EMPIRE: Nuclear Reaction Model Code System for Data Evaluation
NASA Astrophysics Data System (ADS)
Herman, M.; Capote, R.; Carlson, B. V.; Obložinský, P.; Sin, M.; Trkov, A.; Wienke, H.; Zerkin, V.
2007-12-01
EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. A projectile can be a neutron, proton, any ion (including heavy-ions) or a photon. The energy range extends from the beginning of the unresolved resonance region for neutron-induced reactions (∽ keV) and goes up to several hundred MeV for heavy-ion induced reactions. The code accounts for the major nuclear reaction mechanisms, including direct, pre-equilibrium and compound nucleus ones. Direct reactions are described by a generalized optical model (ECIS03) or by the simplified coupled-channels approach (CCFUS). The pre-equilibrium mechanism can be treated by a deformation dependent multi-step direct (ORION + TRISTAN) model, by a NVWY multi-step compound one or by either a pre-equilibrium exciton model with cluster emission (PCROSS) or by another with full angular momentum coupling (DEGAS). Finally, the compound nucleus decay is described by the full featured Hauser-Feshbach model with γ-cascade and width-fluctuations. Advanced treatment of the fission channel takes into account transmission through a multiple-humped fission barrier with absorption in the wells. The fission probability is derived in the WKB approximation within the optical model of fission. Several options for nuclear level densities include the EMPIRE-specific approach, which accounts for the effects of the dynamic deformation of a fast rotating nucleus, the classical Gilbert-Cameron approach and pre-calculated tables obtained with a microscopic model based on HFB single-particle level schemes with collective enhancement. A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, moments of inertia and γ-ray strength functions. The results can be converted into ENDF-6 formatted files using the
Modeling Proton- and Light Ion-Induced Reactions at Low Energies in the MARS15 Code
Rakhno, I. L.; Mokhov, N. V.; Gudima, K. K.
2015-04-25
An implementation of both ALICE code and TENDL evaluated nuclear data library in order to describe nuclear reactions induced by low-energy projectiles in the Monte Carlo code MARS15 is presented. Comparisons between results of modeling and experimental data on reaction cross sections and secondary particle distributions are shown.
SurfKin: an ab initio kinetic code for modeling surface reactions.
Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K
2014-10-01
In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts.
A comparison of total reaction cross section models used in particle and heavy ion transport codes
NASA Astrophysics Data System (ADS)
Sihver, Lembit; Lantz, M.; Takechi, M.; Kohama, A.; Ferrari, A.; Cerutti, F.; Sato, T.
To be able to calculate the nucleon-nucleus and nucleus-nucleus total reaction cross sections with precision is very important for studies of basic nuclear properties, e.g. nuclear structure. This is also of importance for particle and heavy ion transport calculations because, in all particle and heavy ion transport codes, the probability function that a projectile particle will collide within a certain distance x in the matter depends on the total reaction cross sections. Furthermore, the total reaction cross sections will also scale the calculated partial fragmentation cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. In this paper, different models for calculating nucleon-nucleus and nucleus-nucleus total reaction cross sections are compared and discussed.
PHASE-OTI: A pre-equilibrium model code for nuclear reactions calculations
NASA Astrophysics Data System (ADS)
Elmaghraby, Elsayed K.
2009-09-01
The present work focuses on a pre-equilibrium nuclear reaction code (based on the one, two and infinity hypothesis of pre-equilibrium nuclear reactions). In the PHASE-OTI code, pre-equilibrium decays are assumed to be single nucleon emissions, and the statistical probabilities come from the independence of nuclei decay. The code has proved to be a good tool to provide predictions of energy-differential cross sections. The probability of emission was calculated statistically using bases of hybrid model and exciton model. However, more precise depletion factors were used in the calculations. The present calculations were restricted to nucleon-nucleon interactions and one nucleon emission. Program summaryProgram title: PHASE-OTI Catalogue identifier: AEDN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5858 No. of bytes in distributed program, including test data, etc.: 149 405 Distribution format: tar.gz Programming language: Fortran 77 Computer: Pentium 4 and Centrino Duo Operating system: MS Windows RAM: 128 MB Classification: 17.12 Nature of problem: Calculation of the differential cross section for nucleon induced nuclear reaction in the framework of pre-equilibrium emission model. Solution method: Single neutron emission was treated by assuming occurrence of the reaction in successive steps. Each step is called phase because of the phase transition nature of the theory. The probability of emission was calculated statistically using bases of hybrid model [1] and exciton model [2]. However, more precise depletion factor was used in the calculations. Exciton configuration used in the code is that described in earlier work [3]. Restrictions: The program is restricted to single nucleon emission and nucleon
Applications of Transport/Reaction Codes to Problems in Cell Modeling
MEANS, SHAWN A.; RINTOUL, MARK DANIEL; SHADID, JOHN N.
2001-11-01
We demonstrate two specific examples that show how our exiting capabilities in solving large systems of partial differential equations associated with transport/reaction systems can be easily applied to outstanding problems in computational biology. First, we examine a three-dimensional model for calcium wave propagation in a Xenopus Laevis frog egg and verify that a proposed model for the distribution of calcium release sites agrees with experimental results as a function of both space and time. Next, we create a model of the neuron's terminus based on experimental observations and show that the sodium-calcium exchanger is not the route of sodium's modulation of neurotransmitter release. These state-of-the-art simulations were performed on massively parallel platforms and required almost no modification of existing Sandia codes.
EXTENSION OF THE NUCLEAR REACTION MODEL CODE EMPIRE TO ACTINIDES NUCLEAR DATA EVALUATION.
CAPOTE,R.; SIN, M.; TRKOV, A.; HERMAN, M.; CARLSON, B.V.; OBLOZINSKY, P.
2007-04-22
Recent extensions and improvements of the EMPIRE code system are outlined. They add new capabilities to the code, such as prompt fission neutron spectra calculations using Hauser-Feshbach plus pre-equilibrium pre-fission spectra, cross section covariance matrix calculations by Monte Carlo method, fitting of optical model parameters, extended set of optical model potentials including new dispersive coupled channel potentials, parity-dependent level densities and transmission through numerically defined fission barriers. These features, along with improved and validated ENDF formatting, exclusive/inclusive spectra, and recoils make the current EMPIRE release a complete and well validated tool for evaluation of nuclear data at incident energies above the resonance region. The current EMPIRE release has been used in evaluations of neutron induced reaction files for {sup 232}Th and {sup 231,233}Pa nuclei in the fast neutron region at IAEA. Triple-humped fission barriers and exclusive pre-fission neutron spectra were considered for the fission data evaluation. Total, fission, capture and neutron emission cross section, average resonance parameters and angular distributions of neutron scattering are in excellent agreement with the available experimental data.
Code System to Calculate Nuclear Reaction Cross Sections by Evaporation Model.
2000-11-27
Version: 00 Both STAPRE and STAPREF are included in this package. STAPRE calculates energy-averaged cross sections for nuclear reactions with emission of particles and gamma rays and fission. The models employed are the evaporation model with inclusion of pre-equilibrium decay and a gamma-ray cascade model. Angular momentum and parity conservation are accounted for. Major improvement in the 1976 STAPRE program relates to level density approach, implemented in subroutine ZSTDE. Generalized superfluid model is incorporated, boltzman-gasmore » modeling of intrinsic state density and semi-empirical modeling of a few-quasiparticle effects in total level density at equilibrium and saddle deformations of actinide nuclei. In addition to the activation cross sections, particle and gamma-ray production spectra are calculated. Isomeric state populations and production cross sections for gamma rays from low excited levels are obtained, too. For fission a single or a double humped barrier may be chosen.« less
ERIC Educational Resources Information Center
New Mexico Univ., Albuquerque. American Indian Law Center.
The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…
An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 2.0
Plummer, L. Niel; Prestemon, Eric C.; Parkhurst, David L.
1994-01-01
NETPATH is an interactive Fortran 77 computer program used to interpret net geochemical mass-balance reactions between an initial and final water along a hydrologic flow path. Alternatively, NETPATH computes the mixing proportions of two to five initial waters and net geochemical reactions that can account for the observed composition of a final water. The program utilizes previously defined chemical and isotopic data for waters from a hydrochemical system. For a set of mineral and (or) gas phases hypothesized to be the reactive phases in the system, NETPATH calculates the mass transfers in every possible combination of the selected phases that accounts for the observed changes in the selected chemical and (or) isotopic compositions observed along the flow path. The calculations are of use in interpreting geochemical reactions, mixing proportions, evaporation and (or) dilution of waters, and mineral mass transfer in the chemical and isotopic evolution of natural and environmental waters. Rayleigh distillation calculations are applied to each mass-balance model that satisfies the constraints to predict carbon, sulfur, nitrogen, and strontium isotopic compositions at the end point, including radiocarbon dating. DB is an interactive Fortran 77 computer program used to enter analytical data into NETPATH, and calculate the distribution of species in aqueous solution. This report describes the types of problems that can be solved, the methods used to solve problems, and the features available in the program to facilitate these solutions. Examples are presented to demonstrate most of the applications and features of NETPATH. The codes DB and NETPATH can be executed in the UNIX or DOS1 environment. This report replaces U.S. Geological Survey Water-Resources Investigations Report 91-4078, by Plummer and others, which described the original release of NETPATH, version 1.0 (dated December, 1991), and documents revisions and enhancements that are included in version 2.0. 1 The
The nuclear reaction code McGNASH.
Talou, P.; Chadwick, M. B.; Chadwick, M B; Young, P. G. ,; Kawano, T.
2004-01-01
McGNASH is a modern statitistical/preequilibrium nuclear reaction code, being developed at Los Alamos, which can simulate neutron-, proton- and photon-induced reactions in the energy range from a few-keV to about 150 MeV. It is written in modern Fortran 95 scientific language, offering new capabilities both for the developer and the user. McGNASH is still in a development stage, and a first public release is planned for later in 2005. The statisticaUpre-equilibrium nuclear reaction code GNASH has been used successfully over the years to compute neutron-, proton- and photon-induced reactions cross sections on a variety of nuclei targets, and for incident particle energies from tens of keV up to 150-200 MeV. This code has been instrumental in producing numerous nuclear data evaluation files for various ENDF libraries around the World, and in particular the ENDFB-VI and pre-ENDFB-VII libraries in the US. More recently, GNASH was used extensively for the creation of the LA1501ibrary, including data on neutron- and proton-induced reactions up to 150 MeV incident energy. We are now developing a modern version of the code, called McGNASH.
Transfer reaction code with nonlocal interactions
NASA Astrophysics Data System (ADS)
Titus, L. J.; Ross, A.; Nunes, F. M.
2016-10-01
We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, (d , N) or (N , d) , including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of A(d , N) B or B(N , d) A. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of Ed =10-70 MeV, and provides cross sections with 4% accuracy.
Nuclear reactions in Monte Carlo codes.
Ferrari, A; Sala, P R
2002-01-01
The physics foundations of hadronic interactions as implemented in most Monte Carlo codes are presented together with a few practical examples. The description of the relevant physics is presented schematically split into the major steps in order to stress the different approaches required for the full understanding of nuclear reactions at intermediate and high energies. Due to the complexity of the problem, only a few semi-qualitative arguments are developed in this paper. The description will be necessarily schematic and somewhat incomplete, but hopefully it will be useful for a first introduction into this topic. Examples are shown mostly for the high energy regime, where all mechanisms mentioned in the paper are at work and to which perhaps most of the readers are less accustomed. Examples for lower energies can be found in the references.
Molecular codes in biological and chemical reaction networks.
Görlich, Dennis; Dittrich, Peter
2013-01-01
Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.
Molecular Codes in Biological and Chemical Reaction Networks
Görlich, Dennis; Dittrich, Peter
2013-01-01
Shannon’s theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process “meaningful” information from those that do not. Here, we present a formal method to assess a system’s semantic capacity by analyzing a reaction network’s capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems posses different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life. PMID:23372756
A chemical reaction network solver for the astrophysics code NIRVANA
NASA Astrophysics Data System (ADS)
Ziegler, U.
2016-02-01
Context. Chemistry often plays an important role in astrophysical gases. It regulates thermal properties by changing species abundances and via ionization processes. This way, time-dependent cooling mechanisms and other chemistry-related energy sources can have a profound influence on the dynamical evolution of an astrophysical system. Modeling those effects with the underlying chemical kinetics in realistic magneto-gasdynamical simulations provide the basis for a better link to observations. Aims: The present work describes the implementation of a chemical reaction network solver into the magneto-gasdynamical code NIRVANA. For this purpose a multispecies structure is installed, and a new module for evolving the rate equations of chemical kinetics is developed and coupled to the dynamical part of the code. A small chemical network for a hydrogen-helium plasma was constructed including associated thermal processes which is used in test problems. Methods: Evolving a chemical network within time-dependent simulations requires the additional solution of a set of coupled advection-reaction equations for species and gas temperature. Second-order Strang-splitting is used to separate the advection part from the reaction part. The ordinary differential equation (ODE) system representing the reaction part is solved with a fourth-order generalized Runge-Kutta method applicable for stiff systems inherent to astrochemistry. Results: A series of tests was performed in order to check the correctness of numerical and technical implementation. Tests include well-known stiff ODE problems from the mathematical literature in order to confirm accuracy properties of the solver used as well as problems combining gasdynamics and chemistry. Overall, very satisfactory results are achieved. Conclusions: The NIRVANA code is now ready to handle astrochemical processes in time-dependent simulations. An easy-to-use interface allows implementation of complex networks including thermal processes
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis
2011-04-01
A self-contained Fortran-90 program based on a three-dimensional classical dynamical reaction model with stochastic breakup is presented, which is a useful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body projectiles near the Coulomb barrier. The code calculates (i) integrated complete and incomplete fusion cross sections and their angular momentum distribution, (ii) the excitation energy distribution of the primary incomplete-fusion products, (iii) the asymptotic angular distribution of the incomplete-fusion products and the surviving breakup fragments, and (iv) breakup observables, such as angle, kinetic energy and relative energy distributions. Program summaryProgram title: PLATYPUS Catalogue identifier: AEIG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 342 No. of bytes in distributed program, including test data, etc.: 344 124 Distribution format: tar.gz Programming language: Fortran-90 Computer: Any Unix/Linux workstation or PC with a Fortran-90 compiler Operating system: Linux or Unix RAM: 10 MB Classification: 16.9, 17.7, 17.8, 17.11 Nature of problem: The program calculates a wide range of observables in reactions induced by weakly-bound two-body nuclei near the Coulomb barrier. These include integrated complete and incomplete fusion cross sections and their spin distribution, as well as breakup observables (e.g. the angle, kinetic energy, and relative energy distributions of the fragments). Solution method: All the observables are calculated using a three-dimensional classical dynamical model combined with the Monte Carlo sampling of probability-density distributions. See Refs. [1,2] for further details. Restrictions: The
The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions
NASA Astrophysics Data System (ADS)
Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.
2016-01-01
A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.
Reaction path of energetic materials using THOR code
NASA Astrophysics Data System (ADS)
Durães, L.; Campos, J.; Portugal, A.
1998-07-01
The method of predicting reaction path, using THOR code, allows for isobar and isochor adiabatic combustion and CJ detonation regimes, the calculation of the composition and thermodynamic properties of reaction products of energetic materials. THOR code assumes the thermodynamic equilibria of all possible products, for the minimum Gibbs free energy, using HL EoS. The code allows the possibility of estimating various sets of reaction products, obtained successively by the decomposition of the original reacting compound, as a function of the released energy. Two case studies of thermal decomposition procedure were selected, calculated and discussed—pure Ammonium Nitrate and its based explosive ANFO, and Nitromethane—because their equivalence ratio is respectively lower, near and greater than the stoicheiometry. Predictions of reaction path are in good correlation with experimental values, proving the validity of proposed method.
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; Bittker, David A.
1993-01-01
A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.
Cheetah: Starspot modeling code
NASA Astrophysics Data System (ADS)
Walkowicz, Lucianne; Thomas, Michael; Finkestein, Adam
2014-12-01
Cheetah models starspots in photometric data (lightcurves) by calculating the modulation of a light curve due to starspots. The main parameters of the program are the linear and quadratic limb darkening coefficients, stellar inclination, spot locations and sizes, and the intensity ratio of the spots to the stellar photosphere. Cheetah uses uniform spot contrast and the minimum number of spots needed to produce a good fit and ignores bright regions for the sake of simplicity.
Evaluative Reactions to Panjabi/English Code-Switching.
ERIC Educational Resources Information Center
Chana, Urmi; Romaine, Suzanne
1984-01-01
Reports the findings of a study done to test evaluative reactions to code-switching which involved alternation and/or mixing between the grammatical systems of English and Panjabi. Results are in line with similar studies and show that the same person is evaluated in different ways depending on how he or she speaks.
Code System to Calculate Integral Parameters with Reaction Rates from WIMS Output.
1994-10-25
Version 00 REACTION calculates different integral parameters related to neutron reactions on reactor lattices, from reaction rates calculated with WIMSD4 code, and comparisons with experimental values.
Developing a Multi-Dimensional Hydrodynamics Code with Astrochemical Reactions
NASA Astrophysics Data System (ADS)
Kwak, Kyujin; Yang, Seungwon
2015-08-01
The Atacama Large Millimeter/submillimeter Array (ALMA) revealed high resolution molecular lines some of which are still unidentified yet. Because formation of these astrochemical molecules has been seldom studied in traditional chemistry, observations of new molecular lines drew a lot of attention from not only astronomers but also chemists both experimental and theoretical. Theoretical calculations for the formation of these astrochemical molecules have been carried out providing reaction rates for some important molecules, and some of theoretical predictions have been measured in laboratories. The reaction rates for the astronomically important molecules are now collected to form databases some of which are publically available. By utilizing these databases, we develop a multi-dimensional hydrodynamics code that includes the reaction rates of astrochemical molecules. Because this type of hydrodynamics code is able to trace the molecular formation in a non-equilibrium fashion, it is useful to study the formation history of these molecules that affects the spatial distribution of some specific molecules. We present the development procedure of this code and some test problems in order to verify and validate the developed code.
Serpentinization reaction pathways: implications for modeling approach
Janecky, D.R.
1986-01-01
Experimental seawater-peridotite reaction pathways to form serpentinites at 300/sup 0/C, 500 bars, can be accurately modeled using the EQ3/6 codes in conjunction with thermodynamic and kinetic data from the literature and unpublished compilations. These models provide both confirmation of experimental interpretations and more detailed insight into hydrothermal reaction processes within the oceanic crust. The accuracy of these models depends on careful evaluation of the aqueous speciation model, use of mineral compositions that closely reproduce compositions in the experiments, and definition of realistic reactive components in terms of composition, thermodynamic data, and reaction rates.
HIBRA: A computer code for heavy ion binary reaction analysis employing ion track detectors
NASA Astrophysics Data System (ADS)
Jamil, Khalid; Ahmad, Siraj-ul-Islam; Manzoor, Shahid
2016-01-01
Collisions of heavy ions many times result in production of only two reaction products. Study of heavy ions using ion track detectors allows experimentalists to observe the track length in the plane of the detector, depth of the tracks in the volume of the detector and angles between the tracks on the detector surface, all known as track parameters. How to convert these into useful physics parameters such as masses, energies, momenta of the reaction products and the Q-values of the reaction? This paper describes the (a) model used to analyze binary reactions in terms of measured etched track parameters of the reaction products recorded in ion track detectors, and (b) the code developed for computing useful physics parameters for fast and accurate analysis of a large number of binary events. A computer code, HIBRA (Heavy Ion Binary Reaction Analysis) has been developed both in C++ and FORTRAN programming languages. It has been tested on the binary reactions from 12.5 MeV/u 84Kr ions incident upon U (natural) target deposited on mica ion track detector. The HIBRA code can be employed with any ion track detector for which range-velocity relation is available including the widely used CR-39 ion track detectors. This paper provides the source code of HIBRA in C++ language along with input and output data to test the program.
The GNASH preequilibrium-statistical nuclear model code
Arthur, E. D.
1988-01-01
The following report is based on materials presented in a series of lectures at the International Center for Theoretical Physics, Trieste, which were designed to describe the GNASH preequilibrium statistical model code and its use. An overview is provided of the code with emphasis upon code's calculational capabilities and the theoretical models that have been implemented in it. Two sample problems are discussed, the first dealing with neutron reactions on /sup 58/Ni. the second illustrates the fission model capabilities implemented in the code and involves n + /sup 235/U reactions. Finally a description is provided of current theoretical model and code development underway. Examples of calculated results using these new capabilities are also given. 19 refs., 17 figs., 3 tabs.
Visualized kinematics code for two-body nuclear reactions
NASA Astrophysics Data System (ADS)
Lee, E. J.; Chae, K. Y.
2016-05-01
The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.
Update and inclusion of resuspension model codes
Porch, W.M.; Greenly, G.D.; Mitchell, C.S.
1983-12-01
Model codes for estimating radiation doses from plutonium particles associated with resuspended dust were improved. Only one new code (RSUS) is required in addition to the MATHEW/ADPIC set of codes. The advantage is that it estimates resuspension based on wind blown dust fluxes derived for different soil types. 2 references. (ACR)
Material model library for explicit numerical codes
Hofmann, R.; Dial, B.W.
1982-08-01
A material model logic structure has been developed which is useful for most explicit finite-difference and explicit finite-element Lagrange computer codes. This structure has been implemented and tested in the STEALTH codes to provide an example for researchers who wish to implement it in generically similar codes. In parallel with these models, material parameter libraries have been created for the implemented models for materials which are often needed in DoD applications.
Evaluation of help model replacement codes
Whiteside, Tad; Hang, Thong; Flach, Gregory
2009-07-01
This work evaluates the computer codes that are proposed to be used to predict percolation of water through the closure-cap and into the waste containment zone at the Department of Energy closure sites. This work compares the currently used water-balance code (HELP) with newly developed computer codes that use unsaturated flow (Richards’ equation). It provides a literature review of the HELP model and the proposed codes, which result in two recommended codes for further evaluation: HYDRUS-2D3D and VADOSE/W. This further evaluation involved performing actual simulations on a simple model and comparing the results of those simulations to those obtained with the HELP code and the field data. From the results of this work, we conclude that the new codes perform nearly the same, although moving forward, we recommend HYDRUS-2D3D.
The Variance Reaction Time Model
ERIC Educational Resources Information Center
Sikstrom, Sverker
2004-01-01
The variance reaction time model (VRTM) is proposed to account for various recognition data on reaction time, the mirror effect, receiver-operating-characteristic (ROC) curves, etc. The model is based on simple and plausible assumptions within a neural network: VRTM is a two layer neural network where one layer represents items and one layer…
A reaction-diffusion-based coding rate control mechanism for camera sensor networks.
Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki
2010-01-01
A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal. PMID:22163620
A Reaction-Diffusion-Based Coding Rate Control Mechanism for Camera Sensor Networks
Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki
2010-01-01
A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal. PMID:22163620
From Verified Models to Verifiable Code
NASA Technical Reports Server (NTRS)
Lensink, Leonard; Munoz, Cesar A.; Goodloe, Alwyn E.
2009-01-01
Declarative specifications of digital systems often contain parts that can be automatically translated into executable code. Automated code generation may reduce or eliminate the kinds of errors typically introduced through manual code writing. For this approach to be effective, the generated code should be reasonably efficient and, more importantly, verifiable. This paper presents a prototype code generator for the Prototype Verification System (PVS) that translates a subset of PVS functional specifications into an intermediate language and subsequently to multiple target programming languages. Several case studies are presented to illustrate the tool's functionality. The generated code can be analyzed by software verification tools such as verification condition generators, static analyzers, and software model-checkers to increase the confidence that the generated code is correct.
Genetic coding and gene expression - new Quadruplet genetic coding model
NASA Astrophysics Data System (ADS)
Shankar Singh, Rama
2012-07-01
Successful demonstration of human genome project has opened the door not only for developing personalized medicine and cure for genetic diseases, but it may also answer the complex and difficult question of the origin of life. It may lead to making 21st century, a century of Biological Sciences as well. Based on the central dogma of Biology, genetic codons in conjunction with tRNA play a key role in translating the RNA bases forming sequence of amino acids leading to a synthesized protein. This is the most critical step in synthesizing the right protein needed for personalized medicine and curing genetic diseases. So far, only triplet codons involving three bases of RNA, transcribed from DNA bases, have been used. Since this approach has several inconsistencies and limitations, even the promise of personalized medicine has not been realized. The new Quadruplet genetic coding model proposed and developed here involves all four RNA bases which in conjunction with tRNA will synthesize the right protein. The transcription and translation process used will be the same, but the Quadruplet codons will help overcome most of the inconsistencies and limitations of the triplet codes. Details of this new Quadruplet genetic coding model and its subsequent potential applications including relevance to the origin of life will be presented.
COLD-SAT Dynamic Model Computer Code
NASA Technical Reports Server (NTRS)
Bollenbacher, G.; Adams, N. S.
1995-01-01
COLD-SAT Dynamic Model (CSDM) computer code implements six-degree-of-freedom, rigid-body mathematical model for simulation of spacecraft in orbit around Earth. Investigates flow dynamics and thermodynamics of subcritical cryogenic fluids in microgravity. Consists of three parts: translation model, rotation model, and slosh model. Written in FORTRAN 77.
Model Policy on Student Publications Code.
ERIC Educational Resources Information Center
Iowa State Dept. of Education, Des Moines.
In 1989, the Iowa Legislature created a new code section that defines and regulates student exercise of free expression in "official school publications." Also, the Iowa State Department of Education was directed to develop a model publication code that includes reasonable provisions for regulating the time, place, and manner of student…
Reduction of chemical reaction models
NASA Technical Reports Server (NTRS)
Frenklach, Michael
1991-01-01
An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.
Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections
2002-09-27
EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions andmore » extends up to several hundreds of MeV for the Heavy Ion induced reactions.« less
Propulsive Reaction Control System Model
NASA Technical Reports Server (NTRS)
Brugarolas, Paul; Phan, Linh H.; Serricchio, Frederick; San Martin, Alejandro M.
2011-01-01
This software models a propulsive reaction control system (RCS) for guidance, navigation, and control simulation purposes. The model includes the drive electronics, the electromechanical valve dynamics, the combustion dynamics, and thrust. This innovation follows the Mars Science Laboratory entry reaction control system design, and has been created to meet the Mars Science Laboratory (MSL) entry, descent, and landing simulation needs. It has been built to be plug-and-play on multiple MSL testbeds [analysis, Monte Carlo, flight software development, hardware-in-the-loop, and ATLO (assembly, test and launch operations) testbeds]. This RCS model is a C language program. It contains two main functions: the RCS electronics model function that models the RCS FPGA (field-programmable-gate-array) processing and commanding of the RCS valve, and the RCS dynamic model function that models the valve and combustion dynamics. In addition, this software provides support functions to initialize the model states, set parameters, access model telemetry, and access calculated thruster forces.
Finite element code development for modeling detonation of HMX composites
NASA Astrophysics Data System (ADS)
Duran, Adam; Sundararaghavan, Veera
2015-06-01
In this talk, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for sod shock and ZND strong detonation models and then used to perform 2D and 3D shock simulations. We will present benchmark problems for geometries in which a single HMX crystal is subjected to a shock condition. Our current progress towards developing microstructural models of HMX/binder composite will also be discussed.
Generation of Java code from Alvis model
NASA Astrophysics Data System (ADS)
Matyasik, Piotr; Szpyrka, Marcin; Wypych, Michał
2015-12-01
Alvis is a formal language that combines graphical modelling of interconnections between system entities (called agents) and a high level programming language to describe behaviour of any individual agent. An Alvis model can be verified formally with model checking techniques applied to the model LTS graph that represents the model state space. This paper presents transformation of an Alvis model into executable Java code. Thus, the approach provides a method of automatic generation of a Java application from formally verified Alvis model.
NUCLEAR REACTION MODELING FOR RIA ISOL TARGET DESIGN
S. MASHNIK; ET AL
2001-03-01
Los Alamos scientists are collaborating with researchers at Argonne and Oak Ridge on the development of improved nuclear reaction physics for modeling radionuclide production in ISOL targets. This is being done in the context of the MCNPX simulation code, which is a merger of MCNP and the LAHET intranuclear cascade code, and simulates both nuclear reaction cross sections and radiation transport in the target. The CINDER code is also used to calculate the time-dependent nuclear decays for estimating induced radioactivities. They give an overview of the reaction physics improvements they are addressing, including intranuclear cascade (INC) physics, where recent high-quality inverse-kinematics residue data from GSI have led to INC spallation and fission model improvements; and preequilibrium reactions important in modeling (p,xn) and (p,xnyp) cross sections for the production of nuclides far from stability.
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Model code provisions for use in... Minimum Property Standards § 200.926c Model code provisions for use in partially accepted code..., those portions of one of the model codes with which the property must comply. Schedule for Model...
Fluid-Rock Interaction Models: Code Release and Results
NASA Astrophysics Data System (ADS)
Bolton, E. W.
2006-12-01
Numerical models our group has developed for understanding the role of kinetic processes during fluid-rock interaction will be released free to the public. We will also present results that highlight the importance of kinetic processes. The author is preparing manuals describing the numerical methods used, as well as "how-to" guides for using the models. The release will include input files, full in-line code documentation of the FORTRAN source code, and instructions for use of model output for visualization and analysis. The aqueous phase (weathering) and supercritical (mixed-volatile metamorphic) fluid flow and reaction models for porous media will be released separately. These codes will be useful as teaching and research tools. The codes may be run on current generation personal computers. Although other codes are available for attacking some of the problems we address, unique aspects of our codes include sub-grid-scale grain models to track grain size changes, as well as dynamic porosity and permeability. Also, as the flow field can change significantly over the course of the simulation, efficient solution methods have been developed for the repeated solution of Poisson-type equations that arise from Darcy's law. These include sparse-matrix methods as well as the even more efficient spectral-transform technique. Results will be presented for kinetic control of reaction pathways and for heterogeneous media. Codes and documentation for modeling intra-grain diffusion of trace elements and isotopes, and exchange of these between grains and moving fluids will also be released. The unique aspect of this model is that it includes concurrent diffusion and grain growth or dissolution for multiple mineral types (low-diffusion regridding has been developed to deal with the moving-boundary problem at the fluid/mineral interface). Results for finite diffusion rates will be compared to batch and fractional melting models. Additional code and documentation will be released
Reaction models in nuclear astrophysics
NASA Astrophysics Data System (ADS)
Descouvemont, Pierre
2016-05-01
We present different reaction models commonly used in nuclear astrophysics, in particular for the nucleosynthesis of light elements. Pioneering works were performed within the potential model, where the internal structure of the colliding nuclei is completely ignored. Significant advances in microscopic cluster models provided the first microscopic description of the 3He(α,&gamma)7 Be reaction more than thirty years ago. In this approach, the calculations are based on an effective nucleon-nucleon interaction, but the cluster approximation should be made to simplify the calculations. Nowadays, modern microscopic calculations are able to go beyond the cluster approximation, and aim at finding exact solutions of the Schrödinger equation with realistic nucleon-nucleon interactions. We discuss recent examples on the d+d reactions at low energies.
Mathematical models for the EPIC code
Buchanan, H.L.
1981-06-03
EPIC is a fluid/envelope type computer code designed to study the energetics and dynamics of a high energy, high current electron beam passing through a gas. The code is essentially two dimensional (x, r, t) and assumes an axisymmetric beam whose r.m.s. radius is governed by an envelope model. Electromagnetic fields, background gas chemistry, and gas hydrodynamics (density channel evolution) are all calculated self-consistently as functions of r, x, and t. The code is a collection of five major subroutines, each of which is described in some detail in this report.
SWAAM-LT: The long-term, sodium/water reaction analysis method computer code
Shin, Y.W.; Chung, H.H.; Wiedermann, A.H.; Tanabe, H.
1993-01-01
The SWAAM-LT Code, developed for analysis of long-term effects of sodium/water reactions, is discussed. The theoretical formulation of the code is described, including the introduction of system matrices for ease of computer programming as a general system code. Also, some typical results of the code predictions for available large scale tests are presented. Test data for the steam generator design with the cover-gas feature and without the cover-gas feature are available and analyzed. The capabilities and limitations of the code are then discussed in light of the comparison between the code prediction and the test data.
Modelling reaction kinetics inside cells
Grima, Ramon; Schnell, Santiago
2009-01-01
In the past decade, advances in molecular biology such as the development of non-invasive single molecule imaging techniques have given us a window into the intricate biochemical activities that occur inside cells. In this article we review four distinct theoretical and simulation frameworks: (1) non-spatial and deterministic, (2) spatial and deterministic, (3) non-spatial and stochastic and (4) spatial and stochastic. Each framework can be suited to modelling and interpreting intracellular reaction kinetics. By estimating the fundamental length scales, one can roughly determine which models are best suited for the particular reaction pathway under study. We discuss differences in prediction between the four modelling methodologies. In particular we show that taking into account noise and space does not simply add quantitative predictive accuracy but may also lead to qualitatively different physiological predictions, unaccounted for by classical deterministic models. PMID:18793122
Predictive coding as a model of cognition.
Spratling, M W
2016-08-01
Previous work has shown that predictive coding can provide a detailed explanation of a very wide range of low-level perceptual processes. It is also widely believed that predictive coding can account for high-level, cognitive, abilities. This article provides support for this view by showing that predictive coding can simulate phenomena such as categorisation, the influence of abstract knowledge on perception, recall and reasoning about conceptual knowledge, context-dependent behavioural control, and naive physics. The particular implementation of predictive coding used here (PC/BC-DIM) has previously been used to simulate low-level perceptual behaviour and the neural mechanisms that underlie them. This algorithm thus provides a single framework for modelling both perceptual and cognitive brain function. PMID:27118562
Spatial model of autocatalytic reactions
NASA Astrophysics Data System (ADS)
de Anna, Pietro; di Patti, Francesca; Fanelli, Duccio; McKane, Alan J.; Dauxois, Thierry
2010-05-01
Biological cells with all of their surface structure and complex interior stripped away are essentially vesicles—membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as models of primitive protocells, and they could have provided the ideal environment for prebiotic reactions to occur. In this paper, we investigate the stochastic dynamics of a set of autocatalytic reactions, within a spatially bounded domain, so as to mimic a primordial cell. The discreteness of the constituents of the autocatalytic reactions gives rise to large sustained oscillations even when the number of constituents is quite large. These oscillations are spatiotemporal in nature, unlike those found in previous studies, which consisted only of temporal oscillations. We speculate that these oscillations may have a role in seeding membrane instabilities which lead to vesicle division. In this way synchronization could be achieved between protocell growth and the reproduction rate of the constituents (the protogenetic material) in simple protocells.
Internal Dosimetry Code System Using Biokinetics Models
2003-11-12
Version 00 InDose is an internal dosimetry code to calculate dose estimations using biokinetic models (presented in ICRP-56 to ICRP71) as well as older ones. The code uses the ICRP-66 respiratory tract model and the ICRP-30 gastrointestinal tract model as well as the new and old biokinetic models. The code was written in such a way that the user can change any parameters of any one of the models without recompiling the code. All parametersmore » are given in well annotated parameters files that the user may change. As default, these files contain the values listed in ICRP publications. The full InDose code was planned to have three parts: 1) the main part includes the uptake and systemic models and is used to calculate the activities in the body tissues and excretion as a function of time for a given intake. 2) An optimization module for automatic estimation of the intake for a specific exposure case. 3) A module to calculate the dose due to the estimated intake. Currently, the code is able to perform only it`s main task (part 1) while the other two have to be done externally using other tools. In the future, developers would like to add these modules in order to provide a complete solution. The code was tested extensively to verify accuracy of its results. The verification procedure was divided into three parts: 1) verification of the implementation of each model, 2) verification of the integrity of the whole code, and 3) usability test. The first two parts consisted of comparing results obtained with InDose to published results for the same cases. For example ICRP-78 monitoring data. The last part consisted of participating in the 3rd EIE-IDA and assessing some of the scenarios provided in this exercise. These tests where presented in a few publications. Good agreement was found between the results of InDose and published data.« less
PP: A graphics post-processor for the EQ6 reaction path code
Stockman, H.W.
1994-09-01
The PP code is a graphics post-processor and plotting program for EQ6, a popular reaction-path code. PP runs on personal computers, allocates memory dynamically, and can handle very large reaction path runs. Plots of simple variable groups, such as fluid and solid phase composition, can be obtained with as few as two keystrokes. Navigation through the list of reaction path variables is simple and efficient. Graphics files can be exported for inclusion in word processing documents and spreadsheets, and experimental data may be imported and superposed on the reaction path runs. The EQ6 thermodynamic database can be searched from within PP, to simplify interpretation of complex plots.
Modeling the enzyme kinetic reaction.
Atangana, Abdon
2015-09-01
The Enzymatic control reactions model was presented within the scope of fractional calculus. In order to accommodate the usual initial conditions, the fractional derivative used is in Caputo sense. The methodologies of the three analytical methods were used to derive approximate solution of the fractional nonlinear system of differential equations. Two methods use integral operator and the other one uses just an integral. Numerical results obtained exhibit biological behavior of real world problem.
Reaction Wheel Disturbance Model Extraction Software - RWDMES
NASA Technical Reports Server (NTRS)
Blaurock, Carl
2009-01-01
densities); converting PSDs to order analysis data; extracting harmonics; initializing and simultaneously tuning a harmonic model and a wheel structural model; initializing and tuning a broadband model; and verifying the harmonic/broadband/structural model against the measurement data. Functional operation is through a MATLAB GUI that loads test data, performs the various analyses, plots evaluation data for assessment and refinement of analysis parameters, and exports the data to documentation or downstream analysis code. The harmonic models are defined as specified functions of frequency, typically speed-squared. The reaction wheel structural model is realized as mass, damping, and stiffness matrices (typically from a finite element analysis package) with the addition of a gyroscopic forcing matrix. The broadband noise model is realized as a set of speed-dependent filters. The tuning of the combined model is performed using nonlinear least squares techniques. RWDMES is implemented as a MATLAB toolbox comprising the Fit Manager for performing the model extraction, Data Manager for managing input data and output models, the Gyro Manager for modifying wheel structural models, and the Harmonic Editor for evaluating and tuning harmonic models. This software was validated using data from Goodrich E wheels, and from GSFC Lunar Reconnaissance Orbiter (LRO) wheels. The validation testing proved that RWDMES has the capability to extract accurate disturbance models from flight reaction wheels with minimal user effort.
28 CFR 36.607 - Guidance concerning model codes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Guidance concerning model codes. 36.607... Codes § 36.607 Guidance concerning model codes. Upon application by an authorized representative of a private entity responsible for developing a model code, the Assistant Attorney General may review...
28 CFR 36.607 - Guidance concerning model codes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Guidance concerning model codes. 36.607... Codes § 36.607 Guidance concerning model codes. Upon application by an authorized representative of a private entity responsible for developing a model code, the Assistant Attorney General may review...
28 CFR 36.607 - Guidance concerning model codes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Guidance concerning model codes. 36.607... Codes § 36.607 Guidance concerning model codes. Upon application by an authorized representative of a private entity responsible for developing a model code, the Assistant Attorney General may review...
28 CFR 36.607 - Guidance concerning model codes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Guidance concerning model codes. 36.607... Codes § 36.607 Guidance concerning model codes. Upon application by an authorized representative of a private entity responsible for developing a model code, the Assistant Attorney General may review...
Rapid installation of numerical models in multiple parent codes
Brannon, R.M.; Wong, M.K.
1996-10-01
A set of``model interface guidelines``, called MIG, is offered as a means to more rapidly install numerical models (such as stress-strain laws) into any parent code (hydrocode, finite element code, etc.) without having to modify the model subroutines. The model developer (who creates the model package in compliance with the guidelines) specifies the model`s input and storage requirements in a standardized way. For portability, database management (such as saving user inputs and field variables) is handled by the parent code. To date, NUG has proved viable in beta installations of several diverse models in vectorized and parallel codes written in different computer languages. A NUG-compliant model can be installed in different codes without modifying the model`s subroutines. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort potentially reducing the cost of installing and sharing models.
Spallation reactions: A successful interplay between modeling and applications
NASA Astrophysics Data System (ADS)
David, J.-C.
2015-06-01
The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200MeV deuterons and 400MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. In the same year, R. Serber described the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a workshop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.
Dynamic alignment models for neural coding.
Kollmorgen, Sepp; Hahnloser, Richard H R
2014-03-01
Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes. PMID:24625448
Dynamic Alignment Models for Neural Coding
Kollmorgen, Sepp; Hahnloser, Richard H. R.
2014-01-01
Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes. PMID:24625448
Fixed-fugacity option for the EQ6 geochemical reaction path code
Delany, J.M.; Wolery, T.J.
1984-12-20
EQ3/6 is a software package used to model aqueous geochemical systems. The EQ6 code allows reaction paths of dynamic systems to be calculated. This report describes a new option for the EQ6 computer program that permits the fugacity of any gas in the EQ6 data base to be set to a fixed value. This capability permits simulation of the effect of rapid chemical exchange with a large external gas reservoir by allowing the user to fix the fugacities of selected gas species. Geochemical environments such as groundwater systems open to the atmosphere (e.g., the unsaturated zone), natural aqueous systems that form closed systems at depth, and experimental systems that use controlled atmospheres can be modeled. Two of the principal geochemical weathering agents, CO{sub 2} and O{sub 2}, are the most likely gas species for which this type of exchange may be important. An example of the effect of constant CO{sub 2} fugacity on both open and closed systems is shown for the case of albite dissolution (NaAlSi{sub 3}O{sub 8}) in distilled water. This example demonstrates that the effects of imposed fugacities on geochemical systems can be considerable. This computer code is used in the Nevada Nuclear Waste Storage Investigations Project. 15 refs., 8 figs.
MEMOPS: data modelling and automatic code generation.
Fogh, Rasmus H; Boucher, Wayne; Ionides, John M C; Vranken, Wim F; Stevens, Tim J; Laue, Ernest D
2010-03-25
In recent years the amount of biological data has exploded to the point where much useful information can only be extracted by complex computational analyses. Such analyses are greatly facilitated by metadata standards, both in terms of the ability to compare data originating from different sources, and in terms of exchanging data in standard forms, e.g. when running processes on a distributed computing infrastructure. However, standards thrive on stability whereas science tends to constantly move, with new methods being developed and old ones modified. Therefore maintaining both metadata standards, and all the code that is required to make them useful, is a non-trivial problem. Memops is a framework that uses an abstract definition of the metadata (described in UML) to generate internal data structures and subroutine libraries for data access (application programming interfaces--APIs--currently in Python, C and Java) and data storage (in XML files or databases). For the individual project these libraries obviate the need for writing code for input parsing, validity checking or output. Memops also ensures that the code is always internally consistent, massively reducing the need for code reorganisation. Across a scientific domain a Memops-supported data model makes it easier to support complex standards that can capture all the data produced in a scientific area, share them among all programs in a complex software pipeline, and carry them forward to deposition in an archive. The principles behind the Memops generation code will be presented, along with example applications in Nuclear Magnetic Resonance (NMR) spectroscopy and structural biology.
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; Bittker, David A.
1994-01-01
LSENS, the Lewis General Chemical Kinetics Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 2 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 2 describes the code, how to modify it, and its usage, including preparation of the problem data file required to execute LSENS. Code usage is illustrated by several example problems, which further explain preparation of the problem data file and show how to obtain desired accuracy in the computed results. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions. Part 1 (NASA RP-1328) derives the governing equations describes the numerical solution procedures for the types of problems that can be solved by lSENS. Part 3 (NASA RP-1330) explains the kinetics and kinetics-plus-sensitivity-analysis problems supplied with LSENS and presents sample results.
Code Differentiation for Hydrodynamic Model Optimization
Henninger, R.J.; Maudlin, P.J.
1999-06-27
Use of a hydrodynamics code for experimental data fitting purposes (an optimization problem) requires information about how a computed result changes when the model parameters change. These so-called sensitivities provide the gradient that determines the search direction for modifying the parameters to find an optimal result. Here, the authors apply code-based automatic differentiation (AD) techniques applied in the forward and adjoint modes to two problems with 12 parameters to obtain these gradients and compare the computational efficiency and accuracy of the various methods. They fit the pressure trace from a one-dimensional flyer-plate experiment and examine the accuracy for a two-dimensional jet-formation problem. For the flyer-plate experiment, the adjoint mode requires similar or less computer time than the forward methods. Additional parameters will not change the adjoint mode run time appreciably, which is a distinct advantage for this method. Obtaining ''accurate'' sensitivities for the j et problem parameters remains problematic.
Computerized reduction of elementary reaction sets for combustion modeling
NASA Technical Reports Server (NTRS)
Wikstrom, Carl V.
1991-01-01
If the entire set of elementary reactions is to be solved in the modeling of chemistry in computational fluid dynamics, a set of stiff ordinary differential equations must be integrated. Some of the reactions take place at very high rates, requiring short time steps, while others take place more slowly and make little progress in the short time step integration. The goal is to develop a procedure to automatically obtain sets of finite rate equations, consistent with a partial equilibrium assumptions, from an elementary set appropriate to local conditions. The possibility of computerized reaction reduction was demonstrated. However, the ability to use the reduced reaction set depends on the ability of the CFD approach in incorporate partial equilibrium calculations into the computer code. Therefore, the results should be tested on a code with partial equilibrium capability.
Modeling the complex bromate-iodine reaction.
Machado, Priscilla B; Faria, Roberto B
2009-05-01
In this article, it is shown that the FLEK model (ref 5 ) is able to model the experimental results of the bromate-iodine clock reaction. Five different complex chemical systems, the bromate-iodide clock and oscillating reactions, the bromite-iodide clock and oscillating reactions, and now the bromate-iodine clock reaction are adequately accounted for by the FLEK model. PMID:19361181
Nasrabadi, M. N. Sepiani, M.
2015-03-30
Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.
NASA Technical Reports Server (NTRS)
Bittker, David A.; Radhakrishnan, Krishnan
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 3 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 3 explains the kinetics and kinetics-plus-sensitivity analysis problems supplied with LSENS and presents sample results. These problems illustrate the various capabilities of, and reaction models that can be solved by, the code and may provide a convenient starting point for the user to construct the problem data file required to execute LSENS. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.
Subgroup A : nuclear model codes report to the Sixteenth Meeting of the WPEC
Talou, P.; Chadwick, M. B.; Dietrich, F. S.; Herman, M.; Kawano, T.; Konig, A.; Obložinský, P.
2004-01-01
The Subgroup A activities focus on the development of nuclear reaction models and codes, used in evaluation work for nuclear reactions from the unresolved energy region up to the pion threshold production limit, and for target nuclides from the low teens and heavier. Much of the efforts are devoted by each participant to the continuing development of their own Institution codes. Progresses in this arena are reported in detail for each code in the present document. EMPIRE-II is of public access. The release of the TALYS code has been announced for the ND2004 Conference in Santa Fe, NM, October 2004. McGNASH is still under development and is not expected to be released in the very near future. In addition, Subgroup A members have demonstrated a growing interest in working on common modeling and codes capabilities, which would significantly reduce the amount of duplicate work, help manage efficiently the growing lines of existing codes, and render codes inter-comparison much easier. A recent and important activity of the Subgroup A has therefore been to develop the framework and the first bricks of the ModLib library, which is constituted of mostly independent pieces of codes written in Fortran 90 (and above) to be used in existing and future nuclear reaction codes. Significant progresses in the development of ModLib have been made during the past year. Several physics modules have been added to the library, and a few more have been planned in detail for the coming year.
Direct containment heating models in the CONTAIN code
Washington, K.E.; Williams, D.C.
1995-08-01
The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale.
Software Model Checking Without Source Code
NASA Technical Reports Server (NTRS)
Chaki, Sagar; Ivers, James
2009-01-01
We present a framework, called AIR, for verifying safety properties of assembly language programs via software model checking. AIR extends the applicability of predicate abstraction and counterexample guided abstraction refinement to the automated verification of low-level software. By working at the assembly level, AIR allows verification of programs for which source code is unavailable-such as legacy and COTS software-and programs that use features-such as pointers, structures, and object-orientation-that are problematic for source-level software verification tools. In addition, AIR makes no assumptions about the underlying compiler technology. We have implemented a prototype of AIR and present encouraging results on several non-trivial examples.
