Sample records for reaction time experiments

  1. Design of experiments for zeroth and first-order reaction rates.

    PubMed

    Amo-Salas, Mariano; Martín-Martín, Raúl; Rodríguez-Aragón, Licesio J

    2014-09-01

    This work presents optimum designs for reaction rates experiments. In these experiments, time at which observations are to be made and temperatures at which reactions are to be run need to be designed. Observations are performed along time under isothermal conditions. Each experiment needs a fixed temperature and so the reaction can be measured at the designed times. For these observations under isothermal conditions over the same reaction a correlation structure has been considered. D-optimum designs are the aim of our work for zeroth and first-order reaction rates. Temperatures for the isothermal experiments and observation times, to obtain the most accurate estimates of the unknown parameters, are provided in these designs. D-optimum designs for a single observation in each isothermal experiment or for several correlated observations have been obtained. Robustness of the optimum designs for ranges of the correlation parameter and comparisons of the information gathered by different designs are also shown. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. QRTEngine: An easy solution for running online reaction time experiments using Qualtrics.

    PubMed

    Barnhoorn, Jonathan S; Haasnoot, Erwin; Bocanegra, Bruno R; van Steenbergen, Henk

    2015-12-01

    Performing online behavioral research is gaining increased popularity among researchers in psychological and cognitive science. However, the currently available methods for conducting online reaction time experiments are often complicated and typically require advanced technical skills. In this article, we introduce the Qualtrics Reaction Time Engine (QRTEngine), an open-source JavaScript engine that can be embedded in the online survey development environment Qualtrics. The QRTEngine can be used to easily develop browser-based online reaction time experiments with accurate timing within current browser capabilities, and it requires only minimal programming skills. After introducing the QRTEngine, we briefly discuss how to create and distribute a Stroop task. Next, we describe a study in which we investigated the timing accuracy of the engine under different processor loads using external chronometry. Finally, we show that the QRTEngine can be used to reproduce classic behavioral effects in three reaction time paradigms: a Stroop task, an attentional blink task, and a masked-priming task. These findings demonstrate that QRTEngine can be used as a tool for conducting online behavioral research even when this requires accurate stimulus presentation times.

  3. Watching Individual Enzymes at Work

    NASA Astrophysics Data System (ADS)

    Blank, Kerstin; Rocha, Susana; De Cremer, Gert; Roeffaers, Maarten B. J.; Uji-i, Hiroshi; Hofkens, Johan

    Single-molecule fluorescence experiments are a powerful tool to analyze reaction mechanisms of enzymes. Because of their unique potential to detect heterogeneities in space and time, they have provided unprecedented insights into the nature and mechanisms of conformational changes related to the catalytic reaction. The most important finding from experiments with single enzymes is the generally observed phenomenon that the catalytic rate constants fluctuate over time (dynamic disorder). These fluctuations originate from conformational changes occurring on time scales, which are similar to or slower than that of the catalytic reaction. Here, we summarize experiments with enzymes that show dynamic disorder and introduce new experimental strategies showing how single-molecule fluorescence experiments can be applied to address other open questions in medical and industrial enzymology, such as enzyme inactivation processes, reactant transfer in cascade reactions, and the mechanisms of interfacial catalysis.

  4. Psy Toolkit: A Novel Web-Based Method for Running Online Questionnaires and Reaction-Time Experiments

    ERIC Educational Resources Information Center

    Stoet, Gijsbert

    2017-01-01

    This article reviews PsyToolkit, a free web-based service designed for setting up, running, and analyzing online questionnaires and reaction-time (RT) experiments. It comes with extensive documentation, videos, lessons, and libraries of free-to-use psychological scales and RT experiments. It provides an elaborate interactive environment to use (or…

  5. The effect of noise-induced variance on parameter recovery from reaction times.

    PubMed

    Vadillo, Miguel A; Garaizar, Pablo

    2016-03-31

    Technical noise can compromise the precision and accuracy of the reaction times collected in psychological experiments, especially in the case of Internet-based studies. Although this noise seems to have only a small impact on traditional statistical analyses, its effects on model fit to reaction-time distributions remains unexplored. Across four simulations we study the impact of technical noise on parameter recovery from data generated from an ex-Gaussian distribution and from a Ratcliff Diffusion Model. Our results suggest that the impact of noise-induced variance tends to be limited to specific parameters and conditions. Although we encourage researchers to adopt all measures to reduce the impact of noise on reaction-time experiments, we conclude that the typical amount of noise-induced variance found in these experiments does not pose substantial problems for statistical analyses based on model fitting.

  6. Motion Perception and Driving: Predicting Performance Through Testing and Shortening Braking Reaction Times Through Training

    DTIC Science & Technology

    2013-12-01

    brake reaction time on the EB test from pre-post while there was no significant change for the control group : t(38)=2.24, p=0.03. Tests of 3D motion...0.61). In experiment 2, the motion perception training group had a significant decrease in brake reaction time on the EB test from pre- to...the following. The experiment was divided into 8 phases: a pretest , six training blocks (once per week), and a posttest . Participants were allocated

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarver, C M

    Recent laser ignition experiments on octahydro-1,3,5,7-tetranitro-1,3,5,7-terrazocine (HMX) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) subjected to laser fluxes ranging from 10 to 800 W/cm{sup 2} produced ignition times from seconds to milliseconds. Global chemical kinetic thermal decomposition models for HMX and TATB have been developed to calculate times to thermal explosion for experiments in the seconds to days time frame. These models are applied to the laser ignition experimental data in this paper. Excellent agreement was obtained for TATB, while the calculated ignition times were longer than experiment for HMX at lower laser fluxes. At the temperatures produced in the laser experiments, HMX melts.more » Melting generally increases condensed phase reaction rates so faster rates were used for three of the HMX reaction rates. This improved agreement with experiments at the lower laser fluxes but yielded very fast ignition at high fluxes. The calculated times to ignition are in reasonable agreement with the laser ignition experiments, and this justifies the use of these models for estimating reaction times at impact and shock ''hot spot'' temperatures.« less

  8. A Divided Attention Experiment with Pervasively Hyperactive Children.

    ERIC Educational Resources Information Center

    van der Meere, Jaap; Sergeant, Joseph

    1987-01-01

    Task performance of 12 pervasive hyperactives and controls (ages 8-13) was studied in a divided attention reaction time experiment. Hyperactives were slower than controls, had more variable reaction times, and made more frequent errors. Task inefficiency in hyperactives could not be explained by a divided attention deficiency or impulsive…

  9. Displaying Special Characters and Symbols in Computer-Controlled Reaction Time Experiments.

    ERIC Educational Resources Information Center

    Friel, Brian M.; Kennison, Shelia M.

    A procedure for using MEL2 (Version 2.0 of Microcomputer Experimental Laboratory) and FontWINDOW to present special characters and symbols in computer-controlled reaction time experiments is described. The procedure permits more convenience and flexibility than in tachistocopic and projection techniques. FontWINDOW allows researchers to design…

  10. A Joint Modeling Approach for Reaction Time and Accuracy in Psycholinguistic Experiments

    ERIC Educational Resources Information Center

    Loeys, T.; Rosseel, Y.; Baten, K.

    2011-01-01

    In the psycholinguistic literature, reaction times and accuracy can be analyzed separately using mixed (logistic) effects models with crossed random effects for item and subject. Given the potential correlation between these two outcomes, a joint model for the reaction time and accuracy may provide further insight. In this paper, a Bayesian…

  11. Physical attraction to reliable, low variability nervous systems: Reaction time variability predicts attractiveness.

    PubMed

    Butler, Emily E; Saville, Christopher W N; Ward, Robert; Ramsey, Richard

    2017-01-01

    The human face cues a range of important fitness information, which guides mate selection towards desirable others. Given humans' high investment in the central nervous system (CNS), cues to CNS function should be especially important in social selection. We tested if facial attractiveness preferences are sensitive to the reliability of human nervous system function. Several decades of research suggest an operational measure for CNS reliability is reaction time variability, which is measured by standard deviation of reaction times across trials. Across two experiments, we show that low reaction time variability is associated with facial attractiveness. Moreover, variability in performance made a unique contribution to attractiveness judgements above and beyond both physical health and sex-typicality judgements, which have previously been associated with perceptions of attractiveness. In a third experiment, we empirically estimated the distribution of attractiveness preferences expected by chance and show that the size and direction of our results in Experiments 1 and 2 are statistically unlikely without reference to reaction time variability. We conclude that an operating characteristic of the human nervous system, reliability of information processing, is signalled to others through facial appearance. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. What speeds up the internal clock? Effects of clicks and flicker on duration judgements and reaction time.

    PubMed

    Wearden, J H; Williams, Emily A; Jones, Luke A

    2017-03-01

    Four experiments investigated the effect of pre-stimulus events on judgements of the subjective duration of tones that they preceded. Experiments 1 to 4 used click trains, flickering squares, expanding circles, and white noise as pre-stimulus events and showed that (a) periodic clicks appeared to "speed up" the pacemaker of an internal clock but that the effect wore off over a click-free delay, (b) aperiodic click trains, and visual stimuli in the form of flickering squares and expanding circles, also produced similar increases in estimated tone duration, as did white noise, although its effect was weaker. A fifth experiment examined the effects of periodic flicker on reaction time and showed that, as with periodic clicks in a previous experiment, reaction times were shorter when preceded by flicker than without.

  13. Testing a potential alternative to traditional identification procedures: Reaction time-based concealed information test does not work for lineups with cooperative witnesses.

    PubMed

    Sauerland, Melanie; Wolfs, Andrea C F; Crans, Samantha; Verschuere, Bruno

    2017-11-27

    Direct eyewitness identification is widely used, but prone to error. We tested the validity of indirect eyewitness identification decisions using the reaction time-based concealed information test (CIT) for assessing cooperative eyewitnesses' face memory as an alternative to traditional lineup procedures. In a series of five experiments, a total of 401 mock eyewitnesses watched one of 11 different stimulus events that depicted a breach of law. Eyewitness identifications in the CIT were derived from longer reaction times as compared to well-matched foil faces not encountered before. Across the five experiments, the weighted mean effect size d was 0.14 (95% CI 0.08-0.19). The reaction time-based CIT seems unsuited for testing cooperative eyewitnesses' memory for faces. The careful matching of the faces required for a fair lineup or the lack of intent to deceive may have hampered the diagnosticity of the reaction time-based CIT.

  14. Effect of sleep deficit, knowledge of results, and stimulus quality on reaction time and response force.

    PubMed

    Jaśkowski, P; Włodarczyk, D

    1997-04-01

    Some recent findings suggested that response force measured during reaction time experiments might reflect changes in activation. We performed an experiment in which the effect of sleep deprivation, knowledge of results, and stimulus quality on response force was studied in simple and choice reaction tasks. As expected, both simple and choice reaction times increased with sleep deficit. Further, simple and choice reactions were faster with knowledge of results and slowed down when stimulus quality was degraded. As sleep deprivation affects both arousal and activation, we expected a detrimental effect of sleep on force amplitude. On the other hand, knowledge of results was expected to increase force by its compensatory effect on arousal and activation. No effect of sleep deprivation on response force was found. Knowledge of results increased response force independently of sleep deprivation.

  15. The Barium Hydroxide-Ammonium Thiocyanate Reaction: A Titrimetric Continuous Variations Experiment.

    ERIC Educational Resources Information Center

    Harris, Arlo D.

    1979-01-01

    Presents an experiment for inorganic, organic, or physical chemistry students utilizing acid-base titrimetry to study the stoichiometric of a solid state reaction. Time involved ranges from one to three, three-hour lab periods. (Author/SA)

  16. Motor Components in the Choice Reaction Time of Mildly Retarded Adults

    ERIC Educational Resources Information Center

    Brewer, N.

    1978-01-01

    The contributions of specific motor-coordination disabilities and general slowness of motor function to the choice reaction times (RTs) of 22 mildly retarded adults were examined in two experiments. (Author)

  17. The influenced of reaction time on the degradation of palm oil empty fruit bunch (EFB) in hydrothermal carbonization

    NASA Astrophysics Data System (ADS)

    Sarwono, Rakhman; Kurniawan, Hendris Hendarsyah

    2017-11-01

    Hydrothermal carbonization (HTC) of empty fruit bunch (EFB) of palm oil in different reaction times were investigated. Experiments were carried out in an autoclave at different reaction time of 3,6,9, 15, 20, 25 and 40 hours. With a fixed solid/liquid ratio of 5 gram of EFB in 50 ml water as a solvent, and temperature reaction of 250 °C. Increase the reaction time the soluble products are also increased. The liquid products were analyzed using GCMS to determine the chemical composition. The chemical composition were greatly affected by the reaction time. The main component was glycolic acid, by increasing the reaction time made the varieties of chemical compositions in liquid products, especially for the glycolic acid component, it was decreased slightly. The higher heating value (HHV) also increase slighly by increasing the reaction time both solid and liquid products.

  18. An Analysis of Shock-Compression in Mo-Si Powder Mixtures Using Recovery and Time-Resolved Measurements

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Thadhani, Naresh N.

    1999-06-01

    The densification and reaction characteristics in the Mo-Si system were investigated utilizing recovery experiments as well as time resolved measurements with in-situ stress gages. The starting sample in all cases consisted of statically pressed Mo + 2 Si powder mixtures ( ~55% TMD). The recovery experiments were performed using the Sandia Momma Bear and Momma Bear A fixtures with baratol and composition B explosives respectively. The instrumented experiments were performed in a capsule design similar to that of the Momma Bear, but modified to incorporate poly-vinyl di-flouride (PVDF) stress gages at the front and rear surfaces of the powder. These experiments were performed using a single stage gas gun in the velocity range of 500 m/s to 1 km/s. The instrumented experiments allow the crush strength, densification history, and reaction threshold to be mapped at increasing pressure to correlate with reaction observed in the recovery experiments.

  19. A Laboratory Experiment on the Statistical Theory of Nuclear Reactions

    ERIC Educational Resources Information Center

    Loveland, Walter

    1971-01-01

    Describes an undergraduate laboratory experiment on the statistical theory of nuclear reactions. The experiment involves measuring the relative cross sections for formation of a nucleus in its meta stable excited state and its ground state by applying gamma-ray spectroscopy to an irradiated sample. Involves 3-4 hours of laboratory time plus…

  20. Investigation of PACE™ software and VeriFax's Impairoscope device for quantitatively measuring the effects of stress

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George W.; Nuñez, German R.; Botello, Aaron M.; Soto, Jose; Shrairman, Ruth; Landau, Alexander

    1998-01-01

    Many reaction time experiments have been conducted over the years to observe human responses. However, most of the experiments that were performed did not have quantitatively accurate instruments for measuring change in reaction time under stress. There is a great need for quantitative instruments to measure neuromuscular reaction responses under stressful conditions such as distraction, disorientation, disease, alcohol, drugs, etc. The two instruments used in the experiments reported in this paper are such devices. Their accuracy, portability, ease of use, and biometric character are what makes them very special. PACE™ is a software model used to measure reaction time. VeriFax's Impairoscope measures the deterioration of neuromuscular responses. During the 1997 Summer Semester, various reaction time experiments were conducted on University of Colorado faculty, staff, and students using the PACE™ system. The tests included both two-eye and one-eye unstressed trials and trials with various stresses such as fatigue, distractions in which subjects were asked to perform simple arithmetic during the PACE™ tests, and stress due to rotating-chair dizziness. Various VeriFax Impairoscope tests, both stressed and unstressed, were conducted to determine the Impairoscope's ability to quantitatively measure this impairment. In the 1997 Fall Semester, a Phase II effort was undertaken to increase test sample sizes in order to provide statistical precision and stability. More sophisticated statistical methods remain to be applied to better interpret the data.

  1. The effect of addition of primary positive salts, complex salt, on the ionic strength and rate constant at various temperatures by reaction kinetics

    NASA Astrophysics Data System (ADS)

    Kurade, S. S.; Ramteke, A. A.

    2018-05-01

    In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.

  2. Online monitoring of a photocatalytic reaction by real-time high resolution FlowNMR spectroscopy.

    PubMed

    Hall, Andrew M R; Broomfield-Tagg, Rachael; Camilleri, Matthew; Carbery, David R; Codina, Anna; Whittaker, David T E; Coombes, Steven; Lowe, John P; Hintermair, Ulrich

    2017-12-19

    We demonstrate how FlowNMR spectroscopy can readily be applied to investigate photochemical reactions that require sustained input of light and air to yield mechanistic insight under realistic conditions. The Eosin Y mediated photo-oxidation of N-allylbenzylamine is shown to produce imines as primary reaction products from which undesired aldehydes form after longer reaction times. Facile variation of reaction conditions during the reaction in flow allows for probe experiments that give information about the mode of action of the photocatalyst.

  3. MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME

    PubMed Central

    BLANC, EMILIE; ENGBLOM, STEFAN; HELLANDER, ANDREAS; LÖTSTEDT, PER

    2017-01-01

    Subdiffusion has been proposed as an explanation of various kinetic phenomena inside living cells. In order to fascilitate large-scale computational studies of subdiffusive chemical processes, we extend a recently suggested mesoscopic model of subdiffusion into an accurate and consistent reaction-subdiffusion computational framework. Two different possible models of chemical reaction are revealed and some basic dynamic properties are derived. In certain cases those mesoscopic models have a direct interpretation at the macroscopic level as fractional partial differential equations in a bounded time interval. Through analysis and numerical experiments we estimate the macroscopic effects of reactions under subdiffusive mixing. The models display properties observed also in experiments: for a short time interval the behavior of the diffusion and the reaction is ordinary, in an intermediate interval the behavior is anomalous, and at long times the behavior is ordinary again. PMID:29046618

  4. The investigation of degradation reaction of various saccharides in high temperature and high pressure water

    NASA Astrophysics Data System (ADS)

    Saito, T.; Noguchi, S.; Matsumoto, T.; Sasaki, M.; Goto, M.

    2008-07-01

    Recently, conversions of polysaccharides included in biomass resources have been studied in order to recover valuable chemicals. Degradation of polysaccharides has been attracted by many researchers, whereas by-products from secondary reactions of the materials have not been studied very well. For the purpose of understanding reaction behavior of various monosaccharides in high-temperature and high-pressure water regions, we investigated reaction pathway and kinetics through reaction experiments of degradation of saccharides in subcritical water. The experiment was conducted by using continuous flow-type micro-reactors. Glucose was used as the starting material. From the experimental results, the conversion of glucose increased with increasing the residence time. The yields of fructose and 1, 6-anhydro-β-D-glucose decreased with increasing the residence time. The yields of organic acids and some aldehydes increased with increasing the residence time.

