO2 +HO2 and/or RO2+RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO-3 ) reagent ion to detect gas-phase oxidation products of isoprene and -pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  2. An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows

    NASA Astrophysics Data System (ADS)

    Sewerin, Fabian; Rigopoulos, Stelios

    2017-10-01

    Many chemical and environmental processes involve the formation of a polydispersed particulate phase in a turbulent carrier flow. Frequently, the immersed particles are characterized by an intrinsic property such as the particle size, and the distribution of this property across a sample population is taken as an indicator for the quality of the particulate product or its environmental impact. In the present article, we propose a comprehensive model and an efficient numerical solution scheme for predicting the evolution of the property distribution associated with a polydispersed particulate phase forming in a turbulent reacting flow. Here, the particulate phase is described in terms of the particle number density whose evolution in both physical and particle property space is governed by the population balance equation (PBE). Based on the concept of large eddy simulation (LES), we augment the existing LES-transported probability density function (PDF) approach for fluid phase scalars by the particle number density and obtain a modeled evolution equation for the filtered PDF associated with the instantaneous fluid composition and particle property distribution. This LES-PBE-PDF approach allows us to predict the LES-filtered fluid composition and particle property distribution at each spatial location and point in time without any restriction on the chemical or particle formation kinetics. In view of a numerical solution, we apply the method of Eulerian stochastic fields, invoking an explicit adaptive grid technique in order to discretize the stochastic field equation for the number density in particle property space. In this way, sharp moving features of the particle property distribution can be accurately resolved at a significantly reduced computational cost. As a test case, we consider the condensation of an aerosol in a developed turbulent mixing layer. Our investigation not only demonstrates the predictive capabilities of the LES-PBE-PDF model but also indicates the computational efficiency of the numerical solution scheme.

  3. Effect of finite-rate chemistry and unequal Schmidt numbers on turbulent non-premixed flames modeled with single-step chemistry

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.

    1992-01-01

    The interaction between a quasi-laminar flame and a turbulent flowfield is investigated through direct numerical simulations (DNS) of reacting flow in two- and three-dimensional domains. Effects due to finite-rate chemistry are studied using a single step global reaction A (fuel) + B (oxidizer) yields P (product), and by varying a global Damkoehler number, as a result of which the turbulence-chemistry interaction in the flame is found to generate a wide variety of conditions, ranging from near-equilibrium to near-extinction. Differential diffusion effects are studied by changing the Schmidt number of one reactive species to one-half. It is observed that laminar flamelet response is followed within the turbulent flowfield, except in regions where transient effects seem to dominate.

  4. Sensitivity and Nonlinearity of Thermoacoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Juniper, Matthew P.; Sujith, R. I.

    2018-01-01

    Nine decades of rocket engine and gas turbine development have shown that thermoacoustic oscillations are difficult to predict but can usually be eliminated with relatively small ad hoc design changes. These changes can, however, be ruinously expensive to devise. This review explains why linear and nonlinear thermoacoustic behavior is so sensitive to parameters such as operating point, fuel composition, and injector geometry. It shows how nonperiodic behavior arises in experiments and simulations and discusses how fluctuations in thermoacoustic systems with turbulent reacting flow, which are usually filtered or averaged out as noise, can reveal useful information. Finally, it proposes tools to exploit this sensitivity in the future: adjoint-based sensitivity analysis to optimize passive control designs and complex systems theory to warn of impending thermoacoustic oscillations and to identify the most sensitive elements of a thermoacoustic system.

  5. Development and Demonstration of a Computational Tool for the Analysis of Particle Vitiation Effects in Hypersonic Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Perkins, Hugh Douglas

    2010-01-01

    In order to improve the understanding of particle vitiation effects in hypersonic propulsion test facilities, a quasi-one dimensional numerical tool was developed to efficiently model reacting particle-gas flows over a wide range of conditions. Features of this code include gas-phase finite-rate kinetics, a global porous-particle combustion model, mass, momentum and energy interactions between phases, and subsonic and supersonic particle drag and heat transfer models. The basic capabilities of this tool were validated against available data or other validated codes. To demonstrate the capabilities of the code a series of computations were performed for a model hypersonic propulsion test facility and scramjet. Parameters studied were simulated flight Mach number, particle size, particle mass fraction and particle material.

  6. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  7. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Somnath, E-mail: sghosh@aero.iitkgp.ernet.in; Friedrich, Rainer

    2015-05-15

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. Themore » filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.« less

  8. Experimental and Numerical Investigation of Vortical Structures in Lean Premixed Swirl-Stabilized Combustion

    NASA Astrophysics Data System (ADS)

    Taamallah, Soufien; Chakroun, Nadim; Shanbhogue, Santosh; Kewlani, Gaurav; Ghoniem, Ahmed

    2015-11-01

    A combined experimental and LES investigation is performed to identify the origin of major flow dynamics and vortical structures in a model gas turbine's swirl-stabilized turbulent combustor. Swirling flows in combustion lead to the formation of complex flow dynamics and vortical structures that can interact with flames and influence its stabilization. Our experimental results for non-reacting flow show the existence of large scale precession motion. The precessing vortex core (PVC) dynamics disappears with combustion but only above a threshold of equivalence ratio. In addition, large scale vortices along the inner shear layer (ISL) are observed. These structures interact with the ISL stabilized flame and contribute to its wrinkling. Next, the LES setup is validated against the flow field's low-order statistics and point temperature measurement in relevant areas of the chamber. Finally, we show that LES is capable of predicting the precession motion as well as the ISL vortices in the reacting case: we find that ISL vortices originate from a vortex core that is formed right downstream of the swirler's centerbody. The vortex core has a conical spiral shape resembling a corkscrew that interacts - as it winds out - with the flame when it reaches the ISL.

  9. Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Hua, Jia-Chen; Barnhill, Will; Gunaratne, Gemunu H.; Gord, James R.

    2015-01-01

    Analytical and computational studies of reacting flows are extremely challenging due in part to nonlinearities of the underlying system of equations and long-range coupling mediated by heat and pressure fluctuations. However, many dynamical features of the flow can be inferred through low-order models if the flow constituents (e.g., eddies or vortices) and their symmetries, as well as the interactions among constituents, are established. Modal decompositions of high-frequency, high-resolution imaging, such as measurements of species-concentration fields through planar laser-induced florescence and of velocity fields through particle-image velocimetry, are the first step in the process. A methodology is introduced for deducing the flow constituents and their dynamics following modal decomposition. Proper orthogonal (POD) and dynamic mode (DMD) decompositions of two classes of problems are performed and their strengths compared. The first problem involves a cellular state generated in a flat circular flame front through symmetry breaking. The state contains two rings of cells that rotate clockwise at different rates. Both POD and DMD can be used to deconvolve the state into the two rings. In POD the contribution of each mode to the flow is quantified using the energy. Each DMD mode can be associated with an energy as well as a unique complex growth rate. Dynamic modes with the same spatial symmetry but different growth rates are found to be combined into a single POD mode. Thus, a flow can be approximated by a smaller number of POD modes. On the other hand, DMD provides a more detailed resolution of the dynamics. Two classes of reacting flows behind symmetric bluff bodies are also analyzed. In the first, symmetric pairs of vortices are released periodically from the two ends of the bluff body. The second flow contains von Karman vortices also, with a vortex being shed from one end of the bluff body followed by a second shedding from the opposite end. The way in which DMD can be used to deconvolve the second flow into symmetric and von Karman vortices is demonstrated. The analyses performed illustrate two distinct advantages of DMD: (1) Unlike proper orthogonal modes, each dynamic mode is associated with a unique complex growth rate. By comparing DMD spectra from multiple nominally identical experiments, it is possible to identify "reproducible" modes in a flow. We also find that although most high-energy modes are reproducible, some are not common between experimental realizations; in the examples considered, energy fails to differentiate between reproducible and nonreproducible modes. Consequently, it may not be possible to differentiate reproducible and nonreproducible modes in POD. (2) Time-dependent coefficients of dynamic modes are complex. Even in noisy experimental data, the dynamics of the phase of these coefficients (but not their magnitude) are highly regular. The phase represents the angular position of a rotating ring of cells and quantifies the downstream displacement of vortices in reacting flows. Thus, it is suggested that the dynamical characterizations of complex flows are best made through the phase dynamics of reproducible DMD modes.

  10. Laboratory Anion Chemistry: Implications for the DIBs, and a Potential Formation Mechanism for a Known Interstellar Molecule

    NASA Technical Reports Server (NTRS)

    Eichelberger, B.; Barckholtz, C.; Stepanovic, M.; Bierbaum, V.; Snow, T.

    2002-01-01

    Due to recent interest in molecular anions as possible interstellar species, we have carried out several laboratory studies of anion chemistry. The reactions of the series C(sub n)(sup -); and C(sub n)H(sup -) with H and H2 were studied to address the viability of such species in the diffuse interstellar medium and to address their ability to be carriers of the diffuse interstellar bands (DIBs). These same molecules were also reacted with N and O to show possible heteroatomic products. C(sub m)N(sup - was a particularly stable product from the reaction of C(sub n)(sup -) + N. C3N(sup -) was further reacted with H to study chemistry that could produce HC3N, a known interstellar species. The reactions were done in a flowing afterglow selected ion flow tube apparatus (FA-SIFT). The anions were generated in an electron impact or cold cathode discharge source and the anion of interest was then selected by a quadrupole mass filter. The selected ion was then reacted with the atomic or molecular species in the flow tube and products were detected by another quadrupole. While the C(sub n)(sup -) species do not appear to be viable DIB carriers, their possible presence could provide a mechanism for the formation of known heteroatomic neutral molecules detected in the interstellar medium (ISM).

  11. Frozen reaction fronts in steady flows: A burning-invariant-manifold perspective

    NASA Astrophysics Data System (ADS)

    Mahoney, John R.; Li, John; Boyer, Carleen; Solomon, Tom; Mitchell, Kevin A.