Code C# for chaos analysis of relativistic many-body systems with reactions
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Besliu, C.; Jipa, Al.; Stan, E.; Esanu, T.; Felea, D.; Bordeianu, C. C.
2012-04-01
In this work we present a reaction module for “Chaos Many-Body Engine” (Grossu et al., 2010 [1]). Following our goal of creating a customizable, object oriented code library, the list of all possible reactions, including the corresponding properties (particle types, probability, cross section, particle lifetime, etc.), could be supplied as parameter, using a specific XML input file. Inspired by the Poincaré section, we propose also the “Clusterization Map”, as a new intuitive analysis method of many-body systems. For exemplification, we implemented a numerical toy-model for nuclear relativistic collisions at 4.5 A GeV/c (the SKM200 Collaboration). An encouraging agreement with experimental data was obtained for momentum, energy, rapidity, and angular π distributions. Catalogue identifier: AEGH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 184 628 No. of bytes in distributed program, including test data, etc.: 7 905 425 Distribution format: tar.gz Programming language: Visual C#.NET 2005 Computer: PC Operating system: Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread. One processor used for each many-body system. RAM: 128 Megabytes Classification: 6.2, 6.5 Catalogue identifier of previous version: AEGH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1464 External routines: Net Framework 2.0 Library Does the new version supersede the previous version?: Yes Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems with reactions. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems with reactions
Simulink Code Generation: Tutorial for Generating C Code from Simulink Models using Simulink Coder
NASA Technical Reports Server (NTRS)
MolinaFraticelli, Jose Carlos
2012-01-01
This document explains all the necessary steps in order to generate optimized C code from Simulink Models. This document also covers some general information on good programming practices, selection of variable types, how to organize models and subsystems, and finally how to test the generated C code and compare it with data from MATLAB.
NASA Astrophysics Data System (ADS)
Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.
2013-11-01
Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys.0008-420410.1139/p65-139 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Excitation energy dependencies were found to be inconsistent with the Fermi-gas model.
Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.; Burger, Alexander; Gorgen, Andreas; Guttormsen, Magne; Larsen, Ann -Cecilie; Massey, Thomas N.; Siem, Sunniva
2013-11-08
Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Furthermore,more » excitation energy dependencies were found to be inconsistent with the Fermi-gas model.« less
Plante, Ianik; Devroye, Luc
2015-09-15
Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.
NASA Astrophysics Data System (ADS)
Plante, Ianik; Devroye, Luc
2015-09-01
Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.
Evaluation of reaction rates in streambed sediments with seepage flow: a novel code
NASA Astrophysics Data System (ADS)
Boano, Fulvio; De Falco, Natalie; Arnon, Shai
2015-04-01
Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species which perform many heterotrophic and autotrophic reactions. The evaluation of these reaction rates is crucial to assess the fate of nutrients in riverine environments, and it is often performed through the analysis of concentrations from water samples collected along vertical profiles. The most commonly employed evaluation tool is the Profile code developed by Berg et al. (1998), which determines reaction rates by fitting observed concentrations to a diffusion-reaction equation that neglects the presence of water flow within sediments. However, hyporheic flow is extremely common in streambeds, where solute transport is often controlled by advection rather than diffusion. There is hence a pressing need to develop new methods that can be applied even to advection-dominated sediments. This contribution fills this gap by presenting a novel approach that extends the method proposed by Berg et al. (1998). This new approach includes the influence of vertical solute transport by upwelling or downwelling water, and it is this suited to the typical flow conditions of stream sediments. The code is applied to vertical profiles of dissolved oxygen from a laboratory flume designed to mimic the complex flow conditions of real streams. The results show that it is fundamental to consider water flow to obtain reliable estimates of reaction rates in streambeds. Berg, P., N. Risgaard-Petersen, and S. Rysgaard, 1998, Interpretation of measured concentration profiles in the sediment porewater, Limnology and Oceanography, 43:1500-1510.
Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries
2006-06-29
Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less
Connectionist and diffusion models of reaction time.
Ratcliff, R; Van Zandt, T; McKoon, G
1999-04-01
Two connectionist frameworks, GRAIN (J. L. McClelland, 1993) and brain-state-in-a-box (J. A. Anderson, 1991), and R. Ratcliff's (1978) diffusion model were evaluated using data from a signal detection task. Dependent variables included response probabilities, reaction times for correct and error responses, and shapes of reaction-time distributions. The diffusion model accounted for all aspects of the data, including error reaction times that had previously been a problem for all response-time models. The connectionist models accounted for many aspects of the data adequately, but each failed to a greater or lesser degree in important ways except for one model that was similar to the diffusion model. The findings advance the development of the diffusion model and show that the long tradition of reaction-time research and theory is a fertile domain for development and testing of connectionist assumptions about how decisions are generated over time.
Chemical-reaction model for Mexican wave
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2003-05-01
We present a chemical-reaction model to describe the Mexican wave ( La Ola) in football stadia. The spectator's action is described in terms of chemical reactions. The model is governed by three reaction rates k 1, k 2, and k3. We study the nonlinear waves on one- and two-dimensional lattices. The Mexican wave is formulated as a clockwise forwardly propagating wave. Waves are growing or disappear, depending on the values of reaction rates. In the specific case of k1= k2= k3=1, the nonlinear-wave equation produces a propagating pulse like soliton.
Modeling shock-driven reaction in low density PMDI foam
NASA Astrophysics Data System (ADS)
Brundage, Aaron; Alexander, C. Scott; Reinhart, William; Peterson, David
Shock experiments on low density polyurethane foams reveal evidence of reaction at low impact pressures. However, these reaction thresholds are not evident over the low pressures reported for historical Hugoniot data of highly distended polyurethane at densities below 0.1 g/cc. To fill this gap, impact data given in a companion paper for polymethylene diisocyanate (PMDI) foam with a density of 0.087 g/cc were acquired for model validation. An equation of state (EOS) was developed to predict the shock response of these highly distended materials over the full range of impact conditions representing compaction of the inert material, low-pressure decomposition, and compression of the reaction products. A tabular SESAME EOS of the reaction products was generated using the JCZS database in the TIGER equilibrium code. In particular, the Arrhenius Burn EOS, a two-state model which transitions from an unreacted to a reacted state using single step Arrhenius kinetics, as implemented in the shock physics code CTH, was modified to include a statistical distribution of states. Hence, a single EOS is presented that predicts the onset to reaction due to shock loading in PMDI-based polyurethane foams. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.
Astrophysical Plasmas: Codes, Models, and Observations
NASA Astrophysics Data System (ADS)
Canto, Jorge; Rodriguez, Luis F.
2000-05-01
The conference Astrophysical Plasmas: Codes, Models, and Observations was aimed at discussing the most recent advances, arid some of the avenues for future work, in the field of cosmical plasmas. It was held (hiring the week of October 25th to 29th 1999, at the Centro Nacional de las Artes (CNA) in Mexico City, Mexico it modern and impressive center of theaters and schools devoted to the performing arts. This was an excellent setting, for reviewing the present status of observational (both on earth and in space) arid theoretical research. as well as some of the recent advances of laboratory research that are relevant, to astrophysics. The demography of the meeting was impressive: 128 participants from 12 countries in 4 continents, a large fraction of them, 29% were women and most of them were young persons (either recent Ph.Ds. or graduate students). This created it very lively and friendly atmosphere that made it easy to move from the ionization of the Universe and high-redshift absorbers, to Active Galactic Nucleotides (AGN)s and X-rays from galaxies, to the gas in the Magellanic Clouds and our Galaxy, to the evolution of H II regions and Planetary Nebulae (PNe), and to the details of plasmas in the Solar System and the lab. All these topics were well covered with 23 invited talks, 43 contributed talks. and 22 posters. Most of them are contained in these proceedings, in the same order of the presentations.
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Model code provisions for use in partially accepted code jurisdictions. 200.926c Section 200.926c Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT...
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Model code provisions for use in... Portions of the CABO One and Two Family Dwelling Code, 1992 Edition, including the 1993 amendments, with... Chapter 3. (e) Materials standards Chapter 26. (f) Construction components Part III. (g) Glass Chapter...
A Networks Approach to Modeling Enzymatic Reactions.
Imhof, P
2016-01-01
Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes.
2007-07-09
Version 02 PRECO-2006 is a two-component exciton model code for the calculation of double differential cross sections of light particle nuclear reactions. PRECO calculates the emission of light particles (A = 1 to 4) from nuclear reactions induced by light particles on a wide variety of target nuclei. Their distribution in both energy and angle is calculated. Since it currently only considers the emission of up to two particles in any given reaction, it ismore » most useful for incident energies of 14 to 30 MeV when used as a stand-alone code. However, the preequilibrium calculations are valid up to at least around 100 MeV, and these can be used as input for more complete evaporation calculations, such as are performed in a Hauser-Feshbach model code. Finally, the production cross sections for specific product nuclides can be obtained« less
Implementation of a kappa-epsilon turbulence model to RPLUS3D code
NASA Technical Reports Server (NTRS)
Chitsomboon, Tawit
1992-01-01
The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.
Review and verification of CARE 3 mathematical model and code
NASA Technical Reports Server (NTRS)
Rose, D. M.; Altschul, R. E.; Manke, J. W.; Nelson, D. L.
1983-01-01
The CARE-III mathematical model and code verification performed by Boeing Computer Services were documented. The mathematical model was verified for permanent and intermittent faults. The transient fault model was not addressed. The code verification was performed on CARE-III, Version 3. A CARE III Version 4, which corrects deficiencies identified in Version 3, is being developed.
A model for reaction rates in turbulent reacting flows
NASA Technical Reports Server (NTRS)
Chinitz, W.; Evans, J. S.
1984-01-01
To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.
Numerical MHD codes for modeling astrophysical flows
NASA Astrophysics Data System (ADS)
Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.
2016-05-01
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.
Status report on the THROHPUT transient heat pipe modeling code
Hall, M.L.; Merrigan, M.A.; Reid, R.S.
1993-11-01
Heat pipes are structures which transport heat by the evaporation and condensation of a working fluid, giving them a high effective thermal conductivity. Many space-based uses for heat pipes have been suggested, and high temperature heat pipes using liquid metals as working fluids are especially attractive for these purposes. These heat pipes are modeled by the THROHPUT code (THROHPUT is an acronym for Thermal Hydraulic Response Of Heat Pipes Under Transients and is pronounced like ``throughput``). Improvements have been made to the THROHPUT code which models transient thermohydraulic heat pipe behavior. The original code was developed as a doctoral thesis research code by Hall. The current emphasis has been shifted from research into the numerical modeling to the development of a robust production code. Several modeling obstacles that were present in the original code have been eliminated, and several additional features have been added.
Modeling of turbulent chemical reaction
NASA Technical Reports Server (NTRS)
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Energy standards and model codes development, adoption, implementation, and enforcement
Conover, D.R.
1994-08-01
This report provides an overview of the energy standards and model codes process for the voluntary sector within the United States. The report was prepared by Pacific Northwest Laboratory (PNL) for the Building Energy Standards Program and is intended to be used as a primer or reference on this process. Building standards and model codes that address energy have been developed by organizations in the voluntary sector since the early 1970s. These standards and model codes provide minimum energy-efficient design and construction requirements for new buildings and, in some instances, existing buildings. The first step in the process is developing new or revising existing standards or codes. There are two overall differences between standards and codes. Energy standards are developed by a consensus process and are revised as needed. Model codes are revised on a regular annual cycle through a public hearing process. In addition to these overall differences, the specific steps in developing/revising energy standards differ from model codes. These energy standards or model codes are then available for adoption by states and local governments. Typically, energy standards are adopted by or adopted into model codes. Model codes are in turn adopted by states through either legislation or regulation. Enforcement is essential to the implementation of energy standards and model codes. Low-rise residential construction is generally evaluated for compliance at the local level, whereas state agencies tend to be more involved with other types of buildings. Low-rise residential buildings also may be more easily evaluated for compliance because the governing requirements tend to be less complex than for commercial buildings.
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Models and computer codes....
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Models and computer codes....
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Models and computer codes....
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Models and computer codes....
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes....
CFD code evaluation for internal flow modeling
NASA Technical Reports Server (NTRS)
Chung, T. J.
1990-01-01
Research on the computational fluid dynamics (CFD) code evaluation with emphasis on supercomputing in reacting flows is discussed. Advantages of unstructured grids, multigrids, adaptive methods, improved flow solvers, vector processing, parallel processing, and reduction of memory requirements are discussed. As examples, researchers include applications of supercomputing to reacting flow Navier-Stokes equations including shock waves and turbulence and combustion instability problems associated with solid and liquid propellants. Evaluation of codes developed by other organizations are not included. Instead, the basic criteria for accuracy and efficiency have been established, and some applications on rocket combustion have been made. Research toward an ultimate goal, the most accurate and efficient CFD code, is in progress and will continue for years to come.
Random aggregation models for the formation and evolution of coding and non-coding DNA
NASA Astrophysics Data System (ADS)
Provata, A.
A random aggregation model with influx is proposed for the formation of the non-coding DNA regions via random co-aggregation and influx of biological macromolecules such as viruses, parasite DNA, and replication segments. The constant mixing (transpositions) and influx drives the system in an out-of-equilibrium steady state characterised by a power law size distribution. The model predicts the long range distributions found in the noncoding eucaryotic DNA and explains the observed correlations. For the formation of coding DNA a random closed aggregation model is proposed which predicts short range coding size distributions. The closed aggregation process drives the system in an almost “frozen” stable state which is robust to external perturbations and which is characterised by well defined space and time scales, as observed in coding sequences.
Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter
Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Burger, A.; Gorgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.
2014-09-03
Here, the proton spectrum from the ^{57}Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.
Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter
Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Burger, A.; Gorgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.
2014-09-03
Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.
Automatic code generation from the OMT-based dynamic model
Ali, J.; Tanaka, J.
1996-12-31
The OMT object-oriented software development methodology suggests creating three models of the system, i.e., object model, dynamic model and functional model. We have developed a system that automatically generates implementation code from the dynamic model. The system first represents the dynamic model as a table and then generates executable Java language code from it. We used inheritance for super-substate relationships. We considered that transitions relate to states in a state diagram exactly as operations relate to classes in an object diagram. In the generated code, each state in the state diagram becomes a class and each event on a state becomes an operation on the corresponding class. The system is implemented and can generate executable code for any state diagram. This makes the role of the dynamic model more significant and the job of designers even simpler.
Aerosol kinetic code "AERFORM": Model, validation and simulation results
NASA Astrophysics Data System (ADS)
Gainullin, K. G.; Golubev, A. I.; Petrov, A. M.; Piskunov, V. N.
2016-06-01
The aerosol kinetic code "AERFORM" is modified to simulate droplet and ice particle formation in mixed clouds. The splitting method is used to calculate condensation and coagulation simultaneously. The method is calibrated with analytic solutions of kinetic equations. Condensation kinetic model is based on cloud particle growth equation, mass and heat balance equations. The coagulation kinetic model includes Brownian, turbulent and precipitation effects. The real values are used for condensation and coagulation growth of water droplets and ice particles. The model and the simulation results for two full-scale cloud experiments are presented. The simulation model and code may be used autonomously or as an element of another code.
Development of a model and computer code to describe solar grade silicon production processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
Mathematical models, and computer codes based on these models were developed which allow prediction of the product distribution in chemical reactors in which gaseous silicon compounds are converted to condensed phase silicon. The reactors to be modeled are flow reactors in which silane or one of the halogenated silanes is thermally decomposed or reacted with an alkali metal, H2 or H atoms. Because the product of interest is particulate silicon, processes which must be modeled, in addition to mixing and reaction of gas-phase reactants, include the nucleation and growth of condensed Si via coagulation, condensation, and heterogeneous reaction.
Mathematical model to predict drivers' reaction speeds.
Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L
2012-02-01
Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions. PMID:22431214
Mathematical model to predict drivers' reaction speeds.
Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L
2012-02-01
Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions.
ERIC Educational Resources Information Center
Lantto, Hanna
2016-01-01
This study examines the manifestations of purity and authenticity in 47 Basque bilinguals' reactions to code-switching. The respondents listened to two speech extracts with code-switching, filled in a short questionnaire and talked about the extracts in small groups. These conversations were then recorded. The respondents' beliefs can be…
RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1
1995-08-01
The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes.
28 CFR 36.608 - Guidance concerning model codes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Guidance concerning model codes. 36.608 Section 36.608 Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION ON THE BASIS OF DISABILITY BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building Codes § 36.608 Guidance concerning...
Bird, D.A.; Lyons, W.B. . Hydrology Program); Miller, G.C. . Dept. of Environmental Resource Sciences)
1993-04-01
Geochemists for the mining industry utilize a variety of computer codes to model and predict post-mining pit water chemogenesis. This study surveys several of the PC-supported hydrogeochemical codes, applies them to specific open pit mine scenarios, and evaluates their suitability to predicting post-mining pit and groundwater hydro-geochemistry. The prediction of pit water geochemistry is important because of the potential adverse effects of mine drainage, which include acidity, trace metal contamination, pit water stratification, and sludge accumulation. The WATEQ codes of the USGS can calculate speciation and saturation states of a pit water or groundwater sample, but are not designed to model forward rock/water reactions. NETPATH can calculate the chemical mass transfer (inverse modeling) that has occurred during rock/water interaction, but again is not designed to model forward pit water chemogenesis. Several mining industry modelers use EPA's MINTEQA2 code, which has shown to be very flexible with its large database and ability to model adsorption. Reaction path codes, like PHREEQE and EQ3/6, can model reactions on an incremental basis as the pit fills over time, but also may require much user manipulation. New coupled codes like PHREEQM and HYDROGEOCHEM can simulate movement and reaction of groundwater through the aquifer as it approaches and inundates the pit. One aspect of post-mining hydrogeochemical modeling that has received little attention is the effect groundwater will have down gradient after it flows from the pit into the aquifer.
Cavitation Modeling in Euler and Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Many previous researchers have modeled sheet cavitation by means of a constant pressure solution in the cavity region coupled with a velocity potential formulation for the outer flow. The present paper discusses the issues involved in extending these cavitation models to Euler or Navier-Stokes codes. The approach taken is to start from a velocity potential model to ensure our results are compatible with those of previous researchers and available experimental data, and then to implement this model in both Euler and Navier-Stokes codes. The model is then augmented in the Navier-Stokes code by the inclusion of the energy equation which allows the effect of subcooling in the vicinity of the cavity interface to be modeled to take into account the experimentally observed reduction in cavity pressures that occurs in cryogenic fluids such as liquid hydrogen. Although our goal is to assess the practicality of implementing these cavitation models in existing three-dimensional, turbomachinery codes, the emphasis in the present paper will center on two-dimensional computations, most specifically isolated airfoils and cascades. Comparisons between velocity potential, Euler and Navier-Stokes implementations indicate they all produce consistent predictions. Comparisons with experimental results also indicate that the predictions are qualitatively correct and give a reasonable first estimate of sheet cavitation effects in both cryogenic and non-cryogenic fluids. The impact on CPU time and the code modifications required suggests that these models are appropriate for incorporation in current generation turbomachinery codes.
Modeling anomalous radial transport in kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2009-11-01
Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.
Subgrid Combustion Modeling for the Next Generation National Combustion Code
NASA Technical Reports Server (NTRS)
Menon, Suresh; Sankaran, Vaidyanathan; Stone, Christopher
2003-01-01
In the first year of this research, a subgrid turbulent mixing and combustion methodology developed earlier at Georgia Tech has been provided to researchers at NASA/GRC for incorporation into the next generation National Combustion Code (called NCCLES hereafter). A key feature of this approach is that scalar mixing and combustion processes are simulated within the LES grid using a stochastic 1D model. The subgrid simulation approach recovers locally molecular diffusion and reaction kinetics exactly without requiring closure and thus, provides an attractive feature to simulate complex, highly turbulent reacting flows of interest. Data acquisition algorithms and statistical analysis strategies and routines to analyze NCCLES results have also been provided to NASA/GRC. The overall goal of this research is to systematically develop and implement LES capability into the current NCC. For this purpose, issues regarding initialization and running LES are also addressed in the collaborative effort. In parallel to this technology transfer effort (that is continuously on going), research has also been underway at Georgia Tech to enhance the LES capability to tackle more complex flows. In particular, subgrid scalar mixing and combustion method has been evaluated in three distinctly different flow field in order to demonstrate its generality: (a) Flame-Turbulence Interactions using premixed combustion, (b) Spatially evolving supersonic mixing layers, and (c) Temporal single and two-phase mixing layers. The configurations chosen are such that they can be implemented in NCCLES and used to evaluate the ability of the new code. Future development and validation will be in spray combustion in gas turbine engine and supersonic scalar mixing.
Heavy Ion Reaction Modeling for Hadrontherapy Applications
Cerutti, F.; Ferrari, A.; Enghardt, W.; Gadioli, E.; Mairani, A.; Parodi, K.; Sommerer, F.
2007-10-26
A comprehensive and reliable description of nucleus-nucleus interactions represents a crucial need in different interdisciplinary fields. In particular, hadrontherapy monitoring by means of in-beam positron emission tomography (PET) requires, in addition to measuring, the capability of calculating the activity of {beta}{sup +}-decaying nuclei produced in the irradiated tissue. For this purpose, in view of treatment monitoring at the Heidelberg Ion Therapy (HIT) facility, the transport and interaction Monte Carlo code FLUKA is a promising candidate. It is provided with the description of heavy ion reactions at intermediate and low energies by two specific event generators. In-beam PET experiments performed at GSI for a few beam-target combinations have been simulated and first comparisons between the measured and calculated {beta}{sup +}-activity are available.
Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.
1984-01-01
The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.
NASA Technical Reports Server (NTRS)
Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.
1984-01-01
The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.
ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES
Poole, B R; Nelson, S D; Langdon, S
2005-05-05
The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes.
Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.; Burger, Alexander; Gorgen, Andreas; Guttormsen, Magne; Larsen, Ann -Cecilie; Massey, Thomas N.; Siem, Sunniva
2013-11-08
Proton double-differential cross sections from ^{59}Co(α,p)^{62}Ni, ^{57}Fe(α,p)^{60}Co, ^{56}Fe(^{7}Li,p)^{62}Ni, and ^{55}Mn(^{6}Li,p)^{60}Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for ^{62}Ni and ^{60}Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Furthermore, excitation energy dependencies were found to be inconsistent with the Fermi-gas model.
Feasibility study of nuclear transmutation by negative muon capture reaction using the PHITS code
NASA Astrophysics Data System (ADS)
Abe, Shin-ichiro; Sato, Tatsuhiko
2016-06-01
Feasibility of nuclear transmutation of fission products in high-level radioactive waste by negative muon capture reaction is investigated using the Particle and Heave Ion Transport code System (PHITS). It is found that about 80 % of stopped negative muons contribute to transmute target nuclide into stable or short-lived nuclide in the case of 135Cs, which is one of the most important nuclide in the transmutation. The simulation result also indicates that the position of transmutation is controllable by changing the energy of incident negative muon. Based on our simulation, it takes approximately 8.5 × 108years to transmute 500 g of 135Cs by negative muon beam with the highest intensity currently available.
Towards many-body based nuclear reaction modelling
NASA Astrophysics Data System (ADS)
Hilaire, Stéphane; Goriely, Stéphane
2016-06-01
The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematic expressions. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical principles, when dealing with very exotic nuclei. Thanks to the high computer power available today, all the ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. This concerns nuclear masses, optical model potential, nuclear level densities, photon strength functions, as well as fission barriers. All these nuclear model ingredients, traditionally given by phenomenological expressions, now have a microscopic counterpart implemented in the TALYS nuclear reaction code. We are thus now able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. Perspectives for the coming years will be drawn on the improvements one can expect.
Theory and Modeling of Asymmetric Catalytic Reactions.
Lam, Yu-Hong; Grayson, Matthew N; Holland, Mareike C; Simon, Adam; Houk, K N
2016-04-19
Modern density functional theory and powerful contemporary computers have made it possible to explore complex reactions of value in organic synthesis. We describe recent explorations of mechanisms and origins of stereoselectivities with density functional theory calculations. The specific functionals and basis sets that are routinely used in computational studies of stereoselectivities of organic and organometallic reactions in our group are described, followed by our recent studies that uncovered the origins of stereocontrol in reactions catalyzed by (1) vicinal diamines, including cinchona alkaloid-derived primary amines, (2) vicinal amidophosphines, and (3) organo-transition-metal complexes. Two common cyclic models account for the stereoselectivity of aldol reactions of metal enolates (Zimmerman-Traxler) or those catalyzed by the organocatalyst proline (Houk-List). Three other models were derived from computational studies described in this Account. Cinchona alkaloid-derived primary amines and other vicinal diamines are venerable asymmetric organocatalysts. For α-fluorinations and a variety of aldol reactions, vicinal diamines form enamines at one terminal amine and activate electrophilically with NH(+) or NF(+) at the other. We found that the stereocontrolling transition states are cyclic and that their conformational preferences are responsible for the observed stereoselectivity. In fluorinations, the chair seven-membered cyclic transition states is highly favored, just as the Zimmerman-Traxler chair six-membered aldol transition state controls stereoselectivity. In aldol reactions with vicinal diamine catalysts, the crown transition states are favored, both in the prototype and in an experimental example, shown in the graphic. We found that low-energy conformations of cyclic transition states occur and control stereoselectivities in these reactions. Another class of bifunctional organocatalysts, the vicinal amidophosphines, catalyzes the (3 + 2) annulation
Modeling Guidelines for Code Generation in the Railway Signaling Context
NASA Technical Reports Server (NTRS)
Ferrari, Alessio; Bacherini, Stefano; Fantechi, Alessandro; Zingoni, Niccolo
2009-01-01
Modeling guidelines constitute one of the fundamental cornerstones for Model Based Development. Their relevance is essential when dealing with code generation in the safety-critical domain. This article presents the experience of a railway signaling systems manufacturer on this issue. Introduction of Model-Based Development (MBD) and code generation in the industrial safety-critical sector created a crucial paradigm shift in the development process of dependable systems. While traditional software development focuses on the code, with MBD practices the focus shifts to model abstractions. The change has fundamental implications for safety-critical systems, which still need to guarantee a high degree of confidence also at code level. Usage of the Simulink/Stateflow platform for modeling, which is a de facto standard in control software development, does not ensure by itself production of high-quality dependable code. This issue has been addressed by companies through the definition of modeling rules imposing restrictions on the usage of design tools components, in order to enable production of qualified code. The MAAB Control Algorithm Modeling Guidelines (MathWorks Automotive Advisory Board)[3] is a well established set of publicly available rules for modeling with Simulink/Stateflow. This set of recommendations has been developed by a group of OEMs and suppliers of the automotive sector with the objective of enforcing and easing the usage of the MathWorks tools within the automotive industry. The guidelines have been published in 2001 and afterwords revisited in 2007 in order to integrate some additional rules developed by the Japanese division of MAAB [5]. The scope of the current edition of the guidelines ranges from model maintainability and readability to code generation issues. The rules are conceived as a reference baseline and therefore they need to be tailored to comply with the characteristics of each industrial context. Customization of these
Studying genetic regulatory networks at the molecular level: delayed reaction stochastic models.
Zhu, Rui; Ribeiro, Andre S; Salahub, Dennis; Kauffman, Stuart A
2007-06-21
Current advances in molecular biology enable us to access the rapidly increasing body of genetic information. It is still challenging to model gene systems at the molecular level. Here, we propose two types of reaction kinetic models for constructing genetic networks. Time delays involved in transcription and translation are explicitly considered to explore the effects of delays, which may be significant in genetic networks featured with feedback loops. One type of model is based on delayed effective reactions, each reaction modeling a biochemical process like transcription without involving intermediate reactions. The other is based on delayed virtual reactions, each reaction being converted from a mathematical function to model a biochemical function like gene inhibition. The latter stochastic models are derived from the corresponding mean-field models. The former ones are composed of single gene expression modules. We thus design a model of gene expression. This model is verified by our simulations using a delayed stochastic simulation algorithm, which accurately reproduces the stochastic kinetics in a recent experimental study. Various simplified versions of the model are given and evaluated. We then use the two methods to study the genetic toggle switch and the repressilator. We define the "on" and "off" states of genes and extract a binary code from the stochastic time series. The binary code can be described by the corresponding Boolean network models in certain conditions. We discuss these conditions, suggesting a method to connect Boolean models, mean-field models, and stochastic chemical models. PMID:17350653
Simple models for reading neuronal population codes.
Seung, H S; Sompolinsky, H
1993-01-01
In many neural systems, sensory information is distributed throughout a population of neurons. We study simple neural network models for extracting this information. The inputs to the networks are the stochastic responses of a population of sensory neurons tuned to directional stimuli. The performance of each network model in psychophysical tasks is compared with that of the optimal maximum likelihood procedure. As a model of direction estimation in two dimensions, we consider a linear network that computes a population vector. Its performance depends on the width of the population tuning curves and is maximal for width, which increases with the level of background activity. Although for narrowly tuned neurons the performance of the population vector is significantly inferior to that of maximum likelihood estimation, the difference between the two is small when the tuning is broad. For direction discrimination, we consider two models: a perceptron with fully adaptive weights and a network made by adding an adaptive second layer to the population vector network. We calculate the error rates of these networks after exhaustive training to a particular direction. By testing on the full range of possible directions, the extent of transfer of training to novel stimuli can be calculated. It is found that for threshold linear networks the transfer of perceptual learning is nonmonotonic. Although performance deteriorates away from the training stimulus, it peaks again at an intermediate angle. This nonmonotonicity provides an important psychophysical test of these models. PMID:8248166
Code-to-Code Comparison, and Material Response Modeling of Stardust and MSL using PATO and FIAT
NASA Technical Reports Server (NTRS)
Omidy, Ali D.; Panerai, Francesco; Martin, Alexandre; Lachaud, Jean R.; Cozmuta, Ioana; Mansour, Nagi N.
2015-01-01
This report provides a code-to-code comparison between PATO, a recently developed high fidelity material response code, and FIAT, NASA's legacy code for ablation response modeling. The goal is to demonstrates that FIAT and PATO generate the same results when using the same models. Test cases of increasing complexity are used, from both arc-jet testing and flight experiment. When using the exact same physical models, material properties and boundary conditions, the two codes give results that are within 2% of errors. The minor discrepancy is attributed to the inclusion of the gas phase heat capacity (cp) in the energy equation in PATO, and not in FIAT.
SRVAL. Stock-Recruitment Model VALidation Code
Christensen, S.W.
1989-12-07
SRVAL is a computer simulation model of the Hudson River striped bass population. It was designed to aid in assessing the validity of curve-fits of the linearized Ricker stock-recruitment model, modified to incorporate multiple-age spawners and to include an environmental variable, to variously processed annual catch-per-unit-effort (CPUE) statistics for a fish population. It is sometimes asserted that curve-fits of this kind can be used to determine the sensitivity of fish populations to such man-induced stresses as entrainment and impingement at power plants. SRVAL was developed to test such assertions and was utilized in testimony written in connection with the Hudson River Power Case (U. S. Environmental Protection Agency, Region II).
Code System to Model Aqueous Geochemical Equilibria.
2001-08-23
Version: 00 MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution ofsolid phases. MINTEQ can accept a finite massmore » for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and each compositionally and structurally distinct solid forms a separate phase.« less
Specifications of a Plasmasphere Modeling Code for GGCM
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Ober, D.
2000-01-01
The Dynamic Global Core Plasma Model (DGCPM) is a parameterized model for core or thermal plasma in the magnetosphere. The model accounts for dayside ionospheric outflow and nightside inflow. It accounts for the global pattern of convection and corotation. The model is capable of being coupled to ring current and superthermal electron models for the purpose of providing thermal plasma spatial distributions and for the purpose of accepting the dynamic influences of these plasma populations back upon the thermal plasma. The DGCPM is designed to operate alone or to operate as part of a larger integrated package. The convection electric field and magnetic field used within the DGCPM can be shared with models of other plasma populations, in addition to the exchange of parameters important to the collective modeling of whole plasma systems in the inner magnetosphere. This talk will present the features of the DGCPM model code and the various forms of information that can be exchanged with other cooperating codes.
Model-building codes for membrane proteins.
Shirley, David Noyes; Hunt, Thomas W.; Brown, W. Michael; Schoeniger, Joseph S.; Slepoy, Alexander; Sale, Kenneth L.; Young, Malin M.; Faulon, Jean-Loup Michel; Gray, Genetha Anne
2005-01-01
We have developed a novel approach to modeling the transmembrane spanning helical bundles of integral membrane proteins using only a sparse set of distance constraints, such as those derived from MS3-D, dipolar-EPR and FRET experiments. Algorithms have been written for searching the conformational space of membrane protein folds matching the set of distance constraints, which provides initial structures for local conformational searches. Local conformation search is achieved by optimizing these candidates against a custom penalty function that incorporates both measures derived from statistical analysis of solved membrane protein structures and distance constraints obtained from experiments. This results in refined helical bundles to which the interhelical loops and amino acid side-chains are added. Using a set of only 27 distance constraints extracted from the literature, our methods successfully recover the structure of dark-adapted rhodopsin to within 3.2 {angstrom} of the crystal structure.
Model-Driven Engineering of Machine Executable Code
NASA Astrophysics Data System (ADS)
Eichberg, Michael; Monperrus, Martin; Kloppenburg, Sven; Mezini, Mira
Implementing static analyses of machine-level executable code is labor intensive and complex. We show how to leverage model-driven engineering to facilitate the design and implementation of programs doing static analyses. Further, we report on important lessons learned on the benefits and drawbacks while using the following technologies: using the Scala programming language as target of code generation, using XML-Schema to express a metamodel, and using XSLT to implement (a) transformations and (b) a lint like tool. Finally, we report on the use of Prolog for writing model transformations.
Anthropomorphic Coding of Speech and Audio: A Model Inversion Approach
NASA Astrophysics Data System (ADS)
Feldbauer, Christian; Kubin, Gernot; Kleijn, W. Bastiaan
2005-12-01
Auditory modeling is a well-established methodology that provides insight into human perception and that facilitates the extraction of signal features that are most relevant to the listener. The aim of this paper is to provide a tutorial on perceptual speech and audio coding using an invertible auditory model. In this approach, the audio signal is converted into an auditory representation using an invertible auditory model. The auditory representation is quantized and coded. Upon decoding, it is then transformed back into the acoustic domain. This transformation converts a complex distortion criterion into a simple one, thus facilitating quantization with low complexity. We briefly review past work on auditory models and describe in more detail the components of our invertible model and its inversion procedure, that is, the method to reconstruct the signal from the output of the auditory model. We summarize attempts to use the auditory representation for low-bit-rate coding. Our approach also allows the exploitation of the inherent redundancy of the human auditory system for the purpose of multiple description (joint source-channel) coding.
Data model description for the DESCARTES and CIDER codes
Miley, T.B.; Ouderkirk, S.J.; Nichols, W.E.; Eslinger, P.W.
1993-01-01
The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy's (DOE) Hanford Site near Richland, Washington. One of the major objectives of the HEDR Project is to develop several computer codes to model the airborne releases. transport and envirorunental accumulation of radionuclides resulting from Hanford operations from 1944 through 1972. In July 1992, the HEDR Project Manager determined that the computer codes being developed (DESCARTES, calculation of environmental accumulation from airborne releases, and CIDER, dose calculations from environmental accumulation) were not sufficient to create accurate models. A team of HEDR staff members developed a plan to assure that computer codes would meet HEDR Project goals. The plan consists of five tasks: (1) code requirements definition. (2) scoping studies, (3) design specifications, (4) benchmarking, and (5) data modeling. This report defines the data requirements for the DESCARTES and CIDER codes.
Post-combustion reactions and modeling
NASA Astrophysics Data System (ADS)
Story, Scott R.
Owing to the presence of carbon, oxygen and hydrogen in many iron and steelmaking processes, vast quantities of combustible gases rich in CO along with Hsb2 are often created. To take advantage this potential chemical energy, extra amounts of oxygen may be supplied to the process in order to combust these species, through a practice known as post combustion. Effective post combustion is important in many steelmaking processes. Post combustion is strongly affected by fluid flow. However, in the presence of carbon and iron at high temperatures reactions known as "de-postcombustion" occur where carbon or Fe is oxidised. These reactions depend on kinetics and fluid flow. To address the lack of information at high temperature, the kinetics of carbon oxidation by COsb2 and Hsb2O has been studied at temperatures between 1300sp° C and 1500sp° C. At 1500sp° C, the graphite-Hsb2O reaction was found to occur at a similar rate to the graphite-COsb2 reaction. The overriding importance of internal pore structure was demonstrated in the results, particularly as it develops in the reacted layer during the course of the reaction. Such changes are believed to be responsible for the continuous rate increase observed in non-porous glassy carbon and the consistently higher rates measured in graphite than in coke at high temperatures. The results of this work have also been used to clarify the role of the gas-carbon reaction in the kinetics of FeO reduction in bath smelting slags by solid carbon. Under high stirring conditions in the slag it has been found that the gas-carbon reaction may play a significant role, particularly when coke is the carbonaceous material. The second component of this study was directed toward understanding the effect of fluid flow on post combustion in the electric arc furnace (EAF). In particular the objective was to determine if computational fluid dynamics (CFD) can be a useful tool for optimising post combustion. The post combustion degree (PCD) was
No-Core Shell Model and Reactions
Navratil, P; Ormand, W E; Caurier, E; Bertulani, C
2005-04-29
There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+{sup 6}Li and {sup 6}He+p scattering as well as a calculation of the astrophysically important {sup 7}Be(p, {gamma}){sup 8}B S-factor.
No-Core Shell Model and Reactions
Navratil, Petr; Ormand, W. Erich; Caurier, Etienne; Bertulani, Carlos
2005-10-14
There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+6Li and 6He+p scattering as well as a calculation of the astrophysically important 7Be(p,{gamma})8B S-factor.
Radiation transport phenomena and modeling - part A: Codes
Lorence, L.J.
1997-06-01
The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped.
Cost effectiveness of the 1995 model energy code in Massachusetts
Lucas, R.G.
1996-02-01
This report documents an analysis of the cost effectiveness of the Council of American Building Officials` 1995 Model Energy Code (MEC) building thermal-envelope requirements for single-family houses and multifamily housing units in Massachusetts. The goal was to compare the cost effectiveness of the 1995 MEC to the energy conservation requirements of the Massachusetts State Building Code-based on a comparison of the costs and benefits associated with complying with each.. This comparison was performed for three cities representing three geographical regions of Massachusetts--Boston, Worcester, and Pittsfield. The analysis was done for two different scenarios: a ``move-up`` home buyer purchasing a single-family house and a ``first-time`` financially limited home buyer purchasing a multifamily condominium unit. Natural gas, oil, and electric resistance heating were examined. The Massachusetts state code has much more stringent requirements if electric resistance heating is used rather than other heating fuels and/or equipment types. The MEC requirements do not vary by fuel type. For single-family homes, the 1995 MEC has requirements that are more energy-efficient than the non-electric resistance requirements of the current state code. For multifamily housing, the 1995 MEC has requirements that are approximately equally energy-efficient to the non-electric resistance requirements of the current state code. The 1995 MEC is generally not more stringent than the electric resistance requirements of the state code, in fact; for multifamily buildings the 1995 MEC is much less stringent.
Software Model Checking of ARINC-653 Flight Code with MCP
NASA Technical Reports Server (NTRS)
Thompson, Sarah J.; Brat, Guillaume; Venet, Arnaud
2010-01-01
The ARINC-653 standard defines a common interface for Integrated Modular Avionics (IMA) code. In particular, ARINC-653 Part 1 specifies a process- and partition-management API that is analogous to POSIX threads, but with certain extensions and restrictions intended to support the implementation of high reliability flight code. MCP is a software model checker, developed at NASA Ames, that provides capabilities for model checking C and C++ source code. In this paper, we present recent work aimed at implementing extensions to MCP that support ARINC-653, and we discuss the challenges and opportunities that consequentially arise. Providing support for ARINC-653 s time and space partitioning is nontrivial, though there are implicit benefits for partial order reduction possible as a consequence of the API s strict interprocess communication policy.
NPARC Code Upgraded with Two-Equation Turbulence Models
NASA Technical Reports Server (NTRS)
1996-01-01
The National PARC (NPARC) Alliance was established by the NASA Lewis Research Center and the Air Force Arnold Engineering Development Center to provide the U.S. aeropropulsion community with a reliable Navier-Stokes code for simulating the nonrotating components of propulsion systems. Recent improvements to the turbulence model capabilities of the NPARC code have significantly improved its capability to simulate turbulent flows. Specifically, the Chien k-epsilon and Wilcox k-omega turbulence models were implemented at Lewis. Lewis researchers installed the Chien k-epsilon model into NPARC to improve the code's ability to calculate turbulent flows with attached wall boundary layers and free shear layers. Calculations with NPARC have demonstrated that the Chien k-epsilon model provides more accurate calculations than those obtained with algebraic models previously available in the code. Grid sensitivity investigations have shown that computational grids must be packed against the solid walls such that the first point off of the wall is placed in the laminar sublayer. In addition, matching the boundary layer and momentum thicknesses entering mixing regions is necessary for an accurate prediction of the free shear-layer growth.
Multisynaptic activity in a pyramidal neuron model and neural code.
Ventriglia, Francesco; Di Maio, Vito
2006-01-01
The highly irregular firing of mammalian cortical pyramidal neurons is one of the most striking observation of the brain activity. This result affects greatly the discussion on the neural code, i.e. how the brain codes information transmitted along the different cortical stages. In fact it seems to be in favor of one of the two main hypotheses about this issue, named the rate code. But the supporters of the contrasting hypothesis, the temporal code, consider this evidence inconclusive. We discuss here a leaky integrate-and-fire model of a hippocampal pyramidal neuron intended to be biologically sound to investigate the genesis of the irregular pyramidal firing and to give useful information about the coding problem. To this aim, the complete set of excitatory and inhibitory synapses impinging on such a neuron has been taken into account. The firing activity of the neuron model has been studied by computer simulation both in basic conditions and allowing brief periods of over-stimulation in specific regions of its synaptic constellation. Our results show neuronal firing conditions similar to those observed in experimental investigations on pyramidal cortical neurons. In particular, the variation coefficient (CV) computed from the inter-spike intervals (ISIs) in our simulations for basic conditions is close to the unity as that computed from experimental data. Our simulation shows also different behaviors in firing sequences for different frequencies of stimulation. PMID:16870323
Modelling enzyme reaction mechanisms, specificity and catalysis.
Mulholland, Adrian J
2005-10-15
Modern modelling methods can now give uniquely detailed understanding of enzyme-catalyzed reactions, including the analysis of mechanisms and the identification of determinants of specificity and catalytic efficiency. A new field of computational enzymology has emerged that has the potential to contribute significantly to structure-based design and to develop predictive models of drug metabolism and, for example, of the effects of genetic polymorphisms. This review outlines important techniques in this area, including quantum-chemical model studies and combined quantum-mechanics and molecular-mechanics (QM/MM) methods. Some recent applications to enzymes of pharmacological interest are also covered, showing the types of problems that can be tackled and the insight they can give.
Thermodynamic performance for a chemical reactions model
NASA Astrophysics Data System (ADS)
Gonzalez-Narvaez, R. E.; Sánchez-Salas, N.; Chimal-Eguía, J. C.
2015-01-01
This paper presents the analysis efficiency of a chemical reaction model of four states, such that their activated states can occur at any point (fixed but arbitrary) of the transition from one state to another. This mechanism operates under a single heat reservoir temperature, unlike the internal combustion engines where there are two thermal sources. Different efficiencies are compared to this model, which operate at different optimum engine regimes. Thus, some analytical methods are used to give an approximate expression, facilitating the comparison between them. Finally, the result is compared with that obtained by other authors considered a general model of an isothermal molecular machine. Taking into account the above, the results seems to follow a similar behaviour for all the optimized engines, which resemble that observed in the case of heat engine efficiencies.
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; Bittker, David A.
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part II of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part II describes the code, how to modify it, and its usage, including preparation of the problem data file required to execute LSENS. Code usage is illustrated by several example problems, which further explain preparation of the problem data file and show how to obtain desired accuracy in the computed results. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions. Part I (NASA RP-1328) derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved by LSENS. Part III (NASA RP-1330) explains the kinetics and kinetics-plus-sensitivity-analysis problems supplied with LSENS and presents sample results.
ABAREX: A neutron spherical optical-statistical model code
Lawson, R.D.
1992-06-01
The spherical optical-statistical model is briefly reviewed and the capabilities of the neutron scattering code, ABAREX, are presented. Input files for ten examples, in which neutrons are scattered by various nuclei, are given and the output of each run is discussed in detail.
Self-shielding models of MICROX-2 code
Hou, J.; Ivanov, K.; Choi, H.
2013-07-01
The MICROX-2 is a transport theory code that solves for the neutron slowing-down and thermalization equations of a two-region lattice cell. In the previous study, a new fine-group cross section library of the MICROX-2 was generated and tested against reference calculations and measurement data. In this study, existing physics models of the MICROX-2 are reviewed and updated to improve the physics calculation performance of the MICROX-2 code, including the resonance self-shielding model and spatial self-shielding factor. The updated self-shielding models have been verified through a series of benchmark calculations against the Monte Carlo code, using homogeneous and pin cell models selected for this study. The results have shown that the updates of the self-shielding factor calculation model are correct and improve the physics calculation accuracy even though the magnitude of error reduction is relatively small. Compared to the existing models, the updates reduced the prediction error of the infinite multiplication factor by approximately 0.1 % and 0.2% for the homogeneous and pin cell models, respectively, considered in this study. (authors)
Modeling of Anomalous Transport in Tokamaks with FACETS code
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Batemann, G.; Kritz, A.; Rafiq, T.; Vadlamani, S.; Hakim, A.; Kruger, S.; Miah, M.; Rognlien, T.
2009-05-01
The FACETS code, a whole-device integrated modeling code that self-consistently computes plasma profiles for the plasma core and edge in tokamaks, has been recently developed as a part of the SciDAC project for core-edge simulations. A choice of transport models is available in FACETS through the FMCFM interface [1]. Transport models included in FMCFM have specific ranges of applicability, which can limit their use to parts of the plasma. In particular, the GLF23 transport model does not include the resistive ballooning effects that can be important in the tokamak pedestal region and GLF23 typically under-predicts the anomalous fluxes near the magnetic axis [2]. The TGLF and GYRO transport models have similar limitations [3]. A combination of transport models that covers the entire discharge domain is studied using FACETS in a realistic tokamak geometry. Effective diffusivities computed with the FMCFM transport models are extended to the region near the separatrix to be used in the UEDGE code within FACETS. 1. S. Vadlamani et al. (2009) %First time-dependent transport simulations using GYRO and NCLASS within FACETS (this meeting).2. T. Rafiq et al. (2009) %Simulation of electron thermal transport in H-mode discharges Submitted to Phys. Plasmas.3. C. Holland et al. (2008) %Validation of gyrokinetic transport simulations using %DIII-D core turbulence measurements Proc. of IAEA FEC (Switzerland, 2008)
Modeling of the EAST ICRF antenna with ICANT Code
Qin Chengming; Zhao Yanping; Colas, L.; Heuraux, S.
2007-09-28
A Resonant Double Loop (RDL) antenna for ion-cyclotron range of frequencies (ICRF) on Experimental Advanced Superconducting Tokamak (EAST) is under construction. The new antenna is analyzed using the antenna coupling code ICANT which self-consistently determines the surface currents on all antenna parts. In this work, the modeling of the new ICRF antenna using this code is to assess the near-fields in front of the antenna and analysis its coupling capabilities. Moreover, the antenna reactive radiated power computed by ICANT and shows a good agreement with deduced from Transmission Line (TL) theory.
A compressible Navier-Stokes code for turbulent flow modeling
NASA Technical Reports Server (NTRS)
Coakley, T. J.
1984-01-01
An implicit, finite volume code for solving two dimensional, compressible turbulent flows is described. Second order upwind differencing of the inviscid terms of the equations is used to enhance stability and accuracy. A diagonal form of the implicit algorithm is used to improve efficiency. Several zero and two equation turbulence models are incorporated to study their impact on overall flow modeling accuracy. Applications to external and internal flows are discussed.
