Science.gov

Sample records for reacting wall jet

  1. LES/RANS Simulation of a Supersonic Reacting Wall Jet

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Boles, John A.; Baurle, Robert A.

    2010-01-01

    This work presents results from large-eddy / Reynolds-averaged Navier-Stokes (LES/RANS) simulations of the well-known Burrows-Kurkov supersonic reacting wall-jet experiment. Generally good agreement with experimental mole fraction, stagnation temperature, and Pitot pressure profiles is obtained for non-reactive mixing of the hydrogen jet with a non-vitiated air stream. A lifted flame, stabilized between 10 and 22 cm downstream of the hydrogen jet, is formed for hydrogen injected into a vitiated air stream. Flame stabilization occurs closer to the hydrogen injection location when a three-dimensional combustor geometry (with boundary layer development resolved on all walls) is considered. Volumetric expansion of the reactive shear layer is accompanied by the formation of large eddies which interact strongly with the reaction zone. Time averaged predictions of the reaction zone structure show an under-prediction of the peak water concentration and stagnation temperature, relative to experimental data and to results from a Reynolds-averaged Navier-Stokes calculation. If the experimental data can be considered as being accurate, this result indicates that the present LES/RANS method does not correctly capture the cascade of turbulence scales that should be resolvable on the present mesh. Instead, energy is concentrated in the very largest scales, which provide an over-mixing effect that excessively cools and strains the flame. Predictions improve with the use of a low-dissipation version of the baseline piecewise parabolic advection scheme, which captures the formation of smaller-scale structures superimposed on larger structures of the order of the shear-layer width.

  2. Viscous reacting flows with wall slip and catalysis applied to spheres in arc jets and flight

    NASA Technical Reports Server (NTRS)

    Scott, C. D.

    1974-01-01

    The influence of wall slip and catalytic atom-recombination on the flow field and wall heat flux are calculated for high altitude flight and arc jet flow conditions. Boundary equations, which include velocity slip, temperature jump, and wall catalytic atom recombination, are coupled to the viscous reacting multicomponent Navier-Stokes equations. These equations are solved using a time-dependent finite difference technique applied to spheres in an arc jet flow (Reynolds number of 550) and a high altitude flight case representative of the Space Shuttle Orbiter (Reynolds number of 450). The results indicate that catalysis strongly influences the temperature jump, but not the velocity slip. Slip increases the atom fraction and temperature at both the wall and the flow field. Likewise, the shock stand-off distance, the wall heat flux, and friction coefficient are increased over the nonslip cases. The reacting gas calculations confirm the chemically frozen nature of the shock layer in arc jet flows.

  3. Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets

    NASA Astrophysics Data System (ADS)

    Pouransari, Z.; Biferale, L.; Johansson, A. V.

    2015-02-01

    The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar, and reactive species fields are studied using their probability density functions (PDFs) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor, the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damköhler numbers are examined and the comparison revealed that the Damköhler number effects are most dominant in the near-wall region, where the wall cooling effects are influential. In addition, with the aid of PDFs conditioned on the mixture fraction, the significance of the reactive scalar characteristics in the reaction zone is illustrated. We argue that the combined effects of strong intermittency and strong persistency of anisotropy at the small scales in the entire domain can affect mixing and ultimately the combustion characteristics of the reacting flow.

  4. Jet Mixing in a Reacting Cylindrical Crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1995-01-01

    This paper addresses the mixing of air jets into the hot, fuel-rich products of a gas turbine primary zone. The mixing, as a result, occurs in a reacting environment with chemical conversion and substantial heat release. The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from round orifices. A specially designed reactor, operating on propane, presents a uniform mixture without swirl to mixing modules consisting of 8, 9, 10, and 12 holes at a momentum-flux ratio of 57 and a jet-to-mainstream mass-flow ratio of 2.5. Concentrations of O2, CO2, CO, and HC are obtained upstream, downstream, and within the orifice plane. O2 profiles indicate jet penetration while CO2, CO, and HC profiles depict the extent of reaction. Jet penetration is observed to be a function of the number of orifices and is found to affect the mixing in the reacting system. The results demonstrate that one module (the 12-hole) produces near-optimal penetration defined here as a jet penetration closest to the module half-radius, and hence the best uniform mixture at a plane one duct radius from the orifice leading edge.

  5. Jet flows of reacting gases

    NASA Astrophysics Data System (ADS)

    Aliev, Farkhadzhan; Zhumaev, Zair Sh.

    The book presents fundamentals of the aerodynamic theory and calculation of straight gas jets. The discussion focuses on the flow structure and turbulent combustion of unmixed gases and thermal characteristics of the jet. The following three types of problems are considered: motion of unmixed chemically active gases; gas motion under conditions of chemical equilibrium; and motion of gases under conditions of finite-rate chemical reactions.

  6. Vorticity Dynamics in Single and Multiple Swirling Reacting Jets

    NASA Astrophysics Data System (ADS)

    Smith, Travis; Aguilar, Michael; Emerson, Benjamin; Noble, David; Lieuwen, Tim

    2015-11-01

    This presentation describes an analysis of the unsteady flow structures in two multinozzle swirling jet configurations. This work is motivated by the problem of combustion instabilities in premixed flames, a major concern in the development of modern low NOx combustors. The objective is to compare the unsteady flow structures in these two configurations for two separate geometries and determine how certain parameters, primarily distance between jets, influence the flow dynamics. The analysis aims to differentiate between the flow dynamics of single nozzle and triple nozzle configurations. This study looks at how the vorticity in the shear layers of one reacting swirling jet can affect the dynamics of a nearby similar jet. The distance between the swirling jets is found to have an effect on the flow field in determining where swirling jets merge and on the dynamics upstream of the merging location. Graduate Student, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA.

  7. Experimental investigation of a reacting transverse jet in a high pressure oscillating vitiated crossflow

    NASA Astrophysics Data System (ADS)

    Fugger, Christopher A.

    near a pressure node of the 1st axial combustor mode, where the dominant flowfield fluctuations are a time-varying crossflow velocity. For the non-reacting jets, the nominal jet-to-crossflow momentum flux ratio is 19. For the reacting jets, the nominal jet-to-crossflow momentum flux ratio is 6. Two cross sectional planes parallel to the jet injection wall are investigated: 1 and 2.7 jet diameters from the jet injection wall. The combustor crossflow high frequency wall mounted pressure data is given for each test case. The velocity and OH-PLIF data is presented as instantaneous snapshots, time and phase averaged flowfields, modal decompositions using Proper Orthogonal Decomposition and Dynamic Mode Decomposition, and a jet cycle analysis relative to the crossflow acoustic cycle. Analysis of the five test cases shows that the jet cross sectional velocity and OH-PLIF dynamics display a multitude of dynamics. These are often organized into shear layer dynamics and wake dynamics, but are not mutually exclusive. For large unsteady crossflow velocity oscillations at the 1st axial combustor mode, both dynamics show strong organization at the unsteady crossflow frequency. Deciphering these dynamics is complicated by the fact that the ostensible jet response to the time-varying crossflow is a time-varying jet penetration. This drives the jet toward and away from the jet injection wall. These motions are perpendicular to the laser sheet and creates significant out-of-plane motions. The amplitude of crossflow unsteadiness appears to play a role in the sharpness of the wake dynamics. For the non-reacting cases, the wake dynamics are strong and dominant spectral features in the flowfield. For the reacting cases, the wake dynamics are spectrally distinct in the lower amplitude crossflow unsteadiness case, but a large unsteady amplitude crossflow appears to suppress the spectral bands in the frequency range corresponding to wake vortex dynamics.

  8. Experimental Vortex Identification and Characterization in Reacting Jets in Crossflow

    NASA Astrophysics Data System (ADS)

    Nair, Vedanth; Emerson, Ben; Lieuwen, Timothy

    2016-11-01

    Reacting jets in crossflow (JICF) is an important canonical flow field in combustion problems where there is strong coupling between heat release and the evolution of vortical structures. We use vortex identification studies to experimentally characterize the spatial evolution of vortex dynamics in a reacting JICF. A vortex identification algorithm was designed to operate on particle image velocimetry (PIV) data and its raw Mie scattering images. The algorithm uses the velocity fields to obtain comparisons between the strain rate and the rotation rate. Additionally, the algorithm uses the raw Mie scattering data to identify regions where the high acceleration at vortex cores has centrifuged seeding particles out of the vortex cores. Together, these methods are used to estimate the vortex location and circulation. Analysis was done on 10 kHz PIV data from a reacting JICF experiment, and the resulting vortex trajectory, and growth rate statistics are presented. Results are compared between non-reacting JICF and reacting studies performed with different jet density ratios and different levels of acoustic forcing. We observed how the density ratio, the frequency and amplitude of the acoustic forcing affected the vortex characteristics and growth rate.

  9. Optimization of Jet Mixing Into a Rich, Reacting Crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1997-01-01

    Radial jet mixing of pure air into a fuel-rich, reacting crossflow confined to a cylindrical geometry is addressed with a focus on establishing an optimal jet orifice geometry. The purpose of this investigation was to determine the number of round holes that most effectively mixes the jets with the mainstream flow, and thereby minimizes the residence time of near-stoichiometric and unreacted packets. Such a condition might reduce pollutant formation in axially staged, gas turbine combustor systems. Five different configurations consisting of 8, 10, 12, 14, and 18 round holes are reported here. An optimum number of jet orifices is found for a jet-to-mainstream momentum-flux ratio (J) of 57 and a mass-flow ratio (MR) of 2.5. For this condition, the 14-orifice case produces the lowest spatial unmixedness and the most uniformly-distributed species concentrations and temperature profiles at a plane located one duct diameter length from the jet orifice inlet.

  10. Axisymmetric wall jet development in confined jet impingement

    NASA Astrophysics Data System (ADS)

    Guo, Tianqi; Rau, Matthew J.; Vlachos, Pavlos P.; Garimella, Suresh V.

    2017-02-01

    The flow field surrounding an axisymmetric, confined, impinging jet was investigated with a focus on the early development of the triple-layered wall jet structure. Experiments were conducted using stereo particle image velocimetry at three different confinement gap heights (2, 4, and 8 jet diameters) across Reynolds numbers ranging from 1000 to 9000. The rotating flow structures within the confinement region and their interaction with the surrounding flow were dependent on the confinement gap height and Reynolds number. The recirculation core shifted downstream as the Reynolds number increased. For the smallest confinement gap height investigated, the strong recirculation caused a disruption of the wall jet development. The radial position of the recirculation core observed at this small gap height was found to coincide with the location where the maximum wall jet velocity had decayed to 15% of the impinging jet exit velocity. After this point, the self-similarity hypothesis failed to predict the evolution of the wall jet further downstream. A reduction in confinement gap height increased the growth rates of the wall jet thickness but did not affect the decay rate of the wall jet maximum velocity. For jet Reynolds numbers above 2500, the decay rate of the maximum velocity in the developing region of the wall jet was approximately -1.1, which is close to previous results reported for the fully developed region of radial wall jets. A much higher decay rate of -1.5 was found for the wall jet formed by a laminar impinging jet at Re = 1000.

  11. Adjoint based sensitivity analysis of a reacting jet in crossflow

    NASA Astrophysics Data System (ADS)

    Sashittal, Palash; Sayadi, Taraneh; Schmid, Peter

    2016-11-01

    With current advances in computational resources, high fidelity simulations of reactive flows are increasingly being used as predictive tools in various industrial applications. In order to capture the combustion process accurately, detailed/reduced chemical mechanisms are employed, which in turn rely on various model parameters. Therefore, it would be of great interest to quantify the sensitivities of the predictions with respect to the introduced models. Due to the high dimensionality of the parameter space, methods such as finite differences which rely on multiple forward simulations prove to be very costly and adjoint based techniques are a suitable alternative. The complex nature of the governing equations, however, renders an efficient strategy in finding the adjoint equations a challenging task. In this study, we employ the modular approach of Fosas de Pando et al. (2012), to build a discrete adjoint framework applied to a reacting jet in crossflow. The developed framework is then used to extract the sensitivity of the integrated heat release with respect to the existing combustion parameters. Analyzing the sensitivities in the three-dimensional domain provides insight towards the specific regions of the flow that are more susceptible to the choice of the model.

  12. Turbulence measurements in curved wall jets

    NASA Astrophysics Data System (ADS)

    Rodman, L. C.; Wood, N. J.; Roberts, L.

    1987-01-01

    Accurate turbulence measurements taken in wall jet flows are difficult to obtain, due to high intensity turbulence and problems in achieving two-dimensionality. The problem is compounded when streamwise curvature of the flow is introduced, since the jet entrainment and turbulence levels are greatly increased over the equivalent planar values. In this experiment, two-dimensional plane and curved wall jet flows are simulated by having a jet blow axially over a cylinder. In the plane case the cylinder has constant transverse radius, and in the curved cases the cylinder has a varying transverse radius. Although the wall jet in these cases is axisymmetric, adequate 'two-dimensional' flow can be obtained as long as the ratio of the jet width to the cylinder radius is small. The annular wall jet has several advantages over wall jets issuing from finite rectangular slots. Since the slot has no ends, three-dimensional effects caused by the finite length of the slot and side wall interference are eliminated. Also, the transverse curvature of the wall allows close optical access to the surface using a Laser Doppler Velocimetry (LDV) system. Hot wire measurements and some LDV measurements are presented for plane and curved wall jet flows. An integral analysis is used to assess the effects of transverse curvature on the turbulent shear stress. The analysis and the data show that the effects of transverse curvature on both the mean flow and the shear stress are small enough for two-dimensional flow to be approximately satisfactorily.

  13. Turbulent wall jet in a coflowing stream

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1975-01-01

    A theoretical investigation was undertaken to develop a relatively simple model of a two-dimensional, turbulent wall jet in a coflowing stream. The incompressible jet flow was modeled by using an integral method which includes turbulent shear stress, entrainment, and heat transfer. The method solves the conservation equations for the average jet flow properties and uses the velocity profile suggested by Escudier and Nicoll to obtain detailed characteristics of the jet on a flat plate. The analytical results compare favorably with experimental data for a range of injection velocities, which demonstrates the usefulness of the theory for estimating jet growth, velocity decay, and wall skin friction. The theory, which was applied to a Coanda jet on a circular cylinder, provided estimates of suction pressures aft of the jet exit that were in close agreement with experimental values.

  14. Numerical modeling of turbulent supersonic reacting coaxial jets

    NASA Technical Reports Server (NTRS)

    Eklund, Dean R.; Hassan, H. A.; Drummond, J. Philip

    1989-01-01

    The paper considers the mixing and subsequent combustion within turbulent reacting shear layers. A computer program was developed to solve the axisymmetric Reynolds averaged Navier-Stokes equations. The numerical method integrates the Reynolds averaged Navier-Stokes equations using a finite volume approach while advancing the solution forward in time using a Runge-Kutta scheme. Three separate flowfields are investigated and it is found that no single turbulence model considered could accurately predict the degree of mixing for all three cases.

  15. Enhancement of wall jet transport properties

    DOEpatents

    Claunch, S.D.; Farrington, R.B.

    1997-02-04

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 17 figs.

  16. Enhancement of wall jet transport properties

    DOEpatents

    Claunch, Scott D.; Farrington, Robert B.

    1997-01-01

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  17. Assessing Jet-Induced Spatial Mixing in a Rich, Reacting Crossflow

    NASA Technical Reports Server (NTRS)

    Demayo, T. N.; Leong, M. Y.; Samuelsen, G. S.

    2004-01-01

    In many advanced low NOx gas turbine combustion techniques, such as rich-burn/quick-mix/lean-burn (RQL), jet mixing in a reacting, hot, fuel-rich crossflow plays an important role in minimizing all pollutant emissions and maximizing combustion efficiency. Assessing the degree of mixing and predicting jet penetration is critical to the optimization of the jet injection design strategy. Different passive scalar quantities, including carbon, oxygen, and helium are compared to quantify mixing in an atmospheric RQL combustion rig under reacting conditions. The results show that the O2-based jet mixture fraction underpredicts the C-based mixture fraction due to jet dilution and combustion, whereas the He tracer overpredicts it possibly due to differences in density and diffusivity. The He-method also exhibits significant scatter in the mixture fraction data that can most likely be attributed to differences in gas density and turbulent diffusivity. The jet mixture fraction data were used to evaluate planar spatial unmixedness, which showed good agreement for all three scalars. This investigation suggests that, with further technique refinement, O2 or a He tracer could be used instead of C to determine the extent of reaction and mixing in an RQL combustor.

  18. Analysis of a dusty wall jet

    NASA Technical Reports Server (NTRS)

    Lim, Hock-Bin; Roberts, Leonard

    1991-01-01

    An analysis is given for the entrainment of dust into a turbulent radial wall jet. Equations are solved based on incompressible flow of a radial wall jet into which dust is entrained from the wall and transported by turbulent diffusion and convection throughout the flow. It is shown that the resulting concentration of dust particles in the flow depends on the difference between the applied shear stress at the surface and the maximum level of shear stress that the surface can withstand (varies as rho(sub d)a(sub g)D) i.e., the pressure due to the weight of a single layer of dust. The analysis is expected to have application to the downflow that results from helicopter and VTOL aircraft.

  19. Unsteady computational analysis of shrouded plug nozzle flows and reacting impinging jets

    NASA Astrophysics Data System (ADS)

    Kapilavai, Dheeraj S. K.

    The computations of a non-reacting nozzle-flow problem and a reacting impinging jet problem using a unified numerical methodology is presented. The nozzle problem is a shrouded plug configuration that operates at nozzle pressure ratio (NPR, ratio of inlet pressure to ambient pressure) between one to a design NPR of 6.23 for supersonic applications. An sub-scale model with extensive instrumentation is the basis of axisymmetric and three-dimensional computations done as both steady and unsteady problems with an aim to understand nozzle flow physics. The pressure distribution and shock structure predicted by steady computations not only detailed the shock physics but were also in close agreement with measured pressure data and visualization. The nozzle is observed to transition from normal shock at NPR's just above one to a lambda shock below NPR of 2.0 and then from a Mach reflection to a regular reflection within NPR range 2.25 to 3.1. A barrel oblique shock is observed above NPR of 3.1 before achieving perfect expansion at design NPR. During the shock transition the separation region behind the shock is observed to be fully attached for NPR's below 2.0, a regime called free shock separation (FSS), followed by reattached flow on plug wall called restricted shock separation (RSS) at higher NPR's. The unsteady computational analysis explained the shifts in frequencies observed in measurements. The unsteady computations at NPR of 1.26 show that the measured frequency of 170Hz is because of periodic choking and unchoking driven by large scale shock motion. In the FSS regime identified by computations the measured frequency remains constant at 200Hz. Following this the frequency shifts to above 300Hz and increases monotonically as the nozzle transitions from FSS to RSS observed to occur between NPR of 2.0 and approximately 2.25. Unsteady 3-D computations showed axisymmetric instantaneous flowfield at NPR of 1.26 while at NPR of 1.59 the dynamic flowfield was observed to

  20. Effects of heat release on the structure and stability of a coflowing, chemically reacting jet

    NASA Technical Reports Server (NTRS)

    Mahalingam, S.; Cantwell, B. J.; Ferziger, J. H.

    1989-01-01

    It is shown how linear stability analysis and full simulations can be used to study the stability and structure of reacting flows. The small effect of gravity on steady laminar flame heights can be modeled if allowance is made for the density variations due to heat release. It is found that cold transitional jet simulations yield perturbation growth rates which are consistent with the predictions of the inviscid stability theory.

  1. Effect of Jet Injection Angle and Number of Jets on Mixing and Emissions From a Reacting Crossflow at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    St.John, D.; Samuelsen, G. S.

    2000-01-01

    The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an important step in staged combustion. Often referred to as "quick quench," the mixing occurs with chemical conversion and substantial heat release. An experiment has been designed to simulate and study this process, and the effect of varying the entry angle (0 deg, 22.5 deg and 45 deg from normal) and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5;J = 25). The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices equally spaced around the perimeter. A specially designed reactor, operating on propane, presents a uniform mixture to a module containing air jet injection tubes that can be changed to vary orifice geometry. Species concentrations of O2, CO, CO2, NO(x) and HC were obtained one duct diameter upstream (in the rich zone), and primarily one duct radius downstream. From this information, penetration of the jet, the spatial extent of chemical reaction, mixing, and the optimum jet injection angle and number of jets can be deduced.

  2. A study of reacting free and ducted hydrogen/air jets

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.

    1975-01-01

    The mixing and reaction of a supersonic jet of hydrogen in coaxial free and ducted high temperature test gases were investigated. The importance of chemical kinetics on computed results, and the utilization of free-jet theoretical approaches to compute enclosed flow fields were studied. Measured pitot pressure profiles were correlated by use of a parabolic mixing analysis employing an eddy viscosity model. All computations, including free, ducted, reacting, and nonreacting cases, use the same value of the empirical constant in the viscosity model. Equilibrium and finite rate chemistry models were utilized. The finite rate assumption allowed prediction of observed ignition delay, but the equilibrium model gave the best correlations downstream from the ignition location. Ducted calculations were made with finite rate chemistry; correlations were, in general, as good as the free-jet results until problems with the boundary conditions were encountered.

  3. Effect of the nature of vitiated crossflow on the flow-field of a transverse reacting jet

    NASA Astrophysics Data System (ADS)

    Panda, Pratikash P.; Busari, Oluwatobi; Lucht, Robert P.; Laster, Walter R.

    2017-02-01

    The effect of the nature of vitiated crossflow on the structure and dynamics of non-reacting/reacting transverse jets is investigated. In this study, the vitiated crossflow is produced either by a low-swirl burner (LSB) that adds a swirling component to the crossflow or a bluff-body burner (BBB) that produces a uniform crossflow. The jet fluid is injected through a contoured injector, which provides a top-hat velocity profile. The swirling crossflow exhibits considerable swirl at the point of injection of the transverse jet. Two component high-repetition-rate PIV measurements demonstrate the influence of a vitiated crossflow generated by a low-swirl/bluff-body burner on the near-wake flow-field of the jet. Measurements at a plane below the injection location of the jet indicate that there is a continuous entrainment of PIV particles in case of swirling crossflow. The time-averaged flow-field shows that the velocity field for reacting/non-reacting jets in the LSB crossflow exhibits higher velocity gradients, in the measurement plane along jet cross section, as compared to BBB crossflow. It is found that the vorticity magnitude is lower in case of jets in the BBB crossflow and there is a delay in the formation of the wake vortex structure. The conditional turbulent statistics of the jet flow-field in the two crossflows shows that there is a higher degree of intermittency related to the wake vortex structure in case of a BBB crossflow, which results in a non-Gaussian distribution of the turbulent statistics. The wake Strouhal number calculation shows the influence of the nature of crossflow on the rate of wake vortex shedding. The wake Strouhal number for the jets in BBB crossflow is found to be lower than for the LSB crossflow. A decrease in the wake Strouhal number is observed with an increase in the nozzle separation distance. There is an increase in the dilatation rate owing to heat release which results in higher wake Strouhal number for reacting jets as compared

  4. Mixing and NO(x) Emission Calculations of Confined Reacting Jet Flows in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Oechsle, Victor L.

    2003-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A 3-dimensional tool has been used to predict the mixing flow field characteristics and NOx emission in a quench section of an RQL combustor, Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameters: 1) jet-to-mainstream momentum-flux ratio (J), 2) orifice shape or orifice aspect ratio, and 3) slot slant angle. The results indicate that the mixing flow field significantly varies with the value of the jet penetration and subsequently, slanting elongated slots generally improve the mixing uniformity at high J conditions. Round orifices produce more uniform mixing and low NO(x) emissions at low J due to the strong and adequate jet penetration. No significant correlation was found between the NO(x) production rates and the mixing deviation parameters, however, strong correlation was found between NO(x) formation and jet penetration. In the computational results, most of the NO(x) formation occurred behind the orifice starting at the orifice wake region. Additional NO(x) is formed upstream of the orifice in certain configurations with high J conditions due to the upstream recirculation.

  5. Mechanisms of Flame Stabilization and Blowout in a Reacting Turbulent Hydrogen Jet in Cross-Flow

    SciTech Connect

    Kolla, H.; Grout, R. W.; Gruber, A.; Chen, J. H.

    2012-08-01

    The mechanisms contributing to flame stabilization and blowout in a nitrogen-diluted hydrogen transverse jet in a turbulent boundary layer cross-flow (JICF) are investigated using three-dimensional direct numerical simulation (DNS) with detailed chemistry. Non-reacting JICF DNS were performed to understand the relative magnitude and physical location of low velocity regions on the leeward side of the fuel jet where a flame can potentially anchor. As the injection angle is reduced from 90{sup o} to 70{sup o}, the low velocity region was found to diminish significantly, both in terms of physical extent and magnitude, and hence, its ability to provide favorable conditions for flame anchoring and stabilization are greatly reduced. In the reacting JICF DNS a stable flame is observed for 90{sup o} injection angle and, on average, the flame root is in the vicinity of low velocity magnitude and stoichiometric mixture. When the injection angle is smoothly transitioned to 75{sup o} a transient flame blowout is observed. Ensemble averaged quantities on the flame base reveal two phases of the blowout characterized by a kinematic imbalance between flame propagation speed and flow normal velocity. In the first phase dominant flow structures repeatedly draw the flame base closer to the jet centerline resulting in richer-than-stoichiometric mixtures and high velocity magnitudes. In the second phase, in spite of low velocity magnitudes and a return to stoichiometry, due to jet bending and flame alignment normal to the cross-flow, the flow velocity normal to the flame base increases dramatically perpetuating the blowout.

  6. An experimental investigation of reacting and nonreacting coaxial jet mixing in a laboratory rocket engine

    NASA Astrophysics Data System (ADS)

    Schumaker, Stephen Alexander

    Coaxial jets are commonly used as injectors in propulsion and combustion devices due to both the simplicity of their geometry and the rapid mixing they provide. In liquid rocket engines it is common to use coaxial jets in the context of airblast atomization. However, interest exists in developing rocket engines using a full flow staged combustion cycle. In such a configuration both propellants are injected in the gaseous phase. In addition, gaseous coaxial jets have been identified as an ideal test case for the validation of the next generation of injector modeling tools. For these reasons an understanding of the fundamental phenomena which govern mixing in gaseous coaxial jets and the effect of combustion on these phenomena in coaxial jet diffusion flames is needed. A study was performed to better understand the scaling of the stoichiometric mixing length in reacting and nonreacting coaxial jets with velocity ratios greater than one and density ratios less than one. A facility was developed that incorporates a single shear coaxial injector in a laboratory rocket engine capable of ten atmospheres. Optical access allows the use of flame luminosity and laser diagnostic techniques such as Planar Laser Induced Fluorescence (PLIF). Stoichiometric mixing lengths (LS), which are defined as the distance along the centerline where the stoichiometric condition occurs, were measured using PLIF. Acetone was seeded into the center jet to provide direct PLIF measurement of the average and instantaneous mixture fraction fields for a range of momentum flux ratios for the nonreacting cases. For the coaxial jet diffusion flames, LS was measured from OH radical contours. For nonreacting cases the use of a nondimensional momentum flux ratio was found to collapse the mixing length data. The flame lengths of coaxial jet diffusion flames were also found to scale with the momentum flux ratio but different scaling constants are required which depended on the chemistry of the reaction. The

  7. The Aeroacoustics of Turbulent Coanda Wall Jets

    NASA Astrophysics Data System (ADS)

    Lubert, Caroline; Fox, Jason

    2007-11-01

    Turbulent Coanda wall jets have become increasingly widely used in a variety of industrial applications in recent years, due to the substantial flow deflection that they afford. A related characteristic is the enhanced turbulence levels and entrainment they offer, compared with conventional jet flows. This characteristic is, however, generally accompanied by a significant increase in the noise levels associated with devices employing this effect. As a consequence, the potential offered by Coanda devices is yet to be fully realized. This problem provides the impetus for the research detailed in this poster. To date, some work has been done on developing a mathematical model of the Turbulent Mixing Noise emitted by such a device, assuming that the surface adjoining the turbulent flow was essentially 2-D. This poster extends this fundamental model, through a combination of mathematical modeling and acoustical and optical experiments. The effect of a variety of parameters, including nozzle configuration and jet exit velocity will be discussed, and ways of reducing or attenuating the noise generated by such flow, whilst still maintaining the crucial flow characteristics, will be presented.

  8. Numerical mixing calculations of confined reacting jet flows in a cylindrical duct

    NASA Technical Reports Server (NTRS)

    Oechsle, Victor L.; Holdeman, J. D.

    1995-01-01

    The results reported in this paper describe some of the main flow characteristics and NOx production results which develop in the mixing process in a constant cross-sectional cylindrical duct. A 3-dimensional numerical model has been used to predict the mixing flow field and NOx characteristics in a mixing section of an RQL combustor. Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameter: (1) jet-to-mainstream momentum-flux ration (J), (2) orifice shape or orifice aspect ratio, and (3) slot slant angle. The results indicate that the mixing flow field and NOx production significantly vary with the value of the jet penetration and subsequently, slanting elongated slots generally improve the NOx production at high J conditions. Round orifices produce low NOx at low J due to the strong jet penetration. The NOx production trends do not correlate with the mixing non-uniformity parameters described herein.

  9. The effects of turbulence on nanoparticle growth in turbulent reacting jets

    NASA Astrophysics Data System (ADS)

    Das, Shankhadeep; Garrick, Sean C.

    2010-10-01

    The effects of turbulence on nanoparticle growth in turbulent reacting flows are studied via a priori analysis of direct numerical simulation data. The formation and growth of titanium dioxide nanoparticles in incompressible planar jets are simulated via gas-phase hydrolysis of titanium tetrachloride. The particle field is captured by utilizing a nodal approach which accounts for nucleation, condensation, and Brownian coagulation. Simulations are performed at a single Reynolds number and two different precursor concentration levels. Instantaneous, filtered, and averaged data are presented to convey the nature of turbulent or unresolved contributions to the growth of nanoparticles. The effects of turbulence on particle dynamics, in the context of both Reynolds-averaged Navier-Stokes simulation and large-eddy simulation, are assessed by comparing the exact, turbulent, and subgrid-scale growth rates. The results show that large particles are produced in the regions away from the jet core, and an increase in the precursor concentration level increases the particle mean diameter. Particles grow faster when the precursor concentration is increased. It is further observed that the growth rate of the particles is higher inside the eddies and it increases as the jet grows. Additionally, the results show that the unresolved small-scale fluctuations can both augment and inhibit particle growth. However the predominant effect is to reduce particle growth. This tendency is increased (in magnitude) as the precursor concentration level is increased.

  10. Shear Layer Interactions in the Helical Hydrodynamic Structures of Swirling, Reacting Jets

    NASA Astrophysics Data System (ADS)

    Smith, Travis; Manoharan, Kiran; Emerson, Benjamin; Hemchandra, Santosh; Lieuwen, Tim

    2016-11-01

    Swirling jets with density stratification are a canonical combustor flow field. This work consisted of coupled experimental and theoretical analysis of the spatial structure of the most amplified modes in an annular jet, with a specific focus on the radial mode shapes of the shear layer disturbances, which we characterize as inner shear layer (ISL) motion relative to outer shear layer (OSL) motion. The stability analysis identifies spatial structures dominated by ISL motion, modes dominated by OSL motion, and modes with mixed ISL and OSL motion. These mixed modes are further classified as sinuous or varicose radial structures, depending on the relative motions of the two shear layers. The presence and spatial dependencies of these spatial modes are demonstrated experimentally with a 5 kHz stereo PIV measurement of a reacting swirling jet. In the experiment, we demonstrate that external excitations of various spatial configurations can be used to elicit hydrodynamic responses of axisymmetric and helical motions in either the ISL, the OSL, or the sinuous or varicose radial modes.

  11. Counter gradient diffusion in a plane wall jet

    NASA Astrophysics Data System (ADS)

    Ramesh, O.; Dhamotharan, V.

    2015-11-01

    Turbulent wall-jets are important in a variety of applications such as the Coanda effect for boundary layer separation control, film-cooling applications in a jet engine etc., One of the important features of a wall jet is the existence of a region of counter gradient diffusion of momentum. The counter-gradient region is a sort of pathological situation for RANS based turbulence models as they would not be able to predict this region. In this study we show from our experiments in a wall jet the counter-gradient region of diffusion can be understood from simple structural models for a wall jet eddy. Towards this flow visualization and hotwire measurements have been performed. It is seen from the smoke flow visualizations that the outward portion of the flow is backward leaning i.e. in the upstream direction. This is consistent with the orientation of eddy structure obtained from two-point correlation measurements. A building block eddy of a wall jet is proposed that has aspects of a boundary layer eddy in the inner wall region and a jet eddy in the outer region. It is argued by a simple vortex dynamics model that the counter-gradient region occurs due to the influence of the jet eddies in the near-wall region.

  12. Flow Characteristics of Plane Wall Jet with Side Walls on Both Sides

    NASA Astrophysics Data System (ADS)

    Imao, Shigeki; Kikuchi, Satoshi; Kozato, Yasuaki; Hayashi, Takayasu

    Flow characteristics of a two-dimensional jet with side walls have been studied experimentally. Three kinds of cylindrical walls and a flat wall were provided as the side walls, and they were combined and attached to a nozzle. Nine types of side wall conditions were investigated. Velocity was measured by a hot-wire probe and the separation point was measured by a Pitot tube. Mean velocity profiles, the growth of the jet half-width, the decay of jet maximum velocity, and the attachment distance were clarified. When cylindrical walls with different radii are installed, the flow pattern changes markedly depending on the velocity of the jet. A striking increase in the jet half-width is related to the separation of flow from the smaller cylindrical wall just behind the nozzle.

  13. A model combustor for studying a reacting jet in an oscillating crossflow

    NASA Astrophysics Data System (ADS)

    Fugger, Christopher A.; Gejji, Rohan M.; Portillo, J. Enrique; Yu, Yen; Lucht, Robert P.; Anderson, William E.

    2017-06-01

    This paper discusses a novel model combustion experiment that was built for studying the structure and dynamics of a reacting jet in an unsteady crossflow. A natural-gas-fired dump combustor is used to generate and sustain an acoustically oscillating vitiated flow that serves as the crossflow for transverse jet injection. Unlike most other techniques that are limited in operating pressure or acoustic amplitude, this method of generating an unsteady flow field is demonstrated at a pressure of 10 atm with peak-to-peak oscillation amplitudes approaching 20% of the mean pressure. An optically accessible test section designed for these conditions provides access for advanced laser and optical diagnostic measurements. Detailed measurements provide insight into the complex acoustic-hydrodynamic-combustion coupling processes and offer high-quality, high-resolution validation data for numerical simulations. Careful instrumentation port design considerations for the higher amplitude acoustics are detailed. As a whole, this paper focuses on select representative segments of the experiment operational space that highlight our strategy of providing an oscillatory flowfield. This includes presenting the acoustic operational space such as acoustic amplitudes, frequencies, and mode shapes. Select imaging results are then reported to support our strategies capability to produce high-fidelity measurements.

  14. Large eddy simulation of a turbulent non-reacting spray jet

    SciTech Connect

    Hu, Bing; Banerjee, S; Liu, K; Rajamohan, D; Deur, J M; Xue, Qingluan; Som, Sibendu; Senecal, Peter Kelly; Pomraning, Eric

    2015-01-01

    We performed Large Eddy Simulation (LES) of a turbulent non-reacting n-Heptane spray jet, referred to as Spray H in the Engine Combustion Network (ECN), and executed a data analysis focused on key LES metrics such as fraction of resolved turbulent kinetic energy and similarity index. In the simulation, we used the dynamic structure model for the sub-grid stress, and the Lagrangian-based spray-parcel models coupled with the blob-injection model. The finest mesh-cell size used was characterized by an Adaptive Mesh Refinement (AMR) cell size of 0.0625 mm. To obtain ensemble statistics, we performed 28 numerical realizations of the simulation. Demonstrated by the comparison with experimental data in a previous study [7], this LES has accurately predicted global quantities, such as liquid and vapor penetrations. The analysis in this work shows that 14 realizations of LES are sufficient to provide a reasonable representation of the average flow behavior that is benchmarked against the 28-realization ensemble. With the current mesh, numerical schemes, and sub-grid scale turbulence model, more than 95% of the turbulent kinetic energy is directly resolved in the flow regions of interest. The large-scale flow structures inferred from a statistical analysis reveal a region of disorganized flow around the peripheral region of the spray jet, which appears to be linked to the entrainment process.

  15. Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts

    NASA Technical Reports Server (NTRS)

    Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)

    2000-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be

  16. An experimental investigation of straight and curved annular wall jets

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Wood, N. J.; Roberts, L.

    1987-01-01

    Accurate turbulence measurements taken in wall jet flows are difficult to obtain, due to high intensity turbulence and problems in achieving two-dimensionality. The problem is compounded when streamwise curvature of the flow is introduced, since the jet entrainment and turbulence levels are greatly increased over the equivalent planar values. In this experiment, two-dimensional straight and curved incompressible wall jet flows are simulated by having a jet blow axially over a cylinder. Hot wire measurements and some Laser Doppler Velocimetry measurements are presented for straight and curved wall jet flows. The results for the straight wall showed good agreement between the annular flow data and the rectangular data taken by previous researchers. For the jets with streamwise curvature, there was agreement between the annular and corresponding rectangular jets for the flow region closest to the slot exit. An integral analysis was used as a simple technique to interpret the experimental results. Integral momentum calculations were performed for both straight and curved annular and two dimensional wall jets. The results of the calculation were used to identify transverse curvature parameters and to predict the values of those parameters which would delineate the region where the annular flow can satisfactorily simulate two dimensional flow.

  17. Wall jet analysis for circulation control aerodynamics. Part 2: Zonal modeling concepts for wall jet/potential flow coupling

    NASA Technical Reports Server (NTRS)

    Dvorak, Frank A.; Dash, Sanford M.

    1987-01-01

    Work currently in progress to update an existing transonic circulation control airfoil analysis method is described. Existing methods suffer from two dificiencies: the inability to predict the shock structure of the underexpanded supersonic jets; and the insensitivity of the calculation to small changes in the Coanda surface geometry. A method developed for the analysis of jet exhaust plumes in supersonic flow is being modified for the case of the underexpanded wall jet. In the subsonic case, the same wall jet model was modified to include the calculation of the normal pressure gradient. This model is currently being coupled with the transonic circulation control airfoil analysis.

  18. Pollutant formation in fuel lean recirculating flows. Ph.D. Thesis. Final Report; [in an Opposed Reacting Jet Combustor

    NASA Technical Reports Server (NTRS)

    Schefer, R. W.; Sawyer, R. F.

    1976-01-01

    An opposed reacting jet combustor (ORJ) was tested at a pressure of 1 atmosphere. A premixed propane/air stream was stabilized by a counterflowing jet of the same reactants. The resulting intensely mixed zone of partially reacted combustion products produced stable combustion at equivalence ratios as low as 0.45. Measurements are presented for main stream velocities of 7.74 and 13.6 m/sec with an opposed jet velocity of 96 m/sec, inlet air temperatures from 300 to 600 K, and equivalence ratios from 0.45 to 0.625. Fuel lean premixed combustion was an effective method of achieving low NOx emissions and high combustion efficiencies simultaneously. Under conditions promoting lower flame temperature, NO2 constituted up to 100 percent of the total NOx. At higher temperatures this percentage decreased to a minimum of 50 percent.

  19. LIF Measurement of Interacting Gas Jet Flow with Plane Wall

    NASA Astrophysics Data System (ADS)

    Yanagi, A.; Kurihara, S.; Yamazaki, S.; Ota, M.; Maeno, K.

    2011-05-01

    Discharging rarefied gas jets in low-pressure conditions are interesting and important phenomena from an engineering point of view. For example they relate to the attitude control of the space satellite, or the semiconductor technology. The jets, however, deform to the complicated shapes by interacting with solid walls. In this paper we have performed the experiments the flow visualization as a first step by applying the LIF (Laser Induced Fluorescence) method on the jet-wall interaction. Jet is spouting out from a φ1.0 mm circular hole into the low pressure air chamber, impinging on a flat plate. The LIF visualization of interacting rarefied gas jet is carried out by using the iodine (I2) tracer and argon ion laser.

  20. Superfast Cosmic Jet "Hits the Wall"

    NASA Astrophysics Data System (ADS)

    1999-01-01

    A superfast jet of subatomic particles presumably powered by the gravitational energy of a black hole has collided with nearby material, been slowed dramatically and released much of its energy in the collision, radio astronomers report. The astronomers used the National Science Foundation's Very Large Array (VLA) radio telescope to observe the jet's motion. This is the first time such a collision has been seen within our own Milky Way Galaxy, and the collision may shed new light on the physics of cosmic jets. Robert Hjellming, Michael Rupen and Frank Ghigo of the National Radio Astronomy Observatory (NRAO); Amy Mioduszewski of the Joint Institute for VLBI in Europe; Don Smith of MIT's Space Research Lab; Alan Harmon of Marshall Space Flight Center, and Elizabeth Waltman of the Naval Research Laboratory reported their findings today at the American Astronomical Society's meeting in Austin, TX. The cosmic jet comes from an object called XTE J1748-288, at least 30,000 light-years away in the constellation Sagittarius, near the center of the Milky Way. XTE J1748-288, discovered on June 4, 1998, by Don Smith, using the RXTE satellite, is a "black hole candidate," probably consisting of a black hole drawing material from a companion star and accelerating jets of material outward in the process. A series of VLA images showed a "blob" of material in the jet moving at an apparent speed at least 50 percent greater than that of light. This is only the third such "superluminal" jet seen in our own Galaxy. The apparent faster-than-light motion is an illusion created by geometric effects when jets move at nearly the speed of light and are aligned so that their motion is somewhat toward Earth. The two other Milky Way objects whose jets show such rapid motion are dubbed "microquasars," because their behavior mimics that of quasars -- much larger objects seen at the cores of very distant galaxies. A series of VLA images showed material ejected as a jet from the core of XTE J1748

  1. Enhanced heat sink with geometry induced wall-jet

    SciTech Connect

    Hossain, Md. Mahamudul Tikadar, Amitav; Bari, Fazlul; Morshed, A. K. M. M.

    2016-07-12

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities along the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.

  2. Enhanced heat sink with geometry induced wall-jet

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Mahamudul; Tikadar, Amitav; Bari, Fazlul; Morshed, A. K. M. M.

    2016-07-01

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities along the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.

  3. A numerical study of shock wave/boundary layer interaction in nonequilibrium chemically reacting air - The effects of catalytic walls

    NASA Technical Reports Server (NTRS)

    Grumet, Adam A.; Anderson, John D., Jr.; Lewis, Mark J.

    1991-01-01

    This paper presents a numerical study that investigate the effects of nonequilibrium chemistry, and in particular, wall catalycity on the separated flow region generated by an oblique shock wave impinging upon a flat plate boundary layer. To obtain a solution to this problem, the full two dimensional Navier-Stokes equations were solved using MacCormack's predictor-corrector time dependent technique on a rectangular grid. Nonequilibrium chemistry was included by utilizing the 5 species, 17 reaction modified Dunn-Kang chemical kinetics model. Separate results were obtained for: calorically perfect, chemically reacting - noncatalytic wall, and chemically reacting - fully catalytic wall cases, for a given set of flow conditions. A direct comparison of all three cases revealed a slight decrease in the peak heat transfer for the noncatalytic wall case, as compared to the calorically perfect case. On the other hand, the fully catalytic wall case had a tremendous increase in the peak surface heat transfer. It is concluded that, for the particular conditons treated here (nearly frozen flow in the free stream), the effects of the nonequilibrium chemically reacting flow on the shock-wave/boundary-layer interaction depend critically on the catalycity of the wall, having virtually no effect for the case of a noncatalytic wall, and exerting a tremendous effect for a fully catalytic wall.

  4. Tile profiling analysis of samples from the JET ITER-like wall and carbon wall

    NASA Astrophysics Data System (ADS)

    Heinola, K.; Ayres, C. F.; Baron-Wiechec, A.; Coad, J. P.; Likonen, J.; Matthews, G. F.; Widdowson, A.; Contributors, JET-EFDA

    2014-04-01

    A complete global balance for material transport in JET requires knowledge of the net erosion in the main chamber, net deposition in the divertor and the amount of dust in the divertor region. Following the end of the first JET ITER-like wall campaign a set of tiles has been removed from the main chamber and the divertor. This paper describes the initial tile surface profiling results for evaluating the erosion in the main chamber and deposition in the divertor. Tile profiling was performed on upper dump plate tiles and inner wall guard limiters made of beryllium and on inner divertor tiles made of tungsten coated carbon (C)-fibre composites. Additionally, the mass of dust collected from the JET divertor is also reported. Present results are compared with JET-C campaign results with the all-carbon C wall.

  5. Numerical simulation of liquid jet impact on a rigid wall

    NASA Astrophysics Data System (ADS)

    Aganin, A. A.; Guseva, T. S.

    2016-11-01

    Basic points of a numerical technique for computing high-speed liquid jet impact on a rigid wall are presented. In the technique the flows of the liquid and the surrounding gas are governed by the equations of gas dynamics in the density, velocity, and pressure, which are integrated by the CIP-CUP method on dynamically adaptive grids without explicitly tracking the gas-liquid interface. The efficiency of the technique is demonstrated by the results of computing the problems of impact of the liquid cone and the liquid wedge on a wall in the mode with the shockwave touching the wall by its edge. Numerical solutions of these problems are compared with the analytical solution of the problem of impact of the plane liquid flow on a wall. Applicability of the technique to the problems of the high-speed liquid jet impact on a wall is illustrated by the results of computing a problem of impact of a cylindrical liquid jet with the hemispherical end on a wall covered by a layer of the same liquid.

  6. The development of an axisymmetric curved turbulent wall jet

    NASA Astrophysics Data System (ADS)

    Gregory-Smith, D. G.; Hawkins, M. J.

    1991-12-01

    An experimental study has been carried out of the low speed Coanda wall jet with both streamwise and axisymmetric curvature. A single component laser Doppler technique was used, and by taking several orientations at a given point, values of the three mean velocities and five of the six Reynolds stresses were obtained. The lateral divergence and convex streamwise curvature both enhanced the turbulence in the outer part of the jet compared with a plane two-dimensional wall jet. The inner layer exhibited a large separation of the positions of maximum velocity and zero shear stress. It was found that the streamwise mean velocity profile became established very rapidly downstream of the slot exit. The profile appeared fairly similar at later downstream positions, but the mean radial velocity and turbulence parameters showed the expected nonself preservation of the flow. Removal of the streamwise curvature resulted in a general return of the jet conditions toward those expected of a plane wall jet. The range and accuracy of the data may be used for developing turbulence models and computational techniques for this type of flow.

  7. Wake Oscillation of Column Wall Jet in Uniform Flow

    NASA Astrophysics Data System (ADS)

    Yoshida, Yohei; Sato, Kotaro; Ono, Yoichi

    Both experiment and calculation demonstrated to clarify the effect of a column wall jet in uniform fluid flow on the characteristic of wake oscillation. The vortex intensity decreased and the oscillations attenuated when the jet direction matched the uniform flow. When the jet flow was reversed, the vortex intensity grew and the oscillations increased in magnitude. It has been found that the Strouhal number based on the half width of the flow velocity distribution was nearly constant. Also, the frequency depended on the vortex structure of the wake, which was further dependent on the jet flow velocity. In addition, the situations that gave twin peaks in the oscillation spectrum were found both in experiment and in calculation.

  8. Deformation of a Thin Film by a Wall Jet

    NASA Astrophysics Data System (ADS)

    Hammoud, Naima; Al-Housseiny, Talal; Stone, Howard

    2012-11-01

    A variety of industrial processes such as jet stripping or jet wiping involve a high speed stream of gas flowing over a liquid film. In this work, we model this kind of situation by considering a thin viscous liquid film, over which a high Reynolds number laminar wall jet (or Glauert jet) is flowing. We study the shape of the thin liquid film, which is deformed due to the shear stress induced by a jet of a low-viscosity fluid. The mechanics of the jet, which is modeled by boundary-layer theory, is coupled to the mechanics of the thin film, which includes the influence of surface tension and buoyancy. We describe the unsteady shape of the film using the lubrication description to derive a nonlinear PDE that is coupled to the Glauert jet via interfacial stresses. For the steady state, we obtain analytical solutions in different asymptotic regimes. We compare our theoretical findings to numerical simulations conducted with the finite volume solver FLUENT.

  9. Transient wall-jet flowing over a circular cylinder

    NASA Astrophysics Data System (ADS)

    Danon, Ron; Gregory, James W.; Greenblatt, David

    2016-09-01

    The transient flow of a two-dimensional wall-jet over a circular cylinder, following rapid initiation and termination, was investigated experimentally. Unsteady surface pressures and unsteady pressure-sensitive paint were used to gain a basic understanding of the flow physics. Jet initiation produced a starting vortex, upstream of which the Coandă flow developed, producing a large low-pressure peak. Immediately following jet termination, the pressure increased over the first quarter of the circumference, while the downstream separation region remained virtually unaffected. Simplifying analyses and dimensional arguments were used to show that the timescales characterizing the transient development of the integrated loads depend only on the square of the slot height and the kinematic viscosity and are thus independent of the jet velocity. Following jet initiation, the resulting loads varied according to a linear transient model, while small nonlinearities were observed following jet termination. Unsteady pressure-sensitive paint showed that the starting jet emerges from the slot in a two-dimensional manner and that streamwise streaks, identified as Görtler vortices, form well before the flow reaches steady state. During termination, the streamwise structures dissipate downstream initially, with the dissipation propagating upstream.

  10. SIMULATION AND MOCKUP OF SNS JET-FLOW TARGET WITH WALL JET FOR CAVITATION DAMAGE MITIGATION

    SciTech Connect

    Wendel, Mark W; Geoghegan, Patrick J; Felde, David K

    2014-01-01

    Pressure waves created in liquid mercury pulsed spallation targets at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory induce cavitation damage on the stainless steel target container. The cavitation damage is thought to limit the lifetime of the target for power levels at and above 1 MW. Severe through-wall cavitation damage on an internal wall near the beam entrance window has been observed in spent-targets. Surprisingly though, there is very little damage on the walls that bound an annular mercury channel that wraps around the front and outside of the target. The mercury flow through this channel is characterized by smooth, attached streamlines. One theory to explain this lack of damage is that the uni-directional flow biases the direction of the collapsing cavitation bubble, reducing the impact pressure and subsequent damage. The theory has been reinforced by in-beam separate effects data. For this reason, a second-generation SNS mercury target has been designed with an internal wall jet configuration intended to protect the concave wall where damage has been observed. The wall jet mimics the annular flow channel streamlines, but since the jet is bounded on only one side, the momentum is gradually diffused by the bulk flow interactions as it progresses around the cicular path of the target nose. Numerical simulations of the flow through this jet-flow target have been completed, and a water loop has been assembled with a transparent test target in order to visualize and measure the flow field. This paper presents the wall jet simulation results, as well as early experimental data from the test loop.

  11. Numerical study of laminar wall jet with transpiration and moving wall

    NASA Astrophysics Data System (ADS)

    Abedin, Md. Ariful; Raju, Md. Taj Uddin; Siraj, Md. Tanvir; Debnath, Amit

    2017-06-01

    Laminar wall jet is a unidirectional flow without any pressure gradient and is driven by its own momentum. This paper represents this phenomenon for two important cases-stationary wall without transpiration and moving wall with transpiration. Continuity and momentum equations have been developed for these two conditions. Similar to Glauerts theory, similarity transformation has been applied to find out the governing equation, a third order ordinary differential equation. Shooting method is applied to find out the proper boundary condition to solve the governing equation. Finally, an algorithm for 4th order Runge Kutta method has been augmented to find out the solution using MATLAB. As the jet moves forward in the case of a stationary wall without any transpiration, the maximum velocity, which is slightly greater than 0.4 m/s, occurs at a distance from the wall. The velocity curve for this case does not show any rapid change in the flow. But for the second case (moving wall with transpiration), the maximum velocity is obtained near the wall surface which is slightly greater than the wall velocity, 1.13 m/s. As the jet proceeds, due to suction, the velocity decreases rapidly. Again, the dominance of suction force forces the transverse velocity to achieve a lower value in the second case rather than in first case. The flow physics behind these scenarios is studied in detail in this work and is discussed for a range of operating conditions.

  12. Mixing of Pure Air Jets with a Reacting Fuel-Rich Crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1997-01-01

    Jets in a crossflow play an integral role in practical combustion systems such as can and annular gas turbine combustors in conventional systems, and the Rich-burn/Quick-mix/Lean-burn (RQL) combustor utilized in stationary applications and proposed for advanced subsonic and supersonic transports. The success of the RQL combustor rests with the performance of the quick-mixing section that bridges the rich and lean zones. The mixing of jet air with a rich crossflow to bring the reaction to completion in the lean zone must be performed rapidly and thoroughly in order to decrease the extent of near-stoichiometric fluid pocket formation. Fluid pockets at near-stoichiometric equivalence ratios are undesirable because the high temperatures attained accelerate pollutant formation kinetics associated with nitric oxide (NO). The present study develops a model experiment designed to reveal the processes that occur when jet air is introduced into hot effluent emanating from a fuel-rich reaction zone.

  13. Beryllium migration in JET ITER-like wall plasmas

    NASA Astrophysics Data System (ADS)

    Brezinsek, S.; Widdowson, A.; Mayer, M.; Philipps, V.; Baron-Wiechec, P.; Coenen, J. W.; Heinola, K.; Huber, A.; Likonen, J.; Petersson, P.; Rubel, M.; Stamp, M. F.; Borodin, D.; Coad, J. P.; Carrasco, A. G.; Kirschner, A.; Krat, S.; Krieger, K.; Lipschultz, B.; Linsmeier, Ch.; Matthews, G. F.; Schmid, K.; contributors, JET

    2015-06-01

    JET is used as a test bed for ITER, to investigate beryllium migration which connects the lifetime of first-wall components under erosion with tokamak safety, in relation to long-term fuel retention. The (i) limiter and the (ii) divertor configurations have been studied in JET-ILW (JET with a Be first wall and W divertor), and compared with those for the former JET-C (JET with carbon-based plasma-facing components (PFCs)). (i) For the limiter configuration, the Be gross erosion at the contact point was determined in situ by spectroscopy as between 4% (Ein = 35 eV) and more than 100%, caused by Be self-sputtering (Ein = 200 eV). Chemically assisted physical sputtering via BeD release has been identified to contribute to the effective Be sputtering yield, i.e. at Ein = 75 eV, erosion was enhanced by about 1/3 with respect to the bare physical sputtering case. An effective gross yield of 10% is on average representative for limiter plasma conditions, whereas a factor of 2 difference between the gross erosion and net erosion, determined by post-mortem analysis, was found. The primary impurity source in the limiter configuration in JET-ILW is only 25% higher (in weight) than that for the JET-C case. The main fraction of eroded Be stays within the main chamber. (ii) For the divertor configuration, neutral Be and BeD from physically and chemically assisted physical sputtering by charge exchange neutrals and residual ion flux at the recessed wall enter the plasma, ionize and are transported by scrape-off layer flows towards the inner divertor where significant net deposition takes place. The amount of Be eroded at the first wall (21 g) and the Be amount deposited in the inner divertor (28 g) are in fair agreement, though the balancing is as yet incomplete due to the limited analysis of PFCs. The primary impurity source in the JET-ILW is a factor of 5.3 less in comparison with that for JET-C, resulting in lower divertor material deposition, by more than one order of

  14. A computational model for three-dimensional incompressible wall jets with large cross flow

    NASA Technical Reports Server (NTRS)

    Murphy, W. D.; Shankar, V.; Malmuth, N. D.

    1979-01-01

    A computational model for the flow field of three dimensional incompressible wall jets prototypic of thrust augmenting ejectors with large cross flow is presented. The formulation employs boundary layer equations in an orthogonal curvilinear coordinate system. Simulation of laminar as well as turbulen wall jets is reported. Quantification of jet spreading, jet growth, nominal separation, and jet shrink effects due to corss flow are discussed.

  15. Numerical Simulations of a Reacting Sonic Jet in a Supersonic Cross-flow

    NASA Astrophysics Data System (ADS)

    Attal, Nitesh; Ramaprabhu, Praveen

    2014-11-01

    Interaction of a jet with a background cross-flow is a situation common to many engineering systems, including combustors in SCRAMJETS, gas turbines etc. Such an interaction enhances fuel-air mixing through the distortion of coherent structures into counter-rotating vortex pairs that are tilted, stretched and then sundered by the velocity gradient in the cross-flow, eventually leading to turbulent mixing. The ignition process and flame characteristics depend sensitively on the extent and efficiency of this turbulent mixing process. We describe results from detailed 3D numerical simulations of a sonic circular jet of diameter (D = 0.5 cm) issuing a mixture of H2 (Fuel) diluted with 50% N2 at 300 K into a turbulent, Mach 2 cross-flow of air at 1200 K. The simulations were performed in a computational domain of 20 × 16 × 16 jet diameters using the compressible flow code FLASH, with modifications to handle detailed (H2-O2) chemistry and temperature-dependent material properties. We discuss the role of shock driven mixing, ignition and flame anchoring on the combustion efficiency of the system.