    2015-12-01

    The dynamics of fronts, such as chemical reaction fronts, propagating in two-dimensional fluid flows can be remarkably rich and varied. For time-invariant flows, the front dynamics may simplify, settling in to a steady state in which the reacted domain is static, and the front appears "frozen." Our central result is that these frozen fronts in the two-dimensional fluid are composed of segments of burning invariant manifolds, invariant manifolds of front-element dynamics in x y θ space, where θ is the front orientation. Burning invariant manifolds (BIMs) have been identified previously as important local barriers to front propagation in fluid flows. The relevance of BIMs for frozen fronts rests in their ability, under appropriate conditions, to form global barriers, separating reacted domains from nonreacted domains for all time. The second main result of this paper is an understanding of bifurcations that lead from a nonfrozen state to a frozen state, as well as bifurcations that change the topological structure of the frozen front. Although the primary results of this study apply to general fluid flows, our analysis focuses on a chain of vortices in a channel flow with an imposed wind. For this system, we present both experimental and numerical studies that support the theoretical analysis developed here.

  12. Experimental Reacting Hydrogen Shear Layer Data at High Subsonic Mach Number

    NASA Technical Reports Server (NTRS)

    Chang, C. T.; Marek, C. J.; Wey, C.; Wey, C. C.

    1996-01-01

    The flow in a planar shear layer of hydrogen reacting with hot air was measured with a two-component laser Doppler velocimeter (LDV) system, a schlieren system, and OH fluorescence imaging. It was compared with a similar air-to-air case without combustion. The high-speed stream's flow speed was about 390 m/s, or Mach 0.71, and the flow speed ratio was 0.34. The results showed that a shear layer with reaction grows faster than one without; both cases are within the range of data scatter presented by the established data base. The coupling between the streamwise and the cross-stream turbulence components inside the shear layers was low, and reaction only increased it slightly. However, the shear layer shifted laterally into the lower speed fuel stream, and a more organized pattern of Reynolds stress was present in the reaction shear layer, likely as a result of the formation of a larger scale structure associated with shear layer corrugation from heat release. Dynamic pressure measurements suggest that coherent flow perturbations existed inside the shear layer and that this flow became more chaotic as the flow advected downstream. Velocity and thermal variable values are listed in this report for a computational fluid dynamics (CFD) benchmark.

  13. Natural hidden antibodies reacting with DNA or cardiolipin bind to thymocytes and evoke their death.

    PubMed

    Zamulaeva, I A; Lekakh, I V; Kiseleva, V I; Gabai, V L; Saenko, A S; Shevchenko, A S; Poverenny, A M

    1997-08-18

    Both free and hidden natural antibodies to DNA or cardiolipin were obtained from immunoglobulins of a normal donor. The free antibodies reacting with DNA or cardiolipin were isolated by means of affinity chromatography. Antibodies occurring in an hidden state were disengaged from the depleted immunoglobulins by ion-exchange chromatography and were then affinity-isolated on DNA or cardiolipin sorbents. We used flow cytometry to study the ability of free and hidden antibodies to bind to rat thymocytes. Simultaneously, plasma membrane integrity was tested by propidium iodide (PI) exclusion. The hidden antibodies reacted with 65.2 +/- 10.9% of the thymocytes and caused a fast plasma membrane disruption. Cells (28.7 +/- 7.1%) were stained with PI after incubation with the hidden antibodies for 1 h. The free antibodies bound to a very small fraction of the thymocytes and did not evoke death as compared to control without antibodies. The possible reason for the observed effects is difference in reactivity of the free and hidden antibodies to phospholipids. While free antibodies reacted preferentially with phosphotidylcholine, hidden antibodies reacted with cardiolipin and phosphotidylserine.

  14. Passenger rail security, planning, and resilience: application of network, plume, and economic simulation models as decision support tools.

    PubMed

    Greenberg, Michael; Lioy, Paul; Ozbas, Birnur; Mantell, Nancy; Isukapalli, Sastry; Lahr, Michael; Altiok, Tayfur; Bober, Joseph; Lacy, Clifton; Lowrie, Karen; Mayer, Henry; Rovito, Jennifer

    2013-11-01

    We built three simulation models that can assist rail transit planners and operators to evaluate high and low probability rail-centered hazard events that could lead to serious consequences for rail-centered networks and their surrounding regions. Our key objective is to provide these models to users who, through planning with these models, can prevent events or more effectively react to them. The first of the three models is an industrial systems simulation tool that closely replicates rail passenger traffic flows between New York Penn Station and Trenton, New Jersey. Second, we built and used a line source plume model to trace chemical plumes released by a slow-moving freight train that could impact rail passengers, as well as people in surrounding areas. Third, we crafted an economic simulation model that estimates the regional economic consequences of a variety of rail-related hazard events through the year 2020. Each model can work independently of the others. However, used together they help provide a coherent story about what could happen and set the stage for planning that should make rail-centered transport systems more resistant and resilient to hazard events. We highlight the limitations and opportunities presented by using these models individually or in sequence. © 2013 Society for Risk Analysis.

  15. Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools

    PubMed Central

    Greenberg, Michael; Lioy, Paul; Ozbas, Birnur; Mantell, Nancy; Isukapalli, Sastry; Lahr, Michael; Altiok, Tayfur; Bober, Joseph; Lacy, Clifton; Lowrie, Karen; Mayer, Henry; Rovito, Jennifer

    2014-01-01

    We built three simulation models that can assist rail transit planners and operators to evaluate high and low probability rail-centered hazard events that could lead to serious consequences for rail-centered networks and their surrounding regions. Our key objective is to provide these models to users who, through planning with these models, can prevent events or more effectively react to them. The first of the three models is an industrial systems simulation tool that closely replicates rail passenger traffic flows between New York Penn Station and Trenton, New Jersey. Second, we built and used a line source plume model to trace chemical plumes released by a slow-moving freight train that could impact rail passengers, as well as people in surrounding areas. Third, we crafted an economic simulation model that estimates the regional economic consequences of a variety of rail-related hazard events through the year 2020. Each model can work independently of the others. However, used together they help provide a coherent story about what could happen and set the stage for planning that should make rail-centered transport systems more resistant and resilient to hazard events. We highlight the limitations and opportunities presented by using these models individually or in sequence. PMID:23718133

  16. Acetyl radical generation in cigarette smoke: Quantification and simulations

    NASA Astrophysics Data System (ADS)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  17. Pressure Distribution and Performance Impacts of Aerospike Nozzles on Rotating Detonation Engines

    DTIC Science & Technology

    2017-06-01

    design methodology at both on- and off-design conditions anticipated throughout the combustion cycle. Steady-state, non -reacting computational fluid...operation. Therefore, the nozzle contour was designed using a traditional, steady-state design methodology at both on- and off-design conditions...anticipated throughout the combustion cycle. Steady-state, non -reacting computational fluid dynamics (CFD) simulations were performed on various nozzle

  18. Large Eddy Simulation (LES) of Particle-Laden Temporal Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Radhakrishnan, Senthilkumaran

    2012-01-01

    High-fidelity models of plume-regolith interaction are difficult to develop because of the widely disparate flow conditions that exist in this process. The gas in the core of a rocket plume can often be modeled as a time-dependent, high-temperature, turbulent, reacting continuum flow. However, due to the vacuum conditions on the lunar surface, the mean molecular path in the outer parts of the plume is too long for the continuum assumption to remain valid. Molecular methods are better suited to model this region of the flow. Finally, granular and multiphase flow models must be employed to describe the dust and debris that are displaced from the surface, as well as how a crater is formed in the regolith. At present, standard commercial CFD (computational fluid dynamics) software is not capable of coupling each of these flow regimes to provide an accurate representation of this flow process, necessitating the development of custom software. This software solves the fluid-flow-governing equations in an Eulerian framework, coupled with the particle transport equations that are solved in a Lagrangian framework. It uses a fourth-order explicit Runge-Kutta scheme for temporal integration, an eighth-order central finite differencing scheme for spatial discretization. The non-linear terms in the governing equations are recast in cubic skew symmetric form to reduce aliasing error. The second derivative viscous terms are computed using eighth-order narrow stencils that provide better diffusion for the highest resolved wave numbers. A fourth-order Lagrange interpolation procedure is used to obtain gas-phase variable values at the particle locations.

  19. Reactive Transport Modeling of Induced Calcite Precipitation Reaction Fronts in Porous Media Using A Parallel, Fully Coupled, Fully Implicit Approach

    NASA Astrophysics Data System (ADS)

    Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.

    2010-12-01

    Inducing mineral precipitation in the subsurface is one potential strategy for immobilizing trace metal and radionuclide contaminants. Generating mineral precipitates in situ can be achieved by manipulating chemical conditions, typically through injection or in situ generation of reactants. How these reactants transport, mix and react within the medium controls the spatial distribution and composition of the resulting mineral phases. Multiple processes, including fluid flow, dispersive/diffusive transport of reactants, biogeochemical reactions and changes in porosity-permeability, are tightly coupled over a number of scales. Numerical modeling can be used to investigate the nonlinear coupling effects of these processes which are quite challenging to explore experimentally. Many subsurface reactive transport simulators employ a de-coupled or operator-splitting approach where transport equations and batch chemistry reactions are solved sequentially. However, such an approach has limited applicability for biogeochemical systems with fast kinetics and strong coupling between chemical reactions and medium properties. A massively parallel, fully coupled, fully implicit Reactive Transport simulator (referred to as “RAT”) based on a parallel multi-physics object-oriented simulation framework (MOOSE) has been developed at the Idaho National Laboratory. Within this simulator, systems of transport and reaction equations can be solved simultaneously in a fully coupled, fully implicit manner using the Jacobian Free Newton-Krylov (JFNK) method with additional advanced computing capabilities such as (1) physics-based preconditioning for solution convergence acceleration, (2) massively parallel computing and scalability, and (3) adaptive mesh refinements for 2D and 3D structured and unstructured mesh. The simulator was first tested against analytical solutions, then applied to simulating induced calcium carbonate mineral precipitation in 1D columns and 2D flow cells as analogs to homogeneous and heterogeneous porous media, respectively. In 1D columns, calcium carbonate mineral precipitation was driven by urea hydrolysis catalyzed by urease enzyme, and in 2D flow cells, calcium carbonate mineral forming reactants were injected sequentially, forming migrating reaction fronts that are typically highly nonuniform. The RAT simulation results for the spatial and temporal distributions of precipitates, reaction rates and major species in the system, and also for changes in porosity and permeability, were compared to both laboratory experimental data and computational results obtained using other reactive transport simulators. The comparisons demonstrate the ability of RAT to simulate complex nonlinear systems and the advantages of fully coupled approaches, over de-coupled methods, for accurate simulation of complex, dynamic processes such as engineered mineral precipitation in subsurface environments.