  5. Time management problems and discounted utility.

    PubMed

    König, Cornelius J; Kleinmann, Martin

    2007-05-01

    The lens of behavioral decision theory offers a new perspective for research on time management. The basic idea of this approach is that people discount future consequences of their time management decisions, meaning that they work on tasks with smaller but sooner outcomes rather than on tasks with larger but later outcomes. The authors performed 2 experimental studies to test whether people are sensitive to differences in the discounted utility of time management decisions. In Experiment 1, they used vignettes of typical time management situations; Experiment 2 was a laboratory simulation (an in-basket task that was part of a training assessment). Participants in both studies were German students. As expected, manipulating the discounted utility of options resulted in different time management decisions. In Experiment 1, reactions to time management situations were judged as less likely if the reactions had lower discounted utilities. In Experiment 2, people spent less time on an interruption.

  6. Haptic Search for Hard and Soft Spheres

    PubMed Central

    van Polanen, Vonne; Bergmann Tiest, Wouter M.; Kappers, Astrid M. L.

    2012-01-01

    In this study the saliency of hardness and softness were investigated in an active haptic search task. Two experiments were performed to explore these properties in different contexts. In Experiment 1, blindfolded participants had to grasp a bundle of spheres and determine the presence of a hard target among soft distractors or vice versa. If the difference in compliance between target and distractors was small, reaction times increased with the number of items for both features; a serial strategy was found to be used. When the difference in compliance was large, the reaction times were independent of the number of items, indicating a parallel strategy. In Experiment 2, blindfolded participants pressed their hand on a display filled with hard and soft items. In the search for a soft target, increasing reaction times with the number of items were found, but the location of target and distractors appeared to have a large influence on the search difficulty. In the search for a hard target, reaction times did not depend on the number of items. In sum, this showed that both hardness and softness are salient features. PMID:23056197

  7. Haptic search for hard and soft spheres.

    PubMed

    van Polanen, Vonne; Bergmann Tiest, Wouter M; Kappers, Astrid M L

    2012-01-01

    In this study the saliency of hardness and softness were investigated in an active haptic search task. Two experiments were performed to explore these properties in different contexts. In Experiment 1, blindfolded participants had to grasp a bundle of spheres and determine the presence of a hard target among soft distractors or vice versa. If the difference in compliance between target and distractors was small, reaction times increased with the number of items for both features; a serial strategy was found to be used. When the difference in compliance was large, the reaction times were independent of the number of items, indicating a parallel strategy. In Experiment 2, blindfolded participants pressed their hand on a display filled with hard and soft items. In the search for a soft target, increasing reaction times with the number of items were found, but the location of target and distractors appeared to have a large influence on the search difficulty. In the search for a hard target, reaction times did not depend on the number of items. In sum, this showed that both hardness and softness are salient features.

  8. Kinetic modeling of electro-Fenton reaction in aqueous solution.

    PubMed

    Liu, H; Li, X Z; Leng, Y J; Wang, C

    2007-03-01

    To well describe the electro-Fenton (E-Fenton) reaction in aqueous solution, a new kinetic model was established according to the generally accepted mechanism of E-Fenton reaction. The model has special consideration on the rates of hydrogen peroxide (H(2)O(2)) generation and consumption in the reaction solution. The model also embraces three key operating factors affecting the organic degradation in the E-Fenton reaction, including current density, dissolved oxygen concentration and initial ferrous ion concentration. This analytical model was then validated by the experiments of phenol degradation in aqueous solution. The experiments demonstrated that the H(2)O(2) gradually built up with time and eventually approached its maximum value in the reaction solution. The experiments also showed that phenol was degraded at a slow rate at the early stage of the reaction, a faster rate during the middle stage, and a slow rate again at the final stage. It was confirmed in all experiments that the curves of phenol degradation (concentration vs. time) appeared to be an inverted "S" shape. The experimental data were fitted using both the normal first-order model and our new model, respectively. The goodness of fittings demonstrated that the new model could better fit the experimental data than the first-order model appreciably, which indicates that this analytical model can better describe the kinetics of the E-Fenton reaction mathematically and also chemically.

  9. Optimization of extraction of chitin from procambarus clarkia shell by Box-Behnken design

    NASA Astrophysics Data System (ADS)

    Dong, Fang; Qiu, Hailong; Jia, Shaoqian; Dai, Cuiping; Kong, Qingxin; Xu, Changliang

    2018-06-01

    This paper investigated the optimizing extraction processing of chitin from procambarus clarkia shell by Box-Behnken design. Firstly, four independent variables were explored in single factor experiments, namely, concentration of hydrochloric acid, soaking time, concentration of sodium hydroxide and reaction time. Then, based on the results of the above experiments, four factors and three levels experiments were planned by Box-Behnken design. According to the experimental results, we harvested a second-order polynomial equation using multiple regression analysis. In addition, the optimum extraction process of chitin of the model was obtained: concentration of HCl solution 1.54mol/L, soaking time 19.87h, concentration of NaOH solution 2.9mol/L and reaction time 3.54h. For proving the accuracy of the model, we finished the verification experiment under the following conditions: concentration of hydrochloric acid 1.5mol/L, soaking time 20h, concentration of sodium hydroxide 3mol/L and reaction time 3.5h. The actual yield of chitin reached 18.76%, which was very close to the predicted yield (18.66%) of the model. The result indicated that the optimum extraction processing of chitin was feasible and practical.

  10. How we can measure the non-driving-task engagement in automated driving: Comparing flow experience and workload.

    PubMed

    Ko, Sang Min; Ji, Yong Gu

    2018-02-01

    In automated driving, a driver can completely concentrate on non-driving-related tasks (NDRTs). This study investigated the flow experience of a driver who concentrated on NDRTs and tasks that induce mental workload under conditional automation. Participants performed NDRTs under different demand levels: a balanced demand-skill level (fit condition) to induce flow, low-demand level to induce boredom, and high-demand level to induce anxiety. In addition, they performed the additional N-Back task, which artificially induces mental workload. The results showed participants had the longest reaction time when they indicated the highest flow score, and had the longest gaze-on time, road-fixation time, hands-on time, and take-over time under the fit condition. Significant differences were not observed in the driver reaction times in the fit condition and the additional N-Back task, indicating that performing NDRTs that induce a high flow experience could influence driver reaction time similar to performing tasks with a high mental workload. Copyright © 2017. Published by Elsevier Ltd.

  11. Reaction time and anticipatory skill of athletes in open and closed skill-dominated sport.

    PubMed

    Nuri, Leila; Shadmehr, Azadeh; Ghotbi, Nastaran; Attarbashi Moghadam, Behrouz

    2013-01-01

    In sports, reaction time and anticipatory skill are critical aspects of perceptual abilities. To date, no study has compared reaction time and anticipatory skill of athletes from open and closed skill-dominated sport. Accordingly, the present study investigated whether a difference exists in sensory-cognitive skills between these two different sport domains. Eleven volleyball players and 11 sprinters participated in this experiment. Reaction time and anticipatory skill of both groups were recorded by a custom-made software called SART (speed anticipation and reaction time test). This software consists of six sensory-cognitive tests that evaluate visual choice reaction time, visual complex choice reaction time, auditory choice reaction time, auditory complex choice reaction time, and anticipatory skill of the high speed and low speed of the ball. For each variable, an independent t-test was performed. Results suggested that sprinters were better in both auditory reaction times (P<0.001 for both tests) and volleyball players were better in both anticipatory skill tests (P = 0.007 and P = 0.04 for anticipatory skill of the high speed and low speed of the ball, respectively). However, no significant differences were found in both visual choice reaction time tests (P > 0.05 for both visual reaction time tests). It is concluded that athletes have greater sensory-cognitive skills related to their specific sport domain either open or closed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I.

    As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less

  13. Eat Me If You Can: Cognitive Mechanisms Underlying the Distance Effect

    PubMed Central

    Junghans, Astrid F.; Evers, Catharine; De Ridder, Denise T. D.

    2013-01-01

    Proximal objects provide affordances that activate the motor information involved in interacting with the objects. This effect has previously been shown for artifacts but not for natural objects, such as food. This study examined whether the sight of proximal food, compared to distant food activates eating-related information. In two experiments reaction times to verbal labels following the sight of proximal and distant objects (food and toys) were measured. Verbal labels included function words that were compatible with one object category (eating and playing) and observation words compatible with both object categories. The sight of food was expected to activate eating-related information when presented at proximity but not at distance, as reflected by faster reaction times to proximal than distant compatible eating words and no difference between reaction times to proximal and distant food for observation words (Experiment 1). Experiment 2 additionally compared the reaction times to wrapped and unwrapped food. The distance effect was expected to occur only for unwrapped food because only unwrapped food is readily edible. As expected, Experiment 1 and 2 revealed faster responses to compatible eating words at proximity than at distance. In Experiment 2 this distance effect occurred only for readily edible, unwrapped food but not for wrapped food. For observation words no difference in response times between the distances was found. These findings suggest that the sight of proximal food activates eating-related information, which could explain people’s differential behavioral responses to reachable versus distant food. The activation of eating-related information upon sight of accessible food could provide a cognition-based explanation for mindless eating. PMID:24367684

  14. Using Multiorder Time-Correlation Functions (TCFs) To Elucidate Biomolecular Reaction Pathways from Microsecond Single-Molecule Fluorescence Experiments.

    PubMed

    Phelps, Carey; Israels, Brett; Marsh, Morgan C; von Hippel, Peter H; Marcus, Andrew H

    2016-12-29

    Recent advances in single-molecule fluorescence imaging have made it possible to perform measurements on microsecond time scales. Such experiments have the potential to reveal detailed information about the conformational changes in biological macromolecules, including the reaction pathways and dynamics of the rearrangements involved in processes, such as sequence-specific DNA "breathing" and the assembly of protein-nucleic acid complexes. Because microsecond-resolved single-molecule trajectories often involve "sparse" data, that is, they contain relatively few data points per unit time, they cannot be easily analyzed using the standard protocols that were developed for single-molecule experiments carried out with tens-of-millisecond time resolution and high "data density." Here, we describe a generalized approach, based on time-correlation functions, to obtain kinetic information from microsecond-resolved single-molecule fluorescence measurements. This approach can be used to identify short-lived intermediates that lie on reaction pathways connecting relatively long-lived reactant and product states. As a concrete illustration of the potential of this methodology for analyzing specific macromolecular systems, we accompany the theoretical presentation with the description of a specific biologically relevant example drawn from studies of reaction mechanisms of the assembly of the single-stranded DNA binding protein of the T4 bacteriophage replication complex onto a model DNA replication fork.

  15. Comparison of nitric oxide-induced oxidation of recombinant oxyhemoglobin subunits using a competition experiment.

    PubMed

    Lin, Yen-Lin; Huang, Kuang-Tse

    2009-08-01

    A low reaction rate with nitric oxide (NO) is one of the important characteristics of hemoglobin (Hb)-based oxygen carriers. The reaction rate between oxyHb and NO is usually measured by stopped-flow spectrophotometry. However, the reported rates vary due to the difficulty of accurately determining the NO concentration and the limit of the instrument dead time. To circumvent these problems, we developed an experiment using oxymyoglobin (oxyMb) to compete with oxyHb for NO that is released from an NO donor. Determination of the rate constants in the competition experiment no longer depends on accurate measurement of time or NO concentration, since this approach instead measures the ratio of rate constants for the reaction of oxyHb and oxyMb with NO. For recombinant mutant Hb alpha(L29F)beta the rates for alpha(L29F) and beta are approximately 15- and 1.6-fold smaller than for wild-type Hb. In conclusion, the competition experiment provides an alternative method for determination of relative reaction rates of recombinant Hb subunits with NO.

  16. Fear of blood draws, vasovagal reactions, and retention among high school donors.

    PubMed

    France, Christopher R; France, Janis L; Carlson, Bruce W; Himawan, Lina K; Stephens, Kirsten Yunuba; Frame-Brown, Terri A; Venable, Geri A; Menitove, Jay E

    2014-03-01

    We previously demonstrated that fear of having blood drawn is one of the strongest known predictors of vasovagal reactions among high school blood donors. This report examines the combined effects of donor fear and experience of vasovagal reactions on repeat donation attempts among high school blood donors. Immediately after completing the blood donor health screening, 1715 high school students were asked about their fear of having blood drawn. The donor record was then used to collect information regarding their experience of vasovagal reactions at the time of donation as well as their subsequent donation attempts within the following year. Fear of having blood drawn and the experience of a vasovagal reaction each contributed to donor attrition, with only 33.2% of fearful donors who experienced a vasovagal reaction returning in the following year compared to 56.7% of nonfearful nonreactors. Path analyses demonstrated that fear has an indirect effect (through vasovagal reactions) on repeat donations among first-time donors and both direct and indirect effects on repeat donation attempts among experienced donors. Among high school blood donors, fear of having blood drawn has both a direct negative effect on donor retention and an indirect negative effect by increasing the risk of vasovagal reactions. Accordingly, targeted efforts to reduce donor fear may be particularly efficient in promoting long-term donor loyalty among our youngest donors. © 2013 American Association of Blood Banks.

  17. The impact of secondary-task type on the sensitivity of reaction-time based measurement of cognitive load for novices learning surgical skills using simulation.

    PubMed

    Rojas, David; Haji, Faizal; Shewaga, Rob; Kapralos, Bill; Dubrowski, Adam

    2014-01-01

    Interest in the measurement of cognitive load (CL) in simulation-based education has grown in recent years. In this paper we present two pilot experiments comparing the sensitivity of two reaction time based secondary task measures of CL. The results suggest that simple reaction time measures are sensitive enough to detect changes in CL experienced by novice learners in the initial stages of simulation-based surgical skills training.

  18. Generalizing Over Conditions by Combining the Multitrait Multimethod Matrix and the Representative Design of Experiments,

    DTIC Science & Technology

    1986-01-01

    by Anderson (1985) was reported in an article by Posner (1969) in which the difference in reaction time to an 1 "identity match" and a "name match...shorter reaction time) for the identity match but after a two-second [inter-stimulus) interval this * * advantage has almost completely disappeared. This...of critical sentences in a story. It is similar, however, in that reaction time was also used to evaluate differences between response categories that

  19. The time course of corticospinal excitability during a simple reaction time task.

    PubMed

    Kennefick, Michael; Maslovat, Dana; Carlsen, Anthony N

    2014-01-01

    The production of movement in a simple reaction time task can be separated into two time periods: the foreperiod, which is thought to include preparatory processes, and the reaction time interval, which includes initiation processes. To better understand these processes, transcranial magnetic stimulation has been used to probe corticospinal excitability at various time points during response preparation and initiation. Previous research has shown that excitability decreases prior to the "go" stimulus and increases following the "go"; however these two time frames have been examined independently. The purpose of this study was to measure changes in CE during both the foreperiod and reaction time interval in a single experiment, relative to a resting baseline level. Participants performed a button press movement in a simple reaction time task and excitability was measured during rest, the foreperiod, and the reaction time interval. Results indicated that during the foreperiod, excitability levels quickly increased from baseline with the presentation of the warning signal, followed by a period of stable excitability leading up to the "go" signal, and finally a rapid increase in excitability during the reaction time interval. This excitability time course is consistent with neural activation models that describe movement preparation and response initiation.

  20. Traumatic reactions as predictors of posttraumatic stress six months after the Oklahoma City bombing.

    PubMed

    Tucker, P; Dickson, W; Pfefferbaum, B; McDonald, N B; Allen, G

    1997-09-01

    This study attempted to identify remembered reactions of Oklahoma City residents at the time of the April 1995 terrorist bombing that predicted later development of posttraumatic stress symptoms. Eighty-six adults who sought help for distress related to the bombing six months after it occurred completed a survey about demographic characteristics, level of exposure to the event, symptoms of grief, retrospective reports of reactions at the time of the trauma, current posttraumatic stress symptoms, and coping strategies. To identify immediate bombing reactions predictive of later distress, retrospective reports of reactions to the trauma were correlated with current posttraumatic stress symptoms. Multiple regression analysis was used to determine which reactions predicted the emergence of posttraumatic stress symptoms. Reactions of being nervous and being upset by how other people acted when the bombing occurred accounted for about one-third of the total variation in posttraumatic stress symptom scores and thus were major predictors of posttraumatic stress. These results differ from those of other studies in which peritraumatic dissociation, or dissociation at the time of the event, was more predictive than anxiety for developing later distress. The results suggest that persons who experience significant anxiety at the time of the traumatic event may continue to experience distress. Those who are overly concerned about others' actions may be showing diminished interpersonal trust, evidence of terrorism's ability to erode social harmony.

  1. The dependence of Ammonium-Nitrate Fuel-Oil (ANFO) detonation on confinement

    DOE PAGES

    Jackson, Scott I.

    2016-11-17

    As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less

  2. Effects of Arm Ergometry Exercise on the Reaction, Movement and Response Times of the Lower Extremities.

    ERIC Educational Resources Information Center

    Israel, Richard G.

    A study determined the effects of fatigue produced in the upper extremities on the reaction time, movement time, and response time of the lower extremities in 30 male subjects, 19-25 years old. Each subject participated in a 10 trial practice session one day prior to the experiment and immediately preceding the pre-test. The pre-test consisted of…

  3. An eHealth Approach to Reporting Allergic Reactions to Food and Closing the Knowledge Gap.

    PubMed

    Munro, Christopher; Semic-Jusufagic, Aida; Pyrz, Katarzyna; Couch, Philip; Dunn-Galvin, Audrey; Peek, Niels; Themis, Marina; Mills, Clare; Buchan, Iain; Hourihane, Jonathan; Simpson, Angela

    2015-01-01

    There is an important knowledge gap in food allergy management in understanding the factors that determine allergic reactions to food, in gathering objective reports of reactions in real time, and in accessing patients' reaction-histories during consultations. We investigate how eHealth methods can close this knowledge gap. We report experiences with an online tool for reporting allergic reactions that we have developed as a web application. This application has been successfully validated by participants from Ireland and the UK, and is currently being used in a pilot where participants report allergic reactions in near-real time.

  4. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays

    NASA Astrophysics Data System (ADS)

    Thanh, Vo Hong; Priami, Corrado; Zunino, Roberto

    2014-10-01

    We propose a new exact stochastic rejection-based simulation algorithm for biochemical reactions and extend it to systems with delays. Our algorithm accelerates the simulation by pre-computing reaction propensity bounds to select the next reaction to perform. Exploiting such bounds, we are able to avoid recomputing propensities every time a (delayed) reaction is initiated or finished, as is typically necessary in standard approaches. Propensity updates in our approach are still performed, but only infrequently and limited for a small number of reactions, saving computation time and without sacrificing exactness. We evaluate the performance improvement of our algorithm by experimenting with concrete biological models.