  16. Simulations of Turbulent Momentum and Scalar Transport in Non-Reacting Confined Swirling Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey; Moder, Jeffrey P.

    2015-01-01

    This paper presents the numerical simulations of confined three-dimensional coaxial water jets. The objectives are to validate the newly proposed nonlinear turbulence models of momentum and scalar transport, and to evaluate the newly introduced scalar APDF and DWFDF equation along with its Eulerian implementation in the National Combustion Code (NCC). Simulations conducted include the steady RANS, the unsteady RANS (URANS), and the time-filtered Navier-Stokes (TFNS); both without and with invoking the APDF or DWFDF equation. When the APDF (ensemble averaged probability density function) or DWFDF (density weighted filtered density function) equation is invoked, the simulations are of a hybrid nature, i.e., the transport equations of energy and species are replaced by the APDF or DWFDF equation. Results of simulations are compared with the available experimental data. Some positive impacts of the nonlinear turbulence models and the Eulerian scalar APDF and DWFDF approach are observed.

  17. Experience with limiter- and wall materials in jet

    NASA Astrophysics Data System (ADS)

    Dietz, K. J.

    1988-07-01

    Operating initially with metallic walls, about 50% (~ 100 m 2) of the inner surface of the JET vessel are now covered in graphite tiles. High purity, fine grain graphite was chosen for areas where during the flat top time of the discharge, typically 10 s, the power loads do not exceed 5 MW m -2; carbon fibre reinforced graphite was selected for areas where loads above 20 MW m -2 can be expected. All other parts of the walls are carbonized. Fine grain high purity graphite has been employed for the limiters from the very beginning of plasma operation. With increasing heating power the limiter surface has gradually been increased from ~1.2 to ~15 m -2, and the power handling capability to 40 MW for ten seconds. This paper describes modifications to the inner wall introduced during the various operation phases of JET, the different materials used, their performance in the presence of plasmas, and their influence on plasma properties. Operational limits, future developments and the use of beryllium as an alternative to the present concept of an all graphite machine are discussed.

  18. Scale resolving computation of submerged wall jets on flat wall with different roughness heights

    NASA Astrophysics Data System (ADS)

    Paik, Joongcheol; Bombardelli, Fabian

    2014-11-01

    Scale-adaptive simulation is used to investigate the response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds. The submerged wall jets were experimentally investigated by Dey and Sarkar [JFM, 556, 337, 2006] at the Reynolds number of 17500 the Froude number of 4.09 and the submergence ratio of 1.12 on different rough beds that were generated by uniform sediments of different median diameters The SAS is carried out by means of a second-order-accurate finite volume method in space and time and the effect of bottom roughness is treated by the approach of Cebeci (2004). The evolution of free surface is captured by employing the two-phase volume of fluid (VOF) technique. The numerical results obtained by the SAS approach, incorporated with the VOF and the rough wall treatment, are in good agreement with the experimental measurements. The computed turbulent boundary layer grows more quickly and the depression of the free surface is more increased on the rough wall than those on smooth wall. The size of the fully developed zone shrinks and the decay rate of maximum streamwise velocity and Reynolds stress components are faster with increase in the wall roughness. Supported by NSF and NRF of Korea.

  19. Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet

    DOE PAGES

    Chaudhuri, Swetaprovo; Kolla, Hemanth; Dave, Himanshu L.; ...

    2017-07-07

    The flame structure corresponding to lean hydrogen–air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematicmore » route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. As a result, the non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures.« less

  20. First wall material issues and related activities at JET

    NASA Astrophysics Data System (ADS)

    Scaffidi-Argentina, F.; Ciattaglia, S.; Coad, P.; Penzhorn, R.-D.; Philipps, V.; EFDA-JET Fusion Technology Task Force; Task Force E

    2002-12-01

    To close the JET tritium material balance a comprehensive programme to determine the tritium inventory in a selected poloidal set of JET tiles was initiated. First results strongly suggest that a significant fraction of the tritium remaining in the machine is immobilised in flakes accumulated in the sub-divertor region. Measurements performed with tiles and flakes retrieved from JET after the DTE1 campaign revealed a chronic tritium release at room temperature, possibly caused by a radiation-induced mechanism. Deposited films of the order of 5 μm thick are found at the vertical surfaces of the inner divertor. Recent analysis of the distribution of beryllium across the divertor shows factors of ≈10 higher beryllium concentrations (relative to carbon) in these deposits than found in the main camber walls. Very little beryllium is found on the outer divertor. Also no beryllium is detectable in the thick deposits accumulated in the shadowed regions of the inner divertor. These results suggest that in ITER migration of beryllium from the main chamber to the divertor surfaces could substantially reduce the chemical erosion and consequently the retention of tritium.

  1. The effect of excitation on the plane wall jet

    NASA Astrophysics Data System (ADS)

    Bhatt, Shibani; Artham, Sravan; Gnanamanickam, Ebenezer

    2016-11-01

    The plane wall jet (PWJ) is a unique boundary layer flow in which the highly energetic large-scales of the outer free shear layer transition to turbulence through an inviscid process while, the wall-bounded layer becomes turbulent through a viscous mechanism. These large-scale structures of the PWJ amplitude and frequency modulate the finer scales of the flow much like in canonical boundary layers. However, the unique configuration of the PWJ allows for the independent excitation of the large-scales in the flow to study this interaction with the finer scales. An experimental study is carried out in a PWJ facility operating at friction Reynolds numbers Reτ > 1000. The PWJ is excited over three decades of Strouhal number. The changes to the turbulent statistics due to the excitation, across the boundary layer, are presented. It was seen that the excitation alters the energy spectra across the entire boundary layer. Certain scales were excited and others augmented and this modification was a function of the excitation frequency. In general, the energy of the large-scales were more significantly altered when compared to the finer scales. Certain excitation frequencies appear to more dramatically alter the energy of the large-scales with changes also to the wall shear stress. Supported by the Air Force Office of Scientific Research (FA9550-16-1-0194).

  2. Investigation of blown boundary layers with an improved wall jet system

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Simpson, R. L.

    1980-01-01

    Measurements were made in a two dimensional incompressible wall jet submerged under a thick upstream boundary layer with a zero pressure gradient and an adverse pressure gradient. The measurements included mean velocity and Reynolds stresses profiles, skin friction, and turbulence spectra. The measurements were confined to practical ratios (less than 2) of the jet velocity to the free stream velocity. The wall jet used in the experiments had an asymmetric velocity profile with a relatively higher concentration of momentum away from the wall. An asymmetric jet velocity profile has distinct advantages over a uniform jet velocity profile, especially in the control of separation. Predictions were made using Irwin's (1974) method for blown boundary layers. The predictions clearly show the difference in flow development between an asymmetric jet velocity profile and a uniform jet velocity profile.

  3. Surface layer composition of the JET vessel walls

    NASA Astrophysics Data System (ADS)

    Behrisch, R.; Martinelli, A. P.; Grigull, S.; Grötzschel, R.; Kreissig, U.; Hildebrandt, D.; Schneider, W.

    1995-04-01

    After the 1990/91 discharge period several samples have been cut from the JET vessel walls, the carbon and the beryllium limiters, and the carbon and the beryllium X-point divertor tiles. The surface layers of these samples have been analysed in detail by ion beam techniques, such as PIXE, HIERDA, RBS, SIMS and Sputter-Auger for the absolute amounts as well as for the depth distributions of the different deposits. The major deposits are H, D, Be, C and O, as well as other impurities, such as Ni, Cr, Fe, and C. From the measurements on the carbon samples it was found that the oxygen deposits correlate with the Be deposits, while the measurements on the Be samples show that the C deposits correlate with the D deposits, indicating a codeposition of these elements. In addition H concentrations mostly larger than the D concentrations are measured. These may partly originate also from adsorption during the exposure to air.

  4. Comparison of beryllium and graphite first-walls in JET

    SciTech Connect

    Thomas, P.R.

    1990-01-01

    JET has operated with beryllium as a first-wall material in 1989 and 1990. An initial period with beryllium evaporation onto the original graphite surfaces was followed by operation with beryllium belt-limiter tiles. Beryllium Faraday shields for the ICRH antennae and lower X-point target tiles were installed for experiments in 1990. The use of beryllium has increased the density limit, significantly reduced deconditioning following disruptions, allowed heavy gas fueling for impurity control, reduced the impurity influx from the ICRH antennae so that ICRH-only H modes were possible for the first time and permitted hot-ion plasmas on the outer limiters. This paper describes the primary effects of beryllium which led to these improvements in performance. 11 refs., 3 figs.

  5. COANDA Control of a Thick Wall-Jet in the Static Case

    DTIC Science & Technology

    1982-11-01

    downward (and in some cases more than 90 degrees downward, producing thrust reversal) when the CC Coanda jet is activated. Experimental research was...conforming to its shape ( Coanda effect) and induces upstream air on the upper c surface to follow the jet flow. This phenomenon effectively increases the...ro.r.d~d trailing edge. r Thikcxtes5 of the Coanda jet, It Entrainnment length--the distance between the exit plane of the thick " wall-jet nozzle and

  6. Numerical Investigation of Forced Strong and Weak Wall Jets %Using DNS and LES

    NASA Astrophysics Data System (ADS)

    Wernz, S.; Fasel, H. F.

    1997-11-01

    Wall jets are technically important flows that are used, for example, for boundary layer control on airfoils. Recent experiments by Wygnanski et al. have demonstrated the effectiveness of pulsed wall jets to control separation for flows over single-element or segmented airfoils. For gaining insight into the fundamental mechanisms responsible for the often striking effect of periodic forcing on wall jets, in the present research forced transitional and turbulent wall jets are investigated using Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES). Both DNS and LES are performed using a three-dimensional Navier-Stokes code based on the incompressible vorticity-velocity formulation. For the LES, a Smagorinsky-type subgrid-scale turbulence model has been incorporated into the code. Two types of base flows are considered. Strong wall jets are represented by a Glauert-type wall jet with a small free stream component added, weak wall jets are generated by wall-tangential blowing through a slot into a boundary layer. In the simulations, the base flows are periodically forced using a blowing and suction slot in the wall. For the LES of turbulent wall jets, rapid breakdown to turbulence is triggered by large amplitude three-dimensional random forcing. The focus of the present study is the influence of the free steam component on the development of large coherent structures. This research is funded by AFOSR, Grant Nr. F49620-97-1-0274, and is also supported by a grant of HPC time from the DoD HPC Shared Resource Center, CEWES.

  7. ICRF Specific Plasma Wall Interactions in JET with the ITER-Like Wall

    SciTech Connect

    Bobkov, V.; Arnoux, G.; Brezinsek, S.; Coenen, J. W.; Colas, L.; Clever, M.; Czarnecka, A.; Braun, F.; Dux, R.; Huber, Alexander; Lerche, E.; Maggi, C.; Marcotte, F.; Maslov, M.; Matthews, G.; Mayoral, M.-L.; Meigs, A. G.; Monakhov, I.; Putterich, Th.; Rimini, F.; Rooj, G. Van; Sergienko, G.; Van Eester, D.

    2013-01-01

    A variety of plasma wall interactions (PWIs) during operation of the so-called A2 ICRF antennas is observed in JET with the ITER-like wall. Amongst effects of the PWIs, the W content increase is the most significant, especially at low plasma densities. No increase of W source from the main divertor and entrance of the outer divertor during ICRF compared to NBI phases was found by means of spectroscopic and WI (400.9 nm) imaging diagnostics. In contrary, the W flux there is higher during NBI. Charge exchange neutrals of hydrogen isotopes could be excluded as considerable contributors to the W source. The high W content in ICRF heated limiter discharges suggests the possibility of other W sources than the divertor alone. Dependencies of PWIs to individual ICRF antennas during q95-scans, and intensification of those for the 90 phasing, indicate a link between the PWIs and the antenna near-fields. The PWIs include heat loads and Be sputtering pattern on antenna limiters. Indications of some PWIs at the outer divertor entrance are observed which do not result in higher W flux compared to the NBI phases, but are characterized by small antenna-specific (up to 25% with respect to ohmic phases) bipolar variations of WI emission. The first TOPICA calculations show a particularity of the A2 antennas compared to the ITER antenna, due to the presence of long antenna limiters in the RF image current loop and thus high near-fields across the most part of the JET outer wall.

  8. Reacting to "Reacting"

    ERIC Educational Resources Information Center

    Houle, Amanda

    2006-01-01

    This article describes the author's experiences as a student participating in a general education program called "Reacting to the Past," in which college students play elaborate games set at pivotal moments in the past, their roles informed by great texts. She found that the experience of reenacting pivotal historical moments produced an intensely…

  9. Passive control of wall shear stress and mass transfer generated by submerged lobed impinging jet

    NASA Astrophysics Data System (ADS)

    Sodjavi, Kodjovi; Montagné, Brice; Meslem, Amina; Byrne, Paul; Serres, Laurent; Sobolik, Vaclav

    2016-05-01

    Particle image velocimetry was used to investigate the flow field in an impinging lobed daisy hemispherical nozzle jet in comparison to its counterpart round jet, at a Reynolds number of 5620 based on the exit velocity and the equivalent diameter D e of the nozzle. The limitations of the PIV technique in the vicinity of the target wall due to the laser scattering were addressed by using the electrodiffusion (ED) technique to determine the wall shear rate distribution. The distribution of the mass transfer coefficient is also obtained using the ED technique. The target wall is placed at a distance H = 2 D e from the plane tangent to the nozzle, at the center of the orifice. The entrainment of ambient fluid in the free jet region, which is larger in the lobed jet compared to the round jet, feeds in turn the wall jet region. The maximum wall shear rate was found significantly higher in the daisy jet, with an excess of 93 % compared to the reference round jet. The maximum mass transfer is 35 % higher in the former compared to the latter. Therefore, the hemispherical daisy nozzle is an excellent candidate in passive strategies to enhance local skin-friction and the subsequent local mass transfer at a constant exit Reynolds number.

  10. A Single Parameter to Characterize Wall Shear Stress Developed from an Underexpanded Axisymmetric Impinging Jet

    NASA Astrophysics Data System (ADS)

    Fillingham, Patrick; Murali, Harikrishnan

    2016-11-01

    Wall shear stress is characterized for underexpanded axisymmetric impinging jets for the application of aerodynamic particle resuspension from a surface. Analysis of the flow field and the wall shear stress resulted from normally impinging axisymmetric jets is conducted using Computational Fluid Dynamics. A normally impinging jet is modeled with a constant area nozzle, while varying height to diameter ratio (H/D) and inlet pressures. Schlieren photography is used to visualize the density gradient of the flow field for validation of the CFD. The Dimensionless Jet Parameter (DJP) is developed to describe flow regimes and characterize the shear stress. The DJP is defined as being proportional to the jet pressure ratio divided by the H/D ratio squared. Maximum wall shear stress is examined as a function of DJP with three distinct regimes: (i) subsonic impingement (DJP<1), (ii) transitional (12). Due to the jet energy dissipation in shock structures, which become a dominant dissipation mechanism in the supersonic impingement regime, wall shear stress is limited to a finite value. Additionally, formation of shock structures in the wall flow were observed for DJP>2 resulting in difficulties with dimensionless analysis. In the subsonic impingement and transitional regimes equations as a function of the DJP are obtained for the maximum wall shear stress magnitude, maximum shear stress location, and shear stress decay. Using these relationships wall shear stress can be predicted at all locations along the impingement surface.

  11. Influence of nonisothermicity of the medium and polymer admixtures on a turbulent vertical wall jet

    NASA Astrophysics Data System (ADS)

    Pokryvailo, N. A.; Shashmin, V. K.; Shul'Man, Z. P.

    1990-04-01

    The results are given on an experimental investigation of the effect of small polymer admixtures and density inhomogeneity of the ambient medium on the laws of development of plane, vertical, turbulent wall jets.

  12. On the wall jet from the ring crevice of an internal combustion engine

    SciTech Connect

    Cloutman, L.D.; Green, R.M.

    1996-05-01

    Numerical simulations and experiments of the jetting of gases from the ring crevices of a laboratory engine shortly after exhaust valve opening showed an unanticipated radial flow of the crevice gases into the main combustion chamber. We report well-resolved numerical simulations of a wall jet that show that this radial motion is driven by vorticity generation in the wall boundary layer and at the corner of the piston crown.

  13. Microchip electrophoresis with wall-jet electrochemical detector: influence of detection potential upon resolution of solutes.

    PubMed

    Pumera, Martin; Merkoçi, Arben; Alegret, Salvador

    2006-12-01

    This report studies the electrochemical response of wall-jet detector for microchip electrophoresis (microCE). It shows that in wall-jet configuration, the electrochemical detector operates in coulometric mode and that there is an influence of detection potential upon peak width and therefore upon the resolution of solutes. Upon raising the detection potential from +0.3 to +0.9 V, the resolution between model analytes, dopamine and catechol, increases from 0.63 to 2.90. The reasons for this behavior originate in wall-jet detector design and in its typically significant higher detector volume than the volume of injected sample. The conversion efficiency of the wall-jet electrochemical detection cell was found to be 97.4% for dopamine and 98.0% for catechol. The paper brings deeper understanding of operations of wall-jet electrochemical detectors for microchip devices, and it explains previously reported significantly sharper peaks when electrocatalytic electrodes (i.e., palladium and carbon nanotube) were used in microCE-electrochemistry wall-jet detector.

  14. Global and pedestal confinement in JET with a Be/W metallic wall

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Frassinetti, L.; Challis, C.; Giroud, C.; Saarelma, S.; Alper, B.; Angioni, C.; Bilkova, P.; Bourdelle, C.; Brezinsek, S.; Buratti, P.; Calabro, G.; Eich, T.; Flanagan, J.; Giovannozzi, E.; Groth, M.; Hobirk, J.; Joffrin, E.; Leyland, M. J.; Lomas, P.; de la Luna, E.; Kempenaars, M.; Maddison, G.; Maggi, C.; Mantica, P.; Maslov, M.; Matthews, G.; Mayoral, M.-L.; Neu, R.; Nunes, I.; Osborne, T.; Rimini, F.; Scannell, R.; Solano, E. R.; Snyder, P. B.; Voitsekhovitch, I.; de Vries, Peter; Contributors, JET-EFDA

    2014-04-01

    Type I ELMy H-mode operation in JET with the ITER-like Be/W wall (JET-ILW) generally occurs at lower pedestal pressures compared to those with the full carbon wall (JET-C). The pedestal density is similar but the pedestal temperature where type I ELMs occur is reduced and below to the so-called critical type I-type III transition temperature reported in JET-C experiments. Furthermore, the confinement factor H98(y,2) in type I ELMy H-mode baseline plasmas is generally lower in JET-ILW compared to JET-C at low power fractions Ploss/Pthr,08 < 2 (where Ploss is (Pin - dW/dt), and Pthr,08 the L-H power threshold from Martin et al 2008 (J. Phys. Conf. Ser. 123 012033)). Higher power fractions have thus far not been achieved in the baseline plasmas. At Ploss/Pthr,08 > 2, the confinement in JET-ILW hybrid plasmas is similar to that in JET-C. A reduction in pedestal pressure is the main reason for the reduced confinement in JET-ILW baseline ELMy H-mode plasmas where typically H98(y,2) = 0.8 is obtained, compared to H98(y,2) = 1.0 in JET-C. In JET-ILW hybrid plasmas a similarly reduced pedestal pressure is compensated by an increased peaking of the core pressure profile resulting in H98(y,2) ⩽ 1.25. The pedestal stability has significantly changed in high triangularity baseline plasmas where the confinement loss is also most apparent. Applying the same stability analysis for JET-C and JET-ILW, the measured pedestal in JET-ILW is stable with respect to the calculated peeling-ballooning stability limit and the ELM collapse time has increased to 2 ms from typically 200 µs in JET-C. This indicates that changes in the pedestal stability may have contributed to the reduced pedestal confinement in JET-ILW plasmas. A comparison of EPED1 pedestal pressure prediction with JET-ILW experimental data in over 500 JET-C and JET-ILW baseline and hybrid plasmas shows a good agreement with 0.8 < (measured pped)/(predicted pped,EPED) < 1.2, but that the role of triangularity is generally

  15. From free jets to clinging wall jets: The influence of a horizontal boundary on a horizontally forced buoyant jet

    NASA Astrophysics Data System (ADS)

    Burridge, H. C.; Hunt, G. R.

    2017-02-01

    We investigate the incompressible turbulent jet formed when buoyant fluid is steadily ejected horizontally from a circular source into an otherwise quiescent uniform environment. As our primary focus, we introduce a horizontal boundary beneath the source. For sufficiently small separations, the jet attaches and clings to the boundary, herein the "clinging jet," before, farther downstream, the jet is pulled away from the boundary by the buoyancy force. For larger source-boundary separations, the buoyant jet is free to rise under the action of the buoyancy force, herein the "free jet." Based on measurements of saline jets in freshwater surroundings we deduce the conditions required for a jet to cling. We present a data set that spans a broad range of source conditions for the variation in volume flux (indicative of entrainment), jet perimeter, and jet centerline for both "clinging" and "free" jets. For source Froude numbers Fr0≥12 the data collapse when scaled, displaying universal behaviors for both clinging and free jets. Our results for the variation in the volume flux across horizontal planes, π Qjet , show that within a few jet lengths of the source, π Qjet for the clinging jet exceeds that of a free jet with identical source conditions. However, when examined in a coordinate following the jet centerline π Qjet for free jets is greater. Finally, we propose a new parametrization for an existing integral model which agrees well with our experimental data as well as with data from other studies. Our findings offer the potential to tailor the dilution of horizontal buoyant jets by altering the distance at which they are released from a boundary.

  16. Jet grouting for a groundwater cutoff wall in difficult glacial soil deposits

    SciTech Connect

    Flanagan, R.F.; Pepe, F. Jr.

    1997-12-31

    Jet grouting is being used as part of a groundwater cutoff wall system in a major New York City subway construction project to limit drawdowns in an adjacent PCB contamination plume. A circular test shaft of jet grout columns was conducted during the design phase to obtain wall installation parameters. The test program also included shaft wall mapping, and measurements of; inflows, piezometric levels, ground heave and temperature, and jet grout hydraulic conductivity. An axisymmetric finite element method groundwater model was established to back calculate the in-situ hydraulic conductivities of both the surrounding glacial soils and the jet grout walls by matching observed inflows and piezometric levels. The model also verified the use of packer permeability test as a tool in the field to evaluate the hydraulic conductivities of jet grout columns. Both the test program and analytic studies indicated that adjustments to the construction procedures would be required to obtain lower hydraulic conductivities of the jet grout walls for construction. A comparison is made with the conductivities estimated from the test program/analytic studies with those from the present construction.

  17. Edge dynamics in pellet-fuelled inner-wall jet discharges

    SciTech Connect

    Cohen, S.A.; Ehrenberg, J.; Bartlett, D.V.; Campbell, D.J.; Cheetham, A.D.; de Kock, L.; Gondhalekar, A.; Gottardi, N.; Granetz, R.; Houlberg, W.

    1987-01-01

    This paper reports on the density behavior in JET during pellet-fuelled inner-wall discharges without auxiliary heating. Certain discharges, characterized by minor disruptions at the q = 2 surface, show a ten times more rapid decay of the plasma density than previously observed. It is shown that this is related to the combined effects of plasma and wall properties.

  18. The turbulent wall jet: a triple-layered structure and incomplete similarity.

    PubMed

    Barenblatt, G I; Chorin, A J; Prostokishin, V M

    2005-06-21

    We demonstrate using the high-quality experimental data that turbulent wall jet flows consist of two self-similar layers: a top layer and a wall layer, separated by a mixing layer where the velocity is close to maximum. The top and wall layers are significantly different from each other, and both exhibit incomplete similarity, i.e., a strong influence of the width of the slot that had previously been neglected.

  19. Interaction between a laminar starting immersed micro-jet and a parallel wall

    NASA Astrophysics Data System (ADS)

    Cabaleiro, Juan Martin; Laborde, Cecilia; Artana, Guillermo

    2015-01-01

    In the present work, we study the starting transient of an immersed micro-jet in close vicinity to a solid wall parallel to its axis. The experiments concern laminar jets (Re < 200) issuing from a 100 μm internal tip diameter glass micro-pipette. The effect of the confinement was studied placing the micro-pipette at different distances from the wall. The characterization of the jet was carried out by visualizations on which the morphology of the vortex head and trajectories was analyzed. Numerical simulations were used as a complementary tool for the analysis. The jet remains stable for very long distances away from the tip allowing for a similarity analysis. The self-similar behavior of the starting jet has been studied in terms of the frontline position with time. A symmetric and a wall dominated regime could be identified. The starting jet in the wall type regime, and in the symmetric regime as well, develops a self-similar behavior that has a relative rapid loss of memory of the preceding condition of the flow. Scaling for both regimes are those that correspond to viscous dominated flows.

  20. Investigation of a reacting jet injected into vitiated crossflow using CARS, high repetition rate OH-PLIF, and high repetition rate PIV

    NASA Astrophysics Data System (ADS)

    Roa, Mario

    The proposed PhD thesis research program will be carried out in a staged combustion test rig developed with funding from Siemens Power Generation Inc. and the United States Department of Energy. This research program will study the reacting flow field created by an injector that is axially distributed along the combustor with use the laser diagnostics methods: Coherent Anti-Stokes Raman Spectroscopy (CARS), high repetition rate OH Planar Laser Induced Florescence (OHPLIF), and high repetition rate Particle Image Velocimetry (PIV), to determine why certain conditions result in low NOx emissions. This data will be used to validated the development of more precise computer models. These laser diagnostic techniques will be applied to the reacting jet produced using an extended, premixed 10 mm injector using both natural gas (NG) and hydrogen (H2) as fuels. The objective of this thesis research is to use advance laser diagnostics to gain insight into the reacting flow field resulting form transverse injection into a vitiated cross flow. The advance laser diagnostics will also provide insight into pollution formation mechanisms and will be used for validating CFD models of the transverse jet injection. The following measurements will be performed: (1) dual pump nitrogen/hydrogen (H2/ N2) CARS at the midplane of the extended 10 mm nozzle, (2) high repetition rate OH-PLIF and emission sampling for the same extended nozzle using NG and H2 as secondary fuel, (3) and combing both high repetition OH-PLIF and high repetition rate PIV for extended 10 mm nozzle for both NG and H2 secondary fuel. The PIV measurements will be combined with OH-PLIF in a simultaneous manner, with the OH fluorescence centered between the two PIV laser pulses. The dual pump H2/N2 CARS system will be used to measure both temperature of the reacting jet and the species concentration ratio of H2/ N2. The high repetition rate OH-PLIF, conducted with a 5 kHz, dual cavity Nd:YAG laser that optically pumps a

  1. Plasma-wall interaction studies with optimized laser-produced jets

    SciTech Connect

    Renner, O.; Krousky, E.; Smid, M.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Pisarczyk, P.; Ullschmied, J.; Dalimier, E.

    2011-09-15

    The production of the laser-produced plasma jets at burnt-through low-Z foils was optimized by using three-frame interferometry. When striking secondary targets, these jets of energetic particles represent an efficient tool for the investigation of transient phenomena at surfaces of the plasma-exposed solids. Two sets of precisely measured x-ray spectroscopic data demonstrate diagnostic potential of the collimated jets in the plasma-wall interaction studies: Blue Doppler shifts of the Al jet self-emission visualize ion deceleration in the near-wall region. Local depressions found in Al Ly{gamma} profiles emitted from Al/Si(PMMA) targets indicate charge exchange between the Al XIII and fully stripped C ions.

  2. Review of literature on local scour under plane turbulent wall jets

    NASA Astrophysics Data System (ADS)

    Aamir, Mohammad; Ahmad, Zulfequar

    2016-10-01

    Stability of hydraulic structures is threatened by persistent scour downstream of the apron, which renders their foundations exposed. Jets issuing under the sluice gate are turbulent enough to cause significant scour. Extensive study of the jets is, therefore, necessary in order to understand the underlying hydraulics and provide remedial measures. In this paper, a comprehensive review of the investigations on local scour caused by wall jets is presented, including both the classical as well as the prevalent approach. Various aspects of the scour under wall jets have been explained, including the process of scouring, different parameters affecting the maximum scour depth, analysis of flow characteristics within the scour hole and on the apron, time variation of scour depth, rate of sediment removal, and scour depth estimation formulae.

  3. Impact of the JET ITER-like wall on H-mode plasma fueling

    NASA Astrophysics Data System (ADS)

    Wiesen, S.; Brezinsek, S.; Wischmeier, M.; De la Luna, E.; Groth, M.; Jaervinen, A. E.; de la Cal, E.; Losada, U.; de Aguilera, A. M.; Frassinetti, L.; Gao, Y.; Guillemaut, C.; Harting, D.; Meigs, A.; Schmid, K.; Sergienko, G.; contributors, JET

    2017-06-01

    JET ITER-like wall (ILW) experiments show that the edge density evolution is strongly linked with the poloidal distribution of the ionization source. The fueling profile in the JET-ILW is more delocalized as compared to JET-C (JET with carbon-based plasma-facing components PFCs). Compared to JET-C the H-mode pedestal fueling cycle is dynamically influenced by a combination of plasma-wall interaction features, in particular: (1) edge-localized modes (ELMs) induced energetic particles are kinetically reflected on W divertor PFCs leading to distributed refueling away from the divertor depending on the divertor plasma configuration, (2) delayed molecular re-emission and outgassing of particles being trapped in W PFCs (bulk-W at the high field side and W-coated CFCs at the low field side) with different fuel content and (3) outgassing from Be co-deposits located on top of the high-field side baffle region shortly after the ELM. In view of the results of a set of well diagnosed series of JET-ILW type-I ELMy H-mode discharges with good statistics, the aforementioned effects are discussed in view of H-mode pedestal fueling capacity. The ongoing modelling activities with the focus on coupled core-edge plasma simulations and plasma-wall interaction are described and discussed also in view of possible code improvements required.

  4. Buoyancy effects in a wall jet over a heated horizontal plate

    NASA Astrophysics Data System (ADS)

    Fernandez-Feria, Ramon; Castillo-Carrasco, Francisco

    2015-11-01

    A similarity solution of the boundary layer equations for a wall jet on a heated horizontal surface taking into account the coupling of the temperature and velocity fields by buoyancy is described. It exists for any positive value of Λ = Gr / Re2 , characterizing this coupling between natural and forced convection over the horizontal plate; i.e., only when the plate temperature is larger than the ambient one. The flow structure is qualitatively very different from the well known Glauert's similarity solution for a wall jet without buoyancy effects (Λ = 0): basically coincides for both a radially spreading jet and a two-dimensional jet, and the maximum of the horizontal velocity increases as the jet spreads over the surface, with the power 1 / 5 . The similarity solution is checked by solving numerically the boundary layer equations for a jet with uniform velocity and temperature emerging from a slot of height δ and radius r0 (in the radial case). An approximate, analytical similarity solution near the jet exit is also found that helps to start the numerical integration. The similarity solution is reached for any set of the non-dimensional parameters governing the problem provided that the plate is heated (Λ > 0).

  5. R&D on tungsten plasma facing components for the JET ITER-like wall project

    NASA Astrophysics Data System (ADS)

    Piazza, G.; Matthews, G. F.; Pamela, J.; Altmann, H.; Coad, J. P.; Hirai, T.; Lioure, A.; Maier, H.; Mertens, Ph.; Philipps, V.; Riccardo, V.; Rubel, M.; Villedieu, E.; JET ITER-like Project

    2007-08-01

    Currently, the primary ITER materials choice is a full beryllium main wall with carbon fibre composite at the divertor strike points and tungsten on the upper vertical targets and dome. The full tungsten divertor option is a possibility for the subsequent D-T phase. Neither of the ITER material combinations of first wall and divertor materials has ever been tested in a tokamak. To collect operational experience at JET with ITER relevant material combination (Be, C and W) would reduce uncertainties and focus the preparation for ITER operations. Therefore, the ITER-like wall project has been launched to install in JET a tungsten divertor and a beryllium main wall. This paper describes the R&D activities carried out for the project to develop an inertially cooled bulk tungsten divertor tile, to fully characterise tungsten coating technologies for CFC divertor tiles and to develop erosion markers for use as diagnostics on beryllium tiles.

  6. Very Large Eddy Simulations of a Jet-A Spray Reacting Flow in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar DWFDF Method

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2013-01-01

    This paper presents the very large eddy simulations (VLES) of a Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar DWFDF method, in which DWFDF is defined as the density weighted time filtered fine grained probability density function. The flow field is calculated by using the time filtered compressible Navier-Stokes equations (TFNS) with nonlinear subscale turbulence models, and when the Eulerian scalar DWFDF method is invoked, the energy and species mass fractions are calculated by solving the equation of DWFDF. A nonlinear subscale model for closing the convection term of the Eulerian scalar DWFDF equation is used and will be briefly described in this paper. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar DWFDF method in both improving the simulation quality and maintaining economic computing cost are observed.

  7. Analysis of losses in supersonic mixing and reacting flows

    NASA Astrophysics Data System (ADS)

    Riggins, D. W.; McClinton, C. R.

    1991-06-01

    A method for analyzing flow losses and thrust potential in supersonic combustors is presented. This method relies on a complete and consistent one-dimensional representation of a three-dimensional flow-field. Numerical results for flush wall fuel injection into a Mach 3 flow are examined and comparisons are made with experimental measurements of fuel concentration. Mixing results for a swept injection ramp, a straight (unswept) injection ramp, and a thirty degree downstream-directed flush wall jet in the same combustor duct are analyzed. The flow loss/thrust potential of the flush wall jet and the swept ramp are investigated (based on reacting solutions) using computed combustor effectiveness. The wall jet displays slightly higher thrust potential than the swept ramp at the end of the combustor.

  8. Flow characteristics and spillage mechanisms of wall-mounted and jet-isolated range hoods.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Dai, Guan-Zhong

    2010-11-01

    The flow characteristics and oil mist spillages of wall-mounted and jet-isolated range hoods were studied experimentally. Flow patterns were examined using a laser-light, sheet-assisted, smoke flow visualization technique. Spillages were diagnosed by the locally averaged tracer gas concentration test method. Tracer gas concentration test results correlated well with those of flow visualizations. For the wall-mounted hood, primary leakages occur around the region near the front edge of a countertop due to boundary layer separation, as well as the region just below the lower edge of the side panels of the hood due to the expansion effect of plumes. Increasing the suction flow rate above some critical values may help to reduce leakages out of the lateral planes but would increase spillages around the front edge of the countertop. For the jet-isolated range hood, oil mists spread widely and present unsteady motions with a high degree of turbulence because insufficient free air is allowed to enter the space enclosed by the jets and rear wall. Spillages across the jets into the environment due to turbulent dispersion become significant. Increasing the suction flow rate above some critical values may help to reduce spillages, while increasing the jet velocity would increase turbulent dispersion and thus lead to larger leakages.

  9. Plasma operation with an all metal first-wall: Comparison of an ITER-like wall with a carbon wall in JET

    NASA Astrophysics Data System (ADS)

    Matthews, G. F.; Jet Efda Contributors; ASDEX-Upgrade Team

    2013-07-01

    Installation of the ITER-like Wall (ILW) in JET, has allowed a direct comparison of operation with all carbon plasma facing components (PFCs) to an all metal beryllium/tungsten first-wall under otherwise nearly identical conditions. The JET results are compared with experience from ASDEX-Upgrade where there was a gradual change to a full tungsten first-wall over an extended period. The scope of this review ranges from experience with machine conditioning, impurities and breakdown to material migration, fuel retention, disruptions, impact on operational space, energy confinement and compatibility with impurity seeding. Significant changes are reported, not only in the physics directly related to plasma-surface interactions but also to the main plasma which is strongly affected in unexpected ways, impacting many aspects of tokamak operation.

  10. Rolling up of Large-scale Laminar Vortex Ring from Synthetic Jet Impinging onto a Wall

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Pan, Chong; Wang, Jinjun; Flow Control Lab Team

    2015-11-01

    Vortex ring impinging onto a wall exhibits a wide range of interesting behaviors. The present work devotes to an experimental investigation of a series of small-scale vortex rings impinging onto a wall. These laminar vortex rings were generated by a piston-cylinder driven synthetic jet in a water tank. Laser Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) were used for flow visualization/quantification. A special scenario of vortical dynamic was found for the first time: a large-scale laminar vortex ring is formed above the wall, on the outboard side of the jet. This large-scale structure is stable in topology pattern, and continuously grows in strength and size along time, thus dominating dynamics of near wall flow. To quantify its spatial/temporal characteristics, Finite-Time Lyapunov Exponent (FTLE) fields were calculated from PIV velocity fields. It is shown that the flow pattern revealed by FTLE fields is similar to the visualization. The size of this large-scale vortex ring can be up to one-order larger than the jet vortices, and its rolling-up speed and entrainment strength was correlated to constant vorticity flux issued from the jet. This work was supported by the National Natural Science Foundation of China (Grants No.11202015 and 11327202).

  11. Materials migration in JET with ITER-like wall traced with a 10 Be isotopic marker

    NASA Astrophysics Data System (ADS)

    Bykov, I.; Bergsåker, H.; Possnert, G.; Heinola, K.; Miettunen, J.; Groth, M.; Petersson, P.; Widdowson, A.; Likonen, J.

    2015-08-01

    The current configuration of JET with ITER-like Wall (ILW) is the best available proxy for the ITER first wall. Beryllium redistribution in JET-ILW can be used for estimates of its migration in ITER. To trace it, a localized isotopic Be marker has been implemented. A bulk 9 Be tile has been enriched with 10 Be up to atomic concentrations of 1.7 ×10-9 and installed at the inner midplane of JET before the campaign. During the 2012 shutdown over 100 surface samples were taken non destructively from surfaces of two toroidally opposite limiter beams. The absolute areal densities of the marker were inferred from 10 Be atomic concentration in each sample, measured with Accelerator Mass Spectrometry with sensitivity <10-14 . The results of marker mapping are compared with predictions made with the ASCOT orbit following code.

  12. Study on three-dimensional expansion characteristics of four wall combustion-gas jets in confined liquid space

    NASA Astrophysics Data System (ADS)

    Hu, Zhitao; Yu, Yonggang

    2017-04-01

    To explore further the launch mechanism of the new underwater launching technology proposed in this paper, the expansion characteristics of four wall combustion-gas jets in confined liquid space must be studied firstly. The experimental device is designed, and the high-speed digital photographic system is adopted to obtain the expansion sequence processes of Taylor cavities formed by the four wall jets. Meanwhile, the influence of the injection pressure on the axial expansion property of the four wall jets is discussed. Based on the experiments, a three-dimensional unsteady mathematical model is established to simulate the turbulent flow process of the four wall jets expanding in liquid, and the temporal and spatial distribution laws of phase, pressure, temperature, and velocity and the evolution rules of vortices are illustrated in detail. Results show that, accompanied by the jets expanding downstream, the four wall combustion-gas jets get close to each other and achieve convergence eventually under induction of the interference effect between multiple jets. Meanwhile, the heads of the Taylor cavities separate from the observation chamber wall and offset to the central axis of the observation chamber with time going on. The numerical simulation results of the four wall combustion-gas jets coincide well with the experimental data.

  13. Study on three-dimensional expansion characteristics of four wall combustion-gas jets in confined liquid space

    NASA Astrophysics Data System (ADS)

    Hu, Zhitao; Yu, Yonggang

    2017-03-01

    To explore further the launch mechanism of the new underwater launching technology proposed in this paper, the expansion characteristics of four wall combustion-gas jets in confined liquid space must be studied firstly. The experimental device is designed, and the high-speed digital photographic system is adopted to obtain the expansion sequence processes of Taylor cavities formed by the four wall jets. Meanwhile, the influence of the injection pressure on the axial expansion property of the four wall jets is discussed. Based on the experiments, a three-dimensional unsteady mathematical model is established to simulate the turbulent flow process of the four wall jets expanding in liquid, and the temporal and spatial distribution laws of phase, pressure, temperature, and velocity and the evolution rules of vortices are illustrated in detail. Results show that, accompanied by the jets expanding downstream, the four wall combustion-gas jets get close to each other and achieve convergence eventually under induction of the interference effect between multiple jets. Meanwhile, the heads of the Taylor cavities separate from the observation chamber wall and offset to the central axis of the observation chamber with time going on. The numerical simulation results of the four wall combustion-gas jets coincide well with the experimental data.

  14. Experience with wall materials in jet and implications for a future ignited tokamak

    NASA Astrophysics Data System (ADS)

    Rebut, P. H.; Dietz, K. J.; Lallia, P. P.

    1989-04-01

    A variety of materials have been used in JET for wall protection and high heat flux components. The machine initially operated with metallic walls, but the inner surface of the vessel ( ~ 200 m2) is now covered to more than 50% with fine grain and carbon fibre reinforced graphite tiles. The remaining wall area is carbonized. This paper presents the materials behaviour in the presence of plasma; their influence on plasma properties; the conditioning methods employed; a discussion of future enhancements of inner wall components and the planned use of beryllium as an alternative to the present concept of an allgraphite machine. It is essential for the further development of fusion that the experience gained in JET is transferred to the next machine, which should produce a burning plasma on a scale comparable to a reactor. Such a proposed machine is a single null divertor tokamak with the following parameters: 3 m plasma minor radius, 7.5 m major radius, elongation ~ 2, aspect ratio ~ 2.5, toroidal field 4.5 T, pulse duration 2000 s and fusion power up to 5 GW. The underlying physics for the choice of these parameters and the basic design is presented. Based on this concept and the experience with materials in JET, the lay-out of inner wall components, as well as possibilities for plasma exhaust and refuelling are discussed. As a consequence of this assessment, open questions with respect to the physics of the plasma edge and materials properties are highlighted.

  15. Analysis of the effect of impact of near-wall acoustic bubble collapse micro-jet on Al 1060.

    PubMed

    Ye, Linzheng; Zhu, Xijing

    2017-05-01

    The bubble collapse near a wall will generate strong micro-jet in a liquid environment under ultrasonic field. To explore the effect of the impact of near-wall acoustic bubble collapse micro-jet on an aluminum 1060 sheet, the cavitation threshold formula and micro-jet velocity formula were first proposed. Then the Johnson-Cook rate correlation material constitutive model was considered, and a three-dimensional fluid-solid coupling model of micro-jet impact on a wall was established and analyzed. Finally, to validate the model, ultrasonic cavitation test and inversion analysis based on the theory of spherical indentation test were conducted. The results show that cavitation occurs significantly in the liquid under ultrasonic field, as the applied ultrasonic pressure amplitude is much larger than liquid cavitation threshold. Micro pits appear on the material surface under the impact of micro-jet. Pit depth is determined by both micro-jet velocity and micro-jet diameter, and increases with their increase. Pit diameter is mainly related to the micro-jet diameter and dp/dj≈0.95-1.2, while pit's diameter-to-depth ratio is mainly negatively correlated with the micro-jet velocity. Wall pressure distribution is mostly symmetric and its maximum appears on the edge of micro-jet impingement. Obviously, the greater the micro-jet velocity is, the greater the wall pressure is. Micro pits formed after the impact of micro-jet on aluminum 1060 surface were assessed by ultrasonic cavitation test. Inversion analysis results indicate that equivalent stress, equivalent strain of the pit and impact strength, and velocity of the micro-jet are closely related with pit's diameter-to-depth ratio. For the pit's diameter-to-depth ratio of 16-68, the corresponding micro-jet velocity calculated is 310-370m/s.

  16. A new visible spectroscopy diagnostic for the JET ITER-like wall main chambera)

    NASA Astrophysics Data System (ADS)

    Maggi, C. F.; Brezinsek, S.; Stamp, M. F.; Griph, S.; Heesterman, P.; Hogben, C.; Horton, A.; Meigs, A.; Morlock, C.; Studholme, W.; Zastrow, K.-D.; JET-EFDA Contributors

    2012-10-01

    In preparation for ITER, JET has been upgraded with a new ITER-like wall (ILW), whereby the main plasma facing components, previously of carbon, have been replaced by mainly Be in the main chamber and W in the divertor. As part of the many diagnostic enhancements, a new, survey, visible spectroscopy diagnostic has been installed for the characterization of the ILW. An array of eight lines-of-sight (LOS) view radially one of the two JET neutral beam shine through areas (W coated carbon fibre composite tiles) at the inner wall. In addition, one vertical LOS views the solid W tile at the outer divertor. The light emitted from the plasma is coupled to a series of compact overview spectrometers, with overall wavelength range of 380-960 nm and to one high resolution Echelle overview spectrometer covering the wavelength range 365-720 nm. The new survey diagnostic has been absolutely calibrated in situ by means of a radiometric light source placed inside the JET vessel in front of the whole optical path and operated by remote handling. The diagnostic is operated in every JET discharge, routinely monitoring photon fluxes from intrinsic and extrinsic impurities (e.g., Be, C, W, N, and Ne), molecules (e.g., BeD, D2, ND) and main chamber and divertor recycling (typically Dα, Dβ, and Dγ). The paper presents a technical description of the diagnostic and first measurements during JET discharges.

  17. A new visible spectroscopy diagnostic for the JET ITER-like wall main chamber.

    PubMed

    Maggi, C F; Brezinsek, S; Stamp, M F; Griph, S; Heesterman, P; Hogben, C; Horton, A; Meigs, A; Morlock, C; Studholme, W; Zastrow, K-D

    2012-10-01

    In preparation for ITER, JET has been upgraded with a new ITER-like wall (ILW), whereby the main plasma facing components, previously of carbon, have been replaced by mainly Be in the main chamber and W in the divertor. As part of the many diagnostic enhancements, a new, survey, visible spectroscopy diagnostic has been installed for the characterization of the ILW. An array of eight lines-of-sight (LOS) view radially one of the two JET neutral beam shine through areas (W coated carbon fibre composite tiles) at the inner wall. In addition, one vertical LOS views the solid W tile at the outer divertor. The light emitted from the plasma is coupled to a series of compact overview spectrometers, with overall wavelength range of 380-960 nm and to one high resolution Echelle overview spectrometer covering the wavelength range 365-720 nm. The new survey diagnostic has been absolutely calibrated in situ by means of a radiometric light source placed inside the JET vessel in front of the whole optical path and operated by remote handling. The diagnostic is operated in every JET discharge, routinely monitoring photon fluxes from intrinsic and extrinsic impurities (e.g., Be, C, W, N, and Ne), molecules (e.g., BeD, D(2), ND) and main chamber and divertor recycling (typically Dα, Dβ, and Dγ). The paper presents a technical description of the diagnostic and first measurements during JET discharges.

  18. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    DOE PAGES

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; ...

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization aremore » located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that hydrogen

  19. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    SciTech Connect

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization are located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that

  20. Diffusive ignition and combustion in a wall jet

    NASA Technical Reports Server (NTRS)

    Kurkov, A. P.; Gaugler, R. E.

    1974-01-01

    Hydrogen is injected from a downstream facing step in a wall into a high-temperature stream. Temperature and hydroxyl radical concentration are measured downstream of the injection plane by means of ultraviolet absorption spectroscopy. The experimental results are compared with theory which is based on a finite-difference solution of boundary-layer equations. Finite-rate kinetics equations are included in the analysis. The analytic predictions are also compared with previously obtained experimental results which are based on probe measurements. Comparison is made between calculated and observed ignition distances.

  1. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET.

    PubMed

    Shumack, A E; Rzadkiewicz, J; Chernyshova, M; Jakubowska, K; Scholz, M; Byszuk, A; Cieszewski, R; Czarski, T; Dominik, W; Karpinski, L; Kasprowicz, G; Pozniak, K; Wojenski, A; Zabolotny, W; Conway, N J; Dalley, S; Figueiredo, J; Nakano, T; Tyrrell, S; Zastrow, K-D; Zoita, V

    2014-11-01

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  2. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET

    SciTech Connect

    Shumack, A. E.; Rzadkiewicz, J.; Chernyshova, M.; Czarski, T.; Karpinski, L.; Jakubowska, K.; Scholz, M.; Byszuk, A.; Cieszewski, R.; Kasprowicz, G.; Pozniak, K.; Wojenski, A.; Zabolotny, W.; Dominik, W.; Conway, N. J.; Dalley, S.; Tyrrell, S.; Zastrow, K.-D.; Figueiredo, J. [EFDA-CSU, Culham Science Centre, Abingdon OX14 3DB; Associação EURATOM and others

    2014-11-15

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  3. Analysis of rotating collectors from the private region of JET with carbon wall and metallic ITER-like wall

    NASA Astrophysics Data System (ADS)

    Beal, J.; Widdowson, A.; Heinola, K.; Baron-Wiechec, A.; Gibson, K. J.; Coad, J. P.; Alves, E.; Lipschultz, B.; Kirschner, A.; Matthews, G. F.; Brezinsek, S.

    2015-08-01

    Rotating collectors are used in JET to provide time-resolved measurements of erosion and redeposition of vessel materials. The silicon collecting discs rotate behind an aperture, driven by pulsing of the toroidal magnetic field, with the deposits analysed ex-situ by nuclear reaction analysis. The angular dependence of deposition is mapped to discharge number using the B-field history, allowing the influence of different plasma configurations and parameters to be investigated. A simple geometrical model using sputtering and reflection from the strike point has qualitatively reproduced the deposition found on collectors located under the central divertor tile and facing towards the inner strike point. The beryllium deposition on the ITER-like wall (ILW) collector showed an order of magnitude reduction in deposition compared to carbon deposition on the JET-C collector. This decreased deposition is attributed to low long range divertor transport due to reduced chemical sputtering/erosion and codeposition of beryllium relative to carbon.

  4. Trajectory measurements of a wall jet impinging onto a forward facing step entering a cross-flow.

    PubMed

    Langer, D C; Fleck, B A; Wilson, D J

    2010-04-15

    This study examines a horizontal wall jet impinging onto a forward facing step in a cross-flow. Planar laser induced fluorescence (PLIF) experiments in a water channel indicate that the wall-jet flow after impinging onto the step, becomes a vertical jet with an elliptical cross section. Experiments indicate that the jet trajectory scales with the perimeter of the elliptical jet issuing vertically into the cross-flow. The trajectory consists of three regions: the near-field region which is well described by a power law with an exponent of 1/2, the mid-field region where the jet is fully bent over which is described by a power law with an exponent of 1/3, and a far-field region where the jet is dominated by the cross-flow. This paper provides a prediction of the plume behaviour based on the geometric and initial conditions of the jet (diameter, step height, distance from jet to step, and velocity ratio) alone. The Briggs entrainment model for a round jet was also used to predict the trajectories of the jet in the cross-flow. It was found that the entrainment coefficients, alpha and beta, for the elliptical jet case had average values of 0.15 and 0.58 respectively. 2009 Elsevier B.V. All rights reserved.

  5. A study of the round jet/plane wall flow field

    NASA Technical Reports Server (NTRS)

    Foss, J. F.; Kleis, S. J.

    1971-01-01

    Impingement angles, between the axisymmetric jet axis and the plane wall, from zero to 15 degrees have been examined for nozzle heights of 0.75, 1.0, 1.5 and 2.0 diameters and for: (1) a fully developed pipe flow, and (2) a relatively uniform exit velocity condition. Velocity measurements have been used to define isotach contours and to determine mass, momentum and energy flux values for the near field (within five diameters) of the jet. Surface pressure measurements have been used to define surface pressure forces and jet centerline trajectories. The geometric and flow conditions examined and the interpretation of the results have been motivated by the externally blown flap STOL aircraft application.

  6. First dust study in JET with the ITER-like wall: sampling, analysis and classification

    NASA Astrophysics Data System (ADS)

    Baron-Wiechec, A.; Fortuna-Zaleśna, E.; Grzonka, J.; Rubel, M.; Widdowson, A.; Ayres, C.; Coad, J. P.; Hardie, C.; Heinola, K.; Matthews, G. F.

    2015-09-01

    Results of the first dust survey in JET with the ITER-Like Wall (JET-ILW) are presented. The sampling was performed using adhesive stickers from the divertor tiles where the greatest material deposition was detected after the first JET-ILW campaign in 2011-2012. The emphasis was especially on sampling and analysis of metal particles (Be and W) with the aim to determine the composition, size, surface topography and internal dust structure using a large set of methods: high-resolution scanning and transmission electron microscopy, focused ion beam, electron diffraction and also wavelength and energy dispersive x-ray spectroscopy. The most important was the identification of beryllium dust both in the form of flakes and droplets with dimensions in the micrometer range. Tungsten, molybdenum, inconel constituents were identified along with many impurity species. The particles are categorised and the origin of the various constituents discussed.

  7. Mixing characteristics of a transverse jet injection into supersonic crossflows through an expansion wall

    NASA Astrophysics Data System (ADS)

    Liu, Chaoyang; Wang, Zhenguo; Wang, Hongbo; Sun, Mingbo

    2016-12-01

    Mixing characteristics of a transverse jet injection into supersonic crossflows through an expansion plate are investigated using large eddy simulation (LES), where the expansion effects on the mixing are analyzed emphatically by comparing to the flat-plate counterpart. An adaptive central-upwind weighted essentially non-oscillatory (WENO) scheme along with multi-threaded and multi-process MPI/OpenMP parallel is adopted to improve the accuracy and efficiency of the calculations. Progressive mesh refinement study is performed to assess the grid resolution and solution convergence. Statistic results obtained are compared to the experimental data and recently performed classical numerical simulation, which validates the reliability of the present LES codes. Firstly, the jet mixing mechanisms in the flowfield with expansion plate are revealed. It indicates that the large-scale vortices in the windward side of jet plume induced by Kelvin-Helmholtz (K-H) instability contribute to the mixing in the near-field, while the entrainment by the counter-rotating vortices and molecular diffusion dominate the mixing process in the far-field. Furthermore, the effects of wall expansion on the flow and mixing characteristics are discussed. The boundary layer across the expansion corner is relaminarized and the profiles of streamwise velocity are distinctly changed. Then the separation region ahead of jet plume is more close to the wall, and the breaking process of large-scale vortices in the windward side of jet plume starts earlier. However, the favorable pressure gradient generated by wall expansion reduces the mixing efficiency and brings a greater total pressure loss.

  8. Laminar Wall Jet Flow and Heat Transfer over a Shallow Cavity

    PubMed Central

    Maheandera Prabu, P.; Padmanaban, K. P.

    2015-01-01

    This paper presents the detailed simulation of two-dimensional incompressible laminar wall jet flow over a shallow cavity. The flow characteristics of wall jet with respect to aspect ratio (AR), step length (Xu), and Reynolds number (Re) of the shallow cavity are expressed. For higher accuracy, third-order discretization is applied for momentum equation which is solved using QUICK scheme with SIMPLE algorithm for pressure-velocity coupling. Low Reynolds numbers 25, 50, 100, 200, 400, and 600 are assigned for simulation. Results are presented for streamline contour, velocity contour, and vorticity formation at wall and also velocity profiles are reported. The detailed study of vortex formation on shallow cavity region is presented for various AR, Xu, and Re conditions which led to key findings as Re increases and vortex formation moves from leading edge to trailing edge of the wall. Distance between vortices increases when the step length (Xu) increases. When Re increases, the maximum temperature contour distributions take place in shallow cavity region and highest convection heat transfer is obtained in heated walls. The finite volume code (FLUENT) is used for solving Navier-Stokes equations and GAMBIT for modeling and meshing. PMID:26413565

  9. Laminar Wall Jet Flow and Heat Transfer over a Shallow Cavity.

    PubMed

    Prabu, P Maheandera; Padmanaban, K P

    2015-01-01

    This paper presents the detailed simulation of two-dimensional incompressible laminar wall jet flow over a shallow cavity. The flow characteristics of wall jet with respect to aspect ratio (AR), step length (X u), and Reynolds number (Re) of the shallow cavity are expressed. For higher accuracy, third-order discretization is applied for momentum equation which is solved using QUICK scheme with SIMPLE algorithm for pressure-velocity coupling. Low Reynolds numbers 25, 50, 100, 200, 400, and 600 are assigned for simulation. Results are presented for streamline contour, velocity contour, and vorticity formation at wall and also velocity profiles are reported. The detailed study of vortex formation on shallow cavity region is presented for various AR, X u , and Re conditions which led to key findings as Re increases and vortex formation moves from leading edge to trailing edge of the wall. Distance between vortices increases when the step length (X u) increases. When Re increases, the maximum temperature contour distributions take place in shallow cavity region and highest convection heat transfer is obtained in heated walls. The finite volume code (FLUENT) is used for solving Navier-Stokes equations and GAMBIT for modeling and meshing.