  20. An Inviscid Decoupled Method for the Roe FDS Scheme in the Reacting Gas Path of FUN3D

    NASA Technical Reports Server (NTRS)

    Thompson, Kyle B.; Gnoffo, Peter A.

    2016-01-01

    An approach is described to decouple the species continuity equations from the mixture continuity, momentum, and total energy equations for the Roe flux difference splitting scheme. This decoupling simplifies the implicit system, so that the flow solver can be made significantly more efficient, with very little penalty on overall scheme robustness. Most importantly, the computational cost of the point implicit relaxation is shown to scale linearly with the number of species for the decoupled system, whereas the fully coupled approach scales quadratically. Also, the decoupled method significantly reduces the cost in wall time and memory in comparison to the fully coupled approach. This work lays the foundation for development of an efficient adjoint solution procedure for high speed reacting flow.

  1. The Osher scheme for non-equilibrium reacting flows

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady; Liou, Meng-Sing

    1992-01-01

    An extension of the Osher upwind scheme to nonequilibrium reacting flows is presented. Owing to the presence of source terms, the Riemann problem is no longer self-similar and therefore its approximate solution becomes tedious. With simplicity in mind, a linearized approach which avoids an iterative solution is used to define the intermediate states and sonic points. The source terms are treated explicitly. Numerical computations are presented to demonstrate the feasibility, efficiency and accuracy of the proposed method. The test problems include a ZND (Zeldovich-Neumann-Doring) detonation problem for which spurious numerical solutions which propagate at mesh speed have been observed on coarse grids. With the present method, a change of limiter causes the solution to change from the physically correct CJ detonation solution to the spurious weak detonation solution.

  2. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Goldstein, D.; Magnotti, F.; Chinitz, W.

    1983-01-01

    Reaction rates in turbulent, reacting flows are reviewed. Assumed probability density functions (pdf) modeling of reaction rates is being investigated in relation to a three variable pdf employing a 'most likely pdf' model. Chemical kinetic mechanisms treating hydrogen air combustion is studied. Perfectly stirred reactor modeling of flame stabilizing recirculation regions was used to investigate the stable flame regions for silane, hydrogen, methane, and propane, and for certain mixtures thereof. It is concluded that in general, silane can be counted upon to stabilize flames only when the overall fuel air ratio is close to or greater than unity. For lean flames, silane may tend to destabilize the flame. Other factors favoring stable flames are high initial reactant temperatures and system pressure.

  3. CFD Evaluation of a 3rd Generation LDI Combustor

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2017-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-3 combustor design. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations for a nineteen-element injector array arranged in a three-module, 7-5-7 element configuration. All computations were performed with a consistent approach of mesh-optimization, spray-modeling, ignition and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that meets effective area and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.

  4. Diagnostic Imaging in Flames with Instantaneous Planar Coherent Raman Spectroscopy.

    PubMed

    Bohlin, A; Kliewer, C J

    2014-04-03

    Spatial mapping of temperature and molecular species concentrations is vitally important in studies of gaseous chemically reacting flows. Temperature marks the evolution of heat release and energy transfer, while species concentration gradients provide critical information on mixing and chemical reaction. Coherent anti-Stokes Raman spectroscopy (CARS) was pioneered in measurements of such processes almost 40 years ago and is authoritative in terms of the accuracy and precision it may provide. While a reacting flow is fully characterized in three-dimensional space, a limitation of CARS has been its applicability as a point-wise measurement technique, motivating advancement toward CARS imaging, and attempts have been made considering one-dimensional probing. Here, we report development of two-dimensional CARS, with the first diagnostics of a planar field in a combusting flow within a single laser pulse, resulting in measured isotherms ranging from 450 K up to typical hydrocarbon flame temperatures of about 2000 K with chemical mapping of O2 and N2.

  5. User's manual for a TEACH computer program for the analysis of turbulent, swirling reacting flow in a research combustor

    NASA Technical Reports Server (NTRS)

    Chiappetta, L. M.

    1983-01-01

    Described is a computer program for the analysis of the subsonic, swirling, reacting turbulent flow in an axisymmetric, bluff-body research combustor. The program features an improved finite-difference procedure designed to reduce the effects of numerical diffusion and a new algorithm for predicting the pressure distribution within the combustor. A research version of the computer program described in the report was supplied to United Technologies Research Center by Professor A. D. Gosman and his students, R. Benodeker and R. I. Issa, of Imperial College, London. The Imperial College staff also supplied much of the program documentation. Presented are a description of the mathematical model for flow within an axisymmetric bluff-body combustor, the development of the finite-difference procedure used to represent the system of equations, an outline of the algorithm for determining the static pressure distribution within the combustor, a description of the computer program including its input format, and the results for representative test cases.

  6. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Foy, E.; Rowan, G.; Goldstein, D.

    1982-01-01

    The use of probability theory to determine the effects of turbulent fluctuations on reaction rates in turbulent combustion systems is briefly reviewed. Results are presented for the effect of species fluctuations in particular. It is found that turbulent fluctuations of species act to reduce the reaction rates, in contrast with the temperature fluctuations previously determined to increase Arrhenius reaction rate constants. For the temperature fluctuations, a criterion is set forth for determining if, in a given region of a turbulent flow field, the temperature can be expected to exhibit ramp like fluctuations. Using the above results, along with results previously obtained, a model is described for testing the effects of turbulent fluctuations of temperature and species on reaction rates in computer programs dealing with turbulent reacting flows. An alternative model which employs three variable probability density functions (temperature and two species) and is currently being formulated is discussed as well.

  7. Nursing Students' Nonverbal Reactions to Malodor in Wound Care Simulation

    ERIC Educational Resources Information Center

    Baker, Gloria Waters

    2012-01-01

    Background: Wound care is an essential competency which nursing students are expected to acquire. To foster students' competency, nurse educators use high fidelity simulation to expose nursing students to various wound characteristics. Problem: Little is known about how nursing students react to simulated wound characteristics. Malodor is a…

  8. Investigation of a reacting jet injected into vitiated crossflow using CARS, high repetition rate OH-PLIF, and high repetition rate PIV

    NASA Astrophysics Data System (ADS)

    Roa, Mario

    The proposed PhD thesis research program will be carried out in a staged combustion test rig developed with funding from Siemens Power Generation Inc. and the United States Department of Energy. This research program will study the reacting flow field created by an injector that is axially distributed along the combustor with use the laser diagnostics methods: Coherent Anti-Stokes Raman Spectroscopy (CARS), high repetition rate OH Planar Laser Induced Florescence (OHPLIF), and high repetition rate Particle Image Velocimetry (PIV), to determine why certain conditions result in low NOx emissions. This data will be used to validated the development of more precise computer models. These laser diagnostic techniques will be applied to the reacting jet produced using an extended, premixed 10 mm injector using both natural gas (NG) and hydrogen (H2) as fuels. The objective of this thesis research is to use advance laser diagnostics to gain insight into the reacting flow field resulting form transverse injection into a vitiated cross flow. The advance laser diagnostics will also provide insight into pollution formation mechanisms and will be used for validating CFD models of the transverse jet injection. The following measurements will be performed: (1) dual pump nitrogen/hydrogen (H2/ N2) CARS at the midplane of the extended 10 mm nozzle, (2) high repetition rate OH-PLIF and emission sampling for the same extended nozzle using NG and H2 as secondary fuel, (3) and combing both high repetition OH-PLIF and high repetition rate PIV for extended 10 mm nozzle for both NG and H2 secondary fuel. The PIV measurements will be combined with OH-PLIF in a simultaneous manner, with the OH fluorescence centered between the two PIV laser pulses. The dual pump H2/N2 CARS system will be used to measure both temperature of the reacting jet and the species concentration ratio of H2/ N2. The high repetition rate OH-PLIF, conducted with a 5 kHz, dual cavity Nd:YAG laser that optically pumps a dye laser tuned to the Q1(7) OH florescence transition. It will be used to visualize the flame front of the reacting jet. The high repetition rate PIV will be performed with a dual cavity laser at 10 kHz. High repetition rate PIV will be used to characterize the velocity and vortical structures produced in the reacting flow field. This research project will aid in the understanding of NOx creation in an staged gas turbine combustor and provide crucial data that will be used to develop precise computer models that will be used in designing the next power generation gas turbines. As power generation turbines increase in usage in future due to the abundance of NG as a fuel source or H 2 gas produced via green energy policies, it will be vital to make these new generation turbines more efficient and further reduce pollutant emission levels.

  9. Effect of nanoscale flows on the surface structure of nanoporous catalysts.

    PubMed

    Montemore, Matthew M; Montessori, Andrea; Succi, Sauro; Barroo, Cédric; Falcucci, Giacomo; Bell, David C; Kaxiras, Efthimios

    2017-06-07

    The surface structure and composition of a multi-component catalyst are critical factors in determining its catalytic performance. The surface composition can depend on the local pressure of the reacting species, leading to the possibility that the flow through a nanoporous catalyst can affect its structure and reactivity. Here, we explore this possibility for oxidation reactions on nanoporous gold, an AgAu bimetallic catalyst. We use microscopy and digital reconstruction to obtain the morphology of a two-dimensional slice of a nanoporous gold sample. Using lattice Boltzmann fluid dynamics simulations along with thermodynamic models based on first-principles total-energy calculations, we show that some sections of this sample have low local O 2 partial pressures when exposed to reaction conditions, which leads to a pure Au surface in these regions, instead of the active bimetallic AgAu phase. We also explore the effect of temperature on the surface structure and find that moderate temperatures (≈300-450 K) should result in the highest intrinsic catalytic performance, in apparent agreement with experimental results.

  10. LES/FMDF of turbulent jet ignition in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration

    2015-11-01

    Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.

  11. Duct modes damping through an adjustable electroacoustic liner under grazing incidence

    NASA Astrophysics Data System (ADS)

    Boulandet, R.; Lissek, H.; Karkar, S.; Collet, M.; Matten, G.; Ouisse, M.; Versaevel, M.