  5. Motor programming in apraxia of speech.

    PubMed

    Maas, Edwin; Robin, Donald A; Wright, David L; Ballard, Kirrie J

    2008-08-01

    Apraxia of Speech (AOS) is an impairment of motor programming. However, the exact nature of this deficit remains unclear. The present study examined motor programming in AOS in the context of a recent two-stage model [Klapp, S. T. (1995). Motor response programming during simple and choice reaction time: The role of practice. Journal of Experimental Psychology: Human Perception and Performance, 21, 1015-1027; Klapp, S. T. (2003). Reaction time analysis of two types of motor preparation for speech articulation: Action as a sequence of chunks. Journal of Motor Behavior, 35, 135-150] that proposes a preprogramming stage (INT) and a process that assigns serial order to multiple programs in a sequence (SEQ). The main hypothesis was that AOS involves a process-specific deficit in the INT (preprogramming) stage of processing, rather than in the on-line serial ordering (SEQ) and initiation of movement. In addition, we tested the hypothesis that AOS involves a central (i.e., modality-general) motor programming deficit. We used a reaction time paradigm that provides two dependent measures: study time (the amount of time for participants to ready a motor response; INT), and reaction time (time to initiate movement; SEQ). Two experiments were conducted to examine INT and SEQ in AOS: Experiment 1 involved finger movements, Experiment 2 involved speech movements analogous to the finger movements. Results showed longer preprogramming time for patients with AOS but normal sequencing and initiation times, relative to controls. Together, the findings are consistent with the hypothesis of a process-specific, but central (modality-independent) deficit in AOS; alternative explanations are also discussed.

  6. Stress reaction process-based hierarchical recognition algorithm for continuous intrusion events in optical fiber prewarning system

    NASA Astrophysics Data System (ADS)

    Qu, Hongquan; Yuan, Shijiao; Wang, Yanping; Yang, Dan

    2018-04-01

    To improve the recognition performance of optical fiber prewarning system (OFPS), this study proposed a hierarchical recognition algorithm (HRA). Compared with traditional methods, which employ only a complex algorithm that includes multiple extracted features and complex classifiers to increase the recognition rate with a considerable decrease in recognition speed, HRA takes advantage of the continuity of intrusion events, thereby creating a staged recognition flow inspired by stress reaction. HRA is expected to achieve high-level recognition accuracy with less time consumption. First, this work analyzed the continuity of intrusion events and then presented the algorithm based on the mechanism of stress reaction. Finally, it verified the time consumption through theoretical analysis and experiments, and the recognition accuracy was obtained through experiments. Experiment results show that the processing speed of HRA is 3.3 times faster than that of a traditional complicated algorithm and has a similar recognition rate of 98%. The study is of great significance to fast intrusion event recognition in OFPS.

  7. Kinetic Profiling of Catalytic Organic Reactions as a Mechanistic Tool.

    PubMed

    Blackmond, Donna G

    2015-09-02

    The use of modern kinetic tools to obtain virtually continuous reaction progress data over the course of a catalytic reaction opens up a vista that provides mechanistic insights into both simple and complex catalytic networks. Reaction profiles offer a rate/concentration scan that tells the story of a batch reaction time course in a qualitative "fingerprinting" manner as well as in quantitative detail. Reaction progress experiments may be mathematically designed to elucidate catalytic rate laws from only a fraction of the number of experiments required in classical kinetic measurements. The information gained from kinetic profiles provides clues to direct further mechanistic analysis by other approaches. Examples from a variety of catalytic reactions spanning two decades of the author's work help to delineate nuances on a central mechanistic theme.

  8. Best Measuring Time for a Millikan Oil Drop Experiment

    ERIC Educational Resources Information Center

    Kapusta, J. I.

    1975-01-01

    In a Millikan oil drop experiment, there is a best measuring time for observing the drop, due to Brownian motion of the drop and the experimenter's reaction time. Derives an equation for the relative error in the measurement of the drop's excess charge, and obtains a formula for the best measuring time. (Author/MLH)

  9. Quantum Yield of Cyclobutane Pyrimidine Dimer Formation Via the Triplet Channel Determined by Photosensitization.

    PubMed

    Liu, Lizhe; Pilles, Bert M; Gontcharov, Julia; Bucher, Dominik B; Zinth, Wolfgang

    2016-01-21

    UV-induced formation of the cyclobutane pyrimidine dimer (CPD) lesion is investigated by stationary and time-resolved photosensitization experiments. The photosensitizer 2'-methoxyacetophenone with high intersystem crossing efficiency and large absorption cross-section in the UV-A range was used. A diffusion controlled reaction model is presented. Time-resolved experiments confirmed the validity of the reaction model and provided information on the dynamics of the triplet sensitization process. With a series of concentration dependent stationary illumination experiments, we determined the quantum efficiency for CPD formation from the triplet state of the thymine dinucleotide TpT to be 4 ± 0.2%.

  10. An Introduction to Fast Fourier Transforms through the Study of Oscillating Reactions.

    ERIC Educational Resources Information Center

    Eastman, M. P.; And Others

    1986-01-01

    Discusses an experiment designed to introduce students to the basic principles of the fast Fourier transform and Fourier smoothing through transformation of time-dependent optical absorption data from an oscillating reaction. Uses the Belousov-Zhabotinskii reaction. Describes the experimental setup and data analysis techniques.

  11. Physiological Evidence for Response Inhibition in Choice Reaction Time Tasks

    ERIC Educational Resources Information Center

    Burle, Boris; Vidal, Frank; Tandonnet, Christophe; Hasbroucq, Thierry

    2004-01-01

    Inhibition is a widely used notion proposed to account for data obtained in choice reaction time (RT) tasks. However, this concept is weakly supported by empirical facts. In this paper, we review a series of experiments using Hoffman reflex, transcranial magnetic stimulation and electroencephalography to study inhibition in choice RT tasks. We…

  12. Evaluating Warning Sound Urgency with Reaction Times

    ERIC Educational Resources Information Center

    Suied, Clara; Susini, Patrick; McAdams, Stephen

    2008-01-01

    It is well-established that subjective judgments of perceived urgency of alarm sounds can be affected by acoustic parameters. In this study, the authors investigated an objective measurement, the reaction time (RT), to test the effectiveness of temporal parameters of sounds in the context of warning sounds. Three experiments were performed using a…

  13. Serial Reaction Time Learning in Preschool- and School-Age Children.

    ERIC Educational Resources Information Center

    Thomas, Kathleen M.; Nelson, Charles A.

    2001-01-01

    Two experiments assessed visuomotor sequence learning in 4- to 10-year-olds using a serial reaction time (SRT) task with random and sequenced trials. Found that children demonstrated sequence-specific decreases in RT. Participants with explicit awareness of the sequence at the session's end showed larger sequence-specific RT decrements than…

  14. Experiences of Stress in a Trauma Treatment Course

    ERIC Educational Resources Information Center

    Shannon, Patricia J.; Simmelink-McCleary, Jennifer; Im, Hyojin; Becher, Emily; Crook-Lyon, Rachel E.

    2014-01-01

    This study explores the reactions of social work students in a course on trauma treatment and how those reactions changed over time. Consensual qualitative research methods were used to analyze 17 participant journals submitted at 4 times during the course. Findings indicate that students experienced a range of responses to traumatic material,…

  15. A reaction time advantage for calculating beliefs over public representations signals domain specificity for 'theory of mind'.

    PubMed

    Cohen, Adam S; German, Tamsin C

    2010-06-01

    In a task where participants' overt task was to track the location of an object across a sequence of events, reaction times to unpredictable probes requiring an inference about a social agent's beliefs about the location of that object were obtained. Reaction times to false belief situations were faster than responses about the (false) contents of a map showing the location of the object (Experiment 1) and about the (false) direction of an arrow signaling the location of the object (Experiment 2). These results are consistent with developmental, neuro-imaging and neuropsychological evidence that there exist domain specific mechanisms within human cognition for encoding and reasoning about mental states. Specialization of these mechanisms may arise from either core cognitive architecture or via the accumulation of expertise in the social domain.

  16. Microwave-assisted synthesis of organics and nanomaterials

    EPA Science Inventory

    Microwave-assisted chemistry techniques and greener reaction media are dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This presentation summarizes author’s own experience in developing MW-assisted chemical proces...

  17. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento

    2014-10-07

    We propose a new exact stochastic rejection-based simulation algorithm for biochemical reactions and extend it to systems with delays. Our algorithm accelerates the simulation by pre-computing reaction propensity bounds to select the next reaction to perform. Exploiting such bounds, we are able to avoid recomputing propensities every time a (delayed) reaction is initiated or finished, as is typically necessary in standard approaches. Propensity updates in our approach are still performed, but only infrequently and limited for a small number of reactions, saving computation time and without sacrificing exactness. We evaluate the performance improvement of our algorithm by experimenting with concretemore » biological models.« less

  18. Enzyme-catalyzed synthesis and kinetics of ultrasonic-assisted biodiesel production from waste tallow.

    PubMed

    Adewale, Peter; Dumont, Marie-Josée; Ngadi, Michael

    2015-11-01

    The use of ultrasonic processing was evaluated for its ability to achieve adequate mixing while providing sufficient activation energy for the enzymatic transesterification of waste tallow. The effects of ultrasonic parameters (amplitude, cycle and pulse) and major reaction factors (molar ratio and enzyme concentration) on the reaction kinetics of biodiesel generation from waste tallow bio-catalyzed by immobilized lipase [Candida antarctica lipase B (CALB)] were investigated. Three sets of experiments namely A, B, and C were conducted. In experiment set A, two factors (ultrasonic amplitude and cycle) were investigated at three levels; in experiment set B, two factors (molar ratio and enzyme concentration) were examined at three levels; and in experiment set C, two factors (ultrasonic amplitude and reaction time) were investigated at five levels. A Ping Pong Bi Bi kinetic model approach was employed to study the effect of ultrasonic amplitude on the enzymatic transesterification. Kinetic constants of transesterification reaction were determined at different ultrasonic amplitudes (30%, 35%, 40%, 45%, and 50%) and enzyme concentrations (4, 6, and 8 wt.% of fat) at constant molar ratio (fat:methanol); 1:6, and ultrasonic cycle; 5 Hz. Optimal conditions for ultrasound-assisted biodiesel production from waste tallow were fat:methanol molar ratio, 1:4; catalyst level 6% (w/w of fat); reaction time, 20 min (30 times less than conventional batch processes); ultrasonic amplitude 40% at 5 Hz. The kinetic model results revealed interesting features of ultrasound assisted enzyme-catalyzed transesterification (as compared to conventional system): at ultrasonic amplitude 40%, the reaction activities within the system seemed to be steady after 20 min which means the reaction could proceed with or without ultrasonic mixing. Reversed phase high performance liquid chromatography indicated the biodiesel yield to be 85.6±0.08%. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A Time-Dependent Quantum Dynamics Study of the H2 + CH3 yields H + CH4 Reaction

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a time-dependent wave-packet propagation calculation for the H2 + CH3 yields H + CH4 reaction in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probability for different initial rotational-vibrational states are presented in this study. The cumulative reaction probability (CRP) is obtained by summing over initial-state-selected reaction probability. The energy-shift approximation to account for the contribution of degrees of freedom missing in the 6D calculation is employed to obtain an approximate full-dimensional CRP. Thermal rate constant is compared with different experiment results.

  20. Time-based understanding of DLCO and DLNO.

    PubMed

    Kang, Min-Yeong; Sapoval, Bernard

    2016-05-01

    Capture of CO and NO by blood requires molecules to travel by diffusion from alveolar gas to haemoglobin molecules inside RBCs and then to react. One can attach to these processes two times, a time for diffusion and a time for reaction. This reaction time is known from chemical kinetics and, therefore, constitutes a unique physical clock. This paper presents a time-based bottom-up theory that yields a simple expression for DLCO and DLNO that produces quantitative predictions which compare successfully with experiments. Specifically, when this new approach is applied to DLCO experiments, it can be used to determine the value of the characteristic diffusion time, and the value of capillary volume (Vc). The new theory also provides a simple explanation for still unexplained correlations such as the observed proportionality between the so-called membrane conductance DM and Vc of Roughton and Forster's interpretation. This new theory indicates that DLCO should be proportional to the haematocrit as found in several experiments. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Microwave-assisted 'greener' synthesis of organics and nanomaterials

    EPA Science Inventory

    Microwave selective heating techniques in conjunction with greener reaction media are dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This presentation summarizes author’s own experience in developing MW-assisted ...

  2. Reaction Time in Grade 5: Data Collection within the Practice of Statistics

    ERIC Educational Resources Information Center

    Watson, Jane; English, Lyn

    2017-01-01

    This study reports on a classroom activity for Grade 5 students investigating their reaction times. The investigation was part of a 3-year research project introducing students to informal inference and giving them experience carrying out the practice of statistics. For this activity the focus within the practice of statistics was on introducing…

  3. On the Locus of Speed-Accuracy Trade-Off in Reaction Time: Inferences From the Lateralized Readiness Potential

    ERIC Educational Resources Information Center

    Rinkenauer, Gerhard; Osman, Allen; Ulrich, Rolf; Muller-Gethmann, Hiltraut; Mattes, Stefan

    2004-01-01

    Lateralized readiness potentials (LRPs) were used to determine the stage(s) of reaction time (RT) responsible for speed-accuracy trade-offs (SATs). Speeded decisions based on several types of information were examined in 3 experiments, involving, respectively, a line discrimination task, lexical decisions, and an Erikson flanker task. Three levels…

  4. The Effect of Aging on the Stages of Processing in a Choice Reaction Time Task

    ERIC Educational Resources Information Center

    Simon, J. Richard; Pouraghabagher, A. Reza

    1978-01-01

    Two experiments were conducted to determine the effect of aging on encoding and response selection stages of a choice reaction time task. Results suggested reducing stimulus discriminability may affect information processing prior to the encoding stage, but the encoding stage is the primary locus of the slowing which accompanied aging. (Author)

  5. Hybrid deterministic/stochastic simulation of complex biochemical systems.

    PubMed

    Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina

    2017-11-21

    In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.

  6. Implicit and Explicit Knowledge Both Improve Dual Task Performance in a Continuous Pursuit Tracking Task.

    PubMed

    Ewolds, Harald E; Bröker, Laura; de Oliveira, Rita F; Raab, Markus; Künzell, Stefan

    2017-01-01

    The goal of this study was to investigate the effect of predictability on dual-task performance in a continuous tracking task. Participants practiced either informed (explicit group) or uninformed (implicit group) about a repeated segment in the curves they had to track. In Experiment 1 participants practices the tracking task only, dual-task performance was assessed after by combining the tracking task with an auditory reaction time task. Results showed both groups learned equally well and tracking performance on a predictable segment in the dual-task condition was better than on random segments. However, reaction times did not benefit from a predictable tracking segment. To investigate the effect of learning under dual-task situation participants in Experiment 2 practiced the tracking task while simultaneously performing the auditory reaction time task. No learning of the repeated segment could be demonstrated for either group during the training blocks, in contrast to the test-block and retention test, where participants performed better on the repeated segment in both dual-task and single-task conditions. Only the explicit group improved from test-block to retention test. As in Experiment 1, reaction times while tracking a predictable segment were no better than reaction times while tracking a random segment. We concluded that predictability has a positive effect only on the predictable task itself possibly because of a task-shielding mechanism. For dual-task training there seems to be an initial negative effect of explicit instructions, possibly because of fatigue, but the advantage of explicit instructions was demonstrated in a retention test. This might be due to the explicit memory system informing or aiding the implicit memory system.

  7. Implicit and Explicit Knowledge Both Improve Dual Task Performance in a Continuous Pursuit Tracking Task

    PubMed Central

    Ewolds, Harald E.; Bröker, Laura; de Oliveira, Rita F.; Raab, Markus; Künzell, Stefan

    2017-01-01

    The goal of this study was to investigate the effect of predictability on dual-task performance in a continuous tracking task. Participants practiced either informed (explicit group) or uninformed (implicit group) about a repeated segment in the curves they had to track. In Experiment 1 participants practices the tracking task only, dual-task performance was assessed after by combining the tracking task with an auditory reaction time task. Results showed both groups learned equally well and tracking performance on a predictable segment in the dual-task condition was better than on random segments. However, reaction times did not benefit from a predictable tracking segment. To investigate the effect of learning under dual-task situation participants in Experiment 2 practiced the tracking task while simultaneously performing the auditory reaction time task. No learning of the repeated segment could be demonstrated for either group during the training blocks, in contrast to the test-block and retention test, where participants performed better on the repeated segment in both dual-task and single-task conditions. Only the explicit group improved from test-block to retention test. As in Experiment 1, reaction times while tracking a predictable segment were no better than reaction times while tracking a random segment. We concluded that predictability has a positive effect only on the predictable task itself possibly because of a task-shielding mechanism. For dual-task training there seems to be an initial negative effect of explicit instructions, possibly because of fatigue, but the advantage of explicit instructions was demonstrated in a retention test. This might be due to the explicit memory system informing or aiding the implicit memory system. PMID:29312083

  8. "Batch" kinetics in flow: online IR analysis and continuous control.

    PubMed

    Moore, Jason S; Jensen, Klavs F

    2014-01-07

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Refilling the half-empty glass--Investigating the potential role of the Interpretation Modification Paradigm for Depression (IMP-D).

    PubMed

    Möbius, Martin; Tendolkar, Indira; Lohner, Valerie; Baltussen, Mirte; Becker, Eni S

    2015-12-01

    Cognitive biases are known to cause and maintain depression. However, little research has been done on techniques targeting interpretation tendencies found in depression, despite the promising findings of anxiety studies. This paper presents two experiments, investigating the suitability of an Interpretation Modification Paradigm for Depression (IMP-D) in healthy individuals, which has already proven its effectiveness in anxiety (Beard & Amir, 2008). Different from other paradigms, the IMP-D aims at modifying an interpretation bias on response- and on a more implicit reaction time-level, making this task less susceptible to demand effects. The Word-Sentence Association Paradigm for Depression (Hindash & Amir, 2011) was modified and administered in healthy volunteers (experiment I: N = 81; experiment II: N = 105). To enhance a positive interpretation bias, endorsing benign and rejecting negative interpretations of ambiguous scenarios was reinforced through feedback. This intervention was compared to the opposite training (both experiments) and a control training (experiment II only). Both experiments revealed a significant increase in bias towards benign interpretations on the level of overt decisions, while only in the first experiment a change was found on a reaction time level. These modifications are not reflected in group-differences in emotional vulnerability. Possible limitations regarding the reliability of inter-dependent response and reaction time measures are discussed. The IMP-D is able to modify interpretation biases, but adaptations are required to maximize its beneficial effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Solvent-Free Conversion of Alpha-Naphthaldehyde to 1-Naphthoic Acid and 1-Naphthalenemethanol: Application of the Cannizzaro Reaction

    ERIC Educational Resources Information Center

    Esteb, John J.; Gligorich, Keith M.; O'Reilly, Stacy A.; Richter, Jeremy M.