  10. Predictive ASCOT modelling of 10Be transport in JET with the ITER-like wall

    NASA Astrophysics Data System (ADS)

    Miettunen, J.; Groth, M.; Kurki-Suonio, T.; Bergsåker, H.; Likonen, J.; Marsen, S.; Silva, C.; Äkäslompolo, S.; JET EFDA Contributors

    2013-07-01

    We model the transport of a beryllium (10Be) marker during a sequence of an inner-wall limited and a diverted Ohmic plasma phase in JET with the objective of identifying principal migration pathways. The 3D orbit-following code ASCOT is used for predictive analysis of an experiment during the 2011-2012 campaign on JET where three central pieces of a wall tile enriched with 10Be were installed to an inner wall guard limiter (IWGL) of the tokamak. Assuming erosion during the inner-wall limited plasma, the simulations indicate that 10Be is deposited along the IWGLs during the limiter phase which, when assuming further erosion, can lead to high deposition on the inner (high-field side) divertor during the diverted phase. In contrast, beryllium confined in the core plasma during the limiter phase is seen to be predominantly uniformly deposited during the diverted phase on the outer (low-field side) wall limiters and divertor tiles.

  11. Hysteresis and precession of a swirling jet normal to a wall.

    PubMed

    Shtern, V; Mi, J

    2004-01-01

    Interaction of a swirling jet with a no-slip surface has striking features of fundamental and practical interest. Different flow states and transitions among them occur at the same conditions in combustors, vortex tubes, and tornadoes. The jet axis can undergo precession and bending in combustors; this precession enhances large-scale mixing and reduces emissions of NOx. To explore the mechanisms of these phenomena, we address conically similar swirling jets normal to a wall. In addition to the Serrin model of tornadolike flows, a new model is developed where the flow is singularity free on the axis. New analytical and numerical solutions of the Navier-Stokes equations explain occurrence of multiple states and show that hysteresis is a common feature of wall-normal vortices or swirling jets no matter where sources of motion are located. Then we study the jet stability with the aid of a new approach accounting for deceleration and nonparallelism of the base flow. An appropriate transformation of variables reduces the stability problem for this strongly nonparallel flow to a set of ordinary differential equations. A particular flow whose stability is studied in detail is a half-line vortex normal to a rigid plane-a model of a tornado and of a swirling jet issuing from a nozzle in a combustor. Helical counter-rotating disturbances appear to be first growing as Reynolds number increases. Disturbance frequency changes its sign along the neutral curve while the wave number remains positive. Short disturbance waves propagate downstream and long waves propagate upstream. This helical instability causes bending of the vortex axis and its precession-the effects observed in technological flows and in tornadoes.

  12. Hysteresis and precession of a swirling jet normal to a wall

    NASA Astrophysics Data System (ADS)

    Shtern, V.; Mi, J.

    2004-01-01

    Interaction of a swirling jet with a no-slip surface has striking features of fundamental and practical interest. Different flow states and transitions among them occur at the same conditions in combustors, vortex tubes, and tornadoes. The jet axis can undergo precession and bending in combustors; this precession enhances large-scale mixing and reduces emissions of NOx. To explore the mechanisms of these phenomena, we address conically similar swirling jets normal to a wall. In addition to the Serrin model of tornadolike flows, a new model is developed where the flow is singularity free on the axis. New analytical and numerical solutions of the Navier Stokes equations explain occurrence of multiple states and show that hysteresis is a common feature of wall-normal vortices or swirling jets no matter where sources of motion are located. Then we study the jet stability with the aid of a new approach accounting for deceleration and nonparallelism of the base flow. An appropriate transformation of variables reduces the stability problem for this strongly nonparallel flow to a set of ordinary differential equations. A particular flow whose stability is studied in detail is a half-line vortex normal to a rigid plane—a model of a tornado and of a swirling jet issuing from a nozzle in a combustor. Helical counter-rotating disturbances appear to be first growing as Reynolds number increases. Disturbance frequency changes its sign along the neutral curve while the wave number remains positive. Short disturbance waves propagate downstream and long waves propagate upstream. This helical instability causes bending of the vortex axis and its precession—the effects observed in technological flows and in tornadoes.

  13. Modeling of propulsive jet plumes--extension of modeling capabilities by utilizing wall curvature effects

    NASA Astrophysics Data System (ADS)

    Doerr, S. E.

    1984-06-01

    Modeling of aerodynamic interference effects of propulsive jet plumes, by using inert gases as substitute propellants, introduces design limits. To extend the range of modeling capabilities, nozzle wall curvature effects may be utilized. Numerical calculations, using the Method of Characteristics, were made and experimental data were taken to evaluate the merits of the theoretical predictions. A bibliography, listing articles that led to the present report, is included.

  14. Testing of beryllium marker coatings in PISCES-B for the JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Widdowson, A.; Baldwin, M. J.; Coad, J. P.; Doerner, R. P.; Hanna, J.; Hole, D. E.; Matthews, G. F.; Rubel, M.; Seraydarian, R.; Xu, H.; JET-EFDA Contributors

    2009-06-01

    Beryllium has been chosen as the first wall material for ITER. In order to understand the issues of material migration and tritium retention associated with the use of beryllium, a largely beryllium first wall will be installed in JET. As part of the JET ITER-like wall, beryllium tiles with marker coatings are proposed as a diagnostic tool for studying the erosion and deposition of beryllium around the vessel. The nominal structure for these coatings is a ˜10 μm beryllium surface layer separated from the beryllium tile by a 2-3 μm metallic inter-layer. Two types of coatings are tested here; one with a nickel inter-layer and one with a copper/beryllium mixed inter-layer. The coating samples were deposited by DC magnetron sputtering at General Atomics and were exposed to deuterium plasma in PISCES-B. The results of this testing show that the beryllium/nickel marker coating would be suitable for installation in JET.

  15. The effect of a metal wall on confinement in JET and ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Schweinzer, J.; Angioni, C.; Burckhart, A.; Challis, C. D.; Chapman, I.; Fischer, R.; Flanagan, J.; Frassinetti, L.; Giroud, C.; Hobirk, J.; Joffrin, E.; Kallenbach, A.; Kempenaars, M.; Leyland, M.; Lomas, P.; Maddison, G.; Maslov, M.; McDermott, R.; Neu, R.; Nunes, I.; Osborne, T.; Ryter, F.; Saarelma, S.; Schneider, P. A.; Snyder, P.; Tardini, G.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team; Contributors, JET-EFDA

    2013-12-01

    In both JET and ASDEX Upgrade (AUG) the plasma energy confinement has been affected by the presence of a metal wall by the requirement of increased gas fuelling to avoid tungsten pollution of the plasma. In JET with a beryllium/tungsten wall the high triangularity baseline H-mode scenario (i.e. similar to the ITER reference scenario) has been the strongest affected and the benefit of high shaping to give good normalized confinement of H98 ˜ 1 at high Greenwald density fraction of fGW ˜ 0.8 has not been recovered to date. In AUG with a full tungsten wall, a good normalized confinement H98 ˜ 1 could be achieved in the high triangularity baseline plasmas, albeit at elevated normalized pressure βN > 2. The confinement lost with respect to the carbon devices can be largely recovered by the seeding of nitrogen in both JET and AUG. This suggests that the absence of carbon in JET and AUG with a metal wall may have affected the achievable confinement. Three mechanisms have been tested that could explain the effect of carbon or nitrogen (and the absence thereof) on the plasma confinement. First it has been seen in experiments and by means of nonlinear gyrokinetic simulations (with the GENE code), that nitrogen seeding does not significantly change the core temperature profile peaking and does not affect the critical ion temperature gradient. Secondly, the dilution of the edge ion density by the injection of nitrogen is not sufficient to explain the plasma temperature and pressure rise. For this latter mechanism to explain the confinement improvement with nitrogen seeding, strongly hollow Zeff profiles would be required which is not supported by experimental observations. The confinement improvement with nitrogen seeding cannot be explained with these two mechanisms. Thirdly, detailed pedestal structure analysis in JET high triangularity baseline plasmas have shown that the fuelling of either deuterium or nitrogen widens the pressure pedestal. However, in JET-ILW this

  16. ICRF heating in JET during initial operations with the ITER-like wall

    SciTech Connect

    Jacquet, P.; Brix, M.; Graham, M.; Mayoral, M.-L.; Meigs, A.; Monakhov, I.; Sirinelli, A.; Brezinsek, S.; Campergue, A-L.; Colas, L.; Czarnecka, A.; Klepper, C. C.; Lerche, E.; Van-Eester, D.; Milanesio, D.; Mlynar, J.; Collaboration: JET-EFDA Contributors

    2014-02-12

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall material on the JET Ion Cyclotron Resonance Frequency (ICRF) operation was assessed and also the properties of JET plasmas heated with ICRF were studied. No substantial change of the antenna coupling resistance was observed with the ILW as compared with the carbon wall. Heat-fluxes on the protecting limiters close the antennas quantified using Infra-Red (IR) thermography (maximum 4.5 MW/m{sup 2} in current drive phasing) are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can well reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. Some experimental facts indicate that main-chamber W components could be an important impurity source: the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions; the W content is also increased in ICRF-heated limiter plasmas; and Be evaporation in the main chamber results in a strong and long lasting reduction of the impurity level. The ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 20%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating efficiency; The ICRF power can be deposited at plasma centre and the radiation is mainly from the outer part of the plasma. Application of ICRF heating in H-mode plasmas started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core could be observed.

  17. Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall

    SciTech Connect

    Jacquet, P. Monakhov, I.; Arnoux, G.; Brix, M.; Graham, M.; Meigs, A.; Sirinelli, A.; Colas, L.; Czarnecka, A.; Lerche, E.; Van-Eester, D.; Mayoral, M.-L.; Brezinsek, S.; Campergue, A.-L.; Klepper, C. C.; Milanesio, D.; and others

    2014-06-15

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall materials on the JET Ion Cyclotron Resonance Frequency (ICRF) operation is assessed and some important properties of JET plasmas heated with ICRF are highlighted. A ∼ 20% reduction of the antenna coupling resistance is observed with the ILW as compared with the JET carbon (JET-C) wall. Heat-fluxes on the protecting limiters close the antennas, quantified using Infra-Red thermography (maximum 4.5 MW/m{sup 2} in current drive phasing), are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. The location of the tungsten ICRF specific source could not be identified but some experimental observations indicate that main-chamber W components could be an important impurity source: for example, the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions, and Be evaporation in the main chamber results in a strong reduction of the impurity level. In L-mode plasmas, the ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 15%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating performance; the power is typically deposited at the plasma centre while the radiation is mainly from the outer part of the plasma bulk. Application of ICRF heating in H-mode plasmas has started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core has been observed.

  18. SOL density profile formation and intermittent ion fluxes to the first wall in JET

    NASA Astrophysics Data System (ADS)

    Walkden, Nicholas; Militello, F.; Matthews, G.; Harrison, J.; Moulton, D.; Wynn, A.; Lipschultz, B.; Guillemaut, C.; JET Team

    2016-10-01

    The ion flux in the scrape-off layer (SOL) of a tokamak is highly non-diffusive due to the radial propagation of intermittent burst events known as filaments. As a result the formation of mean profiles in the SOL and the flux incident on the outer wall are strongly impacted by transient events. This has been investigated over a series of pulses in an Ohmic L-mode horizontal target configuration in JET. Broadening of the SOL density profile is reduced as plasma current is increased or the density is decreased. The mean and variance of the ion flux at the outer wall change concurrently with this broadening. Upon renormalization the PDFs of the ion flux at the outer-wall collapse indicating universality in the dynamics of their constituent fluctuations. This universality is shown to result from a balance between the duration and frequency of burst events which keeps the intermittency parameter constant. These measurements will be compared to synthetically produced measurements created using a stochastic framework based on filamentary dynamics. Through this comparison possible models of filamentary dynamics will be assessed and compared quantitatively to gain an understanding of the processes underlying density profile formation and fluxes to the outer wall of JET. This work has been carried out within the framework of the EURO- fusion Consortium.

  19. Material migration patterns and overview of first surface analysis of the JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Widdowson, A.; Alves, E.; Ayres, C. F.; Baron-Wiechec, A.; Brezinsek, S.; Catarino, N.; Coad, J. P.; Heinola, K.; Likonen, J.; Matthews, G. F.; Mayer, M.; Rubel, M.; Contributors, JET-EFDA

    2014-04-01

    Following the first JET ITER-like wall operations a detailed in situ photographic survey of the main chamber and divertor was completed. In addition, a selection of tiles and passive diagnostics were removed from the vessel and made available for post mortem analysis. From the photographic survey and results from initial analysis, the first conclusions regarding erosion, deposition, fuel retention and material transport during divertor and limiter phases have been drawn. The rate of deposition on inner and outer base divertor tiles and remote divertor corners was more than an order of magnitude less than during the preceding carbon wall operations, as was the concomitant deuterium retention. There was however beryllium deposition at the top of the inner divertor. The net beryllium erosion rate from the mid-plane inner limiters was found to be higher than for the previous carbon wall campaign although further analysis is required to determine the overall material balance due to erosion and re-deposition.

  20. First results from the 10Be marker experiment in JET with ITER-like wall

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Possnert, G.; Bykov, I.; Heinola, K.; Petersson, P.; Miettunen, J.; Widdowson, A.; Riccardo, V.; Nunes, I.; Stamp, M.; Brezinsek, S.; Groth, M.; Kurki-Suonio, T.; Likonen, J.; Coad, J. P.; Borodin, D.; Kirschner, A.; Schmid, K.; Krieger, K.; EFDA Contributors, JET

    2014-08-01

    When the ITER-like wall was installed in JET, one of the 218 Be inner wall guard limiter tiles had been enriched with 10Be as a bulk isotopic marker. During the shutdown in 2012-2013, a set of tiles were sampled nondestructively to collect material for accelerator mass spectroscopy measurements of 10Be concentration. The letter shows how the marker experiment was set up, presents first results and compares them to preliminary predictions of marker redistribution, made with the ASCOT numerical code. Finally an outline is shown of what experimental data are likely to become available later and the possibilities for comparison with modelling using the WallDYN, ERO and ASCOT codes are discussed.

  1. Acoustic investigation of wall jet over a backward-facing step using a microphone phased array

    NASA Astrophysics Data System (ADS)

    Perschke, Raimund F.; Ramachandran, Rakesh C.; Raman, Ganesh

    2015-02-01

    The acoustic properties of a wall jet over a hard-walled backward-facing step of aspect ratios 6, 3, 2, and 1.5 are studied using a 24-channel microphone phased array at Mach numbers up to M=0.6. The Reynolds number based on inflow velocity and step height assumes values from Reh = 3.0 ×104 to 7.2 ×105. Flow without and with side walls is considered. The experimental setup is open in the wall-normal direction and the expansion ratio is effectively 1. In case of flow through a duct, symmetry of the flow in the spanwise direction is lost downstream of separation at all but the largest aspect ratio as revealed by oil paint flow visualization. Hydrodynamic scattering of turbulence from the trailing edge of the step contributes significantly to the radiated sound. Reflection of acoustic waves from the bottom plate results in a modulation of power spectral densities. Acoustic source localization has been conducted using a 24-channel microphone phased array. Convective mean-flow effects on the apparent source origin have been assessed by placing a loudspeaker underneath a perforated flat plate and evaluating the displacement of the beamforming peak with inflow Mach number. Two source mechanisms are found near the step. One is due to interaction of the turbulent wall jet with the convex edge of the step. Free-stream turbulence sound is found to be peaked downstream of the step. Presence of the side walls increases free-stream sound. Results of the flow visualization are correlated with acoustic source maps. Trailing-edge sound and free-stream turbulence sound can be discriminated using source localization.

  2. Investigation of impingement region and wall jets formed by the interaction of high aspect ratio lift jets and a ground plane

    NASA Technical Reports Server (NTRS)

    Kotansky, D. R.; Glaze, L. W.

    1978-01-01

    Flow characteristics of impinging jets emanating from rectangular exit area converging nozzles of exit area aspect ratio four, six, and eight were investigated. Azimuthal distributions of wall jet radial momentum flux in the ground plane were strongly directional and sensitive to rectangular nozzle exit area aspect ratio, jet impingement angle, and height above ground, H/D. Effects of jet exit velocity profile nonuniformities were also investigated. Data from the single nozzle rectangular jet impringement investigations were incorporated into an existing VTOL aircraft ground flow field computer program. It is suggested that this program together with the Douglas Neumann program modified for V/STOL applications may be used for the analysis and prediction of flow fields and resulting forces and moments on multijet V/STOL aircraft hovering in ground effect.

  3. Numerical simulation of liquid-layer breakup on a moving wall due to an impinging jet

    NASA Astrophysics Data System (ADS)

    Yu, Taejong; Moon, Hojoon; You, Donghyun; Kim, Dokyun; Ovsyannikov, Andrey

    2014-11-01

    Jet wiping, which is a hydrodynamic method for controlling the liquid film thickness in coating processes, is constrained by a rather violent film instability called splashing. The instability is characterized by the ejection of droplets from the runback flow and results in an explosion of the film. The splashing phenomenon degrades the final coating quality. In the present research, a volume-of-fluid (VOF)-based method, which is developed at Cascade Technologies, is employed to simulate the air-liquid multiphase flow dynamics. The present numerical method is based on an unstructured-grid unsplit geometric VOF scheme and guarantees strict conservation of mass of two-phase flow, The simulation results are compared with experimental measurements such as the liquid-film thickness before and after the jet wiping, wall pressure and shear stress distributions. The trajectories of liquid droplets due to the fluid motion entrained by the gas-jet operation, are also qualitatively compared with experimental visualization. Physical phenomena observed during the liquid-layer breakup due to an impinging jet is characterized in order to develop ideas for controlling the liquid-layer instability and resulting splash generation and propagation. Supported by the Grant NRF-2012R1A1A2003699, the Brain Korea 21+ program, POSCO, and 2014 CTR Summer Program.

  4. Improved confinement in JET high β plasmas with an ITER-like wall

    NASA Astrophysics Data System (ADS)

    Challis, C. D.; Garcia, J.; Beurskens, M.; Buratti, P.; Delabie, E.; Drewelow, P.; Frassinetti, L.; Giroud, C.; Hawkes, N.; Hobirk, J.; Joffrin, E.; Keeling, D.; King, D. B.; Maggi, C. F.; Mailloux, J.; Marchetto, C.; McDonald, D.; Nunes, I.; Pucella, G.; Saarelma, S.; Simpson, J.; Contributors, JET

    2015-05-01

    The replacement of the JET carbon wall (C-wall) by a Be/W ITER-like wall (ILW) has affected the plasma energy confinement. To investigate this, experiments have been performed with both the C-wall and ILW to vary the heating power over a wide range for plasmas with different shapes. It was found that the power degradation of thermal energy confinement was weak with the ILW; much weaker than the IPB98(y,2) scaling and resulting in an increase in normalized confinement from H98 ˜ 0.9 at βN ˜ 1.5 to H98 ˜ 1.2-1.3 at βN ˜ 2.5 - 3.0 as the power was increased (where H98 = τE/τIPB98(y,2) and βN = βTBT/aIP in % T/mMA). This reproduces the general trend in JET of higher normalized confinement in the so-called ‘hybrid’ domain, where normalized β is typically above 2.5, compared with ‘baseline’ ELMy H-mode plasmas with βN ˜ 1.5 - 2.0. This weak power degradation of confinement, which was also seen with the C-wall experiments at low triangularity, is due to both increased edge pedestal pressure and core pressure peaking at high power. By contrast, the high triangularity C-wall plasmas exhibited elevated H98 over a wide power range with strong, IPB98(y,2)-like, power degradation. This strong power degradation of confinement appears to be linked to an increase in the source of neutral particles from the wall as the power increased, an effect that was not reproduced with the ILW. The reason for the loss of improved confinement domain at low power with the ILW is yet to be clarified, but contributing factors may include changes in the rate of gas injection, wall recycling, plasma composition and radiation. The results presented in this paper show that the choice of wall materials can strongly affect plasma performance, even changing confinement scalings that are relied upon for extrapolation to future devices.

  5. Strut and wall interference on jet-induced ground effects of a STOVL aircraft in hover

    NASA Technical Reports Server (NTRS)

    Kristy, Michael H.

    1995-01-01

    A small scale ground effect test rig was used to study the ground plane flow field generated by a STOVL aircraft in hover. The objective of the research was to support NASA-Ames Research Center planning for the Large Scale Powered Model (LSPM) test for the ARPA-sponsored ASTOVL program. Specifically, small scale oil flow visualization studies were conducted to make a relative assessment of the aerodynamic interference of a proposed strut configuration and a wall configuration on the ground plane stagnation line. A simplified flat plate model representative of a generic jet-powered STOVL aircraft was used to simulate the LSPM. Cold air jets were used to simulate both the lift fan and the twin rear engines. Nozzle Pressure Ratios were used that closely represented those used on the LSPM tests. The flow visualization data clearly identified a shift in the stagnation line location for both the strut and the wall configuration. Considering the experimental uncertainty, it was concluded that either the strut configuration o r the wall configuration caused only a minor aerodynamic interference.

  6. Statistical analysis of the ion flux to the JET outer wall

    NASA Astrophysics Data System (ADS)

    Walkden, N. R.; Wynn, A.; Militello, F.; Lipschultz, B.; Matthews, G.; Guillemaut, C.; Harrison, J.; Moulton, D.; Contributors, JET

    2017-03-01

    Statistical analysis of the ion flux to the JET outer-wall is conducted in outer-wall limiter mounted Langmuir probe (OLP) time-series across a wide range of plasma current and line-averaged density during Ohmically heated horizontal target L-mode plasmas. The mean, μ, and the standard deviation, σ, of the ion-saturation current measured by the OLP show systematic variation with plasma current and density. Both increase as either plasma current decreases and/or density increases. Upon renormalization, achieved by subtraction of μ and rescaling by σ, the probability distribution functions (PDFs) of each signal collapse approximately onto a single curve. The shape of the curve deviates from a Γ distribution in the tail of the PDF and is better described by a log-normal distribution. The invariance in the shape of the PDF, which occurs over approximately four decades of the ordinate, is shown to be the result of a balance between the duration time of the average burst wave-form, {τd} and the waiting time between bursts, {τw} . This implies that the intermittency parameter, {τd}/{τw} , can be considered constant at the JET outer wall during horizontal target Ohmic L-mode operation. This result may be important both for model validation and prediction.

  7. Buoyant Jets in Stratification; Mixing Efficiencies, Entropy Conditions and Wall Effects

    NASA Astrophysics Data System (ADS)

    Tzou, Chung-Nan; Camassa, Roberto; Durbin, Marlow; McLaughlin, Richard; Ward, Jeremy; Whetstone, Cole; White, Brian; UNC Joint Fluids Lab Team

    2013-11-01

    An exact integral solution to the steady buoyant jet closure model in linearly stratified ambient environment is derived so that in the limit of a sharply stratified environment an entropy (nonlinear jump) condition can be established. Comparing the density evolution for the buoyant jet in the extremes of linear and sharp stratification using experiments and exact formulas, mixing efficiencies can be assessed. In turn, wall effects are explored experimentally in sharp stratification and compared to the closure theory. Lastly, the modeling of entrainment in these systems will be revisited. DMS-0502266, NSF RTG DMS-0943851, NSF RAPID CBET-1045653, NSF CMG ARC- 1025523, and NSF DMS-1009750, ONR DURIP N00014-09-1-0840.

  8. Overview of the JET ITER-like Wall, First Results and Scientific Programme

    NASA Astrophysics Data System (ADS)

    Matthews, Guy; JET-EFDA Collaboration

    2011-10-01

    The ITER-like Wall (ILW) is the first integrated tokamak experiment with a beryllium main chamber wall and tungsten divertor as foreseen for the activated operational phase of ITER: The ILW will study plasma-wall interaction (PWI) processes (material erosion, material mixing etc.), and the compatibility of the ITER materials with low fuel retention and high power operation. Replacement of the JET CFC first wall by solid Be limiters, and a combination of bulk W and W-coated CFC divertor tiles was performed by remote handling and completed in May 2011 in parallel with a neutral beam heating upgrade to 35 MW and enhancement of diagnostic capabilities. Mitigation of the power and energy loads in the divertor to acceptable levels at high power plasma performance will require high-density plasmas and radiative cooling via impurity seeding. Experiments were carried out with the carbon wall in preparation for the ILW to operate plasmas within ILW limits and provide reference plasmas for key physics studies. Although first plasma is scheduled for mid-August, the scientific programme in support of ITER will start earlier with machine conditioning. In this paper, an overview of the ILW, first results and the outlook for the scientific programme will be presented.

  9. Sound Propagation from a Supersonic Jet Flowing through a Rigid-walled Duct with a J-Deflector

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Margasahayam, Ravi; Vu, Bruce

    2003-01-01

    An experimental study is performed on the acoustical characteristics of a scale-model, perfectly expanded, cold supersonic jet of gaseous nitrogen (Mach 2.5, nozzle exit diameter of 1 inch) flowing through a rigid-walled duct having an upstream J-deflector. The nozzle is mounted vertically, with the nozzle exit plane at a height of 73 jet diameters above ground level. Relative to the nozzle exit plane, the location of the duct inlet is varied at 10, 5, and -1 jet diameters. Far-field sound pressure levels were obtained at 2 levels (54 jet diameters and 10 jet diameters above ground) with the aid of 9 acoustic sensors equally spaced around a circular arc of radius equal to 80 jet diameters. Comparisons of the acoustic field were made with and without the duct.

  10. Power deposition modelling of the ITER-like wall beryllium tiles at JET

    NASA Astrophysics Data System (ADS)

    Firdaouss, M.; Mitteau, R.; Villedieu, E.; Riccardo, V.; Lomas, P.; Vizvary, Z.; Portafaix, C.; Ferrand, L.; Thomas, P.; Nunes, I.; de Vries, P.; Chappuis, P.; Stephan, Y.

    2009-06-01

    A precise geometric method is used to calculate the power deposition on the future JET ITER-Like Wall beryllium tiles with particular emphasis on the internal edge loads. If over-heated surfaces are identified, these can be modified before the machining or failing that actively monitored during operations. This paper presents the methodology applied to the assessment of the main chamber beryllium limiters. The detailed analysis of one limiter is described. The conclusion of this study is that operation will not be limited by edges exposed to plasma convective loads.

  11. Jet stability and wall impingement flow field in a thermal striping experiment

    DOE PAGES

    Lomperski, S.; Obabko, A.; Merzari, E.; ...

    2017-08-10

    We present velocity and temperature field measurements for a 0.9 x 0.9 x 1.7 m glass tank in which two air jets at Re=10000 mix and impinge upon the lid at ambient temperature and pressure. Flow patterns are characterized across a 350 x 200 mm plane located 3 mm below the lid for two inlet geometries: 1) “extended”, in which inlet channels protrude above the tank base, and 2) “flush”, a flat base without protrusions. This minor geometry variation produced distinct changes in the lid flow field, appearing as three stagnant regions for the extended case and only one formore » flush. The dichotomy is attributed to system stability characteristics: jets are stable in the extended case and unstable for flush. In a separate set of nonisothermal tests, the impingement temperature field was measured for inlet temperature mismatches of 4 oC and jets near Re=10000. A 50 m-long fiber optic distributed temperature sensor positioned 2 mm below the lid measured at 1350 locations. Like the velocity fields, the temperature fields differ for the two inlet geometries: good thermal mixing for the flush case and subdued mixing for the extended case. Simulations with the spectral element code Nek5000 replicated the observed stability dichotomy, duplicating the number of stagnant regions observed in the experiment and matching their locations within ±10 mm. Simulation data suggests that flush case instability is due to interactions between jets and wall flows at the bottom of the tank. The clear flow dichotomy exhibited by this two-jet setup presents an unambiguous case to test the ability of CFD tools to predict subtle flow field changes driven by minor modifications in geometry in the context of thermal striping.« less

  12. Experimental investigation of influence of Reynolds number on synthetic jet vortex rings impinging onto a solid wall

    NASA Astrophysics Data System (ADS)

    Xu, Yang; He, GuoSheng; Kulkarni, Varun; Wang, JinJun

    2017-01-01

    Time-resolved particle image velocimetry was employed to study the effect of Reynolds number ( Re sj) on synthetic jet vortex rings impinging onto a solid wall. Four Reynolds numbers ranging from 166 to 664 were investigated for comparison while other parameters were kept constant. It is found that the Reynolds number has a significant impact on the spatial evolution of near-wall vortical structures of the impinging synthetic jet. Velocity triple decomposition reveals that periodic Reynolds shear stresses produced by both impinging and secondary vortex rings agree well with a four-quadrant-type distribution rule, and the random velocity fluctuations are strengthened as Re sj increases. For radial wall jet, radial velocity profiles exhibit a self-similar behavior for all Re sj, and this self-similar profile gradually deviates from the laminar solution as Re sj is increased. In particular, the self-similar profile for low Re sj (166) coincides with the laminar solution indicating that periodic velocity fluctuations produced by vortex rings have little effect on the velocity profile of the laminar wall jet. This also provides evidence that the impinging synthetic jet is more effective in mixing than the continuous jet for the laminar flow. For the high Re sj, the mean skin friction coefficient has a slower decay rate after reaching peak, and the radial momentum flux has a higher value at locations far away from the impingement region, both of these can be attributed to the enhanced random fluctuations.

  13. Comparison of scrape-off layer transport in inner and outer wall limited JET plasmas

    NASA Astrophysics Data System (ADS)

    Silva, C.; Arnoux, G.; Devaux, S.; Frigione, D.; Groth, M.; Horacek, J.; Lomas, P. J.; Marsen, S.; Matthews, G.; Pitts, R. A.; JET-EFDA Contributors

    2013-07-01

    The JET scrape-off layer has been characterized with a reciprocating probe in inner wall, IW, and outer wall, OW, limited plasmas. Broad SOL profiles are observed for IW limited plasmas with power e-folding length substantially larger (by a factor of ˜5-7.5) than in OW limited plasmas. The properties of the fluctuations in the SOL parameters indicate larger turbulent transport for IW limited plasmas. The striking differences observed between IW and OW limited plasmas on the power e-folding length, parallel flow, turbulent transport as well as the characteristics of the fluctuations support the existence of a poloidally localized region of enhanced radial transport near the outboard midplane. The dependence of the SOL power e-folding length on the main plasma parameters was also investigated for IW limited plasmas and a modest negative dependence on both the plasma current and the line-averaged density found.

  14. An experimental investigation of a three dimensional wall jet. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.

    1977-01-01

    One and two point statistical properties are measured in the flow fields of a coflowing turbulent jet. Two different confining surfaces (one flat, one with large curvature) are placed adjacent to the lip of the circular nozzle; and the resultant effects on the flow field are determined. The one point quantities measured include mean velocities, turbulent intensities, velocity and concentration autocorrelations and power spectral densities, and intermittencies. From the autocorrelation curves, the Taylor microscale and the integral length scale are calculated. Two point quantities measured include velocity and concentration space-time correlations and pressure velocity correlations. From the velocity space-time correlations, iso-correlation contours are constructed along with the lines of maximum maximorum. These lines allow a picture of the flow pattern to be determined. The pressures monitored in the pressure velocity correlations are measured both in the flow field and at the surface of the confining wall(s).

  15. Overview of experimental preparation for the ITER-Like Wall at JET

    NASA Astrophysics Data System (ADS)

    Jet Efda Contributors Brezinsek, S.; Fundamenski, W.; Eich, T.; Coad, J. P.; Giroud, C.; Huber, A.; Jachmich, S.; Joffrin, E.; Krieger, K.; McCormick, K.; Lehnen, M.; Loarer, T.; de La Luna, E.; Maddison, G.; Matthews, G. F.; Mertens, Ph.; Nunes, I.; Philipps, V.; Riccardo, V.; Rubel, M.; Stamp, M. F.; Tsalas, M.

    2011-08-01

    Experiments in JET with carbon-based plasma-facing components have been carried out in preparation of the ITER-Like Wall with beryllium main chamber and full tungsten divertor. The preparatory work was twofold: (i) development of techniques, which ensure safe operation with the new wall and (ii) provision of reference plasmas, which allow a comparison of operation with carbon and metallic wall. (i) Compatibility with the W divertor with respect to energy loads could be achieved in N2 seeded plasmas at high densities and low temperatures, finally approaching partial detachment, with only moderate confinement reduction of 10%. Strike-point sweeping increases the operational space further by re-distributing the load over several components. (ii) Be and C migration to the divertor has been documented with spectroscopy and QMBs under different plasma conditions providing a database which will allow a comparison of the material transport to remote areas with metallic walls. Fuel retention rates of 1.0-2.0 × 1021 D s-1 were obtained as references in accompanied gas balance studies.

  16. Preliminary Monte Carlo simulation of beryllium migration during JET ITER-like wall divertor operation

    NASA Astrophysics Data System (ADS)

    Airila, M. I.; Järvinen, A.; Groth, M.; Belo, P.; Wiesen, S.; Brezinsek, S.; Lawson, K.; Borodin, D.; Kirschner, A.; Coad, J. P.; Heinola, K.; Likonen, J.; Rubel, M.; Widdowson, A.

    2015-08-01

    Migration of beryllium into the divertor and deposition on tungsten in the final phase of the first ITER-like-wall campaign of JET are modelled with the 3D Monte Carlo impurity transport code ERO. The simulation covers the inner wall and the inner divertor. To generate the plasma background for Monte Carlo tracing of impurity particles, we use the EDGE2D/EIRENE code set. At the relevant regions of the wall, the estimated plasma conditions vary around Te ≈ 5eV and ne ≈ 2 ×1017m-3 (far-scrape-off layer; more than 10 cm away from the LCFS). We calculate impurity distributions in the plasma using the main chamber source as a free parameter in modelling and attempt to reproduce inter-ELM spectroscopic Be II line (527 nm) profiles at the divertor. The present model reproduces the level of emission close to the inner wall, but further work is needed to match also the measured emission peak values and ultimately link the modelled poloidal net deposition profiles of beryllium to post mortem data.

  17. Comparative analysis of core heat transport of JET high density H-mode plasmas in carbon wall and ITER-like wall

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Tae; Romanelli, M.; Voitsekhovitch, I.; Koskela, T.; Conboy, J.; Giroud, C.; Maddison, G.; Joffrin, E.; contributors, JET

    2015-06-01

    A consistent deterioration of global confinement in H-mode experiments has been observed in JET [1] following the replacement of all carbon plasma facing components (PFCs) with an all metal (‘ITER-like’) wall (ILW). This has been correlated to the observed degradation of the pedestal confinement, as lower electron temperature (Te) values are routinely measured at the top of the edge barrier region. A comparative investigation of core heat transport in JET-ILW and JET-CW (carbon wall) discharges has been performed, to assess whether core confinement has also been affected by the wall change. The results presented here have been obtained by analysing a set of discharges consisting of high density JET-ILW H-mode plasmas and comparing them against their counterpart discharges in JET-CW having similar global operational parameters. The set contains 10 baseline ({βN}=1.5∼ 2 ) discharge-pairs with 2.7 T toroidal magnetic field, 2.5 MA plasma current, and 14 to 17 MW of neutral beam injection (NBI) heating. Based on a Te profile analysis using high resolution Thomson scattering (HRTS) data, the Te profile peaking (i.e. core Te (ρ = 0.3) / edge Te (ρ = 0.7)) is found to be similar, and weakly dependent on edge Te, for both JET-ILW and JET-CW discharges. When ILW discharges are seeded with N2, core and edge Te both increase to maintain a similar peaking factor. The change in core confinement is addressed with interpretative TRANSP simulations. It is found that JET-ILW H-mode plasmas have higher NBI power deposition to electrons and lower NBI power deposition to ions as compared to the JET-CW counterparts. This is an effect of the lower electron temperature at the top of the pedestal. As a result, the core electron energy confinement time is reduced in JET-ILW discharges, but the core ion energy confinement time is not decreased. Overall, the core energy confinement is found to be the same in the JET-ILW discharges compared to the JET-CW counterparts.

  18. Wall jet analysis for circulation control aerodynamics. Part 1: Fundamental CFD and turbulence modeling concepts

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; York, B. J.; Sinha, N.; Dvorak, F. A.

    1987-01-01

    An overview of parabolic and PNS (Parabolized Navier-Stokes) methodology developed to treat highly curved sub and supersonic wall jets is presented. The fundamental data base to which these models were applied is discussed in detail. The analysis of strong curvature effects was found to require a semi-elliptic extension of the parabolic modeling to account for turbulent contributions to the normal pressure variations, as well as an extension to the turbulence models utilized, to account for the highly enhanced mixing rates observed in situations with large convex curvature. A noniterative, pressure split procedure is shown to extend parabolic models to account for such normal pressure variations in an efficient manner, requiring minimal additional run time over a standard parabolic approach. A new PNS methodology is presented to solve this problem which extends parabolic methodology via the addition of a characteristic base wave solver. Applications of this approach to analyze the interaction of wave and turbulence processes in wall jets is presented.

  19. Interaction of a wall jet with wake behind a bluff body in an open channel

    NASA Astrophysics Data System (ADS)

    Singha, Arindam; Balachandar, Ram

    2009-11-01

    Junction flow around a bluff body mounted in bed has been the subject of investigation for decades because of the unique phenomenon associated with the generation and dynamics of the horseshoe vortices. However, a more interesting flow could be the case where a small bleed flow in the form of a wall jet is allowed to pass beneath the bluff body and let interact with the horseshoe vortex. If this flow is strong, it can completely detoriates the effect of the horseshoe vortex and may result into a complex three-dimensional flow. To explore the characteristics of this kind of flow a sharp-edged bluff body was mounted in an open channel flow of nominal flow depth of 100 mm. Three flow configurations were examined: a) the body was mounted firmly on the floor, b) the body was lifted 5 mm from the bed and c) the body was lifted 10 mm from the bed. Particle image velocimetry measurement was performed at three horizontal planes, at y/H = 0.10, 0.50 and 0.80, respectively, where H is the nominal depth of flow. Time-averaged flow parameters were examined at selected streamwise locations at different vertical elevations to examine the effect of wall jet to change the characteristics of the wake.

  20. Pressure and velocity measurements in a three dimensional wall jet. [high lift V/STOL wing-flap

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.; Morton, J. B.; Humphris, R. R.

    1979-01-01

    In three recent papers, some results of an experimental investigation of a freely expanding coflowing jet as well as a three dimensional wall jet have been presented. A flat plate as well as a curved wall surface intended to model a wing-flap combination in a high lift V/STOL configuration have been investigated. In these papers, the ratio of the jet exit plane velocity to the free stream velocity, was 5.1. This paper explores the effects of increasing the velocity ratio. The quantities measured include the width of the mixing region, the mean velocity field, turbulent intensities and time scales. In addition, wall and static pressure-velocity correlations and coherences are presented. The velocity measurements are made using a laser Doppler velocimeter with a phase-locked loop processor. The fluctuating pressures are monitored using condenser-type microphones.

  1. Dynamics of High Pressure Reacting Shear Flows

    DTIC Science & Technology

    2013-12-17

    and supercritical acoustic-jet interactions to reacting flow in a canonical coaxial shear flow configuration – Emphasis on the flame holding region...unlimited. PA#13554 11 Coaxial Jets Initial...PA#13554 12 Forced Coaxial Jets 1. Transverse Acoustic mode from chamber

  2. Impact and mitigation of disruptions with the ITER-like wall in JET

    NASA Astrophysics Data System (ADS)

    Lehnen, M.; Arnoux, G.; Brezinsek, S.; Flanagan, J.; Gerasimov, S. N.; Hartmann, N.; Hender, T. C.; Huber, A.; Jachmich, S.; Kiptily, V.; Kruezi, U.; Matthews, G. F.; Morris, J.; Plyusnin, V. V.; Reux, C.; Riccardo, V.; Sieglin, B.; de Vries, P. C.; EFDA Contributors, JET

    2013-09-01

    Disruptions are a critical issue for ITER because of the high thermal and magnetic energies that are released on short timescales, which results in extreme forces and heat loads. The choice of material of the plasma-facing components (PFCs) can have significant impact on the loads that arise during a disruption. With the ITER-like wall (ILW) in JET made of beryllium in the main chamber and tungsten in the divertor, the main finding is a low fraction of radiation. This has dropped significantly with the ILW from 50-100% of the total energy being dissipated during disruptions in CFC wall plasmas, to less than 50% on average and down to just 10% for vertical displacement events (VDEs). All other changes in disruption properties and loads are consequences of this low radiation: long current quenches (CQs), high vessel forces caused by halo currents and toroidal current asymmetries as well as severe heat loads. Temperatures close to the melting limit have been locally observed on upper first wall structures during deliberate VDE and even at plasma currents as low as 1.5 MA and thermal energy of about 1.5 MJ only. A high radiation fraction can be regained by massive injection of a mixture of 10% Ar with 90% D2. This accelerates the CQ thus reducing the halo current and sideways impulse. The temperature of PFCs stays below 400 °C. MGI is now a mandatory tool to mitigate disruptions in closed-loop operation for currents at and above 2.5 MA in JET.

  3. A protection system for the JET ITER-like wall based on imaging diagnostics

    SciTech Connect

    Arnoux, G.; Balboa, I.; Balshaw, N.; Beldishevski, M.; Cramp, S.; Felton, R.; Goodyear, A.; Horton, A.; Kinna, D.; McCullen, P.; Obrejan, K.; Patel, K.; Lomas, P. J.; Rimini, F.; Stamp, M.; Stephen, A.; Thomas, P. D.; Williams, J.; Wilson, J.; Zastrow, K.-D. [Euratom and others

    2012-10-15

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

  4. Jet Expansion of Gas with Near-Wall Liquid Film from Nozzle into Vacuum

    NASA Astrophysics Data System (ADS)

    Yarygin, Vyacheslav N.; Prikhodko, Victor G.; Yarygin, Igor V.

    2009-08-01

    A structure of gas-droplet flow under the jet expansion of gas with near-wall liquid film from the cylindrical channel into vacuum is investigated experimentally. Such flows take place, for example, behind rocket thruster nozzle, cooled by the liquid fuel film moving on its inner surface. A case in point is the International space station (ISS) orientation thruster. Methods of flow structure visualization and measurements of droplet phase spatial distribution are described. It was discovered that near-wall liquid film moving down on an inner surface of the nozzle not only breaks up into droplets at the exit edge of the nozzle but also emerges onto the external surface of the nozzle, moving backwards on it, even against gravity. Gas-droplet flow behind the nozzle edge consists of two substantially different areas—central and peripheral. It was shown that near-wall liquid film breaks up into droplets at the exit part of the nozzle and on its external surface. And these droplets scatter practically in all directions.

  5. A protection system for the JET ITER-like wall based on imaging diagnosticsa)

    NASA Astrophysics Data System (ADS)

    Arnoux, G.; Devaux, S.; Alves, D.; Balboa, I.; Balorin, C.; Balshaw, N.; Beldishevski, M.; Carvalho, P.; Clever, M.; Cramp, S.; de Pablos, J.-L.; de la Cal, E.; Falie, D.; Garcia-Sanchez, P.; Felton, R.; Gervaise, V.; Goodyear, A.; Horton, A.; Jachmich, S.; Huber, A.; Jouve, M.; Kinna, D.; Kruezi, U.; Manzanares, A.; Martin, V.; McCullen, P.; Moncada, V.; Obrejan, K.; Patel, K.; Lomas, P. J.; Neto, A.; Rimini, F.; Ruset, C.; Schweer, B.; Sergienko, G.; Sieglin, B.; Soleto, A.; Stamp, M.; Stephen, A.; Thomas, P. D.; Valcárcel, D. F.; Williams, J.; Wilson, J.; Zastrow, K.-D.; JET-EFDA Contributors

    2012-10-01

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

  6. 2D tritium distribution on tungsten tiles used in JET ITER-like wall project

    NASA Astrophysics Data System (ADS)

    Hatano, Y.; Widdowson, A.; Bekris, N.; Ayres, C.; Baron-Wiechec, A.; Likonen, J.; Koivuranta, S.; Ikonen, J.; Yumizuru, K.

    2015-08-01

    Post-mortem measurements of 2-dimensional tritium (T) distribution using an imaging plate (IP) technique were performed for tungsten (W) divertor tiles (W-coated CFC) used in JET-ITER like wall (ILW) project. The observed T distributions were clearly inhomogeneous, and there were band-like regions with high T concentrations that extended in the toroidal direction on tiles 1, 3, 4 and 6. The concentrations of T in the band-like regions were higher by an order of magnitude than the concentrations in other parts. The inhomogeneous T distributions were explained by non-uniform co-deposition with other elements such as beryllium. The concentrations of T on the outboard vertical tiles (tiles 7 and 8) were low and relatively uniform in comparison with other tiles.

  7. Movement of liquid beryllium during melt events in JET with ITER-like wall

    NASA Astrophysics Data System (ADS)

    Sergienko, G.; Arnoux, G.; Devaux, S.; Matthews, G. F.; Nunes, I.; Riccardo, V.; Sirinelli, A.; Huber, A.; Brezinsek, S.; Coenen, J. W.; Mertens, Ph; Philipps, V.; Samm, U.; EFDA contributors, JET

    2014-04-01

    The ITER-like wall recently installed in JET comprises solid beryllium limiters and a combination of bulk tungsten and tungsten-coated carbon fibre composite divertor tiles without active cooling. During a beryllium power handling qualification experiment performed in limiter configuration with 5 MW neutral beam injection input power, accidental beryllium melt events, melt layer motion and splashing were observed locally on a few beryllium limiters in the plasma contact areas. The Lorentz force is responsible for the observed melt layer movement. To move liquid beryllium against the gravity force, the current flowing from the plasma perpendicularly to the limiter surface must be higher than 6 kA m-2. The thermo-emission current at the melting point of beryllium is much lower. The upward motion of the liquid beryllium against gravity can be due to a combination of the Lorentz force from the secondary electron emission and plasma pressure force.

  8. Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertora)

    NASA Astrophysics Data System (ADS)

    Balboa, I.; Arnoux, G.; Eich, T.; Sieglin, B.; Devaux, S.; Zeidner, W.; Morlock, C.; Kruezi, U.; Sergienko, G.; Kinna, D.; Thomas, P. D.; Rack, M.; JET EFDA Contributors

    2012-10-01

    For the new ITER-like wall at JET, two new infrared diagnostics (KL9B, KL3B) have been installed. These diagnostics can operate between 3.5 and 5 μm and up to sampling frequencies of ˜20 kHz. KL9B and KL3B image the horizontal and vertical tiles of the divertor. The divertor tiles are tungsten coated carbon fiber composite except the central tile which is bulk tungsten and consists of lamella segments. The thermal emission between lamellae affects the surface temperature measurement and therefore KL9A has been upgraded to achieve a higher spatial resolution (by a factor of 2). A technical description of KL9A, KL9B, and KL3B and cross correlation with a near infrared camera and a two-color pyrometer is presented.

  9. Microanalysis of deposited layers in the divertor of JET following operations with carbon wall

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Petersson, P.; Bykov, I.; Possnert, G.; Likonen, J.; Koivuranta, S.; Coad, J. P.; Widdowson, A. M.; JET EFDA contributors

    2013-07-01

    Elemental mapping of cross sections of deposited layers on inboard tiles in the JET divertor after exposure to plasma operations with carbon wall are presented. The study was made using microbeam ion beam analysis methods in combination with optical microscopy and SEM. The surfaces had been exposed to plasma through different periods of operation (1998-2007, 2007-2009 and 1998-2009). The texture and composition of the layers are non-uniform. The physical structures include columnar, lamellar and disordered globular appearances. The distribution of trapped deuterium was frequently found to be lamellar, with well-defined sub layers with higher deuterium concentration. However, 3D regions with dimensions of about 100 μm with enhanced deuterium content were also found, both at the layer surfaces and in the layer cross sections. The distributions of beryllium and Inconel components were lamellar but did not otherwise show large non-uniformity on the same scale length as the deuterium.

  10. Spectroscopic investigation of heavy impurity behaviour during ICRH with the JET ITER-like wall

    SciTech Connect

    Czarnecka, A.; Bobkov, V.; Maggi, C.; Pütterich, T.; Coffey, I. H.; Colas, L.; Jacquet, P.; Lawson, K. D.; Mayoral, M.-L. [Euratom Collaboration: JET-EFDA Contributors

    2014-02-12

    Magnetically confined plasmas, such as those produced in the tokamak JET, contain measurable amounts of impurity ions produced during plasma-wall interactions (PWI) from the plasma-facing components and recessed wall areas. The impurities, including high- and mid-Z elements such as tungsten (W) from first wall tiles and nickel (Ni) from Inconel structure material, need to be controlled within tolerable limits, to ensure they do not significantly affect the performance of the plasma. This contribution focuses on documenting W and Ni impurity behavior during Ion Cyclotron Resonance Heating (ICRH) operation with the new ITER-Like Wall (ILW). Ni- and W-concentration were derived from VUV spectroscopy and the impact of applied power level, relative phasing of the antenna straps, plasma separatrix - antenna strap distance, IC resonance position, edge density and different plasma configuration, on the impurity release during ICRH are presented. For the same ICRH power the Ni and W concentration was lower with dipole phasing than in the case of −π/2 phasing. The Ni concentration was found to increase with ICRH power and for the same NBI power level, ICRH-heated plasmas were characterized by two times higher Ni impurity content. Both W and Ni concentrations increased strongly with decreasing edge density which is equivalent to higher edge electron temperatures and more energetic ions responsible for the sputtering. In either case higher levels were found in ICRH than in NBI heated discharges. When the central plasma temperature was similar, ICRH on-axis heating resulted in higher core Ni impurity concentration in comparison to off-axis ICRH in L-mode. It was also found that the main core radiation during ICRH came from W.

  11. Spectroscopic investigation of heavy impurity behaviour during ICRH with the JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Czarnecka, A.; Bobkov, V.; Coffey, I. H.; Colas, L.; Jacquet, P.; Lawson, K. D.; Lerche, E.; Maggi, C.; Mayoral, M.-L.; Pütterich, T.; Van Eester, D.; JET-EFDA contributors

    2014-02-01

    Magnetically confined plasmas, such as those produced in the tokamak JET, contain measurable amounts of impurity ions produced during plasma-wall interactions (PWI) from the plasma-facing components and recessed wall areas. The impurities, including high- and mid-Z elements such as tungsten (W) from first wall tiles and nickel (Ni) from Inconel structure material, need to be controlled within tolerable limits, to ensure they do not significantly affect the performance of the plasma. This contribution focuses on documenting W and Ni impurity behavior during Ion Cyclotron Resonance Heating (ICRH) operation with the new ITER-Like Wall (ILW). Ni- and W-concentration were derived from VUV spectroscopy and the impact of applied power level, relative phasing of the antenna straps, plasma separatrix - antenna strap distance, IC resonance position, edge density and different plasma configuration, on the impurity release during ICRH are presented. For the same ICRH power the Ni and W concentration was lower with dipole phasing than in the case of -π/2 phasing. The Ni concentration was found to increase with ICRH power and for the same NBI power level, ICRH-heated plasmas were characterized by two times higher Ni impurity content. Both W and Ni concentrations increased strongly with decreasing edge density which is equivalent to higher edge electron temperatures and more energetic ions responsible for the sputtering. In either case higher levels were found in ICRH than in NBI heated discharges. When the central plasma temperature was similar, ICRH on-axis heating resulted in higher core Ni impurity concentration in comparison to off-axis ICRH in L-mode. It was also found that the main core radiation during ICRH came from W.

  12. Studies of wall shear and mass transfer in a large scale model of neonatal high-frequency jet ventilation.

    PubMed

    Muller, W J; Gerjarusek, S; Scherer, P W

    1990-01-01

    The problem of endotracheal erosion associated with neonatal high-frequency jet ventilation (HFJV) is investigated through measurement of air velocity profiles in a scaled up model of the system. Fluid mechanical scaling principles are applied in order to construct a model within which velocity profiles are measured by hot-wire anemometry. The effects of two different jet geometries are investigated. Velocity gradients measured near the tracheal wall are used to measure the shear stresses caused by the jet flow on the wall. The Chilton-Colburn analogy between the transport of momentum and mass is applied to investigate tracheal drying caused by the high shear flow. Shear forces are seen to be more than two times higher for jets located near the endotracheal tube wall than for those located axisymmetrically in the center of the tube. Since water vapor fluxes are dependent on these shears, they are also higher for the asymmetric case. Fluxes are shown to be greatly dependent on the temperature and relative humidity of the inspired gas. Water from the tracheal surface may be depleted within one second if inspired gases are inadequately heated and humidified. It is recommended that the design of neonatal HFJV devices include delivery of heated (near body temperature), humidified (as close to 100% humidity as possible) gases through an axisymmetric jet to best avoid the problem of endotracheal erosion.

  13. Overview of results from the JET tokamak using a beryllium first wall

    NASA Astrophysics Data System (ADS)

    Keilhacker, M.

    1990-06-01

    In this paper results from the initial operation of the JET tokamak [Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1985), Vol. 1, p. 11] with beryllium are summarized. JET was first operated with an evaporated Be coating on the walls and graphite limiters in June 1989. In August the graphite limiter tiles were replaced with the Be tiles, and a three week experimental campaign was conducted in September/October. In the first phase oxygen was reduced to a negligible level and the carbon flux halved. In the second phase, for limiter mode operation, carbon was reduced by another factor of 5, and Be became the dominant impurity. High-power, long-pulsed additionally heated limiter mode discharges with Zeff <1.5 were achieved, and density limits were increased by a factor of up to 2. Ion cyclotron resonance frequency (ICRF)-produced H modes were obtained in X-point operation (double null). The combination of Be gettering with new operational procedures to delay the strong influx of carbon from the X-point tiles enables the achievement of record fusion parameters in H-mode discharges including a transient ndTiτE value of 9×1020 m-3 keV sec, corresponding to a QDT equivalent of about 0.8.

  14. Overview of results from the JET tokamak using a beryllium first wall

    SciTech Connect

    Keilhacker, M. ); the JET team

    1990-06-01

    In this paper results from the initial operation of the JET tokamak ({ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} (IAEA, Vienna, 1985), Vol. 1, p. 11) with beryllium are summarized. JET was first operated with an evaporated Be coating on the walls and graphite limiters in June 1989. In August the graphite limiter tiles were replaced with the Be tiles, and a three week experimental campaign was conducted in September/October. In the first phase oxygen was reduced to a negligible level and the carbon flux halved. In the second phase, for limiter mode operation, carbon was reduced by another factor of 5, and Be became the dominant impurity. High-power, long-pulsed additionally heated limiter mode discharges with {ital Z}{sub eff} {lt}1.5 were achieved, and density limits were increased by a factor of up to 2. Ion cyclotron resonance frequency (ICRF)-produced H modes were obtained in X-point operation (double null). The combination of Be gettering with new operational procedures to delay the strong influx of carbon from the X-point tiles enables the achievement of record fusion parameters in H-mode discharges including a transient {ital n}{sub {ital d}}{ital T}{sub {ital i}}{tau}{sub {ital E}} value of 9{times}10{sup 20} m{sup {minus}3} keV sec, corresponding to a {ital Q}{sub DT} equivalent of about 0.8.

  15. Tungsten and beryllium armour development for the JET ITER-like wall project

    NASA Astrophysics Data System (ADS)

    Maier, H.; Hirai, T.; Rubel, M.; Neu, R.; Mertens, Ph.; Greuner, H.; Hopf, Ch.; Matthews, G. F.; Neubauer, O.; Piazza, G.; Gauthier, E.; Likonen, J.; Mitteau, R.; Maddaluno, G.; Riccardi, B.; Philipps, V.; Ruset, C.; Lungu, C. P.; Uytdenhouwen, I.; EFDA contributors, JET

    2007-03-01

    For the ITER-like wall project at JET the present main chamber CFC tiles will be exchanged with Be tiles and in parallel a fully tungsten-clad divertor will be prepared. Therefore three R&D programmes were initiated: Be coatings on Inconel as well as Be erosion markers were developed for the first wall of the main chamber. High heat flux screening and cyclic loading tests carried out on the Be coatings on Inconel showed excellent performance, above the required power and energy density. For the divertor a conceptual design for a bulk W horizontal target plate was investigated, with the emphasis on minimizing electromagnetic forces. The design consisted of stacks of W lamellae of 6 mm width that were insulated in the toroidal direction. High heat flux tests of a test module were performed with an electron beam at an absorbed power density up to 9 MW m-2 for more than 150 pulses and finally with increasing power loads leading to surface temperatures in excess of 3000 °C. No macroscopic failure occurred during the test while SEM showed the development of micro-cracks on the loaded surface. For all other divertor parts R&D was performed to provide the technology to coat the 2-directional CFC material used at JET with thin tungsten coatings. The W-coated CFC tiles were subjected to heat loads with power densities ranging up to 23.5 MW m-2 and exposed to cyclic heat loading for 200 pulses at 10.5 MW m-2. All coatings developed cracks perpendicular to the CFC fibres due to the stronger contraction of the coating upon cool-down after the heat pulses.