    2018-07-01

    This paper deals with active sound attenuation in lined ducts with flow and its application to duct modes damping in aircraft engine nacelles. It presents an active lining concept based on an arrangement of electroacoustic absorbers flush mounted in the duct wall. Such feedback-controlled loudspeaker membranes are used to achieve locally reacting impedances with adjustable resistance and reactance. A broadband impedance model is formulated from the loudspeaker parameters and a design procedure is proposed to achieve specified acoustic resistances and reactances. The performance is studied for multimodal excitation by simulation using the finite element method and the results are compared to measurements made in a flow duct facility. This electroacoustic liner has an attenuation potential comparable to that of a conventional passive liner, but also offers greater flexibility to achieve the target acoustic impedance in the low frequencies. In addition, it is adaptive in real time to track variable engine speeds. It is shown with the liner prototype that the duct modes can be attenuated over a bandwidth of two octaves around the resonance frequency of the loudspeakers.

  12. Research activities at the Center for Modeling of Turbulence and Transition

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing

    1993-01-01

    The main research activities at the Center for Modeling of Turbulence and Transition (CMOTT) are described. The research objective of CMOTT is to improve and/or develop turbulence and transition models for propulsion systems. The flows of interest in propulsion systems can be both compressible and incompressible, three dimensional, bounded by complex wall geometries, chemically reacting, and involve 'bypass' transition. The most relevant turbulence and transition models for the above flows are one- and two-equation eddy viscosity models, Reynolds stress algebraic- and transport-equation models, pdf models, and multiple-scale models. All these models are classified as one-point closure schemes since only one-point (in time and space) turbulent correlations, such as second moments (Reynolds stresses and turbulent heat fluxes) and third moments, are involved. In computational fluid dynamics, all turbulent quantities are one-point correlations. Therefore, the study of one-point turbulent closure schemes is the focus of our turbulence research. However, other research, such as the renormalization group theory, the direct interaction approximation method, and numerical simulations are also pursued to support the development of turbulence modeling.

  13. Thermodynamics and the evolution of a city: a tale of how ...

    EPA Pesticide Factsheets

    Cities are complex organized systems, similar to biological and ecological systems in the way that they are structured and function. These systems are subject to the laws of thermodynamics and the principles of Energy Systems Theory (EST). Like other systems, cities experience larger scale drivers of change in resources. Unlike other ecosystems, cities react through socio-economic responses.Important contributions towards an integrated understanding of urban dynamics can be gained when their structures, functions and developments are interpreted within EST contexts.We have constructed a systems dynamics model that simulates some structural and functional aspects of Chicago in space and over time and we interpret model outcomes using EST. The purposes of the model are twofold, a knowledge base for integrating historical information, and for scenario modeling. Our history of Chicago starts in 1830 as a narrative, on the economic development and human population growth. Illustrated by a series of conceptual Energy Systems Models, it describes changes in trade, land tenure, and transportation as a result of increased access to nonlocal resources. Our simulation model, covers the post-World War II period to the present, and examines changes in population and its distribution on the landscape, material and energy flows, alterations of fresh water flows and management of wastewater. Scenario modeling is performed using a platform that estimates the potential impli

  14. Hysteresis of mode transition in a dual-struts based scramjet

    NASA Astrophysics Data System (ADS)

    Yan, Zhang; Shaohua, Zhu; Bing, Chen; Xu, Xu

    2016-11-01

    Tests and numerical simulations were performed to investigate the combustion performance of a dual-staged scramjet combustor. High enthalpy vitiated inflow at a total temperature of 1231 K was supplied using a hydrogen-combustion heater. The inlet Mach number was 2.0. Liquid kerosene was injected into the combustor using the dual crossed struts. Three-dimensional Reynolds averaged reacting flow was solved using a two-equation k-ω SST turbulence model to calculate the effect of turbulent stress, and a partial-premixed flamelet model to model the effects of turbulence-chemistry interactions. The discrete phase model was utilized to simulate the fuel atomization and vaporization. For simplicity, the n-decane was chosen as the surrogate fuel with a reaction mechanism of 40 species and 141 steps. The predicted wall pressure profiles at three fuel injection schemes basically captured the axial varying trend of the experimental data. With the downstream equivalence ratio held constant, the upstream equivalence ratio was numerically increased from 0.1 to 0.4 until a steady combustion was obtained. Subsequently, the upstream equivalence ratio was decreased from 0.4 to 0.1 once again. Two ramjet modes with different wall pressure profiles and corresponding flow structures were captured under the identical upstream equivalence ratio of 0.1, illustrating an obvious hysteresis phenomenon. The mechanism of this hysteresis was explained by the transition hysteresis of the pre-combustion shock train in the isolator.

  15. Double shock experiments and reactive flow modeling on LX-17 to understand the reacted equation of state

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Garcia, Frank; Fried, Laurence E.; Tarver, Craig M.

    2014-05-01

    Experimental data from measurements of the reacted state of an energetic material are desired to incorporate reacted states in modeling by computer codes. In a case such as LX-17 (92.5% TATB and 7.5% Kel-F by weight), where the time dependent kinetics of reaction is still not fully understood and the reacted state may evolve over time, this information becomes even more vital. Experiments were performed to measure the reacted state of LX-17 using a double shock method involving the use of two flyer materials (with known properties) mounted on the projectile that send an initial shock through the material close to or above the Chapman-Jouguet (CJ) state followed by a second shock at a higher magnitude into the detonated material. By measuring the parameters of the first and second shock waves, information on the reacted state can be obtained. The LX-17 detonation reaction zone profiles plus the arrival times and amplitudes of reflected shocks in LX-17 detonation reaction products were measured using Photonic Doppler Velocimetry (PDV) probes and an aluminum foil coated LiF window. A discussion of this work will include the experimental parameters, velocimetry profiles, data interpretation, reactive CHEETAH and Ignition and Growth modeling, as well as detail on possible future experiments.

  16. Premature detonation of an NH₄NO₃ emulsion in reactive ground.

    PubMed

    Priyananda, Pramith; Djerdjev, Alex M; Gore, Jeff; Neto, Chiara; Beattie, James K; Hawkett, Brian S

    2015-01-01

    When NH4NO3 emulsions are used in blast holes containing pyrite, they can exothermally react with pyrite, causing the emulsion to intensively heat and detonate prematurely. Such premature detonations can inflict fatal and very costly damages. The mechanism of heating of the emulsions is not well understood though such an understanding is essential for designing safe blasting. In this study the heating of an emulsion in model blast holes was simulated by solving the heat equation. The physical factors contributing to the heating phenomenon were studied using microscopic and calorimetric methods. Microscopic studies revealed the continuous formation of a large number of gas bubbles as the reaction progressed at the emulsion-pyrite interface, which made the reacting emulsion porous. Calculations show that the increase in porosity causes the thermal conductivity of a reacting region of an emulsion column in a blast hole to decrease exponentially. This large reduction in the thermal conductivity retards heat dissipation from the reacting region causing its temperature to rise. The rise in temperature accelerates the exothermic reaction producing more heat. Simulations predict a migration of the hottest spot of the emulsion column, which could dangerously heat the primers and boosters located in the blast hole. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Evaluation of Heat Recuperation in a Concentric Hydrogen Reduction Reactor

    NASA Technical Reports Server (NTRS)

    Linne, Diane; Kleinhenz, Julie; Hegde, Uday

    2012-01-01

    Heat recuperation in an ISRU reactor system involves the recovery of heat from a reacted regolith batch by transferring this energy into a batch of fresh regolith. One concept for a hydrogen reduction reactor is a concentric chamber design where heat is transferred from the inner, reaction chamber into fresh regolith in the outer, recuperation chamber. This concept was tested and analyzed to define the overall benefit compared to a more traditional single chamber batch reactor. Data was gathered for heat-up and recuperation in the inner chamber alone, simulating a single chamber design, as well as recuperation into the outer chamber, simulating a dual chamber design. Experimental data was also used to improve two analytical models, with good agreement for temperature behavior during recuperation, calculated mass of the reactor concepts, and energy required during heat-up. The five tests, performed using JSC-1A regolith simulant, also explored the effectiveness of helium gas fluidization, hydrogen gas fluidization, and vibrational fluidization. Results indicate that higher hydrogen volumetric flow rates are required compared to helium for complete fluidization and mixing, and that vibrational fluidization may provide equivalent mixing while eliminating the need to flow large amounts of excess hydrogen. Analysis of the total energy required for heat-up and steady-state operations for a variety of conditions and assumptions shows that the dual-chamber concept requires the same or more energy than the single chamber concept. With no clear energy savings, the added mass and complexity of the dual-chamber makes it unlikely that this design concept will provide any added benefit to the overall ISRU oxygen production system.

  18. 4D XMT of Reaction in Carbonates: Reactive Transport Dynamics at Multiples Scales

    NASA Astrophysics Data System (ADS)

    Menke, H. P.; Reynolds, C. A.; Andrew, M. G.; Nunes, J. P. P.; Bijeljic, B.; Blunt, M. J.

    2016-12-01

    Upscaling pore scale rock-fluid interaction processes for predictive modelling poses a challenge to underground carbon storage. We have completed experiments and flow modelling to investigate the impact of pore-space heterogeneity and scale on the dissolution of two limestones at both the mm and cm scales. Two samples were reacted with reservoir condition CO2-saturated brine at both scales and scanned dynamically as dissolution took place. First, 1-cm long 4-mm diameter micro cores were scanned during reactive flow at a 4-μm resolution between 4 and 40 times using 4D X-ray micro-tomography over the course of 1.5 hours using a laboratory μ-CT. Second, 3.8-cm diameter, 8-cm long macro cores were reacted at the same conditions inside a reservoir condition flow rig and imaged using a medical CT scanner. Each sample was imaged 10 times over the course of 1.5 hours at a 250 x 250 x 500-μm resolution. The reacted macro cores were then scanned inside a μ-CT at a 27-μm resolution to assess the alteration in pore-scale reaction-induced heterogeneity. It was found that both limestones showed channel formation at the pore-scale and progressive high porosity pathway dissolution at the core-scale with the more heterogeneous rock having dissolution progressing along direction of flow more quickly. Additionally, upon analysis of the high-resolution macro core images it was found that the dissolution pathways contained a distinct microstructure that was not visible at the resolution of the medical CT, where the reactive fluid had not completely dissolved the internal pore-structure. Flow was modelled in connected pathways, the flow streamlines were traced and streamline density for each voxel was calculated. It was found that the streamline density was highest in the most well-connected pathways and that density increased with increasing heterogeneity as the number of connected pathways decreased and flow was consolidated along fewer pathways. This work represents the first study of scale dependency using reservoir condition 4D X-ray tomography and provides insight into the mechanisms that control local reaction rates at multiple scales.