    2004-01-01

    A mixture of potassium hydroxide and alpha-naphthaldehyde (1) are heated under solvent-free conditions to produce 1-naphthoic acid (2) and 1-naphthalenemethanol (3). The experiment offers several advantages over many existing exercises including the ease of reaction workup, shorter reaction time, relative environmental friendliness of the…

  11. Rotary acceleration of a subject inhibits choice reaction time to motion in peripheral vision

    NASA Technical Reports Server (NTRS)

    Borkenhagen, J. M.

    1974-01-01

    Twelve pilots were tested in a rotation device with visual simulation, alone and in combination with rotary stimulation, in experiments with variable levels of acceleration and variable viewing angles, in a study of the effect of S's rotary acceleration on the choice reaction time for an accelerating target in peripheral vision. The pilots responded to the direction of the visual motion by moving a hand controller to the right or left. Visual-plus-rotary stimulation required a longer choice reaction time, which was inversely related to the level of acceleration and directly proportional to the viewing angle.

  12. Simple reaction time to the onset of time-varying sounds.

    PubMed

    Schlittenlacher, Josef; Ellermeier, Wolfgang

    2015-10-01

    Although auditory simple reaction time (RT) is usually defined as the time elapsing between the onset of a stimulus and a recorded reaction, a sound cannot be specified by a single point in time. Therefore, the present work investigates how the period of time immediately after onset affects RT. By varying the stimulus duration between 10 and 500 msec, this critical duration was determined to fall between 32 and 40 milliseconds for a 1-kHz pure tone at 70 dB SPL. In a second experiment, the role of the buildup was further investigated by varying the rise time and its shape. The increment in RT for extending the rise time by a factor of ten was about 7 to 8 msec. There was no statistically significant difference in RT between a Gaussian and linear rise shape. A third experiment varied the modulation frequency and point of onset of amplitude-modulated tones, producing onsets at different initial levels with differently rapid increase or decrease immediately afterwards. The results of all three experiments results were explained very well by a straightforward extension of the parallel grains model (Miller and Ulrich Cogn. Psychol. 46, 101-151, 2003), a probabilistic race model employing many parallel channels. The extension of the model to time-varying sounds made the activation of such a grain depend on intensity as a function of time rather than a constant level. A second approach by mechanisms known from loudness produced less accurate predictions.

  13. An extended research of crossmodal correspondence between color and sound in psychology and cognitive ergonomics.

    PubMed

    Sun, Xiuwen; Li, Xiaoling; Ji, Lingyu; Han, Feng; Wang, Huifen; Liu, Yang; Chen, Yao; Lou, Zhiyuan; Li, Zhuoyun

    2018-01-01

    Based on the existing research on sound symbolism and crossmodal correspondence, this study proposed an extended research on cross-modal correspondence between various sound attributes and color properties in a group of non-synesthetes. In Experiment 1, we assessed the associations between each property of sounds and colors. Twenty sounds with five auditory properties (pitch, roughness, sharpness, tempo and discontinuity), each varied in four levels, were used as the sound stimuli. Forty-nine colors with different hues, saturation and brightness were used to match to those sounds. Result revealed that besides pitch and tempo, roughness and sharpness also played roles in sound-color correspondence. Reaction times of sound-hue were a little longer than the reaction times of sound-lightness. In Experiment 2, a speeded target discrimination task was used to assess whether the associations between sound attributes and color properties could invoke natural cross-modal correspondence and improve participants' cognitive efficiency in cognitive tasks. Several typical sound-color pairings were selected according to the results of Experiment 1. Participants were divided into two groups (congruent and incongruent). In each trial participants had to judge whether the presented color could appropriately be associated with the sound stimuli. Result revealed that participants responded more quickly and accurately in the congruent group than in the incongruent group. It was also found that there was no significant difference in reaction times and error rates between sound-hue and sound-lightness. The results of Experiment 1 and 2 indicate the existence of a robust crossmodal correspondence between multiple attributes of sound and color, which also has strong influence on cognitive tasks. The inconsistency of the reaction times between sound-hue and sound-lightness in Experiment 1 and 2 is probably owing to the difference in experimental protocol, which indicates that the complexity of experiment design may be an important factor in crossmodal correspondence phenomena.

  14. An extended research of crossmodal correspondence between color and sound in psychology and cognitive ergonomics

    PubMed Central

    Sun, Xiuwen; Ji, Lingyu; Han, Feng; Wang, Huifen; Liu, Yang; Chen, Yao; Lou, Zhiyuan; Li, Zhuoyun

    2018-01-01

    Based on the existing research on sound symbolism and crossmodal correspondence, this study proposed an extended research on cross-modal correspondence between various sound attributes and color properties in a group of non-synesthetes. In Experiment 1, we assessed the associations between each property of sounds and colors. Twenty sounds with five auditory properties (pitch, roughness, sharpness, tempo and discontinuity), each varied in four levels, were used as the sound stimuli. Forty-nine colors with different hues, saturation and brightness were used to match to those sounds. Result revealed that besides pitch and tempo, roughness and sharpness also played roles in sound-color correspondence. Reaction times of sound-hue were a little longer than the reaction times of sound-lightness. In Experiment 2, a speeded target discrimination task was used to assess whether the associations between sound attributes and color properties could invoke natural cross-modal correspondence and improve participants’ cognitive efficiency in cognitive tasks. Several typical sound-color pairings were selected according to the results of Experiment 1. Participants were divided into two groups (congruent and incongruent). In each trial participants had to judge whether the presented color could appropriately be associated with the sound stimuli. Result revealed that participants responded more quickly and accurately in the congruent group than in the incongruent group. It was also found that there was no significant difference in reaction times and error rates between sound-hue and sound-lightness. The results of Experiment 1 and 2 indicate the existence of a robust crossmodal correspondence between multiple attributes of sound and color, which also has strong influence on cognitive tasks. The inconsistency of the reaction times between sound-hue and sound-lightness in Experiment 1 and 2 is probably owing to the difference in experimental protocol, which indicates that the complexity of experiment design may be an important factor in crossmodal correspondence phenomena. PMID:29507834

  15. Experimental phytophotodermatitis.

    PubMed

    Gonçalves, N E L; de Almeida, H L; Hallal, E C; Amado, M

    2005-12-01

    Phytophotodermatitis (PPD) is defined as a phototoxic reaction of the skin after contact with substances derived from plants and subsequent exposure to sunlight. It is a frequent disease in our outpatient clinics during summer because of contact with Tahitian lemon. Our objectives were to experimentally reproduce PPD in rats, to identify whether PPD is induced by minimal exposure periods to sunlight, to find what kinds of lemons and which parts of the lemon (the fruit juice or the peel juice) may trigger the disease; to know whether the use of sunblock prevents the reaction; and to perform light microscopy of the lesions to describe their histology. Adult rats (Rattus norwegicus), three in each experiment, were used. After painting the rats with the fruit juice or the peel juice they were exposed to sunlight for 2.5, 5, 7.5, and 10 min. Tahitian and Sicilian lemons were used in the experiments. Biopsies with 3-mm punches of different times of exposure were performed. The peel juice of both lemons reproduced PPD, which was clinically evident after 48 h. When the peel juice was alone applied there was no reaction; moreover, exposure to sunlight alone triggered no reaction. Two and a half minutes of exposure time was sufficient to induce phototoxic reaction, which was time dependent (the longer the exposure the more intense the reaction). Histopathological studies showed epithelial time-dependent vacuolar degeneration. The use of sunblock diminished the intensity of the reaction but did not prevent it. PPD can be reproduced in an animal model. It may be caused by the peel juice of Tahitian and Sicilian lemon. Because of an extremely short time of exposure (2.5 min) is sufficient to induce PPD it is necessary to alert the population, of the need for caution when handling lemons, especially outdoors despite using sunblock.

  16. OSP Parameters and the Cognitive Component of Reaction Time to a Missing Stimulus: Linking Brain and Behavior

    ERIC Educational Resources Information Center

    Hernandez, Oscar H.; Vogel-Sprott, Muriel

    2009-01-01

    This within-subjects experiment tested the relationship between the premotor (cognitive) component of reaction time (RT) to a missing stimulus and parameters of the omitted stimulus potential (OSP) brain wave. Healthy young men (N = 28) completed trials with an auditory stimulus that recurred at 2 s intervals and ceased unpredictably. Premotor RT…

  17. Microwave-assisted transformations and synthesis of polymer nanocomposites and nanomaterials

    EPA Science Inventory

    The use of emerging MW-assisted chemistry techniques in conjunction with greener reaction media is dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This account summarizes our own experience in developing MW-assist...

  18. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production.

    PubMed

    Kumar, Ritesh; Kumar, G Ravi; Chandrashekar, N

    2011-06-01

    In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60°C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Product screening of fast reactions in IR-laser-heated liquid water filaments in a vacuum by mass spectrometry.

    PubMed

    Charvat, A; Stasicki, B; Abel, B

    2006-03-09

    In the present article a novel approach for rapid product screening of fast reactions in IR-laser-heated liquid microbeams in a vacuum is highlighted. From absorbed energies, a shock wave analysis, high-speed laser stroboscopy, and thermodynamic data of high-temperature water the enthalpy, temperature, density, pressure, and the reaction time window for the hot water filament could be characterized. The experimental conditions (30 kbar, 1750 K, density approximately 1 g/cm3) present during the lifetime of the filament (20-30 ns) were extreme and provided a unique environment for high-temperature water chemistry. For the probe of the reaction products liquid beam desorption mass spectrometry was employed. A decisive feature of the technique is that ionic species, as well as neutral products and intermediates may be detected (neutrals as protonated aggregates) via time-of-flight mass spectrometry without any additional ionization laser. After the explosive disintegration of the superheated beam, high-temperature water reactions are efficiently quenched via expansion and evaporative cooling. For first exploratory experiments for chemistry in ultrahigh-temperature, -pressure and -density water, we have chosen resorcinol as a benchmark system, simple enough and well studied in high-temperature water environments much below 1000 K. Contrary to oxidation reactions usually present under less extreme and dense supercritical conditions, we have observed hydration and little H-atom abstraction during the narrow time window of the experiment. Small amounts of radicals but no ionic intermediates other than simple proton adducts were detected. The experimental findings are discussed in terms of the energetic and dense environment and the small time window for reaction, and they provide firm evidence for additional thermal reaction channels in extreme molecular environments.

  20. Comparisons of mental clocks.

    PubMed

    Paivio, A

    1978-02-01

    Subjects in three experiments were presented with pairs of clock times and were required to choose the one in which the hour and minute hand formed the smaller angle. In Experiments 1 and 2, the times were presented digitally, necessitating a transformation into symbolic representations from which the angular size difference could be inferred. The results revealed orderly symbolic distance effects so that comparison reaction time increased as the angular size difference decreased. Moreover, subjects generally reported using imagery to make the judgment, and subjects scoring high on test of imagery ability were faster than those scoring low on such tests. Experiment 3 added a direct perceptual condition in which subjects compared angles between pairs of hands on two drawn (analog) clocks, as well as a mixed condition involving one digital and one analog clock time. The results showed comparable distance effects for all conditions. In addition, reaction time increased from the perceptual, to the mixed, to the pure-digital condition. These results are consistent with predictions from an image-based dual-coding theory.

  1. Analytical solution for reactive solute transport considering incomplete mixing within a reference elementary volume

    NASA Astrophysics Data System (ADS)

    Chiogna, Gabriele; Bellin, Alberto

    2013-05-01

    The laboratory experiments of Gramling et al. (2002) showed that incomplete mixing at the pore scale exerts a significant impact on transport of reactive solutes and that assuming complete mixing leads to overestimation of product concentration in bimolecular reactions. Successively, several attempts have been made to model this experiment, either considering spatial segregation of the reactants, non-Fickian transport applying a Continuous Time Random Walk (CTRW) or an effective upscaled time-dependent kinetic reaction term. Previous analyses of these experimental results showed that, at the Darcy scale, conservative solute transport is well described by a standard advection dispersion equation, which assumes complete mixing at the pore scale. However, reactive transport is significantly affected by incomplete mixing at smaller scales, i.e., within a reference elementary volume (REV). We consider here the family of equilibrium reactions for which the concentration of the reactants and the product can be expressed as a function of the mixing ratio, the concentration of a fictitious non reactive solute. For this type of reactions we propose, in agreement with previous studies, to model the effect of incomplete mixing at scales smaller than the Darcy scale assuming that the mixing ratio is distributed within an REV according to a Beta distribution. We compute the parameters of the Beta model by imposing that the mean concentration is equal to the value that the concentration assumes at the continuum Darcy scale, while the variance decays with time as a power law. We show that our model reproduces the concentration profiles of the reaction product measured in the Gramling et al. (2002) experiments using the transport parameters obtained from conservative experiments and an instantaneous reaction kinetic. The results are obtained applying analytical solutions both for conservative and for reactive solute transport, thereby providing a method to handle the effect of incomplete mixing on multispecies reactive solute transport, which is simpler than other previously developed methods.

  2. Direct single-molecule dynamic detection of chemical reactions.

    PubMed

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  3. Direct single-molecule dynamic detection of chemical reactions

    PubMed Central

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N.; Zhang, Deqing; Guo, Xuefeng

    2018-01-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry. PMID:29487914

  4. Mental rotation of primate hands: human-likeness and thumb saliency.

    PubMed

    Bläsing, Bettina; de Castro Campos, Marcella; Schack, Thomas; Brugger, Peter

    2012-08-01

    Mental rotation of human hands has been found to differ essentially from mental rotation of objects in such a way that reaction times and error rates of handedness judgements are influenced by the comfort and familiarity of the presented hand postures. To investigate the role of the similarity of the presented hands to the participant's own hand, we used different primates' hands as stimuli in a mental rotation task. Five out of 24 primate hands were chosen for their ratings in human-likeness and saliency of the thumb according to a questionnaire study and presented in two mental rotation experiments; in the second experiment, they were modified in such a way that all hands appeared thumbless. Results of both experiments revealed effects of species and orientation on reaction times, and an interaction between species and hand side occurred in the second experiment. In the first experiment, the thumbless Colobus hand differed from all other hands, showing the highest reaction times and error rates and failing to show the expected medial-over-lateral advantage. In the second experiment, the eccentricity of the Colobus hand was decreased and the facilitating effect of human-likeness was slightly increased. We conclude that motor strategies were applied that relied less on the asymmetry of the stimuli but rather on their similarity to the human hand. We argue that motor simulation might facilitate the processing of incomplete stimuli by mentally completing them, especially if all stimuli can be processed in a consistent manner.

  5. The Effect of Time of Day on the Reaction to Stress. Final Report.

    ERIC Educational Resources Information Center

    Osborne, Francis H.

    This study obtains evidence for the effect of time of day on learning in a stressful situation. A series of five experiments were performed to assess the effects of this variable on learning using albino rat subjects. None of the experiments provide overwhelming evidence for the effect of time of day when taken alone and each leaves questions…

  6. Fast and calibration free determination of first order reaction kinetics in API synthesis using in-situ ATR-FTIR.

    PubMed

    Rehbein, Moritz C; Husmann, Sascha; Lechner, Christian; Kunick, Conrad; Scholl, Stephan

    2018-05-01

    In early stages of drug development only sparse amounts of the key substances are available, which is problematic for the determination of important process data like reaction kinetics. Therefore, it is important to perform experiments as economically as possible, especially in regards to limiting compounds. Here we demonstrate the use of a temperature step experiment enabling the determination of complete reaction kinetics in a single non-isothermal experiment. In contrast to the traditionally used HPLC, the method takes advantage of the high measuring rate and the low amount of labor involved in using in-situ ATR-FTIR to determine time-dependent concentration-equivalent data. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    ERIC Educational Resources Information Center

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M.; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as…

  8. Safety of meropenem in patients reporting penicillin allergy: lack of allergic cross reactions.

    PubMed

    Cunha, B A; Hamid, N S; Krol, V; Eisenstein, L

    2008-04-01

    Over the years, meropenem has become the mainstay of empiric therapy for serious systemic infections in critically ill patients. Although we have had extensive clinical experience since 1996 using meropenem safely in treating hundreds of patients with reported allergic reactions to penicillin without any adverse events, we have not published our experience. This study was conducted to document our clinical practice experience. Accordingly, over a 12-month period we prospectively monitored 110 patients treated with meropenem reporting penicillin allergic reactions for that 12-month period. Since early empiric therapy in such patients is essential, there is often no time for penicillin skin testing. Penicillin skin testing was not done in this "real world" clinical study. Patients were divided into two groups, depending on the nature of their penicillin allergic reactions. During a 12-month period, 110 patients with non-anaphylactic (59) and anaphylactic (51) penicillin allergic reactions tolerated prolonged meropenem therapy (1-4 weeks) safely without any allergic reactions. Based on these data and our previous clinical experience, there appears to be little/no potential cross reactivity between meropenem and penicillins even in patients with a definite history of anaphylactic reactions to penicillins. To the best of our knowledge, this is the first prospective clinical study demonstrating that meropenem may be safely given to patients with known/unknown allergic reactions to penicillin, including those with anaphylactic reactions, without penicillin skin testing. We conclude that meropenem may be given safely to patients reporting a history of non-anaphylactic or anaphylactic allergic reactions to penicillins without penicillin skin testing.