Thermohydraulic modeling of nuclear thermal rockets: The KLAXON code
Hall, M.L.; Rider, W.J.; Cappiello, M.W.
1992-07-01
The hydrogen flow from the storage tanks, through the reactor core, and out the nozzle of a Nuclear Thermal Rocket is an integral design consideration. To provide an analysis and design tool for this phenomenon, the KLAXON code is being developed. A shock-capturing numerical methodology is used to model the gas flow (the Harten, Lax, and van Leer method, as implemented by Einfeldt). Preliminary results of modeling the flow through the reactor core and nozzle are given in this paper.
A semianalytic Monte Carlo code for modelling LIDAR measurements
NASA Astrophysics Data System (ADS)
Palazzi, Elisa; Kostadinov, Ivan; Petritoli, Andrea; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Premuda, Margherita; Giovanelli, Giorgio
2007-10-01
LIDAR (LIght Detection and Ranging) is an optical active remote sensing technology with many applications in atmospheric physics. Modelling of LIDAR measurements appears useful approach for evaluating the effects of various environmental variables and scenarios as well as of different measurement geometries and instrumental characteristics. In this regard a Monte Carlo simulation model can provide a reliable answer to these important requirements. A semianalytic Monte Carlo code for modelling LIDAR measurements has been developed at ISAC-CNR. The backscattered laser signal detected by the LIDAR system is calculated in the code taking into account the contributions due to the main atmospheric molecular constituents and aerosol particles through processes of single and multiple scattering. The contributions by molecular absorption, ground and clouds reflection are evaluated too. The code can perform simulations of both monostatic and bistatic LIDAR systems. To enhance the efficiency of the Monte Carlo simulation, analytical estimates and expected value calculations are performed. Artificial devices (such as forced collision, local forced collision, splitting and russian roulette) are moreover foreseen by the code, which can enable the user to drastically reduce the variance of the calculation.
Modeling stochasticity in biochemical reaction networks
NASA Astrophysics Data System (ADS)
Constantino, P. H.; Vlysidis, M.; Smadbeck, P.; Kaznessis, Y. N.
2016-03-01
Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts.
Leveraging modeling approaches: reaction networks and rules.
Blinov, Michael L; Moraru, Ion I
2012-01-01
We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.
Enhancements to the SSME transfer function modeling code
NASA Technical Reports Server (NTRS)
Irwin, R. Dennis; Mitchell, Jerrel R.; Bartholomew, David L.; Glenn, Russell D.
1995-01-01
This report details the results of a one year effort by Ohio University to apply the transfer function modeling and analysis tools developed under NASA Grant NAG8-167 (Irwin, 1992), (Bartholomew, 1992) to attempt the generation of Space Shuttle Main Engine High Pressure Turbopump transfer functions from time domain data. In addition, new enhancements to the transfer function modeling codes which enhance the code functionality are presented, along with some ideas for improved modeling methods and future work. Section 2 contains a review of the analytical background used to generate transfer functions with the SSME transfer function modeling software. Section 2.1 presents the 'ratio method' developed for obtaining models of systems that are subject to single unmeasured excitation sources and have two or more measured output signals. Since most of the models developed during the investigation use the Eigensystem Realization Algorithm (ERA) for model generation, Section 2.2 presents an introduction of ERA, and Section 2.3 describes how it can be used to model spectral quantities. Section 2.4 details the Residue Identification Algorithm (RID) including the use of Constrained Least Squares (CLS) and Total Least Squares (TLS). Most of this information can be found in the report (and is repeated for convenience). Section 3 chronicles the effort of applying the SSME transfer function modeling codes to the a51p394.dat and a51p1294.dat time data files to generate transfer functions from the unmeasured input to the 129.4 degree sensor output. Included are transfer function modeling attempts using five methods. The first method is a direct application of the SSME codes to the data files and the second method uses the underlying trends in the spectral density estimates to form transfer function models with less clustering of poles and zeros than the models obtained by the direct method. In the third approach, the time data is low pass filtered prior to the modeling process in an
Nichols, A.L. III.
1990-06-07
This is a report describing the modifications which have been made to the heat flow code TOPAZ to allow the inclusion of thermally controlled chemical kinetics. This report is broken into parts. The first part is an introduction to the general assumptions and theoretical underpinning that were used to develop the model. The second section describes the changes that have been implemented into the code. The third section is the users manual for the input for the code. The fourth section is a compilation of hints, common errors, and things to be aware of while you are getting started. The fifth section gives a sample problem using the new code. This manual addenda is written with the presumption that most readers are not fluent with chemical concepts. Therefore, we shall in this section endeavor to describe the requirements that must be met before chemistry can occur and how we have modeled the chemistry in the code.
Using cryptology models for protecting PHP source code
NASA Astrophysics Data System (ADS)
Jevremović, Aleksandar; Ristić, Nenad; Veinović, Mladen
2013-10-01
Protecting PHP scripts from unwanted use, copying and modifications is a big issue today. Existing solutions on source code level are mostly working as obfuscators, they are free, and they are not providing any serious protection. Solutions that encode opcode are more secure, but they are commercial and require closed-source proprietary PHP interpreter's extension. Additionally, encoded opcode is not compatible with future versions of interpreters which imply re-buying encoders from the authors. Finally, if extension source-code is compromised, all scripts encoded with that solution are compromised too. In this paper, we will present a new model for free and open-source PHP script protection solution. Protection level provided by the proposed solution is equal to protection level of commercial solutions. Model is based on conclusions from use of standard cryptology models for analysis of strengths and weaknesses of the existing solutions, when a scripts protection is seen as secure communication channel in the cryptology.
Circumnutation modeled by reaction-diffusion equations
Lubkin, S.R.
1992-01-01
In studies of biological oscillators, plants are only rarely examined. The authors study a common sub-diurnal oscillation of plants, called circumnutation. Based on experimental evidence that the oscillations consist of a turgor wave traveling around a growing plant part, circumnutation is modeled by a nonlinear reaction-diffusion system with cylindrical geometry. Because of its simplicity, and because biological oscillations are so common, an oscillatory [lambda]-[omega] reaction-diffusion system is chosen for the model. The authors study behavior of traveling waves in [lambda]-[omega] systems. The authors show the existence of Hopf bifurcations and the stability of the limit cycles born at the Hopf bifurcation for some parameter values. Using a Lindstedt-type perturbation scheme, the authors construct periodic solutions of the [lambda]-[omega] system near a Hopf bifurcation and show that the periodic solutions superimposed on the original traveling wave have the effect of altering its overall frequency and amplitude. Circumnutating plants generally display a strong directional preference to their oscillations, which is species-dependent. Circumnutation is modeled by a [lambda]-[omega] system on an annulus of variable width, which does not possess reflection symmetry about any axis. The annulus represents a region of high potassium concentration in the cross-section of the stem. The asymmetry of the annulus represents the anatomical asymmetry of the plant. Traveling waves are constructed on this variable-width annulus by a perturbation scheme, and perturbing the width of the annulus alters the amplitude and frequency of traveling waves on the domain by a small (order [epsilon][sup 2]) amount. The speed, frequency, and stability are unaffected by the direction of travel of the wave on the annulus. This indicates that the [lambda]-[omega] system on a variable-width domain cannot account for directional preferences of traveling waves in biological systems.
Geochemical controls on shale groundwaters: Results of reaction path modeling
Von Damm, K.L.; VandenBrook, A.J.
1989-03-01
The EQ3NR/EQ6 geochemical modeling code was used to simulate the reaction of several shale mineralogies with different groundwater compositions in order to elucidate changes that may occur in both the groundwater compositions, and rock mineralogies and compositions under conditions which may be encountered in a high-level radioactive waste repository. Shales with primarily illitic or smectitic compositions were the focus of this study. The reactions were run at the ambient temperatures of the groundwaters and to temperatures as high as 250/degree/C, the approximate temperature maximum expected in a repository. All modeling assumed that equilibrium was achieved and treated the rock and water assemblage as a closed system. Graphite was used as a proxy mineral for organic matter in the shales. The results show that the presence of even a very small amount of reducing mineral has a large influence on the redox state of the groundwaters, and that either pyrite or graphite provides essentially the same results, with slight differences in dissolved C, Fe and S concentrations. The thermodynamic data base is inadequate at the present time to fully evaluate the speciation of dissolved carbon, due to the paucity of thermodynamic data for organic compounds. In the illitic cases the groundwaters resulting from interaction at elevated temperatures are acid, while the smectitic cases remain alkaline, although the final equilibrium mineral assemblages are quite similar. 10 refs., 8 figs., 15 tabs.
Schultz, Peter Andrew
2011-12-01
The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.
Plutonium explosive dispersal modeling using the MACCS2 computer code
Steele, C.M.; Wald, T.L.; Chanin, D.I.
1998-11-01
The purpose of this paper is to derive the necessary parameters to be used to establish a defensible methodology to perform explosive dispersal modeling of respirable plutonium using Gaussian methods. A particular code, MACCS2, has been chosen for this modeling effort due to its application of sophisticated meteorological statistical sampling in accordance with the philosophy of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.145, ``Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants``. A second advantage supporting the selection of the MACCS2 code for modeling purposes is that meteorological data sets are readily available at most Department of Energy (DOE) and NRC sites. This particular MACCS2 modeling effort focuses on the calculation of respirable doses and not ground deposition. Once the necessary parameters for the MACCS2 modeling are developed and presented, the model is benchmarked against empirical test data from the Double Tracks shot of project Roller Coaster (Shreve 1965) and applied to a hypothetical plutonium explosive dispersal scenario. Further modeling with the MACCS2 code is performed to determine a defensible method of treating the effects of building structure interaction on the respirable fraction distribution as a function of height. These results are related to the Clean Slate 2 and Clean Slate 3 bunkered shots of Project Roller Coaster. Lastly a method is presented to determine the peak 99.5% sector doses on an irregular site boundary in the manner specified in NRC Regulatory Guide 1.145 (1983). Parametric analyses are performed on the major analytic assumptions in the MACCS2 model to define the potential errors that are possible in using this methodology.
New Mechanical Model for the Transmutation Fuel Performance Code
Gregory K. Miller
2008-04-01
A new mechanical model has been developed for implementation into the TRU fuel performance code. The new model differs from the existing FRAPCON 3 model, which it is intended to replace, in that it will include structural deformations (elasticity, plasticity, and creep) of the fuel. Also, the plasticity algorithm is based on the “plastic strain–total strain” approach, which should allow for more rapid and assured convergence. The model treats three situations relative to interaction between the fuel and cladding: (1) an open gap between the fuel and cladding, such that there is no contact, (2) contact between the fuel and cladding where the contact pressure is below a threshold value, such that axial slippage occurs at the interface, and (3) contact between the fuel and cladding where the contact pressure is above a threshold value, such that axial slippage is prevented at the interface. The first stage of development of the model included only the fuel. In this stage, results obtained from the model were compared with those obtained from finite element analysis using ABAQUS on a problem involving elastic, plastic, and thermal strains. Results from the two analyses showed essentially exact agreement through both loading and unloading of the fuel. After the cladding and fuel/clad contact were added, the model demonstrated expected behavior through all potential phases of fuel/clad interaction, and convergence was achieved without difficulty in all plastic analysis performed. The code is currently in stand alone form. Prior to implementation into the TRU fuel performance code, creep strains will have to be added to the model. The model will also have to be verified against an ABAQUS analysis that involves contact between the fuel and cladding.
Statistical Model Code System to Calculate Particle Spectra from HMS Precompound Nucleus Decay.
Blann, Marshall
2014-11-01
Version 05 The HMS-ALICE/ALICE codes address the question: What happens when photons,nucleons or clusters/heavy ions of a few 100 kV to several 100 MeV interact with nuclei? The ALICE codes (as they have evolved over 50 years) use several nuclear reaction models to answer this question, predicting the energies and angles of particles emitted (n,p,2H,3H,3He,4He,6Li) in the reaction, and the residues, the spallation and fission products. Models used are principally Monte-Carlo formulations of the Hybrid/Geometry Dependent Hybrid precompound, Weisskopf-Ewing evaporation, Bohr Wheeler fission, and recently a Fermi stastics break-up model( for light nuclei). Angular distribution calculation relies on the Chadwick-Oblozinsky linear momentum conservation model. Output gives residual product yields, and single and double differential cross sections for ejectiles in lab and CM frames. An option allows 1-3 particle out exclusive (ENDF format) for all combinations of n,p,alpha channels. Product yields include estimates of isomer yields where isomers exist. Earlier versions included the ability to compute coincident particle emission correlations, and much of this coding is still in place. Recoil product ddcs are computed, but not presently written to output files. Code execution begins with an on-screen interrogation for input, with defaults available for many aspects. A menu of model options is available within the input interrogation screen. The input is saved to hard drive. Subsequent runs may use this file, use the file with line editor changes, or begin again with the on-line interrogation.
Statistical Model Code System to Calculate Particle Spectra from HMS Precompound Nucleus Decay.
2014-11-01
Version 05 The HMS-ALICE/ALICE codes address the question: What happens when photons,nucleons or clusters/heavy ions of a few 100 kV to several 100 MeV interact with nuclei? The ALICE codes (as they have evolved over 50 years) use several nuclear reaction models to answer this question, predicting the energies and angles of particles emitted (n,p,2H,3H,3He,4He,6Li) in the reaction, and the residues, the spallation and fission products. Models used are principally Monte-Carlo formulations of the Hybrid/Geometrymore » Dependent Hybrid precompound, Weisskopf-Ewing evaporation, Bohr Wheeler fission, and recently a Fermi stastics break-up model( for light nuclei). Angular distribution calculation relies on the Chadwick-Oblozinsky linear momentum conservation model. Output gives residual product yields, and single and double differential cross sections for ejectiles in lab and CM frames. An option allows 1-3 particle out exclusive (ENDF format) for all combinations of n,p,alpha channels. Product yields include estimates of isomer yields where isomers exist. Earlier versions included the ability to compute coincident particle emission correlations, and much of this coding is still in place. Recoil product ddcs are computed, but not presently written to output files. Code execution begins with an on-screen interrogation for input, with defaults available for many aspects. A menu of model options is available within the input interrogation screen. The input is saved to hard drive. Subsequent runs may use this file, use the file with line editor changes, or begin again with the on-line interrogation.« less
Combustion chamber analysis code
NASA Astrophysics Data System (ADS)
Przekwas, A. J.; Lai, Y. G.; Krishnan, A.; Avva, R. K.; Giridharan, M. G.
1993-05-01
A three-dimensional, time dependent, Favre averaged, finite volume Navier-Stokes code has been developed to model compressible and incompressible flows (with and without chemical reactions) in liquid rocket engines. The code has a non-staggered formulation with generalized body-fitted-coordinates (BFC) capability. Higher order differencing methodologies such as MUSCL and Osher-Chakravarthy schemes are available. Turbulent flows can be modeled using any of the five turbulent models present in the code. A two-phase, two-liquid, Lagrangian spray model has been incorporated into the code. Chemical equilibrium and finite rate reaction models are available to model chemically reacting flows. The discrete ordinate method is used to model effects of thermal radiation. The code has been validated extensively against benchmark experimental data and has been applied to model flows in several propulsion system components of the SSME and the STME.
Combustion chamber analysis code
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Lai, Y. G.; Krishnan, A.; Avva, R. K.; Giridharan, M. G.
1993-01-01
A three-dimensional, time dependent, Favre averaged, finite volume Navier-Stokes code has been developed to model compressible and incompressible flows (with and without chemical reactions) in liquid rocket engines. The code has a non-staggered formulation with generalized body-fitted-coordinates (BFC) capability. Higher order differencing methodologies such as MUSCL and Osher-Chakravarthy schemes are available. Turbulent flows can be modeled using any of the five turbulent models present in the code. A two-phase, two-liquid, Lagrangian spray model has been incorporated into the code. Chemical equilibrium and finite rate reaction models are available to model chemically reacting flows. The discrete ordinate method is used to model effects of thermal radiation. The code has been validated extensively against benchmark experimental data and has been applied to model flows in several propulsion system components of the SSME and the STME.
The WARP Code: Modeling High Intensity Ion Beams
Grote, D P; Friedman, A; Vay, J L; Haber, I
2004-12-09
The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.
Universal regularizers for robust sparse coding and modeling.
Ramírez, Ignacio; Sapiro, Guillermo
2012-09-01
Sparse data models, where data is assumed to be well represented as a linear combination of a few elements from a dictionary, have gained considerable attention in recent years, and their use has led to state-of-the-art results in many signal and image processing tasks. It is now well understood that the choice of the sparsity regularization term is critical in the success of such models. Based on a codelength minimization interpretation of sparse coding, and using tools from universal coding theory, we propose a framework for designing sparsity regularization terms which have theoretical and practical advantages when compared with the more standard l(0) or l(1) ones. The presentation of the framework and theoretical foundations is complemented with examples that show its practical advantages in image denoising, zooming and classification.
Steefel, C.I.
2000-02-02
At least two distinct kinds of hydrogeochemical models have evolved historically for use in analyzing contaminant transport, but each has important limitations. One kind, focusing on organic contaminants, treats biodegradation reactions as parts of relatively simple kinetic reaction networks with no or limited coupling to aqueous and surface complexation and mineral dissolution/precipitation reactions. A second kind, evolving out of the speciation and reaction path codes, is capable of handling a comprehensive suite of multicomponent complexation (aqueous and surface) and mineral precipitation and dissolution reactions, but has not been able to treat reaction networks characterized by partial redox disequilibrium and multiple kinetic pathways. More recently, various investigators have begun to consider biodegradation reactions in the context of comprehensive equilibrium and kinetic reaction networks (e.g. Hunter et al. 1998, Mayer 1999). Here we explore two examples of multiple equilibrium and kinetic reaction pathways using the reactive transport code GIMRT98 (Steefel, in prep.): (1) a computational example involving the generation of acid mine drainage due to oxidation of pyrite, and (2) a computational/field example where the rates of chlorinated VOC degradation are linked to the rates of major redox processes occurring in organic-rich wetland sediments overlying a contaminated aerobic aquifer.
Galactic Cosmic Ray Event-Based Risk Model (GERM) Code
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.
2013-01-01
This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic
Reflectance Prediction Modelling for Residual-Based Hyperspectral Image Coding
Xiao, Rui; Gao, Junbin; Bossomaier, Terry
2016-01-01
A Hyperspectral (HS) image provides observational powers beyond human vision capability but represents more than 100 times the data compared to a traditional image. To transmit and store the huge volume of an HS image, we argue that a fundamental shift is required from the existing “original pixel intensity”-based coding approaches using traditional image coders (e.g., JPEG2000) to the “residual”-based approaches using a video coder for better compression performance. A modified video coder is required to exploit spatial-spectral redundancy using pixel-level reflectance modelling due to the different characteristics of HS images in their spectral and shape domain of panchromatic imagery compared to traditional videos. In this paper a novel coding framework using Reflectance Prediction Modelling (RPM) in the latest video coding standard High Efficiency Video Coding (HEVC) for HS images is proposed. An HS image presents a wealth of data where every pixel is considered a vector for different spectral bands. By quantitative comparison and analysis of pixel vector distribution along spectral bands, we conclude that modelling can predict the distribution and correlation of the pixel vectors for different bands. To exploit distribution of the known pixel vector, we estimate a predicted current spectral band from the previous bands using Gaussian mixture-based modelling. The predicted band is used as the additional reference band together with the immediate previous band when we apply the HEVC. Every spectral band of an HS image is treated like it is an individual frame of a video. In this paper, we compare the proposed method with mainstream encoders. The experimental results are fully justified by three types of HS dataset with different wavelength ranges. The proposed method outperforms the existing mainstream HS encoders in terms of rate-distortion performance of HS image compression. PMID:27695102
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
The program aims at developing mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon. The major interest is in collecting silicon as a liquid on the reactor walls and other collection surfaces. Two reactor systems are of major interest, a SiCl4/Na reactor in which Si(l) is collected on the flow tube reactor walls and a reactor in which Si(l) droplets formed by the SiCl4/Na reaction are collected by a jet impingement method. During this quarter the following tasks were accomplished: (1) particle deposition routines were added to the boundary layer code; and (2) Si droplet sizes in SiCl4/Na reactors at temperatures below the dew point of Si are being calculated.
Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction
ERIC Educational Resources Information Center
Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi
2016-01-01
A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…
Current Capabilities of the Fuel Performance Modeling Code PARFUME
G. K. Miller; D. A. Petti; J. T. Maki; D. L. Knudson
2004-09-01
The success of gas reactors depends upon the safety and quality of the coated particle fuel. A fuel performance modeling code (called PARFUME), which simulates the mechanical and physico-chemical behavior of fuel particles during irradiation, is under development at the Idaho National Engineering and Environmental Laboratory. Among current capabilities in the code are: 1) various options for calculating CO production and fission product gas release, 2) a thermal model that calculates a time-dependent temperature profile through a pebble bed sphere or a prismatic block core, as well as through the layers of each analyzed particle, 3) simulation of multi-dimensional particle behavior associated with cracking in the IPyC layer, partial debonding of the IPyC from the SiC, particle asphericity, kernel migration, and thinning of the SiC caused by interaction of fission products with the SiC, 4) two independent methods for determining particle failure probabilities, 5) a model for calculating release-to-birth (R/B) ratios of gaseous fission products, that accounts for particle failures and uranium contamination in the fuel matrix, and 6) the evaluation of an accident condition, where a particle experiences a sudden change in temperature following a period of normal irradiation. This paper presents an overview of the code.
NASA Astrophysics Data System (ADS)
Nakayama, Shinsuke; Kouno, Hiroshi; Watanabe, Yukinobu; Iwamoto, Osamu; Ye, Tao; Ogata, Kazuyuki
2016-06-01
We have so far developed a computational code system dedicated to deuteron-induced reactions in combination with some theoretical models. In our previous works, the code system was successfully applied to systematic analyses of double-differential cross sections (DDXs) of (d,xp) reactions for 12C, 27Al, and 58Ni at incident energies up to 100 MeV. In the present work, we apply the code system to neutron emission from deuteron-induced reactions. Since there is few experimental data of DDXs of (d,xn) reactions, double-differential thick target neutron yields (TTNYs) are calculated and compared with experimental data instead of DDXs. The calculation using the code system reproduces the measured TTNYs for carbon at incident energies up to 50 MeV.
Model for reaction kinetics in pyrolysis of wood
Ahuja, P.; Singh, P.C.; Upadhyay, S.N.; Kumar, S.
1996-12-31
A reaction model for the pyrolysis of small and large particles of wood Is developed. The chemical reactions that take place when biomass is pyrolyzed are the devolatilization reactions (primary) and due to the vapour-solid interactions (secondary). In the case of small particles, when the volatiles are immediately removed by the purge gas, only primary reactions occur and the reaction model is described by weight loss and char forming reactions. The of heterogeneous secondary reactions occur in the case of large particles due to the interaction between the volatiles and the hot nascent primary char. A chain reaction mechanism of secondary char formation is proposed. The model takes both the volatiles retention time and cracking and repolymerization reactions of the vapours with the decomposing solid as well as autocatalysis into consideration. 7 refs., 3 figs., 2 tabs.
Toward a Probabilistic Automata Model of Some Aspects of Code-Switching.
ERIC Educational Resources Information Center
Dearholt, D. W.; Valdes-Fallis, G.
1978-01-01
The purpose of the model is to select either Spanish or English as the language to be used; its goals at this stage of development include modeling code-switching for lexical need, apparently random code-switching, dependency of code-switching upon sociolinguistic context, and code-switching within syntactic constraints. (EJS)
1983-03-23
Version 01/02 The code reads multigroup cross sections from a compatible data file and collapses user-selected reaction cross sections to any few-group structure using one of a variety of user neutron flux spectrum options given below: Option Flux description 1 Built-in function including Maxwellian, fission, fusion and slowing-down regions and requiring user-specified parameters and energy-region boundaries. 2 Set of log-log flux-energy interpolation points read from input cross-section data file. 3 Set of log-log flux-energy interpolationmore » points read from user-supplied card input. 4 - 6 Histogram flux values read from user-supplied card input in arbitrary group structure in units of flux-per unit-energy, flux-per-unit lethargy, or integral group flux. LAFPX-E may be used to collapse any set of multigroup reaction cross sections furnished in the required format. However, the code was developed for, and is furnished with, a library of 154-group fission-product cross sections processed from ENDF/B-IV with a typical light water reactor (LWR) flux spectrum and temperature. Four-group radiative capture cross sections produced for LWR calculations are tabulated in the code documentation and are incorporated in the EPRI-CINDER data library, RSIC Code Package CCC-309.« less
Development of Parallel Code for the Alaska Tsunami Forecast Model
NASA Astrophysics Data System (ADS)
Bahng, B.; Knight, W. R.; Whitmore, P.
2014-12-01
The Alaska Tsunami Forecast Model (ATFM) is a numerical model used to forecast propagation and inundation of tsunamis generated by earthquakes and other means in both the Pacific and Atlantic Oceans. At the U.S. National Tsunami Warning Center (NTWC), the model is mainly used in a pre-computed fashion. That is, results for hundreds of hypothetical events are computed before alerts, and are accessed and calibrated with observations during tsunamis to immediately produce forecasts. ATFM uses the non-linear, depth-averaged, shallow-water equations of motion with multiply nested grids in two-way communications between domains of each parent-child pair as waves get closer to coastal waters. Even with the pre-computation the task becomes non-trivial as sub-grid resolution gets finer. Currently, the finest resolution Digital Elevation Models (DEM) used by ATFM are 1/3 arc-seconds. With a serial code, large or multiple areas of very high resolution can produce run-times that are unrealistic even in a pre-computed approach. One way to increase the model performance is code parallelization used in conjunction with a multi-processor computing environment. NTWC developers have undertaken an ATFM code-parallelization effort to streamline the creation of the pre-computed database of results with the long term aim of tsunami forecasts from source to high resolution shoreline grids in real time. Parallelization will also permit timely regeneration of the forecast model database with new DEMs; and, will make possible future inclusion of new physics such as the non-hydrostatic treatment of tsunami propagation. The purpose of our presentation is to elaborate on the parallelization approach and to show the compute speed increase on various multi-processor systems.
Systematic effects in CALOR simulation code to model experimental configurations
Job, P.K.; Proudfoot, J. ); Handler, T. . Dept. of Physics and Astronomy); Gabriel, T.A. )
1991-03-27
CALOR89 code system is being used to simulate test beam results and the design parameters of several calorimeter configurations. It has been bench-marked against the ZEUS, D{theta} and HELIOS data. This study identifies the systematic effects in CALOR simulation to model the experimental configurations. Five major systematic effects are identified. These are the choice of high energy nuclear collision model, material composition, scintillator saturation, shower integration time, and the shower containment. Quantitative estimates of these systematic effects are presented. 23 refs., 6 figs., 7 tabs.
A model of PSF estimation for coded mask infrared imaging
NASA Astrophysics Data System (ADS)
Zhang, Ao; Jin, Jie; Wang, Qing; Yang, Jingyu; Sun, Yi
2014-11-01
The point spread function (PSF) of imaging system with coded mask is generally acquired by practical measure- ment with calibration light source. As the thermal radiation of coded masks are relatively severe than it is in visible imaging systems, which buries the modulation effects of the mask pattern, it is difficult to estimate and evaluate the performance of mask pattern from measured results. To tackle this problem, a model for infrared imaging systems with masks is presented in this paper. The model is composed with two functional components, the coded mask imaging with ideal focused lenses and the imperfection imaging with practical lenses. Ignoring the thermal radiation, the systems PSF can then be represented by a convolution of the diffraction pattern of mask with the PSF of practical lenses. To evaluate performances of different mask patterns, a set of criterion are designed according to different imaging and recovery methods. Furthermore, imaging results with inclined plane waves are analyzed to achieve the variation of PSF within the view field. The influence of mask cell size is also analyzed to control the diffraction pattern. Numerical results show that mask pattern for direct imaging systems should have more random structures, while more periodic structures are needed in system with image reconstruction. By adjusting the combination of random and periodic arrangement, desired diffraction pattern can be achieved.
Benchmarking of computer codes and approaches for modeling exposure scenarios
Seitz, R.R.; Rittmann, P.D.; Wood, M.I.; Cook, J.R.
1994-08-01
The US Department of Energy Headquarters established a performance assessment task team (PATT) to integrate the activities of DOE sites that are preparing performance assessments for the disposal of newly generated low-level waste. The PATT chartered a subteam with the task of comparing computer codes and exposure scenarios used for dose calculations in performance assessments. This report documents the efforts of the subteam. Computer codes considered in the comparison include GENII, PATHRAE-EPA, MICROSHIELD, and ISOSHLD. Calculations were also conducted using spreadsheets to provide a comparison at the most fundamental level. Calculations and modeling approaches are compared for unit radionuclide concentrations in water and soil for the ingestion, inhalation, and external dose pathways. Over 30 tables comparing inputs and results are provided.
External exposure model in the RESRAD computer code.
Kamboj, S.; Yu, C.; Environmental Assessment
2002-06-01
An external exposure model has been developed for the RESRAD computer code that provides flexibility in modeling soil contamination configurations for calculating external doses to exposed individuals. This model is based on the dose coefficients given in the U.S. Environmental Protection Agency's Federal Guidance Report No. 12 (FGR-12) and the point kernel method. It extends the applicability of FGR-12 data to include the effects of different source geometries, such as cover thickness, source thickness, source area, and shape of contaminated area of a specific site. A depth factor function was developed to express the dependence of the dose on the source thickness. A cover-and-depth factor function, derived from this depth factor function, takes into account the dependence of dose on the thickness of the source region and the thickness of the cover above the source region. To further extend the model for realistic geometries, area and shape factors were derived that depend not only on the lateral extent of the contamination, but also on source thickness, cover thickness, and radionuclides present. Results obtained with the model generally compare well with those from the Monte Carlo N-Particle transport code.
NASA Astrophysics Data System (ADS)
Salvage, Karen M.; Yeh, Gour-Tsyh
1998-08-01
This paper presents the conceptual and mathematical development of the numerical model titled BIOKEMOD, and verification simulations performed using the model. BIOKEMOD is a general computer model for simulation of geochemical and microbiological reactions in batch aqueous solutions. BIOKEMOD may be coupled with hydrologic transport codes for simulation of chemically and biologically reactive transport. The chemical systems simulated may include any mixture of kinetic and equilibrium reactions. The pH, pe, and ionic strength may be specified or simulated. Chemical processes included are aqueous complexation, adsorption, ion-exchange and precipitation/dissolution. Microbiological reactions address growth of biomass and degradation of chemicals by microbial metabolism of substrates, nutrients, and electron acceptors. Inhibition or facilitation of growth due to the presence of specific chemicals and a lag period for microbial acclimation to new substrates may be simulated if significant in the system of interest. Chemical reactions controlled by equilibrium are solved using the law of mass action relating the thermodynamic equilibrium constant to the activities of the products and reactants. Kinetic chemical reactions are solved using reaction rate equations based on collision theory. Microbiologically mediated reactions for substrate removal and biomass growth are assumed to follow Monod kinetics modified for the potentially limiting effects of substrate, nutrient, and electron acceptor availability. BIOKEMOD solves the ordinary differential and algebraic equations of mixed geochemical and biogeochemical reactions using the Newton-Raphson method with full matrix pivoting. Simulations may be either steady state or transient. Input to the program includes the stoichiometry and parameters describing the relevant chemical and microbiological reactions, initial conditions, and sources/sinks for each chemical species. Output includes the chemical and biomass concentrations
MMA, A Computer Code for Multi-Model Analysis
Eileen P. Poeter and Mary C. Hill
2007-08-20
This report documents the Multi-Model Analysis (MMA) computer code. MMA can be used to evaluate results from alternative models of a single system using the same set of observations for all models. As long as the observations, the observation weighting, and system being represented are the same, the models can differ in nearly any way imaginable. For example, they may include different processes, different simulation software, different temporal definitions (for example, steady-state and transient models could be considered), and so on. The multiple models need to be calibrated by nonlinear regression. Calibration of the individual models needs to be completed before application of MMA. MMA can be used to rank models and calculate posterior model probabilities. These can be used to (1) determine the relative importance of the characteristics embodied in the alternative models, (2) calculate model-averaged parameter estimates and predictions, and (3) quantify the uncertainty of parameter estimates and predictions in a way that integrates the variations represented by the alternative models. There is a lack of consensus on what model analysis methods are best, so MMA provides four default methods. Two are based on Kullback-Leibler information, and use the AIC (Akaike Information Criterion) or AICc (second-order-bias-corrected AIC) model discrimination criteria. The other two default methods are the BIC (Bayesian Information Criterion) and the KIC (Kashyap Information Criterion) model discrimination criteria. Use of the KIC criterion is equivalent to using the maximum-likelihood Bayesian model averaging (MLBMA) method. AIC, AICc, and BIC can be derived from Frequentist or Bayesian arguments. The default methods based on Kullback-Leibler information have a number of theoretical advantages, including that they tend to favor more complicated models as more data become available than do the other methods, which makes sense in many situations.
Physics models in the toroidal transport code PROCTR
Howe, H.C.
1990-08-01
The physics models that are contained in the toroidal transport code PROCTR are described in detail. Time- and space-dependent models are included for the plasma hydrogenic-ion, helium, and impurity densities, the electron and ion temperatures, the toroidal rotation velocity, and the toroidal current profile. Time- and depth-dependent models for the trapped and mobile hydrogenic particle concentrations in the wall and a time-dependent point model for the number of particles in the limiter are also included. Time-dependent models for neutral particle transport, neutral beam deposition and thermalization, fusion heating, impurity radiation, pellet injection, and the radial electric potential are included and recalculated periodically as the time-dependent models evolve. The plasma solution is obtained either in simple flux coordinates, where the radial shift of each elliptical, toroidal flux surface is included to maintain an approximate pressure equilibrium, or in general three-dimensional torsatron coordinates represented by series of helical harmonics. The detailed coupling of the plasma, scrape-off layer, limiter, and wall models through the neutral transport model makes PROCTR especially suited for modeling of recycling and particle control in toroidal plasmas. The model may also be used in a steady-state profile analysis mode for studying energy and particle balances starting with measured plasma profiles.
MMA, A Computer Code for Multi-Model Analysis
Poeter, Eileen P.; Hill, Mary C.
2007-01-01
This report documents the Multi-Model Analysis (MMA) computer code. MMA can be used to evaluate results from alternative models of a single system using the same set of observations for all models. As long as the observations, the observation weighting, and system being represented are the same, the models can differ in nearly any way imaginable. For example, they may include different processes, different simulation software, different temporal definitions (for example, steady-state and transient models could be considered), and so on. The multiple models need to be calibrated by nonlinear regression. Calibration of the individual models needs to be completed before application of MMA. MMA can be used to rank models and calculate posterior model probabilities. These can be used to (1) determine the relative importance of the characteristics embodied in the alternative models, (2) calculate model-averaged parameter estimates and predictions, and (3) quantify the uncertainty of parameter estimates and predictions in a way that integrates the variations represented by the alternative models. There is a lack of consensus on what model analysis methods are best, so MMA provides four default methods. Two are based on Kullback-Leibler information, and use the AIC (Akaike Information Criterion) or AICc (second-order-bias-corrected AIC) model discrimination criteria. The other two default methods are the BIC (Bayesian Information Criterion) and the KIC (Kashyap Information Criterion) model discrimination criteria. Use of the KIC criterion is equivalent to using the maximum-likelihood Bayesian model averaging (MLBMA) method. AIC, AICc, and BIC can be derived from Frequentist or Bayesian arguments. The default methods based on Kullback-Leibler information have a number of theoretical advantages, including that they tend to favor more complicated models as more data become available than do the other methods, which makes sense in many situations. Many applications of MMA will
NASA Technical Reports Server (NTRS)
Thompson, Richard A.; Lee, Kam-Pui; Gupta, Roop N.
1990-01-01
The computer codes developed provide data to 30000 K for the thermodynamic and transport properties of individual species and reaction rates for the prominent reactions occurring in an 11-species nonequilibrium air model. These properties and the reaction-rate data are computed through the use of curve-fit relations which are functions of temperature (and number density for the equilibrium constant). The curve fits were made using the most accurate data believed available. A detailed review and discussion of the sources and accuracy of the curve-fitted data used herein are given in NASA RP 1232.
The Overlap Model: A Model of Letter Position Coding
ERIC Educational Resources Information Center
Gomez, Pablo; Ratcliff, Roger; Perea, Manuel
2008-01-01
Recent research has shown that letter identity and letter position are not integral perceptual dimensions (e.g., jugde primes judge in word-recognition experiments). Most comprehensive computational models of visual word recognition (e.g., the interactive activation model, J. L. McClelland & D. E. Rumelhart, 1981, and its successors) assume that…
A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.
Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L
2016-11-01
The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data.
A Generalized Kinetic Model for Heterogeneous Gas-Solid Reactions
Xu, Zhijie; Sun, Xin; Khaleel, Mohammad A.
2012-08-15
We present a generalized kinetic model for gas-solid heterogeneous reactions taking place at the interface between two phases. The model studies the reaction kinetics by taking into account the reactions at the interface, as well as the transport process within the product layer. The standard unreacted shrinking core model relies on the assumption of quasi-static diffusion that results in a steady-state concentration profile of gas reactant in the product layer. By relaxing this assumption and resolving the entire problem, general solutions can be obtained for reaction kinetics, including the reaction front velocity and the conversion (volume fraction of reacted solid). The unreacted shrinking core model is shown to be accurate and in agreement with the generalized model for slow reaction (or fast diffusion), low concentration of gas reactant, and small solid size. Otherwise, a generalized kinetic model should be used.
First Transport Code Simulations using the TGLF Model
NASA Astrophysics Data System (ADS)
Kinsey, J. E.
2007-11-01
The first transport code simulations using the newly developed TGLF theory-based transport model [1,2] are presented. TGLF has comprehensive physics to approximate the turbulent transport due to drift-ballooning modes in tokamaks. The TGLF model is a next generation gyro-Landau-fluid model that includes several recent advances that remove the limitations of its predecessor, GLF23. The model solves for the linear eigenmodes of trapped ion and electron modes (TIM, TEM), ion and electron temperature gradient (ITG, ETG) modes and finite beta kinetic ballooning (KB) modes in either shifted circle or shaped geometry [1]. A database of over 400 nonlinear GYRO gyrokinetic simulations has been created [3]. A subset of 140 simulations including Miller shaped geometry has been used to find a model for the saturation levels. Using a simple quasilinear (QL) saturation rule, we find remarkable agreement with the energy and particle fluxes from a wide variety of GYRO simulations for both shaped or circular geometry and also for low aspect ratio. Using this new QL saturation rule along with a new ExB shear quench rule for shaped geometry, we predict the density, temperature, and toroidal rotation profiles in a transport code and compare the results against experimental data in the ITPA Profile Database. We examine the impact of the improved electron physics in the model and the role of elongation and triangularity on the predicted profiles and compare to the results previously obtained using the GLF23 model. [1] G.M. Staebler, J.E. Kinsey, and R.E. Waltz, Phys. Plasmas 12, 102508 (2005). [2] G.M. Staebler, J.E. Kinsey, and R.E. Waltz, to appear in Phys. Plasmas, May(2007). [3] The GYRO database is documented at fusion.gat.com/theory/gyro.
Crucial steps to life: From chemical reactions to code using agents.
Witzany, Guenther
2016-02-01
The concepts of the origin of the genetic code and the definitions of life changed dramatically after the RNA world hypothesis. Main narratives in molecular biology and genetics such as the "central dogma," "one gene one protein" and "non-coding DNA is junk" were falsified meanwhile. RNA moved from the transition intermediate molecule into centre stage. Additionally the abundance of empirical data concerning non-random genetic change operators such as the variety of mobile genetic elements, persistent viruses and defectives do not fit with the dominant narrative of error replication events (mutations) as being the main driving forces creating genetic novelty and diversity. The reductionistic and mechanistic views on physico-chemical properties of the genetic code are no longer convincing as appropriate descriptions of the abundance of non-random genetic content operators which are active in natural genetic engineering and natural genome editing.
Crucial steps to life: From chemical reactions to code using agents.
Witzany, Guenther
2016-02-01
The concepts of the origin of the genetic code and the definitions of life changed dramatically after the RNA world hypothesis. Main narratives in molecular biology and genetics such as the "central dogma," "one gene one protein" and "non-coding DNA is junk" were falsified meanwhile. RNA moved from the transition intermediate molecule into centre stage. Additionally the abundance of empirical data concerning non-random genetic change operators such as the variety of mobile genetic elements, persistent viruses and defectives do not fit with the dominant narrative of error replication events (mutations) as being the main driving forces creating genetic novelty and diversity. The reductionistic and mechanistic views on physico-chemical properties of the genetic code are no longer convincing as appropriate descriptions of the abundance of non-random genetic content operators which are active in natural genetic engineering and natural genome editing. PMID:26723230
The overlap model: a model of letter position coding.
Gomez, Pablo; Ratcliff, Roger; Perea, Manuel
2008-07-01
Recent research has shown that letter identity and letter position are not integral perceptual dimensions (e.g., jugde primes judge in word-recognition experiments). Most comprehensive computational models of visual word recognition (e.g., the interactive activation model, J. L. McClelland & D. E. Rumelhart, 1981, and its successors) assume that the position of each letter within a word is perfectly encoded. Thus, these models are unable to explain the presence of effects of letter transposition (trial-trail), letter migration (beard-bread), repeated letters (moose-mouse), or subset/superset effects (faulty-faculty). The authors extend R. Ratcliff's (1981) theory of order relations for encoding of letter positions and show that the model can successfully deal with these effects. The basic assumption is that letters in the visual stimulus have distributions over positions so that the representation of one letter will extend into adjacent letter positions. To test the model, the authors conducted a series of forced-choice perceptual identification experiments. The overlap model produced very good fits to the empirical data, and even a simplified 2-parameter model was capable of producing fits for 104 observed data points with a correlation coefficient of .91.
The Overlap Model: A Model of Letter Position Coding
Ratcliff, Roger; Perea, Manuel
2008-01-01
Recent research has shown that letter identity and letter position are not integral perceptual dimensions (e.g., jugde primes judge in word-recognition experiments). Most comprehensive computational models of visual word recognition (e.g., the interactive activation model, J. L. McClelland & D. E. Rumelhart, 1981, and its successors) assume that the position of each letter within a word is perfectly encoded. Thus, these models are unable to explain the presence of effects of letter transposition (trial-trail), letter migration (beard-bread), repeated letters (moose-mouse), or subset/superset effects (faulty-faculty). The authors extend R. Ratcliff's (1981) theory of order relations for encoding of letter positions and show that the model can successfully deal with these effects. The basic assumption is that letters in the visual stimulus have distributions over positions so that the representation of one letter will extend into adjacent letter positions. To test the model, the authors conducted a series of forced-choice perceptual identification experiments. The overlap model produced very good fits to the empirical data, and even a simplified 2-parameter model was capable of producing fits for 104 observed data points with a correlation coefficient of .91. PMID:18729592
A simple reaction-rate model for turbulent diffusion flames
NASA Technical Reports Server (NTRS)
Bangert, L. H.
1975-01-01
A simple reaction rate model is proposed for turbulent diffusion flames in which the reaction rate is proportional to the turbulence mixing rate. The reaction rate is also dependent on the mean mass fraction and the mean square fluctuation of mass fraction of each reactant. Calculations are compared with experimental data and are generally successful in predicting the measured quantities.
Data Evaluation Acquired Talys 1.0 Code to Produce 111In from Various Accelerator-Based Reactions
NASA Astrophysics Data System (ADS)
Alipoor, Zahra; Gholamzadeh, Zohreh; Sadeghi, Mahdi; Seyyedi, Solaleh; Aref, Morteza
The Indium-111 physical-decay parameters as a β-emitter radionuclide show some potential for radiodiagnostic and radiotherapeutic purposes. Medical investigators have shown that 111In is an important radionuclide for locating and imaging certain tumors, visualization of the lymphatic system and thousands of labeling reactions have been suggested. The TALYS 1.0 code was used here to calculate excitation functions of 112/114-118Sn+p, 110Cd+3He, 109Ag+3He, 111-114Cd+p, 110/111Cd+d, 109Ag+α to produce 111In using low and medium energy accelerators. Calculations were performed up to 200 MeV. Appropriate target thicknesses have been assumed based on energy loss calculations with the SRIM code. Theoretical integral yields for all the latter reactions were calculated. The TALYS 1.0 code predicts that the production of a few curies of 111In is feasible using a target of isotopically highly enriched 112Cd and a proton energy between 12 and 25 MeV with a production rate as 248.97 MBq·μA-1 · h-1. Minimum impurities shall be produced during the proton irradiation of an enriched 111Cd target yielding a production rate for 111In of 67.52 MBq· μA-1 · h-1.
Polymerization as a Model Chain Reaction
ERIC Educational Resources Information Center
Morton, Maurice
1973-01-01
Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)
Kinetics of the monomer-monomer surface reaction model
Evans, J.W.; Ray, T.R. )
1993-02-01
The two-dimensional monomer-monomer ([ital AB]) surface reaction model without diffusion is considered for infinitesimal, finite, and infinite reaction rates [ital k]. For equal reactant adsorption rates, in all cases, simulations reveal the same form of slow poisoning, associated with clustering of reactants. This behavior is also the same as that found in simulations of the two-dimensional [ital voter] [ital model] studied in interacting-particle systems theory. The voter model can also be obtained from the dimer-dimer or monomer-dimer surface reaction models with infinitesimal reaction rate. We provide a detailed elucidation of the slow poisoning kinetics via an analytic treatment for the [ital k]=0[sup +] [ital AB] reaction and the voter models. This analysis is extended to incorporate the effects of place-exchange diffusion which slows, but does not prevent poisoning. We also show that the [ital k]=0[sup +] [ital AB] reaction with no diffusion is equivalent to the voter model with diffusion at rate 1/2. Identical behavior of the monomer-monomer reaction and the voter model is also found in an epidemic'' analysis, where one considers the evolution of a surface poisoned by one species, except for a small patch. Finally, we apply our findings to elucidate the behavior of the monomer-dimer surface reaction model for small reaction rates.
Kinetic models of gene expression including non-coding RNAs
NASA Astrophysics Data System (ADS)
Zhdanov, Vladimir P.
2011-03-01
In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.
Physicochemical analog for modeling superimposed and coded memories
NASA Astrophysics Data System (ADS)
Ensanian, Minas
1992-07-01
The mammalian brain is distinguished by a life-time of memories being stored within the same general region of physicochemical space, and having two extraordinary features. First, memories to varying degrees are superimposed, as well as coded. Second, instantaneous recall of past events can often be affected by relatively simple, and seemingly unrelated sensory clues. For the purposes of attempting to mathematically model such complex behavior, and for gaining additional insights, it would be highly advantageous to be able to simulate or mimic similar behavior in a nonbiological entity where some analogical parameters of interest can reasonably be controlled. It has recently been discovered that in nonlinear accumulative metal fatigue memories (related to mechanical deformation) can be superimposed and coded in the crystal lattice, and that memory, that is, the total number of stress cycles can be recalled (determined) by scanning not the surfaces but the `edges' of the objects. The new scanning technique known as electrotopography (ETG) now makes the state space modeling of metallic networks possible. The author provides an overview of the new field and outlines the areas that are of immediate interest to the science of artificial neural networks.
The Physical Models and Statistical Procedures Used in the RACER Monte Carlo Code
Sutton, T.M.; Brown, F.B.; Bischoff, F.G.; MacMillan, D.B.; Ellis, C.L.; Ward, J.T.; Ballinger, C.T.; Kelly, D.J.; Schindler, L.