  19. Effects of Cavity Configurations on Flameholding and Performances of Kerosene Fueled Scramjet Combustor

    NASA Astrophysics Data System (ADS)

    Shi, Deyong; Song, Wenyan; Wang, Yuhang; Wang, Yanhua

    2017-08-01

    In this work, the effects of cavity flameholder configurations on flameholding and performances of kerosene fueled scramjet combustor were studied experimentally and numerically. For experiments, a directly connected ground facility was used and clean high enthalpy air, with a total temperature of 800 K and a total pressure of 800 Kpa, was provided by an electricity resistance heater. To investigate the effects of cavity configurations on flameholding capacity and reacting-flow characteristics, three different flameholders, one single cavity flameholder and two tandem cavity flameholders, were used in experiments. For the two combustors with tandem cavity flameholders, the location and configurations of its up-stream cavity were same with the single cavity flameholder, and the length-to-depth ratios for down-stream cavities were 9 and 11 respectively. The experimental results showed that stabilize kerosene combustion were achieved for combustor with tandem cavity flameholders mounted, and none for that with single cavity flameholder. The none-reacting and reacting flows of combustor models with tandem cavity flameholders were compared and studied with numerical and experimental results. The results showed that higher combustion efficiencies and pressure recovery ratios were achieved for the combustor with down-stream cavity length-to-depth ratio of 9.

  20. Numerical simulation of a turbulent flame stabilized behind a rearward-facing step

    NASA Technical Reports Server (NTRS)

    Hsiao, C. C.; Oppenheim, A. K.; Chorin, A. J.; Ghoniem, A. F.

    1985-01-01

    Flow of combustible mixtures in a plane channel past a smooth contraction followed by an abrupt expansion, in a typical dump combustor configuration, is modeled by a two-dimensional numerical technique based on the random vortex method. Both the inert and the reacting case are considered. In the latter, the flame is treated as an interface, self-advancing at a prescribed normal burning speed, while the dynamic effects of expansion due to the exothermicity of combustion are expressed by volumetric source lines delineated by its front. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and the reattachment length. The stochastic turbulent velocity components manifest interesting differences, especially near the walls where three-dimensional effects of turbulence are expected to be of importance.

  1. Experimental and numerical analysis of natural bio and syngas swirl flames in a model gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Iqbal, S.; Benim, A. C.; Fischer, S.; Joos, F.; Kluβ, D.; Wiedermann, A.

    2016-10-01

    Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally. In the investigation, an emphasis is placed upon the external flue gas recirculation, which is a promising technology for increasing the efficiency of the carbon capture and storage process, which, however, can change the combustion behaviour significantly. A further emphasis is placed upon the investigation of alternative fuels such as biogas and syngas in comparison to the conventional natural gas. Flames are also investigated numerically using the open source CFD software OpenFOAM. In the numerical simulations, a laminar flamelet model based on mixture fraction and reaction progress variable is adopted. As turbulence model, the SST model is used within a URANS concept. Computational results are compared with the experimental data, where a fair agreement is observed.

  2. Comparison of PDF and Moment Closure Methods in the Modeling of Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Norris, Andrew T.; Hsu, Andrew T.

    1994-01-01

    In modeling turbulent reactive flows, Probability Density Function (PDF) methods have an advantage over the more traditional moment closure schemes in that the PDF formulation treats the chemical reaction source terms exactly, while moment closure methods are required to model the mean reaction rate. The common model used is the laminar chemistry approximation, where the effects of turbulence on the reaction are assumed negligible. For flows with low turbulence levels and fast chemistry, the difference between the two methods can be expected to be small. However for flows with finite rate chemistry and high turbulence levels, significant errors can be expected in the moment closure method. In this paper, the ability of the PDF method and the moment closure scheme to accurately model a turbulent reacting flow is tested. To accomplish this, both schemes were used to model a CO/H2/N2- air piloted diffusion flame near extinction. Identical thermochemistry, turbulence models, initial conditions and boundary conditions are employed to ensure a consistent comparison can be made. The results of the two methods are compared to experimental data as well as to each other. The comparison reveals that the PDF method provides good agreement with the experimental data, while the moment closure scheme incorrectly shows a broad, laminar-like flame structure.

  3. Reacting Flow in the Entrance to a Channel with Surface and Gas-Phase Kinetics

    NASA Astrophysics Data System (ADS)

    Mikolaitis, David; Griffen, Patrick

    2006-11-01

    In many catalytic reactors the conversion process is most intense at the very beginning of the channel where the flow is not yet fully developed; hence there will be important interactions between the developing flow field and reaction. To study this problem we have written an object-oriented code for the analysis of reacting flow in the entrance of a channel where both surface reaction and gas-phase reaction are modeled with detailed kinetics. Fluid mechanical momentum and energy equations are modeled by parabolic ``boundary layer''-type equations where streamwise gradient terms are small and the pressure is constant in the transverse direction. Transport properties are modeled with mixture-averaging and the chemical kinetic sources terms are evaluated using Cantera. Numerical integration is done with Matlab using the function pdepe. Calculations were completed using mixtures of methane and air flowing through a channel with platinum walls held at a fixed temperature. GRI-Mech 3.0 was used to describe the gas-phase chemistry and Deutchmann's methane-air-platinum model was used for the surface chemistry. Ignition in the gas phase is predicted for high enough wall temperatures. A hot spot forms away from the walls just before ignition that is fed by radicals produced at the surface.

  4. Numerical Optimisation in Non Reacting Conditions of the Injector Geometry for a Continuous Detonation Wave Rocket Engine

    NASA Astrophysics Data System (ADS)

    Gaillard, T.; Davidenko, D.; Dupoirieux, F.

    2015-06-01

    The paper presents the methodology and the results of a numerical study, which is aimed at the investigation and optimisation of different means of fuel and oxidizer injection adapted to rocket engines operating in the rotating detonation mode. As the simulations are achieved at the local scale of a single injection element, only one periodic pattern of the whole geometry can be calculated so that the travelling detonation waves and the associated chemical reactions can not be taken into account. Here, separate injection of fuel and oxidizer is considered because premixed injection is handicapped by the risk of upstream propagation of the detonation wave. Different associations of geometrical periodicity and symmetry are investigated for the injection elements distributed over the injector head. To analyse the injection and mixing processes, a nonreacting 3D flow is simulated using the LES approach. Performance of the studied configurations is analysed using the results on instantaneous and mean flowfields as well as by comparing the mixing efficiency and the total pressure recovery evaluated for different configurations.

  5. A novel three-jet microreactor for localized metal-organic chemical vapour deposition of gallium arsenide: design and simulation

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-08-01

    We present a novel three-jet microreactor design for localized deposition of gallium arsenide (GaAs) by low-pressure Metal-Organic Chemical Vapour Deposition (MOCVD) for semiconductor devices, microelectronics and solar cells. Our approach is advantageous compared to the standard lithography and etching technology, since it preserves the nanostructure of the deposited material, it is less time-consuming and less expensive. We designed two versions of reactor geometry with a 10-micron central microchannel for precursor supply and with two side jets of a dilutant to control the deposition area. To aid future experiments, we performed computational modeling of a simplified-geometry (twodimensional axisymmetric) microreactor, based on Navier-Stokes equations for a laminar flow of chemically reacting gas mixture of Ga(CH3)3-AsH3-H2. Simulation results show that we can achieve a high-rate deposition (over 0.3 μm/min) on a small area (less than 30 μm diameter). This technology can be used in material production for microelectronics, optoelectronics, photovoltaics, solar cells, etc.

  6. High-speed reacting flow simulation using USA-series codes

    NASA Astrophysics Data System (ADS)

    Chakravarthy, S. R.; Palaniswamy, S.

    In this paper, the finite-rate chemistry (FRC) formulation for the USA-series of codes and three sets of validations are presented. USA-series computational fluid dynamics (CFD) codes are based on Unified Solution Algorithms including explicity and implicit formulations, factorization and relaxation approaches, time marching and space marching methodolgies, etc., in order to be able to solve a very wide class of CDF problems using a single framework. Euler or Navier-Stokes equations are solved using a finite-volume treatment with upwind Total Variation Diminishing discretization for the inviscid terms. Perfect and real gas options are available including equilibrium and nonequilibrium chemistry. This capability has been widely used to study various problems including Space Shuttle exhaust plumes, National Aerospace Plane (NASP) designs, etc. (1) Numerical solutions are presented showing the full range of possible solutions to steady detonation wave problems. (2) Comparison between the solution obtained by the USA code and Generalized Kinetics Analysis Program (GKAP) is shown for supersonic combustion in a duct. (3) Simulation of combustion in a supersonic shear layer is shown to have reasonable agreement with experimental observations.

  7. Direct numerical simulations of premixed autoignition in compressible uniformly-sheared turbulence

    NASA Astrophysics Data System (ADS)

    Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2017-11-01

    High-speed combustion systems, such as scramjet engines, operate at high temperatures and pressures, extremely short combustor residence times, very high rates of shear stress, and intense turbulent mixing. As a result, the reacting flow can be premixed and have highly-compressible turbulence fluctuations. We investigate the effects of compressible turbulence on the ignition delay time, heat-release-rate (HRR) intermittency, and mode of autoignition of premixed Hydrogen-air fuel in uniformly-sheared turbulence using new three-dimensional direct numerical simulations with a multi-step chemistry mechanism. We analyze autoignition in both the Eulerian and Lagrangian reference frames at eight different turbulence Mach numbers, Mat , spanning the quasi-isentropic, linear thermodynamic, and nonlinear compressibility regimes, with eddy shocklets appearing in the nonlinear regime. Results are compared to our previous study of premixed autoignition in isotropic turbulence at the same Mat and with a single-step reaction mechanism. This previous study found large decreases in delay times and large increases in HRR intermittency between the linear and nonlinear compressibility regimes and that detonation waves could form in both regimes.

  8. Coupled turbulence and aerosol dynamics modeling of vehicle exhaust plumes using the CTAG model

    NASA Astrophysics Data System (ADS)

    Wang, Yan Jason; Zhang, K. Max

    2012-11-01

    This paper presents the development and evaluation of an environmental turbulent reacting flow model, the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model. CTAG is designed to simulate transport and transformation of multiple air pollutants, e.g., from emission sources to ambient background. For the on-road and near-road applications, CTAG explicitly couples the major turbulent mixing processes, i.e., vehicle-induced turbulence (VIT), road-induced turbulence (RIT) and atmospheric boundary layer turbulence with gas-phase chemistry and aerosol dynamics. CTAG's transport model is referred to as CFD-VIT-RIT. This paper presents the evaluation of the CTAG model in simulating the dynamics of individual plumes in the “tailpipe-to-road” stage, i.e., VIT behind a moving van and aerosol dynamics in the wake of a diesel car by comparing the modeling results against the respective field measurements. Combined with sensitivity studies, we analyze the relative roles of VIT, sulfuric acid induced nucleation, condensation of organic compounds and presence of soot-mode particles in capturing the dynamics of exhaust plumes as well as their implications in vehicle emission controls.