  16. Overview of fuel inventory in JET with the ITER-like wall

    NASA Astrophysics Data System (ADS)

    Widdowson, A.; Coad, J. P.; Alves, E.; Baron-Wiechec, A.; Barradas, N. P.; Brezinsek, S.; Catarino, N.; Corregidor, V.; Heinola, K.; Koivuranta, S.; Krat, S.; Lahtinen, A.; Likonen, J.; Matthews, G. F.; Mayer, M.; Petersson, P.; Rubel, M.; Contributors, JET

    2017-08-01

    Post mortem analyses of JET ITER-Like-Wall tiles and passive diagnostics have been completed after each of the first two campaigns (ILW-1 and ILW-2). They show that the global fuel inventory is still dominated by co-deposition; hence plasma parameters and sputtering processes affecting material migration influence the distribution of retained fuel. In particular, differences between results from the two campaigns may be attributed to a greater proportion of pulses run with strike points in the divertor corners, and having about 300 discharges in hydrogen at the end of ILW-2. Recessed and remote areas can contribute to fuel retention due to the larger areas involved, e.g. recessed main chamber walls, gaps in castellated Be main chamber tiles and material migration to remote divertor areas. The fuel retention and material migration due to the bulk W Tile 5 during ILW-1 are presented. Overall these tiles account for only a small percentage of the global accountancy for ILW-1.

  17. CFD investigation on the offset ratio effect on thermal characteristics of a combined wall and offset jets flow

    NASA Astrophysics Data System (ADS)

    Hnaien, Nidhal; Marzouk, Salwa; Ben Aissia, Habib; Jay, Jacques

    2017-08-01

    The present paper deals with CFD simulation of a two-dimensional, steady, incompressible and turbulent flow combining a wall jet and an offset jet (this combination will be denoted wall offset jet) in order to study the heat transfer phenomenon in this type of flow. Several turbulence models were tested including standard k-ω, SST k-ω, standard k-ɛ, RNG k-ɛ and realizable k-ɛ models. A parametric study was also presented to investigate the offset ratio H and the Reynolds number Re effect on the local (Nu) and average ( {\\overline{{{Nu}}} } ) Nusselt number evolution along the wall. Constant wall heat flux boundary condition is considered. The Reynolds number and the offset ratio have been varied respectively from 10,000 to 40,000 and from 5 to 20 and Pr = 0.7 is adopted for all computation. Correlations that predict the average Nusselt number as a function of both the offset ratio H and the Reynolds number Re are also provided. This study has allowed us to conclude that the heat transfer exchanged between the flow and the wall is intensified when decreasing the offset ratio H and increasing the Reynolds number Re.

  18. CFD investigation on the offset ratio effect on thermal characteristics of a combined wall and offset jets flow

    NASA Astrophysics Data System (ADS)

    Hnaien, Nidhal; Marzouk, Salwa; Ben Aissia, Habib; Jay, Jacques

    2017-03-01

    The present paper deals with CFD simulation of a two-dimensional, steady, incompressible and turbulent flow combining a wall jet and an offset jet (this combination will be denoted wall offset jet) in order to study the heat transfer phenomenon in this type of flow. Several turbulence models were tested including standard k-ω, SST k-ω, standard k-ɛ, RNG k-ɛ and realizable k-ɛ models. A parametric study was also presented to investigate the offset ratio H and the Reynolds number Re effect on the local (Nu) and average ( {\\overline{Ν} ) Nusselt number evolution along the wall. Constant wall heat flux boundary condition is considered. The Reynolds number and the offset ratio have been varied respectively from 10,000 to 40,000 and from 5 to 20 and Pr = 0.7 is adopted for all computation. Correlations that predict the average Nusselt number as a function of both the offset ratio H and the Reynolds number Re are also provided. This study has allowed us to conclude that the heat transfer exchanged between the flow and the wall is intensified when decreasing the offset ratio H and increasing the Reynolds number Re.

  19. Fuel retention studies with the ITER-Like Wall in JET

    NASA Astrophysics Data System (ADS)

    Brezinsek, S.; Loarer, T.; Philipps, V.; Esser, H. G.; Grünhagen, S.; Smith, R.; Felton, R.; Banks, J.; Belo, P.; Boboc, A.; Bucalossi, J.; Clever, M.; Coenen, J. W.; Coffey, I.; Devaux, S.; Douai, D.; Freisinger, M.; Frigione, D.; Groth, M.; Huber, A.; Hobirk, J.; Jachmich, S.; Knipe, S.; Krieger, K.; Kruezi, U.; Marsen, S.; Matthews, G. F.; Meigs, A. G.; Nave, F.; Nunes, I.; Neu, R.; Roth, J.; Stamp, M. F.; Vartanian, S.; Samm, U.; EFDA contributors, JET

    2013-08-01

    JET underwent a transformation from a full carbon-dominated tokamak to a fully metallic device with beryllium in the main chamber and a tungsten divertor. This material combination is foreseen for the activated phase of ITER. The ITER-Like Wall (ILW) experiment at JET shall demonstrate the plasma compatibility with metallic walls and the reduction in fuel retention. We report on a set of experiments (Ip = 2.0 MA, Bt = 2.0-2.4 T, δ = 0.2-0.4) in different confinement and plasma conditions with global gas balance analysis demonstrating a strong reduction in the long-term retention rate by more than a factor of 10 with respect to carbon-wall reference discharges. All experiments are executed in a series of identical plasma discharges in order to achieve maximum plasma duration until the analysis limit of the active gas handling system is reached. The composition analysis shows high purity of the recovered gas, typically 99% D. For typical L-mode discharges (Paux = 0.5 MW), type III (Paux = 5.0 MW) and type-I ELMy H-mode plasmas (Paux = 12.0 MW) a drop of the deuterium retention rate normalized to the operational time in divertor configuration is measured from 1.27 × 1021, 1.37 × 1021 and 1.97 × 1021 D s-1 down to 4.8 × 1019, 7.2 × 1019 and 16 × 1019 D s-1, respectively. The dynamic retention increases in the limiter phase in comparison with carbon-fibre composite, but also the outgassing after the discharge has risen in the same manner and overcompensates this transient retention. Overall an upper limit of the long-term retention rate of 1.5 × 1020 D s-1 is obtained with the ILW. The observed reduction by one order of magnitude confirms the expected predictions concerning the plasma-facing material change in ITER and is in line with identification of fuel co-deposition with Be as the main mechanism for the residual long-term retention. The reduction widens the operational space without active cleaning in the DT phase in comparison with a full carbon device.

  20. A similarity theory for the turbulent plane wall jet without external stream

    NASA Astrophysics Data System (ADS)

    George, William K.; Abrahamsson, Hans; Eriksson, Jan; Karlsson, Rolf I.; Löfdahl, Lennart; Wosnik, Martin

    2000-12-01

    A new theory for the turbulent plane wall jet without external stream is proposed based on a similarity analysis of the governing equations. The asymptotic invariance principle (AIP) is used to require that properly scaled profiles reduce to similarity solutions of the inner and outer equations separately in the limit of infinite Reynolds number. Application to the inner equations shows that the appropriate velocity scale is the friction velocity, u[low asterisk], and the length scale is v/u[low asterisk]. For finite Reynolds numbers, the profiles retain a dependence on the length-scale ratio, y+1/2 = u[low asterisk]y1/2/v, where y1/2 is the distance from the wall at which the mean velocity has dropped to 1/2 its maximum value. In the limit as y+1/2 [rightward arrow] [infty infinity], the familiar law of the wall is obtained. Application of the AIP to the outer equations shows the appropriate velocity scale to be Um, the velocity maximum, and the length scale y1/2; but again the profiles retain a dependence on y+1/2 for finite values of it. The Reynolds shear stress in the outer layer scales with u2*, while the normal stresses scale with U2m. Also Um [similar] yn1/2 where n < [minus sign]1/2 and must be determined from the data. The theory cannot rule out the possibility that the outer flow may retain a dependence on the source conditions, even asymptotically.

  1. Jets.

    PubMed

    Rhines, Peter B.

    1994-06-01

    This is a discussion of concentrated large-scale flows in planetary atmospheres and oceans, argued from the viewpoint of basic geophysical fluid dynamics. We give several elementary examples in which these flows form jets on rotating spheres. Jet formation occurs under a variety of circumstances: when flows driven by external stress have a rigid boundary which can balance the Coriolis force, and at which further concentration can be caused by the beta effect; when there are singular lines like the line of vanishing windstress or windstress-curl, or the Equator; when compact sources of momentum, heat or mass radiate jet-like beta plumes along latitude circles; when random external stirring of the fluid becomes organized by the beta effect into jets; when internal instability of the mass field generates zonal flow which then is concentrated into jets; when bottom topographic obstacles radiate jets, and when frontogenesis leads to shallow jet formation. Essential to the process of jet formation in stratified fluids is the baroclinic life cycle described in geostrophic turbulence studies; there, conversion from potential to kinetic energy generates eddy motions, and these convert to quasibarotropic motions which then radiate and induce jet-like large-scale circulation. Ideas of potential vorticity stirring by eddies generalize the notion of Rossby-wave radiation, showing how jets embedded in an ambient potential vorticity gradient (typically due to the spherical geometry of the rotating planet) gain eastward momentum while promoting broader, weaker westward circulation. Homogenization of potential vorticity is an important limit point, which many geophysical circulations achieve. This well-mixed state is found in subdomains of the terrestrial midlatitude oceans, the high-latitude circumpolar ocean, and episodically in the middle atmosphere. Homogenization expels potential vorticity gradients vertically to the top and bottom of the fluid, and sideways to the edges of

  2. Detailed measurements of local heat transfer coefficient and adiabatic wall temperature beneath an array of impinging jets

    SciTech Connect

    Van Treuren, K.W.; Wang, Z.; Ireland, P.T.; Jones, T.V. . Dept. of Engineering Science)

    1994-07-01

    A transient method of measuring the local heat transfer under an array of impinging jets has been developed. The use of a temperature-sensitive coating consisting of three encapsulated thermochromic liquid crystal materials has allowed the calculation of both the local adiabatic wall temperature and the local heat transfer coefficient over the complete surface of the target plate. The influence of the temperature of the plate through which the impingment gas flows on the target plate heat transfer has been quantified. Results are presented for a single in-line array configuration over a range of jet Reynolds numbers.

  3. Ion target impact energy during Type I edge localized modes in JET ITER-like Wall

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Jardin, A.; Horacek, J.; Autricque, A.; Arnoux, G.; Boom, J.; Brezinsek, S.; Coenen, J. W.; De La Luna, E.; Devaux, S.; Eich, T.; Giroud, C.; Harting, D.; Kirschner, A.; Lipschultz, B.; Matthews, G. F.; Moulton, D.; O'Mullane, M.; Stamp, M.

    2015-08-01

    The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode, with ΔW = 0.7 MJ mitigated edge localized modes (ELMs). Tungsten (W) is the material now decided for the divertor plasma-facing components from the start of plasma operations. W atoms sputtered from divertor targets during ELMs are expected to be the dominant source under the partially detached divertor conditions required for safe ITER operation. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of plasma-wall interaction during ELMs is important and a primary input for this is the energy of incoming ions during an ELM event. In this paper, coupled Infrared thermography and Langmuir Probe (LP) measurements in JET-ITER-Like-Wall unseeded H-mode experiments with ITER relevant ELM energy drop have been used to estimate the impact energy of deuterium ions (D+) on the divertor target. This analysis gives an ion energy of several keV during ELMs, which makes D+ responsible for most of the W sputtering in unseeded H-mode discharges. These LP measurements were possible because of the low electron temperature (Te) during ELMs which allowed saturation of the ion current. Although at first sight surprising, the observation of low Te at the divertor target during ELMs is consistent with the ‘Free-Streaming’ kinetic model which predicts a near-complete transfer of parallel energy from electrons to ions in order to maintain quasi-neutrality of the ELM filaments while they are transported to the divertor targets.

  4. First operation with the JET International Thermonuclear Experimental Reactor-like wall

    SciTech Connect

    Neu, R.; Arnoux, G.; Beurskens, M.; Challis, C.; Giroud, C.; Lomas, P.; Maddison, G.; Matthews, G.; Mayoral, M.-L.; Meigs, A.; Rimini, F.; Brezinsek, S. [IEK-4, Association EURATOM and others

    2013-05-15

    To consolidate International Thermonuclear Experimental Reactor (ITER) design choices and prepare for its operation, Joint European Torus (JET) has implemented ITER's plasma facing materials, namely, Be for the main wall and W in the divertor. In addition, protection systems, diagnostics, and the vertical stability control were upgraded and the heating capability of the neutral beams was increased to over 30 MW. First results confirm the expected benefits and the limitations of all metal plasma facing components (PFCs) but also yield understanding of operational issues directly relating to ITER. H-retention is lower by at least a factor of 10 in all operational scenarios compared to that with C PFCs. The lower C content (≈ factor 10) has led to much lower radiation during the plasma burn-through phase eliminating breakdown failures. Similarly, the intrinsic radiation observed during disruptions is very low, leading to high power loads and to a slow current quench. Massive gas injection using a D{sub 2}/Ar mixture restores levels of radiation and vessel forces similar to those of mitigated disruptions with the C wall. Dedicated L-H transition experiments indicate a 30% power threshold reduction, a distinct minimum density, and a pronounced shape dependence. The L-mode density limit was found to be up to 30% higher than for C allowing stable detached divertor operation over a larger density range. Stable H-modes as well as the hybrid scenario could be re-established only when using gas puff levels of a few 10{sup 21} es{sup −1}. On average, the confinement is lower with the new PFCs, but nevertheless, H factors up to 1 (H-Mode) and 1.3 (at β{sub N}≈3, hybrids) have been achieved with W concentrations well below the maximum acceptable level.

  5. Application of convection heat transfer in near-wall jets to electron-beam-pumped gas lasers

    NASA Astrophysics Data System (ADS)

    Lu, Bo

    Heating of the transmission foil separating the vacuum diodes from the laser gas in electron-beam-pumped gas lasers due to high-energy electron beam attenuation necessitates an external cooling scheme to prevent its failure under repetitively pulsed operating conditions. Attenuation of the electron beam (typically 500 kV, 100 kA and 100 ns pulse duration) produces a strong and pulsed volumetric heat source in the relatively thin stainless-steel foil (thickness of ˜25 mum) causing it to fail. An experimental and numerical investigation has been conducted to study the cooling effectiveness of near-wall high-speed jets for a single stainless-steel foil strip that simulates the actual foil geometry between two neighboring support ribs in the Electra KrF gas laser developed by the Naval Research Laboratory. The foil is placed inside a rectangular channel with continuous gas flow to simulate the circulating laser gas. The foil is electrically heated with the heating power input adjusted to achieve the same foil temperatures observed in Electra when no active cooling is applied. Detailed studies include two jet geometries (planar and circular) and two injection methods (tangential/parallel or obliquely impinging jets) for two hibachi foil structure designs (flat and scalloped). The planar jet of ˜1mm thickness flows parallel to the circulating laser gas across the entire foil span. The other configuration uses circular jets of small diameters (0.8 mm, 1.2 mm and 1.6 mm) positioned in two staggered rows located on the foil's two vertical edges with a pitch of 1.25 cm over the entire height of the foil. For both configurations, experiments have been conducted at various jet velocities (or jet Reynolds numbers), impingement angles and jet-foil spacing with an aim to identify the optimal operating parameters for the actual hibachi foil cooling. Numerous investigations have been performed that covered a wide range of operating parameters. Local and average heat transfer

  6. A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet

    NASA Astrophysics Data System (ADS)

    Lodato, Guido; Vervisch, Luc; Domingo, Pascale

    2009-03-01

    Wall-jet interaction is studied with large-eddy simulation (LES) in which a mixed-similarity subgrid scale (SGS) closure is combined with the wall-adapting local eddy-viscosity (WALE) model for the eddy-viscosity term. The macrotemperature and macropressure are introduced to deduce a weakly compressible form of the mixed-similarity model, and the relevant formulation for the energy equation is deduced accordingly. LES prediction capabilities are assessed by comparing flow statistical properties against experiment of an unconfined impinging round jet at Reynolds numbers of 23 000 and 70 000. To quantify the benefit of the proposed WALE-similarity mixed model, the lower Reynolds number simulations are also performed using the standard WALE and Lagrangian dynamic Smagorinsky approaches. The unsteady compressible Navier-Stokes equations are integrated over 2.9 M, 3.5 M, and 5.5 M node Cartesian grids with an explicit fourth-order finite volume solver. Nonreflecting boundary conditions are enforced using a methodology accounting for the three-dimensional character of the turbulent flow at boundaries. A correct wall scaling is achieved from the combination of similarity and WALE approaches; for this wall-jet interaction, the SGS closure terms can be computed in the near-wall region without the necessity of resorting to additional specific treatments. The possible impact of turbulent energy backscatter in such flow configurations is also addressed. It is found that, for the present configuration, the correct reproduction of reverse energy transfer plays a key role in the estimation of near-wall statistics, especially when the viscous sublayer is not properly resolved.

  7. Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall

    NASA Astrophysics Data System (ADS)

    Moradi, S.; Pusztai, I.; Voitsekhovitch, I.; Garzotti, L.; Bourdelle, C.; Pueschel, M. J.; Lupelli, I.; Romanelli, M.; JET-EFDA Contributors, the

    2014-12-01

    The core micro-instability characteristics of hybrid and baseline plasmas in a selected set of JET plasmas with carbon wall are investigated through local linear and non-linear and global linear gyro-kinetic simulations with the GYRO code (Candy and Belli 2011 General Atomics Report GA-A26818). In particular, we study the role of plasma pressure on the micro-instabilities, and scan the parameter space for the important plasma parameters responsible for the onset and stabilization of the modes under experimental conditions. We find that a good core confinement due to strong stabilization of the micro-turbulence driven transport can be expected in the hybrid plasmas due to the stabilizing effect of the fast ion pressure that is more effective at the low magnetic shear of the hybrid discharges. While parallel velocity gradient destabilization is important for the inner core, at outer radii the hybrid plasmas may benefit from a strong quench of the turbulence transport by E × B rotation shear.

  8. Overview of LH experiments in JET with an ITER-like wall

    SciTech Connect

    Kirov, K. K.; Baranov, Yu.; Brix, M.; Corrigan, G.; Mailloux, J.; Rimini, F.; Stamp, M.; Ekedahl, A.; Goniche, M.; Petrzilka, V.; Collaboration: JET EFDA Contributors

    2014-02-12

    An overview of the recent results of Lower Hybrid (LH) experiments at JET with the ITER-like wall (ILW) is presented. Topics relevant to LH wave coupling are addressed as well as issues related to ILW and LH system protections. LH wave coupling was studied in conditions determined by ILW recycling and operational constraints. It was concluded that LH wave coupling was not significantly affected and the pre-ILW performance could be recovered after optimising the launcher position and local gas puffing. SOL density measurements were performed using a Li-beam diagnostic. Dependencies on the D2 injection rate from the dedicated gas valve, the LH power and the LH launcher position were analysed. SOL density modifications due to LH were modelled by the EDGE2D code assuming SOL heating by collisional dissipation of the LH wave and/or possible ExB drifts in the SOL. The simulations matched reasonably well the measured SOL profiles. Observations of arcs and hotspots with visible and IR cameras viewing the LH launcher are presented.

  9. Comparison of ICRF and NBI heated plasmas performances in the JET ITER-like wall

    SciTech Connect

    Mayoral, M.-L.; Jacquet, P.; Czarnecka, A.; Mlynar, J.; Neu, R.; Collaboration: JET-EFDA Contributors

    2014-02-12

    During the initial operation of the JET ITER-like wall, particular attention was given to the characterization of the Ion Cyclotron Resonance Frequency (ICRF) heating in this new metallic environment. In this contribution we compare L-modes plasmas heated by ICRF or by Neutral Beam Injection (NBI). ICRF heating as expected led to a much higher centrally peaked power deposition on the electrons and due to the central fast ion population to stronger sawtooth activity. Surprisingly, although a higher bulk radiation was observed during the ICRF phase, the thermal plasma energy was found similar for both cases, showing that a higher radiation inside the separatrix was not incompatible with an efficient central heating scheme. The higher radiation was attributed to the presence Tungsten (W). Tomographic inversion of SXR emissions allowed a precise observation of the sawtooth effect on the radiation pattern. W concentration profiles deconvolved from SXR emission showed the flattening of the profiles due to sawtooth for both heating and the peaking of the profiles in the NBI case only hinting for extra transport effect in the ICRF case.

  10. Overview of erosion-deposition diagnostic tools for the ITER-Like Wall in the JET tokamak

    NASA Astrophysics Data System (ADS)

    Rubel, M.; Coad, J. P.; Widdowson, A.; Matthews, G. F.; Esser, H. G.; Hirai, T.; Likonen, J.; Linke, J.; Lungu, C. P.; Mayer, M.; Pedrick, L.; Ruset, C.; JET-EFDA Contributors

    2013-07-01

    This paper presents scientific and technical issues related to the development of erosion-deposition diagnostic tools for JET operated with the ITER-Like Wall: beryllium and tungsten marker tiles and several types of wall probes installed in the main chamber and in the divertor. Markers tiles are the standard limiter and divertor components additionally coated first with a thin sandwich of Ni-Be and Mo-W for, beryllium and tungsten markers, respectively. Both types of markers are embedded in regular arrays of limiter and divertor tiles. Coated W-Be probes are also inserted in the Be-covered Inconel cladding tiles on the central column. Other types of erosion-deposition diagnostic tools are: rotating collectors, deposition traps, louver clips, quartz microbalance and mirrors for the First Mirror Test at JET for ITER. The specific role of these tools is discussed in detail.

  11. Time-resolved schlieren POD and aft deck pressure correlations on a rectangular supersonic nozzle and sonic wall jet

    NASA Astrophysics Data System (ADS)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark

    2016-11-01

    A multi-stream single expansion ramp nozzle (SERN) with aft deck, based on three-stream engine concepts, is currently undergoing experimental tests at Syracuse University's Skytop Turbulence Laboratory. In the context of this study, we view this as an idealized representation consisting of two canonical flows; a supersonic convergent-divergent (CD) nozzle and a sonic wall jet (representing the 3rd stream). The jet operates at a bulk flow of Mj , 1 = 1 . 6 and wall jet Mj , 3 = 1 . 0 . Proper orthogonal decomposition (POD) is then performed on the schlieren images and the time-dependent coefficients are related to the near-field deck pressure. Structures within the flow field are correlated to particular flow events and help track the downstream evolution of the jet. A multitude of scales are seen within the flow corresponding to a wide range of coherent structures. High fidelity LES is also performed on the same nozzle geometry and relations are made back to the experiments. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  12. Ventricle wall dissection and vascular preservation with the pulsed water jet device: novel tissue dissector for flexible neuroendoscopic surgery.

    PubMed

    Kawaguchi, Tomohiro; Nakagawa, Atsuhiro; Endo, Toshiki; Fujimura, Miki; Sonoda, Yukihiko; Tominaga, Teiji

    2016-03-01

    Neuroendoscopic surgery allows minimally invasive surgery, but lacks effective methods to control bleeding. Water jet dissection with continuous flow has been used in liver and kidney surgery since the 1980s, and is effective for tissue manipulation with vascular preservation, but involves some potential risks, such as elevation of intracranial pressure during application in the ventricles. The authors previously reported the efficacy of the actuator-driven pulsed water jet device (ADPJ) to dissect soft tissue with vascular preservation in microscopic neurosurgery. This feasibility study investigated the use of the ADPJ to reduce the amount of water usage, leading to more safety with sustained efficacy. A small-diameter pulsed water jet device was developed for use with the flexible neuroendoscope. To identify the optimal conditions for the water jet, the flow rate, water pressure, and distance between the nozzle and target were analyzed in an in vitro study by using a gelatin brain phantom. A ventricle model was used to monitor the internal pressure and temperature. For ex vivo experiments the porcine brain was harvested and ventricle walls were exposed, and subsequently immersed into physiological saline. For in vivo experiments the cortex was microsurgically resected to make the small cortico-ventricle window, and then the endoscope was introduced to dissect ventricle walls. In the in vitro experiments, water pressure was approximately 6.5 bar at 0.5 mm from the ADPJ nozzle and was maintained at 1 mm, but dropped rapidly toward 50% at 2 mm, and became 10% at 3.5 mm. The ADPJ required less water to achieve the same dissection depth compared with the continuous-flow water jet. With the ventricle model, the internal pressure and temperature were well controlled at the baseline, with open water drainage. These results indicated that the ADPJ can be safely applied within the ventricles. The ADPJ was introduced into a flexible endoscope and the ventricle walls were

  13. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    Adimurthy, M.; Katti, Vadiraj V.

    2016-06-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing (Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio (l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  14. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    M, Adimurthy; Katti, Vadiraj V.

    2017-02-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing ( Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio ( l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  15. Modification of the carbon and beryllium walls in JET by erosion, redeposition and deuterium trapping after the 1991 discharge period

    NASA Astrophysics Data System (ADS)

    Martinelli, A. P.; Behrisch, R.; Peacock, A. T.

    1994-09-01

    After plasma operation in 1991 samples were cut from C and Be tiles of the JET vessel walls, limiters, and X-point tiles along a poloidal cross section in octant 4W, and the surface layers were analysed by the MeV ion beam methods NRA, PIXE, and RBS to determine the D and metal impurity distributions. The amount of trapped deuterium ranges from 5 × 10 15 to 5 × 10 17 D/cm 2, metal impurities such as Ni, Cr, and Fe are in the range of 10 15 to 3 × 10 16/cm 2, Cl in the range of 10 16 to 10 18/cm 2, K and Ca in the range of 10 15 to 10 16/cm 2 and Ti about 10 15/cm 2. Except for Cl, all measured concentrations are a factor of up to about ten lower than those observed on JET walls tiles before Be evaporation and Be wall components were used. This observation is in agreement with the reduced impurity concentrations measured in the JET plasma. The D and impurity distributions along the X-point tiles were analysed in some detail. Generally, the deuterium trapping and impurity deposition show minima in areas where erosion dominates and amounts a factor of about ten larger in between.

  16. Experimental studies of shock-wave/wall-jet interaction in hypersonic flow, part A

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen

    1994-01-01

    Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident-shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not

  17. Experimental studies of shock-wave/wall-jet interaction in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen

    1994-01-01

    Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not

  18. Microchip-Based Electrochemical Detection using a 3-D Printed Wall-Jet Electrode Device

    PubMed Central

    Munshi, Akash S.; Martin, R. Scott

    2016-01-01

    Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspects of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes – 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods. PMID:26649363

  19. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device.

    PubMed

    Munshi, Akash S; Martin, R Scott

    2016-02-07

    Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods.

  20. Near-Wall Velocity Field Measurements of a Very Low Momentum Flux Transverse Jet

    DTIC Science & Technology

    2014-06-01

    MAET technique for making mean channel-temperature measurements in supercritical combustion environments. 3 Figure 1. MAET optical setup...the difference between the optical path length and the channel height. Figure 2. In-hole jet and crossflow fluid interaction. DISTRIBUTION...crossflow and where the jet fluid exists within the jet hole. Ingestion of crossflow fluid further complicates the light-source path due to the existence

  1. Characterization and heat flux testing of beryllium coatings on Inconel for JET ITER-like wall project

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Linke, J.; Sundelin, P.; Rubel, M.; Kühnlein, W.; Wessel, E.; Coad, J. P.; Lungu, C. P.; Matthews, G. F.; Pedrick, L.; Piazza, G.

    2007-03-01

    In order to perform a fully integrated material test, JET has launched the ITER-like wall project with the aim of installing a full metal wall during the next major shutdown. The material foreseen for the main chamber wall is bulk Be at the limiters and Be coatings on inconel tiles elsewhere. R&D process comprises global characterization (structure, purity etc) of the evaporated films and testing of their performance under heat loads. The major results are (i) the layers have survived energy loads of 20 MJ m-2 which is significantly above the required level of 5-10 MJ m-2, (ii) melting limit of beryllium coating would be at the energy level of 30 MJ m-2, (iii) cyclic thermal load of 10 MJ m-2 for up to 50 cycles have not induced any noticeable damage such as flaking or detachment.

  2. Vortex dynamics and wall shear stress behaviour associated with an elliptic jet impinging upon a flat plate

    NASA Astrophysics Data System (ADS)

    Long, J.; New, T. H.

    2016-07-01

    Vortical structures and dynamics of a Re h = 2100 elliptic jet impinging upon a flat plate were studied at H/ d h = 1, 2 and 4 jet-to-plate separation distances. Flow investigations were conducted along both its major and minor planes using laser-induced fluorescence and digital particle image velocimetry techniques. Results show that the impingement process along the major plane largely consists of primary jet ring-vortex and wall-separated secondary vortex formations, where they subsequently separate from the flat plate at smaller H/ d h = 1 and 2 separation distances. Key vortex formation locations occur closer to the impingement point as the separation distance increases. Interestingly, braid vortices and rib structures begin to take part in the impingement process at H/ d h = 4 and wave instabilities dominate the flow field. In contrast, significantly more coherent primary and secondary vortices with physically larger vortex core sizes and higher vortex strengths are observed along the minor plane, with no signs of braid vortices and rib structures. Lastly, influences of these different flow dynamics on the major and minor plane instantaneous and mean skin friction coefficient levels are investigated to shed light on the effects of separation distance on the wall shear stress distributions.

  3. Evaluating localized surface erosion from rf-sheath interactions in JET with an ITER-like wall

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Lasa, A.; Borodin, D.; Kirschner, A.; Groth, M.; Jacquet, P.; Bobkov, V.; Colas, L.; JET Contributors Team

    2015-11-01

    The presence of ion cyclotron resonance frequency (ICRF) heating antennas in JET, presently with an ITER-like Wall (ILW) allows for experimental validation of models for ITER-relevant, ICRH-specific plasma-wall interactions (RF-PWI). Spectroscopic access to neutral and singly ionized beryllium light emission at outboard poloidal limiters in JET-ILW, combined with sequential antenna toggling, led recently to observation of RF-PWI, in the form of enhanced spectral line emission, at limiter spots with ~ 3m magnetic field-line connection to an active antenna. More recently, the measured, locally enhanced Be sources were simulated with an added sheath potential term in the ERO erosion code to account for the RF-PWI, leading to good agreement with experiment in terms of relative increase (~ 2x-3x) in light emission. Furthermore, the added potentials are well in the range of estimated DC RF sheath potentials arising for rectification of near-fields in the SOL. The main uncertainty in absolute Be surface erosion comes from the uncertainty in the local plasma parameters, which are extrapolated to the far-SOL with the aid of edge plasma modelling. Plans for improved measurements in upcoming JET-ILW experimental campaign will be included in this presentation.

  4. Time-Resolved Visualization of Görtler Vortices in a Pulsed Convex Wall Jet using Fast Pressure-Sensitive Paint

    NASA Astrophysics Data System (ADS)

    Gregory, James; Danon, Ron; Greenblatt, David

    2015-11-01

    The time-resolved formation and structure of Görtler vortices in a pulsed convex wall jet are studied in this work. While the presence of Görtler vortices in laminar boundary layers on concave surfaces can be clearly observed, their presence in wall jets flowing over convex surfaces is difficult to discern due to transition to turbulence in the outer part of the jet. This work employed fast-response pressure-sensitive paint (PSP), which has a documented flat frequency response greater than 5 kHz, to visualize the time-resolved formation of the wall jet and the details of the Görtler vortices. The radius of curvature of the wall jet was 8 cm, and the Reynolds number (based on slot height and jet exit velocity) was varied between 5 ×102 and 4 ×104 . The characteristic spanwise wavelength of the vortices was studied as a function of jet Reynolds number. Furthermore, as the Reynolds number was increased, various secondary instabilities were observed that led to laminar-turbulent transition. Funding provided by the U.S. Fulbright Scholar Program.

  5. Experience of handling beryllium, tritium and activated components from JET ITER like wall

    NASA Astrophysics Data System (ADS)

    Widdowson, A.; Baron-Wiechec, A.; Batistoni, P.; Belonohy, E.; Coad, J. P.; Dinca, P.; Flammini, D.; Fox, F.; Heinola, K.; Jepu, I.; Likonen, J.; Lilley, S.; Lungu, C. P.; Matthews, G. F.; Naish, J.; Pompilian, O.; Porosnicu, C.; Rubel, M.; Villari, R.; Contributors, JET

    2016-02-01

    JET components are removed periodically for surface analysis to assess material migration and fuel retention. This paper describes issues related to handling JET components and procedures for preparing samples for analysis; in particular a newly developed procedure for cutting beryllium tiles is presented. Consideration is also given to the hazards likely due to increased tritium inventory and material activation from 14 MeV neutrons following the planned TT and DT operations (DTE2) in 2017. Conclusions are drawn as to the feasibility of handling components from JET post DTE2.

  6. Impurity coverage and deuterium inventory of beryllium and carbon first wall components after beryllium operation in JET

    NASA Astrophysics Data System (ADS)

    Peacock, A. T.; Coad, J. P.; Lama, F.; Behrisch, R.; Martinelli, A. P.; Mills, B. E.; Pick, M.; Partridge, J.; Simpson, J. C. B.; Zhu, Y. K.

    1990-12-01

    During 1989, following a brief all carbon phase, JET was operated with an evaporated beryllium film on all the plasma facing surfaces and then, in a third phase, with bulk beryllium used for the belt limiters and one set of antenna protection tiles. Subsequent analysis of wall components and long term samples (LTS) using Beta Backscatter and Ion Beam Analysis has been conducted to determine the condition of the First Wall and its deuterium inventory after beryllium operation. Ex-situ analysis of components where deposition occurs during operation shows mixed carbon and beryllium layers with an approximate ratio 1:1 and some localised higher Z components. The deuterium inventory situation is littled changed by the introduction of beryllium. Similar surface levels of deuterium, ~1 × 10 22 atoms m -2, have been seen for both carbon and beryllium belt limiter tiles.

  7. Effects of mannequin and walk-by motion on flow and spillage characteristics of wall-mounted and jet-isolated range hoods.

    PubMed

    Huang, Rong Fung; Dai, Guan-Zhong; Chen, Jia-Kun

    2010-08-01

    Laser-assisted flow-visualization experiments and tracer gas concentration tests were conducted for the wall-mounted and jet-isolated range hoods to examine the physical mechanisms and relative magnitudes of hood spillages. The effects of a mannequin standing in front of the test rig and walk-by motions (which are situations always encountered in kitchens) were emphasized. The results showed that a mannequin (or a cook) standing in front of the counter would attract oil fumes toward the mannequin's body, induce large turbulent flows, and cause a significant dispersion of oil fumes into the environment through the front edge of the hood. Very high tracer gas concentrations were detected around the breathing zone of the mannequin. Increasing the suction flow rate did not reduce the spillage levels of the wall-mounted range hood but could moderately lower those of the jet-isolated hood. Serious spillages from both the wall-mounted and jet-isolated range hoods were detected as the simulated walk-by motion was performed. The jet-isolated range hood presented a much lower robustness in resisting the influence of people's walk-bys than did the wall-mounted range hood. In summary, both the wall-mounted and jet-isolated range hoods were vulnerable to the influences of a cook's presence and a cook's walk-by motions. Increasing the suction flow rate might not obtain satisfactorily low spillages of pollutants but might increase noise level and energy consumption.

  8. Local distribution of wall static pressure and heat transfer on a rough flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    Meda, Adimurthy; Katti, Vadiraj V.

    2017-02-01

    The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z/D h = 0.5-10.0), axial distance from stagnation point (x/D h ), size of detached rib (b = 4-12 mm) and Reynolds number (Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point (x/D h = 0) for all nozzle-to-plate spacing (Z/D h ) and rib dimensions studied. Coefficient of wall static pressure (C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing (Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.

  9. Local distribution of wall static pressure and heat transfer on a rough flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    Meda, Adimurthy; Katti, Vadiraj V.

    2017-08-01

    The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z /D h = 0.5-10.0), axial distance from stagnation point ( x/D h ), size of detached rib ( b = 4-12 mm) and Reynolds number ( Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point ( x/D h = 0) for all nozzle-to-plate spacing ( Z/D h ) and rib dimensions studied. Coefficient of wall static pressure ( C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing ( Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.

  10. Heat loads from ICRF and LH wave absorption in the SOL: characterization on JET and implications for the ITER-Like Wall

    SciTech Connect

    Colas, L.; Arnoux, G.; Goniche, M.; Jacquet, Ph.; Mayoral, M.-L.; Brix, M.; Fursdon, M.; Graham, M.; Mailloux, J.; Monakhov, I.; Noble, C.; Sirinelli, A.; Riccardo, V.; Vizvary, Z.; Lerche, E.; Ongena, J.; Petrzilka, V.

    2011-12-23

    Heat loads from ICRF and LH wave absorption in the SOL are characterized on JET from the de-convolution of surface temperatures measured by infrared thermography. The spatial localization, quantitative estimates, parametric dependence and physical origin of the observed heat fluxes are documented. Implications of these observations are discussed for the operation of JET with an ITER-Like Wall, featuring Beryllium tiles with reduced power handling capability.

  11. Heat loads from ICRF and LH wave absorption in the SOL: characterization on JET and implications for the ITER-Like Wall

    NASA Astrophysics Data System (ADS)

    Colas, L.; Jacquet, Ph.; Mayoral, M.-L.; Arnoux, G.; Bobkov, V.; Brix, M.; Fursdon, M.; Goniche, M.; Graham, M.; Lerche, E.; Mailloux, J.; Monakhov, I.; Noble, C.; Ongena, J.; Petržilka, V.; Sirinelli, A.; Riccardo, V.; Vizvary, Z.

    2011-12-01

    Heat loads from ICRF and LH wave absorption in the SOL are characterized on JET from the de-convolution of surface temperatures measured by infrared thermography. The spatial localization, quantitative estimates, parametric dependence and physical origin of the observed heat fluxes are documented. Implications of these observations are discussed for the operation of JET with an ITER-Like Wall, featuring Beryllium tiles with reduced power handling capability.

  12. Heat transfer from a square source to an impinging liquid jet confined by an annular wall

    SciTech Connect

    Besserman, D.L. ); Incropera, F.P.; Ramadhyani, S. )

    1992-02-01

    The objective of this study has been to consider experimentally impingement cooling of a chiplike source by a liquid, circular jet under conditions for which single-phase convection heat transfer from the source may be influenced by annular collection of the spent fluid. The experiments were performed with water and for operating conditions that are consistent with ship cooling requirements.

  13. Secondary cell wall polysaccharides of Bacillus anthracis are antigens that contain specific epitopes which cross-react with three pathogenic Bacillus cereus strains that caused severe disease, and other epitopes common to all the Bacillus cereus strains tested

    PubMed Central

    Leoff, Christine; Saile, Elke; Rauvolfova, Jana; Quinn, Conrad P; Hoffmaster, Alex R; Zhong, Wei; Mehta, Alok S; Boons, Geert-Jan; Carlson, Russell W; Kannenberg, Elmar L

    2009-01-01

    The immunoreactivities of hydrogen fluoride (HF)-released cell wall polysaccharides (HF-PSs) from selected Bacillus anthracis and Bacillus cereus strains were compared using antisera against live and killed B. anthracis spores. These antisera bound to the HF-PSs from B. anthracis and from three clinical B. cereus isolates (G9241, 03BB87, and 03BB102) obtained from cases of severe or fatal human pneumonia but did not bind to the HF-PSs from the closely related B. cereus ATCC 10987 or from B. cereus type strain ATCC 14579. Antiserum against a keyhole limpet hemocyanin conjugate of the B. anthracis HF-PS (HF-PS-KLH) also bound to HF-PSs and cell walls from B. anthracis and the three clinical B. cereus isolates, and B. anthracis spores. These results indicate that the B. anthracis HF-PS is an antigen in both B. anthracis cell walls and spores, and that it shares cross-reactive, and possibly pathogenicity-related, epitopes with three clinical B. cereus isolates that caused severe disease. The anti-HF-PS-KLH antiserum cross-reacted with the bovine serum albumin (BSA)-conjugates of all B. anthracis and all B. cereus HF-PSs tested, including those from nonclinical B. cereus ATCC 10987 and ATCC 14579 strains. Finally, the serum of vaccinated (anthrax vaccine adsorbed (AVA)) Rhesus macaques that survived inhalation anthrax contained IgG antibodies that bound the B. anthracis HF-PS-KLH conjugate. These data indicate that HF-PSs from the cell walls of the bacilli tested here are (i) antigens that contain (ii) a potentially virulence-associated carbohydrate antigen motif, and (iii) another antigenic determinant that is common to B. cereus strains. PMID:19270075

  14. Secondary cell wall polysaccharides of Bacillus anthracis are antigens that contain specific epitopes which cross-react with three pathogenic Bacillus cereus strains that caused severe disease, and other epitopes common to all the Bacillus cereus strains tested.

    PubMed

    Leoff, Christine; Saile, Elke; Rauvolfova, Jana; Quinn, Conrad P; Hoffmaster, Alex R; Zhong, Wei; Mehta, Alok S; Boons, Geert-Jan; Carlson, Russell W; Kannenberg, Elmar L

    2009-06-01

    The immunoreactivities of hydrogen fluoride (HF)-released cell wall polysaccharides (HF-PSs) from selected Bacillus anthracis and Bacillus cereus strains were compared using antisera against live and killed B. anthracis spores. These antisera bound to the HF-PSs from B. anthracis and from three clinical B. cereus isolates (G9241, 03BB87, and 03BB102) obtained from cases of severe or fatal human pneumonia but did not bind to the HF-PSs from the closely related B. cereus ATCC 10987 or from B. cereus type strain ATCC 14579. Antiserum against a keyhole limpet hemocyanin conjugate of the B. anthracis HF-PS (HF-PS-KLH) also bound to HF-PSs and cell walls from B. anthracis and the three clinical B. cereus isolates, and B. anthracis spores. These results indicate that the B. anthracis HF-PS is an antigen in both B. anthracis cell walls and spores, and that it shares cross-reactive, and possibly pathogenicity-related, epitopes with three clinical B. cereus isolates that caused severe disease. The anti-HF-PS-KLH antiserum cross-reacted with the bovine serum albumin (BSA)-conjugates of all B. anthracis and all B. cereus HF-PSs tested, including those from nonclinical B. cereus ATCC 10987 and ATCC 14579 strains. Finally, the serum of vaccinated (anthrax vaccine adsorbed (AVA)) Rhesus macaques that survived inhalation anthrax contained IgG antibodies that bound the B. anthracis HF-PS-KLH conjugate. These data indicate that HF-PSs from the cell walls of the bacilli tested here are (i) antigens that contain (ii) a potentially virulence-associated carbohydrate antigen motif, and (iii) another antigenic determinant that is common to B. cereus strains.

  15. Near-Wall Velocity Field Measurements of a Very Low Momentum Flux Transverse Jet (Briefing Charts)

    DTIC Science & Technology

    2014-06-01

    NO. Air Force Research Laboratory (AFMC) AFRL/RQRC 10 E. Saturn Blvd Edwards AFB CA 93524-7680 9. SPONSORING / MONITORING AGENCY NAME(S... v x, u ρj, uj Crossflow ρo, uo 7 Place Proper DISTRIBUTION STATEMENT Here Initial Conditions DISTRIBUTION STATEMENT A. Approved for public...Here Time Dependent Jet Behavior DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited. v /uj v /uj 21 Place Proper

  16. Surface composition and structure of divertor tiles following the JET tokamak operation with the ITER-like wall

    NASA Astrophysics Data System (ADS)

    Lagoyannis, A.; Tsavalas, P.; Mergia, K.; Provatas, G.; Triantou, K.; Tsompopoulou, E.; Rubel, M.; Petersson, P.; Widdowson, A.; Harissopulos, S.; Mertzimekis, T. J.; JET contributors, the

    2017-07-01

    Samples extracted from several divertor tiles following the 2011-2012 operation of JET with the ITER-Like wall were analyzed using ion beam analysis methods, x-ray fluorescence spectroscopy, scanning electron microscopy with energy dispersive spectroscopy analysis and x-ray diffraction. The emphasis was on the determination of light species and on material mixing including compound formation on the bottom and the outer divertor tiles. Deposition of deuterium, beryllium, carbon, nitrogen, oxygen, iron, chromium, nickel and molybdenum has been detected on all studied tiles. The thickest deposition, of around 4 µm, was measured on the bottom of the outer divertor, whereas the other surfaces (inner bottom and vertical outer) the co-deposits were around 1 µm. x-ray diffraction measurements have revealed the formation of the compound W2C on all specimens.

  17. Inlet turbulence intensity level and cross-stream distribution effects on the heat transfer in plane wall jets

    NASA Technical Reports Server (NTRS)

    Adeniji-Fashola, A. A.

    1989-01-01

    The effect of the turbulence intensity level and its cross-stream distribution at the inlet on the numerical prediction of the heat transfer in a two-dimensional turbulent-wall jet was investigated. The investigation was carried out within the framework of the standard kappa-epsilon turbulence model. The predicted Nusselt number showed the influence of the turbulence intensity level and its cross-stream distribution at the inlet to be significant but restricted to the first 15 slot widths from the inlet slot. Beyond this location, all the predictions were observed to collapse onto a single curve which exhibited a maximum over-prediction of about 30 percent when compared with the available experimental data.

  18. Surface analysis of tiles and samples exposed to the first JET campaigns with the ITER-like wall

    NASA Astrophysics Data System (ADS)

    Coad, J. P.; Alves, E.; Barradas, N. P.; Baron-Wiechec, A.; Catarino, N.; Heinola, K.; Likonen, J.; Mayer, M.; Matthews, G. F.; Petersson, P.; Widdowson, A.; Contributors, JET-EFDA

    2014-04-01

    This paper reports on the first post-mortem analyses of tiles removed from JET after the first campaigns with the ITER-like wall (ILW) during 2011-12 [1]. Tiles from the divertor have been analysed by ion beam analysis techniques and by secondary ion mass spectrometry to determine the amount of beryllium deposition and deuterium retention in the tiles exposed to the scrape-off layer. Films 10-20 μm thick were present at the top of tile 1, but only very thin films (< 1 μm) were found in the shadowed areas and on other divertor tiles. The total amount of Be found in the divertor following the ILW campaign was a factor of ˜ 9 less than the material deposited in the 2007-09 carbon campaign, after allowing for the longer operations in 2007-09.

  19. Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Lennholm, M.; Chapman, I. T.; Lerche, E.; Reich, M.; Alper, B.; Bobkov, V.; Dumont, R.; Faustin, J. M.; Jacquet, P.; Jaulmes, F.; Johnson, T.; Keeling, D. L.; Liu, Yueqiang; Nicolas, T.; Tholerus, S.; Blackman, T.; Carvalho, I. S.; Coelho, R.; Van Eester, D.; Felton, R.; Goniche, M.; Kiptily, V.; Monakhov, I.; Nave, M. F. F.; Perez von Thun, C.; Sabot, R.; Sozzi, C.; Tsalas, M.

    2015-01-01

    New experiments at JET with the ITER-like wall show for the first time that ITER-relevant low field side resonance first harmonic ion cyclotron resonance heating (ICRH) can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous (Graves et al 2012 Nat. Commun. 3 624) high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, neoclassical tearing modes (NTMs) and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-magnetohydrodynamic stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions.

  20. Prediction of jet impingement heat transfer using a hybrid wall treatment with different turbulent Prandtl number functions

    SciTech Connect

    Morris, G.K.; Garimella, S.V.; Amano, R.S.

    1995-12-31

    The local heat transfer coefficient distribution on a square heat source due to a normally impinging, axisymmetric, confined and submerged liquid jet was computationally investigated. Numerical predictions were made for nozzle diameters of 3.18 and 6.35 mm at several nozzle-to-heat source spacings, with turbulent jet Reynolds numbers ranging from 8500 to 13000. The commercial finite-volume code FLUENT was used to solve the thermal and flow fields using the standard high-Reynolds number {kappa}-{epsilon} turbulence model. The converged solution obtained from the code was refined using a post-processing program that incorporated several near-wall models. The role of four alternative turbulent Prandtl number functions on the predicted heat transfer coefficients was investigated. The predicted heat transfer coefficients were compared with previously obtained experimental measurements. The predicted stagnation and average heat transfer coefficients agree with experiments to within a maximum deviation of 16% and 20%, respectively. Reasons for the differences between the predicted and measured heat transfer coefficients are discussed. This study is applicable to electronic cooling.

  1. Material deposition on inner divertor quartz-micro balances during ITER-like wall operation in JET

    NASA Astrophysics Data System (ADS)

    Esser, H. G.; Philipps, V.; Freisinger, M.; Widdowson, A.; Heinola, K.; Kirschner, A.; Möller, S.; Petersson, P.; Brezinsek, S.; Huber, A.; Matthews, G. F.; Rubel, M.; Sergienko, G.

    2015-08-01

    The migration of beryllium, tungsten and carbon to remote areas of the inner JET-ILW divertor and the accompanying co-deposition of deuterium has been investigated using post-mortem analysis of the housings of quartz-micro balances (QMBs) and their quartz crystals. The analysis of the deposition provides that the rate of beryllium atoms is significantly reduced compared to the analogue deposition rate of carbon during the carbon wall conditions (JET-C) at the same locations of the QMBs. A reduction factor of 50 was found at the entrance gap to the cryo-pumps while it was 14 under tile 5, the semi-horizontal target plate. The deposits consist of C/Be atomic ratios of typically 0.1-0.5 showing an enrichment of carbon in remote areas compared to directly exposed areas with less carbon. The deuterium retention fraction D/Be is between 0.3 and 1 at these unheated locations in the divertor.

  2. Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited).

    PubMed

    Huber, A; Brezinsek, S; Mertens, Ph; Schweer, B; Sergienko, G; Terra, A; Arnoux, G; Balshaw, N; Clever, M; Edlingdon, T; Egner, S; Farthing, J; Hartl, M; Horton, L; Kampf, D; Klammer, J; Lambertz, H T; Matthews, G F; Morlock, C; Murari, A; Reindl, M; Riccardo, V; Samm, U; Sanders, S; Stamp, M; Williams, J; Zastrow, K D; Zauner, C

    2012-10-01

    A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II, C I, C II, C III) with high optical transmittance (≥ 30% in the designed wavelength range) as well as high spatial resolution that is ≤ 2 mm at the object plane and ≤ 3 mm for the full depth of field (± 0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the λ > 0.95 μm range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.

  3. Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited)

    SciTech Connect

    Huber, A.; Brezinsek, S.; Mertens, Ph.; Schweer, B.; Sergienko, G.; Terra, A.; Clever, M.; Lambertz, H. T.; Samm, U.; Arnoux, G.; Balshaw, N.; Edlingdon, T.; Farthing, J.; Matthews, G. F.; Riccardo, V.; Sanders, S.; Stamp, M.; Williams, J.; Zastrow, K. D.; and others

    2012-10-15

    A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II, C I, C II, C III) with high optical transmittance ({>=}30% in the designed wavelength range) as well as high spatial resolution that is {<=}2 mm at the object plane and {<=}3 mm for the full depth of field ({+-}0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the {lambda} > 0.95 {mu}m range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.

  4. Techniques for increasing the film cooling efficiency by means of the vortex near-wall jets

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Shishkin, N. E.

    2013-12-01

    Experimental results on the effect of the methods of gas cooling arrangement on thermal efficiency are presented. The swirl cooling is considered at both injecting along the axis and co-axial supply of the cooling gas. The influence of swirling degree, density ratio of both flows and flow regimes on the efficiency of near-wall cooling is considered.

  5. Techniques for increasing the film cooling efficiency by means of the vortex near-wall jets

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Shishkin, N. E.

    2014-12-01

    Experimental results on the effect of the methods of gas cooling arrangement on thermal efficiency are presented. The swirl cooling is considered at both injecting along the axis and co-axial supply of the cooling gas. The influence of swirling degree, density ratio of both flows and flow regimes on the efficiency of near-wall cooling is considered.

  6. Study of physical and chemical assisted physical sputtering of beryllium in the JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Brezinsek, S.; Stamp, M. F.; Nishijima, D.; Borodin, D.; Devaux, S.; Krieger, K.; Marsen, S.; O'Mullane, M.; Bjoerkas, C.; Kirschner, A.; EFDA contributors, JET

    2014-10-01

    The effective sputtering yield of Be (Y_Be^tot) was determined in situ by emission spectroscopy of low ionizing Be as function of the deuteron impact energy (Ein = 25-175 eV) and Be surface temperature (Tsurf = 200 °C-520 °C) in limiter discharges carried out in the JET tokamak. Be self sputtering dominates the erosion at high impact energies (Ein > 150 eV) and causes Y_Be^tot far beyond 1. Y_Be^tot drops to low values, below 4.5%, at the accessible lowest impact energy (Ein ≃ 25 eV) achievable in limiter configuration. At medium impact energies, Ein = 75 eV, two contributors to the measured Y_Be^tot of 9% were identified: two third of the eroded Be originates from bare physical sputtering (Y_Be^phys) and one third from chemical assisted physical sputtering (Y_Be^chem) . The later mechanism has been clearly identified by the appearance of BeD A-X emission and quantified in cause of a temperature dependence at which the BeD practically vanishes at highest observed Be limiter temperatures. The recorded Tsurf dependence, obtained in a series of 34 identical discharges with ratch-up of Tsurf by plasma impact and inertial cooling after the discharge, revealed that the reduction of BeD is correlated with an increase of D2 emission. The release mechanism of deuterium in the Be interaction layer is exchanged under otherwise constant recycling flux conditions at the limiter. The reduction of Y_Be^chem with Tsurf is also correlated to the reduction of the Be content in the core plasma providing information on the total source strength and Be screening. The chemical assisted physical sputtering, always present at the nominal limiter pre-heating temperature of Tsurf = 200 °C, is associated with an additional sputtering channel with respect to ordinary physical sputtering which is surface temperature independent. These JET experiments in limiter configuration are used to benchmark the ERO code and verify ITER first wall erosion prediction. The ERO code overestimates the

  7. Features of spatial distribution of the parameters on the initial section of a supersonic plasma jet, created by pulsed discharge in a capillary with ablative wall

    NASA Astrophysics Data System (ADS)

    Ageev, A. G.; Bityurin, V. A.; Chinnov, V. F.; Efimov, A. V.; Pashchina, A. S.

    2016-11-01

    The results of spectroscopic studies of the initial section of the supersonic plasma jet created by a pulsed discharge in the capillary with the ablative wall are presented. Features of the spatial distribution of the electron density and the intensity of the spectral components, which, in particular, caused by the high electron temperature in the hot central zone, exceeding the “normal” temperature, as well as significant non-isobaricity at the initial section of supersonic jet are revealed. The presence of the molecular components exhibiting their emission properties at the plasma jet periphery permit us to estimate the parameters of the plasma in the spatial domain, where “detached” shock waves of the supersonic jet are created.

  8. In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Huber, V.; Huber, A.; Kinna, D.; Balboa, I.; Collins, S.; Conway, N.; Drewelow, P.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Mertens, Ph.; Price, M.; Sergienko, G.; Silburn, S.; Wynn, A.; Zastrow, K.-D.

    2016-11-01

    The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

  9. In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall

    SciTech Connect

    Huber, V.; Huber, A.; Mertens, Ph.; Sergienko, G.; Kinna, D.; Balboa, I.; Collins, S.; Conway, N.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Price, M.; Silburn, S.; Zastrow, K.-D.; Drewelow, P.; Wynn, A.