1999-07-01
capability of performing iterated-source (criticality), multiplied-fixed-source, and fixed-source calculations. MCV uses a highly detailed continuous-energy (as opposed to multigroup) representation of neutron histories and cross section data. The spatial modeling is fully three-dimensional (3-D), and any geometrical region that can be described by quadric surfaces may be represented. The primary results are region-wise reaction rates, neutron production rates, slowing-down-densities, fluxes, leakages, and when appropriate the eigenvalue or multiplication factor. Region-wise nuclidic reaction rates are also computed, which may then be used by other modules in the system to determine time-dependent nuclide inventories so that RACER can perform depletion calculations. Furthermore, derived quantities such as ratios and sums of primary quantities and/or other derived quantities may also be calculated. MCV performs statistical analyses on output quantities, computing estimates of the 95% confidence intervals as well as indicators as to the reliability of these estimates. The remainder of this chapter provides an overview of the MCV algorithm. The following three chapters describe the MCV mathematical, physical, and statistical treatments in more detail. Specifically, Chapter 2 discusses topics related to tracking the histories including: geometry modeling, how histories are moved through the geometry, and variance reduction techniques related to the tracking process. Chapter 3 describes the nuclear data and physical models employed by MCV. Chapter 4 discusses the tallies, statistical analyses, and edits. Chapter 5 provides some guidance as to how to run the code, and Chapter 6 is a list of the code input options.
Sodium spray and jet fire model development within the CONTAIN-LMR code
Scholtyssek, W.; Murata, K.K.
1993-12-31
An assessment was made of the sodium spray fire model implemented in the CONTAIN code. The original droplet burn model, which was based on the NACOM code, was improved in several aspects, especially concerning evaluation of the droplet burning rate, reaction chemistry and heat balance, spray geometry and droplet motion, and consistency with CONTAIN standards of gas property evaluation. An additional droplet burning model based on a proposal by Krolikowski was made available to include the effect of the chemical equilibrium conditions at the flame temperature. The models were validated against single-droplet burn experiments as well as spray and jet fire experiments. Reasonable agreement was found between the two burn models and experimental data. When the gas temperature in the burning compartment reaches high values, the Krolikowski model seems to be preferable. Critical parameters for spray fire evaluation were found to be the spray characterization, especially the droplet size, which largely determines the burning efficiency, and heat transfer conditions at the interface between the atmosphere and structures, which controls the thermal hydraulic behavior in the burn compartment.
Reaction chain modeling of denitrification reactions during a push-pull test
NASA Astrophysics Data System (ADS)
Boisson, A.; de Anna, P.; Bour, O.; Le Borgne, T.; Labasque, T.; Aquilina, L.
2013-05-01
Field quantitative estimation of reaction kinetics is required to enhance our understanding of biogeochemical reactions in aquifers. We extended the analytical solution developed by Haggerty et al. (1998) to model an entire 1st order reaction chain and estimate the kinetic parameters for each reaction step of the denitrification process. We then assessed the ability of this reaction chain to model biogeochemical reactions by comparing it with experimental results from a push-pull test in a fractured crystalline aquifer (Ploemeur, French Brittany). Nitrates were used as the reactive tracer, since denitrification involves the sequential reduction of nitrates to nitrogen gas through a chain reaction (NO3- → NO2- → NO → N2O → N2) under anaerobic conditions. The kinetics of nitrate consumption and by-product formation (NO2-, N2O) during autotrophic denitrification were quantified by using a reactive tracer (NO3-) and a non-reactive tracer (Br-). The formation of reaction by-products (NO2-, N2O, N2) has not been previously considered using a reaction chain approach. Comparison of Br- and NO3- breakthrough curves showed that 10% of the injected NO3- molar mass was transformed during the 12 h experiment (2% into NO2-, 1% into N2O and the rest into N2 and NO). Similar results, but with slower kinetics, were obtained from laboratory experiments in reactors. The good agreement between the model and the field data shows that the complete denitrification process can be efficiently modeled as a sequence of first order reactions. The 1st order kinetics coefficients obtained through modeling were as follows: k1 = 0.023 h- 1, k2 = 0.59 h- 1, k3 = 16 h- 1, and k4 = 5.5 h- 1. A next step will be to assess the variability of field reactivity using the methodology developed for modeling push-pull tracer tests.
Kinetic modeling of reactions in heated monosaccharide-casein systems.
Brands, Carline M J; van Boekel, Martinus A J S
2002-11-01
In the present study, a kinetic model of the Maillard reaction occurring in heated monosaccharide-casein systems was proposed. Its parameters, the reaction rate constants, were estimated via multiresponse modeling. The determinant criterion was used as the statistical fit criterion instead of the familiar least squares to avoid statistical problems. The kinetic model was extensively tested by varying the reaction conditions. Different sugars (glucose, fructose, galactose, and tagatose) were studied regarding their effect on the reaction kinetics. This study has shown the power of multiresponse modeling for the unraveling of complicated reaction routes as occur in the Maillard reaction. The iterative process of proposing a model, confronting it with experiments, and criticizing the model was passed through four times to arrive at a model that was largely consistent with all results obtained. A striking difference was found between aldose and ketose sugars as suggested by the modeling results: not the ketoses themselves but only their reaction products were found to be reactive in the Maillard reaction.
New TVD Hydro Code for Modeling Disk-Planet Interactions
NASA Astrophysics Data System (ADS)
Mudryk, Lawrence; Murray, Norman
2004-06-01
We present test simulations of a TVD hydrodynamical code designed with very few calculations per time step. The code is to be used to preform simulations of proto-planet interactions within gas disks in early solar systems.
Modeling Planet-Building Stellar Disks with Radiative Transfer Code
NASA Astrophysics Data System (ADS)
Swearingen, Jeremy R.; Sitko, Michael L.; Whitney, Barbara; Grady, Carol A.; Wagner, Kevin Robert; Champney, Elizabeth H.; Johnson, Alexa N.; Warren, Chelsea C.; Russell, Ray W.; Hammel, Heidi B.; Lisse, Casey M.; Cure, Michel; Kraus, Stefan; Fukagawa, Misato; Calvet, Nuria; Espaillat, Catherine; Monnier, John D.; Millan-Gabet, Rafael; Wilner, David J.
2015-01-01
Understanding the nature of the many planetary systems found outside of our own solar system cannot be completed without knowledge of the beginnings these systems. By detecting planets in very young systems and modeling the disks of material around stars from which they form, we can gain a better understanding of planetary origin and evolution. The efforts presented here have been in modeling two pre-transitional disk systems using a radiative transfer code. With the first of these systems, V1247 Ori, a model that fits the spectral energy distribution (SED) well and whose parameters are consistent with existing interferometry data (Kraus et al 2013) has been achieved. The second of these two systems, SAO 206462, has presented a different set of challenges but encouraging SED agreement between the model and known data gives hope that the model can produce images that can be used in future interferometry work. This work was supported by NASA ADAP grant NNX09AC73G, and the IR&D program at The Aerospace Corporation.
Torus mapper: a code for dynamical models of galaxies
NASA Astrophysics Data System (ADS)
Binney, James; McMillan, Paul J.
2016-02-01
We present a freely downloadable software package for modelling the dynamics of galaxies, which we call the Torus Mapper (TM). The package is based around `torus mapping', which is a non-perturbative technique for creating orbital tori for specified values of the action integrals. Given an orbital torus and a star's position at a reference time, one can compute its position at any other time, no matter how remote. One can also compute the velocities with which the star will pass through any given point and the contribution it will make to the time-averaged density there. A system of angle-action coordinates for the given potential can be created by foliating phase space with orbital tori. Such a foliation is facilitated by the ability of TM to create tori by interpolating on a grid of tori. We summarize the advantages of using TM rather than a standard time-stepper to create orbits, and give segments of code that illustrate applications of TM in several contexts, including setting up initial conditions for an N-body simulation. We examine the precision of the orbital tori created by TM and the behaviour of the code when orbits become trapped by a resonance.
ERIC Educational Resources Information Center
American Inst. of Architects, Washington, DC.
A MODEL BUILDING CODE FOR FALLOUT SHELTERS WAS DRAWN UP FOR INCLUSION IN FOUR NATIONAL MODEL BUILDING CODES. DISCUSSION IS GIVEN OF FALLOUT SHELTERS WITH RESPECT TO--(1) NUCLEAR RADIATION, (2) NATIONAL POLICIES, AND (3) COMMUNITY PLANNING. FALLOUT SHELTER REQUIREMENTS FOR SHIELDING, SPACE, VENTILATION, CONSTRUCTION, AND SERVICES SUCH AS ELECTRICAL…
CODE's new solar radiation pressure model for GNSS orbit determination
NASA Astrophysics Data System (ADS)
Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A.
2015-08-01
The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009-2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft's solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which
Verification of thermal analysis codes for modeling solid rocket nozzles
NASA Technical Reports Server (NTRS)
Keyhani, M.
1993-01-01
One of the objectives of the Solid Propulsion Integrity Program (SPIP) at Marshall Space Flight Center (MSFC) is development of thermal analysis codes capable of accurately predicting the temperature field, pore pressure field and the surface recession experienced by decomposing polymers which are used as thermal barriers in solid rocket nozzles. The objective of this study is to provide means for verifications of thermal analysis codes developed for modeling of flow and heat transfer in solid rocket nozzles. In order to meet the stated objective, a test facility was designed and constructed for measurement of the transient temperature field in a sample composite subjected to a constant heat flux boundary condition. The heating was provided via a steel thin-foil with a thickness of 0.025 mm. The designed electrical circuit can provide a heating rate of 1800 W. The heater was sandwiched between two identical samples, and thus ensure equal power distribution between them. The samples were fitted with Type K thermocouples, and the exact location of the thermocouples were determined via X-rays. The experiments were modeled via a one-dimensional code (UT1D) as a conduction and phase change heat transfer process. Since the pyrolysis gas flow was in the direction normal to the heat flow, the numerical model could not account for the convection cooling effect of the pyrolysis gas flow. Therefore, the predicted values in the decomposition zone are considered to be an upper estimate of the temperature. From the analysis of the experimental and the numerical results the following are concluded: (1) The virgin and char specific heat data for FM 5055 as reported by SoRI can not be used to obtain any reasonable agreement between the measured temperatures and the predictions. However, use of virgin and char specific heat data given in Acurex report produced good agreement for most of the measured temperatures. (2) Constant heat flux heating process can produce a much higher
Documentation of the GLAS fourth order general circulation model. Volume 2: Scalar code
NASA Technical Reports Server (NTRS)
Kalnay, E.; Balgovind, R.; Chao, W.; Edelmann, D.; Pfaendtner, J.; Takacs, L.; Takano, K.
1983-01-01
Volume 2, of a 3 volume technical memoranda contains a detailed documentation of the GLAS fourth order general circulation model. Volume 2 contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A variable name dictionary for the scalar code, and code listings are outlined.
Mathematical Description of Complex Chemical Kinetics and Application to CFD Modeling Codes
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1993-01-01
A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.
Mathematical description of complex chemical kinetics and application to CFD modeling codes
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1993-01-01
A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.
Alonso, Sergio; John, Karin; Bär, Markus
2011-03-01
An effective medium theory is employed to derive a simple qualitative model of a pattern forming chemical reaction in a microemulsion. This spatially heterogeneous system is composed of water nanodroplets randomly distributed in oil. While some steps of the reaction are performed only inside the droplets, the transport through the extended medium occurs by diffusion of intermediate chemical reactants as well as by collisions of the droplets. We start to model the system with heterogeneous reaction-diffusion equations and then derive an equivalent effective spatially homogeneous reaction-diffusion model by using earlier results on homogenization in heterogeneous reaction-diffusion systems [S.Alonso, M.Bär, and R.Kapral, J. Chem. Phys. 134, 214102 (2009)]. We study the linear stability of the spatially homogeneous state in the resulting effective model and obtain a phase diagram of pattern formation, that is qualitatively similar to earlier experimental results for the Belousov-Zhabotinsky reaction in an aerosol OT (AOT)-water-in-oil microemulsion [V.K.Vanag and I.R.Epstein, Phys. Rev. Lett. 87, 228301 (2001)]. Moreover, we reproduce many patterns that have been observed in experiments with the Belousov-Zhabotinsky reaction in an AOT oil-in-water microemulsion by direct numerical simulations.
Modelling RF sources using 2-D PIC codes
Eppley, K.R.
1993-03-01
In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.
Modelling RF sources using 2-D PIC codes
Eppley, K.R.
1993-03-01
In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.
Modeling Vortex Generators in a Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.
2011-01-01
A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.
Modelling Radiative Stellar Winds with the SIMECA Code
NASA Astrophysics Data System (ADS)
Stee, Ph.
Using the SIMECA code developped by Stee & Araùjo ([CITE]), we report theoretical HI visible and near-IR line profiles, i.e. Hα (6562 Å), Hβ (4861 Å) and Brγ (21 656 Å), and intensity maps for a large set of parameters representative of early to late Be spectral types. We have computed the size of the emitting region in the Brγ line and its nearby continuum which both originate from a very extended region, i.e. at least 40 stellar radii which is twice the size of the Hα emitting region. We predict the relative fluxes from the central star, the envelope contribution in the given lines and in the continuum for a wide range of parameters characterizing the disk models. Finally, we have also studied the effect of changing the spectral type on our results and we obtain a clear correlation between the luminosity in Hα and in the infrared.
Thermohydraulic modeling of the nuclear thermal rocket: The KLAXON code
Hall, M.L.; Rider, W.J.; Cappiello, M.W. )
1992-01-01
Nuclear thermal rockets (NTRs) have been proposed as a means of propulsion for the Space Exploration Initiative (SEI, the manned mission to Mars). The NTR derives its thrust from the expulsion of hot supersonic hydrogen gas. A large tank on the rocket stores hydrogen in liquid or slush form, which is pumped by a turbopump through a nuclear reactor to provide the necessary heat. The path that the hydrogen takes is most circuitous, making several passes through the reactor and the nozzle itself (to provide cooling), as well as two passes through the turbopump (to transfer momentum). The proposed fuel elements for the reactor have two different configurations: solid prismatic fuel and particle-bed fuel. There are different design concerns for the two types of fuel, but there are also many fluid flow aspects that they share. The KLAXON code was used to model a generic NTR design from the inlet of the reactor core to the exit from the nozzle.
Dependence of X-Ray Burst Models on Nuclear Reaction Rates
NASA Astrophysics Data System (ADS)
Cyburt, R. H.; Amthor, A. M.; Heger, A.; Johnson, E.; Keek, L.; Meisel, Z.; Schatz, H.; Smith, K.
2016-10-01
X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ), (α, γ), and (α, p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.
Chen, Juhui; Yin, Weijie; Wang, Shuai; Meng, Cheng; Li, Jiuru; Qin, Bai; Yu, Guangbin
2016-07-01
Large-eddy simulation (LES) approach is used for gas turbulence, and eddy dissipation concept (EDC)-sub-grid scale (SGS) reaction model is employed for reactions in small eddies. The simulated gas molar fractions are in better agreement with experimental data with EDC-SGS reaction model. The effect of reactions in small eddies on biomass gasification is emphatically analyzed with EDC-SGS reaction model. The distributions of the SGS reaction rates which represent the reactions in small eddies with particles concentration and temperature are analyzed. The distributions of SGS reaction rates have the similar trend with those of total reactions rates and the values account for about 15% of the total reactions rates. The heterogeneous reaction rates with EDC-SGS reaction model are also improved during the biomass gasification process in bubbling fluidized bed.
Chen, Juhui; Yin, Weijie; Wang, Shuai; Meng, Cheng; Li, Jiuru; Qin, Bai; Yu, Guangbin
2016-07-01
Large-eddy simulation (LES) approach is used for gas turbulence, and eddy dissipation concept (EDC)-sub-grid scale (SGS) reaction model is employed for reactions in small eddies. The simulated gas molar fractions are in better agreement with experimental data with EDC-SGS reaction model. The effect of reactions in small eddies on biomass gasification is emphatically analyzed with EDC-SGS reaction model. The distributions of the SGS reaction rates which represent the reactions in small eddies with particles concentration and temperature are analyzed. The distributions of SGS reaction rates have the similar trend with those of total reactions rates and the values account for about 15% of the total reactions rates. The heterogeneous reaction rates with EDC-SGS reaction model are also improved during the biomass gasification process in bubbling fluidized bed. PMID:27010338
Modelling couplings between reaction, fluid flow and deformation: Kinetics
NASA Astrophysics Data System (ADS)
Malvoisin, Benjamin; Podladchikov, Yury Y.; Connolly, James A. D.
2016-04-01
Mineral assemblages out of equilibrium are commonly found in metamorphic rocks testifying of the critical role of kinetics for metamorphic reactions. As experimentally determined reaction rates in fluid-saturated systems generally indicate complete reaction in less than several years, i.e. several orders of magnitude faster than field-based estimates, metamorphic reaction kinetics are generally thought to be controlled by transport rather than by processes at the mineral surface. However, some geological processes like earthquakes or slow-slip events have shorter characteristic timescales, and transport processes can be intimately related to mineral surface processes. Therefore, it is important to take into account the kinetics of mineral surface processes for modelling fluid/rock interactions. Here, a model coupling reaction, fluid flow and deformation was improved by introducing a delay in the achievement of equilibrium. The classical formalism for dissolution/precipitation reactions was used to consider the influence of the distance from equilibrium and of temperature on the reaction rate, and a dependence on porosity was introduced to model evolution of reacting surface area during reaction. The fitting of experimental data for three reactions typically occurring in metamorphic systems (serpentine dehydration, muscovite dehydration and calcite decarbonation) indicates a systematic faster kinetics close from equilibrium on the dehydration side than on the hydration side. This effect is amplified through the porosity term in the reaction rate since porosity is formed during dehydration. Numerical modelling indicates that this difference in reaction rate close from equilibrium plays a key role in microtextures formation. The developed model can be used in a wide variety of geological systems where couplings between reaction, deformation and fluid flow have to be considered.
ROBO: a model and a code for studying the interstellar medium
Grassi, T; Krstic, Predrag S; Merlin, E; Buonomo, U; Piovan, L; Chiosi, C
2011-01-01
We present robo, a model and its companion code for the study of the interstellar medium (ISM). The aim is to provide an accurate description of the physical evolution of the ISM and to set the ground for an ancillary tool to be inserted in NBody-Tree-SPH (NB-TSPH) simulations of large-scale structures in the cosmological context or of the formation and evolution of individual galaxies. The ISM model consists of gas and dust. The gas chemical composition is regulated by a network of reactions that includes a large number of species (hydrogen and deuterium-based molecules, helium, and metals). New reaction rates for the charge transfer in H{sup +} and H{sub 2} collisions are presented. The dust contains the standard mixture of carbonaceous grains (graphite grains and PAHs) and silicates. In our model dust are formed and destroyed by several processes. The model accurately treats the cooling process, based on several physical mechanisms, and cooling functions recently reported in the literature. The model is applied to a wide range of the input parameters, and the results for important quantities describing the physical state of the gas and dust are presented. The results are organized in a database suited to the artificial neural networks (ANNs). Once trained, the ANNs yield the same results obtained by ROBO with great accuracy. We plan to develop ANNs suitably tailored for applications to NB-TSPH simulations of cosmological structures and/or galaxies.
Development of reaction models for ground-water systems
Plummer, L.N.; Parkhurst, D.L.; Thorstenson, D.C.
1983-01-01
Methods are described for developing geochemical reaction models from the observed chemical compositions of ground water along a hydrologic flow path. The roles of thermodynamic speciation programs, mass balance calculations, and reaction-path simulations in developing and testing reaction models are contrasted. Electron transfer is included in the mass balance equations to properly account for redox reactions in ground water. The mass balance calculations determine net mass transfer models which must be checked against the thermodynamic calculations of speciation and reaction-path programs. Although reaction-path simulations of ground-water chemistry are thermodynamically valid, they must be checked against the net mass transfer defined by the mass balance calculations. An example is given testing multiple reaction hypotheses along a flow path in the Floridan aquifer where several reaction models are eliminated. Use of carbon and sulfur isotopic data with mass balance calculations indicates a net reaction of incongruent dissolution of dolomite (dolomite dissolution with calcite precipitation) driven irreversibly by gypsum dissolution, accompanied by minor sulfate reduction, ferric hydroxide dissolution, and pyrite precipitation in central Florida. Along the flow path, the aquifer appears to be open to CO2 initially, and open to organic carbon at more distant points down gradient. ?? 1983.
Modeling Vortex Generators in the Wind-US Code
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.
2010-01-01
A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.
Modeling Fluid Instabilities in Inertial Confinement Fusion Hydrodynamics Codes
NASA Astrophysics Data System (ADS)
Zalesak, Steven
2004-11-01
When attempting to numerically model a physical phenomenon of any kind, we typically formulate the numerical requirements in terms of the range of spatial and temporal scales of interest. We then construct numerical software that adequately resolves those scales in each of the spatial and temporal dimensions. This software may use adaptive mesh refinement or other techniques to adequately resolve those scales of interest, and may use front-capturing algorithms or other techniques to avoid having to resolve scales that are not of interest to us. Knowing what constitutes the scales of interest is sometimes a difficult question. Harder still is knowing what constitutes adequate resolution. For many physical phenomena, adequate resolution may be obtained, for example, by simply demanding that the spatial and temporal derivatives of all scales of interest have errors less than some specified tolerance. But for other phenomena, in particular those in which physical instabilities are active, one must be much more precise in the specification of adequate resolution. In such situations one must ask detailed questions about the nature of the numerical errors, not just their size. The problem we have in mind is that of accurately modeling the evolution of small amplitude perturbations to a time-dependent flow, where the unperturbed flow itself exhibits large amplitude temporal and spatial variations. Any errors that we make in numerically modeling the unperturbed flow, if they have a projection onto the space of the perturbations of interest, can easily compromise the accuracy of those perturbations, even if the errors are small in terms of the unperturbed solution. Here we will discuss the progress that we have made over the past year in attempting to improve the ability of our radiation hydrodynamics code FASTRAD3D to accurately model the evolution of small-amplitude perturbations to an imploding ICF pellet, which is subject to both Richtmyer-Meshkov and Rayleigh
Supramolecular structures modeling photosynthetic reaction center function
Wasielewski, M.R.; Gaines, G.L. III; Gosztola, D.; Niemczyk, M.P.; Svec, W.A.
1992-08-20
Work in our laboratory has focused on the influence of solvent motion on the rates and energetics of photochemical charge separation in glassy solids. The efficiencies of many nonadiabatic electron transfer reactions involving photochemical electron donors with relatively low excited state energies, such as porphyrins and chlorophylls, are poor in the solid state. Recent work has shown that placing a porphyrin-acceptor system in a glassy solid at low temperature significantly raises the energy of ks ion-pair state. This destabilization can be as much as 0.8 eV relative to the ion pair state energy in a polar liquid. This contrasts sharply with photosynthetic reaction centers, which maintain medium-independent electron transfer rates with relatively small free energies of charge separation. Using this information we have set out to design photochemical systems that produce long-lived radical ion pairs in glassy solids with high quantum efficiency. These systems maintain their efficiency when placed in other glassy matrices, such as polymers. An important consequence of this effort is the design of molecules that minimize the electronic interaction between the oxidized donor and reduced acceptor. This minimization can be attained by careful design of the spacer groups linking the donor and acceptor and by using more than a single electron transfer step to increase the distance between the separated charges as is done in natural photosynthesis.
NASA Astrophysics Data System (ADS)
Tebes-Stevens, Caroline; J. Valocchi, Albert; VanBriesen, Jeanne M.; Rittmann, Bruce E.
1998-08-01
A reactive transport code (FEREACT) has been developed to examine the coupled effects of two-dimensional steady-state groundwater flow, equilibrium aqueous speciation reactions, and kinetically-controlled interphase reactions. The model uses an iterative two-step (SIA-1) solution algorithm to incorporate the effects of the geochemical and microbial reaction processes in the governing equation for solute transport in the subsurface. This SIA-1 method improves upon the convergence behavior of the traditional sequential iterative approach (SIA) through the inclusion of an additional first-order term from the Taylor Series expansion of the kinetic reaction rate expressions. The ability of FEREACT to simulate coupled reactive processes was demonstrated by modeling the transport of a radionuclide (cobalt, 60Co 2+) and an organic ligand (ethylenediaminetetraacetate, EDTA 4-) through a column packed with an iron oxide-coated sand. The reaction processes considered in this analysis included equilibrium aqueous speciation reactions and three types of kinetic reactions: adsorption, surface dissolution, and biodegradation.
CHEMICAL REACTIONS SIMULATED BY GROUND-WATER-QUALITY MODELS.
Grove, David B.; Stollenwerk, Kenneth G.
1987-01-01
Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.
STEPS: Modeling and Simulating Complex Reaction-Diffusion Systems with Python.
Wils, Stefan; De Schutter, Erik
2009-01-01
We describe how the use of the Python language improved the user interface of the program STEPS. STEPS is a simulation platform for modeling and stochastic simulation of coupled reaction-diffusion systems with complex 3-dimensional boundary conditions. Setting up such models is a complicated process that consists of many phases. Initial versions of STEPS relied on a static input format that did not cleanly separate these phases, limiting modelers in how they could control the simulation and becoming increasingly complex as new features and new simulation algorithms were added. We solved all of these problems by tightly integrating STEPS with Python, using SWIG to expose our existing simulation code. PMID:19623245
Modeling pore collapse and chemical reactions in shock-loaded HMX crystals
NASA Astrophysics Data System (ADS)
Austin, R. A.; Barton, N. R.; Howard, W. M.; Fried, L. E.
2014-05-01
The localization of deformation in shock-loaded crystals of high explosive material leads to the formation of hot spots, which, if hot enough, initiate chemical reactions. The collapse of microscopic pores contained within a crystal is one such process that localizes energy and generates hot spots. Given the difficulty of resolving the details of pore collapse in shock compression experiments, it is useful to study the problem using direct numerical simulation. In this work, we focus on simulating the shock-induced closure of a single pore in crystalline β-HMX using a multiphysics finite element code. To address coupled thermal-mechanical-chemical responses, the model incorporates a crystal-mechanics-based description of thermoelasto-viscoplasticity, the crystal melting behavior, and transformation kinetics for a single-step decomposition reaction. The model is applied to stress wave amplitudes of up to 11 GPa to study the details of pore collapse, energy localization, and the early stages of reaction initiation.
Reaction rate modeling of PBXN-110
NASA Astrophysics Data System (ADS)
Miller, P. J.; Sutherland, G. T.
1996-05-01
The reactive rate model for Navy explosive PBXN-110 has been determined. The rate parameters for the Lee-Tarver model were evaluated by comparing the results of DYNA2D hydrocode simulations to the embedded gauge data of gas-gun tests in which the shock loading is mostly one-dimensional. The model parameters were refined such that the failure diameter of the explosive could be reproduced in the calculations. The model was used to simulate a series of Navy sensitivity tests. These are reported here and include detonation curvature, detonation velocity dependency on charge diameter, Modified Gap, and Underwater Sensitivity tests.
Methodology Using MELCOR Code to Model Proposed Hazard Scenario
Gavin Hawkley
2010-07-01
This study demonstrates a methodology for using the MELCOR code to model a proposed hazard scenario within a building containing radioactive powder, and the subsequent evaluation of a leak path factor (LPF) (or the amount of respirable material which that escapes a facility into the outside environment), implicit in the scenario. This LPF evaluation will analyzes the basis and applicability of an assumed standard multiplication of 0.5 × 0.5 (in which 0.5 represents the amount of material assumed to leave one area and enter another), for calculating an LPF value. The outside release is dependsent upon the ventilation/filtration system, both filtered and un-filtered, and from other pathways from the building, such as doorways (, both open and closed). This study is presents ed to show how the multiple leak path factorsLPFs from the interior building can be evaluated in a combinatory process in which a total leak path factorLPF is calculated, thus addressing the assumed multiplication, and allowing for the designation and assessment of a respirable source term (ST) for later consequence analysis, in which: the propagation of material released into the environmental atmosphere can be modeled and the dose received by a receptor placed downwind can be estimated and the distance adjusted to maintains such exposures as low as reasonably achievableALARA.. Also, this study will briefly addresses particle characteristics thatwhich affect atmospheric particle dispersion, and compares this dispersion with leak path factorLPF methodology.
Reading and a diffusion model analysis of reaction time.
Naples, Adam; Katz, Leonard; Grigorenko, Elena L
2012-01-01
Processing speed is associated with reading performance. However, the literature is not clear either on the definition of processing speed or on why and how it contributes to reading performance. In this study we demonstrated that processing speed, as measured by reaction time, is not a unitary construct. Using the diffusion model of two-choice reaction time, we assessed processing speed in a series of same-different reaction time tasks for letter and number strings. We demonstrated that the association between reaction time and reading performance is driven by processing speed for reading-related information, but not motor or sensory encoding speed.
The Sugar Model: Autocatalytic Activity of the Triose Ammonia Reaction
NASA Astrophysics Data System (ADS)
Weber, Arthur L.
2007-04-01
Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose ammonia reaction product on the kinetics of a second identical triose ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.
Reading and a Diffusion Model Analysis of Reaction Time
Naples, Adam; Katz, Leonard; Grigorenko, Elena L.
2012-01-01
Processing speed is associated with reading performance. However, the literature is not clear either on the definition of processing speed or on why and how it contributes to reading performance. In this study we demonstrated that processing speed, as measured by reaction time, is not a unitary construct. Using the diffusion model of two-choice reaction time, we assessed processing speed in a series of same-different reaction time tasks for letter and number strings. We demonstrated that the association between reaction time and reading performance is driven by processing speed for reading-related information, but not motor or sensory encoding speed. PMID:22612543
A Search for Core Values: Towards a Model Code of Ethics for Information Professionals.
ERIC Educational Resources Information Center
Koehler, Wallace C.; Pemberton, J. Michael
2000-01-01
Examines ethical codes and standards of professional practice promulgated by diverse associations of information professionals from varied national outlooks to identify a core set of ethical principles. Offers a model code based on a textual consensus of those ethical codes and standards examined. Three appendices provide information on…
Semantic-preload video model based on VOP coding
NASA Astrophysics Data System (ADS)
Yang, Jianping; Zhang, Jie; Chen, Xiangjun
2013-03-01
In recent years, in order to reduce semantic gap which exists between high-level semantics and low-level features of video when the human understanding image or video, people mostly try the method of video annotation where in signal's downstream, namely further (again) attach labels to the content in video-database. Few people focus on the idea that: Use limited interaction and the means of comprehensive segmentation (including optical technologies) from the front-end of collection of video information (i.e. video camera), with video semantics analysis technology and corresponding concepts sets (i.e. ontology) which belong in a certain domain, as well as story shooting script and the task description of scene shooting etc; Apply different-level semantic descriptions to enrich the attributes of video object and the attributes of image region, then forms a new video model which is based on Video Object Plan (VOP) Coding. This model has potential intellectualized features, and carries a large amount of metadata, and embedded intermediate-level semantic concept into every object. This paper focuses on the latter, and presents a framework of a new video model. At present, this new video model is temporarily named "Video Model of Semantic-Preloaded or Semantic-Preload Video Model (simplified into VMoSP or SPVM)". This model mainly researches how to add labeling to video objects and image regions in real time, here video object and image region are usually used intermediate semantic labeling, and this work is placed on signal's upstream (i.e. video capture production stage). Because of the research needs, this paper also tries to analyses the hierarchic structure of video, and divides the hierarchic structure into nine hierarchy semantic levels, of course, this nine hierarchy only involved in video production process. In addition, the paper also point out that here semantic level tagging work (i.e. semantic preloading) only refers to the four middle-level semantic. All in
24 CFR 200.925c - Model codes.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood... each standard code and the phrase “or fire retardant treated wood” in reference note (a) of table 600... Part I—Administrative, and the reference to fire retardant treated plywood in section 2504(c)3 and...
A realistic model under which the genetic code is optimal.
Buhrman, Harry; van der Gulik, Peter T S; Klau, Gunnar W; Schaffner, Christian; Speijer, Dave; Stougie, Leen
2013-10-01
The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the mean square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By comparing this value with a distribution of values belonging to codes generated by random permutations of amino acid assignments, the level of error robustness of a genetic code can be quantified. We present a calculation in which the standard genetic code is shown to be optimal. We obtain this result by (1) using recently updated values of polar requirement as input; (2) fixing seven assignments (Ile, Trp, His, Phe, Tyr, Arg, and Leu) based on aptamer considerations; and (3) using known biosynthetic relations of the 20 amino acids. This last point is reflected in an approach of subdivision (restricting the random reallocation of assignments to amino acid subgroups, the set of 20 being divided in four such subgroups). The three approaches to explain robustness of the code (specific selection for robustness, amino acid-RNA interactions leading to assignments, or a slow growth process of assignment patterns) are reexamined in light of our findings. We offer a comprehensive hypothesis, stressing the importance of biosynthetic relations, with the code evolving from an early stage with just glycine and alanine, via intermediate stages, towards 64 codons carrying todays meaning.
24 CFR 200.925c - Model codes.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood... each standard code and the phrase “or fire retardant treated wood” in reference note (a) of table 600... Part I—Administrative, and the reference to fire retardant treated plywood in section 2504(c)3 and...
24 CFR 200.925c - Model codes.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood... each standard code and the phrase “or fire retardant treated wood” in reference note (a) of table 600... Part I—Administrative, and the reference to fire retardant treated plywood in section 2504(c)3 and...
24 CFR 200.925c - Model codes.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood... each standard code and the phrase “or fire retardant treated wood” in reference note (a) of table 600... Part I—Administrative, and the reference to fire retardant treated plywood in section 2504(c)3 and...
NASA Astrophysics Data System (ADS)
Van Ende, Marie-Aline; Jung, In-Ho
2016-05-01
The ladle furnace (LF) is widely used in the secondary steelmaking process in particular for the de-sulfurization, alloying, and reheating of liquid steel prior to the casting process. The Effective Equilibrium Reaction Zone model using the FactSage macro processing code was applied to develop a kinetic LF process model. The slag/metal interactions, flux additions to slag, various metallic additions to steel, and arcing in the LF process were taken into account to describe the variations of chemistry and temperature of steel and slag. The LF operation data for several steel grades from different plants were accurately described using the present kinetic model.
Fast-coding robust motion estimation model in a GPU
NASA Astrophysics Data System (ADS)
García, Carlos; Botella, Guillermo; de Sande, Francisco; Prieto-Matias, Manuel
2015-02-01
Nowadays vision systems are used with countless purposes. Moreover, the motion estimation is a discipline that allow to extract relevant information as pattern segmentation, 3D structure or tracking objects. However, the real-time requirements in most applications has limited its consolidation, considering the adoption of high performance systems to meet response times. With the emergence of so-called highly parallel devices known as accelerators this gap has narrowed. Two extreme endpoints in the spectrum of most common accelerators are Field Programmable Gate Array (FPGA) and Graphics Processing Systems (GPU), which usually offer higher performance rates than general propose processors. Moreover, the use of GPUs as accelerators involves the efficient exploitation of any parallelism in the target application. This task is not easy because performance rates are affected by many aspects that programmers should overcome. In this paper, we evaluate OpenACC standard, a programming model with directives which favors porting any code to a GPU in the context of motion estimation application. The results confirm that this programming paradigm is suitable for this image processing applications achieving a very satisfactory acceleration in convolution based problems as in the well-known Lucas & Kanade method.
The future of computational modelling in reaction engineering.
Kraft, Markus; Mosbach, Sebastian
2010-08-13
In this paper, we outline the future of modelling in reaction engineering. Specifically, we use the example of particulate emission formation in internal combustion engines to demonstrate what modelling can achieve at present, and to illustrate the ultimately inevitable steps that need to be taken in order to create a new generation of engineering models. PMID:20603373
Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples
Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.; Mahadevan, Sankaran
2015-09-01
Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presented in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.
Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme
NASA Astrophysics Data System (ADS)
Li, Shanbing; Wu, Jianhua; Dong, Yaying
2015-09-01
In this paper, we consider a reaction-diffusion model with Degn-Harrison reaction scheme. Some fundamental analytic properties of nonconstant positive solutions are first investigated. We next study the stability of constant steady-state solution to both ODE and PDE models. Our result also indicates that if either the size of the reactor or the effective diffusion rate is large enough, then the system does not admit nonconstant positive solutions. Finally, we establish the global structure of steady-state bifurcations from simple eigenvalues by bifurcation theory and the local structure of the steady-state bifurcations from double eigenvalues by the techniques of space decomposition and implicit function theorem.
A Combinatorial Geometry Code System with Model Testing Routines.
1982-10-08
GIFT, Geometric Information For Targets code system, is used to mathematically describe the geometry of a three-dimensional vehicle such as a tank, truck, or helicopter. The geometric data generated is merged in vulnerability computer codes with the energy effects data of a selected @munition to simulate the probabilities of malfunction or destruction of components when it is attacked by the selected munition. GIFT options include those which graphically display the vehicle, those which check themore » correctness of the geometry data, those which compute physical characteristics of the vehicle, and those which generate the geometry data used by vulnerability codes.« less
Modified version of the combined model of photonucleon reactions
Ishkhanov, B. S.; Orlin, V. N.
2015-07-15
A refined version of the combined photonucleon-reaction model is described. This version makes it possible to take into account the effect of structural features of the doorway dipole state on photonucleon reactions in the energy range of E{sub γ} ≤ 30 MeV. In relation to the previous version of the model, the treatment of isospin effects at the preequilibrium and evaporation reaction stages is refined; in addition, the description of the semidirect effect caused by nucleon emission from the doorway dipole state is improved. The model in question is used to study photonucleon reactions on the isotopes {sup 35-56}Ca and {sup 102-134}Sn in the energy range indicated above.
Biomass torrefaction: modeling of reaction thermochemistry.
Bates, Richard B; Ghoniem, Ahmed F
2013-04-01
Based on the evolution of volatile and solid products predicted by a previous model for willow torrefaction (Bates and Ghoniem, 2012) a thermochemical model has been developed to describe their thermal, chemical, and physical properties as well as the rates of heat release. The first stage of torrefaction, associated with hemicellulose decomposition, is exothermic releasing between 40 and 280 kJ/kginitial. The second stage is associated with the decomposition of the remaining lignocellulosic components, completes over a longer period, and is predicted to be either endothermic or exothermic depending on the temperature and assumed solid properties. Cumulative heat release increases with the degree of torrefaction quantified by the mass loss. The rate of mass loss and rate of heat release increase with higher temperatures. The higher heating value of volatiles produced during torrefaction was estimated to be between 4.4 and 16 MJ/kg increasing with the level of mass loss.
Brannon, R.M.; Wong, M.K.
1996-08-01
A set of model interface guidelines, called MIG, is presented as a means by which any compliant numerical material model can be rapidly installed into any parent code without having to modify the model subroutines. Here, {open_quotes}model{close_quotes} usually means a material model such as one that computes stress as a function of strain, though the term may be extended to any numerical operation. {open_quotes}Parent code{close_quotes} means a hydrocode, finite element code, etc. which uses the model and enforces, say, the fundamental laws of motion and thermodynamics. MIG requires the model developer (who creates the model package) to specify model needs in a standardized but flexible way. MIG includes a dictionary of technical terms that allows developers and parent code architects to share a common vocabulary when specifying field variables. For portability, database management is the responsibility of the parent code. Input/output occurs via structured calling arguments. As much model information as possible (such as the lists of required inputs, as well as lists of precharacterized material data and special needs) is supplied by the model developer in an ASCII text file. Every MIG-compliant model also has three required subroutines to check data, to request extra field variables, and to perform model physics. To date, the MIG scheme has proven flexible in beta installations of a simple yield model, plus a more complicated viscodamage yield model, three electromechanical models, and a complicated anisotropic microcrack constitutive model. The MIG yield model has been successfully installed using identical subroutines in three vectorized parent codes and one parallel C++ code, all predicting comparable results. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort, thereby reducing the cost of installing and sharing models in diverse new codes.
Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production
NASA Technical Reports Server (NTRS)
Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.
2004-01-01
addresses modeling of the arc process for fullerene and carbon nanotube production using O-D, 1-D and 2-D fluid flow models. The third part addresses simulations of the pulsed laser ablation process using time-dependent techniques in 2-D, and a steady state 2-D simulation of a continuous laser ablation process. The fourth part addresses steady state modeling in O-D and 2-D of the HiPco process. In each of the simulations, there is a variety of simplifications that are made that enable one to concentrate on one aspect or another of the process. There are simplifications that can be made to the chemical reaction models , e.g. reduction in number of species by lumping some of them together in a representative species. Other simulations are carried out by eliminating the chemistry altogether in order to concentrate on the fluid dynamics. When solving problems with a large number of species in more than one spatial dimension, it is almost imperative that the problem be decoupled by solving for the fluid dynamics to find the fluid motion and temperature history of "particles" of fluid moving through a reactor. Then one can solve the chemical rate equations with complex chemistry following the temperature and pressure history. One difficulty is that often mixing with an ambient gas is involved. Therefore, one needs to take dilution and mixing into account. This changes the ratio of carbon species to background gas. Commercially available codes may have no provision for including dilution as part of the input. One must the write special solvers for including dilution in decoupled problems. The article addresses both ful1erene production and single-walled carbon nanotube (SWNT) production. There are at least two schemes or concepts of SWNT growth. This article will only address growth in the gas phase by carbon and catalyst cluster growth and SW T formation by the addition of carbon. There are other models that conceive of SWNT growth as a phase separation process from clusters me
Liberman, M A; Kiverin, A D; Ivanov, M F
2012-05-01
Regimes of chemical reaction wave propagation initiated by initial temperature nonuniformity in gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied using a multispecies transport model and a detailed chemical model. Possible regimes of reaction wave propagation are identified for stoichiometric hydrogen-oxygen and hydrogen-air mixtures in a wide range of initial pressures and temperature levels, depending on the initial non-uniformity steepness. The limits of the regimes of reaction wave propagation depend upon the values of the spontaneous wave speed and the characteristic velocities of the problem. It is shown that one-step kinetics cannot reproduce either quantitative neither qualitative features of the ignition process in real gaseous mixtures because the difference between the induction time and the time when the exothermic reaction begins significantly affects the ignition, evolution, and coupling of the spontaneous reaction wave and the pressure wave, especially at lower temperatures. We show that all the regimes initiated by the temperature gradient occur for much shallower temperature gradients than predicted by a one-step model. The difference is very large for lower initial pressures and for slowly reacting mixtures. In this way the paper provides an answer to questions, important in practice, about the ignition energy, its distribution, and the scale of the initial nonuniformity required for ignition in one or another regime of combustion wave propagation.
A Robust Model-Based Coding Technique for Ultrasound Video
NASA Technical Reports Server (NTRS)
Docef, Alen; Smith, Mark J. T.
1995-01-01
This paper introduces a new approach to coding ultrasound video, the intended application being very low bit rate coding for transmission over low cost phone lines. The method exploits both the characteristic noise and the quasi-periodic nature of the signal. Data compression ratios between 250:1 and 1000:1 are shown to be possible, which is sufficient for transmission over ISDN and conventional phone lines. Preliminary results show this approach to be promising for remote ultrasound examinations.
Gene dosage imbalances: action, reaction, and models.
Veitia, Reiner A; Potier, Marie Claude
2015-06-01
Single-gene deletions, duplications, and misregulation, as well as aneuploidy, can lead to stoichiometric imbalances within macromolecular complexes and cellular networks, causing their malfunction. Such alterations can be responsible for inherited or somatic genetic disorders including Mendelian diseases, aneuploid syndromes, and cancer. We review the effects of gene dosage alterations at the transcriptomic and proteomic levels, and the various responses of the cell to counteract their effects. Furthermore, we explore several biochemical models and ideas that can provide the rationale for treatments modulating the effects of gene dosage imbalances.
NASA Technical Reports Server (NTRS)
Mcbeath, Giorgio; Ghorashi, Bahman; Chun, Kue
1993-01-01
A thermal NO(x) prediction model is developed to interface with a CFD, k-epsilon based code. A converged solution from the CFD code is the input to the postprocessing model for prediction of thermal NO(x). The model uses a decoupled analysis to estimate the equilibrium level of (NO(x))e which is the constant rate limit. This value is used to estimate the flame (NO(x)) and in turn predict the rate of formation at each node using a two-step Zeldovich mechanism. The rate is fixed on the NO(x) production rate plot by estimating the time to reach equilibrium by a differential analysis based on the reaction: O + N2 = NO + N. The rate is integrated in the nonequilibrium time space based on the residence time at each node in the computational domain. The sum of all nodal predictions yields the total NO(x) level.
Knockout reactions on p-shell nuclei for tests of structure and reaction models
NASA Astrophysics Data System (ADS)
Kuchera, A. N.; Bazin, D.; Babo, M.; Baumann, T.; Bowry, M.; Bradt, J.; Brown, J.; Deyoung, P. A.; Elman, B.; Finck, J. E.; Gade, A.; Grinyer, G. F.; Jones, M. D.; Lunderberg, E.; Redpath, T.; Rogers, W. F.; Stiefel, K.; Thoennessen, M.; Weisshaar, D.; Whitmore, K.
2015-10-01
A series of knockout reactions on p-shell nuclei were studied to extract exclusive cross sections and to investigate the neutron knockout mechanism. The measured cross sections provide stringent tests of shell model and ab initio calculations while measurements of neutron+residual coincidences test the accuracy and validity of reaction models used to predict cross sections. Six different beams ranging from A = 7 to 12 were produced at the NSCL totaling measurements of nine different reaction settings. The reaction settings were determined by the magnetic field of the Sweeper magnet which bends the residues into charged particle detectors. The reaction target was surrounded by the high efficiency CsI array, CAESAR, to tag gamma rays for cross section measurements of low-lying excited states. Additionally, knocked out neutrons were detected with MoNA-LISA in coincidence with the charged residuals. Preliminary results will be discussed. This work is partially supported by the National Science Foundation under Grant No. PHY11-02511 and the Department of Energy National Nuclear Security Administration under Award No. DE-NA0000979.
A Lattice Boltzmann Model for Oscillating Reaction-Diffusion
NASA Astrophysics Data System (ADS)
Rodríguez-Romo, Suemi; Ibañez-Orozco, Oscar; Sosa-Herrera, Antonio
2016-07-01
A computational algorithm based on the lattice Boltzmann method (LBM) is proposed to model reaction-diffusion systems. In this paper, we focus on how nonlinear chemical oscillators like Belousov-Zhabotinsky (BZ) and the chlorite-iodide-malonic acid (CIMA) reactions can be modeled by LBM and provide with new insight into the nature and applications of oscillating reactions. We use Gaussian pulse initial concentrations of sulfuric acid in different places of a bidimensional reactor and nondiffusive boundary walls. We clearly show how these systems evolve to a chaotic attractor and produce specific pattern images that are portrayed in the reactions trajectory to the corresponding chaotic attractor and can be used in robotic control.
General Description of Fission Observables: GEF Model Code
NASA Astrophysics Data System (ADS)
Schmidt, K.-H.; Jurado, B.; Amouroux, C.; Schmitt, C.
2016-01-01
The GEF ("GEneral description of Fission observables") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is
Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution
NASA Astrophysics Data System (ADS)
Eliyan, Faysal Fayez; Alfantazi, Akram
2016-02-01
This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.
A practical guide to modelling enzyme-catalysed reactions
Lonsdale, Richard; Harvey, Jeremy N.; Mulholland, Adrian J.
2012-01-01
Molecular modelling and simulation methods are increasingly at the forefront of elucidating mechanisms of enzyme-catalysed reactions, and shedding light on the determinants of specificity and efficiency of catalysis. These methods have the potential to assist in drug discovery and the design of novel protein catalysts. This Tutorial Review highlights some of the most widely used modelling methods and some successful applications. Modelling protocols commonly applied in studying enzyme-catalysed reactions are outlined here, and some practical implications are considered, with cytochrome P450 enzymes used as a specific example. PMID:22278388
NASA Astrophysics Data System (ADS)
Brundage, Aaron; Gump, Jared
2011-06-01
Neat pressings of HNS powders have been used in many explosive applications for over 50 years. However, characterization of its crystalline properties has lagged that of other explosives, and the solid stress has been inferred from impact experiments or estimated from mercury porosimetry. This lack of knowledge of the precise crystalline isotherm can contribute to large model uncertainty in the reacted response of pellets to shock impact. At high impact stresses, deflagration-to-detonation transition (DDT) processes initiated by compressive reaction have been interpreted from velocity interferometry at the surface of distended HNS-FP pellets. In particular, the Baer-Nunziato multiphase model in CTH, Sandia's Eulerian, finite volume shock propagation code, was used to predict compressive waves in pellets having approximately a 60% theoretical maximum density (TMD). These calculations were repeated with newly acquired isothermal compression measurements of fine-particle HNS using diamond anvil cells to compress the sample and powder x-ray diffraction to obtain the sample volume at each pressure point. Hence, estimating the model uncertainty provides a simple method for conveying the impact of future model improvements based upon new experimental data.