  9. Investigation of the relationship between CO2 reservoir rock property change and the surface roughness change originating from the supercritical CO2-sandstone-groundwater geochemical reaction at CO2 sequestration condition

    NASA Astrophysics Data System (ADS)

    Lee, Minhee; Wang, Sookyun; Kim, Seyoon; Park, Jinyoung

    2015-04-01

    Lab scale experiments were performed to investigate the property changes of sandstone slabs and cores, resulting from the scCO2-rock-groundwater reaction for 180 days under CO2 sequestration conditions (100 bar and 50 °C). The geochemical reactions, including the surface roughness change of minerals in the slab, resulted from the dissolution and the secondary mineral precipitation for the sandstone reservoir of the Gyeongsang basin, Korea were reproduced in laboratory scale experiments and the relationship between the geochemical reaction and the physical rock property change was derived, for the consideration of successful subsurface CO2 sequestration. The use of the surface roughness value (SRrms) change rate and the physical property change rate to quantify scCO2-rock-groundwater reaction is the novel approach on the study area for CO2 sequestration in the subsurface. From the results of SPM (Scanning Probe Microscope) analyses, the SRrms for each sandstone slab was calculated at different reaction time. The average SRrms increased more than 3.5 times during early 90 days reaction and it continued to be steady after 90 days, suggesting that the surface weathering process of sandstone occurred in the early reaction time after CO2 injection into the subsurface reservoir. The average porosity of sandstone cores increased by 8.8 % and the average density decreased by 0.5 % during 90 days reaction and these values slightly changed after 90 days. The average P and S wave velocities of sandstone cores also decreased by 10 % during 90 days reaction. The trend of physical rock property change during the geochemical reaction showed in a logarithmic manner and it was also correlated to the logarithmic increase in SRrms, suggesting that the physical property change of reservoir rocks originated from scCO2 injection directly comes from the geochemical reaction process. Results suggested that the long-term estimation of the physical property change for reservoir rocks in CO2 injection site could be possible from the extrapolation process of SRrms and rocks property change rates, acquired from laboratory scale experiments. It will be aslo useful to determine the favorite CO2 injection site from the viewpoint of the safety.

  10. Organo- and nano-catalyst in greener reaction medium: Microwave-assisted expedient synthesis of fine chemicals

    EPA Science Inventory

    The use of emerging microwave (MW) -assisted chemistry techniques is dramatically reducing chemical waste and reaction times in several organic syntheses and chemical transformations. A brief account of our experiences in developing MW-assisted organic transformations, which invo...

  11. Research on the Treatment of Aluminum Alloy Chemical Milling Wastewater with Fenton Process

    NASA Astrophysics Data System (ADS)

    Zong-liang, Huang; Ru, Li; Peng, Luo; Jun-li, Gu

    2018-03-01

    The aluminum alloy chemical milling wastewater was treated by Fenton method. The effect of pH value, reaction time, rotational speed, H2O2 dosage, Fe2+ dosage and the molar ratio between H2O2 and Fe2+ on the COD removal rate of aluminum alloy chemical milling wastewater were investigated by single factor experiment and orthogonal experiment. The results showed that the optimum operating conditions for Fenton oxidation were as follows: the initial pH value was 3, the rotational speed was 250r/min, the molar ratio of H2O2 and Fe2+ was 8, the reaction time was 90 min. Under the optimum conditions, the removal rate of the wastewater’s COD is about 72.36%. In the reaction kinetics that aluminum alloy chemical milling wastewater was oxidized and degraded by Fenton method under the optimum conditions, the reaction sequence of the initial COD was 0.8204.

  12. Research on the Relationship between Reaction Ability and Mental State for Online Assessment of Driving Fatigue.

    PubMed

    Guo, Mengzhu; Li, Shiwu; Wang, Linhong; Chai, Meng; Chen, Facheng; Wei, Yunong

    2016-11-24

    Background: Driving fatigue affects the reaction ability of a driver. The aim of this research is to analyze the relationship between driving fatigue, physiological signals and driver's reaction time. Methods: Twenty subjects were tested during driving. Data pertaining to reaction time and physiological signals including electroencephalograph (EEG) were collected from twenty simulation experiments. Grey correlation analysis was used to select the input variable of the classification model. A support vector machine was used to divide the mental state into three levels. The penalty factor for the model was optimized using a genetic algorithm. Results: The results show that α/β has the greatest correlation to reaction time. The classification results show an accuracy of 86%, a sensitivity of 87.5% and a specificity of 85.53%. The average increase of reaction time is 16.72% from alert state to fatigued state. Females have a faster decrease in reaction ability than males as driving fatigue accumulates. Elderly drivers have longer reaction times than the young. Conclusions: A grey correlation analysis can be used to improve the classification accuracy of the support vector machine (SVM) model. This paper provides basic research that online detection of fatigue can be performed using only a simple device, which is more comfortable for users.

  13. Research on the Relationship between Reaction Ability and Mental State for Online Assessment of Driving Fatigue

    PubMed Central

    Guo, Mengzhu; Li, Shiwu; Wang, Linhong; Chai, Meng; Chen, Facheng; Wei, Yunong

    2016-01-01

    Background: Driving fatigue affects the reaction ability of a driver. The aim of this research is to analyze the relationship between driving fatigue, physiological signals and driver’s reaction time. Methods: Twenty subjects were tested during driving. Data pertaining to reaction time and physiological signals including electroencephalograph (EEG) were collected from twenty simulation experiments. Grey correlation analysis was used to select the input variable of the classification model. A support vector machine was used to divide the mental state into three levels. The penalty factor for the model was optimized using a genetic algorithm. Results: The results show that α/β has the greatest correlation to reaction time. The classification results show an accuracy of 86%, a sensitivity of 87.5% and a specificity of 85.53%. The average increase of reaction time is 16.72% from alert state to fatigued state. Females have a faster decrease in reaction ability than males as driving fatigue accumulates. Elderly drivers have longer reaction times than the young. Conclusions: A grey correlation analysis can be used to improve the classification accuracy of the support vector machine (SVM) model. This paper provides basic research that online detection of fatigue can be performed using only a simple device, which is more comfortable for users. PMID:27886139

  14. Simple real-time computerized tasks for detection of malingering among murderers with schizophrenia.

    PubMed

    Kertzman, Semion; Grinspan, Haim; Birger, Moshe; Shliapnikov, Nina; Alish, Yakov; Ben Nahum, Zeev; Mester, Roberto; Kotler, Moshe

    2006-01-01

    It is our contention that computer-based two-alternative forced choice techniques can be useful tools for the detection of patients with schizophrenia who feign acute psychotic symptoms and cognitive impairment as opposed to patients with schizophrenia with a true active psychosis. In our experiment, Visual Simple and Choice Reaction Time tasks were used. Reaction time in milliseconds was recorded and accuracy rate was obtained for all subjects' responses. Both types of task were administered to 27 patients with schizophrenia suspected of having committed murder. Patients with schizophrenia who were clinically assessed as malingerers achieved significantly fewer correct results, were significantly slower and less consistent in their reaction time. Congruence of performance between the Simple and Choice tasks was an additional parameter for the accurate diagnosis of malingering. The four parameters of both tests (accuracy of response, reaction time, standard deviation of reaction time and task congruency) are simple and constitute a user-friendly means for the detection of malingering in forensic practice. Another advantage of this procedure is that the software automatically measures and evaluates all the parameters.

  15. Rapid hybridization of nucleic acids using isotachophoresis

    PubMed Central

    Bercovici, Moran; Han, Crystal M.; Liao, Joseph C.; Santiago, Juan G.

    2012-01-01

    We use isotachophoresis (ITP) to control and increase the rate of nucleic acid hybridization reactions in free solution. We present a new physical model, validation experiments, and demonstrations of this assay. We studied the coupled physicochemical processes of preconcentration, mixing, and chemical reaction kinetics under ITP. Our experimentally validated model enables a closed form solution for ITP-aided reaction kinetics, and reveals a new characteristic time scale which correctly predicts order 10,000-fold speed-up of chemical reaction rate for order 100 pM reactants, and greater enhancement at lower concentrations. At 500 pM concentration, we measured a reaction time which is 14,000-fold lower than that predicted for standard second-order hybridization. The model and method are generally applicable to acceleration of reactions involving nucleic acids, and may be applicable to a wide range of reactions involving ionic reactants. PMID:22733732

  16. Studying Reaction Intermediates Formed at Graphenic Surfaces

    NASA Astrophysics Data System (ADS)

    Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil

    2014-03-01

    We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.

  17. Is the psychological refractory period effect for ideomotor compatible tasks eliminated by speed-stress instructions?

    PubMed

    Shin, Yun Kyoung; Cho, Yang Seok; Lien, Mei-Ching; Proctor, Robert W

    2007-09-01

    It has been argued that the psychological refractory period (PRP) effect is eliminated with two ideomotor compatible tasks when instructions stress fast and simultaneous responding. Three experiments were conducted to test this hypothesis. In all experiments, Task 1 required spatially compatible manual responses (left or right) to the direction of an arrow, and Task 2 required saying the name of the auditory letter A or B. In Experiments 1 and 3, the manual responses were keypresses made with the left and right hands, whereas in Experiment 2 they were left-right toggle-switch movements made with the dominant hand. Instructions that stressed response speed reduced reaction time and increased error rate compared to standard instructions to respond fast and accurately, but did not eliminate the PRP effect on Task 2 reaction time. These results imply that, even when response speed is emphasized, ideomotor compatible tasks do not bypass response selection.

  18. Semantic priming of familiar songs.

    PubMed

    Johnson, Sarah K; Halpern, Andrea R

    2012-05-01

    We explored the functional organization of semantic memory for music by comparing priming across familiar songs both within modalities (Experiment 1, tune to tune; Experiment 3, category label to lyrics) and across modalities (Experiment 2, category label to tune; Experiment 4, tune to lyrics). Participants judged whether or not the target tune or lyrics were real (akin to lexical decision tasks). We found significant priming, analogous to linguistic associative-priming effects, in reaction times for related primes as compared to unrelated primes, but primarily for within-modality comparisons. Reaction times to tunes (e.g., "Silent Night") were faster following related tunes ("Deck the Hall") than following unrelated tunes ("God Bless America"). However, a category label (e.g., Christmas) did not prime tunes from within that category. Lyrics were primed by a related category label, but not by a related tune. These results support the conceptual organization of music in semantic memory, but with potentially weaker associations across modalities.

  19. Surface Interrogation Scanning Electrochemical Microscopy for a Photoelectrochemical Reaction: Water Oxidation on a Hematite Surface.

    PubMed

    Kim, Jae Young; Ahn, Hyun S; Bard, Allen J

    2018-03-06

    To understand the pathway of a photoelectrochemical (PEC) reaction, quantitative knowledge of reaction intermediates is important. We describe here surface interrogation scanning electrochemical microscopy for this purpose (PEC SI-SECM), where a light pulse to a photoactive semiconductor film at a given potential generates intermediates that are then analyzed by a tip generated titrant at known times after the light pulse. The improvements were demonstrated for photoelectrochemical water oxidation (oxygen evolution) reaction on a hematite surface. The density of photoactive sites, proposed to be Fe 4+ species, on a hematite surface was successfully quantified, and the photoelectrochemical water oxidation reaction dynamics were elucidated by time-dependent redox titration experiments. The new configuration of PEC SI-SECM should find expanded usage to understand and investigate more complicated PEC reactions with other materials.

  20. The H2 + + He proton transfer reaction: quantum reactive differential cross sections to be linked with future velocity mapping experiments

    NASA Astrophysics Data System (ADS)

    Hernández Vera, Mario; Wester, Roland; Gianturco, Francesco Antonio

    2018-01-01

    We construct the velocity map images of the proton transfer reaction between helium and molecular hydrogen ion {{{H}}}2+. We perform simulations of imaging experiments at one representative total collision energy taking into account the inherent aberrations of the velocity mapping in order to explore the feasibility of direct comparisons between theory and future experiments planned in our laboratory. The asymptotic angular distributions of the fragments in a 3D velocity space is determined from the quantum state-to-state differential reactive cross sections and reaction probabilities which are computed by using the time-independent coupled channel hyperspherical coordinate method. The calculations employ an earlier ab initio potential energy surface computed at the FCI/cc-pVQZ level of theory. The present simulations indicate that the planned experiments would be selective enough to differentiate between product distributions resulting from different initial internal states of the reactants.

  1. A solution for measuring accurate reaction time to visual stimuli realized with a programmable microcontroller.

    PubMed

    Ohyanagi, Toshio; Sengoku, Yasuhito

    2010-02-01

    This article presents a new solution for measuring accurate reaction time (SMART) to visual stimuli. The SMART is a USB device realized with a Cypress Programmable System-on-Chip (PSoC) mixed-signal array programmable microcontroller. A brief overview of the hardware and firmware of the PSoC is provided, together with the results of three experiments. In Experiment 1, we investigated the timing accuracy of the SMART in measuring reaction time (RT) under different conditions of operating systems (OSs; Windows XP or Vista) and monitor displays (a CRT or an LCD). The results indicated that the timing error in measuring RT by the SMART was less than 2 msec, on average, under all combinations of OS and display and that the SMART was tolerant to jitter and noise. In Experiment 2, we tested the SMART with 8 participants. The results indicated that there was no significant difference among RTs obtained with the SMART under the different conditions of OS and display. In Experiment 3, we used Microsoft (MS) PowerPoint to present visual stimuli on the display. We found no significant difference in RTs obtained using MS DirectX technology versus using the PowerPoint file with the SMART. We are certain that the SMART is a simple and practical solution for measuring RTs accurately. Although there are some restrictions in using the SMART with RT paradigms, the SMART is capable of providing both researchers and health professionals working in clinical settings with new ways of using RT paradigms in their work.

  2. Reaction Rates Of Olivine Carbonation - An Experimental Study Using Synthetic Fluid Inclusions As Micro-Reactors

    NASA Astrophysics Data System (ADS)

    Sendula, E.; Lamadrid, H. M.; Bodnar, R. J.

    2017-12-01

    Ultramafic and mafic rocks (e.g. peridotites, serpentinites and basalts) are being considered as possible targets for CO2 sequestration via mineral carbonation. The determination of reaction kinetics and the factors that control mineralization are important in order to understand and predict fluid-rock reactions between the injected CO2 and the host rocks. Here we present results of experiments focused on determining the reaction rates of carbonation of olivine as a function of initial CO2 concentration (20 mol% and 11 mol%) in the aqueous solution and temperature (100°C and 50°C). We used a recently developed experimental method (Lamadrid et al., 2017) that uses synthetic fluid inclusions as micro-reactors. The micro-reactor technique coupled with non-destructive Raman spectroscopy allows us to monitor the reaction progress in situ and in real time, by quantifying the amount of CO2 consumed in the reaction as a function of time. Results show a measurable decrease of CO2 density in the fluid inclusions as a result of the reaction between the CO2-bearing aqueous phase and olivine. Magnesite formation begins within several hours at 100°C and most of the CO2 was consumed within two days. At 50°C, however, magnesite nucleation and precipitation required weeks to months to begin, and the reaction rates were about an order of magnitude slower than in the experiments at 100°C. No significant differences were observed in the reaction rates as a function of initial CO2 concentration. The application of the synthetic fluid inclusion technique as micro-reactors coupled with non-destructive analytical techniques is a promising tool to monitor rates of fluid-rock reactions in situ and in real time, allowing detailed micron-scale investigations. The technique can be applied to a wide variety of chemical systems, host minerals, reaction products, fluid densities, temperatures, and different starting fluid compositions.

  3. Experimental Measurements of the Chemical Reaction Zone of Detonating Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Bouyer, Viviane; Sheffield, Stephen A.; Dattelbaum, Dana M.; Gustavsen, Richard L.; Stahl, David B.; Doucet, Michel; Decaris, Lionel

    2009-12-01

    We have a joint project between CEA-DAM Le Ripault and Los Alamos National Laboratory (LANL) to study the chemical reaction zone in detonating high explosives using several different laser velocimetry techniques. The short temporal duration of the von Neumann spike and early part of the reaction zone make these measurements difficult. Here, we report results obtained from detonation experiments using VISAR (velocity interferometer system for any reflector) and PDV (photon Doppler velocimetry) methods to measure the particle velocity history at a detonating nitromethane/PMMA interface. Experiments done at CEA were high-explosive-plane-wave initiated and those at LANL were gas-gun-projectile initiated with a detonation run of about 6 charge diameters in all experiments. The experiments had either glass or brass confinement. Excellent agreement of the interface particle velocity measurements at both Laboratories were obtained even though the initiation methods and the velocimetry systems were somewhat different. Some differences were observed in the peak particle velocity because of the ˜2 ns time resolution of the techniques—in all cases the peak was lower than the expected von Neumann spike. This is thought to be because the measurements were not high enough time resolution to resolve the spike.

  4. [Effects of prefrontal ablations on the reaction of the active choice of feeder under different probability and value of the reinforcement on dog].

    PubMed

    Preobrazhenskaia, L A; Ioffe, M E; Mats, V N

    2004-01-01

    The role of the prefrontal cortex was investigated on the reaction of the active choice of the two feeders under changes value and probability reinforcement. The experiments were performed on 2 dogs with prefrontal ablation (g. proreus). Before the lesions the dogs were taught to receive food in two different feeders to conditioned stimuli with equally probable alimentary reinforcement. After ablation in the inter-trial intervals the dogs were running from the one feeder to another. In the answer to conditioned stimuli for many times the dogs choose the same feeder. The disturbance of the behavior after some times completely restored. In the experiments with competition of probability events and values of reinforcement the dogs chose the feeder with low-probability but better quality of reinforcement. In the experiments with equal value but different probability the intact dogs chose the feeder with higher probability. In our experiments the dogs with prefrontal lesions chose the each feeder equiprobably. Thus in condition of free behavior one of different functions of the prefrontal cortex is the reactions choose with more probability of reinforcement.

  5. Endogenous spatial attention: evidence for intact functioning in adults with autism

    PubMed Central

    Grubb, Michael A.; Behrmann, Marlene; Egan, Ryan; Minshew, Nancy J.; Carrasco, Marisa; Heeger, David J.