    2016-11-15

    The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

  10. Melt damage to the JET ITER-like Wall and divertor

    NASA Astrophysics Data System (ADS)

    Matthews, G. F.; Bazylev, B.; Baron-Wiechec, A.; Coenen, J.; Heinola, K.; Kiptily, V.; Maier, H.; Reux, C.; Riccardo, V.; Rimini, F.; Sergienko, G.; Thompson, V.; Widdowson, A.; Contributors, JET

    2016-02-01

    In October 2014, JET completed a scoping study involving high power scenario development in preparation for DT along with other experiments critical for ITER. These experiments have involved intentional and unintentional melt damage both to bulk beryllium main chamber tiles and to divertor tiles. This paper provides an overview of the findings of concern for machine protection in JET and ITER, illustrating each case with high resolution images taken by remote handling or after removal from the machine. The bulk beryllium upper dump plate tiles and some other protection tiles have been repeatedly flash melted by what we believe to be mainly fast unmitigated disruptions. The flash melting produced in this way is seen at all toroidal locations and the melt layer is driven by j × B forces radially outward and upwards against gravity. In contrast, the melt pools caused while attempting to use MGI to mitigate deliberately generated runaway electron beams are localized to several limiters and the ejected material appears less influenced by j × B forces and shows signs of boiling. In the divertor, transient melting of bulk tungsten by ELMs was studied in support of the ITER divertor material decision using a specially prepared divertor module containing an exposed edge. Removal of the module from the machine in 2015 has provided improved imaging of the melt and this confirms that the melt layers are driven by ELMs. No other melt damage to the other 9215 bulk tungsten lamellas has yet been observed.

  11. Extensive statistical analysis of ELMs on JET with a carbon wall

    NASA Astrophysics Data System (ADS)

    Murari, A.; Pisano, F.; Vega, J.; Cannas, B.; Fanni, A.; Gonzalez, S.; Gelfusa, M.; Grosso, M.; EFDA Contributors, JET

    2014-11-01

    Edge localized modes (ELMs) are bursts of instabilities which deteriorate the confinement of H mode plasmas and can cause damage to the divertor of next generation of devices. On JET individual discharges can exhibit hundreds of ELMs but typically in the literature, mainly due to the lack of automatic analysis tools, single papers investigate only the behaviour of tens of individual ELMs. In this paper, an original tool, the universal event locator (UMEL), is applied to the problem of automatically identifying the time location of ELMs. With this approach, databases of hundreds of thousands of ELMs can be built with reasonable effort. The analysis has then been focused on the investigation of the statistical distribution of the inter-ELM intervals at steady state for type I ELMs. Numerous probability distributions have been tested to perform the data analysis and different distributions provide a best fit for sets of data from different experiments. This result constitutes robust experimental confirmation that type I ELMs are not all necessarily the same type of instability. Moreover, the most likely distributions are not memoryless, meaning that the waiting time, from a particular instant until the next ELM, does depend on the time elapsed from the previous event. These properties, confirmed by this investigation on JET, pose important constraints on the models aimed at describing the ELM dynamics. This work also demonstrates the widespread applicability of the UMEL tool.

  12. Study of an underexpanded annular wall jet past an axisymmetric backward-facing step

    NASA Astrophysics Data System (ADS)

    Espina, Pedro Ivan

    1997-12-01

    Gas-metal atomization is a process by which liquid metal is transformed into a metal powder. The metal powders produced through gas-metal atomization exhibit chemical homogeneity and refined microstructures that cannot be obtained by conventional casting techniques. Given their enhanced properties, the products made from these powders find applications ranging from jet-engine parts to medical implants. The heart of a gas-metal atomizer is a device known as the 'atomization nozzle assembly', which forces the interaction between a high-speed gas jet and a liquid stream of molten metal. Because the control of a molten stream of metal can be difficult, atomization control strategies have historically been focused on the gas- delivery-system of the atomizers. Thus, in this investigation, the gas-only flow in a close-coupled, gas- metal atomizer is studied to determine the influence of operational parameters on the structure of the flow field. Both experimental and numerical results are presented. First, the numerical method used is evaluated by modeling flat-plate boundary layers at various free stream velocities; further validation is conducted by modeling an axisymmetric base flow for which experimental and numerical data are available for comparison. Comparisons between the Schlieren images produced experimentally and numerical results are carried out, focusing on the evaluation of turbulence model parameters. The same methodology was then used to model the gas-only atomization flow produced at conventional operational conditions. A parametric study was conducted to determine the effects of jet exit pressure ratio, jet temperature ratio, and base mass injection (to model, at least approximately, some of the effects of the liquid phase). Based on the results obtained in the validation stage, it is concluded that the Chien k-ɛ turbulence model yields excessively high production of turbulence kinetic energy dissipation rate in this type of flow. It is shown that a 10

  13. Numerical Simulation of Combustion of Unlike Impinging Jets Near a Wall

    DTIC Science & Technology

    2013-07-01

    ω model is used while the LES approach is used in the resolved regions. It has an approximate Riemann solver with a comprehensive preconditioning...placed at the same location as in the experimental geometry being studied at Purdue University. As shown in Figure 4, the wall angle is 60 degree away...experimental geometry , while the width is arbitrarily chosen to be 5 inches, which reduces the size of the overall computational domain by focusing on

  14. Erosion at the inner wall of JET during the discharge campaigns 2001-2009

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Krat, S.; Coad, J. P.; Hakola, A.; Likonen, J.; Lindig, S.; Widdowson, A.; JET-EFDA Contributors

    2013-07-01

    The erosion of Be, C, Ni and W marker layers was investigated with long-term samples exposed during the discharge periods 2001-2004 and 2005-2009. The markers were mounted in carbon wall tiles between the inner wall guard limiters (IWGLs) and at positions between the lower end of the IWGLs and the inner divertor entrance. They were analyzed using ion beam analysis techniques before and after exposure. All samples showed strong erosion of all elements. The erosion is predominantly due to neutral particles created by charge-exchange (CX) collisions. The erosion of carbon was about 8 × 1019 atoms/cm2 (about 8 μm) during the 2005-2009 campaign, which gives a total erosion of carbon from the recessed areas between the IWGLs of about 230 g: The inner wall is therefore an important net carbon source. The erosion of the four different elements allows a rough reconstruction of the energy spectrum of the eroding CX neutrals.

  15. Impact of divertor geometry on H-mode confinement in the JET metallic wall

    NASA Astrophysics Data System (ADS)

    Joffrin, E.; Tamain, P.; Belonohy, E.; Bufferand, H.; Buratti, P.; Challis, C. D.; Delabie, E.; Drewelow, P.; Dodt, D.; Frassinetti, L.; Garcia, J.; Giroud, C.; Groth, M.; Hobirk, J.; Jarvinen, A. E.; Kim, H.-T.; Koechl, F.; Kruezi, U.; Lipschutz, B.; Lomas, P. J.; de la Luna, E.; Loarer, T.; Maget, P.; Maggi, C.; Matthews, G.; Maviglia, F.; Meigs, A.; Nunes, I.; Pucella, G.; Rimini, F.; Saarelma, S.; Solano, E.; Sips, A. C. C.; Tsalas, M.; Voitsekhovitch, I.; Weisen, H.; JET Contributors, the

    2017-08-01

    Recent experiments with the ITER-like wall have demonstrated that changes in divertor strike point position are correlated with strong modification of the global energy confinement. The impact on energy confinement is observable both on the pedestal confinement and core normalised gradients. The corner configuration shows an increased core density gradient length and ion pressure indicating a better ion confinement. The study of neutral re-circulation indicates the neutral pressure in the main chamber varies inversely with the energy confinement and a correlation between the pedestal total pressure and the neutral pressure in the main chamber can be established. It does not appear that charge exchange losses nor momentum losses could explain this effect, but it may be that changes in edge electric potential are playing a role at the plasma edge. This study emphasizes the importance of the scrape-off layer (SOL) conditions on the pedestal and core confinement.

  16. Fast functionalization of multi-walled carbon nanotubes by an atmospheric pressure plasma jet.

    PubMed

    Kolacyak, Daniel; Ihde, Jörg; Merten, Christian; Hartwig, Andreas; Lommatzsch, Uwe

    2011-07-01

    The afterglow of an atmospheric pressure plasma has been used for the fast oxidative functionalization of multi-walled carbon nanotubes (MWCNTs). Scanning electron microscopy and Raman spectroscopy demonstrate that the MWCNT morphology is mostly preserved when the MWCNTs are dispersed in a solvent and injected as a spray into the plasma. Contact angle measurements show that this approach enhances the wettability of MWCNTs and reduces their sedimentation in an aqueous dispersion. X-ray photoelectron spectroscopy, IR spectroscopy, and electrokinetic measurements show that oxygen plasma incorporates about 6.6 at.% of oxygen and creates mainly hydroxyl and carboxyl functional groups on the MWCNT surface. The typical effective treatment time is estimated to be in the range of milliseconds. The approach is ideally suited for combination with the industrial gas phase CVD synthesis of MWCNTs.

  17. Chemical reacting flows

    NASA Astrophysics Data System (ADS)

    Mularz, Edward J.; Sockol, Peter M.

    1990-02-01

    Future aerospace propulsion concepts involve the combustion of liquid or gaseous fuels in a highly turbulent internal airstream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence-combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at LeRC to better understand chemical reacting flows with the long-term goal of establishing these reliable computer codes. Our approach to understand chemical reacting flows is to look at separate, more simple parts of this complex phenomenon as well as to study the full turbulent reacting flow process. As a result, we are engaged in research on the fluid mechanics associated with chemical reacting flows. We are also studying the chemistry of fuel-air combustion. Finally, we are investigating the phenomenon of turbulence-combustion interaction. Research, both experimental and analytical, is highlighted in each of these three major areas.

  18. Chemical reacting flows

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Sockol, Peter M.

    1990-01-01

    Future aerospace propulsion concepts involve the combustion of liquid or gaseous fuels in a highly turbulent internal airstream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence-combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at LeRC to better understand chemical reacting flows with the long-term goal of establishing these reliable computer codes. Our approach to understand chemical reacting flows is to look at separate, more simple parts of this complex phenomenon as well as to study the full turbulent reacting flow process. As a result, we are engaged in research on the fluid mechanics associated with chemical reacting flows. We are also studying the chemistry of fuel-air combustion. Finally, we are investigating the phenomenon of turbulence-combustion interaction. Research, both experimental and analytical, is highlighted in each of these three major areas.

  19. Chemical reacting flows

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Sockol, Peter M.

    1987-01-01

    Future aerospace propulsion concepts involve the combination of liquid or gaseous fuels in a highly turbulent internal air stream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at Lewis to better understand chemical reacting flows with the long term goal of establishing these reliable computer codes. The approach to understanding chemical reacting flows is to look at separate simple parts of this complex phenomena as well as to study the full turbulent reacting flow process. As a result research on the fluid mechanics associated with chemical reacting flows was initiated. The chemistry of fuel-air combustion is also being studied. Finally, the phenomena of turbulence-combustion interaction is being investigated. This presentation will highlight research, both experimental and analytical, in each of these three major areas.

  20. Supersonic reacting internal flowfields

    NASA Astrophysics Data System (ADS)

    Drummond, J. P.

    The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flowfields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.

  1. Comparison of Mixing Calculations for Reacting and Non-Reacting Flows in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.

    1994-01-01

    A production 3-D elliptic flow code has been used to calculate non-reacting and reacting flow fields in an experimental mixing section relevant to a rich burn/quick mix/lean burn (RQL) combustion system. A number of test cases have been run to assess the effects of the variation in the number of orifices, mass flow ratio, and rich-zone equivalence ratio on the flow field and mixing rates. The calculated normalized temperature profiles for the non-reacting flow field agree qualitatively well with the normalized conserved variable isopleths for the reacting flow field indicating that non-reacting mixing experiments are appropriate for screening and ranking potential rapid mixing concepts. For a given set of jet momentum-flux ratio, mass flow ratio, and density ratio (J, MR, and DR), the reacting flow calculations show a reduced level of mixing compared to the non-reacting cases. In addition, the rich-zone equivalence ratio has noticeable effect on the mixing flow characteristics for reacting flows.

  2. Quick-Mixing Studies Under Reacting Conditions

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; Samuelsen, G. S.

    1996-01-01

    The low-NO(x) emitting potential of rich-burn/quick-mix/lean-burn )RQL) combustion makes it an attractive option for engines of future stratospheric aircraft. Because NO(x) formation is exponentially dependent on temperature, the success of the RQL combustor depends on minimizing high temperature stoichiometric pocket formation in the quick-mixing section. An experiment was designed and built, and tests were performed to characterize reaction and mixing properties of jets issuing from round orifices into a hot, fuel-rich crossflow confined in a cylindrical duct. The reactor operates on propane and presents a uniform, non-swirling mixture to the mixing modules. Modules consisting of round orifice configurations of 8, 9, 10, 12, 14, and 18 holes were evaluated at a momentum-flux ratio of 57 and jet-to-mainstream mass-flaw ratio of 2.5. Temperatures and concentrations of O2, CO2, CO, HC, and NO(x) were obtained upstream, down-stream, and within the orifice plane to determine jet penetration as well as reaction processes. Jet penetration was a function of the number of orifices and affected the mixing in the reacting system. Of the six configurations tested, the 14-hole module produced jet penetration close to the module half-radius and yielded the best mixing and most complete combustion at a plane one duct diameter from the orifice leading edge. The results reveal that substantial reaction and heat release occur in the jet mixing zone when the entering effluent is hot and rich, and that the experiment as designed will serve to explore satisfactorily jet mixing behavior under realistic reacting conditions in future studies.

  3. Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET

    SciTech Connect

    Van Eester, D.; Lerche, E.; Crombé, K.; Jachmich, S.; Bobkov, V.; Maggi, C.; Neu, R.; Pütterich, T.; Czarnecka, A.; Coenen, J. W.; and others

    2014-02-12

    The most recent JET campaign has focused on characterizing operation with the 'ITER-like' wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.

  4. Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.; Jacquet, P.; Bobkov, V.; Czarnecka, A.; Coenen, J. W.; Colas, L.; Crombé, K.; Graham, M.; Jachmich, S.; Joffrin, E.; Klepper, C. C.; Kiptily, V.; Lehnen, M.; Maggi, C.; Marcotte, F.; Matthews, G.; Mayoral, M.-L.; Mc Cormick, K.; Monakhov, I.; Nave, M. F. F.; Neu, R.; Noble, C.; Ongena, J.; Pütterich, T.; Rimini, F.; Solano, E. R.; van Rooij, G.; JET-EFDA contributors

    2014-02-01

    The most recent JET campaign has focused on characterizing operation with the "ITER-like" wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.

  5. Square wave adsorptive stripping voltammetry of molybdenum(VI) in continuous flow at a wall-jet mercury film electrode sensor.

    PubMed

    Neto, M M; Rocha, M M; Brett, C M

    1994-09-01

    An adsorptive stripping voltammetry method for the determination of traces of molybdenum(VI) in flowing solution at a wall-jet electrode sensor has been developed. After adsorption of a molybdenum complex on a wall-jet mercury film electrode, the complex is reduced by a square wave scan. More satisfactory results were obtained using 8-hydroxyquinoline as a complexing agent in nitrate medium than using Toluidine Blue in oxalic acid. Enhanced sensitivity was achieved by optimizing adsorption time and square wave parameter values. The detection limit of Mo(VI) was found to be at the nanomolar level. Interference of some other metallic species in the determination of nanomolar Mo(VI) was also investigated: Cu(II), Zn(II), Mn(II) do not interfere at 10 muM, whereas 1 muM FeEDTA(-) causes an increase in peak current. This iron interference was removed effectively with citric acid.

  6. Computational reacting gas dynamics

    NASA Technical Reports Server (NTRS)

    Lam, S. H.

    1993-01-01

    In the study of high speed flows at high altitudes, such as that encountered by re-entry spacecrafts, the interaction of chemical reactions and other non-equilibrium processes in the flow field with the gas dynamics is crucial. Generally speaking, problems of this level of complexity must resort to numerical methods for solutions, using sophisticated computational fluid dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics can be classified into three distinct headings: (1) the usually inadequate knowledge of the reaction rate coefficients in the non-equilibrium reaction system; (2) the vastly larger number of unknowns involved in the computation and the expected stiffness of the equations; and (3) the interpretation of the detailed reacting CFD numerical results. The research performed accepts the premise that reacting flows of practical interest in the future will in general be too complex or 'untractable' for traditional analytical developments. The power of modern computers must be exploited. However, instead of focusing solely on the construction of numerical solutions of full-model equations, attention is also directed to the 'derivation' of the simplified model from the given full-model. In other words, the present research aims to utilize computations to do tasks which have traditionally been done by skilled theoreticians: to reduce an originally complex full-model system into an approximate but otherwise equivalent simplified model system. The tacit assumption is that once the appropriate simplified model is derived, the interpretation of the detailed numerical reacting CFD numerical results will become much easier. The approach of the research is called computational singular perturbation (CSP).

  7. CFD prediction of the reacting flow field inside a subscale scramjet combustor

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Northam, G. B.; Rogers, R. C.; Diskin, G. S.

    1988-01-01

    A three-dimensional, Reynolds-averaged Navier-Stokes CFD code has been used to calculate the reacting flowfield inside a hydrogen-fueled, subscale scramjet combustor. Pilot fuel was injected transversely upstream of the combustor and the primary fuel was injected transversely downstream of a backward facing step. A finite rate combustion model with two-step kinetics was used. The CFD code used the explicit MacCormack algorithm with point-implicit treatment of the chemistry source terms. Turbulent mixing of the jets with the airstream was simulated by a simple mixing length scheme, whereas near wall turbulence was accounted for by the Baldwin-Lomax model. Computed results were compared with experimental wall pressure measurements.

  8. Applicability of LIBS for in situ monitoring of deposition and retention on the ITER-like wall of JET - Comparison to SIMS

    NASA Astrophysics Data System (ADS)

    Karhunen, J.; Hakola, A.; Likonen, J.; Lissovski, A.; Laan, M.; Paris, P.

    2015-08-01

    Laser-induced breakdown spectroscopy (LIBS) is a potential method for in situ monitoring of deposition and retention in fusion devices and is developed with the aim of being integrated in the diagnostics system of ITER. The inner divertor of the ITER-like wall of JET was studied by LIBS to show the applicability of the method in JET and ITER. The elemental depth profiles agreed with those given by earlier SIMS measurements. Deuterium was detected in the deposited layers and successfully distinguished from hydrogen. The poloidal patterns of the retained deuterium and deposited beryllium were also in line with the SIMS results with the largest deposition and retention taking place on the top part of Tile 1 and bottom part of Tile 3. The results of these studies support LIBS as a promising in situ solution to replace the present post mortem methods in monitoring metallic deposited layers.

  9. Effects of Jet Swirl on Mixing of a Light Gas Jet in a Supersonic Airstream

    NASA Technical Reports Server (NTRS)

    Doerner, Steven E.; Cutler, Andrew D.

    1999-01-01

    A non reacting experiment was performed to investigate the effects of jet swirl on mixing of a light gas jet in a supersonic airstream. The experiment consisted of two parts. The first part was an investigation of the effects of jet swirl and skew on the mixing and penetration of a 25 deg. supersonic jet injected from a flat surface (flush wall injection) into a supersonic ducted airflow. Specifically, the objective was to determine whether the jet would mix more rapidly if the jet were swirling, and whether swirl, with and without skew, causes the injectant-air plume to have a net circulation (i.e., a single or dominant vortex). The second part was a preliminary study of the mixing of swirling jets injected from the base of a skewed ramp. The hypothesis was that favorable interactions between vorticity generated by the swirling jet and vortices generated by the ramp could produce mixing enhancements. Both parts of the experiment were conducted at equal injectant mass flow rate and total pressure. The results for the flush wall injection cases indicate that, except relatively close to the injection point, swirl, with or without skew, does not enhance the mixing of the jet, and can in fact reduce penetration. In addition, a plume with significant net circulation is not generated, as had previously been believed. The results for the ramp cases indicated no improvements in mixing in comparison with the baseline (swept ramp injector) case. However, it was not possible to determine the vorticity mechanisms underlying the poor performance, since no measurements of vorticity were made. Thus, since many geometric parameters were chosen arbitrarily, the results are inconclusive for this class of injector.

  10. Modelling of the material transport and layer formation in the divertor of JET: Comparison of ITER-like wall with full carbon wall conditions

    NASA Astrophysics Data System (ADS)

    Kirschner, A.; Matveev, D.; Borodin, D.; Airila, M.; Brezinsek, S.; Groth, M.; Wiesen, S.; Widdowson, A.; Beal, J.; Esser, H. G.; Likonen, J.; Bekris, N.; Ding, R.

    2015-08-01

    Impurity transport within the inner JET divertor has been modelled with ERO to estimate the transport to and the resulting deposition at remote areas. Various parametric studies involving divertor plasma conditions and strike point position have been performed. In JET-ILW (beryllium main chamber and tungsten divertor) beryllium, flowing from the main chamber into the divertor and then effectively reflected at the tungsten divertor tiles, is transported to remote areas. The tungsten flux to remote areas in L-Mode is in comparison to the beryllium flux negligible due to small sputtering. However, tungsten is sputtered during ELMs in H-Mode conditions. Nevertheless, depending on the plasma conditions, strike point position and the location of the remote area, the maximum resulting tungsten flux to remote areas is at least ∼3 times lower than the corresponding beryllium flux. Modelled beryllium and tungsten deposition on a rotating collector probe located below tile 5 is in good agreement with measurements if the beryllium influx into the inner divertor is assumed to be in the range of 0.1% relative to the deuterium ion flux and erosion due to fast charge exchange neutrals is considered. Comparison between JET-ILW and JET-C is presented.

  11. Wall catalysis experiment on AFE. [Aeroassist Flight Experiments

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Kolodziej, Paul

    1988-01-01

    This paper describes the wall catalysis experiment which is planned as part of the Aeroassist Flight experiments (AFE) that will be flown from the Space Shuttle Orbiter in late 1993. Research on candidate high-catalytic efficiency overcoats for the experiment conducted in an arc-jet air stream are discussed. The temperature distribution over the AFE heat shield is also predicted using a reacting boundary layer solution that includes surface kinetics and optical properties determined from these tests.

  12. Tmvoc-React

    SciTech Connect

    Xu, Tianfu

    2008-02-12

    The TMVOC-REACT simulator was generated by replacing the fluid and heat flow part, TOUGH2, in TOUGHREACT with TMVOC. Both programs have been distributed to the public through the US Department of Energy's Energy Science and Technology Software Center. TMVOC is a program for three-phase non-isothermal flows of multi-component hydrocarbon mixtures in variably saturated heterogeneous media. TMVOC was initially designed for studying subsurface contamination by volatile organic compounds (VOCs), such as hydrocarbon fuels and industrial solvents. It can model the one-, two-, or three-dimensional migration of non-aqueous phase liquids (NAPLs) through the unsaturated and saturated zones, the formation of an oil lens on the water table, the dissolution and subsequent transport of VOCs in groundwater, as well as the vaporization and migration of VOCs in the interstitial air of the unsaturated zone. TOUGHREACT is a numerical simulation program for chemically reactive nonisothermal flows of multiphase fluids in porous and fractured media. A variety of subsurface thermo-physical-chemical processes can be considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, pH and Eh. Intractions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, aid mine drainage remediation, and contaminant transport.

  13. Scale Model Experiments on Sound Propagation From a Mach 2.5 Cold Nitrogen Jet Flowing Through a Rigid-Walled Duct With a J-Deflector

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Vu, Bruce

    2003-01-01

    from a nozzle with 1-inch exit diameter. Acoustic data, including spectral sound power and Overall Sound Pressure Level (OASPL), are obtained both for a free jet and with the jet flowing through a rigid-walled duct with a J-deflector. The relative performance of closed duct and open duct is evaluated. The results show that the closed duct is superior to the partially open duct, and results in about 3-decibel (dB) noise reduction (near the duct axis) relative to the free jet. The location of the nozzle exit plane (NEP) relative to the duct inlet plane (DIP) has a significant effect on the acoustic field. The results suggest that the location of NEP at 10 inches above the DIP results in reduced acoustic loads relative to 5 inches above the duct inlet and 1 inch into the duct inlet.

  14. Flow characteristics and spillage mechanisms of wall-mounted and jet-isolated range hoods subject to influence from cross draft.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Peng, Kuan-Lin

    2012-01-01

    The effects of draft on the flow and spillage characteristics of wall-mounted and jet-isolated range hoods were investigated. A specially designed draft generator that could supply low-swirl air current was used to provide "cross draft" from three directions, lateral (θ = 0(o)), oblique (θ = 45(o)), and front (θ = 90(o)), with respect to the center point of the range hoods. Flow characteristics of oil mist were inspected through visualization of smoke flows with light scattering (laser light sheet-assisted visualization of smoke flow). The leakage mechanisms, which were closely related to the flow features, were studied by examining both movies and still pictures showing smoke-flow evolution. The sulfur hexafluoride tracer gas concentration detection method was employed to measure the capture indices. The results showed that the lateral draft pushed the pollutants generated under the hood in the opposite direction and induced serious spillage. The oblique draft pushed the pollutants toward both the rear wall and opposite side and induced more serious spillage than did the lateral draft. The frontal draft forced the pollutants to bifurcate into streams moving toward the left and the right, and induced the most serious pollutant spillage among the three tested drafts. Pollutant spillage became critically significant as the cross draft velocity was increased to greater than 0.2 m/sec. Spillage of pollutants increased as the velocity of the cross draft was increased. Increasing the suction flow rate of the range hood may increase resistance to the draft, but the benefits were limited at draft velocities greater than 0.2 m/sec. Both range hoods had a similarly low capture index under the influence of the lateral draft. For the oblique and frontal drafts, the jet-isolated range hood demonstrated a higher capture index than did the wall-mounted range hood.

  15. CHAIN REACTING SYSTEM

    DOEpatents

    Fermi, E.; Leverett, M.C.

    1958-06-01

    A nuclear reactor of the gas-cooled, graphitemoderated type is described. In this design, graphite blocks are arranged in a substantially cylindrical lattice having vertically orienied coolant channels in which uranium fuel elements having through passages are disposed. The active lattice is contained within a hollow body. such as a steel shell, which, in turn, is surrounded by water and concrete shields. Helium is used as the primary coolant and is circulated under pressure through the coolant channels and fuel elements. The helium is then conveyed to heat exchangers, where its heat is used to produce steam for driving a prime mover, thence to filtering means where radioactive impurities are removed. From the filtering means the helium passes to a compressor and an after cooler and is ultimately returned to the reactor for recirculation. Control and safety rods are provided to stabilize or stop the reaction. A space is provided between the graphite lattice and the internal walls of the shell to allow for thermal expansion of the lattice during operation. This space is filled with a resilient packing, such as asbestos, to prevent the passage of helium.

  16. Chain Reacting System

    NASA Astrophysics Data System (ADS)

    Fermi, Enrico; Leverett, Miles C.

    presence in the system of high temperatures and intense neutron densities causes an acceleration of any normal rate of corrosion, resulting in the physical deterioration of the uranium in the system. It is essential, then, that the circulating medium be of such a character as not to destroy the uranium bodies in the system. In the present case, the cooling medium is gaseous helium circulating in the active regions of the reactor, which has the advantage of minimizing the possible corrosion of the fissile material, since it is an inert gas, and the absorption of neutrons. However, other possible choices, affecting the determination of the multiplication factor, for the coolant gas (such as air, oxigen or water vapor) are discussed as well in terms of their "danger coefficients", defined in terms of the ratio of the weight of impurity per unit mass of uranium and based on the cross section for absorption of thermal neutrons of the various elements [Fermi (1942a)]. The discussion of some methods of cooling chain reacting piles was initiated in [Fermi (1942g)], but no reference published paper exists of the material presented here.

  17. Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.

  18. Investigation of blown boundary layers with an improved wall jet system. Ph.D. Thesis. Final Technical Report, 1 Jul. 1978 - Dec. 1979; [to prevent turbulent boundary layer separation

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Simpson, R. L.

    1979-01-01

    The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed.

  19. Stability of low-speed reacting flows

    NASA Technical Reports Server (NTRS)

    Mahalingham, S.; Cantwell, B. J.; Ferziger, J. H.

    1991-01-01

    Small perturbation, linear, inviscid stability theory is developed and applied to coflowing chemically reacting jets. A necessary condition for the existence of axisymmetric and azimuthal instabilities is derived. The eigenfunction structure provides considerable insight into the underlying physical mechanism. In nonpremixed cases, high temperature tends to occur in regions where the shear layer tries to roll up; this reduces the available momentum, suppressing the growth of instabilties. It is found that chemical reaction during the growth of instabilities is unimportant, suggesting that this effect could be ignored in a viscous theory. Both nonpremixed and premixed flames in axisymmetric shear layers are generally more stable to small perturbations than in the corresponding cold case. However, while for nonpremixed flames the frequency of the most amplified wave decreases with increasing heat release, the opposite occurs for premixed cases.

  20. Determination of Be sputtering yields from spectroscopic observations at the JET ITER-like wall based on three-dimensional ERO modelling

    NASA Astrophysics Data System (ADS)

    Borodin, D.; Brezinsek, S.; Miettunen, J.; Stamp, M.; Kirschner, A.; Björkas, C.; Groth, M.; Marsen, S.; Silva, C.; Lisgo, S. W.; Matveev, D.; Airila, M.; Philipps, V.; JET-EFDA Contributors, The

    2014-04-01

    Estimations of the ITER first wall (FW) lifetime, previously made using the three-dimensional Monte-Carlo ERO code (Borodin et al 2011 Phys. Scr. T145 014008), depend strongly on the assumptions of the physical sputtering yield for beryllium (Be). It is of importance to validate the respective model and data at existing devices including the JET ITER-like wall (ILW) as most ITER-relevant experiments. Applying the same sputtering input data in ERO as those used before in the ITER-predictions, the ERO simulations for the Be light intensity (using up to date atomic data from ADAS and measured plasma conditions) reveal a factor of 2 overestimation in the assumed yield even if the low estimate assuming 50% D surface content is used. This result indicates the preference of this assumption for plasma-wetted areas. It points to a possible necessity to correct (reduce) the respective estimates for the Be sputtering yield and, accordingly, re-visit the ITER FW lifetime predictions.

  1. Numerical analysis of the jet stage of bubble near a solid wall using a front tracking method

    NASA Astrophysics Data System (ADS)

    Liu, L. T.; Yao, X. L.; Zhang, A. M.; Chen, Y. Y.

    2017-01-01

    The dynamics of a toroidal bubble near a solid wall for a large part of stand-off parameters γ (γ=d/Rmax, d is the distance between the solid wall and the bubble centre at the moment of formation and Rmax is the maximum bubble radius) have been extensively studied, but some mechanics of a toroidal bubble are not completely clear, especially for the small stand-off parameters γ ≤ 0.8. In the present study, on the basis of the finite volume method, the Navier-Stokes equations with inviscid and incompressible assumption are directly solved using a staggered grid on the fixed grid. The dynamics of the toroidal bubble near the solid for different stand-off parameters (γ = 0.4, 0.6, 0.8, and 0.97, respectively) are simulated by a front tracking method. Initial conditions of numerical simulation are estimated through the Rayleigh-Plesset equation, based on the maximum size and collapse time of a spark-generated bubble. One of the numerical results is compared with a spark-generated bubble experiment, showing that the results between them are favorable with regard to both the bubble shape history and translational motion of the bubble. The numerical results for the different stand-off parameters, including the change process of the water layer, the development process of the splash flow and radial flow, the splitting phenomenon of the toroidal bubble, and the trend of pressure on the center of the solid wall, are discussed, where some new phenomena are discovered.

  2. A model for reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  3. Supersonic reacting internal flow fields

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    1989-01-01

    The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flow fields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.

  4. Long-term fuel retention and release in JET ITER-Like Wall at ITER-relevant baking temperatures

    NASA Astrophysics Data System (ADS)

    Heinola, K.; Likonen, J.; Ahlgren, T.; Brezinsek, S.; De Temmerman, G.; Jepu, I.; Matthews, G. F.; Pitts, R. A.; Widdowson, A.; Contributors, JET

    2017-08-01

    The fuel outgassing efficiency from plasma-facing components exposed in JET-ILW has been studied at ITER-relevant baking temperatures. Samples retrieved from the W divertor and Be main chamber were annealed at 350 and 240 °C, respectively. Annealing was performed with thermal desoprtion spectrometry (TDS) for 0, 5 and 15 h to study the deuterium removal effectiveness at the nominal baking temperatures. The remained fraction was determined by emptying the samples fully of deuterium by heating W and Be samples up to 1000 and 775 °C,respectively. Results showed the deposits in the divertor having an increasing effect to the remaining retention at temperatures above baking. Highest remaining fractions 54 and 87 % were observed with deposit thicknesses of 10 and 40 μm, respectively. Substantially high fractions were obtained in the main chamber samples from the deposit-free erosion zone of the limiter midplane, in which the dominant fuel retention mechanism is via implantation: 15 h annealing resulted in retained deuterium higher than 90 % . TDS results from the divertor were simulated with TMAP7 calculations. The spectra were modelled with three deuterium activation energies resulting in good agreement with the experiments.

  5. Experimental estimation of tungsten impurity sputtering due to Type I ELMs in JET-ITER-like wall using pedestal electron cyclotron emission and target Langmuir probe measurements

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Jardin, A.; Horacek, J.; Borodkina, I.; Autricque, A.; Arnoux, G.; Boom, J.; Brezinsek, S.; Coenen, J. W.; De La Luna, E.; Devaux, S.; Eich, T.; Harting, D.; Kirschner, A.; Lipschultz, B.; Matthews, G. F.; Meigs, A.; Moulton, D.; O'Mullane, M.; Stamp, M.; contributors, JET

    2016-02-01

    The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode and will be achieved with a tungsten (W) divertor. W atoms sputtered from divertor targets during mitigated ELMs are expected to be the dominant source in ITER. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of the target W source due to sputtering during ELMs and inter-ELMs is important and can be helped by experimental measurements with improved precision. It has been established that the ELMy target ion impact energy has a simple linear dependence with the pedestal electron temperature measured by Electron Cyclotron Emission (ECE). It has also been shown that Langmuir Probes (LP) ion flux measurements are reliable during ELMs due to the surprisingly low electron temperature. Therefore, in this paper, LP and ECE measurements in JET-ITER-Like-Wall (ILW) unseeded Type I ELMy H-mode experiments have been used to estimate the W sputtering flux from divertor targets in ELM and inter-ELM conditions. Comparison with similar estimates using W I spectroscopy measurements shows a reasonable agreement for the ELM and inter-ELM W source. The main advantage of the method involving LP measurements is the very high time resolution of the diagnostic (˜10 μs) allowing very precise description of the W sputtering source during ELMs.

  6. Determination of guanine and adenine by high-performance liquid chromatography with a self-fabricated wall-jet/thin-layer electrochemical detector at a glassy carbon electrode.

    PubMed

    Zhou, Yaping; Yan, Hongling; Xie, Qingji; Yao, Shouzhuo

    2015-03-01

    A sensitive wall-jet/thin-layer amperometric electrochemical detector (ECD) coupled to high-performance liquid chromatography (HPLC) was developed for simultaneous determination of guanine (G) and adenine (A). The analytes were detected at a glassy carbon electrode (GCE) and the HPLC-ECD calibration curves showed good linearity (R(2)>0.997) under optimized conditions. Limits of detection for G and A are 0.6 nM and 1.4 nM (S/N=3), respectively, which are lower than those obtained with an UV-vis detector and a commercial electrochemical detector. We have successfully applied this HPLC-ECD to assess the contents of G and A in hydrochloric acid-digested calf thymus double-stranded DNA. In addition, we compared in detail the analysis of G and A by cyclic voltammetry (CV) and by the HPLC-ECD system on both bare GCE and electroreduced graphene oxide (ERGO) modified GCE. We found that the adsorption of G and A on the electrode surfaces can vary their anodic CV peaks and the competitive adsorption of G and A on the limited sites of the electrode surfaces can cause crosstalk effects on their anodic CV peak signals, but the HPLC-ECD system is insensitive to such electrode-adsorption and can give more reliable analytical results. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Separation and determination of l-tyrosine and its metabolites by capillary zone electrophoresis with a wall-jet amperometric detection.

    PubMed

    Huang, Ying; Jiang, Xiuyan; Wang, Wei; Duan, Jianping; Chen, Guonan

    2006-12-15

    A method of capillary electrophoresis with wall-jet amperometric detection (AD) has been developed for separation and determination of l-tyrosine (Tyr) and its metabolites, such as Tyramine (TA), p-hydroxyphenylpyruvic (pHPP), homogentisic acid (HGA) and some dipeptides containing Tyr, such as Tyr-Gly-Gly (YGG), Tyr-Arg (YR) and Tyr-d-Arg (Y-d-R). A carbon disk electrode was used as the working electrode and the optimal detection potential was 1.00V (versus Ag/AgCl). At 18kV of applied voltage, the seven compounds were completely separated within 20min in 110x10(-3)mol/L Na(2)HPO(4)-NaH(2)PO(4) buffer (pH 7.10) containing 3x10(-3)mol/L beta-cyclodextrin (beta-CD). Good linear relationship was obtained for all analytes and the detection limits of seven analytes were in the range of 0.95-4.25ng/mL. The proposed method has been applied to examine the metabolic process of l-tyrosine in rabbit's urine.

  8. X-ray micro-laminography for the ex situ analysis of W-CFC samples retrieved from JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Tiseanu, I.; Craciunescu, T.; Lungu, M.; Dobrea, C.; Contributors, JET

    2016-02-01

    x-ray micro-laminography was qualified and implemented as a complementary solution for the 3D microstructural analysis of tungsten coated carbon-fibre reinforced carbon (W/CFC) samples retrieved from JET ITER-like wall. As expected, the W layers spatially correlate with the morphology of the CFC substrate. Three main cases were distinguished; (i) tungsten layers coated parallel to PAN fibre bundles tend to have a quasi-continuous, weakly waved surface (waves amplitude <100 μm) (ii) tungsten layers coated onto the relatively porous felt region appear to smoothly follow even the surface of the largest pores of around 250 μm and (iii) samples coated perpendicular to the PAN fibre bundles display frequently and strong crater-like discontinuities of the metal layer. The characteristics dimensions of these gaps range in the order of 300-400 μm both in the coating plane and perpendicular to it. On some craters the bottom W layer is broken and the generated debris can be found even deeper than one mm into the CFC substrate. These W particles, sized of 20-40 μm, are always found in the large gaps located between the fibre bundles perpendicular to the coated surface.

  9. Real-time control of divertor detachment in H-mode with impurity seeding using Langmuir probe feedback in JET-ITER-like wall

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Lennholm, M.; Harrison, J.; Carvalho, I.; Valcarcel, D.; Felton, R.; Griph, S.; Hogben, C.; Lucock, R.; Matthews, G. F.; Perez Von Thun, C.; Pitts, R. A.; Wiesen, S.; contributors, JET

    2017-04-01

    Burning plasmas with 500 MW of fusion power on ITER will rely on partially detached divertor operation to keep target heat loads at manageable levels. Such divertor regimes will be maintained by a real-time control system using the seeding of radiative impurities like nitrogen (N), neon or argon as actuator and one or more diagnostic signals as sensors. Recently, real-time control of divertor detachment has been successfully achieved in Type I ELMy H-mode JET-ITER-like wall discharges by using saturation current (I sat) measurements from divertor Langmuir probes as feedback signals to control the level of N seeding. The degree of divertor detachment is calculated in real-time by comparing the outer target peak I sat measurements to the peak I sat value at the roll-over in order to control the opening of the N injection valve. Real-time control of detachment has been achieved in both fixed and swept strike point experiments. The system has been progressively improved and can now automatically drive the divertor conditions from attached through high recycling and roll-over down to a user-defined level of detachment. Such a demonstration is a successful proof of principle in the context of future operation on ITER which will be extensively equipped with divertor target probes.

  10. Improved EDGE2D-EIRENE simulations of JET ITER-like wall L-mode discharges utilising poloidal VUV/visible spectral emission profiles

    NASA Astrophysics Data System (ADS)

    Lawson, K. D.; Groth, M.; Belo, P.; Brezinsek, S.; Corrigan, G.; Czarnecka, A.; Delabie, E.; Drewelow, P.; Harting, D.; Książek, I.; Maggi, C. F.; Marchetto, C.; Meigs, A. G.; Menmuir, S.; Stamp, M. F.; Wiesen, S.

    2015-08-01

    A discrepancy in the divertor radiated powers between EDGE2D-EIRENE simulations, both with and without drifts, and JET-ILW experiments employing a set of NBI-heated L-mode discharges with step-wise density variation is investigated. Results from a VUV/visible poloidally scanning spectrometer are used together with bolometric measurements to determine the radiated power and its composition. The analysis shows the importance of D line radiation in contributing to the divertor radiated power, while contributions from D radiative recombination are smaller than expected. Simulations with W divertor plates underestimate the Be content in the divertor, since no allowance is made for Be previously deposited on the plates being re-eroded. An improved version of EDGE2D-EIRENE is used to test the importance of the deposited layer in which the sputtering yield from supposed pure Be divertor plates is reduced to match the spectroscopic signals, while keeping the sputtering yield for the Be main chamber walls unchanged.

  11. Dissipation Element Analysis of Reacting- and Non-Reacting Flows

    NASA Astrophysics Data System (ADS)

    Denker, Dominik; Boschung, Jonas; Hennig, Fabian; Pitsch, Heinz

    2016-11-01

    Dissipation element analysis is a tried and tested method for analyzing scalar field in turbulent flows. Dissipation elements are defined as an ensemble of grid point whose gradient trajectories reach the same extremal points. Therefore, the scalar field can be compartmentalized in monotonous space filling regions. Dissipation elements can be described by two parameters, namely the Euclidean distance between their extremal points and their scalar difference in these points. The joint probability density function of these two parameters is expected to suffice for a statistical reconstruction of the scalar field. In addition, normalized dissipation element statistics show a remarkable invariance towards changes in Reynolds numbers. Dissipation element statistics of the passive scalar and the turbulent kinetic energy are compared for different flow configurations including reacting and non-reacting turbulent flows. Furthermore, the Reynolds number scaling of the dissipation element parameters is investigated.

  12. Characterization of Horizontally-Issuing Reacting Buoyant Jets

    DTIC Science & Technology

    2011-03-01

    while the vertical arrow pointing upwards corresponds to their excitation to a state of higher energy. One interesting concept not conveyed in Figure 9...the purposes of this research, the Q1(6) rotational state was excited , which corresponds to an excitement wavelength of 282.9 nm. Figure 10. An...speaking, quenching prevents the release of a fluorescent signal in one of three different ways. When quenching occurs, molecules excited to a higher

  13. Gas Jets

    NASA Technical Reports Server (NTRS)

    Chaplygin, S.

    1944-01-01

    A brief summary of the contents of this paper is presented here. In part I the differential equations of the problem of a gas flow in two dimensions is derived and the particular integrals by which the problem on jets is solved are given. Use is made of the same independent variables as Molenbroek used, but it is found to be more suitable to consider other functions. The stream function and velocity potential corresponding to the problem are given in the form of series. The investigation on the convergence of these series in connection with certain properties of the functions entering them forms the subject of part II. In part III the problem of the outflow of a gas from an infinite vessel with plane walls is solved. In part IV the impact of a gas jet on a plate is considered and the limiting case where the jet expands to infinity changing into a gas flow is taken up in more detail. This also solved the equivalent problem of the resistance of a gaseous medium to the motion of a plate. Finally, in part V, an approximate method is presented that permits a simpler solution of the problem of jet flows in the case where the velocities of the gas (velocities of the particles in the gas) are not very large.

  14. Direct numerical simulation of turbulent reacting flows

    SciTech Connect

    Chen, J.H.

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  15. Coherent structures in reacting flows

    NASA Astrophysics Data System (ADS)

    Mahoney, John; Mitchell, Kevin

    2013-11-01

    Our goal is to characterize the nature of reacting flows by identifying important ``coherent'' structures. We follow the recent work by Haller, Beron-Vera, and Farazmand which formalized the the notion of lagrangian coherent structures (LCSs) in fluid flows. In this theory, LCSs were derived from the Cauchy-Green strain tensor. We adapt this perspective to analogously define coherent structures in reacting flows. By this we mean a fluid flow with a reaction front propagating through it such that the propagation does not affect the underlying flow. A reaction front might be chemical (Belousov-Zhabotinsky, flame front, etc.) or some other type of front (electromagnetic, acoustic, etc.). While the recently developed theory of burning invariant manifolds (BIMs) describes barriers to front propagation in time-periodic flows, this current work provides an important complement by extending to the aperiodic setting. The present work was supported by the US National Science Foundation under grants PHY- 0748828 and CMMI-1201236.

  16. Scaling of the frequencies of the type one edge localized modes and their effect on the tungsten source in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Devynck, P.; Fedorczak, N.; Meyer, O.; Contributors, JET

    2016-12-01

    A database of 250 pulses taken randomly during the experimental campaigns of JET with the ITER-like wall (ILW) is used to study the frequency dependences of the type I edge localized modes (ELM). A scaling of the ELM frequency is presented as a function of the pedestal density drop dN ped and a very simple model to interpret this scaling is discussed. In this model, the frequency of the ELMs is governed by the time needed by the neutral flux to refill the density of the pedestal. The filling rate is the result of a small imbalance between the neutral flux filling the pedestal and the outward flux that expels the particles to the SOL. The ELM frequency can be governed by such a mechanism if the recovery time of the temperature of the pedestal in JET occurs before or at the same time as the one of the density. This is observed to be the case. An effect of the fuelling is measured when the number of injected particles is less than 1  ×  1022 particles s-1. In that case an increase of the inter-ELM time is observed which is related to the slower recovery of the density pedestal. Additionally, a scaling is found for the source of tungsten during the ELMs. The number of tungsten atoms eroded by the ELMs per second is proportional to dN ped multiplied by the ELM frequency. This is possible only if the tungsten sputtering yield is independent of the energy of the impinging particle hitting the divertor. This result is in agreement with Guillemault et al (2015 Plasma Phys. Control. Fusion 57 085006) and is compatible with the D+  ions hitting the divertor having energies above 2 keV. Finally, by plotting the Wcontent/Wsource ratio during ELM crash, a global decreasing behaviour with the ELM frequency is found. However at frequencies below 40 Hz a scatter towards upper values is found. This scatter is found to correlate with the gas injection level. In a narrow ELM frequency band around 20 Hz, it is found that both the ratio Wcontent/Wsource and Wsource

  17. Parallel execution of a three-dimensional, chemically reacting, Navier-Stokes code on distributed-memory machines

    NASA Technical Reports Server (NTRS)

    Otto, John C.

    1993-01-01

    This paper describes the parallel version of the three-dimensional, chemically reacting, computational fluid dynamics (CFD) code, SPARK. This work was performed on the Intel iPSC/860-based parallel computers. The SPARK code utilizes relatively simple explicit numerical algorithms, but models complex chemical reactions. The code solves the equations over a regular structured mesh so a simple dam decomposition is used to assign work to the individual processors. The explicit nature of the algorithm, combined with the computational intensity of the chemistry calculations, results in a very low communication-to-computation ratio when compared to typical CFD codes. The efficiency of the parallel code is examined and shown to be about 65 percent when the problem size is scaled with the number of processors. Two low-angle wall-jet injection cases are solved to demonstrate the capability of the parallel code for solving large problems efficiently.

  18. Quasi-explicit algebraic turbulence closures for compressible reacting flows

    NASA Astrophysics Data System (ADS)

    Adumitroaie, Virgil

    A consistent and complete set of quasi-explicit algebraic closures for turbulent reacting flows is proposed as approximate solutions to the full second order moment equations. Quasi-explicit algebraic scalar flux models that are valid for three-dimensional turbulent flows are derived from a hierarchy of second-order moment closures. The mathematical procedure is based on the Cayley-Hamilton theorem and is an extension of the scheme developed by Taulbee (1992). Several closures for the pressure-scalar gradient correlations are considered and explicit algebraic relations are provided for the velocity-scalar correlations in both non-reacting and reacting flows. In the latter, the role of the Damkohler number is exhibited in isothermal turbulent flows with nonpremixed reactants. The relationship between these closures and traditional models based on the linear gradient diffusion approximation is theoretically established. The results of model predictions are assessed via comparison with available laboratory data in turbulent jet flows. The development of the quasi-explicit algebraic models for Reynolds stresses, temperature fluxes and reacting scalar fluxes is extended to high-speed turbulent reacting flows under a density weighted average formalism. New closures are proposed for the pressure-strain and the pressure-scalar gradient correlations. These accommodate compressibility corrections subject to the magnitude of the turbulent Mach number, the density gradient, the pressure gradient and the mean dilatation effects. Non-reacting and reacting flows with heat release are considered. In the latter, a second-order irreversible chemical reactions in turbulent flows with initially segregated reactants is considered. The models are tested in simple compressible free-shear flows. Comparisons are made between the full second order moment computations and the algebraic closure predictions. For a mixing layer, experimental data are used to validate the predicted results.

  19. Experiments on confined turbulent jets in cross flow. [longitudinal and transverse distributions of velocity and temperature for jet flow

    NASA Technical Reports Server (NTRS)

    Kamotani, Y.; Greber, I.

    1974-01-01

    Results are reported of experiments on the effects of an opposite wall on the characteristics of turbulent jets injected into a cross flow, for unheated and heated jets. Longitudinal and transverse distributions of velocity and temperature are presented for single and multiple circular jets, and trajectories are presented for two-dimensional jets. The opposite wall has relatively little effect on a single jet unless the ratio of jet to cross flow momentum flux is large enough for the jet to impinge on the opposite wall. For a row of jets aligned perpendicularly to the cross flow, the opposite wall exerts progressively larger influence as the spacing between jets decreases. Much of the effect of jet and wall proximity can be understood by considering the interaction of the vortex flow which is the major feature of the structure of a single jet in a cross flow. Smoke photographs are shown to elucidate some of the interaction patterns.

  20. Interpretation of scrape-off layer profile evolution and first-wall ion flux statistics on JET using a stochastic framework based on fillamentary motion

    NASA Astrophysics Data System (ADS)

    Walkden, N. R.; Wynn, A.; Militello, F.; Lipschultz, B.; Matthews, G.; Guillemaut, C.; Harrison, J.; Moulton, D.; Contributors, JET

    2017-08-01

    This paper presents the use of a novel modelling technique based around intermittent transport due to filament motion, to interpret experimental profile and fluctuation data in the scrape-off layer (SOL) of JET during the onset and evolution of a density profile shoulder. A baseline case is established, prior to shoulder formation, and the stochastic model is shown to be capable of simultaneously matching the time averaged profile measurement as well as the PDF shape and autocorrelation function from the ion-saturation current time series at the outer wall. Aspects of the stochastic model are then varied with the aim of producing a profile shoulder with statistical measurements consistent with experiment. This is achieved through a strong localised reduction in the density sink acting on the filaments within the model. The required reduction of the density sink occurs over a highly localised region with the timescale of the density sink increased by a factor of 25. This alone is found to be insufficient to model the expansion and flattening of the shoulder region as the density increases, which requires additional changes within the stochastic model. An example is found which includes both a reduction in the density sink and filament acceleration and provides a consistent match to the experimental data as the shoulder expands, though the uniqueness of this solution can not be guaranteed. Within the context of the stochastic model, this implies that the localised reduction in the density sink can trigger shoulder formation, but additional physics is required to explain the subsequent evolution of the profile.

  1. Measurement in multiphase reacting flows

    NASA Technical Reports Server (NTRS)

    Chigier, N. A.

    1979-01-01

    A survey is presented of diagnostic techniques and measurements made in multiphase reacting flows. The special problems encountered by the presence of liquid droplets, soot and solid particles in high temperature chemically reacting turbulent environments are outlined. The principal measurement techniques that have been tested in spray flames are spark photography, laser anemometry, thermocouples and suction probes. Spark photography provides measurement of drop size, drop size distribution, drop velocity, and angle of flight. Photographs are analysed automatically by image analysers. Photographic techniques are reliable, inexpensive and proved. Laser anemometers have been developed for simultaneous measurement of velocity and size of individual particles in sprays under conditions of vaporization and combustion. Particle/gas velocity differentials, particle Reynolds numbers, local drag coefficients and direct measurement of vaporization rates can be made by laser anemometry. Gas temperature in sprays is determined by direct in situ measurement of time constants immediately prior to measurement with compensation and signal analysis by micro-processors. Gas concentration is measured by suction probes and gas phase chromatography. Measurements of particle size, particle velocity, gas temperature, and gas concentration made in airblast and pressure atomised liquid spray flames are presented.

  2. Direct simulations of chemically reacting turbulent mixing layers, part 2

    NASA Technical Reports Server (NTRS)

    Metcalfe, Ralph W.; Mcmurtry, Patrick A.; Jou, Wen-Huei; Riley, James J.; Givi, Peyman

    1988-01-01

    The results of direct numerical simulations of chemically reacting turbulent mixing layers are presented. This is an extension of earlier work to a more detailed study of previous three dimensional simulations of cold reacting flows plus the development, validation, and use of codes to simulate chemically reacting shear layers with heat release. Additional analysis of earlier simulations showed good agreement with self similarity theory and laboratory data. Simulations with a two dimensional code including the effects of heat release showed that the rate of chemical product formation, the thickness of the mixing layer, and the amount of mass entrained into the layer all decrease with increasing rates of heat release. Subsequent three dimensional simulations showed similar behavior, in agreement with laboratory observations. Baroclinic torques and thermal expansion in the mixing layer were found to produce changes in the flame vortex structure that act to diffuse the pairing vortices, resulting in a net reduction in vorticity. Previously unexplained anomalies observed in the mean velocity profiles of reacting jets and mixing layers were shown to result from vorticity generation by baroclinic torques.

  3. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    SciTech Connect

    Lucht, Robert; Anderson, William

    2015-01-23

    applying advanced experimental diagnostic techniques with increasing fidelity for the purposes of computational validation and model development. Numerical simulation of the reacting jet in crossflow is challenging because of the complex vortical structures in the flowfield and compounded by an unsteady crossflow. The resulting benchmark quality data set will include comprehensive, accurate measurements of mean and fluctuating components of velocity, pressure, and flame front location at high pressure and with crossflow conditions more representative of modern gas turbine engines. A proven means for producing combustion dynamics is used for the performing combustion instability experimental study on a reacting jet in crossflow configuration. The method used to provide an unsteady flowfield into which the transverse jet is injected is a unique and novel approach that permits elevated temperature and pressure conditions. A model dump combustor is used to generate and sustain an acoustically oscillating vitiated flow that serves as the crossflow for transverse jet injection studies. A fully optically accessible combustor test section affords full access surrounding the point of jet injection. High speed 10 kHz planar measurements OH PLIF and high frequency 180 kHz wall pressure measurements are performed on the injected reacting transverse jet and surrounding flowfield, respectively, under simulated unstable conditions. The overlay of the jet velocity flowfield and the flame front will be investigated using simultaneous 10 kHz OH PLIF and PIV in experiments to be performed in the near future.

  4. Twin Jet

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  5. Reconstruction of the Vortex-Jet Structure of the Separation Turbulent Flow in a Spherical Dimple on the Wall of a Narrow Channel with Increase in the Depth of the Dimple and Intensification of the Secondary Flow in It

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Leont‧ev, A. I.; Shchelchkov, A. V.; Gul‧tsova, M. E.

    2015-09-01

    On the basis of an analysis of the reconstruction of the vortex-jet structure of the completely developed turbulent flow of an incompressible fluid in a spherical dimple on the wall of a narrow plane-parallel channel with increase in the depth of the dimple, a map of regimes of separation flow around such a dimple at a Reynolds number of 40,000 has been developed with special emphasis on the intensification of the multivortex flow formed in the indicated dimple in the case where a symmetric flow in it is changed to the axisymmetric one.

  6. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions.

    PubMed

    Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias

    2013-07-01

    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  7. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  8. Electron cyclotron emission spectra in X- and O-mode polarisation at JET: Martin-Puplett interferometer, absolute calibration, revised uncertainties, inboard/outboard temperature profile, and wall properties

    NASA Astrophysics Data System (ADS)

    Schmuck, S.; Fessey, J.; Boom, J. E.; Meneses, L.; Abreu, P.; Belonohy, E.; Lupelli, I.

    2016-09-01

    At the tokamak Joint European Torus (JET), the electron cyclotron emission spectra in O-mode and X-mode polarisations are diagnosed simultaneous in absolute terms for several harmonics with two Martin-Puplett interferometers. From the second harmonic range in X-mode polarisation, the electron temperature profile can be deduced for the outboard side (low magnetic field strength) of JET but only for some parts of the inboard side (high magnetic field strength). This spatial restriction can be bypassed, if a cutoff is not present inside the plasma for O-mode waves in the first harmonic range. Then, from this spectral domain, the profile on the entire inboard side is accessible. The profile determination relies on the new absolute and independent calibration for both interferometers. During the calibration procedure, the antenna pattern was investigated as well, and, potentially, an increase in the diagnostic responsivity of about 5% was found for the domain 100-300 GHz. This increase and other uncertainty sources are taken into account in the thorough revision of the uncertainty for the diagnostic absolute calibration. The uncertainty deduced and the convolution inherent for Fourier spectroscopy diagnostics have implications for the temperature profile inferred. Having probed the electron cyclotron emission spectra in orthogonal polarisation directions for the first harmonic range, a condition is derived for the reflection and polarisation-scrambling coefficients of the first wall on the outboard side of JET.