NASA Astrophysics Data System (ADS)
Brundage, Aaron L.; Gump, Jared C.
2012-03-01
Neat pressings of HNS powders have been used in many explosive applications for over 50 years. However, characterization of its crystalline properties has lagged that of other explosives, and the solid stress has been inferred from impact experiments or estimated from mercury porosimetry. This lack of knowledge of the precise crystalline isotherm can contribute to large model uncertainty in the reacted response of pellets to shock impact. At high impact stresses, deflagration-to-detonation transition (DDT) processes initiated by compressive reaction have been interpreted from velocity interferometry at the surface of distended HNS-FP pellets. In particular, the Baer-Nunziato multiphase model in CTH, Sandia's Eulerian, finite volume shock propagation code, was used to predict compressive waves in pellets having approximately a 60% theoretical maximum density (TMD). These calculations were repeated with newly acquired isothermal compression measurements of fineparticle HNS using diamond anvil cells to compress the sample and powder x-ray diffraction to obtain the sample volume at each pressure point. Hence, estimating the model uncertainty provides a simple method for conveying the impact of future model improvements based upon new experimental data.
The non-power model of the genetic code: a paradigm for interpreting genomic information.
Gonzalez, Diego Luis; Giannerini, Simone; Rosa, Rodolfo
2016-03-13
In this article, we present a mathematical framework based on redundant (non-power) representations of integer numbers as a paradigm for the interpretation of genomic information. The core of the approach relies on modelling the degeneracy of the genetic code. The model allows one to explain many features and symmetries of the genetic code and to uncover hidden symmetries. Also, it provides us with new tools for the analysis of genomic sequences. We review briefly three main areas: (i) the Euplotid nuclear code, (ii) the vertebrate mitochondrial code, and (iii) the main coding/decoding strategies used in the three domains of life. In every case, we show how the non-power model is a natural unified framework for describing degeneracy and deriving sound biological hypotheses on protein coding. The approach is rooted on number theory and group theory; nevertheless, we have kept the technical level to a minimum by focusing on key concepts and on the biological implications. PMID:26857679
Physical Model for the Evolution of the Genetic Code
NASA Astrophysics Data System (ADS)
Yamashita, Tatsuro; Narikiyo, Osamu
2011-12-01
Using the shape space of codons and tRNAs we give a physical description of the genetic code evolution on the basis of the codon capture and ambiguous intermediate scenarios in a consistent manner. In the lowest dimensional version of our description, a physical quantity, codon level is introduced. In terms of the codon levels two scenarios are typically classified into two different routes of the evolutional process. In the case of the ambiguous intermediate scenario we perform an evolutional simulation implemented cost selection of amino acids and confirm a rapid transition of the code change. Such rapidness reduces uncomfortableness of the non-unique translation of the code at intermediate state that is the weakness of the scenario. In the case of the codon capture scenario the survival against mutations under the mutational pressure minimizing GC content in genomes is simulated and it is demonstrated that cells which experience only neutral mutations survive.
Michel, Jean-Baptiste; Colin, Olivier; Angelberger, Christian
2010-04-15
In the standard implementation of tabulated combustion models of the FPI or FGM type, the mean species mass fractions are read from look-up tables as functions of a progress variable, mixture fraction and their variances. In multi-species CFD codes however, the mean thermodynamic properties are deduced from the local mean species mass fractions. The unclosed mean source terms appearing in the latter's transport equations must then be given by the chemistry look-up tables. Two possible formulations for this mean source terms are discussed and compared in the present paper. In the reaction rate (RR) formulation, all mean reaction rates are directly read from a look-up table. In the mass fraction (MF) formulation, only the reaction rate for the progress variable is stored, and mean species source terms are constructed to relax the mean mass fractions towards the value stored in the look-up table. After a detailed description of in particular the MF formulation, simple a priori tests of auto-igniting reactors without convection and diffusion are used to illustrate and discuss the differences between the two formulations. Both formulations are then applied to a RANS simulation of the Cabra et al. burner in the context of a PCM-FPI and of an ADF-PCM model. The reported findings confirm the conclusions from the simple tests, highlighting the definitive advantages of the MF formulation. It ensures an accurate reproduction of auto-ignition delays, species evolutions and equilibriums, at the condition that the relaxation parameter is of the order of a characteristic chemical time. Finally, it is shown that the relaxation's effect is only a second order correction. (author)
On the validation of a code and a turbulence model appropriate to circulation control airfoils
NASA Technical Reports Server (NTRS)
Viegas, J. R.; Rubesin, M. W.; Maccormack, R. W.
1988-01-01
A computer code for calculating flow about a circulation control airfoil within a wind tunnel test section has been developed. This code is being validated for eventual use as an aid to design such airfoils. The concept of code validation being used is explained. The initial stages of the process have been accomplished. The present code has been applied to a low-subsonic, 2-D flow about a circulation control airfoil for which extensive data exist. Two basic turbulence models and variants thereof have been successfully introduced into the algorithm, the Baldwin-Lomax algebraic and the Jones-Launder two-equation models of turbulence. The variants include adding a history of the jet development for the algebraic model and adding streamwise curvature effects for both models. Numerical difficulties and difficulties in the validation process are discussed. Turbulence model and code improvements to proceed with the validation process are also discussed.
Polymerase chain reaction in natural convection systems: A convection-diffusion-reaction model
NASA Astrophysics Data System (ADS)
Yariv, E.; Ben-Dov, G.; Dorfman, K. D.
2005-09-01
We present a rational scheme for modeling natural convection-driven polymerase chain reaction (PCR), where many copies of a DNA template are made by cycling between hot and cold regions via a circulatory, buoyancy-driven flow. This process is described here in the framework of multiple-species formulation, using evolution equations which govern the concentrations of the various DNA species in the carrying solution. In the intermediate asymptotic limit, where a stationary amplification rate is achieved, these equations provide an eigenvalue problem for computing the exponential amplification rate of double-stranded DNA. The scheme is demonstrated using a simplified model of a Rayleigh-Bénard cell. In contrast to what may have been anticipated, diffusion tends to enhance the growth rate. The present model, intended to be used as a template for more device-specific analyses, provides a starting point for understanding the effects of the competing mechanisms (reaction, convection and diffusion) upon the amplification efficiency.
Molecular modeling of the reaction pathway and hydride transfer reactions of HMG-CoA reductase.
Haines, Brandon E; Steussy, C Nicklaus; Stauffacher, Cynthia V; Wiest, Olaf
2012-10-01
HMG-CoA reductase catalyzes the four-electron reduction of HMG-CoA to mevalonate and is an enzyme of considerable biomedical relevance because of the impact of its statin inhibitors on public health. Although the reaction has been studied extensively using X-ray crystallography, there are surprisingly no computational studies that test the mechanistic hypotheses suggested for this complex reaction. Theozyme and quantum mechanical (QM)/molecular mechanical (MM) calculations up to the B3LYP/6-31g(d,p)//B3LYP/6-311++g(2d,2p) level of theory were employed to generate an atomistic description of the enzymatic reaction process and its energy profile. The models generated here predict that the catalytically important Glu83 is protonated prior to hydride transfer and that it acts as the general acid or base in the reaction. With Glu83 protonated, the activation energies calculated for the sequential hydride transfer reactions, 21.8 and 19.3 kcal/mol, are in qualitative agreement with the experimentally determined rate constant for the entire reaction (1 s(-1) to 1 min(-1)). When Glu83 is not protonated, the first hydride transfer reaction is predicted to be disfavored by >20 kcal/mol, and the activation energy is predicted to be higher by >10 kcal/mol. While not involved in the reaction as an acid or base, Lys267 is critical for stabilization of the transition state in forming an oxyanion hole with the protonated Glu83. Molecular dynamics simulations and MM/Poisson-Boltzmann surface area free energy calculations predict that the enzyme active site stabilizes the hemithioacetal intermediate better than the aldehyde intermediate. This suggests a mechanism in which cofactor exchange occurs before the breakdown of the hemithioacetal. Slowing the conversion to aldehyde would provide the enzyme with a mechanism to protect it from solvent and explain why the free aldehyde is not observed experimentally. Our results support the hypothesis that the pK(a) of an active site acidic
Model of defect reactions and the influence of clustering in pulse-neutron-irradiated Si
Myers, S. M.; Cooper, P. J.; Wampler, W. R.
2008-08-15
Transient reactions among irradiation defects, dopants, impurities, and carriers in pulse-neutron-irradiated Si were modeled taking into account the clustering of the primal defects in recoil cascades. Continuum equations describing the diffusion, field drift, and reactions of relevant species were numerically solved for a submicrometer spherical volume, within which the starting radial distributions of defects could be varied in accord with the degree of clustering. The radial profiles corresponding to neutron irradiation were chosen through pair-correlation-function analysis of vacancy and interstitial distributions obtained from the binary-collision code MARLOWE, using a spectrum of primary recoil energies computed for a fast-burst fission reactor. Model predictions of transient behavior were compared with a variety of experimental results from irradiated bulk Si, solar cells, and bipolar-junction transistors. The influence of defect clustering during neutron bombardment was further distinguished through contrast with electron irradiation, where the primal point defects are more uniformly dispersed.
The APS SASE FEL : modeling and code comparison.
Biedron, S. G.
1999-04-20
A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.
Rossi, Elda; Evangelisti, Stefano; Laganà, Antonio; Monari, Antonio; Rampino, Sergio; Verdicchio, Marco; Baldridge, Kim K; Bendazzoli, Gian Luigi; Borini, Stefano; Cimiraglia, Renzo; Angeli, Celestino; Kallay, Peter; Lüthi, Hans P; Ruud, Kenneth; Sanchez-Marin, José; Scemama, Anthony; Szalay, Peter G; Tajti, Attila
2014-03-30
Code interoperability and the search for domain-specific standard data formats represent critical issues in many areas of computational science. The advent of novel computing infrastructures such as computational grids and clouds make these issues even more urgent. The design and implementation of a common data format for quantum chemistry (QC) and quantum dynamics (QD) computer programs is discussed with reference to the research performed in the course of two Collaboration in Science and Technology Actions. The specific data models adopted, Q5Cost and D5Cost, are shown to work for a number of interoperating codes, regardless of the type and amount of information (small or large datasets) to be exchanged. The codes are either interfaced directly, or transfer data by means of wrappers; both types of data exchange are supported by the Q5/D5Cost library. Further, the exchange of data between QC and QD codes is addressed. As a proof of concept, the H + H2 reaction is discussed. The proposed scheme is shown to provide an excellent basis for cooperative code development, even across domain boundaries. Moreover, the scheme presented is found to be useful also as a production tool in the grid distributed computing environment.
Implementation of a vibrationally linked chemical reaction model for DSMC
NASA Technical Reports Server (NTRS)
Carlson, A. B.; Bird, Graeme A.
1994-01-01
A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.
Implementation of a vibrationally linked chemical reaction model for DSMC
NASA Astrophysics Data System (ADS)
Carlson, A. B.; Bird, Graeme A.
1994-04-01
A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.
Concerted reactions of polynuclear metalloenzymes and their functional chemical models
NASA Astrophysics Data System (ADS)
Dzhabiev, T. S.; Shilov, A. E.
2011-03-01
The mechanisms of the many-electron oxidation of water by a chemical model of the manganese oxidase cofactor in photosynthesis photosystem II (manganese(IV) clusters) and nitrogen reduction in chemical models of nitrogenase cofactor (vanadium(II) and molybdenum(III) clusters) were considered. The hypothesis was suggested according to which polynuclear enzyme cofactors and their functional chemical models performed two important functions, catalyzed noncomplementary processes and effected many-substrate concerted reactions with decreased activation energies.
CSIRO's multiphase reaction models and their industrial applications
NASA Astrophysics Data System (ADS)
Zhang, L.; Jahanshahi, S.; Sun, S.; Chen, C.; Bourke, B.; Wright, S.; Somerville, M.
2002-11-01
The status and ongoing work on a multiphase reaction model developed at the Commonwealth Scientific & Industrial Research Organization are outlined in this article. The package enables metallurgists to simulate reactions in pyrometallurgical processes with respect to equilibrium between various phases and to calculate slag viscosity at elevated temperatures. The models have been validated against measurements on physico-chemical properties of melts and solid phases produced in industrial processes. A number of examples of the application of the package to ferrous and non-ferrous smelting and refining processes are presented.
The modeling of core melting and in-vessel corium relocation in the APRIL code
Kim. S.W.; Podowski, M.Z.; Lahey, R.T.
1995-09-01
This paper is concerned with the modeling of severe accident phenomena in boiling water reactors (BWR). New models of core melting and in-vessel corium debris relocation are presented, developed for implementation in the APRIL computer code. The results of model testing and validations are given, including comparisons against available experimental data and parametric/sensitivity studies. Also, the application of these models, as parts of the APRIL code, is presented to simulate accident progression in a typical BWR reactor.
NASA Astrophysics Data System (ADS)
Lü, Hongliang; Boilley, David; Abe, Yasuhisa; Shen, Caiwan
2016-09-01
Background: Synthesis of superheavy elements is performed by heavy-ion fusion-evaporation reactions. However, fusion is known to be hindered with respect to what can be observed with lighter ions. Thus some delicate ambiguities remain on the fusion mechanism that eventually lead to severe discrepancies in the calculated formation probabilities coming from different fusion models. Purpose: In the present work, we propose a general framework based upon uncertainty analysis in the hope of constraining fusion models. Method: To quantify uncertainty associated with the formation probability, we propose to propagate uncertainties in data and parameters using the Monte Carlo method in combination with a cascade code called kewpie2, with the aim of determining the associated uncertainty, namely the 95 % confidence interval. We also investigate the impact of different models or options, which cannot be modeled by continuous probability distributions, on the final results. An illustrative example is presented in detail and then a systematic study is carried out for a selected set of cold-fusion reactions. Results: It is rigorously shown that, at the 95 % confidence level, the total uncertainty of the empirical formation probability appears comparable to the discrepancy between calculated values. Conclusions: The results obtained from the present study provide direct evidence for predictive limitations of the existing fusion-evaporation models. It is thus necessary to find other ways to assess such models for the purpose of establishing a more reliable reaction theory, which is expected to guide future experiments on the production of superheavy elements.
A chain reaction approach to modelling gene pathways
Cheng, Gary C.; Chen, Dung-Tsa; Chen, James J.; Soong, Seng-jaw; Lamartiniere, Coral; Barnes, Stephen
2012-01-01
Background Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. Results In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By
Soo Yean, Cheryl Yeap; Selva Raju, Kishanraj; Xavier, Rathinam; Subramaniam, Sreeramanan; Gopinath, Subash C. B.; Chinni, Suresh V.
2016-01-01
Non-protein coding RNA (npcRNA) is a functional RNA molecule that is not translated into a protein. Bacterial npcRNAs are structurally diversified molecules, typically 50–200 nucleotides in length. They play a crucial physiological role in cellular networking, including stress responses, replication and bacterial virulence. In this study, by using an identified npcRNA gene (Sau-02) in Methicillin-resistant Staphylococcus aureus (MRSA), we identified the Gram-positive bacteria S. aureus. A Sau-02-mediated monoplex Polymerase Chain Reaction (PCR) assay was designed that displayed high sensitivity and specificity. Fourteen different bacteria and 18 S. aureus strains were tested, and the results showed that the Sau-02 gene is specific to S. aureus. The detection limit was tested against genomic DNA from MRSA and was found to be ~10 genome copies. Further, the detection was extended to whole-cell MRSA detection, and we reached the detection limit with two bacteria. The monoplex PCR assay demonstrated in this study is a novel detection method that can replicate other npcRNA-mediated detection assays. PMID:27367909
Watanabe, Y. Abe, S.
2014-06-15
Terrestrial neutron-induced soft errors in MOSFETs from a 65 nm down to a 25 nm design rule are analyzed by means of multi-scale Monte Carlo simulation using the PHITS-HyENEXSS code system. Nuclear reaction models implemented in PHITS code are validated by comparisons with experimental data. From the analysis of calculated soft error rates, it is clarified that secondary He and H ions provide a major impact on soft errors with decreasing critical charge. It is also found that the high energy component from 10 MeV up to several hundreds of MeV in secondary cosmic-ray neutrons has the most significant source of soft errors regardless of design rule.
Three-reaction model for the anaerobic digestion of microalgae.
Mairet, Francis; Bernard, Olivier; Cameron, Elliot; Ras, Monique; Lardon, Laurent; Steyer, Jean-Philippe; Chachuat, Benoît
2012-02-01
Coupling an anaerobic digester to a microalgal culture has received increasing attention as an alternative process for combined bioenergy production and depollution. In this article, a dynamic model for anaerobic digestion of microalgae is developed with the aim of improving the management of such a coupled system. This model describes the dynamics of inorganic nitrogen and volatile fatty acids since both can lead to inhibition and therefore process instability. Three reactions are considered: Two hydrolysis-acidogenesis steps in parallel for sugars/lipids and for proteins, followed by a methanogenesis step. The proposed model accurately reproduces experimental data for anaerobic digestion of the freshwater microalgae Chlorella vulgaris with an organic loading rate of 1 gCOD L(-1) d(-1). In particular, the three-reaction pathway allows to adequately represent the observed decoupling between biogas production and nitrogen release. The reduced complexity of this model makes it suitable for developing advanced, model-based control and monitoring strategies.
Advanced modeling of reaction cross sections for light nuclei
Resler, D.A.
1991-01-01
The shell model/R-matrix technique of calculating nuclear reaction cross sections for light projectiles incident on light nuclei is discussed, particularly in the application of the technique to thermonuclear reactions. Details are presented on the computational methods for the shell model which display how easily the calculations can be performed. Results of the shell model/R-matrix technique are discussed as are some of the problems encountered in picking an appropriate nucleon-nucleon interaction for the large model spaces which must be used for current problems. The status of our work on developing an effective nucleon-nucleon interaction for use in large-basis shell model calculations is presented. This new interaction is based on a combination of global constraints and microscopic nuclear data. 23 refs., 6 figs., 2 tabs.
Modeling pore collapse and chemical reactions in shock-loaded HMX crystals
NASA Astrophysics Data System (ADS)
Austin, Ryan; Barton, Nathan; Howard, William; Fried, Laurence
2013-06-01
The collapse of micron-sized pores in crystalline high explosives is the primary route to initiating thermal decomposition reactions under shock wave loading. Given the difficulty of resolving such processes in experiments, it is useful to study pore collapse using numerical simulation. A significant challenge that is encountered in such calculations is accounting for anisotropic mechanical responses and the effects of highly exothermic chemical reactions. In this work, we focus on simulating the shock-wave-induced collapse of a single pore in crystalline HMX using a multiphysics finite element code (ALE3D). The constitutive model set includes a crystal-mechanics-based model of thermoelasto-viscoplasticity and a single-step decomposition reaction with empirically determined kinetics. The model is exercised for shock stresses up to ~10 GPa to study the localization of energy about the collapsing pore and the early stages of reaction initiation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-ABS-618941).
A predictive transport modeling code for ICRF-heated tokamaks
Phillips, C.K.; Hwang, D.Q.; Houlberg, W.; Attenberger, S.; Tolliver, J.; Hively, L.
1992-02-01
In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3. Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5.
Modelling population growth with delayed nonlocal reaction in 2-dimensions.
Liang, Dong; Wu, Jianhong; Zhang, Fan
2005-01-01
In this paper, we consider the population growth of a single species living in a two-dimensional spatial domain. New reaction-difusion equation models with delayed nonlocal reaction are developed in two-dimensional bounded domains combining diferent boundary conditions. The important feature of the models is the reflection of the joint efect of the difusion dynamics and the nonlocal maturation delayed efect. We consider and ana- lyze numerical solutions of the mature population dynamics with some wellknown birth functions. In particular, we observe and study the occurrences of asymptotically stable steady state solutions and periodic waves for the two-dimensional problems with nonlocal delayed reaction. We also investigate numerically the efects of various parameters on the period, the peak and the shape of the periodic wave as well as the shape of the asymptotically stable steady state solution.
Recent developments in DYNSUB: New models, code optimization and parallelization
Daeubler, M.; Trost, N.; Jimenez, J.; Sanchez, V.
2013-07-01
DYNSUB is a high-fidelity coupled code system consisting of the reactor simulator DYN3D and the sub-channel code SUBCHANFLOW. It describes nuclear reactor core behavior with pin-by-pin resolution for both steady-state and transient scenarios. In the course of the coupled code system's active development, super-homogenization (SPH) and generalized equivalence theory (GET) discontinuity factors may be computed with and employed in DYNSUB to compensate pin level homogenization errors. Because of the largely increased numerical problem size for pin-by-pin simulations, DYNSUB has bene fitted from HPC techniques to improve its numerical performance. DYNSUB's coupling scheme has been structurally revised. Computational bottlenecks have been identified and parallelized for shared memory systems using OpenMP. Comparing the elapsed time for simulating a PWR core with one-eighth symmetry under hot zero power conditions applying the original and the optimized DYNSUB using 8 cores, overall speed up factors greater than 10 have been observed. The corresponding reduction in execution time enables a routine application of DYNSUB to study pin level safety parameters for engineering sized cases in a scientific environment. (authors)
The dynamic neural filter: a binary model of spatiotemporal coding.
Quenet, Brigitte; Horn, David
2003-02-01
We describe and discuss the properties of a binary neural network that can serve as a dynamic neural filter (DNF), which maps regions of input space into spatiotemporal sequences of neuronal activity. Both deterministic and stochastic dynamics are studied, allowing the investigation of the stability of spatiotemporal sequences under noisy conditions. We define a measure of the coding capacity of a DNF and develop an algorithm for constructing a DNF that can serve as a source of given codes. On the basis of this algorithm, we suggest using a minimal DNF capable of generating observed sequences as a measure of complexity of spatiotemporal data. This measure is applied to experimental observations in the locust olfactory system, whose reverberating local field potential provides a natural temporal scale allowing the use of a binary DNF. For random synaptic matrices, a DNF can generate very large cycles, thus becoming an efficient tool for producing spatiotemporal codes. The latter can be stabilized by applying to the parameters of the DNF a learning algorithm with suitable margins.
A Generic Microdisturbanace Transmissibility Model For Reaction Wheels
NASA Astrophysics Data System (ADS)
Penate Castro, Jose; Seiler, Rene
2012-07-01
The increasing demand for space missions with high- precision pointing requirements for their payload instruments is underlining the importance of studying the impact of micro-level disturbances on the overall performance of spacecraft. For example, a satellite with an optical telescope taking high-resolution images might be very sensitive to perturbations, generated by moving equipment and amplified by the structure of the equipment itself as well as that of the host spacecraft that is accommodating both, the sources of mechanical disturbances and sensitive payload instruments. One of the major sources of mechanical disturbances inside a satellite may be found with reaction wheels. For investigation of their disturbance generation and propagation characteristics, a finite element model with parametric geometry definition has been developed. The model covers the main structural features of typical reaction wheel assemblies and can be used for a transmissibility representation of the equipment. With the parametric geometry definition approach, a wide range of different reaction wheel types and sizes can be analysed, without the need for (re-)defining an individual reaction wheel configuration from scratch. The reaction wheel model can be combined with a finite element model of the spacecraft structure and the payload for an end-to-end modelling and simulation of the microdisturbance generation and propagation. The finite element model has been generated in Patran® Command Language (PCL), which provides a powerful and time-efficient way to change parameters in the model, for creating a new or modifying an existing geometry, without requiring comprehensive manual interactions in the modelling pre-processor. As part of the overall modelling approach, a tailored structural model of the mechanical ball bearings has been implemented, which is one of the more complex problems to deal with, among others, due to the anisotropic stiffness and damping characteristics
Calibration of Complex Subsurface Reaction Models Using a Surrogate-Model Approach
Application of model assessment techniques to complex subsurface reaction models involves numerous difficulties, including non-trivial model selection, parameter non-uniqueness, and excessive computational burden. To overcome these difficulties, this study introduces SAMM (Simult...
Wampler, William R.; Myers, Samuel M.
2014-02-01
A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.
A convolutional code-based sequence analysis model and its application.
Liu, Xiao; Geng, Xiaoli
2013-04-16
A new approach for encoding DNA sequences as input for DNA sequence analysis is proposed using the error correction coding theory of communication engineering. The encoder was designed as a convolutional code model whose generator matrix is designed based on the degeneracy of codons, with a codon treated in the model as an informational unit. The utility of the proposed model was demonstrated through the analysis of twelve prokaryote and nine eukaryote DNA sequences having different GC contents. Distinct differences in code distances were observed near the initiation and termination sites in the open reading frame, which provided a well-regulated characterization of the DNA sequences. Clearly distinguished period-3 features appeared in the coding regions, and the characteristic average code distances of the analyzed sequences were approximately proportional to their GC contents, particularly in the selected prokaryotic organisms, presenting the potential utility as an added taxonomic characteristic for use in studying the relationships of living organisms.
NASA Astrophysics Data System (ADS)
Ballarini, F.; Alloni, D.; Battistoni, G.; Cerutti, F.; Ferrari, A.; Gadioli, E.; Garzelli, M. V.; Liotta, M.; Mairani, A.; Ottolenghi, A.; Paretzke, H. G.; Parini, V.; Pelliccioni, M.; Pinsky, L.; Sala, P.; Scannicchio, D.; Trovati, S.; Zankl, M.
2006-05-01
Astronauts' exposure to the various components of the space radiation field is of great concern for long-term missions, especially for those in deep space such as a possible travel to Mars. Simulations based on radiation transport/interaction codes coupled with anthropomorphic model phantoms can be of great help in view of risk evaluation and shielding optimisation, which is therefore a crucial issue. The FLUKA Monte Carlo code can be coupled with two types of anthropomorphic phantom (a mathematical model and a ''voxel'' model) to calculate organ-averaged absorbed dose, dose equivalent and ''biological'' dose under different shielding conditions. Herein the ''biological dose'' is represented by the average number of ''Complex Lesions'' (CLs) per cell in a given organ. CLs are clustered DNA breaks previously calculated by means of event-by-event track structure simulations at the nm level and integrated on-line into FLUKA, which adopts a condensed-history approach; such lesions have been shown to play a fundamental role in chromosome aberration induction, which in turn can be correlated with carcinogenesis. Examples of calculation results will be presented relative to Galactic Cosmic Rays, as well as to the August 1972 Solar Particle Event. The contributions from primary ions and secondary particles will be shown separately, thus allowing quantification of the role played by nuclear reactions occurring in the shield and in the human body itself. As expected, the SPE doses decrease dramatically with increasing the Al shielding thickness; nuclear reaction products, essentially due to target fragmentation, are of minor importance. A 10 g/cm2 Al shelter resulted to be sufficient to respect the 30-day limits for deterministic effects recommended for missions in Low Earth Orbit. In contrast with the results obtained for SPEs, the calculated GCR doses are almost independent of the Al shield thickness, and the GCR doses to internal organs are not significantly lower than
Modeling charge transfer in the photosynthetic reaction center
NASA Astrophysics Data System (ADS)
Pudlak, Michal; Pinčak, Richard
2003-12-01
In this work, we present a model to elucidate the unidirectionality of the primary charge-separation process in the bacterial reaction centers. We have used a model of three sites/molecules with electron transfer beginning at site 1 with an option to proceed to site 2 or site 3. We used a stochastic model with arbitrary correlation functions. We get the quantum yields of electron escape via the sites 2,3 in two limiting cases that correspond to a spectral density of underdamped and overdamped Brownian oscillator. In the fast modulation limit of an overdamped regime we get the effect, which was named “fear of death,” in which for strong enough sink parameters the electron has a tendency to avoid the place with greater sink. The presented model was used to provide a plausible explanation of the temperature dependence of the quantum yields of the Rhodobacter sphaeroides photosynthetic reaction center in the high-temperature regime.
Cohabitation reaction-diffusion model for virus focal infections
NASA Astrophysics Data System (ADS)
Amor, Daniel R.; Fort, Joaquim
2014-12-01
The propagation of virus infection fronts has been typically modeled using a set of classical (noncohabitation) reaction-diffusion equations for interacting species. However, for some single-species systems it has been recently shown that noncohabitation reaction-diffusion equations may lead to unrealistic descriptions. We argue that previous virus infection models also have this limitation, because they assume that a virion can simultaneously reproduce inside a cell and diffuse away from it. For this reason, we build a several-species cohabitation model that does not have this limitation. Furthermore, we perform a sensitivity analysis for the most relevant parameters of the model, and we compare the predicted infection speed with observed data for two different strains of the T7 virus.
Addressing Hate Speech and Hate Behaviors in Codes of Conduct: A Model for Public Institutions.
ERIC Educational Resources Information Center
Neiger, Jan Alan; Palmer, Carolyn; Penney, Sophie; Gehring, Donald D.
1998-01-01
As part of a larger study, researchers collected campus codes prohibiting hate crimes, which were then reviewed to determine whether the codes presented constitutional problems. Based on this review, the authors develop and present a model policy that is content neutral and does not use language that could be viewed as unconstitutionally vague or…
Stochastic model of homogeneous coding and latent periodicity in DNA sequences.
Chaley, Maria; Kutyrkin, Vladimir
2016-02-01
The concept of latent triplet periodicity in coding DNA sequences which has been earlier extensively discussed is confirmed in the result of analysis of a number of eukaryotic genomes, where latent periodicity of a new type, called profile periodicity, is recognized in the CDSs. Original model of Stochastic Homogeneous Organization of Coding (SHOC-model) in textual string is proposed. This model explains the existence of latent profile periodicity and regularity in DNA sequences. PMID:26656186
Joshua J. Cogliati; Abderrafi M. Ougouag
2006-10-01
A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.
NASA Astrophysics Data System (ADS)
Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.
2007-12-01
This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.
Kinetic modelling of GlmU reactions - prioritization of reaction for therapeutic application.
Singh, Vivek K; Das, Kaveri; Seshadri, Kothandaraman
2012-01-01
Mycobacterium tuberculosis(Mtu), a successful pathogen, has developed resistance against the existing anti-tubercular drugs necessitating discovery of drugs with novel action. Enzymes involved in peptidoglycan biosynthesis are attractive targets for antibacterial drug discovery. The bifunctional enzyme mycobacterial GlmU (Glucosamine 1-phosphate N-acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase) has been a target enzyme for drug discovery. Its C- and N- terminal domains catalyze acetyltransferase (rxn-1) and uridyltransferase (rxn-2) activities respectively and the final product is involved in peptidoglycan synthesis. However, the bifunctional nature of GlmU poses difficulty in deciding which function to be intervened for therapeutic advantage. Genetic analysis showed this as an essential gene but it is still unclear whether any one or both of the activities are critical for cell survival. Often enzymatic activity with suitable high-throughput assay is chosen for random screening, which may not be the appropriate biological function inhibited for maximal effect. Prediction of rate-limiting function by dynamic network analysis of reactions could be an option to identify the appropriate function. With a view to provide insights into biochemical assays with appropriate activity for inhibitor screening, kinetic modelling studies on GlmU were undertaken. Kinetic model of Mtu GlmU-catalyzed reactions was built based on the available kinetic data on Mtu and deduction from Escherichia coli data. Several model variants were constructed including coupled/decoupled, varying metabolite concentrations and presence/absence of product inhibitions. This study demonstrates that in coupled model at low metabolite concentrations, inhibition of either of the GlmU reactions cause significant decrement in the overall GlmU rate. However at higher metabolite concentrations, rxn-2 showed higher decrement. Moreover, with available intracellular concentration of the
Modeling heavy ion ionization loss in the MARS15 code
Rakhno, I.L.; Mokhov, N.V.; Striganov, S.I.; /Fermilab
2005-05-01
The needs of various accelerator and space projects stimulated recent developments to the MARS Monte Carlo code. One of the essential parts of those is heavy ion ionization energy loss. This paper describes an implementation of several corrections to dE/dx in order to take into account the deviations from the Bethe theory at low and high energies as well as the effect of a finite nuclear size at ultrarelativistic energies. Special attention is paid to the transition energy region where the onset of the effect of a finite nuclear size is observed. Comparisons with experimental data and NIST data are presented.
A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom
2008-11-01
Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.
Reaction-diffusion processes and metapopulation models in heterogeneous networks
NASA Astrophysics Data System (ADS)
Colizza, Vittoria; Pastor-Satorras, Romualdo; Vespignani, Alessandro
2007-04-01
Dynamical reaction-diffusion processes and metapopulation models are standard modelling approaches for a wide array of phenomena in which local quantities-such as density, potentials and particles-diffuse and interact according to the physical laws. Here, we study the behaviour of the basic reaction-diffusion process (given by the reaction steps B-->A and B+A-->2B) defined on networks with heterogeneous topology and no limit on the nodes' occupation number. We investigate the effect of network topology on the basic properties of the system's phase diagram and find that the network heterogeneity sustains the reaction activity even in the limit of a vanishing density of particles, eventually suppressing the critical point in density-driven phase transitions, whereas phase transition and critical points independent of the particle density are not altered by topological fluctuations. This work lays out a theoretical and computational microscopic framework for the study of a wide range of realistic metapopulation and agent-based models that include the complex features of real-world networks.
Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme
NASA Astrophysics Data System (ADS)
Peng, Rui; Yi, Feng-qi; Zhao, Xiao-qiang
Spatial and temporal patterns generated in ecological and chemical systems have become a central object of research in recent decades. In this work, we are concerned with a reaction-diffusion model with the Degn-Harrison reaction scheme, which accounts for the qualitative feature of the respiratory process in a Klebsiella aerogenes bacterial culture. We study the global stability of the constant steady state, existence and nonexistence of nonconstant steady states as well as the Hopf and steady state bifurcations. In particular, our results show the existence of Turing patterns and inhomogeneous periodic oscillatory patterns while the system parameters are all spatially homogeneous. These results also exhibit the critical role of the system parameters in leading to the formation of spatiotemporal patterns.
A model for non-monotonic intensity coding
Nehrkorn, Johannes; Tanimoto, Hiromu; Herz, Andreas V. M.; Yarali, Ayse
2015-01-01
Peripheral neurons of most sensory systems increase their response with increasing stimulus intensity. Behavioural responses, however, can be specific to some intermediate intensity level whose particular value might be innate or associatively learned. Learning such a preference requires an adjustable trans- formation from a monotonic stimulus representation at the sensory periphery to a non-monotonic representation for the motor command. How do neural systems accomplish this task? We tackle this general question focusing on odour-intensity learning in the fruit fly, whose first- and second-order olfactory neurons show monotonic stimulus–response curves. Nevertheless, flies form associative memories specific to particular trained odour intensities. Thus, downstream of the first two olfactory processing layers, odour intensity must be re-coded to enable intensity-specific associative learning. We present a minimal, feed-forward, three-layer circuit, which implements the required transformation by combining excitation, inhibition, and, as a decisive third element, homeostatic plasticity. Key features of this circuit motif are consistent with the known architecture and physiology of the fly olfactory system, whereas alternative mechanisms are either not composed of simple, scalable building blocks or not compatible with physiological observations. The simplicity of the circuit and the robustness of its function under parameter changes make this computational motif an attractive candidate for tuneable non-monotonic intensity coding. PMID:26064666
Higher-order ionosphere modeling for CODE's next reprocessing activities
NASA Astrophysics Data System (ADS)
Lutz, S.; Schaer, S.; Meindl, M.; Dach, R.; Steigenberger, P.
2009-12-01
CODE (the Center for Orbit Determination in Europe) is a joint venture between the Astronomical Institute of the University of Bern (AIUB, Bern, Switzerland), the Federal Office of Topography (swisstopo, Wabern, Switzerland), the Federal Agency for Cartography and Geodesy (BKG, Frankfurt am Main, Germany), and the Institut für Astronomische und Phsyikalische Geodäsie of the Technische Universität München (IAPG/TUM, Munich, Germany). It acts as one of the global analysis centers of the International GNSS Service (IGS) and participates in the first IGS reprocessing campaign, a full reanalysis of GPS data collected since 1994. For a future reanalyis of the IGS data it is planned to consider not only first-order but also higher-order ionosphere terms in the space geodetic observations. There are several works (e.g. Fritsche et al. 2005), which showed a significant and systematic influence of these effects on the analysis results. The development version of the Bernese Software used at CODE is expanded by the ability to assign additional (scaling) parameters to each considered higher-order ionosphere term. By this, each correction term can be switched on and off on normal-equation level and, moreover, the significance of each correction term may be verified on observation level for different ionosphere conditions.
Simple model for lambda-doublet propensities in bimolecular reactions
NASA Technical Reports Server (NTRS)
Bronikowski, Michael J.; Zare, Richard N.
1990-01-01
A simple geometric model is presented to account for lambda-doublet propensities in bimolecular reactions A + BC - AB + C. It applies to reactions in which AB is formed in a pi state, and in which the unpaired molecular orbital responsible for lambda-doubling arises from breaking the B-C bond. The lambda-doublet population ratio is predicted to be 2:1 provided that: (1) the motion of A in the transition state determines the plane of rotation of AB; (2) the unpaired pi orbital lying initially along the B-C bond may be resolved into a projection onto the AB plane of rotation and a projection perpendicular to this plane; (3) there is no preferred geometry for dissociation of ABC. The 2:1 lambda-doublet ratio is the 'unconstrained dynamics prior' lambda-doublet distribution for such reactions.
Fluid dynamic modeling of nano-thermite reactions
Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; Horie, Yasuyuki
2014-03-14
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of “slower” reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.
Jayaraman, K; Fingar, S A; Shah, J; Fyles, J
1991-01-01
The synthesis of a gene coding for horseradish peroxidase (HRP, isozyme c; EC 1.11.1.7) is described using a polymerase chain reaction (PCR)-mediated gene synthesis approach developed in our laboratory. In this approach, all the oligonucleotides making up the gene are ligated in a single step by using the two outer oligonucleotides as PCR primers and the crude ligation mixture as the target. The PCR facilitates synthesis and purification of the gene simultaneously. The gene for HRP was synthesized by ligating all 40 oligonucleotides in a single step followed by PCR amplification. The gene was also synthesized from its fragments by using an overlap extension method similar to the procedure as described [Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. (1989) Gene 77, 61-68]. A method for combining different DNA fragments, in-frame, by using the PCR was also developed and used to synthesize the HRP gene from its gene fragments. This method is applicable to the synthesis of even larger genes and to combine any DNA fragments in-frame. After the synthesis, preliminary characterization of the HRP gene was also carried out by the PCR to confirm the arrangement of oligonucleotides in the gene. This was done by carrying out the PCR with several sets of primers along the gene and comparing the product sizes with the expected sizes. The gene and the fragments generated by PCR were cloned in Escherichia coli and the sequence was confirmed by manual and automated DNA sequencing. Images PMID:1851991
Classic and contemporary approaches to modeling biochemical reactions
Chen, William W.; Niepel, Mario; Sorger, Peter K.
2010-01-01
Recent interest in modeling biochemical networks raises questions about the relationship between often complex mathematical models and familiar arithmetic concepts from classical enzymology, and also about connections between modeling and experimental data. This review addresses both topics by familiarizing readers with key concepts (and terminology) in the construction, validation, and application of deterministic biochemical models, with particular emphasis on a simple enzyme-catalyzed reaction. Networks of coupled ordinary differential equations (ODEs) are the natural language for describing enzyme kinetics in a mass action approximation. We illustrate this point by showing how the familiar Briggs-Haldane formulation of Michaelis-Menten kinetics derives from the outer (or quasi-steady-state) solution of a dynamical system of ODEs describing a simple reaction under special conditions. We discuss how parameters in the Michaelis-Menten approximation and in the underlying ODE network can be estimated from experimental data, with a special emphasis on the origins of uncertainty. Finally, we extrapolate from a simple reaction to complex models of multiprotein biochemical networks. The concepts described in this review, hitherto of interest primarily to practitioners, are likely to become important for a much broader community of cellular and molecular biologists attempting to understand the promise and challenges of “systems biology” as applied to biochemical mechanisms. PMID:20810646
Modelling biochemical reaction systems by stochastic differential equations with reflection.
Niu, Yuanling; Burrage, Kevin; Chen, Luonan
2016-05-01
In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach.
Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Garg Vijay; Ameri, Ali
2005-01-01
The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.
Predictability and reduced order modeling in stochastic reaction networks.
Najm, Habib N.; Debusschere, Bert J.; Sargsyan, Khachik
2008-10-01
Many systems involving chemical reactions between small numbers of molecules exhibit inherent stochastic variability. Such stochastic reaction networks are at the heart of processes such as gene transcription, cell signaling or surface catalytic reactions, which are critical to bioenergy, biomedical, and electrical storage applications. The underlying molecular reactions are commonly modeled with chemical master equations (CMEs), representing jump Markov processes, or stochastic differential equations (SDEs), rather than ordinary differential equations (ODEs). As such reaction networks are often inferred from noisy experimental data, it is not uncommon to encounter large parametric uncertainties in these systems. Further, a wide range of time scales introduces the need for reduced order representations. Despite the availability of mature tools for uncertainty/sensitivity analysis and reduced order modeling in deterministic systems, there is a lack of robust algorithms for such analyses in stochastic systems. In this talk, we present advances in algorithms for predictability and reduced order representations for stochastic reaction networks and apply them to bistable systems of biochemical interest. To study the predictability of a stochastic reaction network in the presence of both parametric uncertainty and intrinsic variability, an algorithm was developed to represent the system state with a spectral polynomial chaos (PC) expansion in the stochastic space representing parametric uncertainty and intrinsic variability. Rather than relying on a non-intrusive collocation-based Galerkin projection [1], this PC expansion is obtained using Bayesian inference, which is ideally suited to handle noisy systems through its probabilistic formulation. To accommodate state variables with multimodal distributions, an adaptive multiresolution representation is used [2]. As the PC expansion directly relates the state variables to the uncertain parameters, the formulation lends
A model for reaction-assisted polymer dissolution in LIGA.
Larson, Richard S.
2004-05-01
A new chemically-oriented mathematical model for the development step of the LIGA process is presented. The key assumption is that the developer can react with the polymeric resist material in order to increase the solubility of the latter, thereby partially overcoming the need to reduce the polymer size. The ease with which this reaction takes place is assumed to be determined by the number of side chain scissions that occur during the x-ray exposure phase of the process. The dynamics of the dissolution process are simulated by solving the reaction-diffusion equations for this three-component, two-phase system, the three species being the unreacted and reacted polymers and the solvent. The mass fluxes are described by the multicomponent diffusion (Stefan-Maxwell) equations, and the chemical potentials are assumed to be given by the Flory-Huggins theory. Sample calculations are used to determine the dependence of the dissolution rate on key system parameters such as the reaction rate constant, polymer size, solid-phase diffusivity, and Flory-Huggins interaction parameters. A simple photochemistry model is used to relate the reaction rate constant and the polymer size to the absorbed x-ray dose. The resulting formula for the dissolution rate as a function of dose and temperature is ?t to an extensive experimental data base in order to evaluate a set of unknown global parameters. The results suggest that reaction-assisted dissolution is very important at low doses and low temperatures, the solubility of the unreacted polymer being too small for it to be dissolved at an appreciable rate. However, at high doses or at higher temperatures, the solubility is such that the reaction is no longer needed, and dissolution can take place via the conventional route. These results provide an explanation for the observed dependences of both the dissolution rate and its activation energy on the absorbed dose.
A model study of sequential enzyme reactions and electrostatic channeling
NASA Astrophysics Data System (ADS)
Eun, Changsun; Kekenes-Huskey, Peter M.; Metzger, Vincent T.; McCammon, J. Andrew
2014-03-01
We study models of two sequential enzyme-catalyzed reactions as a basic functional building block for coupled biochemical networks. We investigate the influence of enzyme distributions and long-range molecular interactions on reaction kinetics, which have been exploited in biological systems to maximize metabolic efficiency and signaling effects. Specifically, we examine how the maximal rate of product generation in a series of sequential reactions is dependent on the enzyme distribution and the electrostatic composition of its participant enzymes and substrates. We find that close proximity between enzymes does not guarantee optimal reaction rates, as the benefit of decreasing enzyme separation is countered by the volume excluded by adjacent enzymes. We further quantify the extent to which the electrostatic potential increases the efficiency of transferring substrate between enzymes, which supports the existence of electrostatic channeling in nature. Here, a major finding is that the role of attractive electrostatic interactions in confining intermediate substrates in the vicinity of the enzymes can contribute more to net reactive throughput than the directional properties of the electrostatic fields. These findings shed light on the interplay of long-range interactions and enzyme distributions in coupled enzyme-catalyzed reactions, and their influence on signaling in biological systems.
Reaction-diffusion processes and metapopulation models on duplex networks
NASA Astrophysics Data System (ADS)
Xuan, Qi; Du, Fang; Yu, Li; Chen, Guanrong
2013-03-01
Reaction-diffusion processes, used to model various spatially distributed dynamics such as epidemics, have been studied mostly on regular lattices or complex networks with simplex links that are identical and invariant in transferring different kinds of particles. However, in many self-organized systems, different particles may have their own private channels to keep their purities. Such division of links often significantly influences the underlying reaction-diffusion dynamics and thus needs to be carefully investigated. This article studies a special reaction-diffusion process, named susceptible-infected-susceptible (SIS) dynamics, given by the reaction steps β→α and α+β→2β, on duplex networks where links are classified into two groups: α and β links used to transfer α and β particles, which, along with the corresponding nodes, consist of an α subnetwork and a β subnetwork, respectively. It is found that the critical point of particle density to sustain reaction activity is independent of the network topology if there is no correlation between the degree sequences of the two subnetworks, and this critical value is suppressed or extended if the two degree sequences are positively or negatively correlated, respectively. Based on the obtained results, it is predicted that epidemic spreading may be promoted on positive correlated traffic networks but may be suppressed on networks with modules composed of different types of diffusion links.
Light radioactive nuclei capture reactions with phenomenological potential models
Guimaraes, V.; Bertulani, C. A.
2010-05-21
Light radioactive nuclei play an important role in many astrophysical environments. Due to very low cross sections of some neutron and proton capture reactions by these radioactive nuclei at energies of astrophysical interest, direct laboratory measurements are very difficult. For radioactive nuclei such as {sup 8}Li and {sup 8}B, the direct measurement of neutron capture reactions is impossible. Indirect methods have been applied to overcome these difficulties. In this work we will report on the results and discussion of phenomenological potential models used to determine some proton and neutron capture reactions. As a test we show the results for the {sup 16}O(p,gamma){sup 17}F{sub gs}(5/2{sup +}) and {sup 16}O(p,gamma){sup 17}F{sub ex}(1/2{sup +}) capture reactions. We also computed the nucleosynthesis cross sections for the {sup 7}Li(n,gamma){sup 8}Li{sub gs}, {sup 8}Li(n,gamma){sup 9}Li{sub gs} and {sup 8}B(p,gamma){sup 9}C{sub gs} capture reactions.
An Advanced simulation Code for Modeling Inductive Output Tubes
Thuc Bui; R. Lawrence Ives
2012-04-27
During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing current density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.
Modeling of Ionization Physics with the PIC Code OSIRIS
Deng, S.; Tsung, F.; Lee, S.; Lu, W.; Mori, W.B.; Katsouleas, T.; Muggli, P.; Blue, B.E.; Clayton, C.E.; O'Connell, C.; Dodd, E.; Decker, F.J.; Huang, C.; Hogan, M.J.; Hemker, R.; Iverson, R.H.; Joshi, C.; Ren, C.; Raimondi, P.; Wang, S.; Walz, D.; /Southern California U. /UCLA /SLAC
2005-09-27
When considering intense particle or laser beams propagating in dense plasma or gas, ionization plays an important role. Impact ionization and tunnel ionization may create new plasma electrons, altering the physics of wakefield accelerators, causing blue shifts in laser spectra, creating and modifying instabilities, etc. Here we describe the addition of an impact ionization package into the 3-D, object-oriented, fully parallel PIC code OSIRIS. We apply the simulation tool to simulate the parameters of the upcoming E164 Plasma Wakefield Accelerator experiment at the Stanford Linear Accelerator Center (SLAC). We find that impact ionization is dominated by the plasma electrons moving in the wake rather than the 30 GeV drive beam electrons. Impact ionization leads to a significant number of trapped electrons accelerated from rest in the wake.