    2012-01-01

    Lay Abstract Attention allows us to selectively process the vast amount of information with which we are confronted. Focusing on a certain location of the visual scene (visual spatial attention) enables the prioritization of some aspects of information while ignoring others. Rapid manipulation of the attention field (i.e., the location and spread of visual spatial attention) is a critical aspect of human cognition, and previous research on spatial attention in individuals with autism spectrum disorders (ASD) has produced inconsistent results. In a series of three experiments, we evaluated claims in the literature that individuals with ASD exhibit a deficit in voluntarily controlling the deployment and size of the spatial attention field. We measured how well participants perform a visual discrimination task (accuracy) and how quickly they do so (reaction time), with and without spatial uncertainty (i.e., the lack of predictability concerning the spatial position of the upcoming stimulus). We found that high–functioning adults with autism exhibited slower reactions times overall with spatial uncertainty, but the effects of attention on performance accuracies and reaction times were indistinguishable between individuals with autism and typically developing individuals, in all three experiments. These results provide evidence of intact endogenous spatial attention function in high–functioning adults with ASD, suggesting that atypical endogenous spatial attention cannot be a latent characteristic of autism in general. Scientific Abstract Rapid manipulation of the attention field (i.e., the location and spread of visual spatial attention) is a critical aspect of human cognition, and previous research on spatial attention in individuals with autism spectrum disorders (ASD) has produced inconsistent results. In a series of three psychophysical experiments, we evaluated claims in the literature that individuals with ASD exhibit a deficit in voluntarily controlling the deployment and size of the spatial attention field. We measured the spatial distribution of performance accuracies and reaction times to quantify the sizes and locations of the attention field, with and without spatial uncertainty (i.e., the lack of predictability concerning the spatial position of the upcoming stimulus). We found that high–functioning adults with autism exhibited slower reactions times overall with spatial uncertainty, but the effects of attention on performance accuracies and reaction times were indistinguishable between individuals with autism and typically developing individuals, in all three experiments. These results provide evidence of intact endogenous spatial attention function in high–functioning adults with ASD, suggesting that atypical endogenous attention cannot be a latent characteristic of autism in general. PMID:23427075

  6. Right Hemisphere Specialization for Color Detection

    ERIC Educational Resources Information Center

    Sasaki, Hitoshi; Morimoto, Akiko; Nishio, Akira; Matsuura, Sumie

    2007-01-01

    Three experiments were carried out to investigate hemispheric asymmetry in color processing among normal participants. In Experiment 1, it was shown that the reaction times (RTs) of the dominant and non-dominant hands assessed using a visual target presented at the central visual field, were not significantly different. In Experiment 2, RTs of…

  7. Hydrothermal carbonization of food waste for nutrient recovery and reuse.

    PubMed

    Idowu, Ifeolu; Li, Liang; Flora, Joseph R V; Pellechia, Perry J; Darko, Samuel A; Ro, Kyoung S; Berge, Nicole D

    2017-11-01

    Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Experimental and theoretical study of the sec-C[sub 4]H[sub 9] [r reversible] CH[sub 3] + C[sub 3]H[sub 6] reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knyazev, V.D.; Dubinsky, I.A.; Slagle, I.R.

    1994-10-27

    The kinetics of the unimolecular decomposition of the sec-C[sub 4]H[sub 9] radical has been studied experimentally in a heated tubular flow reactor coupled to a photoionization mass spectrometer. Rate constants for the decomposition were determined in time-resolved experiments as a function of temperature (598-680 K) and bath gas density (3-18) [times] 10[sup 16] molecules cm[sup [minus]3] in three bath gases: He, Ar, and N[sub 2]. The rate constants are in the falloff region under the conditions of the experiments. The results of earlier studies of the reverse reaction were reanalyzed and used to create a transition state model of themore » reaction. This transition state model was used to obtain values of the microcanonical rate constants, k (E). Falloff behavior was reproduced using master equation modeling with the energy barrier height for decomposition (necessary to calculate k(E)) obtained from optimization of the agreement between experimental and calculated rate constants. The resulting model of the reaction provides the high-pressure limit rate constants for the decomposition reaction and the reverse reaction. 52 refs., 7 figs., 3 tabs.« less

  9. Generation of cavitation luminescence by laser-induced exothermic chemical reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung Park, Han; Diebold, Gerald J.

    2013-08-14

    Absorption of high power laser radiation by aqueous carbon suspensions is known to result in the formation of highly compressed bubbles of hydrogen and carbon monoxide through the endothermic carbon-steam reaction. The bubbles expand rapidly, overreaching their equilibrium diameter, and then collapse tens to hundreds of microseconds after formation to give a flash of radiation. Here we report on the effects of laser-initiated exothermic chemical reaction on cavitation luminescence. Experiments with hydrogen peroxide added to colloidal carbon suspensions show that both the time of the light flash following the laser pulse and the intensity of luminescence increase with hydrogen peroxidemore » concentration, indicating that large, highly energetic gas bubbles are produced. Additional experiments with colloidal carbon suspensions show the effects of high pressure on the luminescent intensity and its time of appearance following firing of the laser.« less

  10. Numbers or apologies? Customer reactions to telephone waiting time fillers.

    PubMed

    Munichor, Nira; Rafaeli, Anat

    2007-03-01

    The authors examined the effect of time perception and sense of progress in telephone queues on caller reactions to 3 telephone waiting time fillers: music, apologies, and information about location in the queue. In Study 1, conducted on 123 real calls, call abandonment was lowest, and call evaluations were most positive with information about location in the queue as the time filler. In Study 2, conducted with 83 participants who experienced a simulated telephone wait experience, sense of progress in the queue rather than perceived waiting time mediated the relationship between telephone waiting time filler and caller reactions. The findings provide insight for the management and design of telephone queues, as well as theoretical insight into critical cognitive processes that underlie telephone waiting, opening up an important new research agenda. (c) 2007 APA, all rights reserved.

  11. Isoprene/methyl acrylate Diels-Alder reaction in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, B.; Akgerman, A.

    1999-12-01

    The Diels-Alder reaction between isoprene and methyl acrylate was carried out in supercritical carbon dioxide in the temperature range 110--140 C and the pressure range 95.2--176.9 atm in a 300 cm{sup 3} autoclave. The high-pressure phase behavior of the reaction mixture in the vicinity of its critical region was determined in a mixed vessel with a sight window to ensure that all the experiments were performed in the supercritical single-phase region. Kinetic data were obtained at different temperatures, pressures, and reaction times. It was observed that in the vicinity of the critical point the reaction rate constant decreases with increasingmore » pressure. It was also determined that the reaction selectivity does not change with operating conditions. Transition-state theory was used to explain the effect of pressure on reaction rate and product selectivity. Additional experiments were conducted at constant temperature but different phase behaviors (two-phase region, liquid phase, supercritical phase) by adjusting the initial composition and pressure. It was shown that the highest reaction rate is in the supercritical region.« less

  12. (Reaction mechanism studies of heavy ion induced nuclear reactions): Annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignerey, A.C.

    1988-10-01

    A major experiment was performed at the Oak Ridge National Laboratory Holifield Heavy Ion Research Facility in January 1988. The primary goal of the experiment was to determine the excitation energy division in the initial stages of damped reactions. The reaction of /sup 35/Cl on /sup 209/Bi was chosen because the excited projectile-like fragments would preferentially emit light charged particles and the target-like fragments deexcite via neutron emission. This provides a means by which projectile excitations can be selected over target excitations through detection of light charged particles in coincidence with projectile-like fragments. Two experiments were performed during the pastmore » year at the Lawrence Berkeley Laboratory Bevalac in collaboration with the Wozniak-Moretto group. The first was in February 1988 and was a continuation of earlier work on La-induced reactions at intermediate energies. Beams of La with E/A = 80 and 100 MeV were used to bombard targets of C, Al, and Cu. At this time a test run was also performed using the uranium beam to see if the intensity was sufficient to use this very heavy beam for future experiments. The high intensities obtained for uranium showed that it was feasible to extend the studies of inverse reactions begun with the lanthanum beam to a heavier beam. Gold rather than uranium was chosen for our major run in August due to its low fission probability and higher beam intensity. No results are yet available for that experiment.« less

  13. Forced Forward Smoldering Experiments Aboard The Space Shuttle

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Bar-Ilan, A.; Rein, G.; Urban, D. L.; Torero, J. L.

    2003-01-01

    Smoldering is a basic combustion problem that presents a fire risk because it is initiated at low temperatures and because the reaction can propagate slowly in the material interior and go undetected for long periods of time. It yields a higher conversion of fuel to toxic compounds than does flaming, and may undergo a transition to flaming. To date there have been a few minor incidents of overheated and charred cables and electrical components reported on Space Shuttle flights. With the establishment of the International Space Station, and the planning of a potential manned mission to Mars, there has been an increased interest in the study of smoldering in microgravity. The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a spacecraft environment. The aim of the experiment is to provide a better fundamental understanding of the controlling mechanisms of smoldering combustion under normal- and microgravity conditions. This in turn will aid in the prevention and control of smolder originated fires, both on earth and in spacecrafts. The microgravity smoldering experiments have to be conducted in a space-based facility because smoldering is a very slow process and consequently its study in a microgravity environment requires extended periods of time. The microgravity experiments reported here were conducted aboard the Space Shuttle. The most recent tests were conducted during the STS-105 and STS-108 missions. The results of the forward smolder experiments from these flights are reported here. In forward smolder, the reaction front propagates in the same direction as the oxidizer flow. The heat released by the heterogeneous oxidation reaction is transferred ahead of the reaction heating the unreacted fuel. The resulting increase of the virgin fuel temperature leads to the onset of the smolder reaction, and propagates through the fuel. The MSC data are compared with normal gravity data to determine the effect of gravity on smolder.

  14. EXAFS studies on the reaction of gold (III) chloride complex ions with sodium hydroxide and glucose.

    PubMed

    Pacławski, K; Zajac, D A; Borowiec, M; Kapusta, Cz; Fitzner, K

    2010-11-11

    EXAFS and QEXAFS experiments were carried out at Hasylab laboratory in DESY center (X1 beamline, Hamburg, Germany) to monitor the course of the hydrolysis reactions of [AuCl(4)](-) complex ions as well as their reduction using glucose. As a result, changes in the spectra of [AuCl(4)](-) ions and disappearance of absorption Au-L(3) edge were registered. From the results of the experiments we have carried out, the changes in bond lengths between Au(3+) central ion and Cl(-) ligands as well as the reduction of Au(3+) to metallic form (colloidal gold was formed in the system) are evident. Good quality spectra obtained before and after the reactions gave a chance to determine the bond length characteristic of Au-Cl, Au-OH and Au-Au pairs. Additionally, the obtained results were compared with the simulated spectra of different gold (III) complex ions, possibly present in the solution. Finally, the mechanism of these reactions was suggested. Unfortunately, it was not possible to detect the changes in the structure of gold (III) complex ions within the time of reaction, because of too high rates of both processes (hydrolysis and reduction) as compared with the detection time.

  15. Reactions to Discrimination, Stigmatization, Ostracism, and Other Forms of Interpersonal Rejection

    PubMed Central

    Richman, Laura Smart; Leary, Mark R.

    2009-01-01

    This article describes a new model that provides a framework for understanding people’s reactions to threats to social acceptance and belonging as they occur in the context of diverse phenomena such as rejection, discrimination, ostracism, betrayal, and stigmatization. People’s immediate reactions are quite similar across different forms of rejection in terms of negative affect and lowered self-esteem. However, following these immediate responses, people’s reactions are influenced by construals of the rejection experience that predict 3 distinct motives for prosocial, antisocial, and socially avoidant behavioral responses. The authors describe the relational, contextual, and dispositional factors that affect which motives determine people’s reactions to a rejection experience and the ways in which these 3 motives may work at cross-purposes. The multimotive model accounts for the myriad ways in which responses to rejection unfold over time and offers a basis for the next generation of research on interpersonal rejection. PMID:19348546

  16. Thermal explosion violence of HMX-based explosives -- effect of composition, confinement and phase transition using the scaled thermal explosion experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L; Wardell, J F; Reaugh, J E

    We developed the Scaled Thermal Explosion Experiment (STEX) to provide a database of reaction violence from thermal explosion of explosives of interest. A cylinder of explosive, 1, 2 or 4 inches in diameter, is confined in a steel cylinder with heavy end caps, and heated under controlled conditions until it explodes. Reaction violence is quantified by micropower radar measurement of the cylinder wall velocity, and by strain gauge data at reaction onset. Here we describe the test concept and design, show that the conditions are well understood, and present initial data with HMX-based explosives. The HMX results show that anmore » explosive with high binder content yields less-violent reactions that an explosive with low binder content, and that the HMX phase at the time of explosion plays a key role in reaction violence.« less

  17. Analysis of Reaction Times and Aerobic Capacities of Soccer Players According to Their Playing Positions

    ERIC Educational Resources Information Center

    Taskin, Cengiz; Karakoc, Onder; Taskin, Mine; Dural, Murat

    2016-01-01

    70 soccer players in Gaziantep amateur league voluntarily participated in this study, (average of their ages 19,17±1,34years, average of their heights 181,28±5,06 cm, average of their body weights 76,75±4,43 kg and average of their sports experiences 3,78±0,95 years) to analyze visual and auditory reaction times and aerobic capacities of amateur…

  18. Experimental study of the mechanism and sequence of calcite-dolomite replacement

    NASA Astrophysics Data System (ADS)

    Moraila-Martinez, Teresita; Putnis, Christine V.; Putnis, Andrew

    2015-04-01

    For many years the formation, mechanism and environmental settings of dolomite formation have been under discussion, mainly because dolomite is commonly found in ancient rocks, whereas it is rarely present in modern sediments. The most favoured hypothesis is the 'dolomitization' of limestone by Mg-bearing aqueous solutions [1,2]. The existence of sharp limestone-dolomite contacts in natural rocks suggests that dolomitization involves a coupled dissolution-precipitation process. For a better understanding of the replacement mechanism of calcite by dolomite we performed hydrothermal experiments using Carrara marble cubes of 1.5 mm size, that reacted with 1M (Ca,Mg)Cl2 solutions with a Mg:Ca ratio of 3, at 200°C for different duration times (10, 20, 40, 50 and 58 days). After reaction, the product phases were characterized using Raman spectroscopy, electron microprobe analysis, and scanning electron microscopy. After reaction, the external morphology of the samples was preserved. Back-scattered images revealed two replacement end products: dolomite and magnesite. Grain boundaries of the samples were maintained. Shorter time duration experiments resulted in the replacement reaction occurring mainly along grain boundaries, whereas in longer duration time experiments more replacement was located in the core of the sample. In this type of reaction, grain boundaries are very important for the replacement to occur, acting as fluid pathways, allowing the infiltration of the solution further from the rock surface, enhancing fluid permeability within the sample and allowing further replacement reactions to occur. 1. Kaczmarek S.E., Sibley D.F. On the evolution of dolomite stoichiometry and cation order during high temperature synthesis experiments: An alternative model for geochemical evolution of natural dolomites. Sedimentary Geology. 240, 30-40 (2011). 2. Etschmann B., Brugger J., Pearce M.A., Ta C., Brautigan D., Jung M., Pring A. Grain boundaries as microreactors during reactive fluid flow: experimental dolomitization of a calcite marble. Contributions to Mineralogy and Petrology. 168:1045 (2014).

  19. Experimental techniques for in-ring reaction experiments

    NASA Astrophysics Data System (ADS)

    Mutterer, M.; Egelhof, P.; Eremin, V.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, H.; Kröll, T.; Kuilman, M.; Chung, L. X.; Najafi, M. A.; Popp, U.; Rigollet, C.; Roy, S.; von Schmid, M.; Streicher, B.; Träger, M.; Yue, K.; Zamora, J. C.; the EXL Collaboration

    2015-11-01

    As a first step of the EXL project scheduled for the New Experimental Storage Ring at FAIR a precursor experiment (E105) was performed at the ESR at GSI. For this experiment, an innovative differential pumping concept, originally proposed for the EXL recoil detector ESPA, was successfully applied. The implementation and essential features of this novel technical concept will be discussed, as well as details on the detectors and the infrastructure around the internal gas-jet target. With 56Ni(p, p)56Ni elastic scattering at 400 MeV u-1, a nuclear reaction experiment with stored radioactive beams was realized for the first time. Finally, perspectives for a next-generation EXL-type setup are briefly discussed.

  20. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    NASA Astrophysics Data System (ADS)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  1. Enzymatic conversion of sucrose to glucose and its anomerization by quantitative NMR spectroscopy: Application of a simple consecutive reaction rates approach

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep; Her, Cheenou; Krishnan, V. V.

    2018-02-01

    The anomerization of carbohydrates is an essential process that determines the relative stabilization of stereoisomers in an aqueous solution. In a typical real-time enzyme kinetics experiment, the substrate (sucrose) is converted to glucose and fructose by the enzyme invertase. The product (α-D-glucose) starts to convert to β-D-glucose immediately by hydrolysis. Though the anomerization process is independent of the enzyme catalysis, the progress curve describing the production of β-D-glucose from α-D-glucose is directly affected by the kinetics of consecutive reactions. When α-D-glucose is continually converted to β-D-glucose, by the enzymatic action, the time course of both α- and β-D-glucose is influenced by the enzyme kinetics. Thus, a reversible first-order rate equation is not adequate to model the reaction mechanism, leading to erroneous results on the rates of formation of the glucose anomers. In this manuscript, we incorporate an approximate method to address consecutive general reactions involving enzyme kinetics and first-order reaction processes. The utility of the approach is demonstrated in the real-time NMR measurement of the anomerization process of α-D-glucose (enzymatically produced from sucrose) to β-D-glucose, as a function of invertase enzyme concentration. Variable temperature experiments were used to estimate the thermodynamic parameters of the anomerization process and are consistent with literature values.

  2. Enactive cinema paves way for understanding complex real-time social interaction in neuroimaging experiments.

    PubMed

    Tikka, Pia; Väljamäe, Aleksander; de Borst, Aline W; Pugliese, Roberto; Ravaja, Niklas; Kaipainen, Mauri; Takala, Tapio

    2012-01-01

    We outline general theoretical and practical implications of what we promote as enactive cinema for the neuroscientific study of online socio-emotional interaction. In a real-time functional magnetic resonance imaging (rt-fMRI) setting, participants are immersed in cinematic experiences that simulate social situations. While viewing, their physiological reactions-including brain responses-are tracked, representing implicit and unconscious experiences of the on-going social situations. These reactions, in turn, are analyzed in real-time and fed back to modify the cinematic sequences they are viewing while being scanned. Due to the engaging cinematic content, the proposed setting focuses on living-by in terms of shared psycho-physiological epiphenomena of experience rather than active coping in terms of goal-oriented motor actions. It constitutes a means to parametrically modify stimuli that depict social situations and their broader environmental contexts. As an alternative to studying the variation of brain responses as a function of a priori fixed stimuli, this method can be applied to survey the range of stimuli that evoke similar responses across participants at particular brain regions of interest.

  3. Does contextual cuing guide the deployment of attention?

    PubMed

    Kunar, Melina A; Flusberg, Stephen; Horowitz, Todd S; Wolfe, Jeremy M

    2007-08-01

    Contextual cuing experiments show that when displays are repeated, reaction times to find a target decrease over time even when observers are not aware of the repetition. It has been thought that the context of the display guides attention to the target. The authors tested this hypothesis by comparing the effects of guidance in a standard search task with the effects of contextual cuing. First, in standard search, an improvement in guidance causes search slopes (derived from Reaction Time x Set Size functions) to decrease. In contrast, the authors found that search slopes in contextual cuing did not become more efficient over time (Experiment 1). Second, when guidance was optimal (e.g., in easy feature search), they still found a small but reliable contextual cuing effect (Experiments 2a and 2b), suggesting that other factors, such as response selection, contribute to the effect. Experiment 3 supported this hypothesis by showing that the contextual cuing effect disappeared when the authors added interference to the response selection process. Overall, the data suggest that the relationship between guidance and contextual cuing is weak and that response selection can account for part of the effect. (c) 2007 APA, all rights reserved

  4. Real-time PCR probe optimization using design of experiments approach.

    PubMed

    Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F

    2016-03-01

    Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.