  9. Attrition reactor system

    DOEpatents

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  10. CFD-Based Design of a Filming Injector for N+3 Combustors

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2016-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements coupled with a new fuel-filming injector design for next-generation N+3 combustors. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations on a N+3 injector configuration, in a single-element and a five-element injector array. All computations were performed with a consistent approach towards mesh-generation, spray-, ignition- and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that met effective area, aerodynamics, and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.

  11. Combined LAURA-UPS solution procedure for chemically-reacting flows. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1994-01-01

    A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flowfields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a noncatalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the noncatalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated and the nonequilibrium results are compared with a perfect gas solution, showing that while the surface pressure is relatively unchanged by the inclusion of reacting chemistry the nonequilibrium heating is 25 percent higher. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three dimensional case over an all thin-layer Navier-Stokes solution.

  12. Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow

    DTIC Science & Technology

    2018-02-09

    Lens-XX facility. This flow was chosen since a recent blind-code validation exercise revealed differences in CFD predictions and experimental data... experimental data that could be due to rarefied flow effects. The CFD solutions (using the US3D code) were run with no-slip boundary conditions and with...excellent agreement with that predicted by CFD. This implies that the dif- ference between CFD predictions and experimental data is not due to rarefied

  13. Reacting gas mixtures in the state-to-state approach: The chemical reaction rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-12-09

    In this work chemically reacting mixtures of viscous flows are analyzed within the framework of Boltzmann equation. By applying a modified Chapman-Enskog method to the system of Boltzmann equations general expressions for the rates of chemical reactions and vibrational energy transitions are determined as functions of two thermodynamic forces: the velocity divergence and the affinity. As an application chemically reacting mixtures of N{sub 2} across a shock wave are studied, where the first lowest vibrational states are taken into account. Here we consider only the contributions from the first four single quantum vibrational-translational energy transitions. It is shown that themore » contribution to the chemical reaction rate related to the affinity is much larger than that of the velocity divergence.« less

  14. Self-Calibrating, Variable-Flow Pumping System

    NASA Technical Reports Server (NTRS)

    Walls, Joe T.

    1994-01-01

    Pumping system provides accurate, controlled flows of two chemical liquids mixed in spray head and react to form rigid or flexible polyurethane or polyisocyanurate foam. Compatible with currently used polyurethane-based coating materials and gas-bubble-forming agents (called "blowing agents" in industry) and expected to be compatible with materials that used in near future. Handles environmentally acceptable substitutes for chlorofluorocarbon foaming agents.

  15. An efficient, explicit finite-rate algorithm to compute flows in chemical nonequilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    An explicit finite-rate code was developed to compute hypersonic viscous chemically reacting flows about three-dimensional bodies. Equations describing the finite-rate chemical reactions were fully coupled to the gas dynamic equations using a new coupling technique. The new technique maintains stability in the explicit finite-rate formulation while permitting relatively large global time steps.

  16. MPSalsa Version 1.5: A Finite Element Computer Program for Reacting Flow Problems: Part 1 - Theoretical Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devine, K.D.; Hennigan, G.L.; Hutchinson, S.A.

    1999-01-01

    The theoretical background for the finite element computer program, MPSalsa Version 1.5, is presented in detail. MPSalsa is designed to solve laminar or turbulent low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow (with auxiliary turbulence equations), heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solve coupled multiple Poisson or advection-diffusion-reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurringmore » in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMK3N, respectively. The code employs unstructured meshes, using the EXODUS II finite element database suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec. solver library.« less

  17. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  18. Catalytic reaction in confined flow channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hassel, Bart A.

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flowmore » channel.« less

  19. Flame structure and stabilization in miniature liquid film combustors

    NASA Astrophysics Data System (ADS)

    Pham, Trinh Kim

    Liquid-fueled miniature combustion systems can be promising portable power devices when high specific power and long operation duration are required. A uniquely viable fueling option for small scale combustion is to introduce the liquid fuel as a film on the combustor walls. As one example of such systems, this dissertation characterizes 1-cm-diameter tubular combustors fed by liquid fuel films, and seeks to identify the mechanisms by which flames are stabilized within them. Early experimental work demonstrates that flame behavior is dependent upon steadiness in fuel and air injection and in geometric symmetry and uniformity. Significant discoveries in later work include the impact of direct strain on the flame by the airflow, the fact that no local recirculation zone appears to exist for stabilization as was previously believed, and that the film thickness, uniformity, and location directly affect the flame's characteristics and stability. A gradient in film thickness is required for stable operation, and this requirement may explain why the combustor maintains overall rich conditions. Initial numerical simulations of two-dimensional cold and reacting flows in a simplified model of the combustor yields flame shape and flow field results that do not match experiments in the burning case, therefore suggesting that local turbulence in the fuel injection region provides the necessary degree of mixing. A three-dimensional model of the combustor is needed if reacting flows are to be simulated accurately. It was also found that thermal conduction from the chamber exit to the chamber base plays an important role in fuel vaporization and the stability of the flame. Consequently, flames cannot be sustained in quartz and other transparent but thermally insulating materials for the selected geometry, so observation of the flame's entire structure cannot be accomplished without either the addition of other flameholding elements or the employment of a more thermally conductive chamber material. Such a material is sapphire, and successful operation of a chamber constructed from tubes of sapphire and other metals upon a steel base permitted the identification of stable operational envelopes for materials of various thermal conductivities. The sapphire chamber also allowed for chemiluminescence measurements, and a combination of flame observations, exit temperature measurements, and supporting evidence provided in literature demonstrate conclusively that the flame is stabilized at its ignition point by a triple flame structure created when the fuel rich zone near the wall film fades to a fuel lean region near the center of the chamber.

  20. Hugoniot curve calculation of nitromethane decomposition mixtures: A reactive force field molecular dynamics approach

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Zhang, Hong; Hu, Hai-Quan; Cheng, Xin-Lu; Zhang, Li-Yan

    2015-11-01

    We investigate the Hugoniot curve, shock-particle velocity relations, and Chapman-Jouguet conditions of the hot dense system through molecular dynamics (MD) simulations. The detailed pathways from crystal nitromethane to reacted state by shock compression are simulated. The phase transition of N2 and CO mixture is found at about 10 GPa, and the main reason is that the dissociation of the C-O bond and the formation of C-C bond start at 10.0-11.0 GPa. The unreacted state simulations of nitromethane are consistent with shock Hugoniot data. The complete pathway from unreacted to reacted state is discussed. Through chemical species analysis, we find that the C-N bond breaking is the main event of the shock-induced nitromethane decomposition. Project supported by the National Natural Science Foundation of China (Grant No. 11374217) and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014BQ008).

  1. Attrition reactor system

    DOEpatents

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  2. Coupled multiphase reactive flow and mineral dissolution-precipitation kinetics: Examples of long-term CO2 sequestration in Utsira Sand, Norway and Mt. Simon Formation, Midwest USA

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhang, G.; Lu, P.; Hu, B.; Zhu, C.

    2017-12-01

    The extent of CO2 mineralization after CO2 injection into deep saline aquifers is a result of the complex coupling of multiphase fluid flow, mass transport, and brine-mineral reactions. The effects of dissolution rate laws and groundwater flow on the long-term fate of CO2 have been seriously overlooked. To investigate these effects, we conducted multiphase (CO2 and brine) coupled reactive transport modeling of CO2 storage in two sandy formations (Utsira Sand, Norway1,2 and Mt. Simon formation, USA 3) using ToughReact and simulated a series of scenarios. The results indicated that: (1) Different dissolution rate laws for feldspars can significantly affect the amount of CO2 mineralization. Increased feldspar dissolution will promote CO2 mineral trapping through the coupling between feldspar dissolution and carbonate mineral precipitation at raised pH. The predicted amount of CO2 mineral trapping when using the principle of detailed balancing-based rate law for feldspar dissolution is about twice as much as that when using sigmoidal rate laws in the literature. (2) Mineral trapping is twice as much when regional groundwater flow is taken into consideration in long-term simulations (e.g., 10,000 years) whereas most modeling studies neglected the regional groundwater flow back and effectively simulated a batch reactor process. Under the influence of regional groundwater flow, the fresh brine from upstream continuously dissolves CO2 at the tail of CO2 plume, generating a large acidified area where large amount of CO2 mineralization takes place. The upstream replenishment of groundwater results in ˜22% mineral trapping at year 10,000, compared to ˜4% when this effect is ignored. Refs: 1Zhang, G., Lu, P., Wei, X., Zhu, C. (2016). Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner. Energy & Fuels, 30(5), 4159-4180. 2Zhu, C., Zhang, G., Lu, P., Meng, L., Ji, X. (2015). Benchmark modeling of the Sleipner CO2 plume: Calibration to seismic data for the uppermost layer and model sensitivity analysis. International Journal of Greenhouse Gas Control, 43, 233-246. 3Zhang, G., Lu, P., Zhang, Y., Wei, X., Zhu, C. (2015). Effects of rate law formulation on predicting CO2 sequestration in sandstone formations. International Journal of Energy Research, 39(14), 1890-1908.