  9. Acoustic imaging for diagnostics of chemically reacting systems

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.; Seshan, P.

    1983-01-01

    The concept of local diagnostics, in chemically reacting systems, with acoustic imaging is developed. The elements of acoustic imaging through ellipsoidal mirrors are theoretically discussed. In a general plan of the experimental program, the first system is chosen in these studies to be a simple open jet, non premixed turbulent flame. Methane is the fuel and enriched air is the oxidizer. This simple chemically reacting flow system is established at a Reynolds number (based on cold viscosity) of 50,000. A 1.5 m diameter high resolution acoustic mirror with an f-number of 0.75 is used to map the acoustic source zone along the axis of the flame. The results are presented as acoustic power spectra at various distances from the nozzle exit. It is seen that most of the reaction intensity is localized in a zone within 8 diameters from the exit. The bulk reactions (possibly around the periphery of the larger eddies) are evenly distributed along the length of the flame. Possibilities are seen for locally diagnosing single zones in a multiple cluster of reaction zones that occur frequently in practice. A brief outline is given of the future of this work which will be to apply this technique to chemically reacting flows not limited to combustion.

  10. Influence of Geometry and Flow Variation on Jet Mixing and NO Formation in a Model Staged Combustor Mixer with Eight Orifices

    NASA Technical Reports Server (NTRS)

    Samuelsen, G. S.; Sowa, W. A.; Hatch, M. S.

    1996-01-01

    A series of non-reacting parametric experiments was conducted to investigate the effect of geometric and flow variations on mixing of cold jets in an axis-symmetric, heated cross flow. The confined, cylindrical geometries tested represent the quick mix region of a Rich-Burn/Quick-Mix/Lean-Burn (RQL) combustor. The experiments show that orifice geometry and jet to mainstream momentum-flux ratio significantly impact the mixing characteristic of jets in a cylindrical cross stream. A computational code was used to extrapolate the results of the non-reacting experiments to reacting conditions in order to examine the nitric oxide (NO) formation potential of the configurations examined. The results show that the rate of NO formation is highest immediately downstream of the injection plane. For a given momentum-flux ratio, the orifice geometry that mixes effectively in both the immediate vicinity of the injection plane, and in the wall regions at downstream locations, has the potential to produce the lowest NO emissions. The results suggest that further study may not necessarily lead to a universal guideline for designing a low NO mixer. Instead, an assessment of each application may be required to determine the optimum combination of momentum-flux ratio and orifice geometry to minimize NO formation. Experiments at reacting conditions are needed to verify the present results.

  11. Stochastic models for turbulent reacting flows

    SciTech Connect

    Kerstein, A.

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  12. LDV Measurement of Confined Parallel Jet Mixing

    SciTech Connect

    R.F. Kunz; S.W. D'Amico; P.F. Vassallo; M.A. Zaccaria

    2001-01-31

    Laser Doppler Velocimetry (LDV) measurements were taken in a confinement, bounded by two parallel walls, into which issues a row of parallel jets. Two-component measurements were taken of two mean velocity components and three Reynolds stress components. As observed in isolated three dimensional wall bounded jets, the transverse diffusion of the jets is quite large. The data indicate that this rapid mixing process is due to strong secondary flows, transport of large inlet intensities and Reynolds stress anisotropy effects.

  13. Analytical study of mixing and reacting three-dimensional supersonic combustor flow fields

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Rogers, R. C.; Zelazny, S. W.

    1975-01-01

    An analytical investigation is presented of mixing and reacting hydrogen jets injected from multiple orifices transverse and parallel to a supersonic airstream. The COMOC computer program, based upon a finite-element solution algorithm, was developed to solve the governing equations for three-dimensional, turbulent, reacting, boundary-region, and confined flow fields. The computational results provide a three-dimensional description of the velocity, temperature, and species-concentration fields downstream of hydrogen injection. Detailed comparisons between cold-flow data and results of the computational analysis have established validity of the turbulent-mixing model based on the elementary mixing-length hypothesis. A method is established to initiate computations for reacting flow fields based upon cold-flow correlations and the appropriate experimental parameters of Mach number, injector spacing, and pressure ratio. Key analytical observations on mixing and combustion efficiency for reacting flows are presented and discussed.

  14. Synthetic Fence Jets

    NASA Astrophysics Data System (ADS)

    Sigurdson, Lorenz; Apps, Christopher

    2000-11-01

    "Synthetic Jets" have previously been produced where an oscillating flow with zero net mass flux acts on the edges of an orifice. The resulting flow is similar to a normal jet. We have proposed and verified that another type of jet called a "Synthetic Fence Jet" (SFJ or "fe-je") can also be created. We introduced a fence perpendicular to both a wall and an oscillating velocity field. Under certain conditions a jet was formed by vortices of alternating sign. The vortices were shed from the fence and they induced each other away from it. This phenomenon could be used as a method of flow control. The objective of this project was to use flow visualization to prove the existence of and characterize this jet. A test rig was used which incorporates smoke-wire flow visualization; independent oscillation level and frequency control; and computer- controlled data acquisition. It has been discovered that the jet direction can be vectored by altering the forcing waveform shape. To explain this a theory was developed that is based on the Biot-Savart law of vortex dynamics.

  15. Jetting tool

    SciTech Connect

    Szarka, D.D.; Schwegman, S.L.

    1991-07-09

    This patent describes an apparatus for hydraulically jetting a well tool disposed in a well, the well tool having a sliding member. It comprises positioner means for operably engaging the sliding member of the well tool; and a jetting means, connected at a rotatable connection to the positioner means so that the jetting means is rotatable relative to the positioner means and the well tool, for hydraulically jetting the well tool as the jetting means is rotated relative thereto.

  16. REACT: Alternatives to Critical Materials in Magnets

    SciTech Connect

    2012-01-01

    REACT Project: The 14 projects that comprise ARPA-E’s REACT Project, short for “Rare Earth Alternatives in Critical Technologies”, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

  17. Sonoporation from Jetting Cavitation Bubbles

    PubMed Central

    Ohl, Claus-Dieter; Arora, Manish; Ikink, Roy; de Jong, Nico; Versluis, Michel; Delius, Michael; Lohse, Detlef

    2006-01-01

    The fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads to the detachment of cells. Cells at the edge of the circular area of detachment are found to be permanently porated, whereas cells at some distance from the detachment area undergo viable cell membrane poration (sonoporation). The wall flow field leading to cell detachment is modeled with a self-similar solution for a wall jet, together with a kinetic ansatz of adhesive bond rupture. The self-similar solution for the δ-type wall jet compares very well with the full solution of the Navier-Stokes equation for a jet of finite thickness. Apart from annular sites of sonoporation we also find more homogenous patterns of molecule delivery with no cell detachment. PMID:16950843

  18. Vortex simulation of reacting shear flow

    NASA Astrophysics Data System (ADS)

    Ghoniem, Ahmed F.

    Issues involved in the vortex simulation of reacting shear flow are discussed. It is shown that maintaining accuracy in the vortex methods requires the application of elaborate vorticity-updating schemes as vortex elements are moved along particle trajectories when shear or a strong strain field is represented. Solutions using 2D and 3D methods are discussed to illustrate some of the most common instabilities encountered in nonreacting and reacting shear flows and to reveal the mechanisms by which the maturation of these instabilities enhance mixing and hence burning in a reacting flow. The transport element method is developed and its application to compute scalar mixing in a shear layer is reviewed. The method is then combined with the vortex method to solve the problem of nonuniform-density shear flow. The results of incompressible reacting flow models are used to examine reaction extinction due to the formation of localized regions of strong strains as instabilities grow into their nonlinear range.

  19. Studies on nonequilibrium phenomena in supersonic chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Chandrasekhar, Rajnish

    1993-01-01

    This study deals with a systematic investigation of nonequilibrium processes in supersonic combustion. The two-dimensional, elliptic Navier-Stokes equations are used to investigate supersonic flows with nonequilibrium chemistry and thermodynamics, coupled with radiation, for hydrogen-air systems. The explicit, unsplit MacCormack finite-difference scheme is used to advance the governing equations in time, until convergence is achieved. For a basic understanding of the flow physics, premixed flows undergoing finite rate chemical reactions are investigated. Results obtained for specific conditions indicate that the radiative interactions vary substantially, depending on reactions involving HO2 and NO species, and that this can have a noticeable influence on the flowfield. The second part of this study deals with premixed reacting flows under thermal nonequilibrium conditions. Here, the critical problem is coupling of the vibrational relaxation process with the radiative heat transfer. The specific problem considered is a premixed expanding flow in a supersonic nozzle. Results indicate the presence of nonequilibrium conditions in the expansion region of the nozzle. This results in reduction of the radiative interactions in the flowfield. Next, the present study focuses on investigation of non-premixed flows under chemical nonequilibrium conditions. In this case, the main problem is the coupled turbulence-chemistry interaction. The resulting formulation is validated by comparison with experimental data on reacting supersonic coflowing jets. Results indicate that the effect of heat release is to lower the turbulent shear stress and the mean density. The last part of this study proposes a new theoretical formulation for the coupled turbulence-radiation interactions. Results obtained for the coflowing jets experiment indicate that the effect of turbulence is to enhance the radiative interactions.

  20. Principles of free jets

    SciTech Connect

    Miller, D.R.

    1995-03-01

    The principles of the free jet expansion are well established and only a brief tutorial overview of selected concepts is presented below. Almost every important theoretical and/or experimental aspect of the free jet related to molecular beam sampling has appeared in one of the 19 International Symposium on Rarefied Gas Dynamics and many detailed reviews exist. The first stage of pressure reduction in a mass spectrometer sampling system is often simply an aperture or short capillary tube across which a significant pressure ratio is maintained. When this pressure ratio between the system being sampled and the first vacuum stage exceeds about two then the gas flow reaches sonic conditions at the exit, Mach number M = 1, and the exiting flow is known as {open_quotes}choked{close_quotes} flow. It is called choked because for fixed source conditions the mass flux out of the aperture will not exceed this M = 1 condition regardless of how low the exit chamber pressure is taken, ie how much pumping is added. Beyond the exit the gas expands in a supersonic free jet expansion as it adjusts to the low pressure in the exit chamber. The expansion is called a free jet because there are no diverging nozzle walls to constrain the flow, which would lead to viscous boundary layers and a much smaller rate of expansion. Diverging nozzle walls are used in rockets to direct the exiting flows along the axis for better forward thrust, and researchers use them to slow the rate of expansion to, for example, grow clusters or study fast kinetics. Only the free jet is dealt with here. The free jet nozzle only consists of the subsonic nozzle geometry. The nozzle exit to be referred to here is then just the aperture or capillary exit, and the free jet expansion is the unconstrained subsequent supersonic flow downstream of this nozzle exit.

  1. High-resolution OH LIF velocity measurement technique for high-speed reacting flows

    NASA Technical Reports Server (NTRS)

    Klavuhn, K. G.; Gauba, G.; Mcdaniel, J. C.

    1992-01-01

    A nonintrusive optical technique was developed for the quantitative study of velocity fields in steady, high-speed, reacting flows. A narrow-linewidth laser source was tuned through an isolated OH absorption line to measure the Doppler-shifted linecenter frequency relative to an iodine reference line. A counterpropagating beam approach was used to eliminate collisional impact shift effects. Pointwise measurements of velocity were made in a unique reacting underexpanded jet facility as an extensive calibration of the technique over a wide range of flow conditions. The extension of the technique to planar measurements is also discussed.

  2. High-resolution OH LIF velocity measurement technique for high-speed reacting flows

    NASA Technical Reports Server (NTRS)

    Klavuhn, K. G.; Gauba, G.; Mcdaniel, J. C.

    1992-01-01

    A nonintrusive optical technique was developed for the quantitative study of velocity fields in steady, high-speed, reacting flows. A narrow-linewidth laser source was tuned through an isolated OH absorption line to measure the Doppler-shifted linecenter frequency relative to an iodine reference line. A counterpropagating beam approach was used to eliminate collisional impact shift effects. Pointwise measurements of velocity were made in a unique reacting underexpanded jet facility as an extensive calibration of the technique over a wide range of flow conditions. The extension of the technique to planar measurements is also discussed.

  3. Dilution Jet Mixing Program, phase 1

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Berenfeld, A.; Mongia, H. C.

    1982-01-01

    The effect of jet to mainstream density ratio, flow area convergence as encounted in transition sections, and nonuniform mainstream profile upstream of dilution orifices on the mixing of a row of jets with a confined cross flow was quantified. It is found that: (1) jet spreading rate in transverse direction is increased with increasing J, H/D and with decreasing S/D; (2) the density ratio has only a second order effect on the jet mixing characteristics for a constant momentum ratio; (3) the temperature distributions in the jet mixing region are strongly influenced by the undisturbed mainstream profile; (4) flow area convergence enhances mixing in radial and transverse directions. An asymmetric convergent duct with flat wall injection has the same jet mixing characteristics as a symmetric convergent duct. An asymmetric convergent duct with slant wall injection has a faster jet spreading rate in the transverse direction.

  4. Modeling of three-dimensional mixing and reacting ducted flows

    NASA Technical Reports Server (NTRS)

    Zelazny, S. W.; Baker, A. J.; Rushmore, W. L.

    1976-01-01

    A computer code, based upon a finite element solution algorithm, was developed to solve the governing equations for three-dimensional, reacting boundary region, and constant area ducted flow fields. Effective diffusion coefficients are employed to allow analyses of turbulent, transitional or laminar flows. The code was used to investigate mixing and reacting hydrogen jets injected from multiple orifices, transverse and parallel to a supersonic air stream. Computational results provide a three-dimensional description of velocity, temperature, and species-concentration fields downstream of injection. Experimental data for eight cases covering different injection conditions and geometries were modeled using mixing length theory (MLT). These results were used as a baseline for examining the relative merits of other mixing models. Calculations were made using a two-equation turbulence model (k+d) and comparisons were made between experiment and mixing length theory predictions. The k+d model shows only a slight improvement in predictive capability over MLT. Results of an examination of the effect of tensorial transport coefficients on mass and momentum field distribution are also presented. Solutions demonstrating the ability of the code to model ducted flows and parallel strut injection are presented and discussed.

  5. Mechanism of bubble detachment from vibrating walls

    SciTech Connect

    Kim, Dongjun; Park, Jun Kwon Kang, Kwan Hyoung; Kang, In Seok

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  6. Fuzzy jets

    NASA Astrophysics Data System (ADS)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  7. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  8. Fuzzy jets

    SciTech Connect

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  9. Equilibrium chemical reaction of supersonic hydrogen-air jets (the ALMA computer program)

    NASA Technical Reports Server (NTRS)

    Elghobashi, S.

    1977-01-01

    The ALMA (axi-symmetrical lateral momentum analyzer) program is concerned with the computation of two dimensional coaxial jets with large lateral pressure gradients. The jets may be free or confined, laminar or turbulent, reacting or non-reacting. Reaction chemistry is equilibrium.

  10. 22. Jet Lowe, Photographer, June, 1978. WHEELHOUSE, MCINTYRE IRON WORKS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Jet Lowe, Photographer, June, 1978. WHEELHOUSE, MCINTYRE IRON WORKS, TAILRACE, SOUTHEAST VIEW, RIVERSIDE WALL. - Adirondack Iron & Steel Company, New Furnace, Hudson River, Tahawus, Essex County, NY

  11. High-Speed Turbulent Reacting Flows: Intrinsic Flame Instability and its Effects on the Turbulent Cascade

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei

    2016-11-01

    Turbulent reacting flows are pervasive both in our daily lives on Earth and in the Universe. They power modern society being at the heart of many energy generation and propulsion systems, such as gas turbines, internal combustion and jet engines. On astronomical scales, thermonuclear turbulent flames are the driver of some of the most powerful explosions in the Universe, knows as Type Ia supernovae. Despite this ubiquity in Nature, turbulent reacting flows still pose a number of fundamental questions often exhibiting surprising and unexpected behavior. In this talk, we will discuss several such phenomena observed in direct numerical simulations of high-speed, premixed, turbulent flames. We show that turbulent flames in certain regimes are intrinsically unstable even in the absence of the surrounding combustor walls or obstacles, which can support the thermoacoustic feedback. Such instability can fundamentally change the structure and dynamics of the turbulent cascade, resulting in a significant (and anisotropic) redistribution of kinetic energy from small to large scales. In particular, three effects are observed. 1) The turbulent burning velocity can develop pulsations with significant peak-to-peak amplitudes. 2) Unstable burning can result in pressure build-up and the formation of pressure waves or shocks when the flame speed approaches or exceeds the speed of a Chapman-Jouguet deflagration. 3) Coupling of pressure and density gradients across the flame can lead to the anisotropic generation of turbulence inside the flame volume and flame acceleration. We extend our earlier analysis, which relied on a simplified single-step reaction model, by demonstrating existence of these effects in realistic chemical flames (hydrogen and methane) and in thermonuclear flames in degenerate, relativistic plasmas found in stellar interiors. Finally, we discuss the implications of these results for subgrid-scale LES combustion models. This work was supported by the Air Force

  12. Turbulence characteristics of an axisymmetric reacting flow

    NASA Technical Reports Server (NTRS)

    Gould, R. D.; Stevenson, W. H.; Thompson, H. D.

    1984-01-01

    Turbulent sudden expansion flows are of significant theoretical and practical importance. Such flows have been the subject of extensive analytical and experimental study for decades, but many issues are still unresolved. Detailed information on reacting sudden expansion flows is very limited, since suitable measurement techniques have only been available in recent years. The present study of reacting flow in an axisymmetric sudden expansion was initiated under NASA support in December 1983. It is an extension of a reacting flow program which has been carried out with Air Force support under Contract F33615-81-K-2003. Since the present effort has just begun, results are not yet available. Therefore a brief overview of results from the Air Force program will be presented to indicate the basis for the work to be carried out.

  13. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is

  14. Direct simulation of compressible reacting flows

    NASA Technical Reports Server (NTRS)

    Poinsot, Thierry J.

    1989-01-01

    A research program for direct numerical simulations of compressible reacting flows is described. Two main research subjects are proposed: the effect of pressure waves on turbulent combustion and the use of direct simulation methods to validate flamelet models for turbulent combustion. The interest of a compressible code to study turbulent combustion is emphasized through examples of reacting shear layer and combustion instabilities studies. The choice of experimental data to compare with direct simulation results is discussed. A tentative program is given and the computation cases to use are described as well as the code validation runs.

  15. STOL landing thrust: Reverser jet flowfields

    NASA Technical Reports Server (NTRS)

    Kotansky, D. R.; Glaze, L. W.

    1987-01-01

    Analysis tools and modeling concepts for jet flow fields encountered upon use of thrust reversers for high performance military aircraft are described. A semi-empirical model of the reverser ground wall jet interaction with the uniform cross flow due to aircraft forward velocity is described. This ground interaction model is used to demonstrate exhaust gas ingestion conditions. The effects of control of exhaust jet vector angle, lateral splay, and moving versus fixed ground simulation are discussed. The Adler/Baron jet-in-cross flow model is used in conjunction with three dimensional panel methods to investigate the upper surface jet induced flow field.

  16. Computation of Reacting Flows in Combustion Processes

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Chen, K.-H.

    2001-01-01

    The objective of this research is to develop an efficient numerical algorithm with unstructured grids for the computation of three-dimensional chemical reacting flows that are known to occur in combustion components of propulsion systems. During the grant period (1996 to 1999), two companion codes have been developed and various numerical and physical models were implemented into the two codes.

  17. A random distribution reacting mixing layer model

    NASA Technical Reports Server (NTRS)

    Jones, Richard A.

    1994-01-01

    A methodology for simulation of molecular mixing and the resulting velocity and temperature fields has been developed. The ideas are applied to the flow conditions present in the NASA Lewis Planar Reacting Shear Layer (PRSL) facility, and results compared to experimental data. A gaussian transverse turbulent velocity distribution is used in conjunction with a linearly increasing time scale to describe the mixing of different regions of the flow. Equilibrium reaction calculations are then performed on the mix to arrive at a new species composition and temperature. Velocities are determined through summation of momentum contributions. The analysis indicates a combustion efficiency of the order of 80 percent for the reacting mixing layer, and a turbulent Schmidt number of 2/3. The success of the model is attributed to the simulation of large-scale transport of fluid. The favorable comparison shows that a relatively quick and simple PC calculation is capable of simulating the basic flow structure in the reacting and non-reacting shear layer present in the facility given basic assumptions about turbulence properties.

  18. The Twin Jet Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    M2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue.

  19. Instrumentation development for study of Reynolds Analogy in reacting flows

    NASA Technical Reports Server (NTRS)

    Deturris, Dianne J.

    1995-01-01

    Boundary layers in supersonic reacting flows are not well understood. Recently a technique has been developed which makes more extensive surface measurements practical, increasing the capability to understand the turbulent boundary layer. A significant advance in this understanding would be the formulation of an analytic relation between the transfer of momentum and the transfer of heat for this flow, similar to the Reynolds Analogy that exists for laminar flow. A gauge has been designed and built which allows a thorough experimental investigation of the relative effects of heat transfer and skin friction in the presence of combustion. Direct concurrent measurements made at the same location, combined with local flow conditions, enable a quantitative analysis to obtain a relation between the surface drag and wall heating, as well as identifying possible ways of reducing both.

  20. Cavity-based flameholding for chemically-reacting supersonic flows

    NASA Astrophysics Data System (ADS)

    Barnes, Frank W.; Segal, Corin

    2015-07-01

    Recesses in the walls of supersonic combustion chambers - cavities - have emerged as a preferred flameholding device since they are non-intrusive, hence resulting in reduced drag, lower total pressure losses and minimal aerodynamic heating when compared with other means of piloting core combustion such as, for example, struts. The flowfield within and in the vicinity of a cavity is complex involving a strong coupling between hydrodynamics and acoustics. When employed as a flameholding device both fuel injection and heat release - which is closely coupled to local mixing processes - alter the flowfield and further complicate the interaction between the cavity and the core supersonic flow. The complexity of this flowfield makes the identification of the dominant flameholding mechanisms and prediction of flame stability limits substantially more difficult than in the case of premixed systems. The following sections review the current knowledge of the mechanics of cavity-based flameholding in supersonic flows. Aspects of the non-reacting and reacting cavity flowfield are discussed with particular emphasis on the impact of fuel injection location relative to the flameholder. Results obtained to date in the attempt to describe the operability of cavity flameholders in terms of experimentally determined flame stability limits are also presented.

  1. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  2. Water Jetting

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Hi-Tech Inc., a company which manufactures water jetting equipment, needed a high pressure rotating swivel, but found that available hardware for the system was unsatisfactory. They were assisted by Marshall, which had developed water jetting technology to clean the Space Shuttles. The result was a completely automatic water jetting system which cuts rock and granite and removes concrete. Labor costs have been reduced; dust is suppressed and production has been increased.

  3. Application of actuator-driven pulsed water jet in aneurysmal subarachnoid hemorrhage surgery: its effectiveness for dissection around ruptured aneurysmal walls and subarachnoid clot removal.

    PubMed

    Endo, Hidenori; Endo, Toshiki; Nakagawa, Atsuhiro; Fujimura, Miki; Tominaga, Teiji

    2017-07-01

    In clipping surgery for aneurysmal subarachnoid hemorrhage (aSAH), critical steps include clot removal and dissection of aneurysms without premature rupture or brain injuries. To pursue this goal, a piezo actuator-driven pulsed water jet (ADPJ) system was introduced in this study. This study included 42 patients, who suffered aSAH and underwent clipping surgery. Eleven patients underwent surgery with the assistance of the ADPJ system (ADPJ group). In the other 31 patients, surgery was performed without the ADPJ system (Control group). The ADPJ system was used for clot removal and aneurysmal dissection. The clinical impact of the ADPJ system was judged by comparing the rate of premature rupture, degree of clot removal, and clinical outcomes. Intraoperatively, a premature rupture was encountered in 18.2 and 25.8% of cases in the ADPJ and control groups, respectively. Although the differences were not statistically significant, intraoperative observation suggested that the ADPJ system was effective in clot removal and dissection of aneurysms in a safe manner. Computed tomography scans indicated the achievement of higher degrees of clot removal, especially when the ADPJ system was used for cases with preoperative clot volumes of more than 25 ml (p = 0.047, Mann-Whitney U test). Clinical outcomes, including incidence of postoperative brain injury or symptomatic vasospasm, were similar in both groups. We described our preliminary surgical results using the ADPJ system for aSAH. Although further study is needed, the ADPJ system was considered a safe and effective tool for clot removal and dissection of aneurysms.

  4. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  5. Hydrodynamics of submerged turbulent plane offset jets

    NASA Astrophysics Data System (ADS)

    Dey, Subhasish; Ravi Kishore, Galla; Castro-Orgaz, Oscar; Ali, Sk Zeeshan

    2017-06-01

    The results of an experimental study on the turbulent flow characteristics in submerged plane offset jets are presented. The vertical profiles of time-averaged velocity components and Reynolds stresses at different horizontal locations are depicted to illustrate their variations across the pre-attachment, impingement, and wall jet regions. The characteristic lengths and the jet profile of submerged offset jets in the pre-attachment region are determined from the velocity profiles. The regional profiles of velocity and Reynolds stresses are analyzed in the context of the self-similarity, the decay of their representative scales, and the development of the length scales. The self-similarity characteristics in the pre-attachment and wall jet regions are preserved better than those in the impingement region. The turbulent kinetic energy (TKE) fluxes suggest that within the jet layer in the pre-attachment region, an upward advection of low-speed fluid streaks induces a strong retardation to the jet; while in the wall jet region, an inrush of low-speed fluid streaks induces a weak retardation. Analysis of the TKE budget reveals that within the jet layer, the TKE diffusion rate and the pressure energy diffusion rate oppose each other, and the peaks of the dissipation rate lag from those of the corresponding production rate.

  6. Monoclonal antibodies reacting with murine teratocarcinoma cells.

    PubMed Central

    Goodfellow, P N; Levinson, J R; Williams, V E; McDevitt, H O

    1979-01-01

    Monoclonal antibodies were produced in vitro by fusing mouse myeloma cells with spleen cells from a rat immunized with the C3H mouse teratocarcinoma C86-S1. After the fusion two clones were chosen for further analysis. The first clone, 3C4-10, produced an antibody recognizing an antigen with a distribution restricted to teratocarcinoma cell lines, an endoderm cell line, and a neuroblastoma. The second clone, 4A1-9, produced an antibody that reacted with all cultured murine cells tested and adult brain. Neither antibody reacted with preimplantation embryos. The 3C4-10 antibody recognized an antigen associated with proteins. The apparent molecular weight of the 3C4-10 antigen was greater than 100,000. PMID:284353

  7. Spectral simulations of reacting turbulent flows

    NASA Technical Reports Server (NTRS)

    Mcmurtry, Patrick A.; Givi, Peyman

    1991-01-01

    Spectral methods for simulating flows are reviewed, emphasizing their recent applications to reacting flow problems. Various classifications of spectral methods and their convergence properties are described and the 'spectral element' method is presented, highlighting its flexibility in dealing with complex flow geometries. The applications considered include chemical reactions in homogeneous turbulence, temporally evolving mixing layers, variable-density simulations, nonequilibrium chemistry, and spatially evolving mixing layers.

  8. Numerical Methods For Chemically Reacting Flows

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.; Yee, H. C.

    1990-01-01

    Issues related to numerical stability, accuracy, and resolution discussed. Technical memorandum presents issues in numerical solution of hyperbolic conservation laws containing "stiff" (relatively large and rapidly changing) source terms. Such equations often used to represent chemically reacting flows. Usually solved by finite-difference numerical methods. Source terms generally necessitate use of small time and/or space steps to obtain sufficient resolution, especially at discontinuities, where incorrect mathematical modeling results in unphysical solutions.

  9. Effect of heat release on the stability of compressible reacting mixing layer

    NASA Technical Reports Server (NTRS)

    Shin, Dong-Shin; Ferziger, J. H.

    1991-01-01

    Reacting free shear layers are of fundamental importance in many industrial systems including gas turbine combustors and rockets. Efficient propulsion systems are essential for air breathing supersonic ramjets in the high Mach number range. A limiting factor in these engines is the time for fuel and oxidizer to mix in the combustion chamber; for fast mixing, the flow must be vigorously turbulent which requires the laminar flow to be unstable. Understanding the stability characteristics of compressible reacting free shear layers is, therefore, very important and may allow one to control the flow. Low speed shear layers are highly unstable but, as chemical reaction and compressibility effects tend to stabilize them, it is important to investigate the stability of high speed reacting mixing layers. The latter consists of two fluid streams containing fuel and oxidizer respectively, and the conclusions are expected to apply, with quantitative modifications, to other shear flows, e.g., jets. Since low speed reacting cases have been studied earlier, we concentrate on the effects of Mach number and heat release. We are primarily interested in solving the stability problem over a large range of Mach number and heat release. In order to understand the effect of the heat release on the stability of this flow, one must first study the characteristics of the non-reacting flow. Inviscid theory is a reliable guide for understanding stability of compressible shear flows at moderate and large Reynolds numbers and is the basis for this work.

  10. A constitutive theory of reacting electrolyte mixtures

    NASA Astrophysics Data System (ADS)

    Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto

    2013-11-01

    A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).

  11. A random distribution reacting mixing layer model

    NASA Technical Reports Server (NTRS)

    Jones, Richard A.; Marek, C. John; Myrabo, Leik N.; Nagamatsu, Henry T.

    1994-01-01

    A methodology for simulation of molecular mixing, and the resulting velocity and temperature fields has been developed. The ideas are applied to the flow conditions present in the NASA Lewis Research Center Planar Reacting Shear Layer (PRSL) facility, and results compared to experimental data. A gaussian transverse turbulent velocity distribution is used in conjunction with a linearly increasing time scale to describe the mixing of different regions of the flow. Equilibrium reaction calculations are then performed on the mix to arrive at a new species composition and temperature. Velocities are determined through summation of momentum contributions. The analysis indicates a combustion efficiency of the order of 80 percent for the reacting mixing layer, and a turbulent Schmidt number of 2/3. The success of the model is attributed to the simulation of large-scale transport of fluid. The favorable comparison shows that a relatively quick and simple PC calculation is capable of simulating the basic flow structure in the reacting and nonreacting shear layer present in the facility given basic assumptions about turbulence properties.

  12. Numerical Prediction of Non-Reacting and Reacting Flow in a Model Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Davoudzadeh, Farhad; Liu, Nan-Suey

    2005-01-01

    The three-dimensional, viscous, turbulent, reacting and non-reacting flow characteristics of a model gas turbine combustor operating on air/methane are simulated via an unstructured and massively parallel Reynolds-Averaged Navier-Stokes (RANS) code. This serves to demonstrate the capabilities of the code for design and analysis of real combustor engines. The effects of some design features of combustors are examined. In addition, the computed results are validated against experimental data.

  13. Mixing of Multiple Jets with a Confined Subsonic Crossflow in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Liscinsky, David S.; Samuelsen, G. Scott; Smith, Clifford E.; Oechsle, Victor L.

    1996-01-01

    This paper summarizes NASA-supported experimental and computational results on the mixing of a row of jets with a confined subsonic crossflow in a cylindrical duct. The studies from which these results were derived investigated flow and geometric variations typical of the complex 3-D flowfield in the combustion chambers in gas turbine engines. The principal observations were that the momentum-flux ratio and the number of orifices were significant variables. Jet penetration was critical, and jet penetration decreased as either the number of orifices increased or the momentum-flux ratio decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the number of orifices was proportional to the square-root of the momentum-flux ratio. In the cylindrical geometry, planar variances are very sensitive to events in the near wall region, so planar averages must be considered in context with the distributions. The mass-flow ratios and orifices investigated were often very large (mass-flow ratio greater than 1 and ratio of orifice area-to-mainstream cross-sectional area up to 0.5), and the axial planes of interest were sometimes near the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations. The results shown also seem to indicate that non-reacting dimensionless scalar profiles can emulate the reacting flow equivalence ratio distribution reasonably well. The results cited suggest that further study may not necessarily lead to a universal 'rule of thumb' for mixer design for lowest emissions, because optimization will likely require an assessment for a specific application.

  14. A Visual Study of Vortex Generator Jets

    NASA Astrophysics Data System (ADS)

    Compton, Debora A.; Stadnicki, John

    1997-11-01

    A jet which issues from a small hole in a flow surface, pitched and skewed relative to the crossflow, creates a single streamwise vortex which resembles the flow downstream of a half-delta-wing vortex generator. The term ``vortex generator jet'' (VGJ) has been used to describe such a flow. Investigators of jet-generated vortices have recognized their applicability to active control and their flexibility in terms of being activated and deactivated. We have installed a spanwise array of VGJ's in a turbulent boundary layer in the zero-pressure-gradient test section of the 12" × 36" boundary layer wind tunnel at Boston University. The Reynolds number based on jet diameter is in the range 4000 < Re < 10000. Our experimental investigations include flow visualization of a single pitched and skewed jet in crossflow, as well as wall shear stress measurements downstream of the array of jets. To capture still images of a cross-section of the jet flow, a light sheet formed by a pulsed Nd:YAG laser is used to illuminate smoke-tagged jet fluid. The wall shear stress measurements are made using an oil-film interferometry technique. Parameters varied include jet velocity and angles of jet pitch and skew.

  15. Numerical Simulations of High-Speed Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Ton, V. T.; Karagozian, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.

    1994-01-01

    The essentially nonoscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.

  16. Numerical Simulations of High-Speed Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Ton, V. T.; Karagozin, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.

    1994-01-01

    The Essentially NonOscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.

  17. Numerical Simulations of High-Speed Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Ton, V. T.; Karagozin, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.

    1994-01-01

    The Essentially NonOscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.

  18. Numerical Simulations of High-Speed Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Ton, V. T.; Karagozian, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.

    1994-01-01

    The essentially nonoscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.

  19. Bouncing Jets

    NASA Astrophysics Data System (ADS)

    Wadhwa, Navish; Vlachos, Pavlos; Jung, Sunghwan

    2011-11-01

    Contrary to common intuition, free jets of fluid can ``bounce'' off each other on collision in mid-air, through the effect of a lubricating air film that separates the jets. We have developed a simple experimental setup to stably demonstrate and study the non-coalescence of jets on collision. We present the results of an experimental investigation of oblique collision between two silicone oil jets, supported by a simple analytical explanation. Our focus is on elucidating the role of various physical forces at play such as viscous stresses, capillary force and inertia. A parametric study conducted by varying the nozzle diameter, jet velocity, angle of inclination and fluid viscosity reveals the scaling laws for the quantities involved such as contact time. We observed a transition from bouncing to coalescence with an increase in jet velocity and inclination angle. We propose that a balance between the contact time of jets and the time required for drainage of the trapped air film can provide a criterion for transition from non-coalescence to coalescence.

  20. Direct numerical simulation of chemically reacting turbulence

    NASA Astrophysics Data System (ADS)

    Miyauchi, Toshio; Tanahashi, Mamoru

    In this paper, we present two results of direct numerical simulation of chemically reacting flows. One is direct numerical simulation of chemically reacting two-dimensional mixing layer and the other is direct numerical simulation of chemically reacting compressible isotropic turbulence. As for the mixing layer, a low Mach number approximation was used to take into account the variable density effects on the flow fields and to clarify the effects of heat release and density difference of a mean flow. In the case of density difference, expansion and baroclinic torque has a negative contribution to the local vorticity transport in the high density side and a positive contribution in the low density side which results in an asymmetric vortical structure structure. Thes density difference suppresses the growth of mixing layer and causes the overshoot of mean velocity only in the high density side which coincides with an experimental result. Coupling effects of heat release and desnity difference are also investigated. As for the homogeneous turbulence, fully compressible Navier-Stokes equations are solved to clarify the interaction between turbulence and chemical reaction in turbulent diffusion flame. The chemical reaction is suppressed by the increase of heat release because of the decrease of density and local Reynolds number. However, the decay of enstrophy with heat release is slower than that without heat release because of strong baroclinic torque which is generated near the reaction zone. Also, large amount of heat release causes increase in turbulent energy through the pressure dilatation term. The pressure dilatation term shows the periodic fluctuation which has an acoustic time scale. The fluctuation is enhanced by the heat release and travels in the turbulent field as pressure and dilatation waves.

  1. Process for reacting alcohols and olefins

    SciTech Connect

    Miller, J.T.; Nevitt, T.D.

    1985-01-29

    A method for producing branched aliphatic hydrocarbons by reacting H/sub 2/ with a C/sub 1/-C/sub 6/ alcohol and/or a C/sub 2/-C/sub 6/ olefin in the presence of a cadmium component and a support which comprises an amorphous refractory inorganic oxide, a pillared smectite or vermiculite clay, a molecular sieve consisting essentially of unexchanged or cation-exchanged chabazite, clinoptilite, zeolite A, zeolite L, zeolite X, zeolite Y, ultrastable zeolite Y, or crystalline borosilicate molecular sieve, or a combination thereof.

  2. Stability of compressible reacting mixing layer

    NASA Technical Reports Server (NTRS)

    Shin, D. S.; Ferziger, J. H.

    1991-01-01

    Linear instability of compressible reacting mixing layers is analyzed with emphasis on the effects of heat release and compressibility. Laminar solutions of the compressible boundary-layer equations are used as the base flows. The parameters of this study are the adiabatic flame temperature, the Mach number of the upper stream, frequency, wavenumber, and the direction of propagation of the disturbance wave. Stability characteristics of the flow are presented. Three groups of unstable modes are found when the Mach number and/or heat release are large. Finally, it is shown that the unstable modes are two-dimensional for large heat release even in highly compressible flow.

  3. Observations of breakup processes of liquid jets using real-time X-ray radiography

    NASA Technical Reports Server (NTRS)

    Char, J. M.; Kuo, K. K.; Hsieh, K. C.

    1988-01-01

    To unravel the liquid-jet breakup process in the nondilute region, a newly developed system of real-time X-ray radiography, an advanced digital image processor, and a high-speed video camera were used. Based upon recorded X-ray images, the inner structure of a liquid jet during breakup was observed. The jet divergence angle, jet breakup length, and fraction distributions along the axial and transverse directions of the liquid jets were determined in the near-injector region. Both wall- and free-jet tests were conducted to study the effect of wall friction on the jet breakup process.

  4. Development of jets, outflows and HH objects

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; López-Cámara, D.; Cantó, J.; Esquivel, A.; Rodríguez-González, A.; Velázquez, P. F.

    2010-11-01

    The entrainment of molecular material through a mixing layer along the walls of a HH jet beam has been modeled analytically (Cantó & Raga 1991; Stahler 1994) and numerically (Taylor & Raga 1995; Lim et al. 1999). However, when full radiative jet simulations are carried out, the molecular, environmental material remains within a dense shell which follows the shape of the leading bow shock. Because of this, no molecular material reaches the outer boundary of the jet beam, and therefore no “side-entrainment” of molecular gas into the fast jet beam takes place.

  5. Two-phase flow calculations of reacting and non-reacting non-swirling air-assisted methanol sprays

    NASA Astrophysics Data System (ADS)

    Tolpadi, A. K.

    1993-06-01

    The gas phase flow field and the spray characteristics are calculated for a methanol spray under both nonburning and burning conditions, and the results are compared with experimental data. The calculated gas phase flowfield shows low velocity fluid on the outside being entrained by the high speed jet. Gas phase velocity profiles from the computations for nonreacting flow agree completely with experimental data, while slight disagreements are found for reacting flows downstream. Good agreement with data is obtained for all liquid phase droplet size ranges in the case of nonreacting sprays and close to the atomizer. Near the injector, agreement is good only for the larger droplet size ranges. Comparisons of liquid phase attributes are best at initial stations close to the injector but are worse farther donwstream for both nonburning and burning situations. Smaller droplets follow the gas phase flowfield with a slight slip. Larger droplets are less affected by the flowfield and display significant slip velocities in both nonburning and burning sprays.

  6. Jet-Contaminant Interaction in Confined Geometries

    DTIC Science & Technology

    1985-02-01

    A numerical simulation is presented for investigation of the early phase of the flow interaction between a water jet and a chemical contaminant residing in cavities of a wall and in corners of two perpendicular walls. Such a interaction often occurs in surface decontamination processes. The flow model for this analysis is a two-dimensional, two-fluid flow governed by the unsteady

  7. Computation of Reacting Flows in Combustion Processes

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Chen, Kuo-Huey

    1997-01-01

    The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.

  8. Criegee Intermediates React with Levoglucosan on Water.

    PubMed

    Enami, Shinichi; Hoffmann, Michael R; Colussi, A J

    2017-08-17

    Levoglucosan (Levo), a C6-anhydrosaccharide produced in the combustion of cellulosic materials, is the major component of aerosols produced from biomass burning over vast regions worldwide. Levo has long been considered chemically inert and thus has been used as a tracer of biomass burning sources. However, we now show that sugars including Levo, glucose, arabitol, and mannitol react rapidly with Criegee intermediates (CIs) generated during the ozonolysis of sesquiterpenes on the surface of water:acetonitrile microjets. Hydrophilic Levo reacts faster with CIs than with water or surface-active 1-octanol at air-aqueous interfaces. This unexpected phenomenon is likely associated with the relatively low water density at air-aqueous interfaces coupled with a higher gas-phase acidity of the saccharide hydroxyl groups (i.e., -OH) versus n-alkanols. Results presented herein show that aerosol saccharides are in fact reactive toward CIs. Given the abundance of saccharides in the atmosphere, they may be important contributors to the growth and mass loading of secondary organic aerosols.

  9. REAC/TS handles hot topics

    SciTech Connect

    Not Available

    1986-08-01

    William R. Bibb, MD is the director of research and waste management at a unique facility that deals exclusively in radiation accidents-the Radiation Emergency Assistance Center/Training Site(REAC/TS) in Oak Ridge, Tenn. REAC/TS is housed in the 400-bed Oak Ridge Methodist Medical Center. It was instituted seven years ago to provide emergency care for more than 16,000 workers at Oak Ridge National Laboratories in the event of a nuclear accident. It has a medical staff of eight on call 24 hours a day. They are still waiting for their first accident patient. Nonetheless, the REAC/TS staff manages to keep occupied. The facility, which is operated by Oak Ridge Associated Universities for the Department of Energy, has become something of a teaching hospital, and the staff conducts classes on treating radiation-exposure accidents. The week-long courses are free and accommodate 30 health professionals at a time. In seven years of operation, the facility has graduated thousands of physicians, nurses, and paramedics.

  10. Business Jet

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Citation Jet, developed by Cessna Aircraft Company, Wichita, KS, is the first business jet to employ Langley Research Center's natural laminar flow (NLF) technology. NLF reduces drag and therefore saves fuel by using only the shape of the wing to keep the airflow smooth, or laminar. This reduces friction between the air and wing, and therefore, reduces drag. NASA's Central Industrial Applications Center, Rural Enterprises, Inc., Durant, OK, its Kansas affiliate, and Wichita State University assisted in the technology transfer.

  11. Emerging jets

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro; Stolarski, Daniel; Weiler, Andreas

    2015-05-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  12. Isothermal and Reactive Turbulent Jets in Cross-Flow

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim; Bush, Scott; Ibrahim, Irene

    2004-11-01

    Jets in cross flow have numerous applications including vertical/short takeoff/landing (V/STOL) aircraft, cooling jets for gas turbine blades and combustion air supply inlets in gas turbine engine. The properties exhibited by these jets are dictated by complex three dimensional turbulence structures which form due to the interaction of the jet with the freestream. The isothermal tests are conducted in a wind tunnel measuring the characteristics of air jets injected perpendicular into an otherwise undisturbed air stream. Different nozzle exit geometries of the air jets were tested including circular, triangular and elongated configurations. Jets are injected in single and paired combinations with other jets to measure the effect of mutual interaction on the parameters mentioned. Quantitative velocity fields are obtained using PIV. The data obtained allows the extraction of flow parameters such as jet structure, penetration and mixing. The reacting tests include separate and combined jets of fuel/air mixture utilized to explore the stabilization of combustion at various operating conditions. Different geometrical configurations of transverse jets are tested to determine the shape and combination of jets that will optimize the jets ability to successfully stabilize a flame.

  13. Pdf - Transport equations for chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Kollmann, W.

    1989-01-01

    The closure problem for the transport equations for pdf and the characteristic functions of turbulent, chemically reacting flows is addressed. The properties of the linear and closed equations for the characteristic functional for Eulerian and Lagrangian variables are established, and the closure problem for the finite-dimensional case is discussed for pdf and characteristic functions. It is shown that the closure for the scalar dissipation term in the pdf equation developed by Dopazo (1979) and Kollmann et al. (1982) results in a single integral, in contrast to the pdf, where double integration is required. Some recent results using pdf methods obtained for turbulent flows with combustion, including effects of chemical nonequilibrium, are discussed.

  14. PDF approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1993-01-01

    The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.

  15. Linear stability of the reacting mixing layer

    NASA Technical Reports Server (NTRS)

    Shin, D. S.; Ferziger, J. H.

    1990-01-01

    This work is aimed at understanding the stability of reacting mixing layers. Linear instability is analyzed for a wide variety of mixing layers to study the effects of the heat release. Analytic functions as well as laminar solutions of thin shear layer equations are used as the base flows. Both temporal and spatial developing layers are investigated. The laminar solutions are more consistent than the analytic functions. The stability properties are sensitive to the mean profiles. Including variable transport properties changes the mean profiles considerably. Chemical reaction during the instability is not very important; its primary effect is to change the laminar profiles. New modes are found in the outer part of the layer when the heat release is significant, and become dominant for large heat release. In general, heat release stabilizes the center mode but the outer mode is less affected.

  16. Equilibrium properties of chemically reacting gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The equilibrium energy, enthalpy, entropy, specific heat at constant volume and constant pressure, and the equation of state of the gas are all derived for chemically reacting gas mixtures in terms of the compressibility, the mol fractions, the thermodynamic properties of the pure gas components, and the change in zero point energy due to reaction. Results are illustrated for a simple diatomic dissociation reaction and nitrogen is used as an example. Next, a gas mixture resulting from combined diatomic dissociation and atomic ionization reactions is treated and, again, nitrogen is used as an example. A short discussion is given of the additional complexities involved when precise solutions for high-temperature air are desired, including effects caused by NO produced in shuffle reactions and by other trace species formed from CO2, H2O and Ar found in normal air.

  17. Theoretical kinetic computations in complex reacting systems

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1986-01-01

    Nasa Lewis' studies of complex reacting systems at high temperature are discussed. The changes which occur are the result of many different chemical reactions occurring at the same time. Both an experimental and a theoretical approach are needed to fully understand what happens in these systems. The latter approach is discussed. The differential equations which describe the chemical and thermodynamic changes are given. Their solution by numerical techniques using a detailed chemical mechanism is described. Several different comparisons of computed results with experimental measurements are also given. These include the computation of (1) species concentration profiles in batch and flow reactions, (2) rocket performance in nozzle expansions, and (3) pressure versus time profiles in hydrocarbon ignition processes. The examples illustrate the use of detailed kinetic computations to elucidate a chemical mechanism and to compute practical quantities such as rocket performance, ignition delay times, and ignition lengths in flow processes.

  18. Pdf - Transport equations for chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Kollmann, W.

    1989-01-01

    The closure problem for the transport equations for pdf and the characteristic functions of turbulent, chemically reacting flows is addressed. The properties of the linear and closed equations for the characteristic functional for Eulerian and Lagrangian variables are established, and the closure problem for the finite-dimensional case is discussed for pdf and characteristic functions. It is shown that the closure for the scalar dissipation term in the pdf equation developed by Dopazo (1979) and Kollmann et al. (1982) results in a single integral, in contrast to the pdf, where double integration is required. Some recent results using pdf methods obtained for turbulent flows with combustion, including effects of chemical nonequilibrium, are discussed.

  19. Quantitative imaging of turbulent and reacting flows

    SciTech Connect

    Paul, P.H.

    1993-12-01

    Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

  20. Computation of high-speed reacting flows

    NASA Astrophysics Data System (ADS)

    Clutter, James Keith

    A computational study has been conducted for high-speed reacting flows relevant to munition problems, including shock-induced combustion and gun muzzle blast. The theoretical model considers inviscid and viscous flows, multi-species, finite rate chemical reaction schemes, and turbulence. Both the physical and numerical aspects are investigated to determine their impact on simulation accuracy. A range of hydrogen and oxygen reaction mechanisms are evaluated for the shock-induced combustion flow scenario. Characteristics of the mechanisms such as the induction time, heat release rate, and second explosion limit are found to impact the accuracy of the computation. On the numerical side, reaction source term treatments, including logarithmic weighting and scaling modifications, are investigated to determine their effectiveness in addressing numerical errors caused by disparate length scales between chemical reactions and fluid dynamics. It is demonstrated that these techniques can enhance solution accuracy. Computations of shock-induced combustion have also been performed using a κ-ɛ model to account for the turbulent transport of species and heat. An algebraic model of the temperature fluctuations has been used to estimate the impact of the turbulent effect on the chemical reaction source terms. The turbulence effects when represented with the current models are found to be minimal in the shock-induced combustion flow investigated in the present work. For the gun system simulations, computations for both a large caliber howitzer and small caliber firearms are carried out. A reduced kinetic scheme and an algebraic turbulence model are employed. The present approach, which accounts for the chemical reaction aspects of the gun muzzle blast problem, is found to improve the prediction of peak overpressures and can capture the effects produced by small caliber firearm sound suppressors. The present study has established the numerical and physical requirements for

  1. Supersonic Flow of Chemically Reacting Gas-Particle Mixtures. Volume 2: RAMP - A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary.

  2. Antibodies in human filariasis sera react with diethylcarbamazine.

    PubMed Central

    Ravindran, B; Satapathy, A K; Hussain, T; Pattnaik, A M

    1989-01-01

    We demonstrate by an ELISA the presence of antibodies in human filarial sera that react with diethylcarbamazine (DEC); they appear to be primarily filarial antibodies cross-reacting with DEC skeleton, since affinity-purified DEC antibodies strongly react with Wuchereria bancrofti microfilariae. These observations indicate a possible antigenic mimicry between the drug and some parasite component. PMID:12412752

  3. Laser-Sharp Jet Splits Water

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A jet of gas firing out of a very young star can be seen ramming into a wall of material in this infrared image from NASA's Spitzer Space Telescope.

    The young star, called HH 211-mm, is cloaked in dust and can't be seen. But streaming away from the star are bipolar jets, color-coded blue in this view. The pink blob at the end of the jet to the lower left shows where the jet is hitting a wall of material. The jet is hitting the wall so hard that shock waves are being generated, which causes ice to vaporize off dust grains. The shock waves are also heating material up, producing energetic ultraviolet radiation. The ultraviolet radiation then breaks the water vapor molecules apart.

    The red color at the end of the lower jet represents shock-heated iron, sulfur and dust, while the blue color in both jets denotes shock-heated hydrogen molecules.

    HH 211-mm is part of a cluster of about 300 stars, called IC 348, located 1,000 light-years away in the constellation Perseus.

    This image is a composite of infrared data from Spitzer's infrared array camera and its multiband imaging photometer. Light with wavelengths of 3.6 and 4.5 microns is blue; 8-micron-light is green; and 24-micron light is red.

  4. Laser-Sharp Jet Splits Water

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A jet of gas firing out of a very young star can be seen ramming into a wall of material in this infrared image from NASA's Spitzer Space Telescope.

    The young star, called HH 211-mm, is cloaked in dust and can't be seen. But streaming away from the star are bipolar jets, color-coded blue in this view. The pink blob at the end of the jet to the lower left shows where the jet is hitting a wall of material. The jet is hitting the wall so hard that shock waves are being generated, which causes ice to vaporize off dust grains. The shock waves are also heating material up, producing energetic ultraviolet radiation. The ultraviolet radiation then breaks the water vapor molecules apart.

    The red color at the end of the lower jet represents shock-heated iron, sulfur and dust, while the blue color in both jets denotes shock-heated hydrogen molecules.

    HH 211-mm is part of a cluster of about 300 stars, called IC 348, located 1,000 light-years away in the constellation Perseus.

    This image is a composite of infrared data from Spitzer's infrared array camera and its multiband imaging photometer. Light with wavelengths of 3.6 and 4.5 microns is blue; 8-micron-light is green; and 24-micron light is red.

  5. NASA Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  6. [Jet lag].

    PubMed

    Lagarde, D; Doireau, P

    1997-01-01

    Desynchronization of circadian rhythmicity resulting from rapid travel through at least four time zones leads to symptoms known in everyday English as jet-lag. The most detrimental effect of jet-lag is fatigue with poor alertness and psychomotor performance. Severity is subject to individual variation in susceptibility (morning/evening typology, age,...) and environmental factors (direction of travel, number of time zones crossed, psychosocial environment...). Many measures used to prevent or reduce jet lag are inappropriate or ineffective and some may even be dangerous, such as use of melatonin. One of the most reliable preventive techniques consists of reinforcing social synchronizers by maintaining exposure to sunlight and social activity. Only two drugs currently available on the market can be recommended, i.e. non-benzodiazepinic hypnotics which induce high quality sleep to allow quick recovery and a new time-release caffeine agent which has been shown to prolong psychomotor performance.

  7. Droplet production due to a filming jet in crossflow

    NASA Astrophysics Data System (ADS)

    Shedd, Timothy; Corn, May; Arienti, Marco; Soteriou, Marios

    2008-11-01

    This work presents the results of a study of a liquid jet atomized by a gas cross-flow in the vicinity of a plane wall normal to the liquid jet axis. Droplets and ligaments with sufficient momentum will impinge on the wall, forming a thin liquid film. A highly time-resolved fluorescent liquid film thickness measurement technique is used together with high speed video to correlate the temporal behavior of jet and droplet impingement with the film thickness. Results of time correlated PDPA and film thickness measurements are also presented, showing the relationship between droplet production and film thickness versus droplet production from the jet alone.

  8. Multi Jet Induced Forces and Moments on VTOL Aircraft Hovering in and Out of Ground Effect

    DTIC Science & Technology

    1977-06-19

    methodology emphasizes arcurate analytical and empirical modeling of free and wall-jet flows (especially turbulent entrainment); ground wall-jet interactions...ope’rating In the hover mode in rnd out o•I ground effect. The methodology emphasizes accurate analytical and ernpirical modeling of free and wall-Jet...Line) Segment A-B ........ 46 32 Douglas Neumann Panel Modeling ........... ............... 50 33 Supercritical Airfoil Pressure Distribution

  9. Uncertainty quantification in reacting flow modeling.

    SciTech Connect

    Le MaÒitre, Olivier P.; Reagan, Matthew T.; Knio, Omar M.; Ghanem, Roger Georges; Najm, Habib N.

    2003-10-01

    Uncertainty quantification (UQ) in the computational modeling of physical systems is important for scientific investigation, engineering design, and model validation. In this work we develop techniques for UQ based on spectral and pseudo-spectral polynomial chaos (PC) expansions, and we apply these constructions in computations of reacting flow. We develop and compare both intrusive and non-intrusive spectral PC techniques. In the intrusive construction, the deterministic model equations are reformulated using Galerkin projection into a set of equations for the time evolution of the field variable PC expansion mode strengths. The mode strengths relate specific parametric uncertainties to their effects on model outputs. The non-intrusive construction uses sampling of many realizations of the original deterministic model, and projects the resulting statistics onto the PC modes, arriving at the PC expansions of the model outputs. We investigate and discuss the strengths and weaknesses of each approach, and identify their utility under different conditions. We also outline areas where ongoing and future research are needed to address challenges with both approaches.

  10. Comparison of reacting and non-reacting shear layers at a high subsonic Mach number

    NASA Technical Reports Server (NTRS)

    Chang, C. T.; Marek, C. J.; Wey, C.; Jones, R. A.; Smith, M. J.

    1993-01-01

    The flow field in a hydrogen-fueled planar reacting shear layer was measured with an LDV system and is compared with a similar air to air case without combustion. Measurements were made with a speed ratio of 0.34 with the highspeed stream at Mach 0.71. They show that the shear layer with reaction grows faster than one without, and both cases are within the range of data scatter presented by the established database. The coupling between the streamwise and the cross-stream turbulence components inside the shear layer is slow, and reaction only increased it slightly. However, a more organized pattern of the Reynolds stress is present in the reacting shear layer, possibly as a result of larger scale structure formation in the layer associated with heat release.