  5. EEG alpha spindles and prolonged brake reaction times during auditory distraction in an on-road driving study.

    PubMed

    Sonnleitner, Andreas; Treder, Matthias Sebastian; Simon, Michael; Willmann, Sven; Ewald, Arne; Buchner, Axel; Schrauf, Michael

    2014-01-01

    Driver distraction is responsible for a substantial number of traffic accidents. This paper describes the impact of an auditory secondary task on drivers' mental states during a primary driving task. N=20 participants performed the test procedure in a car following task with repeated forced braking on a non-public test track. Performance measures (provoked reaction time to brake lights) and brain activity (EEG alpha spindles) were analyzed to describe distracted drivers. Further, a classification approach was used to investigate whether alpha spindles can predict drivers' mental states. Results show that reaction times and alpha spindle rate increased with time-on-task. Moreover, brake reaction times and alpha spindle rate were significantly higher while driving with auditory secondary task opposed to driving only. In single-trial classification, a combination of spindle parameters yielded a median classification error of about 8% in discriminating the distracted from the alert driving. Reduced driving performance (i.e., prolonged brake reaction times) during increased cognitive load is assumed to be indicated by EEG alpha spindles, enabling the quantification of driver distraction in experiments on public roads without verbally assessing the drivers' mental states. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Ultrasound Imaging System Implementation and Ignition Protocol for the Microgravity Smoldering Combustion (MSC) Experiments

    NASA Technical Reports Server (NTRS)

    Walther, David C.; Anthenien, Ralph A.; Roslon, Mark; Fernandez-Pello, A. Carlos; Urban, David L.

    1999-01-01

    The Microgravity Smoldering Combustion (MSC) experiment is a study of the smolder characteristics of porous combustible materials in a microgravity environment. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal earth gravity. Experiments have been conducted aboard the NASA Space Shuttle in the Get Away Special Canister (GAS-CAN), an apparatus requiring completely remote operation. Future GAS-CAN experiments will utilize an ultrasound imaging system (UIS) which has been incorporated into the MSC experimental apparatus. Thermocouples are currently used to measure temperature and reaction front velocities. A less intrusive method is desirable, however, as smolder is a very weak reaction and it has been found that heat transfer along the thermocouple is sufficient to affect the smolder reaction. It is expected that the UIS system will eventually replace the existing array of thermocouples as a non-intrusive technique without compromising data acquisition. The UIS measures line of sight permeability, providing information about the reaction front position and extent. Additionally, the ignition sequence of the MSC experiments has been optimized from previous experiments to provide longer periods of self-supported smolder. An ignition protocol of a fixed power to the igniter for a fixed time is now implemented. This, rather than a controlled temperature profile ignition protocol at the igniter surface, along with the UIS system, will allow for better study of the effect of gravity on a smolder reaction.

  7. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  8. Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.

    2018-03-01

    In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.

  9. Emotions over time: synchronicity and development of subjective, physiological, and facial affective reactions to music.

    PubMed

    Grewe, Oliver; Nagel, Frederik; Kopiez, Reinhard; Altenmüller, Eckart

    2007-11-01

    Most people are able to identify basic emotions expressed in music and experience affective reactions to music. But does music generally induce emotion? Does it elicit subjective feelings, physiological arousal, and motor reactions reliably in different individuals? In this interdisciplinary study, measurement of skin conductance, facial muscle activity, and self-monitoring were synchronized with musical stimuli. A group of 38 participants listened to classical, rock, and pop music and reported their feelings in a two-dimensional emotion space during listening. The first entrance of a solo voice or choir and the beginning of new sections were found to elicit interindividual changes in subjective feelings and physiological arousal. Quincy Jones' "Bossa Nova" motivated movement and laughing in more than half of the participants. Bodily reactions such as "goose bumps" and "shivers" could be stimulated by the "Tuba Mirum" from Mozart's Requiem in 7 of 38 participants. In addition, the authors repeated the experiment seven times with one participant to examine intraindividual stability of effects. This exploratory combination of approaches throws a new light on the astonishing complexity of affective music listening.

  10. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments

    NASA Astrophysics Data System (ADS)

    Seewald, Jeffrey S.

    2001-05-01

    Organic matter, water, and minerals coexist at elevated temperatures and pressures in sedimentary basins and participate in a wide range of geochemical processes that includes the generation of oil and natural gas. A series of laboratory experiments were conducted at 300 to 350°C and 350 bars to examine chemical interactions involving low molecular weight aqueous hydrocarbons with water and Fe-bearing minerals under hydrothermal conditions. Mineral buffers composed of hematite-magnetite-pyrite, hematite-magnetite, and pyrite-pyrrhotite-magnetite were added to each experiment to fix the redox state of the fluid and the activity of reduced sulfur species. During each experiment the chemical system was externally modified by addition of ethene, ethane, propene, 1-butene, or n-heptane, and variations in the abundance of aqueous organic species were monitored as a function of time and temperature. Results of the experiments indicate that decomposition of aqueous n-alkanes proceeds through a series of oxidation and hydration reactions that sequentially produce alkenes, alcohols, ketones, and organic acids as reaction intermediaries. Organic acids subsequently undergo decarboxylation and/or oxidation reactions to form carbon dioxide and shorter chain saturated hydrocarbons. This alteration assemblage is compositionally distinct from that produced by thermal cracking under anhydrous conditions, indicating that the presence of water and minerals provide alternative reaction pathways for the decomposition of hydrocarbons. The rate of hydrocarbon oxidation decreases substantially under reducing conditions and in the absence of catalytically active aqueous sulfur species. These results represent compelling evidence that the stability of aqueous hydrocarbons at elevated temperatures in natural environments is not a simple function of time and temperature alone. Under the appropriate geochemical conditions, stepwise oxidation represents a mechanism for the decomposition of low molecular weight hydrocarbons and the production of methane-rich ("dry") natural gas. Evaluation of aqueous reaction products generated during the experiments within a thermodynamic framework indicates that alkane-alkene, alkene-ketone, and alkene-alcohol reactions attained metastable thermodynamic equilibrium states. This equilibrium included water and iron-bearing minerals, demonstrating the direct involvement of inorganic species as reactants during organic transformations. The high reactivity of water and iron-bearing minerals suggests that they represent abundant sources of hydrogen and oxygen available for the formation of hydrocarbons and oxygenated alteration products. Thus, variations in elemental kerogen composition may not accurately reflect the timing and extent of hydrocarbon, carbon dioxide, and organic acid generation in sedimentary basins. This study demonstrates that the stabilities of aqueous hydrocarbons are strongly influenced by inorganic sediment composition at elevated temperatures. Incorporation of such interactions into geochemical models will greatly improve prediction of the occurrence of hydrocarbons in natural environments over geologic time.

  11. Stinging and biting insect allergy: an Australian experience.

    PubMed

    Solley, Graham O

    2004-12-01

    Stings and bites from various insects are responsible for many anaphylactic events. To document the clinical features of specific forms of anaphylaxis and investigate clinical concerns regarding stinging and biting insect allergy. All patients presenting for evaluation of adverse reactions to insect stings or bites between December 1980 and December 1997 had the clinical details of their reactions recorded and their reactions classified. The spectrum of clinical symptoms and signs is similar to that seen in anaphylaxis from other sources; stings on the head or neck are not more likely to cause life-threatening reactions than stings elsewhere on the body; a lesser reaction will not necessarily lead to a more serious reaction from a future sting; asthmatic patients do appear to have an increased risk of asthma as a feature of their anaphylactic response; anaphylaxis is usually confined to a particular insect species for the individual patient; patients who have had multiple stings at one time may have experienced true anaphylaxis and not a "toxic" response; and patients who have had anaphylaxis from other sources are at no greater risk than that of the general population of reacting similarly to insect stings or bites. Anaphylactic events from insect stings show the same clinical features as those from other sources. Systemic reactions seem confined to a specific insect species. Patients who experience RXN3 reactions from multiple stings at one time should undergo specific venom testing, because many have experienced true anaphylaxis and not a toxic response. Future consideration should be given to the role of beta-adrenergic antagonists and ACE inhibitors in patients with systemic reactions.

  12. The Chemistry of Shocked High-energy Materials: Connecting Atomistic Simulations to Experiments

    NASA Astrophysics Data System (ADS)

    Islam, Md Mahbubul; Strachan, Alejandro

    2017-06-01

    A comprehensive atomistic-level understanding of the physics and chemistry of shocked high energy (HE) materials is crucial for designing safe and efficient explosives. Advances in the ultrafast spectroscopy and laser shocks enabled the study of shock-induced chemistry at extreme conditions occurring at picosecond timescales. Despite this progress experiments are not without limitations and do not enable a direct characterization of chemical reactions. At the same time, large-scale reactive molecular dynamics (MD) simulations are capable of providing description of the shocked-induced chemistry but the uncertainties resulting from the use of approximate descriptions of atomistic interactions remain poorly quantified. We use ReaxFF MD simulations to investigate the shock and temperature induced chemical decomposition mechanisms of polyvinyl nitrate, RDX, and nitromethane. The effect of various shock pressures on reaction initiation mechanisms is investigated for all three materials. We performed spectral analysis from atomistic velocities at different shock pressures to enable direct comparison with experiments. The simulations predict volume-increasing reactions at the shock-to-detonation transitions and the shock vs. particle velocity data are in good agreement with available experimental data. The ReaxFF MD simulations validated against experiments enabled prediction of reaction kinetics of shocked materials, and interpretation of experimental spectroscopy data via assignment of the spectral peaks to dictate various reaction pathways at extreme conditions.

  13. Double shock experiments and reactive flow modeling on LX-17 to understand the reacted equation of state

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Garcia, Frank; Fried, Laurence E.; Tarver, Craig M.

    2014-05-01

    Experimental data from measurements of the reacted state of an energetic material are desired to incorporate reacted states in modeling by computer codes. In a case such as LX-17 (92.5% TATB and 7.5% Kel-F by weight), where the time dependent kinetics of reaction is still not fully understood and the reacted state may evolve over time, this information becomes even more vital. Experiments were performed to measure the reacted state of LX-17 using a double shock method involving the use of two flyer materials (with known properties) mounted on the projectile that send an initial shock through the material close to or above the Chapman-Jouguet (CJ) state followed by a second shock at a higher magnitude into the detonated material. By measuring the parameters of the first and second shock waves, information on the reacted state can be obtained. The LX-17 detonation reaction zone profiles plus the arrival times and amplitudes of reflected shocks in LX-17 detonation reaction products were measured using Photonic Doppler Velocimetry (PDV) probes and an aluminum foil coated LiF window. A discussion of this work will include the experimental parameters, velocimetry profiles, data interpretation, reactive CHEETAH and Ignition and Growth modeling, as well as detail on possible future experiments.

  14. Reaction time effects in lab- versus Web-based research: Experimental evidence.

    PubMed

    Hilbig, Benjamin E

    2016-12-01

    Although Web-based research is now commonplace, it continues to spur skepticism from reviewers and editors, especially whenever reaction times are of primary interest. Such persistent preconceptions are based on arguments referring to increased variation, the limits of certain software and technologies, and a noteworthy lack of comparisons (between Web and lab) in fully randomized experiments. To provide a critical test, participants were randomly assigned to complete a lexical decision task either (a) in the lab using standard experimental software (E-Prime), (b) in the lab using a browser-based version (written in HTML and JavaScript), or (c) via the Web using the same browser-based version. The classical word frequency effect was typical in size and corresponded to a very large effect in all three conditions. There was no indication that the Web- or browser-based data collection was in any way inferior. In fact, if anything, a larger effect was obtained in the browser-based conditions than in the condition relying on standard experimental software. No differences between Web and lab (within the browser-based conditions) could be observed, thus disconfirming any substantial influence of increased technical or situational variation. In summary, the present experiment contradicts the still common preconception that reaction time effects of only a few hundred milliseconds cannot be detected in Web experiments.

  15. An Undergraduate Laboratory Experiment for Upper-Level Forensic Science, Biochemistry, or Molecular Biology Courses: Human DNA Amplification Using STR Single Locus Primers by Real-Time PCR with SYBR Green Detection

    ERIC Educational Resources Information Center

    Elkins, Kelly M.; Kadunc, Raelynn E.

    2012-01-01

    In this laboratory experiment, real-time polymerase chain reaction (real-time PCR) was conducted using published human TPOX single-locus DNA primers for validation and various student-designed short tandem repeat (STR) primers for Combined DNA Index System (CODIS) loci. SYBR Green was used to detect the amplification of the expected amplicons. The…

  16. Mechanical properties experimental investigation of HTPB propellant after thermal accelerated aging

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohong; Sun, Chaoxiang; Zhang, Junfa; Xu, Jinsheng; Tan, Bingdong

    2017-04-01

    To get accurate aging mechanical properties of aged HTPB propellant, the thermal accelerated aging experiment method is utilized and the uniaxial tensile experiments were conducted to obtain the mechanical data of aged HTPB propellants, and the maximum tensile strength, σm, maximum tensile strain, ɛm, and the fracture tensile strain, ɛb, of HTPB propellant with different aging time and various aging temperatures,were obtained, using universal material testing machine. The experimental results show that the σm of HTPB propellant initially increases, subsequently decreases and finally increases with aging time. The ɛm and ɛb generally decrease with increasing aging time, what's more, the decrease rate of both ɛm and ɛb reduce with the aging time. What's more, the postcure effect and oxidation reaction occurred inside HTPB matrix, including the chain degradation reaction and oxidation-induced crosslinking, were discussed to explain the mechanical aging rule of HTPB propellant.

  17. Orientation effect in d(d,n)3He reaction initiated by 20 keV deuterons at channeling in textured CVD-Diamond target

    NASA Astrophysics Data System (ADS)

    Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Pivovarov, Yu. L.; Rusetskii, A. S.; Tukhfatullin, T. A.

    2017-07-01

    Orientation effect of increasing the enhancement factor of DD-reaction in CVD-Diamond was investigated by simulation. It is obtained that the flux peaking effect up to 2.2 times increases the relative enhancement factor for a parallel beam and up to 1.2 times for the deuteron beam with angular divergence equals 3 critical channeling angles. Qualitative agreement with the experiment was obtained.

  18. Affective Priming with Associatively Acquired Valence

    ERIC Educational Resources Information Center

    Aguado, Luis; Pierna, Manuel; Saugar, Cristina

    2005-01-01

    Three experiments explored the effect of affectively congruent or incongruent primes on evaluation responses to positive or negative valenced targets (the "affective priming" effect). Experiment 1 replicated the basic affective priming effect with Spanish nouns: reaction time for evaluative responses (pleasant/unpleasant) were slower on…

  19. An NMR Kinetics Experiment.

    ERIC Educational Resources Information Center

    Kaufman, Don; And Others

    1982-01-01

    Outlines advantages of and provides background information, procedures, and typical student data for an experiment determining rate of hydration of p-methyoxyphenylacetylene (III), followed by nuclear magnetic resonance spectroscopy. Reaction rate can be adjusted to meet time framework of a particular laboratory by altering concentration of…

  20. The Experience of Menarche.

    ERIC Educational Resources Information Center

    Ruble, Diane N.; Brooks-Gunn, Jeanne

    1982-01-01

    Examines reactions to menarche and the subsequent effects of this experience as a function of preparation for and timing of menarche. A questionnaire including measures of responses about first menstruation, current symptoms, and self-image was completed by 639 girls in fifth through twelfth grades. (Author/MP)

  1. Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovett, S.; Berruti, F.; Behie, L.A.

    1997-11-01

    Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste plastics, was pyrolyzed at temperatures ranging from 800 to 965 C, with total reaction times ranging from 500 to 1,000 ms. At a temperature of 965 C and 500 ms, the yields of styrene plus benzene were greater than 95more » wt %. In the pilot-plant experiments, the recently patented internally circulating fluidized bed (ICFB) reactor (Milne et al., US Patent Number 5,370,789, 1994b) was used to ultrapyrolyze low-density polyethylene (LDPE) in addition to LDPE (5% by weight)/heavy oil mixtures at a residence time of 600 ms. Both experiments produced light olefin yields greater than 55 wt % at temperatures above 830 C.« less

  2. Evidence for auditory-visual processing specific to biological motion.

    PubMed

    Wuerger, Sophie M; Crocker-Buque, Alexander; Meyer, Georg F

    2012-01-01

    Biological motion is usually associated with highly correlated sensory signals from more than one modality: an approaching human walker will not only have a visual representation, namely an increase in the retinal size of the walker's image, but also a synchronous auditory signal since the walker's footsteps will grow louder. We investigated whether the multisensorial processing of biological motion is subject to different constraints than ecologically invalid motion. Observers were presented with a visual point-light walker and/or synchronised auditory footsteps; the walker was either approaching the observer (looming motion) or walking away (receding motion). A scrambled point-light walker served as a control. Observers were asked to detect the walker's motion as quickly and as accurately as possible. In Experiment 1 we tested whether the reaction time advantage due to redundant information in the auditory and visual modality is specific for biological motion. We found no evidence for such an effect: the reaction time reduction was accounted for by statistical facilitation for both biological and scrambled motion. In Experiment 2, we dissociated the auditory and visual information and tested whether inconsistent motion directions across the auditory and visual modality yield longer reaction times in comparison to consistent motion directions. Here we find an effect specific to biological motion: motion incongruency leads to longer reaction times only when the visual walker is intact and recognisable as a human figure. If the figure of the walker is abolished by scrambling, motion incongruency has no effect on the speed of the observers' judgments. In conjunction with Experiment 1 this suggests that conflicting auditory-visual motion information of an intact human walker leads to interference and thereby delaying the response.

  3. Click trains and the rate of information processing: does "speeding up" subjective time make other psychological processes run faster?

    PubMed

    Jones, Luke A; Allely, Clare S; Wearden, John H

    2011-02-01

    A series of experiments demonstrated that a 5-s train of clicks that have been shown in previous studies to increase the subjective duration of tones they precede (in a manner consistent with "speeding up" timing processes) could also have an effect on information-processing rate. Experiments used studies of simple and choice reaction time (Experiment 1), or mental arithmetic (Experiment 2). In general, preceding trials by clicks made response times significantly shorter than those for trials without clicks, but white noise had no effects on response times. Experiments 3 and 4 investigated the effects of clicks on performance on memory tasks, using variants of two classic experiments of cognitive psychology: Sperling's (1960) iconic memory task and Loftus, Johnson, and Shimamura's (1985) iconic masking task. In both experiments participants were able to recall or recognize significantly more information from stimuli preceded by clicks than those preceded by silence.