Thrust Chamber Modeling Using Navier-Stokes Equations: Code Documentation and Listings. Volume 2
NASA Technical Reports Server (NTRS)
Daley, P. L.; Owens, S. F.
1988-01-01
A copy of the PHOENICS input files and FORTRAN code developed for the modeling of thrust chambers is given. These copies are contained in the Appendices. The listings are contained in Appendices A through E. Appendix A describes the input statements relevant to thrust chamber modeling as well as the FORTRAN code developed for the Satellite program. Appendix B describes the FORTRAN code developed for the Ground program. Appendices C through E contain copies of the Q1 (input) file, the Satellite program, and the Ground program respectively.
CURRENT - A Computer Code for Modeling Two-Dimensional, Chemically Reaccting, Low Mach Number Flows
Winters, W.S.; Evans, G.H.; Moen, C.D.
1996-10-01
This report documents CURRENT, a computer code for modeling two- dimensional, chemically reacting, low Mach number flows including the effects of surface chemistry. CURRENT is a finite volume code based on the SIMPLER algorithm. Additional convergence acceleration for low Peclet number flows is provided using improved boundary condition coupling and preconditioned gradient methods. Gas-phase and surface chemistry is modeled using the CHEMKIN software libraries. The CURRENT user-interface has been designed to be compatible with the Sandia-developed mesh generator and post processor ANTIPASTO and the post processor TECPLOT. This report describes the theory behind the code and also serves as a user`s manual.
FREYA-a new Monte Carlo code for improved modeling of fission chains
Hagmann, C A; Randrup, J; Vogt, R L
2012-06-12
A new simulation capability for modeling of individual fission events and chains and the transport of fission products in materials is presented. FREYA ( Fission Yield Event Yield Algorithm ) is a Monte Carlo code for generating fission events providing correlated kinematic information for prompt neutrons, gammas, and fragments. As a standalone code, FREYA calculates quantities such as multiplicity-energy, angular, and gamma-neutron energy sharing correlations. To study materials with multiplication, shielding effects, and detectors, we have integrated FREYA into the general purpose Monte Carlo code MCNP. This new tool will allow more accurate modeling of detector responses including correlations and the development of SNM detectors with increased sensitivity.
An object-oriented framework for magnetic-fusion modeling and analysis codes
Cohen, R H; Yang, T Y Brian
1999-03-04
The magnetic-fusion energy (MFE) program, like many other scientific and engineering activities, has a need to efficiently develop complex modeling codes which combine detailed models of components to make an integrated model of a device, as well as a rich supply of legacy code that could provide the component models. There is also growing recognition in many technical fields of the desirability of steerable software: computer programs whose functionality can be changed by the user as it is run. This project had as its goals the development of two key pieces of infrastructure that are needed to combine existing code modules, written mainly in Fortran, into flexible, steerable, object-oriented integrated modeling codes for magnetic- fusion applications. These two pieces are (1) a set of tools to facilitate the interfacing of Fortran code with a steerable object-oriented framework (which we have chosen to be based on PythonlW3, an object-oriented interpreted language), and (2) a skeleton for the integrated modeling code which defines the relationships between the modules. The first of these activities obviously has immediate applicability to a spectrum of projects; the second is more focussed on the MFE application, but may be of value as an example for other applications.
RELAP5/MOD3 code manual. Volume 4, Models and correlations
1995-08-01
The RELAP5 code has been developed for best-estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I presents modeling theory and associated numerical schemes; Volume II details instructions for code application and input data preparation; Volume III presents the results of developmental assessment cases that demonstrate and verify the models used in the code; Volume IV discusses in detail RELAP5 models and correlations; Volume V presents guidelines that have evolved over the past several years through the use of the RELAP5 code; Volume VI discusses the numerical scheme used in RELAP5; and Volume VII presents a collection of independent assessment calculations.
Mathematical modeling of precipitation and dissolution reactions in microbiological systems.
Rittmann, Bruce E; Banaszak, James E; VanBriesen, Jeanne M; Reed, Donald T
2002-01-01
We expand the biogeochemical model CCBATCH to include a precipitation/dissolution sub-model that contains kinetic and equilibrium options. This advancement extends CCBATCH's usefulness to situations in which microbial reactions cause or are affected by formation or dissolution of a solid phase. The kinetic option employs a rate expression that explicitly includes the intrinsic kinetics for reaction or mass-transport control, the difference from thermodynamic equilibrium, and the aqueous concentration of the rate-limiting metal or ligand. The equilibrium feature can be used alone, and it also serves as check that the kinetic rate never is too fast and "overshoots" equilibrium. The features of the expanded CCBATCH are illustrated by an example in which the precipitation of Fe(OH)3(s) allows the biodegradation of citric acid, even though complexes are strong and not bioavailable. Precipitation releases citrate ligand, and biodegradation of the citrate increases the pH.
A model reduction method for biochemical reaction networks
2014-01-01
Background In this paper we propose a model reduction method for biochemical reaction networks governed by a variety of reversible and irreversible enzyme kinetic rate laws, including reversible Michaelis-Menten and Hill kinetics. The method proceeds by a stepwise reduction in the number of complexes, defined as the left and right-hand sides of the reactions in the network. It is based on the Kron reduction of the weighted Laplacian matrix, which describes the graph structure of the complexes and reactions in the network. It does not rely on prior knowledge of the dynamic behaviour of the network and hence can be automated, as we demonstrate. The reduced network has fewer complexes, reactions, variables and parameters as compared to the original network, and yet the behaviour of a preselected set of significant metabolites in the reduced network resembles that of the original network. Moreover the reduced network largely retains the structure and kinetics of the original model. Results We apply our method to a yeast glycolysis model and a rat liver fatty acid beta-oxidation model. When the number of state variables in the yeast model is reduced from 12 to 7, the difference between metabolite concentrations in the reduced and the full model, averaged over time and species, is only 8%. Likewise, when the number of state variables in the rat-liver beta-oxidation model is reduced from 42 to 29, the difference between the reduced model and the full model is 7.5%. Conclusions The method has improved our understanding of the dynamics of the two networks. We found that, contrary to the general disposition, the first few metabolites which were deleted from the network during our stepwise reduction approach, are not those with the shortest convergence times. It shows that our reduction approach performs differently from other approaches that are based on time-scale separation. The method can be used to facilitate fitting of the parameters or to embed a detailed model of
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
NASA Astrophysics Data System (ADS)
Hamlin, Nathaniel D.; Seyler, Charles E.
2014-12-01
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm's law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors.
LWR codes capability to address SFR BDBA scenarios: Modeling of the ABCOVE tests
Herranz, L. E.; Garcia, M.; Morandi, S.
2012-07-01
The sound background built-up in LWR source term analysis in case of a severe accident, make it worth to check the capability of LWR safety analysis codes to model accident SFR scenarios, at least in some areas. This paper gives a snapshot of such predictability in the area of aerosol behavior in containment. To do so, the AB-5 test of the ABCOVE program has been modeled with 3 LWR codes: ASTEC, ECART and MELCOR. Through the search of a best estimate scenario and its comparison to data, it is concluded that even in the specific case of in-containment aerosol behavior, some enhancements would be needed in the LWR codes and/or their application, particularly with respect to consideration of particle shape. Nonetheless, much of the modeling presently embodied in LWR codes might be applicable to SFR scenarios. These conclusions should be seen as preliminary as long as comparisons are not extended to more experimental scenarios. (authors)
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Hamlin, Nathaniel D.; Seyler, Charles E.
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Welter, David E.; Doherty, John E.; Hunt, Randall J.; Muffels, Christopher T.; Tonkin, Matthew J.; Schreuder, Willem A.
2012-01-01
An object-oriented parameter estimation code was developed to incorporate benefits of object-oriented programming techniques for solving large parameter estimation modeling problems. The code is written in C++ and is a formulation and expansion of the algorithms included in PEST, a widely used parameter estimation code written in Fortran. The new code is called PEST++ and is designed to lower the barriers of entry for users and developers while providing efficient algorithms that can accommodate large, highly parameterized problems. This effort has focused on (1) implementing the most popular features of PEST in a fashion that is easy for novice or experienced modelers to use and (2) creating a software design that is easy to extend; that is, this effort provides a documented object-oriented framework designed from the ground up to be modular and extensible. In addition, all PEST++ source code and its associated libraries, as well as the general run manager source code, have been integrated in the Microsoft Visual Studio® 2010 integrated development environment. The PEST++ code is designed to provide a foundation for an open-source development environment capable of producing robust and efficient parameter estimation tools for the environmental modeling community into the future.
Diffusion-controlled reactions modeling in Geant4-DNA
Karamitros, M.; Luan, S.; Bernal, M.A.; Allison, J.; Baldacchino, G.; Davidkova, M.; Francis, Z.; Friedland, W.; Ivantchenko, V.; Ivantchenko, A.; Mantero, A.; Nieminem, P.; Santin, G.; Tran, H.N.; Stepan, V.; Incerti, S.
2014-10-01
Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k–d tree data structure for quickly locating, for a given molecule, its closest reactants. The
Diffusion-controlled reactions modeling in Geant4-DNA
NASA Astrophysics Data System (ADS)
Karamitros, M.; Luan, S.; Bernal, M. A.; Allison, J.; Baldacchino, G.; Davidkova, M.; Francis, Z.; Friedland, W.; Ivantchenko, V.; Ivantchenko, A.; Mantero, A.; Nieminem, P.; Santin, G.; Tran, H. N.; Stepan, V.; Incerti, S.
2014-10-01
Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k-d tree data structure for quickly locating, for a given molecule, its closest reactants. The
Reaction-diffusion models of within-feather pigmentation patterning.
Prum, Richard O; Williamson, Scott
2002-04-22
Feathers are complex, branched keratin structures that exhibit a diversity of pigmentation patterns. Feather pigments are transferred into developing feather keratinocytes from pigment cells that migrate into the tubular feather germ from the dermis. Within-feather pigment patterns are determined by differential pigmentation of keratinocytes within independent barb ridges during feather development. Little is known about the molecular mechanisms that determine which keratinocytes receive pigment. We apply reaction-diffusion models to the growth of within-feather pigment patterns based on a realistic model of feather growth. These models accurately simulate the growth of a diversity of the within-feather pigmentation patterns found in real feathers, including a central patch, a 'hollow' central patch, concentric central patches, bars, chevrons, a central circular spot, rows of paired spots, and arrays of offset dots. The models can also simulate the complex transitions between distinct pigmentation patterns among feathers observed in real avian plumages, including transitions from bars to chevrons, bars to paired dots, and bars to arrays of dots. The congruence between the developmental dynamics of the simulated and observed feather patterns indicates that the reaction-diffusion models provide a realistic and accurate description of the determination of pigment pattern within avian feather follicles. The models support the hypothesis that within-feather pigmentation patterning is determined by antagonistic interactions among molecular expression gradients within the tubular follicle and feather germ.
Parallel Spectral Transform Shallow Water Model: A runtime-tunable parallel benchmark code
Worley, P.H.; Foster, I.T.
1994-05-01
Fairness is an important issue when benchmarking parallel computers using application codes. The best parallel algorithm on one platform may not be the best on another. While it is not feasible to reevaluate parallel algorithms and reimplement large codes whenever new machines become available, it is possible to embed algorithmic options into codes that allow them to be ``tuned`` for a paticular machine without requiring code modifications. In this paper, we describe a code in which such an approach was taken. PSTSWM was developed for evaluating parallel algorithms for the spectral transform method in atmospheric circulation models. Many levels of runtime-selectable algorithmic options are supported. We discuss these options and our evaluation methodology. We also provide empirical results from a number of parallel machines, indicating the importance of tuning for each platform before making a comparison.
A computer code for calculations in the algebraic collective model of the atomic nucleus
NASA Astrophysics Data System (ADS)
Welsh, T. A.; Rowe, D. J.
2016-03-01
A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.
A computer code for calculations in the algebraic collective model of the atomic nucleus
NASA Astrophysics Data System (ADS)
Welsh, T. A.; Rowe, D. J.
2016-03-01
A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.
Turing instability in reaction-diffusion models on complex networks
NASA Astrophysics Data System (ADS)
Ide, Yusuke; Izuhara, Hirofumi; Machida, Takuya
2016-09-01
In this paper, the Turing instability in reaction-diffusion models defined on complex networks is studied. Here, we focus on three types of models which generate complex networks, i.e. the Erdős-Rényi, the Watts-Strogatz, and the threshold network models. From analysis of the Laplacian matrices of graphs generated by these models, we numerically reveal that stable and unstable regions of a homogeneous steady state on the parameter space of two diffusion coefficients completely differ, depending on the network architecture. In addition, we theoretically discuss the stable and unstable regions in the cases of regular enhanced ring lattices which include regular circles, and networks generated by the threshold network model when the number of vertices is large enough.
Heterogeneous reactions in a stratospheric box model: A sensitivity study
NASA Astrophysics Data System (ADS)
Danilin, Michael Y.; McConnell, John C.
1994-12-01
Recent laboratory data concerning the reactions of HCl and HOx on/in sulfuric acid aerosol (Hanson et al., 1994), N2O5 and ClONO2 hydrolysis on the frozen aerosol (Hanson and Ravishankara, 1993a) and the temperature dependence of the HNO3 absorption cross section (Burkholder et al., 1993) indicate that a reevaluation of the role of heterogeneous reactions in the chemical balance of the stratosphere is required. A chemical module prepared for a three-dimensional (3-D) global chemistry transport model (CTM) and a general circulation model (GCM) has been used to carry out a sensitivity study of the effects of heterogeneous reactions on/in the sulfate aerosol and on the polar stratospheric cloud (PSC) particles. We present here results for the latitudes 60°S, 70°S and 75°S at the 50-mbar level. Our findings indicate that (1) the new values of the HNO3 cross sections result in lower mixing ratios for NOx and make ozone more vulnerable to catalytic destruction by ClOx; (2) the effect of the heterogeneous reactions OH + HNO3(a) → H2O + NO3 and HO2 +HO2(a) → H2O2 + O2 are small in comparison with the same gas phase reactions and play a negligible role for the ozone balance; (3) the HCl reactions in the sulfuric acid aerosol at 60°S and 70°S increase the chlorine activation up to 0.53 parts per billion by volume (ppbv) and 0.72 ppbv, respectively, for liquid aerosol and up to 0.87 ppbv for frozen aerosol at 70°S for volcanic conditions and this results in considerable ozone depletion at these latitudes; (4) studying the ozone "hole" phenomenon, we have considered the different initial ratios of ClONO2/HCl, of N2O5, galactic cosmic rays (GCRs), and longer lifetimes for the PSC. We have speculated an existence of the reaction N2O5 + HCl(a) → ClNO2 + HNO3.
1980-06-01
These recommended requirements include provisions for electrical, building, mechanical, and plumbing installations for active and passive solar energy systems used for space or process heating and cooling, and domestic water heating. The provisions in these recommended requirements are intended to be used in conjunction with the existing building codes in each jurisdiction. Where a solar relevant provision is adequately covered in an existing model code, the section is referenced in the Appendix. Where a provision has been drafted because there is no counterpart in the existing model code, it is found in the body of these recommended requirements. Commentaries are included in the text explaining the coverage and intent of present model code requirements and suggesting alternatives that may, at the discretion of the building official, be considered as providing reasonable protection to the public health and safety. Also included is an Appendix which is divided into a model code cross reference section and a reference standards section. The model code cross references are a compilation of the sections in the text and their equivalent requirements in the applicable model codes. (MHR)
Code modernization and modularization of APEX and SWAT watershed simulation models
Technology Transfer Automated Retrieval System (TEKTRAN)
SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy / Environmental eXtender) are respectively large and small watershed simulation models derived from EPIC Environmental Policy Integrated Climate), a field-scale agroecology simulation model. All three models are coded in FORTRAN an...
UCODE, a computer code for universal inverse modeling
Poeter, E.P.; Hill, M.C.
1999-01-01
This article presents the US Geological Survey computer program UCODE, which was developed in collaboration with the US Army Corps of Engineers Waterways Experiment Station and the International Ground Water Modeling Center of the Colorado School of Mines. UCODE performs inverse modeling, posed as a parameter-estimation problem, using nonlinear regression. Any application model or set of models can be used; the only requirement is that they have numerical (ASCII or text only) input and output files and that the numbers in these files have sufficient significant digits. Application models can include preprocessors and postprocessors as well as models related to the processes of interest (physical, chemical and so on), making UCODE extremely powerful for model calibration. Estimated parameters can be defined flexibly with user-specified functions. Observations to be matched in the regression can be any quantity for which a simulated equivalent value can be produced, thus simulated equivalent values are calculated using values that appear in the application model output files and can be manipulated with additive and multiplicative functions, if necessary. Prior, or direct, information on estimated parameters also can be included in the regression. The nonlinear regression problem is solved by minimizing a weighted least-squares objective function with respect to the parameter values using a modified Gauss-Newton method. Sensitivities needed for the method are calculated approximately by forward or central differences and problems and solutions related to this approximation are discussed. Statistics are calculated and printed for use in (1) diagnosing inadequate data or identifying parameters that probably cannot be estimated with the available data, (2) evaluating estimated parameter values, (3) evaluating the model representation of the actual processes and (4) quantifying the uncertainty of model simulated values. UCODE is intended for use on any computer operating
Universal Model for Exoergic Bimolecular Reactions and Inelastic Processes
NASA Astrophysics Data System (ADS)
Gao, Bo
2010-12-01
From a rigorous multichannel quantum-defect formulation of bimolecular processes, we derive a fully quantal and analytic model for the total rate of exoergic bimolecular reactions or inelastic processes that is applicable over a wide range of temperatures including the ultracold regime. The theory establishes a connection between the ultracold chemistry and the regular chemistry by showing that the same theory that gives the quantum threshold behavior agrees with the classical Gorin model at higher temperatures. In between, it predicts that the rates for identical bosonic molecules and distinguishable molecules would first decrease with temperature outside of the Wigner threshold region, before rising after a minimum is reached.
Wampler, William R. Myers, Samuel M.
2015-01-28
A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers, and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.
NASA Astrophysics Data System (ADS)
Wampler, William R.; Myers, Samuel M.
2015-01-01
A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers, and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.
Mathematical Identification of Critical Reactions in the Interlocked Feedback Model
Kurata, Hiroyuki; Tanaka, Takayuki; Ohnishi, Fumitaka
2007-01-01
Dynamic simulations are necessary for understanding the mechanism of how biochemical networks generate robust properties to environmental stresses or genetic changes. Sensitivity analysis allows the linking of robustness to network structure. However, it yields only local properties regarding a particular choice of plausible parameter values, because it is hard to know the exact parameter values in vivo. Global and firm results are needed that do not depend on particular parameter values. We propose mathematical analysis for robustness (MAR) that consists of the novel evolutionary search that explores all possible solution vectors of kinetic parameters satisfying the target dynamics and robustness analysis. New criteria, parameter spectrum width and the variability of solution vectors for parameters, are introduced to determine whether the search is exhaustive. In robustness analysis, in addition to single parameter sensitivity analysis, robustness to multiple parameter perturbation is defined. Combining the sensitivity analysis and the robustness analysis to multiple parameter perturbation enables identifying critical reactions. Use of MAR clearly identified the critical reactions responsible for determining the circadian cycle in the Drosophila interlocked circadian clock model. In highly robust models, while the parameter vectors are greatly varied, the critical reactions with a high sensitivity are uniquely determined. Interestingly, not only the per-tim loop but also the dclk-cyc loop strongly affect the period of PER, although the dclk-cyc loop hardly changes its amplitude and it is not potentially influential. In conclusion, MAR is a powerful method to explore wide parameter space without human-biases and to link a robust property to network architectures without knowing the exact parameter values. MAR identifies the reactions critically responsible for determining the period and amplitude in the interlocked feedback model and suggests that the circadian
Propel: Tools and Methods for Practical Source Code Model Checking
NASA Technical Reports Server (NTRS)
Mansouri-Samani, Massoud; Mehlitz, Peter; Markosian, Lawrence; OMalley, Owen; Martin, Dale; Moore, Lantz; Penix, John; Visser, Willem
2003-01-01
The work reported here is an overview and snapshot of a project to develop practical model checking tools for in-the-loop verification of NASA s mission-critical, multithreaded programs in Java and C++. Our strategy is to develop and evaluate both a design concept that enables the application of model checking technology to C++ and Java, and a model checking toolset for C++ and Java. The design concept and the associated model checking toolset is called Propel. It builds upon the Java PathFinder (JPF) tool, an explicit state model checker for Java applications developed by the Automated Software Engineering group at NASA Ames Research Center. The design concept that we are developing is Design for Verification (D4V). This is an adaption of existing best design practices that has the desired side-effect of enhancing verifiability by improving modularity and decreasing accidental complexity. D4V, we believe, enhances the applicability of a variety of V&V approaches; we are developing the concept in the context of model checking. The model checking toolset, Propel, is based on extending JPF to handle C++. Our principal tasks in developing the toolset are to build a translator from C++ to Java, productize JPF, and evaluate the toolset in the context of D4V. Through all these tasks we are testing Propel capabilities on customer applications.
A chain reaction approach to modelling gene pathways.
Cheng, Gary C; Chen, Dung-Tsa; Chen, James J; Soong, Seng-Jaw; Lamartiniere, Coral; Barnes, Stephen
2012-08-01
BACKGROUND: Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. RESULTS: In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By
A new computer code for discrete fracture network modelling
NASA Astrophysics Data System (ADS)
Xu, Chaoshui; Dowd, Peter
2010-03-01
The authors describe a comprehensive software package for two- and three-dimensional stochastic rock fracture simulation using marked point processes. Fracture locations can be modelled by a Poisson, a non-homogeneous, a cluster or a Cox point process; fracture geometries and properties are modelled by their respective probability distributions. Virtual sampling tools such as plane, window and scanline sampling are included in the software together with a comprehensive set of statistical tools including histogram analysis, probability plots, rose diagrams and hemispherical projections. The paper describes in detail the theoretical basis of the implementation and provides a case study in rock fracture modelling to demonstrate the application of the software.
User's guide for waste tank corrosion data model code
Mackey, D.B.; Divine, J.R.
1986-12-01
Corrosion tests were conducted on A-516 and A-537 carbon steel in simulated Double Shell Slurry, Future PUREX, and Hanford Facilities wastes. The corrosion rate data, gathered between 25 and 180/sup 0/C, were statistically ''modeled'' for each waste; a fourth model was developed that utilized the combined data. The report briefly describes the modeling procedure and details on how to access information through a computerized data system. Copies of the report and operating information may be obtained from the author (DB Mackey) at 509-376-9844 of FTS 444-9844.
A Discrete Model to Study Reaction-Diffusion-Mechanics Systems
Weise, Louis D.; Nash, Martyn P.; Panfilov, Alexander V.
2011-01-01
This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects. PMID:21804911
A discrete model to study reaction-diffusion-mechanics systems.
Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V
2011-01-01
This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 1 of a series of three reference publications that describe LENS, provide a detailed guide to its usage, and present many example problems. Part 1 derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved. The accuracy and efficiency of LSENS are examined by means of various test problems, and comparisons with other methods and codes are presented. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.
Comparing the line broadened quasilinear model to Vlasov code
Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.
2014-03-15
The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.
Comparing the line broadened quasilinear model to Vlasov code
NASA Astrophysics Data System (ADS)
Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.
2014-03-01
The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.
Engine structures modeling software system: Computer code. User's manual
NASA Technical Reports Server (NTRS)
1992-01-01
ESMOSS is a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components and substructures which can be transferred to finite element analysis programs such as NASTRAN. The software architecture of ESMOSS is designed in modular form with a central executive module through which the user controls and directs the development of the analytical model. Modules consist of a geometric shape generator, a library of discretization procedures, interfacing modules to join both geometric and discrete models, a deck generator to produce input for NASTRAN and a 'recipe' processor which generates geometric models from parametric definitions. ESMOSS can be executed both in interactive and batch modes. Interactive mode is considered to be the default mode and that mode will be assumed in the discussion in this document unless stated otherwise.
New higher-order Godunov code for modelling performance of two-stage light gas guns
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.; Miller, R. J.
1995-01-01
A new quasi-one-dimensional Godunov code for modeling two-stage light gas guns is described. The code is third-order accurate in space and second-order accurate in time. A very accurate Riemann solver is used. Friction and heat transfer to the tube wall for gases and dense media are modeled and a simple nonequilibrium turbulence model is used for gas flows. The code also models gunpowder burn in the first-stage breech. Realistic equations of state (EOS) are used for all media. The code was validated against exact solutions of Riemann's shock-tube problem, impact of dense media slabs at velocities up to 20 km/sec, flow through a supersonic convergent-divergent nozzle and burning of gunpowder in a closed bomb. Excellent validation results were obtained. The code was then used to predict the performance of two light gas guns (1.5 in. and 0.28 in.) in service at the Ames Research Center. The code predictions were compared with measured pressure histories in the powder chamber and pump tube and with measured piston and projectile velocities. Very good agreement between computational fluid dynamics (CFD) predictions and measurements was obtained. Actual powder-burn rates in the gun were found to be considerably higher (60-90 percent) than predicted by the manufacturer and the behavior of the piston upon yielding appears to differ greatly from that suggested by low-strain rate tests.
A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects
NASA Astrophysics Data System (ADS)
Schäfer, C.; Riecker, S.; Maindl, T. I.; Speith, R.; Scherrer, S.; Kley, W.
2016-05-01
Context. Modern graphics processing units (GPUs) lead to a major increase in the performance of the computation of astrophysical simulations. Owing to the different nature of GPU architecture compared to traditional central processing units (CPUs) such as x86 architecture, existing numerical codes cannot be easily migrated to run on GPU. Here, we present a new implementation of the numerical method smooth particle hydrodynamics (SPH) using CUDA and the first astrophysical application of the new code: the collision between Ceres-sized objects. Aims: The new code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. Methods: We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations and is treated by the use of a Barnes-Hut tree. Results: We find an impressive performance gain using NVIDIA consumer devices compared to our existing OpenMP code. The new code is freely available to the community upon request. If you are interested in our CUDA SPH code miluphCUDA, please write an email to Christoph Schäfer. miluphCUDA is the CUDA port of miluph. miluph is pronounced [maßl2v]. We do not support the use of the code for military purposes.
Recommendations for computer modeling codes to support the UMTRA groundwater restoration project
Tucker, M.D.; Khan, M.A.
1996-04-01
The Uranium Mill Tailings Remediation Action (UMTRA) Project is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the US. The surface restoration phase, which includes containment and stabilization of the abandoned uranium mill tailings piles, has a specific termination date and is nearing completion. Therefore, attention has now turned to the groundwater restoration phase, which began in 1991. Regulated constituents in groundwater whose concentrations or activities exceed maximum contaminant levels (MCLs) or background levels at one or more sites include, but are not limited to, uranium, selenium, arsenic, molybdenum, nitrate, gross alpha, radium-226 and radium-228. The purpose of this report is to recommend computer codes that can be used to assist the UMTRA groundwater restoration effort. The report includes a survey of applicable codes in each of the following areas: (1) groundwater flow and contaminant transport modeling codes, (2) hydrogeochemical modeling codes, (3) pump and treat optimization codes, and (4) decision support tools. Following the survey of the applicable codes, specific codes that can best meet the needs of the UMTRA groundwater restoration program in each of the four areas are recommended.
Marked renewal model of smoothed VBR MPEG coded traffic
NASA Astrophysics Data System (ADS)
Hui, Xiaoshi; Li, Jiaoyang; Liu, Xiande
1998-08-01
In this paper, a method of smoothing variable bit-rate (VBR) MPEG traffic is proposed. A buffer, which has capacity over the peak bandwidth of group of picture (GOP) sequence of an MPEG traffic and which output rate is controlled by the distribution of GOP sequence, is connected to a source. The degree of burst of output stream from the buffer is deceased, and the stream's autocorrelation function characterizes non-increased and non-convex property. For smoothed MPEG traffic stream, the GOP sequence is the element target source traffic using for modeling. We applied a marked renewal process to model the GOP smoothed VBR MPEG traffics. The numerical study of simulating target VBR MPEG video source with a marked renewal model shows that not only the model's bandwidth distribution can match accurately that of target source sequence, but also its leading autocorrelation can approximate the long-range dependence of a VBR MPEG traffic as well as the short-range dependence. In addition to that, the model's parameters estimation is very easy. We conclude that GOP smoothed VBR MPEG video traffic could be not only transferred more efficiently but also analyzed perfectly with a marked renewal traffic model.
Prediction of adverse drug reactions using decision tree modeling.
Hammann, F; Gutmann, H; Vogt, N; Helma, C; Drewe, J
2010-07-01
Drug safety is of great importance to public health. The detrimental effects of drugs not only limit their application but also cause suffering in individual patients and evoke distrust of pharmacotherapy. For the purpose of identifying drugs that could be suspected of causing adverse reactions, we present a structure-activity relationship analysis of adverse drug reactions (ADRs) in the central nervous system (CNS), liver, and kidney, and also of allergic reactions, for a broad variety of drugs (n = 507) from the Swiss drug registry. Using decision tree induction, a machine learning method, we determined the chemical, physical, and structural properties of compounds that predispose them to causing ADRs. The models had high predictive accuracies (78.9-90.2%) for allergic, renal, CNS, and hepatic ADRs. We show the feasibility of predicting complex end-organ effects using simple models that involve no expensive computations and that can be used (i) in the selection of the compound during the drug discovery stage, (ii) to understand how drugs interact with the target organ systems, and (iii) for generating alerts in postmarketing drug surveillance and pharmacovigilance.
Transalkylation reactions in fossil fuels and related model compounds
Farcasiu, M.; Forbus, T.R.; LaPierre, R.B.
1983-02-01
The alkyl substituents of high molecular weight polycyclic aromatic constituents of petroleum residues are transferable to exogenous monocyclic aromatics (benzene, toluene, o-xylene, etc.) by acid catalyzed (CF/sub 3/SO/sub 3/H) Friedel Crafts transalkylation. Analysis (GC-MS) of the volatile alkylated monocyclic aromatic products provides a method for the determination of the alkyl group content/structure of the starting fossil fuel mixture. Both model systems, using alkylated naphthalenes, phenanthrenes, pyrenes and dibenzothiophenes and demineralized shale oil or petroleum resid were studied. The model studies (alkyl chain length 2-10 carbons) revealed the following reaction pathways to predominate: (1) transalkylation rates/equilibria are independent of chain length; (2) n-alkyl groups are transfered without rearrangement or fragmentation; (3) reaction rate depends upon the aromatic moiety; (4) formation of dixylylmethanes via benzyl carbenium ions is significant (12 to 25% of product; and (5) significant minor products at longer reaction times are alkyl tetralins, tetralins, napthalenes and alkylated acceptors having a chain length reduced by (-CH/sub 2/-)/sub 4/.
Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng
2011-03-01
This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are
Ho, C.K.; Altman, S.J.; Arnold, B.W.
1995-09-01
Groundwater travel time (GWTT) calculations will play an important role in addressing site-suitability criteria for the potential high-level nuclear waste repository at Yucca Mountain,Nevada. In support of these calculations, Preliminary assessments of the candidate codes and models are presented in this report. A series of benchmark studies have been designed to address important aspects of modeling flow through fractured media representative of flow at Yucca Mountain. Three codes (DUAL, FEHMN, and TOUGH 2) are compared in these benchmark studies. DUAL is a single-phase, isothermal, two-dimensional flow simulator based on the dual mixed finite element method. FEHMN is a nonisothermal, multiphase, multidimensional simulator based primarily on the finite element method. TOUGH2 is anon isothermal, multiphase, multidimensional simulator based on the integral finite difference method. Alternative conceptual models of fracture flow consisting of the equivalent continuum model (ECM) and the dual permeability (DK) model are used in the different codes.
NASA Astrophysics Data System (ADS)
Freedman, V. L.; Bacon, D. H.; Saripalli, K. P.; Meyer, P. D.
2001-12-01
Precipitation and dissolution of minerals in the subsurface can cause a significant reduction in porosity and permeability by plugging pore throats in aquifer and reservoir media. Changes in these two basic properties of the medium also result in significant changes in the remaining 'derived properties' (i.e., relative permeability, fluid-fluid and fluid-solid interfacial areas, pore and particle size distributions) and the constitutive relationships among these properties. Very few published works on modeling the influence of chemical reactions and fluid flow on porosity and permeability account for the spatial and temporal changes in the hydrologic properties on flow and transport. This study reports on the development of a methodology for modeling changes in permeability of unsaturated sub-surface media due to glass and mineral precipitation and dissolution reactions using a film depositional modeling approach. The model is based on the assumption that the mineral precipitate is deposited on the pore walls as a continuous film, causing a reduction in permeability. In this study, the film depositional model is developed for a discrete pore-size distribution, which is determined using the unsaturated hydraulic properties of the porous medium. This facilitates the process of dynamically updating the unsaturated hydraulic parameters used to describe fluid flow through the media. The resulting algorithms are implemented in the multiphase, multicomponent reactive transport code STORM (Sub-surface Transport over Reactive Multiphases). The modeling approach is tested using the Hanford's Immobilized Low Activity Waste (ILAW) repository, where the low-level waste from fuel fabrication activities is being vitrified and emplaced in the sub-surface. Results from simulation of the simultaneous dissolution of low-level glassified waste and secondary mineral precipitation show that the film depositional model based on the Mualem approach reasonably predicts permeability changes
ABAREX -- A neutron spherical optical-statistical-model code -- A user`s manual
Smith, A.B.; Lawson, R.D.
1998-06-01
The contemporary version of the neutron spherical optical-statistical-model code ABAREX is summarized with the objective of providing detailed operational guidance for the user. The physical concepts involved are very briefly outlined. The code is described in some detail and a number of explicit examples are given. With this document one should very quickly become fluent with the use of ABAREX. While the code has operated on a number of computing systems, this version is specifically tailored for the VAX/VMS work station and/or the IBM-compatible personal computer.
Reactions of Lignin Model Compounds in Ionic Liquids
Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad
2009-09-15
Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brønsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.
Description of codes and models to be used in risk assessment
Not Available
1991-09-01
Human health and environmental risk assessments will be performed as part of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) activities at the Hanford Site. Analytical and computer encoded numerical models are commonly used during both the remedial investigation (RI) and feasibility study (FS) to predict or estimate the concentration of contaminants at the point of exposure to humans and/or the environment. This document has been prepared to identify the computer codes that will be used in support of RI/FS human health and environmental risk assessments at the Hanford Site. In addition to the CERCLA RI/FS process, it is recommended that these computer codes be used when fate and transport analyses is required for other activities. Additional computer codes may be used for other purposes (e.g., design of tracer tests, location of observation wells, etc.). This document provides guidance for unit managers in charge of RI/FS activities. Use of the same computer codes for all analytical activities at the Hanford Site will promote consistency, reduce the effort required to develop, validate, and implement models to simulate Hanford Site conditions, and expedite regulatory review. The discussion provides a description of how models will likely be developed and utilized at the Hanford Site. It is intended to summarize previous environmental-related modeling at the Hanford Site and provide background for future model development. The modeling capabilities that are desirable for the Hanford Site and the codes that were evaluated. The recommendations include the codes proposed to support future risk assessment modeling at the Hanford Site, and provides the rational for the codes selected. 27 refs., 3 figs., 1 tab.
Scrape-off layer modeling using coupled plasma and neutral transport codes
Stotler, D.P.; Coster, D.P.; Ehrdardt, A.B.; Karney, C.F.F.; Petravic, M.; Braams, B.J.
1992-05-01
An effort is made to refine the neutral transport model used in the B2 edge plasma code by coupling it to the DEGAS Monte Carlo code. Results are discussed for a simulation of a high recycling divertor. It appears that on the order of 100 iterations between the two codes are required to achieve a converged solution. However, the amount of computer time used in the DEGAS simulations is large, making complete runs impractical for design purposes. On the other hand, the differences in the resulting plasma parameters when compared to the B2 analytic neutrals model indicate that it would be worthwhile to explore techniques for speeding up the control system of codes.
A Dual Coding Theoretical Model of Decoding in Reading: Subsuming the LaBerge and Samuels Model
ERIC Educational Resources Information Center
Sadoski, Mark; McTigue, Erin M.; Paivio, Allan
2012-01-01
In this article we present a detailed Dual Coding Theory (DCT) model of decoding. The DCT model reinterprets and subsumes The LaBerge and Samuels (1974) model of the reading process which has served well to account for decoding behaviors and the processes that underlie them. However, the LaBerge and Samuels model has had little to say about…
Chemical reaction fouling model for single-phase heat transfer
Panchal, C.B.; Watkinson, A.P.
1993-08-01
A fouling model was developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermalboundary layer, or at the fluid/wall interface, depending upon the interactive effects of flu id dynamics, heat and mass transfer, and the controlling chemical reaction. The analysis was used to examine the experimental data for fouling deposition of polyperoxides produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries were analyzed. The results showed that the relative effects of physical parameters on the fouling rate would differ for the three fouling mechanisms; therefore, it is important to identify the controlling mechanism in applying the closed-flow-loop data to industrial conditions.
Modelling charge transfer reactions with the frozen density embedding formalism
Pavanello, Michele; Neugebauer, Johannes
2011-12-21
The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.
Homogeneous models for mechanisms of surface reactions: Propylene ammoxidation
Chan, D.M.T.; Nugent, W.A.; Fultz, W.C.; Rose, D.C.; Tulip, T.H.
1987-04-01
The proposed active sites on the catalyst surface in heterogeneous propylene ammoxidation have been successfully modelled by structurally characterized pinacolato W(VI) tert-butylimido complexes. These compounds exist as an equilibrating mixture of amine-bis(imido) and imido-bis(amido) complexes, the position of this equilibrium is dependent on the electronic nature of the glycolate ligand. Both of the C-N bond-forming reactions proposed in recent studies by Grasselli et al. (1) have been reproduced using discrete Group VI d{sup 0} organoimido complexes under mild conditions suitable for detailed mechanistic studies. These reactions are: (1) oxidative trapping of radicals at molybdenum imido sites, and (2) migration of the allyl group from oxygen to an imido nitrogen atom.
Information-Theoretic Modeling of Trichromacy Coding of Light Spectrum
NASA Astrophysics Data System (ADS)
Benoit, Landry; Belin, Étienne; Rousseau, David; Chapeau-Blondeau, François
2014-07-01
Trichromacy is the representation of a light spectrum by three scalar coordinates. Such representation is universally implemented by the human visual system and by RGB (Red Green Blue) cameras. We propose here an informational model for trichromacy. Based on a statistical analysis of the dynamics of individual photons, the model demonstrates a possibility for describing trichromacy as an information channel, for which the input-output mutual information can be computed to serve as a measure of performance. The capabilities and significance of the informational model are illustrated and motivated in various situations. The model especially enables an assessment of the influence of the spectral sensitivities of the three types of photodetectors realizing the trichromatic representation. It provides a criterion to optimize possibly adjustable parameters of the spectral sensitivities such as their center wavelength, spectral width or magnitude. The model shows, for instance, the usefulness of some overlap with smooth graded spectral sensitivities, as observed for instance in the human retina. The approach also, starting from hyperspectral images with high spectral resolution measured in the laboratory, can be used to devise low-cost trichromatic imaging systems optimized for observation of specific spectral signatures. This is illustrated with an example from plant science, and demonstrates a potential of application especially to life sciences. The approach particularizes connections between physics, biophysics and information theory.
Radiation transport phenomena and modeling. Part A: Codes; Part B: Applications with examples
Lorence, L.J. Jr.; Beutler, D.E.
1997-09-01
This report contains the notes from the second session of the 1997 IEEE Nuclear and Space Radiation Effects Conference Short Course on Applying Computer Simulation Tools to Radiation Effects Problems. Part A discusses the physical phenomena modeled in radiation transport codes and various types of algorithmic implementations. Part B gives examples of how these codes can be used to design experiments whose results can be easily analyzed and describes how to calculate quantities of interest for electronic devices.
Carbajo, Juan; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Schmidt, Rodney Cannon; Thomas, Justin; Wei, Tom; Sofu, Tanju; Ludewig, Hans; Tobita, Yoshiharu; Ohshima, Hiroyuki; Serre, Frederic
2011-06-01
This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the
A reaction-diffusion model of cytosolic hydrogen peroxide.
Lim, Joseph B; Langford, Troy F; Huang, Beijing K; Deen, William M; Sikes, Hadley D
2016-01-01
As a signaling molecule in mammalian cells, hydrogen peroxide (H2O2) determines the thiol/disulfide oxidation state of several key proteins in the cytosol. Localization is a key concept in redox signaling; the concentrations of signaling molecules within the cell are expected to vary in time and in space in manner that is essential for function. However, as a simplification, all theoretical studies of intracellular hydrogen peroxide and many experimental studies to date have treated the cytosol as a well-mixed compartment. In this work, we incorporate our previously reported reduced kinetic model of the network of reactions that metabolize hydrogen peroxide in the cytosol into a model that explicitly treats diffusion along with reaction. We modeled a bolus addition experiment, solved the model analytically, and used the resulting equations to quantify the spatiotemporal variations in intracellular H2O2 that result from this kind of perturbation to the extracellular H2O2 concentration. We predict that micromolar bolus additions of H2O2 to suspensions of HeLa cells (0.8 × 10(9)cells/l) result in increases in the intracellular concentration that are localized near the membrane. These findings challenge the assumption that intracellular concentrations of H2O2 are increased uniformly throughout the cell during bolus addition experiments and provide a theoretical basis for differing phenotypic responses of cells to intracellular versus extracellular perturbations to H2O2 levels.
Modelling Violent Reaction Following Low Speed Impact on Confined Explosives
NASA Astrophysics Data System (ADS)
Curtis, John; Jones, Andrew; Hughes, Christopher; Reaugh, John
2011-06-01
To ensure the safe storage and deployment of explosives it is important to understand the mechanisms that give rise to ignition and reaction growth in low speed impacts. The LLNL High Explosive Response to Mechanical Stimulus (HERMES) material model, integrated in LS-DYNA, has been developed to model the progress of the reaction after such an impact. The low speed impact characteristics of an HMX based formulation have been determined in the AWE Steven Test. Axisymmetric simulations have been performed to determine the characteristics of the model. The sensitivity study included looking at the influence of friction, material strength and confinement. By comparing the experimental and calculated results, the key parameters which determine the response in this configuration have been determined. The model qualitatively predicts the point of ignition within the vehicle. Future refinements are discussed. JER's activity was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344, and partially funded by the Joint US DoD/DOE Munitions Technology Development Program.
Horiguchi, Hironori; Sato, Tatsuhiko; Kumada, Hiroaki; Yamamoto, Tetsuya; Sakae, Takeji
2015-01-01
The absorbed doses deposited by boron neutron capture therapy (BNCT) can be categorized into four components: α and 7Li particles from the 10B(n, α)7Li reaction, 0.54-MeV protons from the 14N(n, p)14C reaction, the recoiled protons from the 1H(n, n) 1H reaction, and photons from the neutron beam and 1H(n, γ)2H reaction. For evaluating the irradiation effect in tumors and the surrounding normal tissues in BNCT, it is of great importance to estimate the relative biological effectiveness (RBE) for each dose component in the same framework. We have, therefore, established a new method for estimating the RBE of all BNCT dose components on the basis of the microdosimetric kinetic model. This method employs the probability density of lineal energy, y, in a subcellular structure as the index for expressing RBE, which can be calculated using the microdosimetric function implemented in the particle transport simulation code (PHITS). The accuracy of this method was tested by comparing the calculated RBE values with corresponding measured data in a water phantom irradiated with an epithermal neutron beam. The calculation technique developed in this study will be useful for biological dose estimation in treatment planning for BNCT. PMID:25428243
CAST2D: A finite element computer code for casting process modeling
Shapiro, A.B.; Hallquist, J.O.
1991-10-01
CAST2D is a coupled thermal-stress finite element computer code for casting process modeling. This code can be used to predict the final shape and stress state of cast parts. CAST2D couples the heat transfer code TOPAZ2D and solid mechanics code NIKE2D. CAST2D has the following features in addition to all the features contained in the TOPAZ2D and NIKE2D codes: (1) a general purpose thermal-mechanical interface algorithm (i.e., slide line) that calculates the thermal contact resistance across the part-mold interface as a function of interface pressure and gap opening; (2) a new phase change algorithm, the delta function method, that is a robust method for materials undergoing isothermal phase change; (3) a constitutive model that transitions between fluid behavior and solid behavior, and accounts for material volume change on phase change; and (4) a modified plot file data base that allows plotting of thermal variables (e.g., temperature, heat flux) on the deformed geometry. Although the code is specialized for casting modeling, it can be used for other thermal stress problems (e.g., metal forming).
Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B
2007-06-16
This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.
Pre-engineering Spaceflight Validation of Environmental Models and the 2005 HZETRN Simulation Code
NASA Technical Reports Server (NTRS)
Nealy, John E.; Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.; Dachev, Ts. P.; Tomov, B. T.; Walker, Steven A.; DeAngelis, Giovanni; Blattnig, Steve R.; Atwell, William
2006-01-01
The HZETRN code has been identified by NASA for engineering design in the next phase of space exploration highlighting a return to the Moon in preparation for a Mars mission. In response, a new series of algorithms beginning with 2005 HZETRN, will be issued by correcting some prior limitations and improving control of propagated errors along with established code verification processes. Code validation processes will use new/improved low Earth orbit (LEO) environmental models with a recently improved International Space Station (ISS) shield model to validate computational models and procedures using measured data aboard ISS. These validated models will provide a basis for flight-testing the designs of future space vehicles and systems of the Constellation program in the LEO environment.
Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP
Podesta,, Mario; Gorelenkova, Marina; White, Roscoe
2014-02-28
Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv en Eigenmodes) and to other numerical codes or theories.
The Nuremberg Code subverts human health and safety by requiring animal modeling
2012-01-01
Background The requirement that animals be used in research and testing in order to protect humans was formalized in the Nuremberg Code and subsequent national and international laws, codes, and declarations. Discussion We review the history of these requirements and contrast what was known via science about animal models then with what is known now. We further analyze the predictive value of animal models when used as test subjects for human response to drugs and disease. We explore the use of animals for models in toxicity testing as an example of the problem with using animal models. Summary We conclude that the requirements for animal testing found in the Nuremberg Code were based on scientifically outdated principles, compromised by people with a vested interest in animal experimentation, serve no useful function, increase the cost of drug development, and prevent otherwise safe and efficacious drugs and therapies from being implemented. PMID:22769234
Modeling of BWR core meltdown accidents - for application in the MELRPI. MOD2 computer code
Koh, B R; Kim, S H; Taleyarkhan, R P; Podowski, M Z; Lahey, Jr, R T
1985-04-01
This report summarizes improvements and modifications made in the MELRPI computer code. A major difference between this new, updated version of the code, called MELRPI.MOD2, and the one reported previously, concerns the inclusion of a model for the BWR emergency core cooling systems (ECCS). This model and its computer implementation, the ECCRPI subroutine, account for various emergency injection modes, for both intact and rubblized geometries. Other changes to MELRPI deal with an improved model for canister wall oxidation, rubble bed modeling, and numerical integration of system equations. A complete documentation of the entire MELRPI.MOD2 code is also given, including an input guide, list of subroutines, sample input/output and program listing.
APA's model law: a commitment code by and for psychiatrists.
Wexler, D B
1985-09-01
The author argues that the APA model law is seriously flawed because it lacks sufficient mechanisms for questioning the judgment of psychiatrists throughout the commitment process and for ensuring the best disposition of patients. By failing to provide for independent screening of commitment petitions, to mandate multiple psychiatric evaluations of respondents, to provide indigent respondents a free psychiatric examination to help them prepare for the commitment hearing, and to address the shortcomings of legal advocacy, the model law sets the stage for improper or unwarranted commitments. In addition, the law circumvents the rights of patients admitted on emergency status to refuse treatment throughout the entire evaluation period, which can last up to 14 days.