  11. Planarians require an intact brain to behaviorally react to cocaine, but not to react to nicotine.

    PubMed

    Pagán, O R; Deats, S; Baker, D; Montgomery, E; Wilk, G; Tenaglia, M; Semon, J

    2013-08-29

    Planarians possess a rudimentary brain with many features in common with vertebrate brains. They also display a remarkable capacity for tissue regeneration including the complete regeneration of the nervous system. Using the induction of planarian seizure-like movements (pSLMs) as a behavioral endpoint, we demonstrate that an intact nervous system is necessary for this organism to react to cocaine exposure, but not necessary to react to nicotine administration. Decapitated planarians (Girardia tigrina) display pSLMs indistinguishable from intact worms when exposed to nicotine, but cocaine-induced pSLMs are reduced by about 95% upon decapitation. Decapitated worms recover their normal sensitivity to cocaine within 5 days after head amputation. In worms where half of the brain was removed or partially dissected, the expression of cocaine-induced pSLMs was reduced by approximately 75%. Similar amputations at the level of the tail did not show a significant decrease to cocaine exposure. To the best of our knowledge, our work is the first report that explores how regenerating planarians react to the exposure of cocaine.

  12. Planarians require an intact brain to behaviorally react to cocaine, but not to react to nicotine

    PubMed Central

    Pagán, Oné R.; Deats, Sean; Baker, Debra; Montgomery, Erica; Wilk, Galia; Tenaglia, Matthew; Semon, Joshua

    2013-01-01

    Planarians possess a rudimentary brain with many features in common with vertebrate brains. They also display a remarkable capacity for tissue regeneration including the complete regeneration of the nervous system. Using the induction of planarian seizure-like movements (pSLMs) as a behavioral endpoint, we demonstrate that an intact nervous system is necessary for this organism to react to cocaine exposure, but not necessary to react to nicotine administration. Decapitated planarians (Girardia tigrina) display pSLMs indistinguishable from intact worms when exposed to nicotine, but cocaine-induced pSLMs are reduced by about 95% upon decapitation. Decapitated worms recover their normal sensitivity to cocaine within five days after head amputation. In worms where half of the brain was removed or partially dissected, the expression of cocaine-induced pSLMs was reduced by approximately 75 %. Similar amputations at the level of the tail did not show a significant decrease to cocaine exposure. To the best of our knowledge, our work is the first report that explores how regenerating planarians react to the exposure of cocaine. PMID:23684614

  13. An application of a two-equation model of turbulence to three-dimensional chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1994-01-01

    A numerical study of three dimensional chemically reacting and non-reacting flowfields is conducted using a two-equation model of turbulence. A generalized flow solver using an implicit Lower-Upper (LU) diagonal decomposition numerical technique and finite-rate chemistry has been coupled with a low-Reynolds number two-equation model of turbulence. This flow solver is then used to study chemically reacting turbulent supersonic flows inside combustors with synergetic fuel injectors. The reacting and non-reacting turbulent combustor solutions obtained are compared with zero-equation turbulence model solutions and with available experimental data. The hydrogen-air chemistry is modeled using a nine-species/eighteen reaction model. A low-Reynolds number k-epsilon model was used to model the effect of turbulence because, in general, the low-Reynolds number k-epsilon models are easier to implement numerically and are far more general than algebraic models. However, low-Reynolds number k-epsilon models require a much finer near-wall grid resolution than high-Reynolds number models to resolve accurately the near-wall physics. This is especially true in complex flowfields, where the stiff nature of the near-wall turbulence must be resolved. Therefore, the limitations imposed by the near-wall characteristics and compressible model corrections need to be evaluated further. The gradient-diffusion hypothesis is used to model the effects of turbulence on the mass diffusion process. The influence of this low-Reynolds number turbulence model on the reacting flowfield predictions was studied parametrically.

  14. Turbulence-chemistry interactions in reacting flows

    SciTech Connect

    Barlow, R.S.; Carter, C.D.

    1993-12-01

    Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.

  15. Radiative interactions in chemically reacting compressible nozzle flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, J.; Tiwari, Surendra N.

    1994-01-01

    The two-dimensional spatially elliptic Navier-Stokes equations have been used to investigate the radiative interactions in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The radiative heat transfer term in the energy equation is simulated using the Monte Carlo method (MCM). The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The spectral correlation has been considered in the Monte Carlo formulations. Results obtained demonstrate that the effect of radiation on the flow field is minimal but its effect on the wall heat transfer is significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and the nozzle size on the radiative and conductive wall fluxes.

  16. Mixing characteristics of a ducted, elliptical jet with dump

    SciTech Connect

    Schadow, K.C.; Wilson, K.J.; Parr, D.M.; Gutmark, E.

    1986-01-01

    Mixing between elliptical ducted air-jets with dump and nitrogen radially injected through the duct walls was experimentally studied using hot-wire anemometry and gas-sampling techniques. Mixing was considerably increased when the air-jet was issued from elliptical relative to circular jet-exit cross-sections. Elliptical jets issued from orifices provided better mixing than issued from pipes. Additional mixing enhancement was achieved when the elliptical jets were acoustically forced by excited resonant pressure waves of the duct. The mean and turbulence velocity measurements provided insight into the mechanism of the observed mixing enhancement.

  17. Spectral peculiarities of turbulent pulsations of submerged water jets

    NASA Astrophysics Data System (ADS)

    Znamenskaya, I. A.; Koroteeva, E. Yu.; Novinskaya, A. M.; Sysoev, N. N.

    2016-07-01

    The spectra of turbulent jet temperature pulsations at 1-40 Hz frequencies have been experimentally studied based on high-speed thermography of the water boundary layer: the region where an impact jet interacts with a surface transparent to IR radiation, as well as the near-wall region where two submerged jets interact in a disc-shaped tee-joint. It has been indicated that the slopes of the spectra of impact submerged jet turbulent pulsations are close to-5/3 and a double inertial interval exists in a quasi-2D turbulent flow that is formed when two jets mix.

  18. Aeroacoustic characteristics of acoustically excited jets

    NASA Astrophysics Data System (ADS)

    Vlasov, E. V.; Ginevskii, A. S.; Karavosov, R. K.

    The effect of acoustic excitation on the aerodynamic and acoustic characteristics of air jets at Reynolds numbers of (0.5-4) x 10 to the 5th was studied experimentally. It is shown that high-frequency excitation (Sh sub s not greater than 1) causes a reduction in the range of the jet and an increase in broadband noise generated by the jet. High-frequency excitation (Sh sub s = 3-5) produces the opposite effect. These effects were observed for both laminar and turbulent boundary layers on the nozzle wall in the exit section. An analysis is made of the parameters of the far acoustic field of the jet as it is excited by gas-jet radiators.

  19. Aerodynamic characteristics and thermal structure of nonpremixed reacting swirling wakes at low Reynolds numbers

    SciTech Connect

    Huang, Rong F.; Yen, Shun C.

    2008-12-15

    The aerodynamic characteristics and thermal structure of uncontrolled and controlled swirling double-concentric jet flames at low Reynolds numbers are experimentally studied. The swirl and Reynolds numbers are lower than 0.6 and 2000, respectively. The flow characteristics are diagnosed by the laser-light-sheet-assisted Mie scattering flow visualization method and particle image velocimetry (PIV). The thermal structure is measured by a fine-wire thermocouple. The flame shapes, combined images of flame and flow, velocity vector maps, streamline patterns, velocity and turbulence distributions, flame lengths, and temperature distributions are discussed. The flow patterns of the no-control case exhibit an open-top, single-ring vortex sitting on the blockage disc with a jetlike swirling flow evolving from the central disc face toward the downstream area. The rotation direction and size of the near-disc vortex, as well as the flow properties, change in different ranges of annulus swirl number and therefore induce three characteristic flame modes: weak swirling flame, lifted flame, and turbulent reattached flame. Because the near-disc vortex is open-top, the radial dispersion of the fuel-jet fluids is not significantly enhanced by the annulus swirling flow. The flows of the reacting swirling double-concentric jets at such low swirl and Reynolds numbers therefore present characteristics of diffusion jet flames. In the controlled case, the axial momentum of the central fuel jet is deflected radially by a control disc placed above the blockage disc. This arrangement can induce a large near-disc recirculation bubble and high turbulence intensities. The enhanced mixing hence tremendously shortens the flame length and enlarges the flame width. (author)

  20. A Validation Summary of the NCC Turbulent Reacting/non-reacting Spray Computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, N.-S. (Technical Monitor)

    2000-01-01

    This pper provides a validation summary of the spray computations performed as a part of the NCC (National Combustion Code) development activity. NCC is being developed with the aim of advancing the current prediction tools used in the design of advanced technology combustors based on the multidimensional computational methods. The solution procedure combines the novelty of the application of the scalar Monte Carlo PDF (Probability Density Function) method to the modeling of turbulent spray flames with the ability to perform the computations on unstructured grids with parallel computing. The calculation procedure was applied to predict the flow properties of three different spray cases. One is a nonswirling unconfined reacting spray, the second is a nonswirling unconfined nonreacting spray, and the third is a confined swirl-stabilized spray flame. The comparisons involving both gas-phase and droplet velocities, droplet size distributions, and gas-phase temperatures show reasonable agreement with the available experimental data. The comparisons involve both the results obtained from the use of the Monte Carlo PDF method as well as those obtained from the conventional computational fluid dynamics (CFD) solution. Detailed comparisons in the case of a reacting nonswirling spray clearly highlight the importance of chemistry/turbulence interactions in the modeling of reacting sprays. The results from the PDF and non-PDF methods were found to be markedly different and the PDF solution is closer to the reported experimental data. The PDF computations predict that most of the combustion occurs in a predominantly diffusion-flame environment. However, the non-PDF solution predicts incorrectly that the combustion occurs in a predominantly vaporization-controlled regime. The Monte Carlo temperature distribution shows that the functional form of the PDF for the temperature fluctuations varies substantially from point to point. The results also bring to the fore some of the

  1. Jet lag.

    PubMed

    Herxheimer, Andrew

    2008-12-04

    Jet lag affects most air travellers crossing five or more time zones; it tends to be worse on eastward than on westward flights. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of interventions to prevent or minimise jet lag? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2008 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found five systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: hypnotics, melatonin, and lifestyle and environmental adaptations.

  2. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    SciTech Connect

    Chao, Y.; Chou, W.; Liu, S.

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder`s ASM incorporated with Sarkar`s modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield. 36 refs.

  3. A Course in Transport Phenomena in Multicomponent, Multiphase, Reacting Systems.

    ERIC Educational Resources Information Center

    Carbonell, R. G.; Whitaker, S.

    1978-01-01

    This course concentrates on a rigorous development of the multicomponent transport equations, boundary conditions at phase interfaces, and volume-averaged transport equations for multiphase reacting systems. (BB)

  4. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop Hα macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Å snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T ~ 104 - 105 K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  5. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    SciTech Connect

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  6. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  7. Gas and drop behavior in reacting and non-reacting air-blast atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mcdonell, Vincent G.; Samuelsen, Scott

    1991-01-01

    A detailed study of the two-phase flow produced by a gas-turbine air-blast atomizer is performed with the goal of identifying the interaction between the two phases for both nonreacting and reacting conditions. A two-component phase Doppler interferometry is utilized to characterize three flowfields produced by the atomizer: (1) the single-phase flow, (2) the two-phase nonreacting spray, and (3) the two-phase reacting spray. Measurements of the mean and fluctuating axial and azimuthal velocities for each phase are obtained. In addition, the droplet size distribution, volume flux, and concentration are measured. The results reveal the strong influence of the dispersed phase on the gas, and the influence of reaction on both the gas and the droplet field. The presence of the spray significantly alters the inlet condition of the atomizer. With this alteration quantified, it is possible to deduce that the inertia associated with the dispersed phase damps the fluctuating velocities of the gas. Reaction reduces the volume flux of the droplets, broadens the local volume distribution of the droplets in the region of the reaction zone, increases the axial velocities and radial spread of the gas, and increases the anisotropy in the region of the reaction zone.

  8. Gas and drop behavior in reacting and non-reacting air-blast atomizer sprays

    NASA Astrophysics Data System (ADS)

    McDonell, Vincent G.; Samuelsen, Scott

    1991-10-01

    A detailed study of the two-phase flow produced by a gas-turbine air-blast atomizer is performed with the goal of identifying the interaction between the two phases for both nonreacting and reacting conditions. A two-component phase Doppler interferometry is utilized to characterize three flowfields produced by the atomizer: (1) the single-phase flow, (2) the two-phase nonreacting spray, and (3) the two-phase reacting spray. Measurements of the mean and fluctuating axial and azimuthal velocities for each phase are obtained. In addition, the droplet size distribution, volume flux, and concentration are measured. The results reveal the strong influence of the dispersed phase on the gas, and the influence of reaction on both the gas and the droplet field. The presence of the spray significantly alters the inlet condition of the atomizer. With this alteration quantified, it is possible to deduce that the inertia associated with the dispersed phase damps the fluctuating velocities of the gas. Reaction reduces the volume flux of the droplets, broadens the local volume distribution of the droplets in the region of the reaction zone, increases the axial velocities and radial spread of the gas, and increases the anisotropy in the region of the reaction zone.

  9. Turbulence measurement in a reacting and non-reacting shear layer at a high subsonic Mach number

    NASA Technical Reports Server (NTRS)

    Chang, C. T.; Marek, C. J.; Wey, C.; Jones, R. A.; Smith, M. J.

    1993-01-01

    The results of two component velocity and turbulence measurements are presented which were obtained on a planar reacting shear layer burning hydrogen. Quantitative LDV and temperature measurements are presented with and without chemical reaction within the shear layer at a velocity ratio of 0.34 and a high speed Mach number of 0.7. The comparison showed that the reacting shear layer grew faster than that without reaction. Using a reduced width coordinate, the reacting and non-reacting profiles were very similar. The peak turbulence for both cases was 20 percent.

  10. Combined LAURA-UPS solution procedure for chemically-reacting flows. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1994-01-01

    A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flowfields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a noncatalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the noncatalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated and the nonequilibrium results are compared with a perfect gas solution, showing that while the surface pressure is relatively unchanged by the inclusion of reacting chemistry the nonequilibrium heating is 25 percent higher. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three dimensional case over an all thin-layer Navier-Stokes solution.

  11. Wall turbulence without walls

    NASA Astrophysics Data System (ADS)

    Mizuno, Yoshinori; Jimenez, Javier

    2008-11-01

    Direct numerical simulations are presented of isolated logarithmic layers without an underlying buffer zone. They are implemented by enforcing artificial boundary conditions within the logarithmic layer which are synthesized from values from the interior of the flow. As an example, simulations of a half-channel employing this technique are discussed. The results exhibit logarithmic mean velocity profiles, and velocity fluctuation intensities that are similar to those obtained by the full DNS of half or full channels. Those results strongly suggest that the formation of a logarithmic layer is not overly dependent on the presence of a near-wall region, and that such a flow can exist by itself. The technique enables us to perform conceptual experiments to clarify what is essential to the logarithmic layer. For example, preliminary results show that the logarithmic layer cannot be created only by a non-uniform shear, and requires a spatial gradient of the scales of the fluctuations. Somewhat surprisingly, some simulations result in Kármán constants fairly different from κ=0.4, providing clues to what determines κ in real wall turbulence.

  12. An Experimental Investigation of Chemically-Reacting, Gas-Phase Turbulent Jets

    DTIC Science & Technology

    1991-04-12

    57.8 cm (22.75 in.) length of Pt-10%Rh wire welded to a pair of 356 pm (0.014 in.) diameter by 5cm (2 in.) long inconel prongs. Platinum was chosen...tank was nitric acid pickled, the F 2 mixing vessels were electropolished , and the NO mixing vessels were clear anodized prior to installation. Before

  13. Dynamic Behavior of Reacting Gas Jets Submerged in Liquids: A Photographic Study.

    DTIC Science & Technology

    1986-09-01

    W. B. Behnke, Jr ., Commonwealth Edison Co., Chicago, IL 60690 W. P. Chernock, Combustion Engineering, Inc., Windsor, CT 06095 J. M. Hendrie...92152-5000 Dr. Earl Quandt, Jr . Code 2704 David Taylor Naval Ship Research and Development Center Annapolis, MD 21402 Mr. Richard Bloomquist Code 2752... Darsie Advanced Technology Group Sunstrand Energy Systems 4747 Harrison Avenue Rockford, IL 61101 Professor Gerard M. Faeth Department of Aerospace

  14. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.

  15. Latest results from JET

    NASA Astrophysics Data System (ADS)

    JET Team; JET Team*

    1992-12-01

    Plasma-wall interactions have been important in many aspects of JET's programme during the past year. A major achievement has been the first production of significant fusion power from the deuterium-tritium reaction. Techniques of tritium handling and recovery have been developed and tested. The tokamak has operated extensively in the X-point configuration and comparisons have been made between carbon and beryllium target materials. Experiments have been made to ameliorate the heat load on the divertor targets by strong gas puffing as well as by careful tile design and alignment. ELMs have been utilized to produce a quasi steady-state H-mode with duration of about 20 s.

  16. Implicit methods for computing chemically reacting flow

    NASA Astrophysics Data System (ADS)

    Li, C. P.

    Modeling the inviscid air flow and its constituents over a hypersonically flying body requires a large system of Euler and chemical rate equations in three spatial coordinates. In most cases, the simplest approach to solve for the variables would be based on explicit integration of the governing equations. But the standard techniques are not suitable for this purpose because the integration step size must be inordinately small in order to maintain numerical stability. The difficulty is due to the stiff character of the difference equations, as there exists a large spectrum of spatial and temporal scales in the approximation of physical phenomena by numerical methods. For instance, in the calculation of gradients caused by shock and by cooled wall on a coarse grid, unchecked numerical errors eventually will lead to violent instability, and in calculations of species near chemical equilibrium, a small error in one species will give rise to a large error in the source term for other species. Despite the different nature of the stiffness in a complex system of equations, the most effective approach is believed to be implicit integration. The step increment is no longer dictated by the stability criteria for explicit methods, but instead is dictated by the degree of linearization introduced to the governing equations and by the order of desired accuracy. The linearization is enacted by means of Jacobian matrices, resulting from the differentiation of the flux as well as the rate production terms with respect to dependent variables. The backward Euler scheme is then applied to discretize the partial differential equations and to convert them into a system of linear difference equations in vector form. As this particular approach has the A-stable property, it is the one recommended by Lomax and Bailey(1) for one-dimensional nonequilibrium flow studies. However, in the practice of solving flow problems in multidimensions, it was not clear then how to deal with the mammoth

  17. Multiple Mode Actuation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    2001-01-01

    The effects of multiple mode periodic excitation on the evolution of a circular turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit. Streamwise and cross-stream excitations were introduced at the junction between the jet exit and the diffuser inlet on opposing sides of the jet. The introduction of high amplitude, periodic excitation in the streamwise direction enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Cross-stream excitation applied over a fraction of the jet circumference can deflect the jet away from the excitation slot. The two modes of excitation were combined using identical frequencies and varying the relative phase between the two actuators in search of an optimal response. It is shown that, for low and moderate periodic momentum input levels, the jet deflection angles depend strongly on the relative phase between the two actuators. Optimum performance is achieved when the phase difference is pi +/- pi/6. The lower effectiveness of the equal phase excitation is attributed to the generation of an azimuthally symmetric mode that does not produce the required non-axisymmetric vectoring. For high excitation levels, identical phase becomes more effective, while phase sensitivity decreases. An important finding was that with proper phase tuning, two unsteady actuators can be combined to obtain a non-linear response greater than the superposition of the individual effects.

  18. Numerical Analysis of an Impinging Jet Reactor for the CVD and Gas-Phase Nucleation of Titania

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Stewart, Gregory D.; Collins, Joshua; Rosner, Daniel E.

    1994-01-01

    We model a cold-wall atmospheric pressure impinging jet reactor to study the CVD and gas-phase nucleation of TiO2 from a titanium tetra-iso-propoxide (TTIP)/oxygen dilute source gas mixture in nitrogen. The mathematical model uses the computational code FIDAP and complements our recent asymptotic theory for high activation energy gas-phase reactions in thin chemically reacting sublayers. The numerical predictions highlight deviations from ideality in various regions inside the experimental reactor. Model predictions of deposition rates and the onset of gas-phase nucleation compare favorably with experiments. Although variable property effects on deposition rates are not significant (approximately 11 percent at 1000 K), the reduction rates due to Soret transport is substantial (approximately 75 percent at 1000 K).

  19. Experimental investigation of a free-surface turbulent jet with Coanda effect

    NASA Astrophysics Data System (ADS)

    Miozzi, M.; Lalli, F.; Romano, G. P.

    2010-07-01

    The deviation of a jet from the straight direction due to the presence of a lateral wall is investigated from the experimental point of view. This flow condition is known as Coanda jet (from the Romanian aerodynamicist Henry Marie Coanda who discovered and applied it at the beginning of XXth century) or offset jet. The objective of the work is to detail the underlying mechanisms of such a phenomenon aiming to use it as a flow control method at polluted river flows mouth. To do this, a large laboratory free-surface tank with an incoming channel has been set up and velocity field measurements are performed by Optical Flow methods (namely Feature Tracking). Preliminary tests on the well-known free jet configuration without any marine structure ( i.e. lateral wall) are performed to allow comparison with free jet scaling and self-similar solutions. The presence of the free-surface gives rise to centerline velocity decay which is lower than in free unbounded plane or circular jets due to the vertically limited ambient fluid entrainment. In the second part of the paper, the effect of a lateral wall on the jet configuration is examined by placing it at different lateral distances from the jet outlet. The resulting velocity fields clearly show an inclined Coanda jet with details which seems to depend on the lateral wall distance itself. The analysis of self-similarity along the inclined jet direction reveals that for wall distances larger than 5 jet widths this dependence almost disappears.

  20. Jet lag

    PubMed Central

    2008-01-01

    Introduction Jet lag is a syndrome caused by disruption of the "body clock", and affects most air travellers crossing five or more time zones; it tends to be worse on eastward than on westward flights. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of interventions to prevent or minimise jet lag? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2008 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found five systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: hypnotics, lifestyle and environmental adaptations, and melatonin. PMID:19445780

  1. Experimental and theoretical study of combustion jet ignition

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Ghoniem, A. F.; Oppenheim, A. K.

    1983-01-01

    A combustion jet ignition system was developed to generate turbulent jets of combustion products containing free radicals and to discharge them as ignition sources into a combustible medium. In order to understand the ignition and the inflammation processes caused by combustion jets, the studies of the fluid mechanical properties of turbulent jets with and without combustion were conducted theoretically and experimentally. Experiments using a specially designed igniter, with a prechamber to build up and control the stagnation pressure upstream of the orifice, were conducted to investigate the formation processes of turbulent jets of combustion products. The penetration speed of combustion jets has been found to be constant initially and then decreases monotonically as turbulent jets of combustion products travel closer to the wall. This initial penetration speed to combustion jets is proportional to the initial stagnation pressure upstream of the orifice for the same stoichiometric mixture. Computer simulations by Chorin's Random Vortex Method implemented with the flame propagation algorithm for the theoretical model of turbulent jets with and without combustion were performed to study the turbulent jet flow field. In the formation processes of the turbulent jets, the large-scale eddy structure of turbulence, the so-called coherent structure, dominates the entrainment and mixing processes. The large-scale eddy structure of turbulent jets in this study is constructed by a series of vortex pairs, which are organized in the form of a staggered array of vortex clouds generating local recirculation flow patterns.

  2. Dilution Jet Behavior in the Turn Section of a Reverse Flow Combuster

    NASA Technical Reports Server (NTRS)

    Riddlebaugh, S. M.; Lipshitz, A.; Greber, I.

    1982-01-01

    Measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The temperature measurements are presented in the form of consecutive normalized temperature profiles, and jet trajectories. Single jet trajectories were swept toward the inner wall of the turn, whether injection was from the inner or outer wall. This behavior is explained by the radially inward velocity component necessary to support irrotational flow through the turn. Comparison between experimental results and model calculations showed poor agreement due to the model's not including the radial velocity component. A widely spaced row of jets produced trajectories similar to single jets at similar test conditions, but as spacing ratio was reduced, penetration was reduced to the point where the dilution jet flow attached to the wall.

  3. Inclusive Jets in PHP

    NASA Astrophysics Data System (ADS)

    Roloff, P.

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  4. Periodic Excitation for Jet Vectoring and Enhanced Spreading

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    1999-01-01

    The effects of periodic excitation on the evolution of a turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit and excitation was introduced at the junction between the jet exit and the diffuser inlet. The introduction of high amplitude periodic excitation at the jet exit enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Vectoring is achieved by applying the excitation over a fraction of the circumference of the circular jet, enhancing its spreading rate on the excited side and its tendency to reattach to that side. Static deflection studies demonstrate that the presence of the wide-angle diffuser increases the effectiveness of the added periodic momentum due to a favorable interaction between the excitation, the jet shear-layer and the diffuser wall. This point was further demonstrated by the evolution of a wave packet that was excited in the jet shear-layer. Strong amplification of the wave packet was measured with a diffuser attached to the jet exit. The turbulent jet responds quickly (10-20 msec) to step changes in the level of the excitation input. The response scales with the jet exit velocity and is independent of the Reynolds number. Jet deflection angles were found to be highly sensitive to the relative direction between the excitation and the jet flow and less sensitive to the excitation frequency. The higher jet deflection angles were obtained for a diffuser length of about two diameters and for diffusers with half-angles greater than 15 degrees.

  5. On plane submerged laminar jets

    NASA Astrophysics Data System (ADS)

    Coenen, Wilfried; Sanchez, Antonio L.

    2016-11-01

    We address the laminar flow generated when a developed stream of liquid of kinematic viscosity ν flowing along channel of width 2 h discharges into an open space bounded by two symmetric plane walls departing from the channel rim with an angle α 1 . Attention is focused on values of the jet volume flux 2 Q such that the associated Reynolds number Re = Qh / ν is of order unity. The formulation requires specification of the boundary conditions far from the channel exit. If the flow is driven by the volume flux, then the far-field solution corresponds to Jeffery-Hamel self-similar flow. However, as noted by Fraenkel (1962), such solutions exist only for α <129o in a limited range of Reynolds numbers 0 <=Re <=Rec (α) (e.g. Rec = 1 . 43 for α = π / 2). It is reasoned that an alternative solution, driven by a fraction of the momentum flux of the feed stream, may also exist for all values of Re and α, including a near-centerline Bickley jet, a surrounding Taylor potential flow driven by the jet entrainment, and a Falkner-Skan near-wall boundary layer. Numerical integrations of the Navier-Stokes equations are used to ascertain the existence of these different solutions.

  6. Instantaneous planar visualization of reacting supersonic flows using silane seeding

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Northam, G. B.

    1991-01-01

    A new visualization technique for reacting flows has been developed. This technique, which is suitable for supersonic combustion flows, has been demonstrated on a scramjet combustor model. In this application, gaseous silane (SiH4) was added to the primary hydrogen fuel. When the fuel reacted, so did the (SiH4), producing silica (SiO2) particles in situ. The particles were illuminated with a laser sheet formed from a frequency-doubled Nd:YAG laser (532 nm) beam and the Mie scattering signal was imaged. These planar images of the silica Mie scattering provided instantaneous 'maps' of combustion progress within the turbulent reacting flowfield.

  7. Bendable Extension For Abrasive-Jet Cleaning

    NASA Technical Reports Server (NTRS)

    Mayer, Walter

    1989-01-01

    Hard-to-reach places cleaned more easily. Extension for abrasive-jet apparatus bent to provide controlled abrasive cleaning of walls in deep cavities or other hard-to-reach places. Designed for controlled removal of penetrant inspection dyes from inside castings, extension tube also used for such general grit-blasting work as removal of scratches.

  8. Fiber Optic Chemical Sensor For Jet Fuel

    NASA Astrophysics Data System (ADS)

    Dandge, Dileep K.; Salinas, Teresa M.; Klainer, Stanley M.; Goswami, Kisholoy; Butler, Marcus S.

    1990-02-01

    Leaking underground storage tanks (UST's) are contaminating the ground water in many parts of the United States, thus causing a major environmental concern. The United States Environmental Protection Agency (EPA) has mandated that all UST's (both old and newly installed double walled tanks) be monitoredl. The majority of the UST's contain hydrocarbon fuels such as gasoline, jet fuel, kerosine and diesel.

  9. IMMUNOLOGICAL ROLE OF BRUCELLA ABORTUS CELL WALLS

    PubMed Central

    Foster, John W.; Ribi, Edgar

    1962-01-01

    Foster, John W. (University of Georgia, Athens) and Edgar Ribi. Immunological role of Brucella abortus cell walls. J. Bacteriol. 84:258–268. 1962—Cell walls and protoplasm were prepared from organisms disrupted in a refrigerated pressure cell. Cell walls were purified by sedimentation in a linear glycerol gradient. Antigens capable of protecting mice against infection with Brucella abortus and of reacting with antiserum prepared against whole cells were present chiefly in the cell wall; substances lethal to mice and responsible for primary inflammation of rabbit skin were also associated with the cell wall. Limited activity of protoplasm in these biological tests may or may not be due to contamination with cell-wall material. A substance extracted from whole cells with aqueous ether possessed an immunizing potency superior to that of killed whole cells or cell walls. Images PMID:13894243

  10. Underexpanded free jets and their interaction with adjacent surfaces

    NASA Astrophysics Data System (ADS)

    Lengrand, J. C.; Allegre, J.; Riffin, M.

    1981-06-01

    Based on semiempirical considerations, simple formulas are proposed to describe the flowfield of a highly underexpanded jet exhausting from a sonic or supersonic nozzle. Correlations for density distribution and Mach disc distance include the influence of all governing parameters in the continuum regime. Regarding pressure distribution on a wall impinged by a jet, non-dimensional quantities are defined that greatly reduce the number of parameters involved in the correlations. Formulas and correlations are compared with original as well as previously published experimental results. The degree of rarefaction is discussed. Results on jet-wall interaction are thought to be of practical interest for the design of spacecrafts or launch vehicles.

  11. Corporate Jet

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Gulfstream Aerospace Corporation, Savannah, GA, used a version of a NASA program called WIBCO to design a wing for the Gulfstream IV (G-IV) which will help to reduce transonic drag (created by shock waves that develop as an airplane approaches the speed of sound). The G-IV cruises at 88 percent of the speed of sound, and holds the international record in its class for round-the-world flight. They also used the STANS5 and Profile programs in the design. They will use the NASA program GASP to help determine the gross weight, range, speed, payload and optimum wing area of an intercontinental supersonic business jet being developed in cooperation with Sukhoi Design Bureau, a Soviet organization.

  12. Dual-Mode Free-Jet Combustor

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Dippold, Vance F., III; Yungster, Shaye

    2017-01-01

    The dual-mode free-jet combustor concept, pictured in figure 1, is described. It was introduced in 2010 as a wide- operating-range propulsion device using a novel supersonic free-jet combustion process. The unique feature of the free-jet combustor pictured in figure 1a, is supersonic combustion in an unconfined free-jet that traverses a larger subsonic combustion chamber to a variable nozzle. During this mode of operation, the propulsive stream is not in contact with the combustor walls, and equilibrates to the combustion chamber pressure. To a first order, thermodynamic efficiency is similar to that of a traditional scramjet under the assumption of constant-pressure combustion. Qualitatively, a number of possible benefits to this approach are obvious.

  13. Three-dimensional calculation of supersonic reacting flows using an LU scheme

    NASA Astrophysics Data System (ADS)

    Yu, Sheng-Tao; Tsai, Y.-L. Peter; Shuen, Jian-Shun

    1989-01-01

    A new three-dimensional numerical program incorporated with comprehensive real gas property models has been developed to simulate supersonic reacting flows. The code employs an implicit finite volume, Lower-Upper (LU) time-marching method to solve the complete Navier-Stokes and species equations in a fully-coupled and very efficient manner. A chemistry model with nine species and eighteen reaction steps are adopted in the program to represent the chemical reaction of H2 and air. To demonstrate the capability of the program, flow fields of underexpanded hydrogen jets transversely injected into supersonic air stream inside the combustors of scramjets are calculated. Results clearly depict the flow characteristics, including the shock structure, separated flow regions around the injector, and the distribution of the combustion products.

  14. Application of a two-dimensional parabolic computer program to prediction of turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Evans, J. S.; Schexnayder, C. J., Jr.; Beach, H. L., Jr.

    1978-01-01

    The capabilities of a computer program are explored, and computed results are compared with data. The comparisons are restricted to two-dimensional flows. Subsonic and supersonic flows, ducted and nonducted, reacting and nonreacting, are considered. An evaluation of models used for turbulence and chemical reaction was included. Constants in the dissipation rate of turbulent kinetic energy, turbulence model, which produces mixing in good agreement with data, are the same for all calculations. Experimental data are reported for coaxial injection at matched pressure (1 atm or 101.3 kPa) of a cold, Mach 2, hydrogen jet into a hot, Mach 2, vitiated airstream. Profiles of pitot pressure and gas composition obtained from water cooled probes are reported and compared with theoretical results.

  15. A Novel Strategy for Numerical Simulation of High-speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Sheikhi, M. R. H.; Drozda, T. G.; Givi, P.

    2003-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high-speed reacting turbulent flows. We have just completed Year 1 of this research. This is the Final Report on our activities during the period: January 1, 2003 to December 31, 2003. 2002. In the efforts during the past year, LES is conducted of the Sandia Flame D, which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme.

  16. Jet inclusive cross sections

    SciTech Connect

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons.

  17. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows. We have just completed the third year of Phase III of this research. This is the Final Report of our activities on this research sponsored by the NASA LaRC.

  18. Investigation of chemically-reacting supersonic internal flows. Progress report

    SciTech Connect

    Chitsomboon, T.; Tiwari, S.N.

    1985-09-01

    This report covers work done on the research project, Analysis and Computation of Internal Flow Field in a Scramjet Engine. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.

  19. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  20. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, R.L.; Stewart, D.D.; Evans, C.J.

    1992-04-14

    An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.

  1. VTOL in-ground effect flows for closely spaced jets

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.; Hill, W. G., Jr.; Jenkins, R. C.; Migdal, D.

    1980-01-01

    The interaction of two vertically impinging incompressible jets is studied through the invention of physical flow models that approximate the behavior of colliding wall jets as the incident jets are brought closer together. The mechanism for upwash formation is studied and momentum models for the upwash sheet are postulated. An approximate method for computing the ground isobar pattern of jet and upwash deflection zones is presented and compared with test data. A method for computing the upwash impingement force in the absence of secondary induced flow effects is also presented and reasonably good agreement is achieved with experimental data for cylindrical fuselage shapes of circular and rectangular cross section.

  2. Maize mesocotyl plasmodesmata proteins cross-react with connexin gap junction protein antibodies.

    PubMed Central

    Yahalom, A; Warmbrodt, R D; Laird, D W; Traub, O; Revel, J P; Willecke, K; Epel, B L

    1991-01-01

    Polypeptide present in various cell fractions obtained from homogenized maize mesocotyls were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotted, and screened for cross-reactivity with antibodies against three synthetic polypeptides spanning different regions of the rat heart gap junctional protein connexin43 and the whole mouse liver gap junctional protein connexin32. An antibody raised against a cytoplasmic loop region of connexin43 cross-reacted strongly with a cell wall-associated polypeptide (possibly a doublet) of 26 kilodaltons. Indirect immunogold labeling of thin sections of mesocotyl tissue with this antibody labeled the plasmodesmata of cortical cells along the entire length of the plasmodesmata, including the neck region and the cytoplasmic annulus. Sections labeled with control preimmune serum were essentially free of colloidal gold. An antibody against connexin32 cross-reacted with a 27-kilodalton polypeptide that was present in the cell wall and membrane fractions. Indirect immunogold labeling of thin sections with this antibody labeled the plasmodesmata mainly in the neck region. It is suggested that maize mesocotyl plasmodesmata contain at least two different proteins that have homologous domains with connexin proteins. PMID:1668654

  3. 13. DETAIL VIEW OF DELUGE JETS DIRECTED TOWARDS CAPTIVE TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL VIEW OF DELUGE JETS DIRECTED TOWARDS CAPTIVE TEST STAND BEHIND PROTECTIVE BLAST WALL. NOTE FLAME RETARDENT PUTTY (FONDUE FYRE) ON WALL; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  4. Detailed Studies on the Structure and Dynamics of Reacting Dusty Flows at Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    Andac, M. Gurhan; Cracchiola, Brad; Egolfopoulos, Fokion N.; Campbell, Charles S.

    1999-01-01

    Dusty reacting flows are of particular interest for a wide range of applications. Inert particles can alter the flammability and extinction limits of a combustible mixture. Reacting particles can release substantial amount of heat and can be used either for power generation or propulsion. Accumulation of combustible particles in air can result in explosions which, for example, can occur in grain elevators, during lumber milling and in mine galleries. Furthermore, inert particles are used as flow velocity markers in reacting flows, and their velocity is measured by non-intrusive laser diagnostic techniques. Despite their importance, dusty reacting flows have been less studied and understood compared to gas phase as well as sprays. The addition of solid particles in a flowing gas stream can lead to strong couplings between the two phases, which can be of dynamic, thermal, and chemical nature. The dynamic coupling between the two phases is caused by the inertia that causes the phases to move with different velocities. Furthermore, gravitational, thermophoretic, photophoretic, electrophoretic, diffusiophoretic, centrifugal, and magnetic forces can be exerted on the particles. In general, magnetic, electrophoretic, centrifugal, photophoretic, and diffusiophoretic can be neglected. On the other hand, thermophoretic forces, caused by steep temperature gradients, can be important. The gravitational forces are almost always present and can affect the dynamic response of large particles. Understanding and quantifying the chemical coupling between two phases is a challenging task. However, all reacting particles begin this process as inert particles, and they must be heated before they participate in the combustion process. Thus, one must first understand the interactions of inert particles in a combustion environment. The in-detail understanding of the dynamics and structure of dusty flows can be only advanced by considering simple flow geometries such as the opposed-jet

  5. Detailed Studies on the Structure and Dynamics of Reacting Dusty Flows at Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    Andac, M. Gurhan; Cracchiola, Brad; Egolfopoulos, Fokion N.; Campbell, Charles S.

    1999-01-01

    Dusty reacting flows are of particular interest for a wide range of applications. Inert particles can alter the flammability and extinction limits of a combustible mixture. Reacting particles can release substantial amount of heat and can be used either for power generation or propulsion. Accumulation of combustible particles in air can result in explosions which, for example, can occur in grain elevators, during lumber milling and in mine galleries. Furthermore, inert particles are used as flow velocity markers in reacting flows, and their velocity is measured by non-intrusive laser diagnostic techniques. Despite their importance, dusty reacting flows have been less studied and understood compared to gas phase as well as sprays. The addition of solid particles in a flowing gas stream can lead to strong couplings between the two phases, which can be of dynamic, thermal, and chemical nature. The dynamic coupling between the two phases is caused by the inertia that causes the phases to move with different velocities. Furthermore, gravitational, thermophoretic, photophoretic, electrophoretic, diffusiophoretic, centrifugal, and magnetic forces can be exerted on the particles. In general, magnetic, electrophoretic, centrifugal, photophoretic, and diffusiophoretic can be neglected. On the other hand, thermophoretic forces, caused by steep temperature gradients, can be important. The gravitational forces are almost always present and can affect the dynamic response of large particles. Understanding and quantifying the chemical coupling between two phases is a challenging task. However, all reacting particles begin this process as inert particles, and they must be heated before they participate in the combustion process. Thus, one must first understand the interactions of inert particles in a combustion environment. The in-detail understanding of the dynamics and structure of dusty flows can be only advanced by considering simple flow geometries such as the opposed-jet

  6. Polymer-induced turbulence modifications in an impinging jet

    NASA Astrophysics Data System (ADS)

    Mejia-Alvarez, R.; Christensen, K. T.

    2012-05-01

    This effort explores the impact of dilute polymer solutions on the turbulence characteristics in a submerged liquid impinging-jet configuration. Turbulent impinging jets are commonly used in technological applications such as drying, scouring, cooling, or heating due to an enhancement in transport characteristics in the impingement region under certain nozzle-to-wall configurations. Previous efforts have identified significant turbulence modifications in the presence of dilute concentrations of polymer in both bounded and unbounded flows, though the former has received considerably more attention. To this end, particle-image velocimetry measurements were taken for an axisymmetric turbulent impinging jet with a nozzle-to-wall distance H/ D = 6.8 and nominal Reynolds number of 26,000. Measurements were performed for both plain water and dilute polymer solutions of polyethylene oxide at concentrations of 50 and 100 ppm. The mean and turbulence characteristics of these three flows are contrasted and it is observed that the two polymer solutions modify both the mean and turbulent characteristics of the jet in all three regions of interest (the free-jet, impingement, and wall-jet regions). Of interest, the 50 ppm case yielded a slight suppression of the turbulence in the free-jet region accompanied by a longer axial length of the potential core compared to the case of plain water. In contrast, the 100 ppm case exhibits clear enhancement of the turbulence in the free-jet region and a shortening of the potential core length. The effect of polymer was opposite in the impingement and wall-jet regions wherein the turbulence was slightly suppressed in the 100 ppm case in a manner consistent with the onset of the Toms effect in this wall-bounded region of the flow.

  7. 72. INTERIOR VIEW OF THE WESTERN WALL OF THE BLOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. INTERIOR VIEW OF THE WESTERN WALL OF THE BLOWERS CONTROL HOUSE FOR DOROTHY SIX BLAST FURNACE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. Film cooling: case of double rows of staggered jets.

    PubMed

    Dorignac, E; Vullierme, J J; Noirault, P; Foucault, E; Bousgarbiès, J L

    2001-05-01

    An experimental investigation of film cooling of a wall in a case of double rows of staggered hot jets (65 degrees C) in an ambient air flow. The wall is heated at a temperature value between the one of the jets and the one of the main flow. Experiments have been carried out for different injection rates, the main flow velocity is maintained at 32 m/s. Association of the measures of temperature profiles by cold wire and the measures of wall temperature by infrared thermography allows us to describe the behaviour of the flows and to propose the best injection which assures a good cooling of the plate.

  9. Transverse liquid fuel jet breakup, burning, and ignition

    SciTech Connect

    Li, H.

    1990-01-01

    An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

  10. Wonderful Walls

    ERIC Educational Resources Information Center

    Greenman, Jim

    2006-01-01

    In this article, the author emphasizes the importance of "working" walls in children's programs. Children's programs need "working" walls (and ceilings and floors) which can be put to use for communication, display, storage, and activity space. The furnishings also work, or don't work, for the program in another sense: in aggregate, they serve as…

  11. Stretched Inertial Jets

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Seon, Thomas; Villermaux, Emmanuel

    2015-11-01

    Liquid jets often arise as short-lived bursting liquid flows. Cavitation or impact-driven jets, bursting champagne bubbles, shaped-charge jets, ballistospores or drop-on-demand inkjet printing are a few examples where liquid jets are suddenly released. The trademark of all these discharge jets is the property of being stretched, due to the quenching injection. the present theoretical and experimental investigation, the structure of the jet flow field will be unraveled experimentally for a few emblematic occurrences of discharge jets. Though the injection markedly depends on each flow configuration, the jet velocity field will be shown to be systematically and rapidly attracted to the universal stretching flow z/t. The emergence of this inertial attractor actually only relies on simple kinematic ingredients, and as such is fairly generic. The universality of the jet velocity structure will be discussed.

  12. Sound propagation through parallel jets exhausting from ducts

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1980-01-01

    The method of matched asymptotic expansions is employed to construct the solution for the propagation of sound through parallel jets which exit from long ducts and are surrounded by a uniform parallel stream. Parts of the duct walls are lined with acoustically absorbent material. The small parameter for the expansion is the ratio of the inner jet thickness to the accoustic wavelength. The problem is further simplified when the condition is imposed that the speed of the outer stream, which accounts for the forward motion speed of the ducts, is much smaller than the speeds of the jets. This condition is valid during landing and takeoff operations. Farfield pressure distributions are obtained for the case in which the inner jet is much faster than the outer jet and the case in which the two jets are the same.

  13. High-Speed Jet Formation after Solid Object Impact

    NASA Astrophysics Data System (ADS)

    Gekle, Stephan; Gordillo, José Manuel; van der Meer, Devaraj; Lohse, Detlef

    2009-01-01

    A circular disc hitting a water surface creates an impact crater which after collapse leads to a vigorous jet. Upon impact an axisymmetric air cavity forms and eventually pinches off in a single point halfway down the cavity. Two fast sharp-pointed jets are observed shooting up- and downwards from the closure location, which by then has turned into a stagnation point surrounded by a locally hyperbolic flow pattern. This flow, however, is not the mechanism feeding the jets. Using high-speed imaging and numerical simulations we show that jetting is fed by the local flow around the base of the jet, which is forced by the colliding cavity walls. We show how the well-known theory of a collapsing void (using a line of sinks on the symmetry axis) can be continued beyond pinch-off to obtain a new and quantitative model for jet formation which agrees well with numerical and experimental data.

  14. Mechanism for Self-Reacted Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Bucher, Joseph

    2004-01-01

    A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.

  15. Experimental Studies of Coaxial Jet Flows

    NASA Astrophysics Data System (ADS)

    Behrouzi, Parviz; McGuirk, James J.

    An experimental study was carried out to investigate the effect of coaxial nozzle operating conditions on near-field jet plume development. The study was conducted in a low speed water tunnel as well as in a high-speed airflow nozzle test facility. Laser Doppler Anemometry (LDA) and Laser Induced Fluorescence (LIF) techniques were employed to identify the flow structure as well as the mean velocity and turbulence structure of a coaxial nozzle under low speed flow conditions. Schlieren flow visualization, LDA and nozzle wall static pressure measurement surveys were performed in high speed flows. The effect of a nozzle shroud on jet development was studied and found very effective on suppression of the shock cells and on reduction of turbulence levels within the core region. The effect of the outer and inner Nozzle Pressure Ratios on shock cell structure and the nozzle internal wall pressure field were documented. LDA measurements in the water tunnel confirmed that the flow pattern produced of the Reynolds numbers and velocity ratios selected for this study was typical of practically occurring developing jet flow fields. Sufficient measured profiles of velocities, turbulence quantities and nozzle wall static pressures as well as jet plume images have been captured to serve as benchmark validation data for time-averaged turbulence-model-based RANS CFD predictions.

  16. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1992-01-01

    To investigate the possibility of active control of jet noise, knowledge of the noise generation mechanisms in natural jets is essential. Once these mechanisms are determined, active control can be used to manipulate the noise production processes. We investigated the evolution of the flow fields and the acoustic fields of rectangular and circular jets. A predominant flapping mode was found in the supersonic rectangular jets. We hope to increase the spreading of supersonic jets by active control of the flapping mode found in rectangular supersonic jets.

  17. Understanding jet noise.

    PubMed

    Karabasov, S A

    2010-08-13

    Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

  18. JET helps prepare for ITER operation

    NASA Astrophysics Data System (ADS)

    Watkins, Michael

    2005-10-01

    The main focus of the JET programme (2006-10) in preparation of ITER operation is a new ITER-like ICRH antenna (total RF power increased to ˜15MW), a new ITER-like first wall (beryllium in the main chamber, tungsten in the divertor, and possibly CFC at the strike points), upgraded NB power (to 35MW/20s or 17.5MW/10s), and an improved diagnostic and control capability. Mass flows for ITER Scenarios with the ITER-like first wall will be optimised, particularly to minimise in-vessel tritium inventory, since this must be controlled strictly in ITER and has been shown on JET with a carbon first wall to depend sensitively on plasma conditions. Higher power will allow confinement scalings to be resolved for normalised parameters closer to ITER (beta dependence of ELMy H-modes, confinement of improved H-modes at low ρ*) and offers the prospect of high beta operation at high current and density, and new fully non-inductive, high performance, ITB discharges sustained to long pulse by real time current and pressure profile control, particularly in bootstrap current dominated regimes. Together, the first wall and increased heating power place strict constraints on the optimisation of ITER scenarios for long pulse operation with low melt damage. Large ELMs (in excess of 1MJ; marginally accessible on JET at present) and disruptions could cause melt severe damage which must be studied and controlled. The testing and optimisation of techniques for ELM mitigation (impurity seeding, demonstrated on JET; use of a new high frequency pellet injector (10-60Hz) to prevent large ELMs, demonstrated on ASDEX Upgrade) and disruption mitigation (fast gas injection from a new disruption mitigation valve, demonstrated on DIII-D) will be even more relevant under the ITER-like edge plasma conditions accessible with the increased power. Acknowledgement : Contributors to EFDA-JET Workprogramme

  19. Method for reacting nongaseous material with a gaseous reactant

    DOEpatents

    Lumpkin, Robert E.; Duraiswamy, Kandaswamy

    1979-03-27

    This invention relates to a new and novel method and apparatus for reacting nongaseous material with a gaseous reactant comprising introducing a first stream containing a nongaseous material into a reaction zone; simultaneously introducing a second stream containing a gaseous reactant into the reaction zone such that the gaseous reactant immediately contacts and reacts with the first stream thereby producing a gaseous product; forming a spiralling vortex within the reaction zone to cause substantial separation of gases, including the gaseous product, from the nongaseous material; forming and removing a third stream from the reaction zone containing the gaseous product which is substantially free of the nongaseous material before a major portion of the gaseous product can react with the nongaseous material; and forming and removing a fourth stream containing the nongaseous material from the reaction zone.

  20. COARSE-GRID SIMULATION OF REACTING AND NON-REACTING GAS-PARTICLE FLOWS

    SciTech Connect

    Sankaran Sundaresan

    2004-03-01

    The principal goal of this project, funded under the ''DOE Vision 21 Virtual Demonstration Initiative'' is virtual demonstration of circulating fluidized bed performance. We had proposed a ''virtual demonstration tool'', which is based on the open-domain CFD code MFIX. The principal challenge funded through this grant is to devise and implement in this CFD code sound physical models for the rheological characteristics of the gas-particle mixtures. Within the past year, which was the third year of the project, we have made the following specific advances. (a) We have completed a study of the impact of sub-grid models of different levels of detail on the results obtained in coarse-grid simulations of gas-particle flow. (b) We have also completed a study of a model problem to understand the effect of wall friction, which was proved in our earlier work to be very important for stable operation of standpipes in a circulating fluidized bed circuit. These are described in a greater detail in this report.

  1. Investigation of the effect of laterally ejected gas jets on flows

    NASA Astrophysics Data System (ADS)

    Patz, G.

    1986-02-01

    The effect of a gas jet, ejected through a hole in the wall, on the supersonic flow along that wall was simulated in a model measuring chamber in a shock tube. A head wave with an obliquely detaching shock was formed, accompanied by a pressure increase in front of the jet. This effect can be used for missile control. In the shock tube, the flow about a plane plate with a slit through which a gas jet was laterally ejected, was simulated. Flow visualization and wall pressure measurements in front of and behind the nozzle slit show the effect of the jet on the flow, and allow the analysis of the initial phase and the evaluation of the forces resulting from the wall pressure which add to the jet thrust.

  2. Structure of three-dimensional turbulent offset jets with small offset distances

    NASA Astrophysics Data System (ADS)

    Agelin-Chaab, Martin; Tachie, Mark

    2009-11-01

    An offset jet is a jet that discharges into a medium above a wall which is offset by a certain distance. The ``Coanda effect'' forces the offset jet to deflect towards the wall and eventually attaches itself to the wall. The only detailed study of three-dimensional offset jets (3DOJs) did not report the flow field in the region from the jet exit to the point where the jet attaches itself to the wall. In this region flow reversal is expected. Velocity measurements of 3DOJs were conducted using particle image velocimetry. The 3DOJs have different jet exit offset distances (h) normalized by the jet exit diameter (d) of h/d = 0.5 to 4. The Reynolds numbers based on the jet exit velocities and jet exit diameters were 5000, 10000 and 20000. The detailed flow fields of the 3DOJs were examined in terms of mean velocities, and one-point turbulence statistics. In view of the wide range of length and temporal scales that are present in turbulent flows, multi-point turbulence statistics such as two-point velocity correlations and proper orthogonal decomposition are used to document the salient features of 3DOJs.

  3. Analysis of reacting flowfields in low-thrust rocket engines and plumes

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan Mitchell

    The mixing and combustion processes in small gaseous hydrogen-oxygen thrusters and plumes are studied by means of a computational model developed as a general purpose analytic procedure for solving low speed, reacting, internal flowfields. The model includes the full Navier-Stokes equations coupled with species diffusion equations for a hydrogen-oxygen reaction kinetics system as well as the option to use either the k-Epsilon or q-Omega low Reynolds number, two-equation turbulence models. Solution of the governing equations is accomplished by a finite-volume formulation with central-difference spatial discretizations and an explicit, four-stage, Runge Kutta time-integration procedure. The Runge-Kutta scheme appears to provide efficient convergence when applied to the calculation of turbulent, reacting flowfields in these small thrusters. Appropriate boundary conditions are developed to properly model propellant mass flowrates and regenerative wall cooling. The computational method is validated against measured engine performance parameters on a global level, as well as experimentally obtained exit plane and plume flowfield properties on a local level. The model does an excellent job of predicting the measured performance trends of an auxiliary thruster as a function of O/F ratio, although the performance levels are consistently underpredicted by approximately 4 percent. These differences arise because the extent to which the wall coolant layer and combustion gases mix and react is underpredicted. Predictions of velocity components, temperature and species number densities in the near-field plume regions of several low-thrust engines show reasonable agreement with experimental data obtained by two separate laser diagnostic techniques. Discrepancies between the predictions and measurements are primarily due to three-dimensional mixing processes which are not accounted for in the analysis. Both comparisons with experiment and the evident reason for errors in absolute

  4. Inactivation of Escherichia coli using atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kuwahata, Hiroshi; Yamaguchi, Takeshi; Ohyama, Ryu-ichiro; Ito, Atsushi

    2015-01-01

    An atmospheric-pressure argon (Ar) plasma jet was applied to the inactivation of Escherichia coli. The Ar plasma jet was generated at a frequency of 10 kHz, an applied voltage of 10 kV, and an Ar gas flow rate of 10 L/min at atmospheric pressure. E. coli cells seeded on an agar medium in a Petri dish were inactivated by Ar plasma jet irradiation for 1 s. Scanning electron microscopy (SEM) revealed that E. coli cells were killed because their cell wall and membrane were disrupted. To determine the causes of the disruption of the cell wall and membrane of E. coli, we performed the following experiments: the measurement of the surface temperature of an agar medium using a thermograph, the analysis of an emission spectrum of a plasma jet obtained using a multichannel spectrometer, and the determination of the distribution of the concentration of hydrogen peroxide (H2O2) generated on an agar medium by plasma jet irradiation using semiquantitative test strips. Moreover, H2O2 solutions of different concentrations were dropped onto an agar medium seeded with E. coli cells to examine the contribution of H2O2 to the death of E. coli. The results of these experiments showed that the cell wall and membrane of E. coli were disrupted by electrons in the plasma jet, as well as by electroneutral excited nitrogen molecules (N2) and hydroxyl (OH) radicals in the periphery of the plasma jet.

  5. A PDF closure model for compressible turbulent chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Kollmann, W.

    1992-01-01

    The objective of the proposed research project was the analysis of single point closures based on probability density function (pdf) and characteristic functions and the development of a prediction method for the joint velocity-scalar pdf in turbulent reacting flows. Turbulent flows of boundary layer type and stagnation point flows with and without chemical reactions were be calculated as principal applications. Pdf methods for compressible reacting flows were developed and tested in comparison with available experimental data. The research work carried in this project was concentrated on the closure of pdf equations for incompressible and compressible turbulent flows with and without chemical reactions.

  6. Nonholonomic Hamiltonian method for molecular dynamics simulations of reacting shocks

    NASA Astrophysics Data System (ADS)

    Bass, Joseph; Fahrenthold, Eric P.

    2017-01-01

    Conventional molecular dynamics simulations of reacting shocks employ a holonomic Hamiltonian formulation: the breaking and forming of covalent bonds is described by potential functions. In general the potential functions: (a) are algebraically complex, (b) must satisfy strict smoothness requirements, and (c) contain many fitted parameters. In recent research the authors have developed a new nonholonomic formulation of reacting molecular dynamics. In this formulation bond orders are determined by rate equations, and the bonding-debonding process need not be described by differentiable functions. This simplifies the representation of complex chemistry and reduces the number of fitted parameters.

  7. REACT - A Third Generation Language For Autonomous Robot Systems

    NASA Astrophysics Data System (ADS)

    Longley, Maxwell J.; Owens, John; Allen, Charles R.; Ratcliff, Karl

    1990-03-01

    REACT is a language under development at Newcastle for the programming of autonomous robot systems, which uses AI constructs and sensor information to respond to failures in assumptions about the real-world by replanning a task. This paper describes the important features of a REACT programmed robotic system, and the results of some initial studies made on defining an executive language using a concept called visiblity sets. Several examples from the language are then applied to specific examples e.g. a white line follower and a railway network controller. The applicability of visibility sets to autonomous robots is evaluated.