  3. Liquid Structure of CO 2 –Reactive Aprotic Heterocyclic Anion Ionic Liquids from X-ray Scattering and Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheridan, Quintin R.; Oh, Seungmin; Morales-Collazo, Oscar

    2016-11-23

    A combination of X-ray scattering experiments and molecular dynamics simulations were conducted to investigate the structure of ionic liquids (ILs) which chemically bind CO 2. The structure functions were measured and computed for four different ILs consisting of two different phosphonium cations, triethyloctylphosphonium ([P 2228] +) and trihexyltetradecylphosphonium ([P 66614] +), paired with two different aprotic heterocyclic anions which chemically react with CO 2, 2-cyanopyrrolide, and 1,2,4-triazolide. Simulations were able to reproduce the experimental structure functions, and by deconstructing the simulated structure functions, further information on the liquid structure was obtained. All structure functions of the ILs studied had threemore » primary features which have been seen before in other ILs: a prepeak near 0.3–0.4 Å–1 corresponding to polar/nonpolar domain alternation, a charge alternation peak near 0.8 Å–1, and a peak near 1.5 Å–1 due to interactions of adjacent molecules. The liquid structure functions were only mildly sensitive to the specific anion and whether or not they were reacted with CO 2. Upon reacting with CO 2, small changes were observed in the structure functions of the [P 2228] + ILs, whereas virtually no change was observed upon reacting with CO 2 in the corresponding [P 66614] + ILs. When the [P 2228] + cation was replaced with the [P 66614] + cation, there was a significant increase in the intensities of the prepeak and adjacency interaction peak. While many of the liquid structure functions are similar, the actual liquid structures differ as demonstrated by computed spatial distribution functions.« less

  4. Influence of G-jitter on the characteristics of a non-premixed flame: Experimental approach

    NASA Astrophysics Data System (ADS)

    Joulain, Pierre; Cordeiro, Pierre; Rouvreau, Sébastien; Legros, Guillaume; Fuentes, Andres; Torero, José L.

    2005-03-01

    The combustion of a flat plate in a boundary layer under microgravity conditions, which was first described by Emmons, is studied using a gas burner. Magnitude of injection and blowing velocities are chosen to be characteristic of pyrolyzing velocity of solid fuels, and of ventilation systems in space stations. These velocities are about 0.1 m/s for oxidiser flow and 0.004m/s for fuel flow. In this configuration, flame layout results from a coupled interaction between oxidiser flow, fuel flow and thermal expansion. Influences of these parameters are studied experimentally by means of flame length and standoff distance measurements using CH* chemiluminescence's and visible emission of the flame. Flow was also studied with Particle Image Velocimetry (PIV). Inert flows, with and without injection, and reacting flow in a microgravity environment were considered to distinguish aerodynamic from thermal effect. Thermal expansion effects have been shown by means of the acceleration of oxidiser flow. Three-dimensional effects, which are strongly marked for high injection velocities were studied. Three-dimensional tools adaptability to parabolic flights particular conditions were of concern. Flame sensitivity to g-jitters was investigated according to g-jitters frequency and range involved by parabolic flights. It appears that flame location (standoff distance), flame characteristics (length, thickness, brightness) and the aerodynamic field of the low velocity reacting flow are very much affected by the fluctuation of the gravity level or g-jitter. The lower the g-jitter frequency is, the higher the perturbation. Consequently it is difficult to perform relevant experiments for a main flow velocity lower than 0.05m/s. DNS calculations confirm the present observations, but most of the results are presented elsewhere.

  5. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A.

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver withmore » only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.« less

  6. The Oxidation of Iron: Experiment, Simulation, and Analysis in Introductory Chemistry

    ERIC Educational Resources Information Center

    Schubert, Frederic E.

    2015-01-01

    In this exercise, an actual chemical reaction, oxidation of iron in air, is studied along with a related analogue simulation of that reaction. The rusting of steel wool is carried out as a class effort. The parallel simulation is performed by students working in small groups. The analogue for the reacting gas is a countable set of discrete marble…

  7. Turbulent flame spreading mechanisms after spark ignition

    NASA Astrophysics Data System (ADS)

    Subramanian, V.; Domingo, Pascale; Vervisch, Luc

    2009-12-01

    Numerical simulation of forced ignition is performed in the framework of Large-Eddy Simulation (LES) combined with a tabulated detailed chemistry approach. The objective is to reproduce the flame properties observed in a recent experimental work reporting probability of ignition in a laboratory-scale burner operating with Methane/air non premixed mixture [1]. The smallest scales of chemical phenomena, which are unresolved by the LES grid, are approximated with a flamelet model combined with presumed probability density functions, to account for the unresolved part of turbulent fluctuations of species and temperature. Mono-dimensional flamelets are simulated using GRI-3.0 [2] and tabulated under a set of parameters describing the local mixing and progress of reaction. A non reacting case was simulated at first, to study the unsteady velocity and mixture fields. The time averaged velocity and mixture fraction, and their respective turbulent fluctuations, are compared against the experimental measurements, in order to estimate the prediction capabilities of LES. The time history of axial and radial components of velocity and mixture fraction is cumulated and analysed for different burner regimes. Based on this information, spark ignition is mimicked on selected ignition spots and the dynamics of kernel development analyzed to be compared against the experimental observations. The possible link between the success or failure of the ignition and the flow conditions (in terms of velocity and composition) at the sparking time are then explored.

  8. Optical ray tracing method for simulating beam-steering effects during laser diagnostics in turbulent media.

    PubMed

    Wang, Yejun; Kulatilaka, Waruna D

    2017-04-10

    In most coherent spectroscopic methods used in gas-phase laser diagnostics, multiple laser beams are focused and crossed at a specific location in space to form the probe region. The desired signal is then generated as a result of nonlinear interactions between the beams in this overlapped region. When such diagnostic schemes are implemented in practical devices having turbulent reacting flow fields with refractive index gradients, the resulting beam steering can give rise to large measurement uncertainties. The objective of this work is to simulate beam-steering effects arising from pressure and temperature gradients in gas-phase media using an optical ray tracing approach. The ZEMAX OpticStudio software package is used to simulate the beam crossing and uncrossing effects in the presence of pressure and temperature gradients, specifically the conditions present in high-pressure, high-temperature combustion devices such as gas turbine engines. Specific cases involving two-beam and three-beam crossing configurations are simulated. The model formulation, the effects of pressure and temperature gradients, and the resulting beam-steering effects are analyzed. The results show that thermal gradients in the range of 300-3000 K have minimal effects, while pressure gradients in the range of 1-50 atm result in pronounced beam steering and the resulting signal fluctuations in the geometries investigated. However, with increasing pressures, the temperature gradients can also have a pronounced effect on the resultant signal levels.

  9. N2O molecular tagging velocimetry

    NASA Astrophysics Data System (ADS)

    ElBaz, A. M.; Pitz, R. W.

    2012-03-01

    A new seeded velocity measurement technique, N2O molecular tagging velocimetry (MTV), is developed to measure velocity in wind tunnels by photochemically creating an NO tag line. Nitrous oxide "laughing gas" is seeded into the air flow. A 193 nm ArF excimer laser dissociates the N2O to O(1D) that subsequently reacts with N2O to form NO. O2 fluorescence induced by the ArF laser "writes" the original position of the NO line. After a time delay, the shifted NO line is "read" by a 226-nm laser sheet and the velocity is determined by time-of-flight. At standard atmospheric conditions with 4% N2O in air, ˜1000 ppm of NO is photochemically created in an air jet based on experiment and simulation. Chemical kinetic simulations predict 800-1200 ppm of NO for 190-750 K at 1 atm and 850-1000 ppm of NO for 0.25-1 atm at 190 K. Decreasing the gas pressure (or increasing the temperature) increases the NO ppm level. The presence of humid air has no significant effect on NO formation. The very short NO formation time (<10 ns) makes the N2O MTV method amenable to low- and high-speed air flow measurements. The N2O MTV technique is demonstrated in air jet to measure its velocity profile. The N2O MTV method should work in other gas flows as well (e.g., helium) since the NO tag line is created by chemical reaction of N2O with O(1D) from N2O photodissociation and thus does not depend on the bulk gas composition.

  10. Description of a computer program to calculate reacting supersonic internal flow fields with shock waves using viscous characteristics: Program manual and sample calculations

    NASA Technical Reports Server (NTRS)

    Cavalleri, R. J.; Agnone, A. M.

    1972-01-01

    A computer program for calculating internal supersonic flow fields with chemical reactions and shock waves typical of supersonic combustion chambers with either wall or mid-stream injectors is described. The usefulness and limitations of the program are indicated. The program manual and listing are presented along with a sample calculation.

  11. Digital Simulation Games for Social Studies Classrooms

    ERIC Educational Resources Information Center

    Devlin-Scherer, Roberta; Sardone, Nancy B.

    2010-01-01

    Data from ten teacher candidates studying teaching methods were analyzed to determine perceptions toward digital simulation games in the area of social studies. This research can be used as a conceptual model of how current teacher candidates react to new methods of instruction and determine how education programs might change existing curricula…

  12. Large Eddy Simulation of Sound Generation by Turbulent Reacting and Nonreacting Shear Flows

    NASA Astrophysics Data System (ADS)

    Najafi-Yazdi, Alireza

    The objective of the present study was to investigate the mechanisms of sound generation by subsonic jets. Large eddy simulations were performed along with bandpass filtering of the flow and sound in order to gain further insight into the pole of coherent structures in subsonic jet noise generation. A sixth-order compact scheme was used for spatial discretization of the fully compressible Navier-Stokes equations. Time integration was performed through the use of the standard fourth-order, explicit Runge-Kutta scheme. An implicit low dispersion, low dissipation Runge-Kutta (ILDDRK) method was developed and implemented for simulations involving sources of stiffness such as flows near solid boundaries, or combustion. A surface integral acoustic analogy formulation, called Formulation 1C, was developed for farfield sound pressure calculations. Formulation 1C was derived based on the convective wave equation in order to take into account the presence of a mean flow. The formulation was derived to be easy to implement as a numerical post-processing tool for CFD codes. Sound radiation from an unheated, Mach 0.9 jet at Reynolds number 400, 000 was considered. The effect of mesh size on the accuracy of the nearfield flow and farfield sound results was studied. It was observed that insufficient grid resolution in the shear layer results in unphysical laminar vortex pairing, and increased sound pressure levels in the farfield. Careful examination of the bandpass filtered pressure field suggested that there are two mechanisms of sound radiation in unheated subsonic jets that can occur in all scales of turbulence. The first mechanism is the stretching and the distortion of coherent vortical structures, especially close to the termination of the potential core. As eddies are bent or stretched, a portion of their kinetic energy is radiated. This mechanism is quadrupolar in nature, and is responsible for strong sound radiation at aft angles. The second sound generation mechanism appears to be associated with the transverse vibration of the shear-layer interface within the ambient quiescent flow, and has dipolar characteristics. This mechanism is believed to be responsible for sound radiation along the sideline directions. Jet noise suppression through the use of microjets was studied. The microjet injection induced secondary instabilities in the shear layer which triggered the transition to turbulence, and suppressed laminar vortex pairing. This in turn resulted in a reduction of OASPL at almost all observer locations. In all cases, the bandpass filtering of the nearfield flow and the associated sound provides revealing details of the sound radiation process. The results suggest that circumferential modes are significant and need to be included in future wavepacket models for jet noise prediction. Numerical simulations of sound radiation from nonpremixed flames were also performed. The simulations featured the solution of the fully compressible Navier-Stokes equations. Therefore, sound generation and radiation were directly captured in the simulations. A thickened flamelet model was proposed for nonpremixed flames. The model yields artificially thickened flames which can be better resolved on the computational grid, while retaining the physically currect values of the total heat released into the flow. Combustion noise has monopolar characteristics for low frequencies. For high frequencies, the sound field is no longer omni-directional. Major sources of sound appear to be located in the jet shear layer within one potential core length from the jet nozzle.