Modeling Code Is Helping Cleveland Develop New Products
NASA Technical Reports Server (NTRS)
1998-01-01
Master Builders, Inc., is a 350-person company in Cleveland, Ohio, that develops and markets specialty chemicals for the construction industry. Developing new products involves creating many potential samples and running numerous tests to characterize the samples' performance. Company engineers enlisted NASA's help to replace cumbersome physical testing with computer modeling of the samples' behavior. Since the NASA Lewis Research Center's Structures Division develops mathematical models and associated computation tools to analyze the deformation and failure of composite materials, its researchers began a two-phase effort to modify Lewis' Integrated Composite Analyzer (ICAN) software for Master Builders' use. Phase I has been completed, and Master Builders is pleased with the results. The company is now working to begin implementation of Phase II.
Potential capabilities of Reynolds stress turbulence model in the COMMIX-RSM code
NASA Technical Reports Server (NTRS)
Chang, F. C.; Bottoni, M.
1994-01-01
A Reynolds stress turbulence model has been implemented in the COMMIX code, together with transport equations describing turbulent heat fluxes, variance of temperature fluctuations, and dissipation of turbulence kinetic energy. The model has been verified partially by simulating homogeneous turbulent shear flow, and stable and unstable stratified shear flows with strong buoyancy-suppressing or enhancing turbulence. This article outlines the model, explains the verifications performed thus far, and discusses potential applications of the COMMIX-RSM code in several domains, including, but not limited to, analysis of thermal striping in engineering systems, simulation of turbulence in combustors, and predictions of bubbly and particulate flows.
Surface and aerosol models for use in radiative transfer codes
NASA Astrophysics Data System (ADS)
Hart, Quinn J.
1991-08-01
Absolute reflectance-based radiometric calibrations of Landsat-5 Thematic Mapper (TM) are improved with the inclusion of a method to invert optical-depth measurements to obtain aerosol-particle size distributions, and a non-Lambertian surface reflectance model. The inverted size distributions can predict radiances varying from the previously assumed jungian distributions by as much as 5 percent, though the reduction in the estimated error is less than one percent. Comparison with measured diffuse-to-global ratios show that neither distribution consistently predicts the ratio accurately, and this is shown to be a large contributor to calibration uncertainties. An empirical model for the surface reflectance of White Sands, using a two-degree polynomial fit as a function of scattering angle, was employed. The model reduced estimated errors in radiance predictions by up to one percent. Satellite calibrations dating from October, 1984 were reprocessed using the improved methods and linear estimations of satellite counts per unit radiance versus time since launch were determined which showed a decrease over time for the first four bands.
Reaction times to weak test lights. [psychophysics biological model
NASA Technical Reports Server (NTRS)
Wandell, B. A.; Ahumada, P.; Welsh, D.
1984-01-01
Maloney and Wandell (1984) describe a model of the response of a single visual channel to weak test lights. The initial channel response is a linearly filtered version of the stimulus. The filter output is randomly sampled over time. Each time a sample occurs there is some probability increasing with the magnitude of the sampled response - that a discrete detection event is generated. Maloney and Wandell derive the statistics of the detection events. In this paper a test is conducted of the hypothesis that the reaction time responses to the presence of a weak test light are initiated at the first detection event. This makes it possible to extend the application of the model to lights that are slightly above threshold, but still within the linear operating range of the visual system. A parameter-free prediction of the model proposed by Maloney and Wandell for lights detected by this statistic is tested. The data are in agreement with the prediction.
Metabolic Free Energy and Biological Codes: A 'Data Rate Theorem' Aging Model.
Wallace, Rodrick
2015-06-01
A famous argument by Maturana and Varela (Autopoiesis and cognition. Reidel, Dordrecht, 1980) holds that the living state is cognitive at every scale and level of organization. Since it is possible to associate many cognitive processes with 'dual' information sources, pathologies can sometimes be addressed using statistical models based on the Shannon Coding, the Shannon-McMillan Source Coding, the Rate Distortion, and the Data Rate Theorems, which impose necessary conditions on information transmission and system control. Deterministic-but-for-error biological codes do not directly invoke cognition, but may be essential subcomponents within larger cognitive processes. A formal argument, however, places such codes within a similar framework, with metabolic free energy serving as a 'control signal' stabilizing biochemical code-and-translator dynamics in the presence of noise. Demand beyond available energy supply triggers punctuated destabilization of the coding channel, affecting essential biological functions. Aging, normal or prematurely driven by psychosocial or environmental stressors, must interfere with the routine operation of such mechanisms, initiating the chronic diseases associated with senescence. Amyloid fibril formation, intrinsically disordered protein logic gates, and cell surface glycan/lectin 'kelp bed' logic gates are reviewed from this perspective. The results generalize beyond coding machineries having easily recognizable symmetry modes, and strip a layer of mathematical complication from the study of phase transitions in nonequilibrium biological systems. PMID:25185747
Metabolic Free Energy and Biological Codes: A 'Data Rate Theorem' Aging Model.
Wallace, Rodrick
2015-06-01
A famous argument by Maturana and Varela (Autopoiesis and cognition. Reidel, Dordrecht, 1980) holds that the living state is cognitive at every scale and level of organization. Since it is possible to associate many cognitive processes with 'dual' information sources, pathologies can sometimes be addressed using statistical models based on the Shannon Coding, the Shannon-McMillan Source Coding, the Rate Distortion, and the Data Rate Theorems, which impose necessary conditions on information transmission and system control. Deterministic-but-for-error biological codes do not directly invoke cognition, but may be essential subcomponents within larger cognitive processes. A formal argument, however, places such codes within a similar framework, with metabolic free energy serving as a 'control signal' stabilizing biochemical code-and-translator dynamics in the presence of noise. Demand beyond available energy supply triggers punctuated destabilization of the coding channel, affecting essential biological functions. Aging, normal or prematurely driven by psychosocial or environmental stressors, must interfere with the routine operation of such mechanisms, initiating the chronic diseases associated with senescence. Amyloid fibril formation, intrinsically disordered protein logic gates, and cell surface glycan/lectin 'kelp bed' logic gates are reviewed from this perspective. The results generalize beyond coding machineries having easily recognizable symmetry modes, and strip a layer of mathematical complication from the study of phase transitions in nonequilibrium biological systems.
Development of a model and computer code to describe solar grade silicon production processes
NASA Technical Reports Server (NTRS)
Gould, R. K.; Srivastava, R.
1979-01-01
Two computer codes were developed for describing flow reactors in which high purity, solar grade silicon is produced via reduction of gaseous silicon halides. The first is the CHEMPART code, an axisymmetric, marching code which treats two phase flows with models describing detailed gas-phase chemical kinetics, particle formation, and particle growth. It can be used to described flow reactors in which reactants, mix, react, and form a particulate phase. Detailed radial gas-phase composition, temperature, velocity, and particle size distribution profiles are computed. Also, deposition of heat, momentum, and mass (either particulate or vapor) on reactor walls is described. The second code is a modified version of the GENMIX boundary layer code which is used to compute rates of heat, momentum, and mass transfer to the reactor walls. This code lacks the detailed chemical kinetics and particle handling features of the CHEMPART code but has the virtue of running much more rapidly than CHEMPART, while treating the phenomena occurring in the boundary layer in more detail.
Modeling the Reactions of Energetic Materials in the Condensed Phase
Fried, L E; Manaa, M R; Lewis, J P
2003-12-03
High explosive (HE) materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Although the history of HE materials is long, condensed-phase properties are poorly understood. Understanding the condensed-phase properties of HE materials is important for determining stability and performance. Information regarding HE material properties (for example, the physical, chemical, and mechanical behaviors of the constituents in plastic-bonded explosive, or PBX, formulations) is necessary in efficiently building the next generation of explosives as the quest for more powerful energetic materials (in terms of energy per volume) moves forward. In addition, understanding the reaction mechanisms has important ramifications in disposing of such materials safely and cheaply, as there exist vast stockpiles of HE materials with corresponding contamination of earth and groundwater at these sites, as well as a military testing sites The ability to model chemical reaction processes in condensed phase energetic materials is rapidly progressing. Chemical equilibrium modeling is a mature technique with some limitations. Progress in this area continues, but is hampered by a lack of knowledge of condensed phase reaction mechanisms and rates. Atomistic modeling is much more computationally intensive, and is currently limited to very short time scales. Nonetheless, this methodology promises to yield the first reliable insights into the condensed phase processes responsible for high explosive detonation. Further work is necessary to extend the timescales involved in atomistic simulations. Recent work in implementing thermostat methods appropriate to shocks may promise to overcome some of these difficulties. Most current work on energetic material reactivity assumes that electronically adiabatic processes dominate. The role of excited states is becoming clearer, however. These states are not accessible in perfect
Deuterium cluster model for low energy nuclear reactions (LENR)
NASA Astrophysics Data System (ADS)
Miley, George; Hora, Heinrich
2007-11-01
For studying the possible reactions of high density deuterons on the background of a degenerate electron gas, a summary of experimental observations resulted in the possibility of reactions in pm distance and more than ksec duration similar to the K-shell electron capture [1]. The essential reason was the screening of the deuterons by a factor of 14 based on the observations. Using the bosonic properties for a cluster formation of the deuterons and a model of compound nuclear reactions [2], the measured distribution of the resulting nuclei may be explained as known from the Maruhn-Greiner theory for fission. The local maximum of the distribution at the main minimum indicates the excited states of the compound nuclei during their intermediary state. This measured local maximum may be an independent proof for the deuteron clusters at LENR. [1] H. Hora, G.H. Miley et al. Physics Letters A175, 138 (1993) [2] H. Hora and G.H. Miley, APS March Meeting 2007, Program p. 116
Systematic development of reduced reaction mechanisms for dynamic modeling
NASA Technical Reports Server (NTRS)
Frenklach, M.; Kailasanath, K.; Oran, E. S.
1986-01-01
A method for systematically developing a reduced chemical reaction mechanism for dynamic modeling of chemically reactive flows is presented. The method is based on the postulate that if a reduced reaction mechanism faithfully describes the time evolution of both thermal and chain reaction processes characteristic of a more complete mechanism, then the reduced mechanism will describe the chemical processes in a chemically reacting flow with approximately the same degree of accuracy. Here this postulate is tested by producing a series of mechanisms of reduced accuracy, which are derived from a full detailed mechanism for methane-oxygen combustion. These mechanisms were then tested in a series of reactive flow calculations in which a large-amplitude sinusoidal perturbation is applied to a system that is initially quiescent and whose temperature is high enough to start ignition processes. Comparison of the results for systems with and without convective flow show that this approach produces reduced mechanisms that are useful for calculations of explosions and detonations. Extensions and applicability to flames are discussed.
Parametric Pattern Selection in a Reaction-Diffusion Model
Stich, Michael; Ghoshal, Gourab; Pérez-Mercader, Juan
2013-01-01
We compare spot patterns generated by Turing mechanisms with those generated by replication cascades, in a model one-dimensional reaction-diffusion system. We determine the stability region of spot solutions in parameter space as a function of a natural control parameter (feed-rate) where degenerate patterns with different numbers of spots coexist for a fixed feed-rate. While it is possible to generate identical patterns via both mechanisms, we show that replication cascades lead to a wider choice of pattern profiles that can be selected through a tuning of the feed-rate, exploiting hysteresis and directionality effects of the different pattern pathways. PMID:24204813
Reaction-diffusion modelling of bacterial colony patterns
NASA Astrophysics Data System (ADS)
Mimura, Masayasu; Sakaguchi, Hideo; Matsushita, Mitsugu
2000-07-01
It is well known from experiments that bacterial species Bacillus subtilis exhibit various colony patterns. These are essentially classified into five types in the morphological diagram, depending on the substrate softness and nutrient concentration. (A) diffusion-limited aggregation-like; (B) Eden-like; (C) concentric ring-like; (D) disk-like; and (E) dense branching morphology-like. There arises the naive question of whether the diversity of colony patterns observed in experiments is caused by different effects or governed by the same underlying principles. Our research has led us to propose reaction-diffusion models to describe the morphological diversity of colony patterns except for Eden-like ones.
The Role of Coding Time in Estimating and Interpreting Growth Curve Models.
ERIC Educational Resources Information Center
Biesanz, Jeremy C.; Deeb-Sossa, Natalia; Papadakis, Alison A.; Bollen, Kenneth A.; Curran, Patrick J.
2004-01-01
The coding of time in growth curve models has important implications for the interpretation of the resulting model that are sometimes not transparent. The authors develop a general framework that includes predictors of growth curve components to illustrate how parameter estimates and their standard errors are exactly determined as a function of…
The modelling of wall condensation with noncondensable gases for the containment codes
Leduc, C.; Coste, P.; Barthel, V.; Deslandes, H.
1995-09-01
This paper presents several approaches in the modelling of wall condensation in the presence of noncondensable gases for containment codes. The lumped-parameter modelling and the local modelling by 3-D codes are discussed. Containment analysis codes should be able to predict the spatial distributions of steam, air, and hydrogen as well as the efficiency of cooling by wall condensation in both natural convection and forced convection situations. 3-D calculations with a turbulent diffusion modelling are necessary since the diffusion controls the local condensation whereas the wall condensation may redistribute the air and hydrogen mass in the containment. A fine mesh modelling of film condensation in forced convection has been in the developed taking into account the influence of the suction velocity at the liquid-gas interface. It is associated with the 3-D model of the TRIO code for the gas mixture where a k-{xi} turbulence model is used. The predictions are compared to the Huhtiniemi`s experimental data. The modelling of condensation in natural convection or mixed convection is more complex. As no universal velocity and temperature profile exist for such boundary layers, a very fine nodalization is necessary. More simple models integrate equations over the boundary layer thickness, using the heat and mass transfer analogy. The model predictions are compared with a MIT experiment. For the containment compartments a two node model is proposed using the lumped parameter approach. Heat and mass transfer coefficients are tested on separate effect tests and containment experiments. The CATHARE code has been adapted to perform such calculations and shows a reasonable agreement with data.
Assessment of Turbulence-Chemistry Interaction Models in the National Combustion Code (NCC) - Part I
NASA Technical Reports Server (NTRS)
Wey, Thomas Changju; Liu, Nan-suey
2011-01-01
This paper describes the implementations of the linear-eddy model (LEM) and an Eulerian FDF/PDF model in the National Combustion Code (NCC) for the simulation of turbulent combustion. The impacts of these two models, along with the so called laminar chemistry model, are then illustrated via the preliminary results from two combustion systems: a nine-element gas fueled combustor and a single-element liquid fueled combustor.
Basilevsky, M V; Odinokov, A V; Titov, S V; Mitina, E A
2013-12-21
postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode∕medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the present approach to the Marcus ET theory and to the quantum-statistical reaction rate theory [V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR, Ser. Fiz. Khim. 124, 213 (1959); J. Ulstrup, Charge Transfer in Condensed Media (Springer, Berlin, 1979); M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999)] underlying it is discussed and illustrated by the results of computations for practically important target systems. PMID:24359347
Basilevsky, M V; Odinokov, A V; Titov, S V; Mitina, E A
2013-12-21
postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode∕medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the present approach to the Marcus ET theory and to the quantum-statistical reaction rate theory [V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR, Ser. Fiz. Khim. 124, 213 (1959); J. Ulstrup, Charge Transfer in Condensed Media (Springer, Berlin, 1979); M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999)] underlying it is discussed and illustrated by the results of computations for practically important target systems.
Analysis of similarity/dissimilarity of DNA sequences based on convolutional code model.
Liu, Xiao; Tian, Feng Chun; Wang, Shi Yuan
2010-02-01
Based on the convolutional code model of error-correction coding theory, we propose an approach to characterize and compare DNA sequences with consideration of the effect of codon context. We construct an 8-component vector whose components are the normalized leading eigenvalues of the L/L and M/M matrices associated with the original DNA sequences and the transformed sequences. The utility of our approach is illustrated by the examination of the similarities/dissimilarities among the coding sequences of the first exon of beta-globin gene of 11 species, and the efficiency of error-correction coding theory in analysis of similarity/dissimilarity of DNA sequences is represented.
Chemistry in disks. IV. Benchmarking gas-grain chemical models with surface reactions
NASA Astrophysics Data System (ADS)
Semenov, D.; Hersant, F.; Wakelam, V.; Dutrey, A.; Chapillon, E.; Guilloteau, St.; Henning, Th.; Launhardt, R.; Piétu, V.; Schreyer, K.
2010-11-01
Context. We describe and benchmark two sophisticated chemical models developed by the Heidelberg and Bordeaux astrochemistry groups. Aims: The main goal of this study is to elaborate on a few well-described tests for state-of-the-art astrochemical codes covering a range of physical conditions and chemical processes, in particular those aimed at constraining current and future interferometric observations of protoplanetary disks. Methods: We considered three physical models: a cold molecular cloud core, a hot core, and an outer region of a T Tauri disk. Our chemical network (for both models) is based on the original gas-phase osu_03_2008 ratefile and includes gas-grain interactions and a set of surface reactions for the H-, O-, C-, S-, and N-bearing molecules. The benchmarking was performed with the increasing complexity of the considered processes: (1) the pure gas-phase chemistry, (2) the gas-phase chemistry with accretion and desorption, and (3) the full gas-grain model with surface reactions. The chemical evolution is modeled within 109 years using atomic initial abundances with heavily depleted metals and hydrogen in its molecular form. Results: The time-dependent abundances calculated with the two chemical models are essentially the same for all considered physical cases and for all species, including the most complex polyatomic ions and organic molecules. This result, however, required a lot of effort to make all necessary details consistent through the model runs, e.g., definition of the gas particle density, density of grain surface sites, or the strength and shape of the UV radiation field. Conclusions: The reference models and the benchmark setup, along with the two chemical codes and resulting time-dependent abundances are made publicly available on the internet. This will facilitate and ease the development of other astrochemical models and provide nonspecialists with a detailed description of the model ingredients and requirements to analyze the cosmic
Implementation of an anomalous radial transport model for continuum kinetic edge codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2007-11-01
Radial plasma transport in magnetic fusion devices is often dominated by plasma turbulence compared to neoclassical collisional transport. Continuum kinetic edge codes [such as the (2d,2v) transport version of TEMPEST and also EGK] compute the collisional transport directly, but there is a need to model the anomalous transport from turbulence for long-time transport simulations. Such a model is presented and results are shown for its implementation in the TEMPEST gyrokinetic edge code. The model includes velocity-dependent convection and diffusion coefficients expressed as a Hermite polynominals in velocity. The specification of the Hermite coefficients can be set, e.g., by specifying the ratio of particle and energy transport as in fluid transport codes. The anomalous transport terms preserve the property of no particle flux into unphysical regions of velocity space. TEMPEST simulations are presented showing the separate control of particle and energy anomalous transport, and comparisons are made with neoclassical transport also included.
Klevgard, L.A.; Taylor, Z.T.; Lucas, R.G.
1995-01-01
This report is one in a series of documents describing research activities in support of the US Department of Energy (DOE) Building Energy Codes Program. The Pacific Northwest Laboratory (PNL) leads the program for DOE. The goal of the program is to develop and support the adopting, implementation, and enforcement of Federal, State, and Local energy codes for new buildings. The program approach to meeting the goal is to initiate and manage individual research and standards and guidelines development efforts that are planned and conducted in cooperation with representatives from throughout the buildings community. Projects under way involve practicing architects and engineers, professional societies and code organizations, industry representatives, and researchers from the private sector and national laboratories. Research results and technical justifications for standards criteria are provided to standards development and model code organizations and to Federal, State, and local jurisdictions as a basis to update their codes and standards. This effort helps to ensure that building standards incorporate the latest research results to achieve maximum energy savings in new buildings, yet remain responsive to the needs of the affected professions, organizations, and jurisdictions. Also supported are the implementation, deployment, and use of energy-efficient codes and standards. This report documents findings from an analysis conducted by PNL of the State`s building codes to determine if the codes meet or exceed the 1992 MEC energy efficiency requirements (CABO 1992a).
Triple-{alpha} reaction rate constrained by stellar evolution models
Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.
2012-11-12
We investigate the quantitative constraint on the triple-{alpha} reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8{<=}M/M{sub Circled-Dot-Operator }{<=}25 and in the metallicity range between Z= 0 and Z= 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10M{sub Circled-Dot-Operator }) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8{<=}M/M{sub Circled-Dot-Operator }{<=}6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-{alpha} reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least {nu} > 10 at T = 1-1.2 Multiplication-Sign 10{sup 8}K where the cross section is proportional to T{sup {nu}}. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than {approx} 10{sup -29} cm{sup 6} s{sup -1} mole{sup -2} at Almost-Equal-To 10{sup 7.8} K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.
Triple-α reaction rate constrained by stellar evolution models
NASA Astrophysics Data System (ADS)
Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.
2012-11-01
We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8<=M/Msolar<=25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10Msolar) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8<=M/Msolar<=6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = 1-1.2×108K where the cross section is proportional to Tν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10-29 cm6 s-1 mole-2 at ~ 107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.
MARLEY: Model of Argon Reaction Low Energy Yields
NASA Astrophysics Data System (ADS)
Gardiner, Steven; Bilton, Kyle; Grant, Christopher; Pantic, Emilija; Svoboda, Robert
2015-10-01
Core-collapse supernovae are sources of tremendous numbers of neutrinos with energies of up to about 50 MeV. In recent years, there has been growing interest in building detectors that are sensitive to supernova neutrinos. Such detectors can provide information about the initial stages of stellar collapse, early warning signals for light emission from supernovae, and opportunities to study neutrino oscillation physics over astronomical distances. In an effort to enable supernova neutrino detection in next-generation experiments like DUNE, the CAPTAIN collaboration plans to make the first direct measurement of cross sections for neutrino interactions on argon in the supernova energy regime. To help predict neutrino event signatures in the CAPTAIN liquid argon time projection chamber (LArTPC), we have developed a first-of-its-kind Monte Carlo event generator called MARLEY (Model of Argon Reaction Low Energy Yields). This generator attempts to model the complicated nuclear structure dependence of low-energy neutrino-nucleus reactions in sufficient detail for use in LArTPC simulations. In this talk we present some preliminary results calculated using MARLEY and discuss how the current version of the generator may be improved and expanded.
MODELING OF SYNGAS REACTIONS AND HYDROGEN GENERATION OVER SULFIDES
Kamil Klier; Jeffery A. Spirko; Michael L. Neiman
2004-10-01
The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. During this study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The relative stabilities of pure MoS{sub 2} edges were calculated and small clusters exhibiting properties of the edges were modeled. The results were finalized and published in the journal ''Surface Science''. Hydrogen adsorption energies on both the edges and the clusters were calculated, and the thermodynamics of hydrogen adsorption on both systems were evaluated. The adsorption locations and vibrational frequencies were also determined. These additional results were published in a second paper in ''Surface Science''. Most recently, the bonding and effect of alkali and transition metal ions was investigated on the MoS{sub 2} clusters. Potassium atoms bind to the clusters and increase the binding of hydrogen to the clusters while reducing the activation barriers for hydrogen adsorption. Silver attaches to the Mo7S14 cluster and donates its odd electron to the nearby Mo atoms and should have a similar effect to hydrogen as potassium does.
A Transport Model for Nuclear Reactions Induced by Radioactive Beams
Li Baoan; Chen Liewen; Das, Champak B.; Das Gupta, Subal; Gale, Charles; Ko, C.M.; Yong, G.-C.; Zuo Wei
2005-10-14
Major ingredients of an isospin and momentum dependent transport model for nuclear reactions induced by radioactive beams are outlined. Within the IBUU04 version of this model we study several experimental probes of the equation of state of neutron-rich matter, especially the density dependence of the nuclear symmetry energy. Comparing with the recent experimental data from NSCL/MSU on isospin diffusion, we found a nuclear symmetry energy of Esym({rho}) {approx_equal} 31.6({rho}/{rho}0)1.05 at subnormal densities. Predictions on several observables sensitive to the density dependence of the symmetry energy at supranormal densities accessible at GSI and the planned Rare Isotope Accelerator (RIA) are also made.
Mass transfer model for two-layer TBP oxidation reactions
Laurinat, J.E.
1994-09-28
To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development.
A reaction-diffusion model of human brain development.
Lefèvre, Julien; Mangin, Jean-François
2010-04-01
Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two properties are obviously the result of the brain development that goes through local cellular and molecular interactions which have important consequences on the global shape of the cortex. Hypotheses to explain the convoluted aspect of the brain are still intensively debated and do not focus necessarily on the variability of folds. Here we propose a phenomenological model based on reaction-diffusion mechanisms involving Turing morphogens that are responsible for the differential growth of two types of areas, sulci (bottom of folds) and gyri (top of folds). We use a finite element approach of our model that is able to compute the evolution of morphogens on any kind of surface and to deform it through an iterative process. Our model mimics the progressive folding of the cortical surface along foetal development. Moreover it reveals patterns of reproducibility when we look at several realizations of the model from a noisy initial condition. However this reproducibility must be tempered by the fact that a same fold engendered by the model can have different topological properties, in one or several parts. These two results on the reproducibility and variability of the model echo the sulcal roots theory that postulates the existence of anatomical entities around which the folding organizes itself. These sulcal roots would correspond to initial conditions in our model. Last but not least, the parameters of our model are able to produce different kinds of patterns that can be linked to developmental pathologies such as polymicrogyria and lissencephaly. The main significance of our model is that it proposes a first approach to the issue of reproducibility and variability of the cortical folding. PMID:20421989
A comparison of natural-image-based models of simple-cell coding.
Willmore, B; Watters, P A; Tolhurst, D J
2000-01-01
Models such as that of Olshausen and Field (O&F, 1997 Vision Research 37 3311-3325) and principal components analysis (PCA) have been used to model simple-cell receptive fields, and to try to elucidate the statistical principles underlying visual coding in area V1. They connect the statistical structure of natural images with the statistical structure of the coding used in V1. The O&F model has created particular interest because the basis functions it produces resemble the receptive fields of simple cells. We evaluate these models in terms of their sparseness and dispersal, both of which have been suggested as desirable for efficient visual coding. However, both attributes have been defined ambiguously in the literature, and we have been obliged to formulate specific definitions in order to allow any comparison between models at all. We find that both attributes are strongly affected by any preprocessing (e.g. spectral pseudo-whitening or a logarithmic transformation) which is often applied to images before they are analysed by PCA or the O&F model. We also find that measures of sparseness are affected by the size of the filters--PCA filters with small receptive fields appear sparser than PCA filters with larger spatial extent. Finally, normalisation of the means and variances of filters influences measures of dispersal. It is necessary to control for all of these factors before making any comparisons between different models. Having taken these factors into account, we find that the code produced by the O&F model is somewhat sparser than the code produced by PCA. However, the difference is rather smaller than might have been expected, and a measure of dispersal is required to distinguish clearly between the two models. PMID:11144817
Development and Testing of a Chemical Sputtering Model for the Monte Carlo Impurity (MCI) Code
NASA Astrophysics Data System (ADS)
Loh, Y. S.; Evans, T. E.; West, W. P.; Finkenthal, D. F.; Fenstermacher, M. E.; Porter, G. D.
1997-11-01
Fluid code calculations indicate that chemical sputtering may be an important process in high density, radiatively detached, tokamak divertor operations. A chemical sputtering model has been designed and installed into the DIII--D Monte Carlo Impurity (MCI) transport code. We will discuss how the model was constructed and the sources of atomic data used. Comparisons between chemical and physical sputtering yields will be presented for differing plasma conditions. Preliminary comparisons with DIII--D experimental data and a discussion of the benchmarking process will be presented.
Pulsed Inductive Thruster (PIT): Modeling and Validation Using the MACH2 Code
NASA Technical Reports Server (NTRS)
Schneider, Steven (Technical Monitor); Mikellides, Pavlos G.
2003-01-01
Numerical modeling of the Pulsed Inductive Thruster exercising the magnetohydrodynamics code, MACH2 aims to provide bilateral validation of the thruster's measured performance and the code's capability of capturing the pertinent physical processes. Computed impulse values for helium and argon propellants demonstrate excellent correlation to the experimental data for a range of energy levels and propellant-mass values. The effects of the vacuum tank wall and massinjection scheme were investigated to show trivial changes in the overall performance. An idealized model for these energy levels and propellants deduces that the energy expended to the internal energy modes and plasma dissipation processes is independent of the propellant type, mass, and energy level.
Miley, T.B.; Ouderkirk, S.J.; Nichols, W.E.; Eslinger, P.W.
1993-01-01
The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. One of the major objectives of the HEDR Project is to develop several computer codes to model the airborne releases. transport and envirorunental accumulation of radionuclides resulting from Hanford operations from 1944 through 1972. In July 1992, the HEDR Project Manager determined that the computer codes being developed (DESCARTES, calculation of environmental accumulation from airborne releases, and CIDER, dose calculations from environmental accumulation) were not sufficient to create accurate models. A team of HEDR staff members developed a plan to assure that computer codes would meet HEDR Project goals. The plan consists of five tasks: (1) code requirements definition. (2) scoping studies, (3) design specifications, (4) benchmarking, and (5) data modeling. This report defines the data requirements for the DESCARTES and CIDER codes.
NASA Astrophysics Data System (ADS)
Puchwein, Ewald; Baldi, Marco; Springel, Volker
2013-11-01
We present a new massively parallel code for N-body and cosmological hydrodynamical simulations of modified gravity models. The code employs a multigrid-accelerated Newton-Gauss-Seidel relaxation solver on an adaptive mesh to efficiently solve for perturbations in the scalar degree of freedom of the modified gravity model. As this new algorithm is implemented as a module for the P-GADGET3 code, it can at the same time follow the baryonic physics included in P-GADGET3, such as hydrodynamics, radiative cooling and star formation. We demonstrate that the code works reliably by applying it to simple test problems that can be solved analytically, as well as by comparing cosmological simulations to results from the literature. Using the new code, we perform the first non-radiative and radiative cosmological hydrodynamical simulations of an f (R)-gravity model. We also discuss the impact of active galactic nucleus feedback on the matter power spectrum, as well as degeneracies between the influence of baryonic processes and modifications of gravity.
Ions interacting with planar aromatic molecules: Modeling electron transfer reactions
Forsberg, B. O.; Alexander, J. D.; Chen, T.; Pettersson, A. T.; Gatchell, M.; Cederquist, H.; Zettergren, H.
2013-02-07
We present theoretical absolute charge exchange cross sections for multiply charged cations interacting with the Polycyclic Aromatic Hydrocarbon (PAH) molecules pyrene C{sub 14}H{sub 10}, coronene C{sub 24}H{sub 12}, or circumcoronene C{sub 54}H{sub 18}. These planar, nearly circular, PAHs are modelled as conducting, infinitely thin, and perfectly circular discs, which are randomly oriented with respect to straight line ion trajectories. We present the analytical solution for the potential energy surface experienced by an electron in the field of such a charged disc and a point-charge at an arbitrary position. The location and height of the corresponding potential energy barrier from this simple model are in close agreement with those from much more computationally demanding Density Functional Theory (DFT) calculations in a number of test cases. The model results compare favourably with available experimental data on single- and multiple electron transfer reactions and we demonstrate that it is important to include the orientation dependent polarizabilities of the molecules (model discs) in particular for the larger PAHs. PAH ionization energy sequences from DFT are tabulated and used as model inputs. Absolute cross sections for the ionization of PAH molecules, and PAH ionization energies such as the ones presented here may be useful when considering the roles of PAHs and their ions in, e.g., interstellar chemistry, stellar atmospheres, and in related photoabsorption and photoemission spectroscopies.
A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration
NASA Astrophysics Data System (ADS)
van de Par, Steven; Kohlrausch, Armin; Heusdens, Richard; Jensen, Jesper; Jensen, Søren Holdt
2005-12-01
Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of audio signals. In this paper, we present a new perceptual model that predicts masked thresholds for sinusoidal distortions. The model relies on signal detection theory and incorporates more recent insights about spectral and temporal integration in auditory masking. As a consequence, the model is able to predict the distortion detectability. In fact, the distortion detectability defines a (perceptually relevant) norm on the underlying signal space which is beneficial for optimisation algorithms such as rate-distortion optimisation or linear predictive coding. We evaluate the merits of the model by combining it with a sinusoidal extraction method and compare the results with those obtained with the ISO MPEG-1 Layer I-II recommended model. Listening tests show a clear preference for the new model. More specifically, the model presented here leads to a reduction of more than 20% in terms of number of sinusoids needed to represent signals at a given quality level.
Kroeger, P.G.; Kennett, R.J.; Colman, J.; Ginsberg, T. )
1991-10-01
This report documents the THATCH code, which can be used to model general thermal and flow networks of solids and coolant channels in two-dimensional r-z geometries. The main application of THATCH is to model reactor thermo-hydraulic transients in High-Temperature Gas-Cooled Reactors (HTGRs). The available modules simulate pressurized or depressurized core heatup transients, heat transfer to general exterior sinks or to specific passive Reactor Cavity Cooling Systems, which can be air or water-cooled. Graphite oxidation during air or water ingress can be modelled, including the effects of added combustion products to the gas flow and the additional chemical energy release. A point kinetics model is available for analyzing reactivity excursions; for instance due to water ingress, and also for hypothetical no-scram scenarios. For most HTGR transients, which generally range over hours, a user-selected nodalization of the core in r-z geometry is used. However, a separate model of heat transfer in the symmetry element of each fuel element is also available for very rapid transients. This model can be applied coupled to the traditional coarser r-z nodalization. This report described the mathematical models used in the code and the method of solution. It describes the code and its various sub-elements. Details of the input data and file usage, with file formats, is given for the code, as well as for several preprocessing and postprocessing options. The THATCH model of the currently applicable 350 MW{sub th} reactor is described. Input data for four sample cases are given with output available in fiche form. Installation requirements and code limitations, as well as the most common error indications are listed. 31 refs., 23 figs., 32 tabs.
Burke, G.J.
1988-04-08
Computer modeling of antennas, since its start in the late 1960's, has become a powerful and widely used tool for antenna design. Computer codes have been developed based on the Method-of-Moments, Geometrical Theory of Diffraction, or integration of Maxwell's equations. Of such tools, the Numerical Electromagnetics Code-Method of Moments (NEC) has become one of the most widely used codes for modeling resonant sized antennas. There are several reasons for this including the systematic updating and extension of its capabilities, extensive user-oriented documentation and accessibility of its developers for user assistance. The result is that there are estimated to be several hundred users of various versions of NEC world wide. 23 refs., 10 figs.
Development Of Sputtering Models For Fluids-Based Plasma Simulation Codes
NASA Astrophysics Data System (ADS)
Veitzer, Seth; Beckwith, Kristian; Stoltz, Peter
2015-09-01
Rf-driven plasma devices such as ion sources and plasma processing devices for many industrial and research applications benefit from detailed numerical modeling. Simulation of these devices using explicit PIC codes is difficult due to inherent separations of time and spatial scales. One alternative type of model is fluid-based codes coupled with electromagnetics, that are applicable to modeling higher-density plasmas in the time domain, but can relax time step requirements. To accurately model plasma-surface processes, such as physical sputtering and secondary electron emission, kinetic particle models have been developed, where particles are emitted from a material surface due to plasma ion bombardment. In fluid models plasma properties are defined on a cell-by-cell basis, and distributions for individual particle properties are assumed. This adds a complexity to surface process modeling, which we describe here. We describe the implementation of sputtering models into the hydrodynamic plasma simulation code USim, as well as methods to improve the accuracy of fluids-based simulation of plasmas-surface interactions by better modeling of heat fluxes. This work was performed under the auspices of the Department of Energy, Office of Basic Energy Sciences Award #DE-SC0009585.
NASA Astrophysics Data System (ADS)
Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand
2016-04-01
A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter
Users manual and modeling improvements for axial turbine design and performance computer code TD2-2
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1992-01-01
Computer code TD2 computes design point velocity diagrams and performance for multistage, multishaft, cooled or uncooled, axial flow turbines. This streamline analysis code was recently modified to upgrade modeling related to turbine cooling and to the internal loss correlation. These modifications are presented in this report along with descriptions of the code's expanded input and output. This report serves as the users manual for the upgraded code, which is named TD2-2.
Development of a numerical computer code and circuit element models for simulation of firing systems
Carpenter, K.H. . Dept. of Electrical and Computer Engineering)
1990-07-02
Numerical simulation of firing systems requires both the appropriate circuit analysis framework and the special element models required by the application. We have modified the SPICE circuit analysis code (version 2G.6), developed originally at the Electronic Research Laboratory of the University of California, Berkeley, to allow it to be used on MSDOS-based, personal computers and to give it two additional circuit elements needed by firing systems--fuses and saturating inductances. An interactive editor and a batch driver have been written to ease the use of the SPICE program by system designers, and the interactive graphical post processor, NUTMEG, supplied by U. C. Berkeley with SPICE version 3B1, has been interfaced to the output from the modified SPICE. Documentation and installation aids have been provided to make the total software system accessible to PC users. Sample problems show that the resulting code is in agreement with the FIRESET code on which the fuse model was based (with some modifications to the dynamics of scaling fuse parameters). In order to allow for more complex simulations of firing systems, studies have been made of additional special circuit elements--switches and ferrite cored inductances. A simple switch model has been investigated which promises to give at least a first approximation to the physical effects of a non ideal switch, and which can be added to the existing SPICE circuits without changing the SPICE code itself. The effect of fast rise time pulses on ferrites has been studied experimentally in order to provide a base for future modeling and incorporation of the dynamic effects of changes in core magnetization into the SPICE code. This report contains detailed accounts of the work on these topics performed during the period it covers, and has appendices listing all source code written documentation produced.
Motion-compensated coding and frame rate up-conversion: models and analysis.
Dar, Yehuda; Bruckstein, Alfred M
2015-07-01
Block-based motion estimation (ME) and motion compensation (MC) techniques are widely used in modern video processing algorithms and compression systems. The great variety of video applications and devices results in diverse compression specifications, such as frame rates and bit rates. In this paper, we study the effect of frame rate and compression bit rate on block-based ME and MC as commonly utilized in inter-frame coding and frame rate up-conversion (FRUC). This joint examination yields a theoretical foundation for comparing MC procedures in coding and FRUC. First, the video signal is locally modeled as a noisy translational motion of an image. Then, we theoretically model the motion-compensated prediction of available and absent frames as in coding and FRUC applications, respectively. The theoretic MC-prediction error is studied further and its autocorrelation function is calculated, yielding useful separable-simplifications for the coding application. We argue that a linear relation exists between the variance of the MC-prediction error and temporal distance. While the relevant distance in MC coding is between the predicted and reference frames, MC-FRUC is affected by the distance between the frames available for interpolation. We compare our estimates with experimental results and show that the theory explains qualitatively the empirical behavior. Then, we use the models proposed to analyze a system for improving of video coding at low bit rates, using a spatio-temporal scaling. Although this concept is practically employed in various forms, so far it lacked a theoretical justification. We here harness the proposed MC models and present a comprehensive analysis of the system, to qualitatively predict the experimental results.
An Equilibrium-Based Model of Gas Reaction and Detonation
Trowbridge, L.D.
2000-04-01
During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999.
Reaction Diffusion Modeling of Calcium Dynamics with Realistic ER Geometry
Means, Shawn; Smith, Alexander J.; Shepherd, Jason; Shadid, John; Fowler, John; Wojcikiewicz, Richard J. H.; Mazel, Tomas; Smith, Gregory D.; Wilson, Bridget S.
2006-01-01
We describe a finite-element model of mast cell calcium dynamics that incorporates the endoplasmic reticulum's complex geometry. The model is built upon a three-dimensional reconstruction of the endoplasmic reticulum (ER) from an electron tomographic tilt series. Tetrahedral meshes provide volumetric representations of the ER lumen, ER membrane, cytoplasm, and plasma membrane. The reaction-diffusion model simultaneously tracks changes in cytoplasmic and ER intraluminal calcium concentrations and includes luminal and cytoplasmic protein buffers. Transport fluxes via PMCA, SERCA, ER leakage, and Type II IP3 receptors are also represented. Unique features of the model include stochastic behavior of IP3 receptor calcium channels and comparisons of channel open times when diffusely distributed or aggregated in clusters on the ER surface. Simulations show that IP3R channels in close proximity modulate activity of their neighbors through local Ca2+ feedback effects. Cytoplasmic calcium levels rise higher, and ER luminal calcium concentrations drop lower, after IP3-mediated release from receptors in the diffuse configuration. Simulation results also suggest that the buffering capacity of the ER, and not restricted diffusion, is the predominant factor influencing average luminal calcium concentrations. PMID:16617072
A Reaction-Diffusion Model of Cholinergic Retinal Waves
Lansdell, Benjamin; Ford, Kevin; Kutz, J. Nathan
2014-01-01
Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability. PMID:25474327
Ellingson, R.G.; Wiscombe, W.J.; Murcray, D.; Smith, W.; Strauch, R.
1990-01-01
Following the finding by the InterComparison of Radiation Codes used in Climate Models (ICRCCM) of large differences among fluxes predicted by sophisticated radiation models that could not be sorted out because of the lack of a set of accurate atmospheric spectral radiation data measured simultaneously with the important radiative properties of the atmosphere, our team of scientists proposed to remedy the situation by carrying out a comprehensive program of measurement and analysis called SPECTRE (Spectral Radiance Experiment). SPECTRE will establish an absolute standard against which to compare models, and will aim to remove the hidden variables'' (unknown humidities, aerosols, etc.) which radiation modelers have invoked to excuse disagreements with observation. The data to be collected during SPECTRE will form the test bed for the second phase of ICRCCM, namely verification and calibration of radiation codes used to climate models. This should lead to more accurate radiation models for use in parameterizing climate models, which in turn play a key role in the prediction of trace-gas greenhouse effects. Overall, the project is proceeding much as had been anticipated in the original proposal. The most significant accomplishments to date include the completion of the analysis of the original ICRCCM calculations, the completion of the initial sensitivity analysis of the radiation calculations for the effects of uncertainties in the measurement of water vapor and temperature and the acquisition and testing of the inexpensive spectrometers for use in the field experiment. The sensitivity analysis and the spectrometer tests given us much more confidence that the field experiment will yield the quality of data necessary to make a significant tests of and improvements to radiative transfer models used in climate studies.
Antioxidative properties of Iberis amara extracts in biochemical model reactions.
Schempp, Harald; Toth, Angela; Weiser, Dieter; Elstner, Erich F
2003-01-01
Gastro-intestinal disorders such as the non-ulcer dyspepsia and irritable bowel syndrome expatiate on/with inflammatory processes of the gastro-intestinal mucosa. Iberogast is used in treatment of such disorders. Iberis amara L. extract (IAE) is one of nine components of the drug. There is increasing evidence that mediators of inflammation processes in the stomach and intestine include reactive oxygen species (ROS), arising from several enzymic reactions characteristic for inflammatory events. In this study it was shown that Iberis amara extract (STW 6) has the potential for scavenging ROS, dependent on the individual test system. Biochemical model reactions relevant for the formation of ROS in vivo at inflammatory sites were used. Inhibition of the formation of ROS could be shown to be excellent in test systems known to preferentially produce reactive species (myeloperoxidase-generated HOCl, peroxynitrite) with high affinities to sulfur-containing compounds, e.g. mustard oil glycosides such as glucoiberin. Furthermore ROS, generated during xanthine oxidase (XOD)-catalysed oxidation of xanthine into uric acid, were also efficiently decreased by IAE. However, an inhibition of XOD could be excluded, but chelation of metal ions (Fe, Cu) decreasing their redox-cycling activities seems to play a role. A major activity of IAE proved to represent inhibition of lipid peroxidation processes, shown as delay of the lag phase of the Cu(II)-induced LDL oxidation as well as protection of alpha-linolenic acid from peroxidation by singlet oxygen.
A multi-pathway model for photosynthetic reaction center.
Qin, M; Shen, H Z; Yi, X X
2016-03-28
Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments. PMID:27036480
A multi-pathway model for photosynthetic reaction center
NASA Astrophysics Data System (ADS)
Qin, M.; Shen, H. Z.; Yi, X. X.
2016-03-01
Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.
Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries
NASA Astrophysics Data System (ADS)
Yellowhair, Julius; Ortega, Jesus D.; Christian, Joshua M.; Ho, Clifford K.
2014-09-01
Solar optical modeling tools are valuable for modeling and predicting the performance of solar technology systems. Four optical modeling tools were evaluated using the National Solar Thermal Test Facility heliostat field combined with flat plate receiver geometry as a benchmark. The four optical modeling tools evaluated were DELSOL, HELIOS, SolTrace, and Tonatiuh. All are available for free from their respective developers. DELSOL and HELIOS both use a convolution of the sunshape and optical errors for rapid calculation of the incident irradiance profiles on the receiver surfaces. SolTrace and Tonatiuh use ray-tracing methods to intersect the reflected solar rays with the receiver surfaces and construct irradiance profiles. We found the ray-tracing tools, although slower in computation speed, to be more flexible for modeling complex receiver geometries, whereas DELSOL and HELIOS were limited to standard receiver geometries such as flat plate, cylinder, and cavity receivers. We also list the strengths and deficiencies of the tools to show tool preference depending on the modeling and design needs. We provide an example of using SolTrace for modeling nonconventional receiver geometries. The goal is to transfer the irradiance profiles on the receiver surfaces calculated in an optical code to a computational fluid dynamics code such as ANSYS Fluent. This approach eliminates the need for using discrete ordinance or discrete radiation transfer models, which are computationally intensive, within the CFD code. The irradiance profiles on the receiver surfaces then allows for thermal and fluid analysis on the receiver.
Overview of the Graphical User Interface for the GERM Code (GCR Event-Based Risk Model
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2010-01-01
The descriptions of biophysical events from heavy ions are of interest in radiobiology, cancer therapy, and space exploration. The biophysical description of the passage of heavy ions in tissue and shielding materials is best described by a stochastic approach that includes both ion track structure and nuclear interactions. A new computer model called the GCR Event-based Risk Model (GERM) code was developed for the description of biophysical events from heavy ion beams at the NASA Space Radiation Laboratory (NSRL). The GERM code calculates basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at NSRL for the purpose of simulating space radiobiological effects. For mono-energetic beams, the code evaluates the linear-energy transfer (LET), range (R), and absorption in tissue equivalent material for a given Charge (Z), Mass Number (A) and kinetic energy (E) of an ion. In addition, a set of biophysical properties are evaluated such as the Poisson distribution of ion or delta-ray hits for a specified cellular area, cell survival curves, and mutation and tumor probabilities. The GERM code also calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle. The contributions from primary ion and nuclear secondaries are evaluated. The GERM code accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections, and has been used by the GERM code for application to thick target experiments. The GERM code provides scientists participating in NSRL experiments with the data needed for the interpretation of their
Photodynamic therapy: computer modeling of diffusion and reaction phenomena
NASA Astrophysics Data System (ADS)
Hampton, James A.; Mahama, Patricia A.; Fournier, Ronald L.; Henning, Jeffery P.
1996-04-01
We have developed a transient, one-dimensional mathematical model for the reaction and diffusion phenomena that occurs during photodynamic therapy (PDT). This model is referred to as the PDTmodem program. The model is solved by the Crank-Nicholson finite difference technique and can be used to predict the fates of important molecular species within the intercapillary tissue undergoing PDT. The following factors govern molecular oxygen consumption and singlet oxygen generation within a tumor: (1) photosensitizer concentration; (2) fluence rate; and (3) intercapillary spacing. In an effort to maximize direct tumor cell killing, the model allows educated decisions to be made to insure the uniform generation and exposure of singlet oxygen to tumor cells across the intercapillary space. Based on predictions made by the model, we have determined that the singlet oxygen concentration profile within the intercapillary space is controlled by the product of the drug concentration, and light fluence rate. The model predicts that at high levels of this product, within seconds singlet oxygen generation is limited to a small core of cells immediately surrounding the capillary. The remainder of the tumor tissue in the intercapillary space is anoxic and protected from the generation and toxic effects of singlet oxygen. However, at lower values of this product, the PDT-induced anoxic regions are not observed. An important finding is that an optimal value of this product can be defined that maintains the singlet oxygen concentration throughout the intercapillary space at a near constant level. Direct tumor cell killing is therefore postulated to depend on the singlet oxygen exposure, defined as the product of the uniform singlet oxygen concentration and the time of exposure, and not on the total light dose.
Modelling the Maillard reaction during the cooking of a model cheese.