  8. Investigation of chemically-reacting supersonic internal flows

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Tiwari, S. N.

    1985-01-01

    This report covers work done on the research project Analysis and Computation of Internal Flow Field in a Scramjet Engine. The work is supported by the NASA Langley Research Center (Computational Methods Branch of the High-Speed Aerodynamics Division) through research grant NAG1-423. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.

  9. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1993-01-01

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  10. Injection of a reacting fluid into a fractured porous medium

    NASA Astrophysics Data System (ADS)

    Jasinski, L.; Thovert, J.; Mourzenko, V.; Adler, P. M.

    2010-12-01

    The quantitative description of the injection of a reacting fluid from a well into a fractured porous medium is a subject of high interest for CO2 sequestration. Ideally, one wishes to analyze the damages caused by the fluid to the well itself and to its immediate surroundings. In order to attain this goal, one has to solve a coupled system of equations. The first one describes the flow inside two structures, namely the porous medium and the fractures; basically, they are Darcy like equations for one or two phases. The second equations describe the transport of CO2 and the reactions which occur inside the two structures. In addition, one needs constitutive equations in order to predict evolution of these two structures; for instance, one needs an evolution law for permeability as a function of porosity. Three major steps are needed for the numerical solutions. First, an unstructured tetrahedral mesh of the fractures and of the porous matrix located in between is constructed; a particular attention should be paid to the well region since the casing has different properties than the surrounding porous medium. Second, the Darcy equations are discretized and solved, in a finite volume formulation; previous codes have been improved by the systematic use of triple control volumes. Third, the evolution of the solute concentration has to be calculated. This last point is the most difficult one if one wants to avoid numerical diffusion and also inaccurate transfers between the fractures and the media. Various schemes have been tried and the most efficient one is a non linear flux limiting scheme (FLS) of the Superbee type. Because of its importance, the results obtained with the various schemes will be illustrated and discussed. The FLS scheme has been developed for the triple control volume which is a major improvement with respect to the previous codes that were developed in our group. Various physical situations will be illustrated. The theoretical situation of transfer

  11. Glottal jet inertance

    NASA Astrophysics Data System (ADS)

    Mphail, Michael; Krane, Michael

    2016-11-01

    Estimates of an inertive contribution of the glottal jet to glottal aerodynamic resistance is presented. Given that inertance of the flow in a constriction can be expressed in terms of the kinetic energy of the flow, and that a jet is a maximum kinetic energy flow pattern, it is argued that the glottal jet possesses its own inertance which is at least as large as that of the vocal tract. These arguments are supported by estimates of inertance obtained from simulations of an unsteady flow through an axisymmetric orifice, and of a compliant constriction with the approximate shape and mechanical properties of the vocal folds. It is further shown that the inertive effect of the glottal jet depends on the jet path and jet mixing, with a slowly diffusing, symmetric jet showing higher inertance than an asymmetric jet which rapidly mixes with supraglottal air. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  12. Single-phase liquid jet impingement heat transfer

    SciTech Connect

    Webb, B.W.; Ma, C.F.

    1995-12-31

    Impinging liquid jets have been demonstrated to be an effective means of providing high heat/mass transfer rates in industrial transport processes. When a liquid jet strikes a surface, thin hydrodynamic and thermal boundary layers from in the region directly beneath due to the jet deceleration and the resulting increase in pressure. The flow is then forced to accelerate in a direction parallel to the target surface in what is termed the wall jet or parallel flow zone. The thickness of the hydrodynamic and thermal boundary layers in the stagnation region may be of the order of tens of micrometers. Consequently, very high heat/mass transfer coefficients exist in the stagnation zone directly under the jet. Transport coefficients characteristic of parallel flow prevail in the wall jet region. The high heat transfer coefficients make liquid jet impingement an attractive cooling option where high heat fluxes are the norm. Some industrial applications include the thermal treatment of metals, cooling of internal combustion engines, and more recently, thermal control of high-heat-dissipation electronic devices. Both circular and planar liquid jets have attracted research attention. 180 refs., 35 figs., 11 tabs.

  13. Dual-Code Solution Strategy for Chemically-Reacting Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Eberhardt, Scott

    1995-01-01

    A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flow fields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three-dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a non-catalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the non-catalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated in both the radial and streamwise directions. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three-dimensional case in comparison to an all thin-layer Navier-Stokes solution.

  14. Wall Turbulence.

    ERIC Educational Resources Information Center

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  15. Fountain-Jet Turbulence.

    DTIC Science & Technology

    1980-09-01

    and 3 times higher than expected from free- jet results. Hill et al., (Reference 6) in work with foun- tain jets impacting fuselage models, detected ...delineate the origins of the turbulent anomalies associated with fountain jets by extending the previous studies. The results are presented herein...jet velocities were detected with a Thermal Systems Inc. Model 1050 dual-channel constant-temperature anemometer equipped with a Thermal Systems Inc

  16. Jets of incipient liquids

    NASA Astrophysics Data System (ADS)

    Reshetnikov, A. V.; Mazheiko, N. A.; Skripov, V. P.

    2000-05-01

    Jets of incipient water escaping into the atmosphere through a short channel are photographed. In some experiments. complete disintegration of the jet is observed. The relationship of this phenomenon with intense volume incipience is considered. The role of the Coanda effect upon complete opening of the jet is revealed. Measurement results of the recoil force R of the jets of incipient liquids are presented. Cases of negative thrust caused by the Coanda effect are noted. Generalization of experimental data is proposed.

  17. NASA Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2012-01-01

    The presentation highlights jet-noise research conducted in the Subsonic Fixed Wing, Supersonics, and Environmentally Responsible Aviation Projects in the Fundamental Aeronautics Program at NASA. The research efforts discussed include NASA's updated Aircraft NOise Prediction Program (ANOPP2), acoustic-analogy-based prediction tools, jet-surface-interaction studies, plasma-actuator investigations, N+2 Supersonics Validation studies, rectangular-jet experiments, twin-jet experiments, and Hybrid Wind Body (HWB) activities.

  18. A study of stratospheric gases catalytically reacting on alumina

    NASA Technical Reports Server (NTRS)

    Cox, J. L., Jr.

    1974-01-01

    A vacuum system developed to study stratospheric gases reacting on Al2O3. Special attention was given to the reactions of HCl, SO2, and O3. Efforts were made to detect atoms and/or molecules produced by catalytic action of Al2O3 with mass spectrometer.

  19. Recent advances in PDF modeling of turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Leonard, Andrew D.; Dai, F.

    1995-01-01

    This viewgraph presentation concludes that a Monte Carlo probability density function (PDF) solution successfully couples with an existing finite volume code; PDF solution method applied to turbulent reacting flows shows good agreement with data; and PDF methods must be run on parallel machines for practical use.

  20. Clarifying the Concept of Equilibrium in Chemically Reacting Systems.

    ERIC Educational Resources Information Center

    Harris, W. F.

    1982-01-01

    Offers a critique of the conventional approach to teaching of equilibrium in chemically reacting systems and outlines a more satisfactory approach. This approach is based not in kinetics but in the basic principles of thermodynamics. The approach is especially useful for the advanced student. (Author/JN)

  1. Termite Proteins Cross-React with Cockroach Allergens

    USDA-ARS?s Scientific Manuscript database

    Shrimp are among a group of 8 foods that commonly cause food allergy, and shrimp allergens have been demonstrated to cross-react with arthropod proteins, such as those from cockroaches. Edible insects are beginning to be popularized as an alternate source of protein and have a high nutrition value....

  2. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.

    1996-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.

  3. Modification and improvement of software for modeling multidimensional reacting fuel flows. Final report, 1 November 1986-31 January 1989

    SciTech Connect

    Keyes, D.E.; Philbin, D.J.; Smooke, M.D.

    1989-07-01

    The flame type of most practical combustion devices is the diffusion flame. These flames are important in the interaction of heat and mass transfer with chemical reactions in ramjets, jet turbines and commercial burners. Three-dimensional models that couple the effects of fluid flow with detailed chemical reaction are as yet computationally infeasible. We focus our attention on axisymmetric laminar and turbulent diffusion flames in which a cylindrical fuel stream is surrounded by a coflowing oxidizer jet. In this configuration we can study the interaction of fluid flow with chemical reactions while obtaining a computationally feasible problem. The work centers on the development and application of accurate and efficient computational methods for the solution of the two-dimensional nonlinear boundary value problems describing the reacting systems. In particular, our goals involve the generalization of our one-dimensional fluid-chemistry model to two dimensions. We also focus on the use of two-dimensional flame sheet models as starting estimates for the nonlinear equation solver. Both confined and free methane-air flames have been studied. The results of the research are applicable to problems in (1) turbulent reacting flows, (2) engine efficiency, (3) commercial power generation units and (4) pollutant formation.

  4. Erosion/deposition in JET during the period 1999 2001

    NASA Astrophysics Data System (ADS)

    Coad, J. P.; Andrew, P.; Hole, D. E.; Lehto, S.; Likonen, J.; Matthews, G. F.; Rubel, M.; Contributors to the EFDA-JET work-programme

    2003-03-01

    Coated divertor and wall tiles exposed in JET for the 1999-2001 operations have been used to assess erosion/deposition. Deposited films of up to 90 μm thickness at the inner wall of the divertor tiles are, for the most part, enriched in beryllium and other metals, whilst carbon is probably chemically sputtered from these tiles and transported to shadowed regions of the inner divertor. However, from the composition at the surface of the tiles, it appears that the chemical erosion was 'switched off' by reducing the JET vessel wall temperature for the last part of the operations to 200 °C. Thick powdery deposits localised at the ion transport limit at each corner of the divertor may be due to physical sputtering. Erosion of the coatings is seen at the outer divertor wall, and on all the inner wall and outer limiter tiles.

  5. Wall force produced during disruptions

    NASA Astrophysics Data System (ADS)

    Strauss, H.; Paccagnella, R.; Breslau, J.

    2009-11-01

    The study of disruptions is of great importance for ITER. Previous work on disruptions [1] is extended to compute toroidally asymmetric wall force in ITER, using the M3D code. The disruptions are produced by n = 1 resistive wall modes or external kink modes. A thin wall resistive boundary model is used to calculate the wall forces. The symmetric wall force, produced by a VDE, and the asymmetric wall force, produced by n = 1 modes, are comparable in magnitude. It is found that the asymmetric and axisymmetric forces scale with the growth rate of the instability multiplied by the square of the current divided by magnetic field. A similar scaling was reported for VDEs in JET [2]. Numerically, the study of disruptions is very challenging. In the M3D extended MHD code, dealiasing was applied in the toroidal direction. Advection terms were treated with a numerical upwind method. These techniques provided sufficient numerical stability to simulate entire disruption events. [4pt] [1] R. Paccagnella, H. R. Strauss, and J. Breslau, Nucl. Fusion (2009) 49 035003. [2] V. Riccardo, T. C. Hender, P. J. Lomas, et al., Plasma Phys. Control. Fusion (2004)

  6. Large Eddy Simulation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Webb, A. T.; Mansour, Nagi N.

    2001-01-01

    Here we present the results of a Large Eddy Simulation of a non-buoyant jet issuing from a circular orifice in a wall, and developing in neutral surroundings. The effects of the subgrid scales on the large eddies have been modeled with the dynamic large eddy simulation model applied to the fully 3D domain in spherical coordinates. The simulation captures the unsteady motions of the large-scales within the jet as well as the laminar motions in the entrainment region surrounding the jet. The computed time-averaged statistics (mean velocity, concentration, and turbulence parameters) compare well with laboratory data without invoking an empirical entrainment coefficient as employed by line integral models. The use of the large eddy simulation technique allows examination of unsteady and inhomogeneous features such as the evolution of eddies and the details of the entrainment process.

  7. Reacting shock waves characteristics for biogas compared to other gaseous fuel

    NASA Astrophysics Data System (ADS)

    Wahid, Mazlan Abdul; Ujir, Haffis

    2012-06-01

    Present article aims to report an experimental study conducted to characterize the reacting shock waves for biogas compared to several other gaseous fuels. A dedicated experimental system which consists of a stainless steel tube with inner diameter of 100mm, a data acquisition system, ignition control unit and gas filling system was built in order to measure the characteristics of high speed reacting shock waves for synthetic biogas such as, pressure history, velocity and cell width. Two types of hydrocarbon fuels were used for comparison in this investigation; propane and natural gas with 92.7% methane. Biogas was synthetically produced by mixing 65% natural gas with 35% carbon dioxide. The oxygen concentration in the oxidizer mixture was diluted with nitrogen gas at various percentage of dilution. Results show that natural gas and biogas were not sensitive to detonation propagation compared to propane. For biogas, methane, and propane it was found that in smooth inner-wall tube, detonation will likely to occur if the percent of dilution gas is not more than approximately 8%, 10% and 35%, respectively. In order to decrease the tube length required for deflagration to detonation transition, an array of obstacles with identical blockage ratio was placed inside the tube near the ignition source. The effect of combustion wave-obstacle interaction was also investigated.

  8. Calculation of Propulsive Nozzle Flowfields in Multidiffusing Chemically Reacting Environments. Ph.D. Thesis - Purdue Univ.

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth John

    1994-01-01

    An advanced engineering model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multispecies, chemically reacting and multidiffusing Navier-Stokes equations are modelled, including the Soret thermal diffusion and the Dufour energy transfer terms. In addition to the spectrum of multispecies aspects developed, the model developed in this study is also conservative in axisymmetric flow for both inviscid and viscous flow environments and the boundary conditions employ a viscous, chemically reacting, reference plane characteristics method. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and a transpiration cooled plug and spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 and the 25 lbf film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent flow plug and spool nozzle analysis cases performed. Further, the Soret term was shown to represent an important fraction of the diffusion fluxes occurring in a transpiration cooled rocket engine.

  9. The Effects of Crossflow on the Pressures and Lift Induced by the Fountain Generated Between Two Impinging Jets

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.

    1998-01-01

    When a jet STOVL aircraft is hovering, or in a crossflow, while close to the ground wall jets flowing radially outward from the impingement points of the jets are generated. An upflow, or fountain, is generated where the wall jets from adjacent jets meet on the ground surface. The induced lift and suckdown generated by the impingement of the fountain on the lower surface of the configuration has been the subject of previous studies. This study analyzes the limited available pressure and force data on the effect of crossflow on the fountain induced lift and suckdown. The analysis includes the effects of jet spacing, height and operating conditions. However, it is limited to twin jet configurations of circular, vertical jets operating at subcritical nozzle pressure ratios over a fixed ground surface.

  10. Laboratory-produced MHD plasma jets

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2008-04-01

    Because space plasmas are neither confined by vacuum chamber walls nor have magnetic fields produced by physical coils, space plasmas have shapes that are much less determinate than lab plasmas. An experimental program underway at Caltech produces plasmas where the shape is neither fixed by a vacuum chamber wall nor imposed by an external coil set, but rather is allowed to be determined by self-organizing MHD processes subject to the constraint of imposed boundary conditions analogous to the boundary conditions of space plasmas. These self-organizing processes are believed to be fundamental to astrophysical jets, solar coronal loops, and MHD turbulence (e.g. Taylor relaxation). The experimental dynamics are sufficiently reproducible to allow detailed study despite the morphology being complex and dynamic. A surprising result has been the observation that instead of the plasma uniformly filling up the available volume, the plasma is spatially localized in a highly collimated, small diameter magnetic flux tube, the length and axis of which change in time in response to MHD forces. A model shows that the collimation results from stagnation of linked magnetic flux frozen into a MHD-driven jet that accelerates plasma from the wall into the flux tube, filling the flux tube with plasma. Jet flow has been imaged with a high-speed multi-frame camera, diagnosed via Doppler spectroscopy, and most recently (i) the collision between two opposing, color-coded jets flowing from opposite ends of a flux tube has been observed, and (ii) the collision of a jet with a target cloud has been observed.

  11. Physics-based scaling laws for confined and unconfined transverse jets

    NASA Astrophysics Data System (ADS)

    Forliti, D. J.; Salazar, D. V.; Bishop, A. J.

    2015-02-01

    An experimental study was conducted to explore the mixing properties of single and multiple confined transverse jets. A new physics-based scaling law variable was developed based on unconfined transverse jet trajectories. This variable accounts for both entrainment and drag momentum transport mechanisms that cause the jet deflection. The utility of this parameter under confined conditions was considered. It was observed that this new scaling parameter does correlate both qualitative and quantitative measures of the mean mixture properties, in particular prior to any jet-wall interactions. It was found that no local optimum mixing condition was present for two and three jets. For six jets, the behavior changed dramatically, with the emergence of a local optimum mixing state that is consistent with previous data collected for gas turbine geometries (Holdeman in Prog Energy Combust Sci 19:31-70, 1993). It is apparent that the local optimum observed for six jets involves jet penetration to a finite radial position while spreading in the cross plane, leading to the jets blending together resulting in a highly uniform mean mixture fraction distribution. When the number of jets is three or less, this blending process cannot occur due to the excessive distance between the jets. Jet impaction at the pipe center facilitates mixing for two and three jets, while degrading uniformity for six jets.

  12. Large bouncing jets

    NASA Astrophysics Data System (ADS)

    Cardin, Karl; Weislogel, Mark

    2016-11-01

    We experimentally investigate the phenomena of large jet rebound (bounce), a mode of fluid transfer following oblique jet impacts on hydrophobic surfaces. We initially seek to describe the regimes of such jet bounce in tests conducted in the weightless environment of a drop tower. A parametric study reveals the dependence of the rebound mode on the relevant dimensionless groups such as Weber number We⊥ defined on the velocity component perpendicular to the surface. We show that significantly larger diameter jets behave similarly as much smaller jets demonstrated during previous terrestrial investigations when We⊥ 1 . For We⊥ > 1 , large jet impacts create fishbone-like structures. We also explore rebounds from nonplanar substrates. Improving our understanding of such jet rebound opens avenues for unique transport capabilities. NASA Cooperative Agreement NNX12A047A.

  13. Hydroacoustic pulsating jet generator

    NASA Astrophysics Data System (ADS)

    Unrau, A.; Meier, G. E. A.

    1987-04-01

    A high pressure turbulent jet generator connected to a low pressure hydraulic tube is studied to investigate water hammer in tubes with fast flow variations, generating high pressure pulsating water jets. The pulsating jet generator consists of a tube, a hydraulic valve, a spring, and a water container. The jet is the effect of the combination of turbulent pipe flow with a valve for flow nozzle. The jet pressure depends on specific oscillation impedance and flow velocity variations. For inlet pressure of 0.5 to 2 bar the pressure rises to 40 bar. The described pulsating jet generator is more effective than the earlier model. A piezoelectric pressure controller is used to register pressure signals and high speed photos are made of the jet. Test results are consistent with theoretical calculation.

  14. Igniter jet dynamics in solid fuel ramjets

    NASA Astrophysics Data System (ADS)

    Tahsini, A. M.; Farshchi, M.

    2009-01-01

    The dynamics of a two dimensional plane jet injected at the base of a step, parallel to the wall, in backward facing step flow geometry is numerically studied. The objective of this work is to gain insight into the dynamics of the igniter flow field in solid fuel ramjet motors. Solid fuel ramjets operate by ingestion of air and subsequent combustion with a solid fuel grain such as polyethylene. The system of governing equations is solved with a finite volume approach using a structured grid in which the AUSM + scheme is used to calculate the convective fluxes. The Spalart and Allmaras turbulence model is used in these simulations. Experimental data have been used to validate the flow solver and turbulence model simulation results. The comparison of the numerical results and experimental data has validated the use of the adopted turbulence model for the study of this type of problem. A special attention is paid to the igniter jet exit location. It is shown that the wall jet igniter, issuing from the base of the step, drastically changes the structure of recirculating region of backward facing step flow and produces large and damaging shear stress on the fuel surface. Moving the igniter jet exit location to the top of the backward facing step changes the flow field favorably, by reducing the fuel surface shear stress by an order of magnitude and maintaining the recirculating region behind the step, which can provide proper residence time for the fuel-air mixture chemical reactions.

  15. 'Stucco' Walls

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This projected mosaic image, taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm,' shows the partial clotting or cement-like properties of the sand-sized grains within the trench wall. The area in this image measures approximately 3 centimeters (1.2 inches) wide and 5 centimeters (2 inches) tall.(This image also appears as an inset on a separate image from the rover's navigation camera, showing the location of this particular spot within the trench wall.)

  16. 'Stucco' Walls

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This projected mosaic image, taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm,' shows the partial clotting or cement-like properties of the sand-sized grains within the trench wall. The area in this image measures approximately 3 centimeters (1.2 inches) wide and 5 centimeters (2 inches) tall.(This image also appears as an inset on a separate image from the rover's navigation camera, showing the location of this particular spot within the trench wall.)

  17. VTOL in ground effect flows for closely spaced jets. [to predict pressure and upwash forces on aircraft structures

    NASA Technical Reports Server (NTRS)

    Migdal, D.; Hill, W. G., Jr.; Jenkins, R. C.

    1979-01-01

    Results of a series of in ground effect twin jet tests are presented along with flow models for closely spaced jets to help predict pressure and upwash forces on simulated aircraft surfaces. The isolated twin jet tests revealed unstable fountains over a range of spacings and jet heights, regions of below ambient pressure on the ground, and negative pressure differential in the upwash flow field. A separate computer code was developed for vertically oriented, incompressible jets. This model more accurately reflects fountain behavior without fully formed wall jets, and adequately predicts ground isobars, upwash dynamic pressure decay, and fountain lift force variation with height above ground.

  18. Hybrid Eulerian-Lagrangian Vortex Model for Turbulent Reacting Flows

    NASA Astrophysics Data System (ADS)

    Royero, John; Ahmed, Kareem

    2016-11-01

    A hybrid Eulerian-Lagrangian model for three dimensional large eddy simulations of turbulent reacting flows is presented. The method utilizes a Eulerian grid to resolve large scale flow features and the Lagrangian vortex element method to capture smaller subgrid scale effects and carry out reactions which are then communicated back to the Eulerian grid after a set number of Lagrangian time steps. Lagrangian influences are localized in order to reduce computational cost. The Lagrangian vortex method which utilizes the Helmholtz decomposition of the velocity into potential, expansive, and solenoidal components allows the separation of the various mechanisms contributing to vorticity including gas expansion, diffusion, external body forces and baroclinic torque and is coupled with the Eulerian solver allowing easier implementation in arbitrary reacting flows at a reduced computational cost compared to a pure Lagrangian solver.

  19. Density Weighted FDF Equations for Simulations of Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2011-01-01

    In this report, we briefly revisit the formulation of density weighted filtered density function (DW-FDF) for large eddy simulation (LES) of turbulent reacting flows, which was proposed by Jaberi et al. (Jaberi, F.A., Colucci, P.J., James, S., Givi, P. and Pope, S.B., Filtered mass density function for Large-eddy simulation of turbulent reacting flows, J. Fluid Mech., vol. 401, pp. 85-121, 1999). At first, we proceed the traditional derivation of the DW-FDF equations by using the fine grained probability density function (FG-PDF), then we explore another way of constructing the DW-FDF equations by starting directly from the compressible Navier-Stokes equations. We observe that the terms which are unclosed in the traditional DW-FDF equations are now closed in the newly constructed DW-FDF equations. This significant difference and its practical impact on the computational simulations may deserve further studies.

  20. Microgravity Diode Laser Spectroscopy Measurements in a Reacting Vortex Ring

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Dahm, Werner J. A.; Silver, Joel A.; Piltch, Nancy D.; VanderWal, R. (Technical Monitor)

    2001-01-01

    The technique of Diode Laser Spectroscopy (DLS) with wavelength modulation is utilized to measure the concentration of methane in reacting vortex rings under microgravity conditions. From the measured concentration of methane, other major species such as water, carbon dioxide, nitrogen, and oxygen can be easily computed under the assumption of equilibrium chemistry with an iterative method called ITAC (Iterative Temperature with Assumed Chemistry). The conserved scalar approach in modelling the coupling between fluid dynamics and combustion is utilized to represent the unknown variables in terms of the mixture fraction and scalar dissipation rate in conjunction with ITAC. Post-processing of the DLS and the method used to compute the species concentration are discussed. From the flame luminosity results, ring circulation appears to increase the fuel consumption rate inside the reacting vortex ring and the flame height for cases with similar fuel volumes but different ring circulations. The concentrations of methane, water, and carbon dioxide agree well with available results from numerical simulations.

  1. Modeling unsteady reacting flow with operator splitting and ISAT

    SciTech Connect

    Singer, Michael A.; Pope, Stephen B.; Najm, Habib N.

    2006-10-15

    We examine the utility of in situ adaptive tabulation (ISAT) for the simulation of two-dimensional unsteady laminar reacting flow. The numerical scheme used to solve the low-Mach-number reacting flow equations is an operator-split projection scheme which incorporates ISAT by a Strang subsplitting procedure. The scheme is parallelized using a combination of OpenMP and MPI. ISAT is used for the pure reaction substeps, while convection and diffusion are treated explicitly by a stabilized Runge-Kutta method. We apply the scheme to a two-dimensional problem involving a laminar premixed methane-air flame interacting with a counterrotating vortex pair using detailed GRIMech3.0 chemical kinetics. Computational performance is examined; we observe an overall speed-up factor due to ISAT of approximately 2.5-3. (author)

  2. Numerical investigation of chemically reacting flows in ramjet dump combustors

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Liu, Jong-Shang

    1989-01-01

    The time-dependent Navier-Stokes equations, including second-order turbulence model, are numerically integrated by using four-stage Runge-Kutta scheme to predict the steady-state supersonic flow structures in ramjet dump combustors. The formulation is derived for reacting flows with finite-rate chemistry. In the present study, it is firstly attempted to assess the accuracy of existing high-order turbulence model in supersonic flows. The comparison shows reasonable agreement between calculated and measured data in terms of velocity distributions. It is indicated that a modified constant C-mu for calculating turbulent eddy viscosity is needed in the supersonic flow regime and the adaptive meshing is preferred to capture the recirculation zone. In the reacting flow calculation, the results from a test case of hydrogen and air combustion at premixed conditon show that the rearward facing step is able to increase flow residence time and stabilize the flame in supersonic flows.

  3. Advanced high performance vertical hybrid synthetic jet actuator

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2011-01-01

    The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.

  4. Chemically reacting supersonic flow calculation using an assumed PDF model

    NASA Technical Reports Server (NTRS)

    Farshchi, M.

    1990-01-01

    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  5. Numerical simulation of low Mach number reacting flows

    SciTech Connect

    Bell, John B.; Aspden, Andrew J.; Day, Marcus S.; Lijewski,Michael J.

    2007-06-20

    Using examples from active research areas in combustion andastrophysics, we demonstrate a computationally efficient numericalapproach for simulating multiscale low Mach number reacting flows. Themethod enables simulations that incorporate an unprecedented range oftemporal and spatial scales, while at the same time, allows an extremelyhigh degree of reaction fidelity. Sample applications demonstrate theefficiency of the approach with respect to a traditional time-explicitintegration method, and the utility of the methodology for studying theinteraction of turbulence with terrestrial and astrophysical flamestructures.

  6. Flow Field Effects on Nucleation in a Reacting Mixture Layer.

    DTIC Science & Technology

    1984-11-01

    chemically reacting flows has been analysed by Fendell (1965) who considered the effect of the straining motion in a stagnation point flow on ignition...stagnation point diffusion flame ( Fendell , 1965, Linan, 1974). In the present study the effect of the strain rate or velocity gradient on nucleation kinetics...Symposium (International) on Corn- bustion, 799-810, Academic Press. Fendell , F. E. (1965). Ignition and extinction in combustion of initially unmixed

  7. Comparison of H-mode plasmas in JET-ILW and JET-C with and without nitrogen seeding

    NASA Astrophysics Data System (ADS)

    Jaervinen, A. E.; Giroud, C.; Groth, M.; Belo, P.; Brezinsek, S.; Beurskens, M.; Corrigan, G.; Devaux, S.; Drewelow, P.; Harting, D.; Huber, A.; Jachmich, S.; Lawson, K.; Lipschultz, B.; Maddison, G.; Maggi, C.; Marchetto, C.; Marsen, S.; Matthews, G. F.; Meigs, A. G.; Moulton, D.; Sieglin, B.; Stamp, M. F.; Wiesen, S.; Contributors, JET

    2016-04-01

    In high confinement mode, highly shaped plasmas with edge localized modes in JET, and for heating power of 15-17 MW, the edge fluid code EDGE2D-EIRENE predicts transition to detachment assisted by nitrogen at the low field side (LFS) target when more than 50% of the power crossing the separatrix between ELMs is radiated in the divertor chamber, i.e. ~4 MW. This is observed both in the ITER-like wall (JET-ILW) and in the carbon wall (JET-C) configurations and is consistent with experimental observations within their uncertainty. In these conditions, peak heat fluxes below 1 MW m-2 are measured at the LFS target and predicted for both wall configurations. When the JET-C configuration is replaced with the JET-ILW, a factor of two reduction in the divertor radiated power and 25-50% increase in the peak and total power deposited to the LFS divertor plate is predicted by EDGE2D-EIRENE for unseeded plasmas similar to experimental observations. At the detachment threshold, EDGE2D-EIRENE shows that nitrogen radiates more than 80% of the total divertor radiation in JET-ILW with beryllium contributing less than a few %. With JET-C, nitrogen radiates more than 70% with carbon providing less than 20% of the total radiation. Therefore, the lower intrinsic divertor radiation with JET-ILW is compensated by stronger nitrogen radiation contribution in simulations leading to detachment at similar total divertor radiation fractions. 20-100% higher deuterium molecular fraction in the divertor recycling fluxes is predicted with light JET-C materials when compared to heavy tungsten. EDGE2D-EIRENE simulations indicate that the stronger molecular contribution can reduce the divertor peak power deposition in high recycling conditions by 10-20% due to enhanced power dissipation by molecular interaction.

  8. Assessment of chemistry models for compressible reacting flows

    NASA Astrophysics Data System (ADS)

    Lapointe, Simon; Blanquart, Guillaume

    2014-11-01

    Recent technological advances in propulsion and power devices and renewed interest in the development of next generation supersonic and hypersonic vehicles have increased the need for detailed understanding of turbulence-combustion interactions in compressible reacting flows. In numerical simulations of such flows, accurate modeling of the fuel chemistry is a critical component of capturing the relevant physics. Various chemical models are currently being used in reacting flow simulations. However, the differences between these models and their impacts on the fluid dynamics in the context of compressible flows are not well understood. In the present work, a numerical code is developed to solve the fully coupled compressible conservation equations for reacting flows. The finite volume code is based on the theoretical and numerical framework developed by Oefelein (Prog. Aero. Sci. 42 (2006) 2-37) and employs an all-Mach-number formulation with dual time-stepping and preconditioning. The numerical approach is tested on turbulent premixed flames at high Karlovitz numbers. Different chemical models of varying complexity and computational cost are used and their effects are compared.

  9. Spatio-temporal Linear Stability Analysis of Multiple Reacting Wakes

    NASA Astrophysics Data System (ADS)

    Kunnumpuram Sebastian, Jacob; Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Hydrodynamic stability of reacting shear flows plays a key role in controlling a variety of combustor behaviors, such as combustion instability, mixing and entrainment, and blowoff. A significant literature exists on the hydrodynamics of single bluff body flows, but not the multi-bluff body flows that are found in applications. The objective of this work was to compare the spatio-temporal stability of multiple reacting wakes and single reacting wakes, within the framework of linear stability theory. Spatio-temporal stability analyses are conducted on model velocity and density profiles, with key parameters being the density ratio across the flame, bluff body spacing, dimensionless shear, and asymmetry parameters (if the two wakes are dissimilar). The introduction of the additional bluff body can exert both a stabilizing and destabilizing effect on the combined two-wake system, depending on the spatial separation between the bluff bodies. Furthermore, while the most rapidly amplified mode of the single wake mode is the sinuous (asymmetric) one, in the two wake system, the most rapidly amplified mode can be either sinuous or varicose (symmetric), also depending on spatial separation.

  10. System evaluation of improved thermal stability jet fuels

    SciTech Connect

    Binns, K.E.; Dieterle, G.L.; Williams, T.

    1995-05-01

    A single-pass, single-tube heat exchanger device called the Phoenix rig and a single-pass, dual-heat exchanger system called the Extended Duration Thermal Stability Test system are specific devices/systems developed for evaluating jet fuel thermal stability. They have been used extensively in the evaluation of various jet fuels and thermal stability additives. The test results have indicated that additives can substantially improve the thermal stability of conventional jet fuels. Relationships of oxygen consumption, residence time, bulk, and wetted wall temperatures on coking deposits that form in the heated tubes have also been investigated.

  11. Jet Substructure Without Trees

    SciTech Connect

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC /Stanford U., ITP

    2011-08-19

    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods. In preparation for the LHC, the past several years have seen extensive work on various aspects of collider searches. With the excellent resolution of the ATLAS and CMS detectors as a catalyst, one area that has undergone significant development is jet substructure physics. The use of jet substructure techniques, which probe the fine-grained details of how energy is distributed in jets, has two broad goals. First, measuring more than just the bulk properties of jets allows for additional probes of QCD. For example, jet substructure measurements can be compared against precision perturbative QCD calculations or used to tune Monte Carlo event generators. Second, jet substructure allows for additional handles in event discrimination. These handles could play an important role at the LHC in discriminating between signal and background events in a wide variety of particle searches. For example, Monte Carlo studies indicate that jet substructure techniques allow for efficient reconstruction of boosted heavy objects such as the W{sup {+-}} and Z{sup 0} gauge bosons, the top quark, and the Higgs boson.

  12. Analysis of liquid-metal-jet impingement cooling in a corner region and for a row of jets

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1975-01-01

    A conformal mapping method was used to analyze liquid-metal-jet impingement heat transfer. The jet flow region and energy equation are transformed to correspond to uniform flow in a parallel plate channel with nonuniform heat addition along a portion of one wall. The exact solution for the wall-temperature distribution was obtained in the transformed channel, and the results are mapped back into the physical plane. Two geometries are analyzed. One is for a single slot jet directed either into an interior corner formed by two flat plates, or over the external sides of the corner; the flat plates are uniformly heated, and the corner can have various included angles. The heat-transfer coefficient at the stagnation point at the apex of the plates is obtained as a function of the corner angle, and temperature distributions are calculated along the heated walls. The second geometry is an infinite row of uniformly spaced parallel slot jets impinging normally against a uniformly heated plate. The heat-transfer behavior is obtained as a function of the spacing between the jets. Results are given for several jet Peclet numbers from 5 to 50.

  13. IS FS Tau B DRIVING AN ASYMMETRIC JET?

    SciTech Connect

    Liu, Chun-Fan; Shang, Hsien; Takami, Michihiro; Yan, Chi-Hung; Wang, Shiang-Yu; Ohashi, Nagayoshi; Pyo, Tae-Soo; Walter, Frederick M.; Hayashi, Masahiko

    2012-04-10

    FS Tau B is one of the few T Tauri stars that possess a jet and a counterjet as well as an optically visible cavity wall. We obtained images and spectra of its jet-cavity system in the near-infrared H and K bands using the Subaru/Infrared Camera and Spectrograph and detected the jet and the counterjet in the [Fe II] 1.644 {mu}m line for the first time. Within 2'' the blueshifted jet is brighter, whereas beyond {approx}5'' the redshifted counterjet dominates the [Fe II] emission. The innermost blueshifted knot is spectrally resolved to have a large line width of {approx}110 km s{sup -1}, while the innermost redshifted knot appears spectrally unresolved. The velocity ratio of the jet to the counterjet is {approx}1.34, which suggests that FS Tau B is driving an asymmetric jet, similar to those found in several T Tauri stars. Combining with optical observations in the literature, we showed that the blueshifted jet has a lower density and higher excitation than the redshifted counterjet. We suggest that the asymmetry in brightness and velocity is the manifestation of a bipolar outflow driving at different mass-loss rates, while maintaining balance of linear momentum. A full explanation of the asymmetry in the FS Tau B system awaits detail modeling and further investigation of the kinematic structure of the wind-associated cavity walls.

  14. Wall Art

    ERIC Educational Resources Information Center

    McGinley, Connie Q.

    2004-01-01

    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  15. Wall Art

    ERIC Educational Resources Information Center

    McGinley, Connie Q.

    2004-01-01

    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  16. Wall Covering

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The attractive wall covering shown below is one of 132 styles in the Mirror Magic II line offered by The General Tire & Rubber Company, Akron, Ohio. The material is metallized plastic fabric, a spinoff from space programs. Wall coverings are one of many consumer applications of aluminized plastic film technology developed for NASA by a firm later bought by King-Seeley Thermos Company, Winchester, Massachusetts, which now produces the material. The original NASA use was in the Echo 1 passive communications satellite, a "space baloon" made of aluminized mylar; the high reflectivity of the metallized coating enabled relay of communications signals from one Earth station to another by "bouncing" them off the satellite. The reflectivity feature also made the material an extremely efficient insulator and it was subsequently widely used in the Apollo program for such purposes as temperature control of spacecraft components and insulation of tanks for fuels that must be maintained at very low temperatures. I Used as a wall covering, the aluminized material offers extra insulation, reflects light and I resists cracking. In addition to General Tire, King-Seeley also supplies wall covering material to Columbus Coated Fabrics Division of Borden, Incorporated, Columbus, Ohio, among others.

  17. Ground Impingement of a Fan Jet Exhaust Plume

    DTIC Science & Technology

    1978-05-01

    1 - 100, where a very heavy oil line appears in Fig. lOb due to vane dcflection. A Vh/df 2 xd . qfIqc, w 6 h/drd, qf~ j ~ t+ + + + ++4+t444 4...Memorandum RN- -653 j ’~,i7) GROUND IMPINGEMENT OF A FAN JET EXHIAUST PLUME* C I DO William C/Hill, Jr. Richard C ./Jenkins Fluid Dynamics May 1078...19 13 Wall Jot Profiles for Vate ic 0..................... 20 14 Wall Jet Profiles for Vane w +200,....................... 21 15 Effects of Vae

  18. Oxidation of boron nitride in an arc heated jet.

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.

    1971-01-01

    Two grades of hot pressed boron nitride and a boron nitride composite were subjected to oxidation tests in a 2.5 megawatt atmospheric arc jet. The results showed that fabrication and/or composition influenced thermal shock and oxidation resistance. Changes in surface structure and recession due to oxidation suggest correlation with specimen composition. The boron nitride composite reacted with the oxygen in the hot subsonic airstream to produce a glassy coating on the hot face surface.

  19. Ammonia chemistry in a flameless jet

    SciTech Connect

    Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter; Brink, Anders; Hupa, Mikko

    2009-10-15

    In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicals which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)

  20. Recent JET results and future prospects

    SciTech Connect

    Rebut, P.H.

    1990-01-01

    The latest results of JET plasmas in transient and steady states are presented. Substantial improvements in plasma purity and corresponding reductions in plasma dilution have resulted from the use of beryllium as the first wall material facing the hot plasma. As a consequence, plasmas with a fusion triple product (n{sub D}(0){tau}{sub E}T{sub i}(0)) in the range 8--9 {times} 10{sup 20} m{sup {minus}3} skeV have been achieved (within a factor of 8 that required in a fusion reactor), albeit under transient conditions. The general JET performance has also improved, allowing the parameters of a reactor plasma to be individually achieved in JET. In view of their importance for reactors, the JET results are presented with particular emphasis on their significance for the formulation of a plasma model for the Next Step. However, impurity influxes limit the attainment of better parameters and prevent the realization of steady state conditions at high heating powers. To address these problems of impurity control, plasma fueling and helium ash exhaust, a New Phase is planned for JET. An axisymmetric pumped divertor configuration will allow operating conditions close to those of a reactor. The divertor configuration should demonstrate a concept of impurity control and determine the size and geometry needed to fulfill this concept in a reactor. It should identify appropriate materials for plasma facing components and define the operational domain for the Next Step.

  1. Interaction between plasma synthetic jet and subsonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zong, Haohua; Kotsonis, Marios

    2017-04-01

    This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U∞ = 20 m/s) and the boundary layer thickness (δ99 = 34.5 mm) at the location of interaction is 44 400. A large-volume (1696 mm3) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (Tjet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ

  2. The Jets of Enceladus: Locations, Correlations with Thermal Hot Spots, and Jet Particle Vertical Velocities

    NASA Astrophysics Data System (ADS)

    Porco, C.; Ingersoll, A. P.; Dinino, D.; Helfenstein, P.; Roatsch, T.; Mitchell, C. J.; Ewald, S. P.

    2010-12-01

    order 30 m/s or less, much less than either the escape speed or the thermal speed for a temperature of 273 K. From the collimation of the vapor in the jets, the Cassini UVIS team infers vertical velocities of 1000 m/s or more [Hansen et al. (2008) Nature 456, 477-479]. Schmidt et al. [(2008) Nature 451, 685-688] account for the slow particle speeds by invoking collisions with the walls of the vent. Ingersoll and Pankine [(2010) Icarus 206, 594-607] invoke short distances during which the gas velocity is high; the particles don’t have time reach escape speed. The third possibility is that the particles are so large that the gas cannot accelerate them to escape speed. This possibility is testable with Cassini ISS high-resolution images, which span phase angles up to 176 degrees and wavelengths from UV to near-IR. Our ultimate goal is to test models of how the jets form. The particles form either by condensing directly from vapor, by spallation from the icy walls of the vent, or by freezing of liquid water droplets. Images collected by Cassini thus far will help us choose among the possibilities.

  3. Interpretation of extragalactic jets

    SciTech Connect

    Norman, M.L.

    1985-01-01

    The nature of extragalatic radio jets is modeled. The basic hypothesis of these models is that extragalatic jets are outflows of matter which can be described within the framework of fluid dynamics and that the outflows are essentially continuous. The discussion is limited to the interpretation of large-scale (i.e., kiloparsec-scale) jets. The central problem is to infer the physical parameters of the jets from observed distributions of total and polarized intensity and angle of polarization as a function of frequency. 60 refs., 6 figs.

  4. The jet in crossflowa)

    NASA Astrophysics Data System (ADS)

    Karagozian, Ann R.

    2014-10-01

    The jet in crossflow, or transverse jet, is a flowfield that has relevance to a wide range of energy and propulsion systems. Over the years, our group's studies on this canonical flowfield have focused on the dynamics of the vorticity associated with equidensity and variable density jets in crossflow, including the stability characteristics of the jet's upstream shear layer, as a means of explaining jet response to altered types of excitation. The jet's upstream shear layer is demonstrated to exhibit convectively unstable behavior at high jet-to-crossflow momentum flux ratios, transitioning to absolutely unstable behavior at low momentum flux and/or density ratios, with attendant differences in shear layer vorticity evolution and rollup. These differences in stability characteristics are shown to have a significant effect on how one optimally employs external excitation to control jet penetration and spread, depending on the flow regime and specific engineering application. Yet recent unexpected observations on altered transverse jet structure under different flow conditions introduce a host of unanswered questions, primarily but not exclusively associated with the nature of molecular mixing, that make this canonical flowfield one that is of great interest for more extensive exploration.

  5. The remarkable AGN jets

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei

    The jets from active galactic nuclei exhibit stability which seems to be far superior compared to that of terrestrial and laboratory jets. They manage to propagate over distances up to a billion of initial jet radii. Yet this may not be an indication of some exotic physics but mainly a reflection of the specific environment these jets propagate through. The key property of this environment is a rapid decline of density and pressure along the jet, which promotes its rapid expansion. Such an expansion can suppress global instabilities, which require communication across the jet, and hence ensure its survival over huge distances. At kpc scales, some AGN jets do show signs of strong instabilities and even turn into plumes. This could be a result of the flattening of the external pressure distribution in their host galaxies or inside the radio lobes. In this regard, we discuss the possible connection between the stability issue and the Fanaroff-Riley classification of extragalactic radio sources. The observations of AGN jets on sub-kpc scale do not seem to support their supposed lack of causal connectivity. When interpreted using simple kinematic models, they reveal a rather perplexing picture with more questions than answers on the jets dynamics.

  6. Large Eddy Simulation of Reacting Multiphase Flows in Complex Combustor Geometries

    NASA Astrophysics Data System (ADS)

    Apte, S.; Mahesh, K.; Iaccarino, G.; Constantinescu, G.; Ham, F.; Moin, P.

    2003-11-01

    We have developed a massively parallel computational tool (CDP) for large-eddy simulation (LES) of reacting multiphase flows in complex combustor geometries. A co-located, finite-volume scheme on unstructured grids is used to solve the low-Mach number equations for gaseous phase. The liquid phase is modeled by tracking a large number of computational particles in a Lagrangian framework with models for inter-phase mass, momentum, and energy transport. Complex physical phenomena of liquid atomization, droplet deformation, drag, and evaporation are captured using advanced subgrid models. A flamelet/progress variable appraoch by Pierce & Moin (2001) is used to compute non-premixed turbulent combustion. A series of validation studies in coaxial and realistic gas-turbine combustor geometries are performed to test the predictive capability of the solver. Specifically, simulations of non-premixed combustion, particle-laden swirling flows, droplet vaporization in coaxial-jet combustors and spray breakup in realistic injectors are performed and good agreement with avialable experimental data is obtained. This tool is now being used to perform simulations of turbulent spray flames in a realistic Pratt & Whitney gas-turbine combustion chamber using Department of Energy's computational resources under the Accelerated Strategic Computing Initiative (ASCI) project.

  7. Wall Turbulence

    DTIC Science & Technology

    1992-04-01

    Doppler velocimeter, computer experiments, and pulsed-laser velocimetry. External influences to be studied are imposed flow oscillations , wavy walls...imposed flow oscillations Studies of the effect of imposed small amplitude flow oscillations have shown no effect on the time mean flow. Work was...undertaken to see if imposed large amplitude oscillations can affect drag. The system used was water flow through a two inch pipe. The flow oscillations

  8. Moment estimation for chemically reacting systems by extended Kalman filtering.

    PubMed

    Ruess, J; Milias-Argeitis, A; Summers, S; Lygeros, J

    2011-10-28

    In stochastic models of chemically reacting systems that contain bimolecular reactions, the dynamics of the moments of order up to n of the species populations do not form a closed system, in the sense that their time-derivatives depend on moments of order n + 1. To close the dynamics, the moments of order n + 1 are generally approximated by nonlinear functions of the lower order moments. If the molecule counts of some of the species have a high probability of becoming zero, such approximations may lead to imprecise results and stochastic simulation is the only viable alternative for system analysis. Stochastic simulation can produce exact realizations of chemically reacting systems, but tends to become computationally expensive, especially for stiff systems that involve reactions at different time scales. Further, in some systems, important stochastic events can be very rare and many simulations are necessary to obtain accurate estimates. The computational cost of stochastic simulation can then be prohibitively large. In this paper, we propose a novel method for estimating the moments of chemically reacting systems. The method is based on closing the moment dynamics by replacing the moments of order n + 1 by estimates calculated from a small number of stochastic simulation runs. The resulting stochastic system is then used in an extended Kalman filter, where estimates of the moments of order up to n, obtained from the same simulation, serve as outputs of the system. While the initial motivation for the method was improving over the performance of stochastic simulation and moment closure methods, we also demonstrate that it can be used in an experimental setting to estimate moments of species that cannot be measured directly from time course measurements of the moments of other species.

  9. An asymptotic analysis of supersonic reacting mixing layers

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.; Hussaini, M. Y.

    1987-01-01

    The purpose of this paper is to present an asymptotic analysis of the laminar mixing of the simultaneous chemical reaction between parallel supersonic streams of two reacting species. The study is based on a one-step irreversible Arrhenius reaction and on large activation energy asymptotics. Essentially it extends the work of Linan and Crespo to include the effect of free shear and Mach number on the ignition regime, the deflagration regime and the diffusion flame regime. It is found that the effective parameter is the product of the characteristic Mach number and a shear parameter.

  10. ReACT Methodology Proof of Concept Final Report

    SciTech Connect

    Bri Rolston; Sarah Freeman

    2014-03-01

    The Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) funded INL Researchers to evaluate a novel process for assessing and mitigating cyber security risks. The proof of concept level of the method was tested in an industry environment. This case study, plus additional case studies will support the further development of the method into a tool to assist industry in securing their critical networks. This report provides an understanding of the process developed in the Response Analysis and Characterization Tool (ReACT) project. This report concludes with lessons learned and a roadmap for final development of these tools for use by industry.

  11. Jet Mixing and Emission Characteristics of Transverse Jets in Annular and Cylindrical Confined Crossflow

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1995-01-01

    Three dimensional turbulent reacting CFD analyses were performed on transverse jets injected into annular and cylindrical (can) confined crossflows. The goal was to identify and assess mixing differences between annular and can geometries. The approach taken was to optimize both annular and can configurations by systematically varying orifice spacing until lowest emissions were achieved, and then compare the results. Numerical test conditions consisted of a jet-to-mainstream mass-flow ratio of 3.2 and a jet-to-mainstream momentum-flux ratio (J) of 30. The computational results showed that the optimized geometries had similar emission levels at the exit of the mixing section although the annular configuration did mix-out faster. For lowest emissions, the density correlation parameter (C = (S/H) square root of J) was 2.35 for the annular geometry and 3.5 for the can geometry. For the annular geometry, the constant was about twice the value seen for jet mixing at low mass-flow ratios (i.e., MR less than 0.5). For the can geometry, the constant was about 1 1/2 times the value seen for low mass-flow ratios.

  12. Measurements of a single pulse impinging jet. A CFD reference

    NASA Astrophysics Data System (ADS)

    Bovo, Mirko; Rojo, Borja; Golubev, Maxim

    2014-03-01

    This paper reports three sets of measurements of a single pulse impinging jet. The purpose is to serve as a reference for CFD validation. A gas injector generates a single pulse jet at Re ~90000. The jet impinges on a temperature controlled flat target at different angles (0º, 30º, 45º and 60º). The jet velocity field is measured with PIV. The evolution of the jet velocity profile in time is reported at two different locations (suitable as CFD inlet conditions). At the same locations also turbulence quantities are reported. The impingement wall temperature is measured with fast responding thermocouples and infrared camera. These give high time and space resolution respectively. Results are reported in a format suitable for comparison with CFD simulations. The results show that the heat transfer effects are highest for the jet impinging normally on the target. Target inclination has remarkable effects on the jet penetration rate and repeatability. Even small target inclinations result creates a preferential direction for the jet flow and cause a shift in the position of the stagnation region.

  13. CFD analysis of jet mixing in low NOx flametube combustors

    NASA Technical Reports Server (NTRS)

    Talpallikar, M. V.; Smith, C. E.; Lai, M. C.; Holdeman, J. D.

    1991-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor was identified as a potential gas turbine combustor concept to reduce NO(x) emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NO(x) levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing by-pass combustion air with rich-burn gases. Jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed twelve radial-inflow slots. The numerical analyses were performed with an advanced, validated 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric variation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both non-reacting and reacting analyses were performed. Results showed mixing and NO(x) emissions to be highly sensitive to J and slot aspect ratio. Lowest NO(x) emissions occurred when the dilution jet penetrated to approximately mid-radius. The viability of using 3-D CFD analyses for optimizing jet mixing was demonstrated.

  14. An experimental study of several wind tunnel wall configurations using two V/STOL model configurations. [low speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Binion, T. W., Jr.

    1975-01-01

    Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.

  15. Large-Eddy Simulations of Noise Generation in Supersonic Jets at Realistic Engine Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Junhui; Corrigan, Andrew; Kailasanath, K.; Taylor, Brian

    2015-11-01

    Large-eddy simulations (LES) have been carried out to investigate the noise generation in highly heated supersonic jets at temperatures similar to those observed in high-performance jet engine exhausts. It is found that the exhaust temperature of high-performance jet engines can range from 1000K at an intermediate power to above 2000K at a maximum afterburning power. In low-temperature jets, the effects of the variation of the specific heat ratio as well as the radial temperature profile near the nozzle exit are small and are ignored, but it is not clear whether those effects can be also ignored in highly heated jets. The impact of the variation of the specific heat ratio is assessed by comparing LES results using a variable specific heat ratio with those using a constant specific heat ratio. The impact on both the flow field and the noise distributions are investigated. Because the total temperature near the nozzle wall can be substantially lower than the nozzle total temperature either due to the heating loss through the nozzle wall or due to the cooling applied near the wall, this lower wall temperature may impact the temperature in the shear layer, and thus impact the noise generation. The impact of the radial temperature profile on the jet noise generation is investigated by comparing results of lower nozzle wall temperatures with those of the adiabatic wall condition.

  16. Linear stability of the confined compressible reacting mixing layer

    NASA Technical Reports Server (NTRS)

    Shin, D. S.; Ferziger, J. H.

    1993-01-01

    This paper investigates the linear stability of confined mixing layers with special emphasis on the effects of heat release and compressibility. The results show that reflection of supersonic disturbances by the walls makes the confined supersonic mixing layer more unstable than the unconfined free shear layer. Decreasing the distance between the walls makes the flow more unstable. However, subsonic disturbances are relatively unaffected by the walls. Heat release and Mach number hardly change the growth rates of supersonic disturbances. The most unstable supersonic disturbances are two-dimensional in rectangular channel flows, but three-dimensional in partially confined flows. Finally, the reactants are not strongly mixed by supersonic instabilities, which mainly disturb one side of the layer.

  17. An experimental study of the fluid mechanics associated with porous walls

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Heaman, J.; Smith, A.

    1992-01-01

    The fluid mechanics of air exiting from a porous material is investigated. The experiments are filter rating dependent, as porous walls with filter ratings differing by about three orders of magnitude are studied. The flow behavior is investigated for its spatial and temporal stability. The results from the investigation are related to jet behavior in at least one of the following categories: (1) jet coalescence effects with increasing flow rate; (2) jet field decay with increasing distance from the porous wall; (3) jet field temporal turbulence characteristics; and (4) single jet turbulence characteristics. The measurements show that coalescence effects cause jet development, and this development stage can be traced by measuring the pseudoturbulence (spatial velocity variations) at any flow rate. The pseudoturbulence variation with increasing mass flow reveals an initial increasing trend followed by a leveling trend, both of which are directly proportional to the filter rating. A critical velocity begins this leveling trend and represents the onset of fully developed jetting action in the flow field. A correlation is developed to predict the onset of fully developed jets in the flow emerging from a porous wall. The data further show that the fully developed jet dimensions are independent of the filter rating, thus providing a length scale for this type of flow field (1 mm). Individual jet characteristics provide another unifying trend with similar velocity decay behavior with distance; however, the respective turbulence magnitudes show vast differences between jets from the same sample. Measurements of the flow decay with distance from the porous wall show that the higher spatial frequency components of the jet field dissipate faster than the lower frequency components. Flow turbulence intensity measurements show an out of phase behavior with the velocity field and are generally found to increase as the distance from the wall is increased.

  18. Jet lag modification.

    PubMed

    Simmons, Emily; McGrane, Owen; Wedmore, Ian

    2015-01-01

    Athletes often are required to travel for sports participation, both for practice and competition. A number of those crossing multiple time zones will develop jet lag disorder with possible negative consequences on their performance. This review will discuss the etiology of jet lag disorder and the techniques that are available to shorten or minimize its effects. This includes both pharmacological and nonpharmacological approaches.

  19. Jet measurements in ATLAS

    NASA Astrophysics Data System (ADS)

    Loch, Peter; ATLAS Collaboration

    2011-11-01

    The reconstruction of jets generated in the proton-proton collisions at the Large Hadron Collider (LHC) at a center of mass energy of TeV with the ATLAS detector is discussed. Beginning with a brief review of the calorimeter signal definitions relevant for jet finding, and the use of reconstructed charged particle tracks, the jet reconstruction strategy is described in some detail. Emphasis is put on the jet energy scale (JES) calibration strategy applied for first data, which is based on a short sequence of data driven and simulation based calibrations and corrections to restore the measured jet energy to particle level. The level of understanding of the signal patterns entering the JES corrections is shown for selected variables in comparisons to simulations. The present systematic uncertainties on the JES, which can be as low as 2% for central jets, are presented and analyzed with respect to the individual fractional contributions entering their determination. Some characteristic jet reconstruction performance and selected results from the first year of jet physics with ATLAS in a newly accessible kinematic domain are shown in conclusion.

  20. Jet lag prevention

    MedlinePlus

    ... be harder to adjust to because you lose time. Jet lag can make you feel like going to bed ... such as trying to adjust to the new time zone before you arrive. Images Jet lag prevention References Berry RB, Wagner MH. Patients with ...