  13. On the application of subcell resolution to conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Chang, Shih-Hung

    1989-01-01

    LeVeque and Yee recently investigated a one-dimensional scalar conservation law with stiff source terms modeling the reacting flow problems and discovered that for the very stiff case most of the current finite difference methods developed for non-reacting flows would produce wrong solutions when there is a propagating discontinuity. A numerical scheme, essentially nonoscillatory/subcell resolution - characteristic direction (ENO/SRCD), is proposed for solving conservation laws with stiff source terms. This scheme is a modification of Harten's ENO scheme with subcell resolution, ENO/SR. The locations of the discontinuities and the characteristic directions are essential in the design. Strang's time-splitting method is used and time evolutions are done by advancing along the characteristics. Numerical experiment using this scheme shows excellent results on the model problem of LeVeque and Yee. Comparisons of the results of ENO, ENO/SR, and ENO/SRCD are also presented.

  14. Base Heating Sensitivity Study for a 4-Cluster Rocket Motor Configuration in Supersonic Freestream

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Canabal, Francisco; Tashakkor, Scott B.; Smith, Sheldon D.

    2011-01-01

    In support of launch vehicle base heating and pressure prediction efforts using the Loci-CHEM Navier-Stokes computational fluid dynamics solver, 35 numerical simulations of the NASA TND-1093 wind tunnel test have been modeled and analyzed. This test article is composed of four JP-4/LOX 500 lbf rocket motors exhausting into a Mach 2 - 3.5 wind tunnel at various ambient pressure conditions. These water-cooled motors are attached to a base plate of a standard missile forebody. We explore the base heating profiles for fully coupled finite-rate chemistry simulations, one-way coupled RAMP (Reacting And Multiphase Program using Method of Characteristics)-BLIMPJ (Boundary Layer Integral Matrix Program - Jet Version) derived solutions and variable and constant specific heat ratio frozen flow simulations. Variations in turbulence models, temperature boundary conditions and thermodynamic properties of the plume have been investigated at two ambient pressure conditions: 255 lb/sq ft (simulated low altitude) and 35 lb/sq ft (simulated high altitude). It is observed that the convective base heat flux and base temperature are most sensitive to the nozzle inner wall thermal boundary layer profile which is dependent on the wall temperature, boundary layer s specific energy and chemical reactions. Recovery shock dynamics and afterburning significantly influences convective base heating. Turbulence models and external nozzle wall thermal boundary layer profiles show less sensitivity to base heating characteristics. Base heating rates are validated for the highest fidelity solutions which show an agreement within +/-10% with respect to test data.

  15. Numerical study of a scramjet engine flow field

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Weidner, E. H.

    1981-01-01

    A computer program has been developed to analyze the turbulent reacting flow field in a two-dimensional scramjet engine configuration. The program numerically solves the full two-dimensional Navier-Stokes and species equations in the engine inlet and combustor, allowing consideration of flow separation and possible inlet-combustor interactions. The current work represents an intermediate step towards development of a three-dimensional program to analyze actual scramjet engine flow fields. Results from the current program are presented that predict the flow field for two inlet-combustor configurations, and comparisons of the program with experiment are given to allow assessment of the modeling that is employed.

  16. Evaluation of a Consistent LES/PDF Method Using a Series of Experimental Spray Flames

    NASA Astrophysics Data System (ADS)

    Heye, Colin; Raman, Venkat

    2012-11-01

    A consistent method for the evolution of the joint-scalar probability density function (PDF) transport equation is proposed for application to large eddy simulation (LES) of turbulent reacting flows containing evaporating spray droplets. PDF transport equations provide the benefit of including the chemical source term in closed form, however, additional terms describing LES subfilter mixing must be modeled. The recent availability of detailed experimental measurements provide model validation data for a wide range of evaporation rates and combustion regimes, as is well-known to occur in spray flames. In this work, the experimental data will used to investigate the impact of droplet mass loading and evaporation rates on the subfilter scalar PDF shape in comparison with conventional flamelet models. In addition, existing model term closures in the PDF transport equations are evaluated with a focus on their validity in the presence of regime changes.

  17. Glacigenic sedimentation pulses triggered post-glacial gas hydrate dissociation.

    PubMed

    Karstens, Jens; Haflidason, Haflidi; Becker, Lukas W M; Berndt, Christian; Rüpke, Lars; Planke, Sverre; Liebetrau, Volker; Schmidt, Mark; Mienert, Jürgen

    2018-02-12

    Large amounts of methane are stored in continental margins as gas hydrates. They are stable under high pressure and low, but react sensitively to environmental changes. Bottom water temperature and sea level changes were considered as main contributors to gas hydrate dynamics after the last glaciation. However, here we show with numerical simulations that pulses of increased sedimentation dominantly controlled hydrate stability during the end of the last glaciation offshore mid-Norway. Sedimentation pulses triggered widespread gas hydrate dissociation and explains the formation of ubiquitous blowout pipes in water depths of 600 to 800 m. Maximum gas hydrate dissociation correlates spatially and temporally with the formation or reactivation of pockmarks, which is constrained by radiocarbon dating of Isorropodon nyeggaensis bivalve shells. Our results highlight that rapid changes of sedimentation can have a strong impact on gas hydrate systems affecting fluid flow and gas seepage activity, slope stability and the carbon cycle.

  18. Application of the dynamic model of Saeman to an industrial rotary kiln incinerator: numerical and experimental results.

    PubMed

    Ndiaye, L G; Caillat, S; Chinnayya, A; Gambier, D; Baudoin, B

    2010-07-01

    In order to simulate granular materials structure in a rotary kiln under the steady-state regime, a mathematical model has been developed by Saeman (1951). This model enables the calculation of the bed profiles, the axial velocity and solids flow rate along the kiln. This model can be coupled with a thermochemical model, in the case of a reacting moving bed. This dynamic model was used to calculate the bed profile for an industrial size kiln and the model projections were validated by measurements in a 4 m diameter by 16 m long industrial rotary kiln. The effect of rotation speed under solids bed profile and the effect of the feed rate under filling degree were established. On the basis of the calculations and the experimental results a phenomenological relation for the residence time estimation was proposed for the rotary kiln. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Drozda, T. G.; Sheikhi, R. M.; Givi, Peyman

    2001-01-01

    The objective of this research is to develop and implement new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. We have just completed two (2) years of Phase I of this research. This annual report provides a brief and up-to-date summary of our activities during the period: September 1, 2000 through August 31, 2001. In the work within the past year, a methodology termed "velocity-scalar filtered density function" (VSFDF) is developed and implemented for large eddy simulation (LES) of turbulent flows. In this methodology the effects of the unresolved subgrid scales (SGS) are taken into account by considering the joint probability density function (PDF) of all of the components of the velocity and scalar vectors. An exact transport equation is derived for the VSFDF in which the effects of the unresolved SGS convection, SGS velocity-scalar source, and SGS scalar-scalar source terms appear in closed form. The remaining unclosed terms in this equation are modeled. A system of stochastic differential equations (SDEs) which yields statistically equivalent results to the modeled VSFDF transport equation is constructed. These SDEs are solved numerically by a Lagrangian Monte Carlo procedure. The consistency of the proposed SDEs and the convergence of the Monte Carlo solution are assessed by comparison with results obtained by an Eulerian LES procedure in which the corresponding transport equations for the first two SGS moments are solved. The unclosed SGS convection, SGS velocity-scalar source, and SGS scalar-scalar source in the Eulerian LES are replaced by corresponding terms from VSFDF equation. The consistency of the results is then analyzed for a case of two dimensional mixing layer.

  20. Rotational and vibrational Raman spectroscopy for thermochemistry measurements in supersonic flames

    NASA Astrophysics Data System (ADS)

    Bayeh, Alexander Christian

    High speed chemically reacting flows are important in a variety of aerospace applications, namely ramjets, scramjets, afterburners, and rocket exhausts. To study flame extinction under similar high Mach number conditions, we need access to thermochemistry measurements in supersonic environments. In the current work a two-stage miniaturized combustor has been designed that can produce open supersonic methane-air flames amenable to laser diagnostics. The first stage is a vitiation burner, and was inspired by well-known principles of jet combustors. We explored the salient parameters of operation experimentally, and verified flame holding computationally using a well-stirred reactor model. The second stage of the burner generates an external supersonic flame, operating in premixed and partially premixed modes. The very high Mach numbers present in the supersonic flames should provide a useful test bed for the examination of flame suppression and extinction using laser diagnostics. We also present the development of new line imaging diagnostics for thermochemistry measurements in high speed flows. A novel combination of vibrational and rotational Raman scattering is used to measure major species densities (O 2, N2, CH4, H2O,CO2, CO, & H2) and temperature. Temperature is determined by the rotational Raman technique by comparing measured rotational spectra to simulated spectra based on the measured chemical composition. Pressure is calculated from density and temperature measurements through the ideal gas law. The independent assessment of density and temperature allows for measurements in environments where the pressure is not known a priori. In the present study we applied the diagnostics to laboratory scale supersonic air and vitiation jets, and examine the feasibility of such measurements in reacting supersonic flames. Results of full thermochemistry were obtained for the air and vitiation jets that reveal the expected structure of an under-expanded jet. Centerline traces of density, temperature, and pressure of the air jet agree well with computations, while measurements of chemical composition for the vitiation flow also agree well with predicted equilibrium values. Finally, we apply the new diagnostics to the exhaust of the developed burner, and show the first ever results for density, temperature, and pressure, as well as chemical composition in a supersonic flame.

Top