Bertrand, Emmanuel; Meyer, Xuân-Mi; Machado-Maturana, Elizabeth; Berdagué, Jean-Louis; Kondjoyan, Alain
2015-10-01
During processing and storage of industrial processed cheese, odorous compounds are formed. Some of them are potentially unwanted for the flavour of the product. To reduce the appearance of these compounds, a methodological approach was employed. It consists of: (i) the identification of the key compounds or precursors responsible for the off-flavour observed, (ii) the monitoring of these markers during the heat treatments applied to the cheese medium, (iii) the establishment of an observable reaction scheme adapted from a literature survey to the compounds identified in the heated cheese medium (iv) the multi-responses stoichiokinetic modelling of these reaction markers. Systematic two-dimensional gas chromatography time-of-flight mass spectrometry was used for the semi-quantitation of trace compounds. Precursors were quantitated by high-performance liquid chromatography. The experimental data obtained were fitted to the model with 14 elementary linked reactions forming a multi-response observable reaction scheme.
Spatially resolved flamelet statistics for reaction rate modeling
Chew, T.C.; Bray, K.N.C.; Britter, R.E. . Dept. of Engineering)
1990-04-01
Using two-dimensional laser sheet tomography of Bunsen flames, important spatial statistics relating to premixed turbulent combustion modeling are measured. The integral length scale of flame wrinkling, evaluated along contours of reaction progress variable ({bar {ital c}}), is found to be almost constant for all values of {bar {ital c}}. Its magnitude is measured to be very close to the integral length scale in the unreacted turbulent flow. The flamelet crossing angle distribution in the plane of visualization is found to vary along a {bar {ital c}} contour reflecting the nonhomogeneity in the flame, but the overall distributions for different {bar {ital c}} values are approximately the same. The overall mean cosine value is found to be very close to 0.5. Other parameters of interest, including {bar {ital c}} contours, flamelet crossing lengths, and crossing frequencies, are also examined.
Stimulation at Desert Peak -modeling with the coupled THM code FEHM
kelkar, sharad
2013-04-30
Numerical modeling of the 2011 shear stimulation at the Desert Peak well 27-15. This submission contains the FEHM executable code for a 64-bit PC Windows-7 machine, and the input and output files for the results presented in the included paper from ARMA-213 meeting.
ERIC Educational Resources Information Center
Wang, Yanqing; Li, Hang; Feng, Yuqiang; Jiang, Yu; Liu, Ying
2012-01-01
The traditional assessment approach, in which one single written examination counts toward a student's total score, no longer meets new demands of programming language education. Based on a peer code review process model, we developed an online assessment system called "EduPCR" and used a novel approach to assess the learning of computer…
Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Ameri, Ali
2005-01-01
This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.
7 CFR Exhibit E to Subpart A of... - Voluntary National Model Building Codes
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Voluntary National Model Building Codes E Exhibit E..., DEPARTMENT OF AGRICULTURE PROGRAM REGULATIONS CONSTRUCTION AND REPAIR Planning and Performing Construction and Other Development Pt. 1924, Subpt. A, Exh. E Exhibit E to Subpart A of Part...
7 CFR Exhibit E to Subpart A of... - Voluntary National Model Building Codes
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 12 2011-01-01 2011-01-01 false Voluntary National Model Building Codes E Exhibit E to Subpart A of Part 1924 Agriculture Regulations of the Department of Agriculture (Continued) RURAL... and Other Development Pt. 1924, Subpt. A, Exh. E Exhibit E to Subpart A of Part...
a Model Study of Complex Behavior in the Belousov - Reaction.
NASA Astrophysics Data System (ADS)
Lindberg, David Mark
1988-12-01
We have studied the complex oscillatory behavior in a model of the Belousov-Zhabotinskii (BZ) reaction in a continuously-fed stirred tank reactor (CSTR). The model consisted of a set of nonlinear ordinary differential equations derived from a reduced mechanism of the chemical system. These equations were integrated numerically on a computer, which yielded the concentrations of the constituent chemicals as functions of time. In addition, solutions were tracked as functions of a single parameter, the stability of the solutions was determined, and bifurcations of the solutions were located and studied. The intent of this study was to use this BZ model to explore further a region of complex oscillatory behavior found in experimental investigations, the most thorough of which revealed an alternating periodic-chaotic (P-C) sequence of states. A P-C sequence was discovered in the model which showed the same qualitative features as the experimental sequence. In order to better understand the P-C sequence, a detailed study was conducted in the vicinity of the P-C sequence, with two experimentally accessible parameters as control variables. This study mapped out the bifurcation sets, and included examination of the dynamics of the stable periodic, unstable periodic, and chaotic oscillatory motion. Observations made from the model results revealed a rough symmetry which suggests a new way of looking at the P-C sequence. Other nonlinear phenomena uncovered in the model were boundary and interior crises, several codimension-two bifurcations, and similarities in the shapes of areas of stability for periodic orbits in two-parameter space. Each earlier model study of this complex region involved only a limited one-parameter scan and had limited success in producing agreement with experiments. In contrast, for those regions of complex behavior that have been studied experimentally, the observations agree qualitatively with our model results. Several new predictions of the model
Wolery, T.J.; Daveler, S.A.
1992-10-09
EQ6 is a FORTRAN computer program in the EQ3/6 software package (Wolery, 1979). It calculates reaction paths (chemical evolution) in reacting water-rock and water-rock-waste systems. Speciation in aqueous solution is an integral part of these calculations. EQ6 computes models of titration processes (including fluid mixing), irreversible reaction in closed systems, irreversible reaction in some simple kinds of open systems, and heating or cooling processes, as well as solve ``single-point`` thermodynamic equilibrium problems. A reaction path calculation normally involves a sequence of thermodynamic equilibrium calculations. Chemical evolution is driven by a set of irreversible reactions (i.e., reactions out of equilibrium) and/or changes in temperature and/or pressure. These irreversible reactions usually represent the dissolution or precipitation of minerals or other solids. The code computes the appearance and disappearance of phases in solubility equilibrium with the water. It finds the identities of these phases automatically. The user may specify which potential phases are allowed to form and which are not. There is an option to fix the fugacities of specified gas species, simulating contact with a large external reservoir. Rate laws for irreversible reactions may be either relative rates or actual rates. If any actual rates are used, the calculation has a time frame. Several forms for actual rate laws are programmed into the code. EQ6 is presently able to model both mineral dissolution and growth kinetics.
Extending NEC to model wire objects in infinite chiral media. [Numerical electromagnetic code (NEC)
Burke, G.J. ); Miller, E.K. ); Bhattachryya, A.K. . Physical Science Lab.)
1992-01-01
The development of a moment-method model for wire objects in an infinite chiral medium is described. In this work, the Numerical Electromagnetics Code (NEC) was extended by including a new integral-equation kernel obtained from the dyadic Green's function for an infinite chiral medium. The NEC moment-method treatment using point matching and a three-term sinusoidal current expansion was adapted to the case of a chiral medium. Examples of current distributions and radiation patterns for simple antennas are presented, and the validation of the code is discussed. 15 refs.
Modeling Improvements and Users Manual for Axial-flow Turbine Off-design Computer Code AXOD
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1994-01-01
An axial-flow turbine off-design performance computer code used for preliminary studies of gas turbine systems was modified and calibrated based on the experimental performance of large aircraft-type turbines. The flow- and loss-model modifications and calibrations are presented in this report. Comparisons are made between computed performances and experimental data for seven turbines over wide ranges of speed and pressure ratio. This report also serves as the users manual for the revised code, which is named AXOD.
Distortion-rate models for entropy-coded lattice vector quantization.
Raffy, P; Antonini, M; Barlaud, M
2000-01-01
The increasing demand for real-time applications requires the use of variable-rate quantizers having good performance in the low bit rate domain. In order to minimize the complexity of quantization, as well as maintaining a reasonably high PSNR ratio, we propose to use an entropy-coded lattice vector quantizer (ECLVQ). These quantizers have proven to outperform the well-known EZW algorithm's performance in terms of rate-distortion tradeoff. In this paper, we focus our attention on the modeling of the mean squared error (MSE) distortion and the prefix code rate for ECLVQ. First, we generalize the distortion model of Jeong and Gibson (1993) on fixed-rate cubic quantizers to lattices under a high rate assumption. Second, we derive new rate models for ECLVQ, efficient at low bit rates without any high rate assumptions. Simulation results prove the precision of our models. PMID:18262939
Coste, P.; Bestion, D.
1995-09-01
This paper presents a simple modelling of mass diffusion effects on condensation. In presence of noncondensable gases, the mass diffusion near the interface is modelled using the heat and mass transfer analogy and requires normally an iterative procedure to calculate the interface temperature. Simplifications of the model and of the solution procedure are used without important degradation of the predictions. The model is assessed on experimental data for both film condensation in vertical tubes and direct contact condensation in horizontal tubes, including air-steam, Nitrogen-steam and Helium-steam data. It is implemented in the Cathare code, a french system code for nuclear reactor thermal hydraulics developed by CEA, EDF, and FRAMATOME.
Error control in the GCF: An information-theoretic model for error analysis and coding
NASA Technical Reports Server (NTRS)
Adeyemi, O.
1974-01-01
The structure of data-transmission errors within the Ground Communications Facility is analyzed in order to provide error control (both forward error correction and feedback retransmission) for improved communication. Emphasis is placed on constructing a theoretical model of errors and obtaining from it all the relevant statistics for error control. No specific coding strategy is analyzed, but references to the significance of certain error pattern distributions, as predicted by the model, to error correction are made.
Trent, D.S.; Eyler, L.L.
1982-09-01
In this study several aspects of simulating hydrogen distribution in geometric configurations relevant to reactor containment structures were investigated using the TEMPEST computer code. Of particular interest was the performance of the TEMPEST turbulence model in a density-stratified environment. Computed results illustrated that the TEMPEST numerical procedures predicted the measured phenomena with good accuracy under a variety of conditions and that the turbulence model used is a viable approach in complex turbulent flow simulation.
A finite-temperature Hartree-Fock code for shell-model Hamiltonians
NASA Astrophysics Data System (ADS)
Bertsch, G. F.; Mehlhaff, J. M.
2016-10-01
The codes HFgradZ.py and HFgradT.py find axially symmetric minima of a Hartree-Fock energy functional for a Hamiltonian supplied in a shell model basis. The functional to be minimized is the Hartree-Fock energy for zero-temperature properties or the Hartree-Fock grand potential for finite-temperature properties (thermal energy, entropy). The minimization may be subjected to additional constraints besides axial symmetry and nucleon numbers. A single-particle operator can be used to constrain the minimization by adding it to the single-particle Hamiltonian with a Lagrange multiplier. One can also constrain its expectation value in the zero-temperature code. Also the orbital filling can be constrained in the zero-temperature code, fixing the number of nucleons having given Kπ quantum numbers. This is particularly useful to resolve near-degeneracies among distinct minima.
Physics Based Model for Cryogenic Chilldown and Loading. Part IV: Code Structure
NASA Technical Reports Server (NTRS)
Luchinsky, D. G.; Smelyanskiy, V. N.; Brown, B.
2014-01-01
This is the fourth report in a series of technical reports that describe separated two-phase flow model application to the cryogenic loading operation. In this report we present the structure of the code. The code consists of five major modules: (1) geometry module; (2) solver; (3) material properties; (4) correlations; and finally (5) stability control module. The two key modules - solver and correlations - are further divided into a number of submodules. Most of the physics and knowledge databases related to the properties of cryogenic two-phase flow are included into the cryogenic correlations module. The functional form of those correlations is not well established and is a subject of extensive research. Multiple parametric forms for various correlations are currently available. Some of them are included into correlations module as will be described in details in a separate technical report. Here we describe the overall structure of the code and focus on the details of the solver and stability control modules.
A users manual for the method of moments Aircraft Modeling Code (AMC), version 2
NASA Technical Reports Server (NTRS)
Peters, M. E.; Newman, E. H.
1994-01-01
This report serves as a user's manual for Version 2 of the 'Aircraft Modeling Code' or AMC. AMC is a user-oriented computer code, based on the method of moments (MM), for the analysis of the radiation and/or scattering from geometries consisting of a main body or fuselage shape with attached wings and fins. The shape of the main body is described by defining its cross section at several stations along its length. Wings, fins, rotor blades, and radiating monopoles can then be attached to the main body. Although AMC was specifically designed for aircraft or helicopter shapes, it can also be applied to missiles, ships, submarines, jet inlets, automobiles, spacecraft, etc. The problem geometry and run control parameters are specified via a two character command language input format. This report describes the input command language and also includes several examples which illustrate typical code inputs and outputs.
A user's manual for the method of moments Aircraft Modeling Code (AMC)
NASA Technical Reports Server (NTRS)
Peters, M. E.; Newman, E. H.
1989-01-01
This report serves as a user's manual for the Aircraft Modeling Code or AMC. AMC is a user-oriented computer code, based on the method of moments (MM), for the analysis of the radiation and/or scattering from geometries consisting of a main body or fuselage shape with attached wings and fins. The shape of the main body is described by defining its cross section at several stations along its length. Wings, fins, rotor blades, and radiating monopoles can then be attached to the main body. Although AMC was specifically designed for aircraft or helicopter shapes, it can also be applied to missiles, ships, submarines, jet inlets, automobiles, spacecraft, etc. The problem geometry and run control parameters are specified via a two character command language input format. The input command language is described and several examples which illustrate typical code inputs and outputs are also included.
MELMRK 2. 0: A description of computer models and results of code testing
Wittman, R.S. ); Denny, V.; Mertol, A. )
1992-05-31
An advanced version of the MELMRK computer code has been developed that provides detailed models for conservation of mass, momentum, and thermal energy within relocating streams of molten metallics during meltdown of Savannah River Site (SRS) reactor assemblies. In addition to a mechanistic treatment of transport phenomena within a relocating stream, MELMRK 2.0 retains the MOD1 capability for real-time coupling of the in-depth thermal response of participating assembly heat structure and, further, augments this capability with models for self-heating of relocating melt owing to steam oxidation of metallics and fission product decay power. As was the case for MELMRK 1.0, the MOD2 version offers state-of-the-art numerics for solving coupled sets of nonlinear differential equations. Principal features include application of multi-dimensional Newton-Raphson techniques to accelerate convergence behavior and direct matrix inversion to advance primitive variables from one iterate to the next. Additionally, MELMRK 2.0 provides logical event flags for managing the broad range of code options available for treating such features as (1) coexisting flow regimes, (2) dynamic transitions between flow regimes, and (3) linkages between heatup and relocation code modules. The purpose of this report is to provide a detailed description of the MELMRK 2.0 computer models for melt relocation. Also included are illustrative results for code testing, as well as an integrated calculation for meltdown of a Mark 31a assembly.
MELMRK 2.0: A description of computer models and results of code testing
Wittman, R.S.; Denny, V.; Mertol, A.
1992-05-31
An advanced version of the MELMRK computer code has been developed that provides detailed models for conservation of mass, momentum, and thermal energy within relocating streams of molten metallics during meltdown of Savannah River Site (SRS) reactor assemblies. In addition to a mechanistic treatment of transport phenomena within a relocating stream, MELMRK 2.0 retains the MOD1 capability for real-time coupling of the in-depth thermal response of participating assembly heat structure and, further, augments this capability with models for self-heating of relocating melt owing to steam oxidation of metallics and fission product decay power. As was the case for MELMRK 1.0, the MOD2 version offers state-of-the-art numerics for solving coupled sets of nonlinear differential equations. Principal features include application of multi-dimensional Newton-Raphson techniques to accelerate convergence behavior and direct matrix inversion to advance primitive variables from one iterate to the next. Additionally, MELMRK 2.0 provides logical event flags for managing the broad range of code options available for treating such features as (1) coexisting flow regimes, (2) dynamic transitions between flow regimes, and (3) linkages between heatup and relocation code modules. The purpose of this report is to provide a detailed description of the MELMRK 2.0 computer models for melt relocation. Also included are illustrative results for code testing, as well as an integrated calculation for meltdown of a Mark 31a assembly.
NASA Astrophysics Data System (ADS)
Dwivedi, Sunil; Horie, Yasuyuki
2011-06-01
PBRB model for reactive composites simulates the reaction initiation and growth leading to detonation with built-in models for multiple individual as well as coupled phenomena: pre-existing statistical pore distribution, energy dissipation during shock loading and hot spot formations, surface temperature increase of the planar pore surfaces, surface reaction by sublimation, gas phase reaction, gas phase temperature rise and reverse heat flow to the pore surface aiding the surface reaction, solid phase heat conduction, etc. 1D idealized hot spot cell (1DHSC) version of the 3D PBRB model has been converted to a vectorized EOS form for the first time. Results validating the model with the pop plot of RDX in agreement with data through simulation of an assumed plate impact experiment will be presented. In addition, the effect of the surface sublimation model parameters on the rate of reaction, detonation shock pressure, and von-Neumann's peak for thin and thick inert impactor will be presented. We acknowledge Dr. Betsy Rice (ARL), Dr. Suhithi Peiris (DTRA) and Dr. John Brennan (ARL) for their support and discussion. This work is supported by Eglin AFB contract FA8651-08-0108/027 and in part by DTRA contract HDTRA-1-10-1-0035.
The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS
Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.
2015-04-22
The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, the capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.
The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS
Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.
2015-04-22
The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less
Helioseismic Constraints on New Solar Models from the MoSEC Code
NASA Technical Reports Server (NTRS)
Elliott, J. R.
1998-01-01
Evolutionary solar models are computed using a new stellar evolution code, MOSEC (Modular Stellar Evolution Code). This code has been designed with carefully controlled truncation errors in order to achieve a precision which reflects the increasingly accurate determination of solar interior structure by helioseismology. A series of models is constructed to investigate the effects of the choice of equation of state (OPAL or MHD-E, the latter being a version of the MHD equation of state recalculated by the author), the inclusion of helium and heavy-element settling and diffusion, and the inclusion of a simple model of mixing associated with the solar tachocline. The neutrino flux predictions are discussed, while the sound speed of the computed models is compared to that of the sun via the latest inversion of SOI-NMI p-mode frequency data. The comparison between models calculated with the OPAL and MHD-E equations of state is particularly interesting because the MHD-E equation of state includes relativistic effects for the electrons, whereas neither MHD nor OPAL do. This has a significant effect on the sound speed of the computed model, worsening the agreement with the solar sound speed. Using the OPAL equation of state and including the settling and diffusion of helium and heavy elements produces agreement in sound speed with the helioseismic results to within about +.-0.2%; the inclusion of mixing slightly improves the agreement.
Santos-Villalobos, Hector J; Gregor, Jens; Bingham, Philip R
2014-01-01
At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. To overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.
NASA Astrophysics Data System (ADS)
Kundu, A.; Santra, S.; Pal, A.; Chattopadhyay, D.; Nayak, B. K.; Saxena, A.; Kailas, S.
2016-07-01
Background: Complete fusion cross section measurements involving weakly bound projectiles show suppression at above-barrier energies compared to coupled-channels (CC) calculations, but no definite conclusion could be drawn for sub-barrier energies. Different CC models often lead to contrasting results. Purpose: We aim to investigate the differences in the fusion cross sections predicted by commonly used CC calculations, using codes such as fresco and ccfull, when compared to experimental data. Methods: The fusion cross sections are normalized to a dimensionless form by isolating the effect of only dynamic channel couplings calculated by both fresco and ccfull, by the method of fusion functions, and compared to a universal fusion function. This acts as a probe for obtaining the model dependence of fusion. Results: A difference is observed between the predictions of fresco and ccfull for all the reactions involving Li,76 as projectiles, and it is noticeably more for systems involving 7Li. Conclusions: With the theoretical foundations of the two CC models being different, their calculation of fusion is different even for the same system. The conclusion about the enhancement or suppression of fusion cross sections is model dependent.
NASA Astrophysics Data System (ADS)
Tang, G.; Yuan, F.; Bisht, G.; Hammond, G. E.; Lichtner, P. C.; Kumar, J.; Mills, R. T.; Xu, X.; Andre, B.; Hoffman, F. M.; Painter, S. L.; Thornton, P. E.
2015-12-01
We explore coupling to a configurable subsurface reactive transport code as a flexible and extensible approach to biogeochemistry in land surface models; our goal is to facilitate testing of alternative models and incorporation of new understanding. A reaction network with the CLM-CN decomposition, nitrification, denitrification, and plant uptake is used as an example. We implement the reactions in the open-source PFLOTRAN code, coupled with the Community Land Model (CLM), and test at Arctic, temperate, and tropical sites. To make the reaction network designed for use in explicit time stepping in CLM compatible with the implicit time stepping used in PFLOTRAN, the Monod substrate rate-limiting function with a residual concentration is used to represent the limitation of nitrogen availability on plant uptake and immobilization. To achieve accurate, efficient, and robust numerical solutions, care needs to be taken to use scaling, clipping, or log transformation to avoid negative concentrations during the Newton iterations. With a tight relative update tolerance to avoid false convergence, an accurate solution can be achieved with about 50 % more computing time than CLM in point mode site simulations using either the scaling or clipping methods. The log transformation method takes 60-100 % more computing time than CLM. The computing time increases slightly for clipping and scaling; it increases substantially for log transformation for half saturation decrease from 10-3 to 10-9 mol m-3, which normally results in decreasing nitrogen concentrations. The frequent occurrence of very low concentrations (e.g. below nanomolar) can increase the computing time for clipping or scaling by about 20 %; computing time can be doubled for log transformation. Caution needs to be taken in choosing the appropriate scaling factor because a small value caused by a negative update to a small concentration may diminish the update and result in false convergence even with very tight relative
Tang, G.; Yuan, F.; Bisht, G.; Hammond, G. E.; Lichtner, P. C.; Kumar, J.; Mills, R. T.; Xu, X.; Andre, B.; Hoffman, F. M.; et al
2015-12-17
We explore coupling to a configurable subsurface reactive transport code as a flexible and extensible approach to biogeochemistry in land surface models; our goal is to facilitate testing of alternative models and incorporation of new understanding. A reaction network with the CLM-CN decomposition, nitrification, denitrification, and plant uptake is used as an example. We implement the reactions in the open-source PFLOTRAN code, coupled with the Community Land Model (CLM), and test at Arctic, temperate, and tropical sites. To make the reaction network designed for use in explicit time stepping in CLM compatible with the implicit time stepping used in PFLOTRAN,more » the Monod substrate rate-limiting function with a residual concentration is used to represent the limitation of nitrogen availability on plant uptake and immobilization. To achieve accurate, efficient, and robust numerical solutions, care needs to be taken to use scaling, clipping, or log transformation to avoid negative concentrations during the Newton iterations. With a tight relative update tolerance to avoid false convergence, an accurate solution can be achieved with about 50 % more computing time than CLM in point mode site simulations using either the scaling or clipping methods. The log transformation method takes 60–100 % more computing time than CLM. The computing time increases slightly for clipping and scaling; it increases substantially for log transformation for half saturation decrease from 10−3 to 10−9 mol m−3, which normally results in decreasing nitrogen concentrations. The frequent occurrence of very low concentrations (e.g. below nanomolar) can increase the computing time for clipping or scaling by about 20 %; computing time can be doubled for log transformation. Caution needs to be taken in choosing the appropriate scaling factor because a small value caused by a negative update to a small concentration may diminish the update and result in false convergence even with very
New high burnup fuel models for NRC`s licensing audit code, FRAPCON
Lanning, D.D.; Beyer, C.E.; Painter, C.L.
1996-03-01
Fuel behavior models have recently been updated within the U.S. Nuclear Regulatory Commission steady-state FRAPCON code used for auditing of fuel vendor/utility-codes and analyses. These modeling updates have concentrated on providing a best estimate prediction of steady-state fuel behavior up to the maximum burnup level s of current data (60 to 65 GWd/MTU rod-average). A decade has passed since these models were last updated. Currently, some U.S. utilities and fuel vendors are requesting approval for rod-average burnups greater than 60 GWd/MTU; however, until these recent updates the NRC did not have valid fuel performance models at these higher burnup levels. Pacific Northwest Laboratory (PNL) has reviewed 15 separate effects models within the FRAPCON fuel performance code (References 1 and 2) and identified nine models that needed updating for improved prediction of fuel behavior at high burnup levels. The six separate effects models not updated were the cladding thermal properties, cladding thermal expansion, cladding creepdown, fuel specific heat, fuel thermal expansion and open gap conductance. Comparison of these models to the currently available data indicates that these models still adequately predict the data within data uncertainties. The nine models identified as needing improvement for predicting high-burnup behavior are fission gas release (FGR), fuel thermal conductivity (accounting for both high burnup effects and burnable poison additions), fuel swelling, fuel relocation, radial power distribution, fuel-cladding contact gap conductance, cladding corrosion, cladding mechanical properties and cladding axial growth. Each of the updated models will be described in the following sections and the model predictions will be compared to currently available high burnup data.
NASA Technical Reports Server (NTRS)
Snyder, Aaron; Banks, Bruce; Miller, Sharon; Stueber, Thomas; Sechkar, Edward
2001-01-01
A numerical procedure is presented to calculate transmittance degradation caused by contaminant films on spacecraft surfaces produced through the interaction of orbital atomic oxygen (AO) with volatile silicones and hydrocarbons from spacecraft components. In the model, contaminant accretion is dependent on the adsorption of species, depletion reactions due to gas-surface collisions, desorption, and surface reactions between AO and silicone producing SiO(x), (where x is near 2). A detailed description of the procedure used to calculate the constituents of the contaminant layer is presented, including the equations that govern the evolution of fractional coverage by specie type. As an illustrative example of film growth, calculation results using a prototype code that calculates the evolution of surface coverage by specie type is presented and discussed. An example of the transmittance degradation caused by surface interaction of AO with deposited contaminant is presented for the case of exponentially decaying contaminant flux. These examples are performed using hypothetical values for the process parameters.
Model reactions and natural occurrence of furans from hypersaline environments
NASA Astrophysics Data System (ADS)
Krause, T.; Tubbesing, C.; Benzing, K.; Schöler, H. F.
2013-11-01
Volatile organic compounds like furan and its derivatives are important for atmospheric properties and reactions. In this paper the known abiotic formation of furan from catechol under Fenton-like conditions with Fe3+ sulphate was revised by the use of a bispidine Fe2+ complex as a~model compound for iron with well-known characteristics. While total yields were comparable to those with the Fe3+ salt, the turnover numbers of the active iron species increased. Additionally, the role of iron and pH will be discussed during furan formation from model compounds and in natural sediment and water samples collected from the Dead Sea and several salt lakes in Western Australia. Various alkylated furans and even traces of halogenated furans (3-chlorofuran and 3-bromofuran) were found in these samples. Furthermore, the emission of furans is compared to the abundance of several possible precursors such as isoprene and aromatic hydrocarbons as well as to the related thiophenes. It is assumed that the emissions of volatile organic compounds such as furans contribute to the formation of ultra fine particles in the vicinity of salt lakes and are therefore important for the local climate.
Model reactions and natural occurrence of furans from hypersaline environments
NASA Astrophysics Data System (ADS)
Krause, T.; Tubbesing, C.; Benzing, K.; Schöler, H. F.
2014-05-01
Volatile organic compounds like furan and its derivatives are important for atmospheric properties and reactions. In this work the known abiotic formation of furan from catechol under Fenton-like conditions with Fe3+ sulfate was revised by the use of a bispidine Fe2+ complex as a model compound for iron with well-known characteristics. While total yields were comparable to those with the Fe3+ salt, the bispidine Fe2+ complex is a better catalyst as the turnover numbers of the active iron species were higher. Additionally, the role of iron and pH is discussed in relation to furan formation from model compounds and in natural sediment and water samples collected from the Dead Sea and several salt lakes in Western Australia. Various alkylated furans and even traces of halogenated furans (3-chlorofuran and 3-bromofuran) were found in some Australian samples. 3-chlorofuran was found in three sediments and four water samples, whereas 3-bromofuran was detected in three water samples. Further, the emission of furans is compared to the abundance of several possible precursors such as isoprene and aromatic hydrocarbons as well as to the related thiophenes. It is deduced that the emissions of volatile organic compounds such as furans contribute to the formation of ultra-fine particles in the vicinity of salt lakes and are important for the local climate.
NASA Astrophysics Data System (ADS)
Saaltink, Maarten W.; Vilarrasa, Victor; De Gaspari, Francesca; Silva, Orlando; Carrera, Jesús; Rötting, Tobias S.
2013-12-01
CO2 injection and storage in deep saline aquifers involves many coupled processes, including multiphase flow, heat and mass transport, rock deformation and mineral precipitation and dissolution. Coupling is especially critical in carbonate aquifers, where minerals will tend to dissolve in response to the dissolution of CO2 into the brine. The resulting neutralization will drive further dissolution of both CO2 and calcite. This suggests that large cavities may be formed and that proper simulation may require full coupling of reactive transport and multiphase flow. We show that solving the latter may suffice whenever two requirements are met: (1) all reactions can be assumed to occur in equilibrium and (2) the chemical system can be calculated as a function of the state variables of the multiphase flow model (i.e., liquid and gas pressure, and temperature). We redefine the components of multiphase flow codes (traditionally, water and CO2), so that they are conservative for all reactions of the chemical system. This requires modifying the traditional constitutive relationships of the multiphase flow codes, but yields the concentrations of all species and all reaction rates by simply performing speciation and mass balance calculations at the end of each time step. We applied this method to the H2O-CO2-Na-Cl-CaCO3 system, so as to model CO2 injection into a carbonate aquifer containing brine. Results were very similar to those obtained with traditional formulations, which implies that full coupling of reactive transport and multi-phase flow is not really needed for this kind of systems, but the resulting simplifications may make it advisable even for cases where the above requirements are not met. Regarding the behavior of carbonate rocks, we find that porosity development near the injection well is small because of the low solubility of calcite. Moreover, dissolution concentrates at the front of the advancing CO2 plume because the brine below the plume tends to reach
Implementation of an anisotropic turbulence model in the COMMIX- 1C/ATM computer code
Bottoni, M.; Chang, F.C.
1993-06-01
The computer code COMMIX-1C/ATM, which describes single-phase, three-dimensional transient thermofluiddynamic problems, has provided the framework for the extension of the standard k-{var_epsilon} turbulence model to a six-equation model with additional transport equations for the turbulence heat fluxes and the variance of temperature fluctuations. The new, model, which allows simulation of anisotropic turbulence in stratified shear flows, is referred to as the Anisotropic Turbulence Model (ATM) has been verified with numerical computations of stable and unstable stratified shear flow between parallel plates.
Learned Helplessness: A Model to Understand and Overcome a Child's Extreme Reaction to Failure.
ERIC Educational Resources Information Center
Balk, David
1983-01-01
The author reviews literature on childrens' reactions to perceived failure and offers "learned helplessness" as a model to explain why a child who makes a mistake gives up. Suggestions for preventing these reactions are given. (Author/JMK)
Konkoli, Zoran
2012-07-21
A novel computational method for modeling reaction noise characteristics has been suggested. The method can be classified as a moment closure method. The approach is based on the concept of correlation forms which are used for describing spatially extended many body problems where particle numbers change in space and time. In here, it was shown how the formalism of spatially extended correlation forms can be adapted to study well mixed reaction systems. Stochastic fluctuations in particle numbers are described by selectively capturing correlation effects up to the desired order, ξ. The method is referred to as the ξ-level Approximation Reaction Noise Estimator method (XARNES). For example, the ξ=1 description is equivalent to the mean field theory (first-order effects), the ξ=2 case corresponds to the previously developed PARNES method (pair effects), etc. The main idea is that inclusion of higher order correlation effects should lead to better (more accurate) results. Several models were used to test the method, two versions of a simple complex formation model, the Michaelis-Menten model of enzymatic kinetics, the smallest bistable reaction network, a gene expression network with negative feedback, and a random large network. It was explicitly demonstrated that increase in ξ indeed improves accuracy in all cases investigated. The approach has been implemented as automatic software using the Mathematica programming language. The user only needs to input reaction rates, stoichiometry coefficients, and the desired level of computation ξ.
Rate quantization modeling for rate control of MPEG video coding and recording
NASA Astrophysics Data System (ADS)
Ding, Wei; Liu, Bede
1995-04-01
For MPEG video coding and recording applications, it is important to select quantization parameters at slice and macroblock levels to produce nearly constant quality image for a given bit count budget. A well designed rate control strategy can improve overall image quality for video transmission over a constant-bit-rate channel and fulfill editing requirement of video recording, where a certain number of new pictures are encoded to replace consecutive frames on the storage media using at most the same number of bits. In this paper, we developed a feedback method with a rate-quantization model, which can be adapted to changes in picture activities. The model is used for quantization parameter selection at the frame and slice level. Extra computations needed are modest. Experiments show the accuracy of the model and the effectiveness of the proposed rate control method. A new bit allocation algorithm is then proposed for MPEG video coding.
A Mathematical Model and MATLAB Code for Muscle-Fluid-Structure Simulations.
Battista, Nicholas A; Baird, Austin J; Miller, Laura A
2015-11-01
This article provides models and code for numerically simulating muscle-fluid-structure interactions (FSIs). This work was presented as part of the symposium on Leading Students and Faculty to Quantitative Biology through Active Learning at the society-wide meeting of the Society for Integrative and Comparative Biology in 2015. Muscle mechanics and simple mathematical models to describe the forces generated by muscular contractions are introduced in most biomechanics and physiology courses. Often, however, the models are derived for simplifying cases such as isometric or isotonic contractions. In this article, we present a simple model of the force generated through active contraction of muscles. The muscles' forces are then used to drive the motion of flexible structures immersed in a viscous fluid. An example of an elastic band immersed in a fluid is first presented to illustrate a fully-coupled FSI in the absence of any external driving forces. In the second example, we present a valveless tube with model muscles that drive the contraction of the tube. We provide a brief overview of the numerical method used to generate these results. We also include as Supplementary Material a MATLAB code to generate these results. The code was written for flexibility so as to be easily modified to many other biological applications for educational purposes.
A Mathematical Model and MATLAB Code for Muscle-Fluid-Structure Simulations.
Battista, Nicholas A; Baird, Austin J; Miller, Laura A
2015-11-01
This article provides models and code for numerically simulating muscle-fluid-structure interactions (FSIs). This work was presented as part of the symposium on Leading Students and Faculty to Quantitative Biology through Active Learning at the society-wide meeting of the Society for Integrative and Comparative Biology in 2015. Muscle mechanics and simple mathematical models to describe the forces generated by muscular contractions are introduced in most biomechanics and physiology courses. Often, however, the models are derived for simplifying cases such as isometric or isotonic contractions. In this article, we present a simple model of the force generated through active contraction of muscles. The muscles' forces are then used to drive the motion of flexible structures immersed in a viscous fluid. An example of an elastic band immersed in a fluid is first presented to illustrate a fully-coupled FSI in the absence of any external driving forces. In the second example, we present a valveless tube with model muscles that drive the contraction of the tube. We provide a brief overview of the numerical method used to generate these results. We also include as Supplementary Material a MATLAB code to generate these results. The code was written for flexibility so as to be easily modified to many other biological applications for educational purposes. PMID:26337187
Coding theory based models for protein translation initiation in prokaryotic organisms.
May, Elebeoba Eni; Bitzer, Donald L. (North Carolina State University, Raleigh, NC); Rosnick, David I. (North Carolina State University, Raleigh, NC); Vouk, Mladen A.
2003-03-01
Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the E. coli based coding models on 5' untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to E. coli including: Salmonella typhimurium LT2, Bacillus subtilis, and Staphylococcus aureus Mu50. The model identified regions on the 5' untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine-Dalgarno domain and the non-random domain. Applying the EC coding-based models to B. subtilis, and S. aureus Mu50 yielded results similar to those for E. coli K-12. Contrary to our expectations, the behavior of S. typhimurium LT2, the more taxonomically related to E. coli, resembled that of the non-translated sequence group.
SCDAP/RELAP5/MOD 3.1 code manual: Damage progression model theory. Volume 2
Davis, K.L.; Allison, C.M.; Berna, G.A.
1995-06-01
The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, fission products released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume contains detailed descriptions of the severe accident models and correlations. It provides the user with the underlying assumptions and simplifications used to generate and implement the basic equations into the code, so an intelligent assessment of the applicability and accuracy of the resulting calculation can be made.
Stuart, J.G.; Wright, A.D.; Butterfield, C.P.
1996-10-01
Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.
Numerical modeling of immiscible two-phase flow in micro-models using a commercial CFD code
Crandall, Dustin; Ahmadia, Goodarz; Smith, Duane H.
2009-01-01
Off-the-shelf CFD software is being used to analyze everything from flow over airplanes to lab-on-a-chip designs. So, how accurately can two-phase immiscible flow be modeled flowing through some small-scale models of porous media? We evaluate the capability of the CFD code FLUENT{trademark} to model immiscible flow in micro-scale, bench-top stereolithography models. By comparing the flow results to experimental models we show that accurate 3D modeling is possible.
Motion-adaptive model-assisted compatible coding with spatiotemporal scalability
NASA Astrophysics Data System (ADS)
Lee, JaeBeom; Eleftheriadis, Alexandros
1997-01-01
We introduce the concept of motion adaptive spatio-temporal model-assisted compatible (MA-STMAC) coding, a technique to selectively encode areas of different importance to the human eye in terms of space and time in moving images with the consideration of object motion. PRevious STMAC was proposed base don the fact that human 'eye contact' and 'lip synchronization' are very important in person-to-person communication. Several areas including the eyes and lips need different types of quality, since different areas have different perceptual significance to human observers. The approach provides a better rate-distortion tradeoff than conventional image coding techniques base don MPEG-1, MPEG- 2, H.261, as well as H.263. STMAC coding is applied on top of an encoder, taking full advantage of its core design. Model motion tracking in our previous STMAC approach was not automatic. The proposed MA-STMAC coding considers the motion of the human face within the STMAC concept using automatic area detection. Experimental results are given using ITU-T H.263, addressing very low bit-rate compression.
Beyond the Business Model: Incentives for Organizations to Publish Software Source Code
NASA Astrophysics Data System (ADS)
Lindman, Juho; Juutilainen, Juha-Pekka; Rossi, Matti
The software stack opened under Open Source Software (OSS) licenses is growing rapidly. Commercial actors have released considerable amounts of previously proprietary source code. These actions beg the question why companies choose a strategy based on giving away software assets? Research on outbound OSS approach has tried to answer this question with the concept of the “OSS business model”. When studying the reasons for code release, we have observed that the business model concept is too generic to capture the many incentives organizations have. Conversely, in this paper we investigate empirically what the companies’ incentives are by means of an exploratory case study of three organizations in different stages of their code release. Our results indicate that the companies aim to promote standardization, obtain development resources, gain cost savings, improve the quality of software, increase the trustworthiness of software, or steer OSS communities. We conclude that future research on outbound OSS could benefit from focusing on the heterogeneous incentives for code release rather than on revenue models.
Reaction time in ankle movements: a diffusion model analysis
Michmizos, Konstantinos P.; Krebs, Hermano Igo
2015-01-01
Reaction time (RT) is one of the most commonly used measures of neurological function and dysfunction. Despite the extensive studies on it, no study has ever examined the RT in the ankle. Twenty-two subjects were recruited to perform simple, 2- and 4-choice RT tasks by visually guiding a cursor inside a rectangular target with their ankle. RT did not change with spatial accuracy constraints imposed by different target widths in the direction of the movement. RT increased as a linear function of potential target stimuli, as would be predicted by Hick–Hyman law. Although the slopes of the regressions were similar, the intercept in dorsal–plantar (DP) direction was significantly smaller than the intercept in inversion–eversion (IE) direction. To explain this difference, we used a hierarchical Bayesian estimation of the Ratcliff's (Psychol Rev 85:59, 1978) diffusion model parameters and divided processing time into cognitive components. The model gave a good account of RTs, their distribution and accuracy values, and hence provided a testimony that the non-decision processing time (overlap of posterior distributions between DP and IE < 0.045), the boundary separation (overlap of the posterior distributions < 0.1) and the evidence accumulation rate (overlap of the posterior distributions < 0.01) components of the RT accounted for the intercept difference between DP and IE. The model also proposed that there was no systematic change in non-decision processing time or drift rate when spatial accuracy constraints were altered. The results were in agreement with the memory drum hypothesis and could be further justified neurophysiologically by the larger innervation of the muscles controlling DP movements. This study might contribute to assessing deficits in sensorimotor control of the ankle and enlighten a possible target for correction in the framework of our on-going effort to develop robotic therapeutic interventions to the ankle of children with cerebral palsy
Simons, Ronald L.; Lei, Man Kit; Stewart, Eric A.; Brody, Gene H.; Beach, Steven R. H.; Philibert, Robert A.; Gibbons, Frederick X.
2011-01-01
Elijah Anderson (1997, 1999) argues that exposure to extreme community disadvantage, residing in “street” families, and persistent discrimination encourage many African Americans to develop an oppositional culture that he labels the “code of the street.” Importantly, while the adverse conditions described by Anderson increase the probability of adopting the code of the street, most of those exposed to these adverse conditions do not do so. The present study examines the extent to which genetic variation accounts for these differences. Although the diathesis-stress model guides most genetically informed behavior science, the present study investigates hypotheses derived from the differential susceptibility perspective (Belsky & Pluess, 2009). This model posits that some people are genetically predisposed to be more susceptible to environmental influence than others. An important implication of the model is that those persons most vulnerable to adverse social environments are the same ones who reap the most benefit from environmental support. Using longitudinal data from a sample of several hundred African American males, we examined the manner in which variants in three genes - 5-HTT, DRD4, and MAOA - modulate the effect of community and family adversity on adoption of the street code and aggression. We found strong support for the differential susceptibility perspective. When the social environment was adverse, individuals with these genetic variants manifested more commitment to the street code and aggression than those with other genotypes, whereas when adversity was low they demonstrated less commitment to the street code and aggression than those with other genotypes. PMID:23785260
NASA Astrophysics Data System (ADS)
Rauscher, Thomas; Thielemann, Friedrich-Karl
2001-09-01
In a previous publication (ATOMIC DATAAND NUCLEAR DATA TABLES75, 1 (2000)), we gave seven-parameter analytical fits to theoretical reaction rates derived from nuclear cross sections calculated in the statistical model (Hauser-Feshbach formalism) for targets with 10<=Z<=83 (Ne to Bi) and for a mass range reaching the neutron and proton driplines. Reactions considered were (n,γ), (n,p), (n,α), (p,γ), (p,α), (α,γ), and their inverse reactions. Here, we present the theoretical nuclear cross sections and astrophysical reaction rates from which those rate fits were derived, and we provide these data as on-line electronic files. Corresponding to the fitted rates, two complete data sets are provided, one of which includes a phenomenological treatment of shell quenching for neutron-rich nuclei.
Robust rate-control for wavelet-based image coding via conditional probability models.
Gaubatz, Matthew D; Hemami, Sheila S
2007-03-01
Real-time rate-control for wavelet image coding requires characterization of the rate required to code quantized wavelet data. An ideal robust solution can be used with any wavelet coder and any quantization scheme. A large number of wavelet quantization schemes (perceptual and otherwise) are based on scalar dead-zone quantization of wavelet coefficients. A key to performing rate-control is, thus, fast, accurate characterization of the relationship between rate and quantization step size, the R-Q curve. A solution is presented using two invocations of the coder that estimates the slope of each R-Q curve via probability modeling. The method is robust to choices of probability models, quantization schemes and wavelet coders. Because of extreme robustness to probability modeling, a fast approximation to spatially adaptive probability modeling can be used in the solution, as well. With respect to achieving a target rate, the proposed approach and associated fast approximation yield average percentage errors around 0.5% and 1.0% on images in the test set. By comparison, 2-coding-pass rho-domain modeling yields errors around 2.0%, and post-compression rate-distortion optimization yields average errors of around 1.0% at rates below 0.5 bits-per-pixel (bpp) that decrease down to about 0.5% at 1.0 bpp; both methods exhibit more competitive performance on the larger images. The proposed method and fast approximation approach are also similar in speed to the other state-of-the-art methods. In addition to possessing speed and accuracy, the proposed method does not require any training and can maintain precise control over wavelet step sizes, which adds flexibility to a wavelet-based image-coding system.
Model-based coding of facial images based on facial muscle motion through isodensity maps
NASA Astrophysics Data System (ADS)
So, Ikken; Nakamura, Osamu; Minami, Toshi
1991-11-01
A model-based coding system has come under serious consideration for the next generation of image coding schemes, aimed at greater efficiency in TV telephone and TV conference systems. In this model-based coding system, the sender's model image is transmitted and stored at the receiving side before the start of the conversation. During the conversation, feature points are extracted from the facial image of the sender and are transmitted to the receiver. The facial expression of the sender facial is reconstructed from the feature points received and a wireframed model constructed at the receiving side. However, the conventional methods have the following problems: (1) Extreme changes of the gray level, such as in wrinkles caused by change of expression, cannot be reconstructed at the receiving side. (2) Extraction of stable feature points from facial images with irregular features such as spectacles or facial hair is very difficult. To cope with the first problem, a new algorithm based on isodensity lines which can represent detailed changes in expression by density correction has already been proposed and good results obtained. As for the second problem, we propose in this paper a new algorithm to reconstruct facial images by transmitting other feature points extracted from isodensity maps.
Apparent Motion Suppresses Responses in Early Visual Cortex: A Population Code Model
Van Humbeeck, Nathalie; Putzeys, Tom; Wagemans, Johan
2016-01-01
Two stimuli alternately presented at different locations can evoke a percept of a stimulus continuously moving between the two locations. The neural mechanism underlying this apparent motion (AM) is thought to be increased activation of primary visual cortex (V1) neurons tuned to locations along the AM path, although evidence remains inconclusive. AM masking, which refers to the reduced detectability of stimuli along the AM path, has been taken as evidence for AM-related V1 activation. AM-induced neural responses are thought to interfere with responses to physical stimuli along the path and as such impair the perception of these stimuli. However, AM masking can also be explained by predictive coding models, predicting that responses to stimuli presented on the AM path are suppressed when they match the spatio-temporal prediction of a stimulus moving along the path. In the present study, we find that AM has a distinct effect on the detection of target gratings, limiting the maximum performance at high contrast levels. This masking is strongest when the target orientation is identical to the orientation of the inducers. We developed a V1-like population code model of early visual processing, based on a standard contrast normalization model. We find that AM-related activation in early visual cortex is too small to either cause masking or to be perceived as motion. Our model instead predicts strong suppression of early sensory responses during AM, consistent with the theoretical framework of predictive coding. PMID:27783622
Glauber model for {alpha}-nucleus total reaction cross section
Chauhan, Deeksha; Khan, Z. A.
2009-11-15
The Coulomb-modified Glauber model is employed to calculate the total reaction cross section ({sigma}{sub R}) for {alpha} particles from {sup 9}Be, {sup 12}C, {sup 16}O, {sup 28}Si, {sup 40}Ca, {sup 58,60}Ni, {sup 112,116,120,124}Sn, and {sup 208}Pb at 117.2, 163.9, and 192.4 MeV and from the lighter nuclei also at 69.6 MeV. Our main focus in this work is to assess the suitability of semiphenomenological parametrization of the NN amplitude (SPNN), used recently [Deeksha Chauhan and Z. A. Khan, Eur. Phys. J. A 41, 179 (2009)], in the analysis of {sigma}{sub R} at the energies under consideration. Using the realistic form factors for the colliding nuclei, it is found that the SPNN works reasonably well and we have quite a satisfactory account of the {sigma}{sub R} data in all the cases. Moreover, our analysis suggests that the SPNN could be taken as fairly stable to describe simultaneously the elastic angular distribution and the {sigma}{sub R} for a wide range of target nuclei in the relatively low-energy region.
Flow and Containment Transport Code for Modeling Variably Saturated Porous Media
1998-05-14
FACT is a finite element based code designed to model subsurface flow and contaminant transport. It was designed to perform transient three-dimensional calculations that simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogenous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally 1-D and 2-D (in Cartesian coordinates) problemsmore » are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates. FACT writes out both ascii and graphical binary files that are TECPLOT-ready. Special features are also available within FACT for handling the typical groundwater modeling needs for remediation efforts at the Savannah River Site.« less