  4. A DFT-Based Computational-Experimental Methodology for Synthetic Chemistry: Example of Application to the Catalytic Opening of Epoxides by Titanocene.

    PubMed

    Jaraíz, Martín; Enríquez, Lourdes; Pinacho, Ruth; Rubio, José E; Lesarri, Alberto; López-Pérez, José L

    2017-04-07

    A novel DFT-based Reaction Kinetics (DFT-RK) simulation approach, employed in combination with real-time data from reaction monitoring instrumentation (like UV-vis, FTIR, Raman, and 2D NMR benchtop spectrometers), is shown to provide a detailed methodology for the analysis and design of complex synthetic chemistry schemes. As an example, it is applied to the opening of epoxides by titanocene in THF, a catalytic system with abundant experimental data available. Through a DFT-RK analysis of real-time IR data, we have developed a comprehensive mechanistic model that opens new perspectives to understand previous experiments. Although derived specifically from the opening of epoxides, the prediction capabilities of the model, built on elementary reactions, together with its practical side (reaction kinetics simulations of real experimental conditions) make it a useful simulation tool for the design of new experiments, as well as for the conception and development of improved versions of the reagents. From the perspective of the methodology employed, because both the computational (DFT-RK) and the experimental (spectroscopic data) components can follow the time evolution of several species simultaneously, it is expected to provide a helpful tool for the study of complex systems in synthetic chemistry.

  5. [Reaction time tests in Leipzig, Paris and Würzburg. The Franco-German history of a psychological experiment, 1890-1910].

    PubMed

    Carroy, Jacqueline; Schmidgen, Henning

    2004-01-01

    This article diiscusses from a comparative perspective the complex history of the reaction experiment with the Hipp chronoscope, one of the central experiments of late 19th-century psychology. It focuses on Wilhelm Wundt's (1832-1920) Institute for Experimental Psychology in Leipzig and on the Paris Laboratory for Physiological Psychology at the Sorbonne, which was initially directed by Henry Beaunis (1830-1921), but soon came to be dominated by the research activities of Alfred Binet (1857-1911). When the Paris psychologists founded their Laboratory in 1889, they took the Leipzig Institute as their model. In the early 1890s they adopted the reaction time experiment that had been central to Wundt's psychology. Shortly after, they modified this experiment according to their own specific interests. For Binet, it no longer served as a method for identifying the elementary components of "general" consciousness (as in Wundt), but for classifying "individual" personalities. The methodological and technological changes that Binet introduced into the experimental practice of psychology had no immediate impact on the research work in Leipzig. However, they influenced the "Wurzburg School" of psychology under Wundt's former assistant, Oswald Külpe (1862-1915). This illustrates that the comparative history of transfers of "experimental systems" (Rheinberger) across national borders is not simply a history of mere transports. Rather, it is a history of transferences that sometimes includes surprising "re-transferences".

  6. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    NASA Astrophysics Data System (ADS)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  7. Predictive Finite Rate Model for Oxygen-Carbon Interactions at High Temperature

    NASA Astrophysics Data System (ADS)

    Poovathingal, Savio

    An oxidation model for carbon surfaces is developed to predict ablation rates for carbon heat shields used in hypersonic vehicles. Unlike existing empirical models, the approach used here was to probe gas-surface interactions individually and then based on an understanding of the relevant fundamental processes, build a predictive model that would be accurate over a wide range of pressures and temperatures, and even microstructures. Initially, molecular dynamics was used to understand the oxidation processes on the surface. The molecular dynamics simulations were compared to molecular beam experiments and good qualitative agreement was observed. The simulations reproduced cylindrical pitting observed in the experiments where oxidation was rapid and primarily occurred around a defect. However, the studies were limited to small systems at low temperatures and could simulate time scales only of the order of nanoseconds. Molecular beam experiments at high surface temperature indicated that a majority of surface reaction products were produced through thermal mechanisms. Since the reactions were thermal, they occurred over long time scales which were computationally prohibitive for molecular dynamics to simulate. The experiments provided detailed dynamical data on the scattering of O, O2, CO, and CO2 and it was found that the data from molecular beam experiments could be used directly to build a model. The data was initially used to deduce surface reaction probabilities at 800 K. The reaction probabilities were then incorporated into the direct simulation Monte Carlo (DSMC) method. Simulations were performed where the microstructure was resolved and dissociated oxygen convected and diffused towards it. For a gas-surface temperature of 800 K, it was found that despite CO being the dominant surface reaction product, a gas-phase reaction forms significant CO2 within the microstructure region. It was also found that surface area did not play any role in concentration of reaction products because the reaction probabilities were in the diffusion dominant regime. The molecular beam data at different surface temperatures was then used to build a finite rate model. Each reaction mechanism and all rate parameters of the new model were determined individually based on the molecular beam data. Despite the experiments being performed at near vacuum conditions, the finite rate model developed using the data could be used at pressures and temperatures relevant to hypersonic conditions. The new model was implemented in a computational fluid dynamics (CFD) solver and flow over a hypersonic vehicle was simulated. The new model predicted similar overall mass loss rates compared to existing models, however, the individual species production rates were completely different. The most notable difference was that the new model (based on molecular beam data) predicts CO as the oxidation reaction product with virtually no CO2 production, whereas existing models predict the exact opposite trend. CO being the dominant oxidation product is consistent with recent high enthalpy wind tunnel experiments. The discovery that measurements taken in molecular beam facilities are able to determine individual reaction mechanisms, including dependence on surface coverage, opens up an entirely new way of constructing ablation models.

  8. Testing asymmetries in noncognate translation priming: Evidence from RTs and ERPs

    PubMed Central

    SCHOONBAERT, SOFIE; HOLCOMB, PHILLIP J.; GRAINGER, JONATHAN; HARTSUIKER, ROBERT J.

    2012-01-01

    In this study, English–French bilinguals performed a lexical decision task while reaction times (RTs) and event related potentials (ERPs) were measured to L2 targets, preceded by noncognate L1 translation primes versus L1 unrelated primes (Experiment 1a) and vice versa (Experiment 1b). The prime–target stimulus onset asynchrony was 120 ms. Significant masked translation priming was observed, indicated by faster reaction times and a decreased N400 for translation pairs as opposed to unrelated pairs, both from L1 to L2 (Experiment 1a) and from L2 to L1 (Experiment 1b), with the latter effect being weaker (RTs) and less longer lasting (ERPs). A translation priming effect was also found in the N250 ERP component, and this effect was stronger and earlier in the L2 to L1 priming direction than the reverse. The results are discussed with respect to possible mechanisms at the basis of asymmetric translation priming effects in bilinguals. PMID:20557483

  9. A controlled study on batted ball speed and available pitcher reaction time in slowpitch softball

    PubMed Central

    McDowell, M; Ciocco, M

    2005-01-01

    Objectives: To investigate safety risks in slowpitch softball by conducting laboratory and experimental studies on the performance of high tech softball bats with polyurethane softballs. To compare the results with the recommended safety standards. Methods: ASTM standard compression testing of seven softball models was conducted. Using these seven softball models, bat/ball impact testing was performed using seven adult male softball players and six high tech softball bat models to determine mean batted ball speeds. Over 500 bat/ball impact measurements were recorded and analysed. Available pitcher reaction time was calculated from the mean batted ball speed measurements. Results: According to the United States Specialty Sports Association and the Amateur Softball Association, the maximum initial batted ball speed should be 137.2 km/h, which corresponds to a minimum pitcher reaction time of 0.420 second. These experiments produced mean batted ball speeds of 134.0–159.7 km/h, which correspond to available pitcher reaction times of 0.409–0.361 second. Conclusion: The use of high tech softball bats with polyurethane softballs can result in batted ball speeds that exceed the recommended safety limits, which correspond to decreased available pitcher reaction times. PMID:15793092

  10. Photodissolution of soil organic matter

    USGS Publications Warehouse

    Mayer, L.M.; Thornton, K.R.; Schick, L.L.; Jastrow, J.D.; Harden, J.W.

    2012-01-01

    Sunlight has been shown to enhance loss of organic matter from aquatic sediments and terrestrial plant litter, so we tested for similar reactions in mineral soil horizons. Losses of up to a third of particulate organic carbon occurred after continuous exposure to full-strength sunlight for dozens of hours, with similar amounts appearing as photodissolved organic carbon. Nitrogen dissolved similarly, appearing partly as ammonium. Modified experiments with interruption of irradiation to include extended dark incubation periods increased loss of total organic carbon, implying remineralization by some combination of light and microbes. These photodissolution reactions respond strongly to water content, with reaction extent under air-dry to fully wet conditions increasing by a factor of 3-4 fold. Light limitation was explored using lamp intensity and soil depth experiments. Reaction extent varied linearly with lamp intensity. Depth experiments indicate that attenuation of reaction occurs within the top tens to hundreds of micrometers of soil depth. Our data allow only order-of-magnitude extrapolations to field conditions, but suggest that this type of reaction could induce loss of 10-20% of soil organic carbon in the top 10. cm horizon over a century. It may therefore have contributed to historical losses of soil carbon via agriculture, and should be considered in soil management on similar time scales. ?? 2011 Elsevier B.V.

  11. The C( 3P) + NH 3 reaction in interstellar chemistry. I. Investigation of the product formation channels

    DOE PAGES

    Bourgalais, Jeremy; Capron, Michael; Kailasanathan, Ranjith Kumar Abhinavam; ...

    2015-10-13

    The product formation channels of ground state carbon atoms, C( 3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH 3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by themore » Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H 2CN production channel represents 100% of the product yield for this reaction. As a result, kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.« less

  12. Developmental Changes in the Processing of Hierarchical Shapes Continue into Adolescence.

    ERIC Educational Resources Information Center

    Mondloch, Catherine J.; Geldart, Sybil; Maurer, Daphne; de Schonen, Scania

    2003-01-01

    Three experiments obtained same-different judgments from children and adults to trace normal development of local and global processing of hierarchical visual forms. Findings indicated that reaction time was faster on global trials than local trials; bias was stronger in children and diminished to adult levels between ages 10 and 14. Reaction time…

  13. Investigation of the Regioselectivity of Alkene Hydrations for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bichler, Katherine A.; Van Ornum, Scott G.; Franz, Margaret C.; Imhoff, Andrea M.

    2015-01-01

    Due to a lack of time and, thus, an inability to present every possibility in a chemical reaction, organic chemistry professors tend to present each reaction with a single outcome. In practice, this is clearly not the case. A first-semester, three-week laboratory experiment designed for undergraduate organic chemistry students is described in…

  14. The Motor Component of Speech in the Verbal Regulation of Behavior.

    ERIC Educational Resources Information Center

    Wilder, Larry; Romaniuk, Michael

    Two experiments related to the development of verbal self-control in children were conducted. In the first experiment, 36 adults and 36 four year olds were administered a vocal alone, a motor alone, and a combined-reaction-time task. In the second experiment, 54 kindergarten subjects and 60 fifth-grade subjects were each administered a double…

  15. Age-related slowing of response selection and production in a visual choice reaction time task

    PubMed Central

    Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.; Reed, Bruce

    2015-01-01

    Aging is associated with delayed processing in choice reaction time (CRT) tasks, but the processing stages most impacted by aging have not been clearly identified. Here, we analyzed CRT latencies in a computerized serial visual feature-conjunction task. Participants responded to a target letter (probability 40%) by pressing one mouse button, and responded to distractor letters differing either in color, shape, or both features from the target (probabilities 20% each) by pressing the other mouse button. Stimuli were presented randomly to the left and right visual fields and stimulus onset asynchronies (SOAs) were adaptively reduced following correct responses using a staircase procedure. In Experiment 1, we tested 1466 participants who ranged in age from 18 to 65 years. CRT latencies increased significantly with age (r = 0.47, 2.80 ms/year). Central processing time (CPT), isolated by subtracting simple reaction times (SRT) (obtained in a companion experiment performed on the same day) from CRT latencies, accounted for more than 80% of age-related CRT slowing, with most of the remaining increase in latency due to slowed motor responses. Participants were faster and more accurate when the stimulus location was spatially compatible with the mouse button used for responding, and this effect increased slightly with age. Participants took longer to respond to distractors with target color or shape than to distractors with no target features. However, the additional time needed to discriminate the more target-like distractors did not increase with age. In Experiment 2, we replicated the findings of Experiment 1 in a second population of 178 participants (ages 18–82 years). CRT latencies did not differ significantly in the two experiments, and similar effects of age, distractor similarity, and stimulus-response spatial compatibility were found. The results suggest that the age-related slowing in visual CRT latencies is largely due to delays in response selection and production. PMID:25954175

  16. Understanding titanium-catalysed radical-radical reactions: a DFT study unravels the complex kinetics of ketone-nitrile couplings.

    PubMed

    Streuff, Jan; Himmel, Daniel; Younas, Sara L

    2018-04-03

    The computational investigation of a titanium-catalysed reductive radical-radical coupling is reported. The results match the conclusions from an earlier experimental study and enable a further interpretation of the previously observed complex reaction kinetics. Furthermore, the interplay between neutral and cationic reaction pathways in titanium(iii)-catalysed reactions is investigated for the first time. The results show that hydrochloride additives and reaction byproducts play an important role in the respective equilibria. A full reaction profile is assembled and the computed activation barrier is found to be in reasonable agreement with the experiment. The conclusions are of fundamental importance to the field of low-valent titanium catalysis and the understanding of related catalytic radical-radical coupling reactions.

  17. Arbitrary-detuning asynchronous optical sampling pump-probe spectroscopy of bacterial reaction centers.

    PubMed

    Antonucci, Laura; Bonvalet, Adeline; Solinas, Xavier; Jones, Michael R; Vos, Marten H; Joffre, Manuel

    2013-09-01

    A recently reported variant of asynchronous optical sampling compatible with arbitrary unstabilized laser repetition rates is applied to pump-probe spectroscopy. This makes possible the use of a 5.1 MHz chirped pulse oscillator as the pump laser, thus extending the available time window to almost 200 ns with a time resolution as good as about 320 fs. The method is illustrated with the measurement in a single experiment of the complete charge transfer dynamics of the reaction center from Rhodobacter sphaeroides.

  18. Simultaneity in Emotional Moments

    NASA Astrophysics Data System (ADS)

    Clore, Gerald L.

    Emotions are described as emergent states, which exist only to the extent that multiple affective reactions to the same object occur at the same time. Emotions are thus the confluence of thoughts, feelings, expressions, desires, and so on. They emerge as meta-cognitive representations of embodied affective reactions. Emotions may be initiated by low-level, automatic, unconscious affective reactions, which are then iteratively re-processed with ever greater cognitive involvement until they become elaborated into emotional states. Affective and emotional reactions act as information about the value of objects of judgment and of accessible cognitions and inclinations during tasks. They influence judgment and thought when they are experienced simultaneously with sensory data about the world. Affective influences thus depend on our inability to disentangle affective from descriptive perceptions. To the extent that affective reactions reflect different, incommensurate sources of value (e.g., utilitarian, moral, aesthetic), perceived persons or objects may be experienced as being transcendently good or evil. Experiments varying people's attributions for their affective experiences allow the separate roles of affective and descriptive information to be examined. However, it is the inability to parse everyday experience into its separate sources of evaluative and descriptive information that gives rise to a colourful and transcendent reality.

  19. Probabilistic motor sequence learning in a virtual reality serial reaction time task.

    PubMed

    Sense, Florian; van Rijn, Hedderik

    2018-01-01

    The serial reaction time task is widely used to study learning and memory. The task is traditionally administered by showing target positions on a computer screen and collecting responses using a button box or keyboard. By comparing response times to random or sequenced items or by using different transition probabilities, various forms of learning can be studied. However, this traditional laboratory setting limits the number of possible experimental manipulations. Here, we present a virtual reality version of the serial reaction time task and show that learning effects emerge as expected despite the novel way in which responses are collected. We also show that response times are distributed as expected. The current experiment was conducted in a blank virtual reality room to verify these basic principles. For future applications, the technology can be used to modify the virtual reality environment in any conceivable way, permitting a wide range of previously impossible experimental manipulations.

  20. Neutrino Experiments at Reactors

    DOE R&D Accomplishments Database

    Reines, F.; Gurr, H. S.; Jenkins, T. L.; Munsee, J. H.

    1968-09-09

    A description is given of the electron-antineutrino program using a large fission reactor. A search has been made for a neutral weak interaction via the reaction (electron antineutrino + d .> p + n + electron antineutrino), the reaction (electron antineutrino + d .> n + n + e{sup +}) has now been detected, and an effort is underway to observe the elastic scattering reaction (electron antineutrino + e{sup -} .> electron antineutrino + e{sup -}) as well as to measure more precisely the reaction (electron antineutrino + p .> n + e{sup+}). The upper limit on the elastic scattering reaction which we have obtained with our large composite NaI, plastic, liquid scintillation detector is now about 50 times the predicted value.

  1. Psychophysiological effects of self-regulation method: EEG frequency analysis and contingent negative variations.

    PubMed

    Ikemi, A

    1988-01-01

    Experiments were conducted to investigate the psychophysiological effects of self-regulation method (SRM), a newly developed method of self-control, using EEG frequency analysis and contingent negative variations (CNV). The results of the EEG frequency analysis showed that there is a significant increase in the percentage (power) of the theta-band and a significant decrease in the percentage (power) of the beta-band during SRM. Moreover, the results of an identical experiment conducted on subjects in a drowsy state showed that the changes in EEG frequencies during SRM can be differentiated from those of a drowsy state. Furthermore, experiments using CNV showed that there is a significant reduction of CNV amplitude during SRM. Despite the reduced amplitude during SRM, the number of errors in a task to evoke the CNV was reduced significantly without significant delay of reaction time. When an identical experiment was conducted in a drowsy state, CNV amplitude was reduced significantly, but reaction time and errors increased. From these experiments, the state of vigilance during SRM was discussed as a state of 'relaxed alertness'.

  2. Fast and Forceful: Modulation of Response Activation Induced by Shifts of Perceived Depth in Virtual 3D Space

    PubMed Central

    Plewan, Thorsten; Rinkenauer, Gerhard

    2016-01-01

    Reaction time (RT) can strongly be influenced by a number of stimulus properties. For instance, there was converging evidence that perceived size rather than physical (i.e., retinal) size constitutes a major determinant of RT. However, this view has recently been challenged since within a virtual three-dimensional (3D) environment retinal size modulation failed to influence RT. In order to further investigate this issue in the present experiments response force (RF) was recorded as a supplemental measure of response activation in simple reaction tasks. In two separate experiments participants’ task was to react as fast as possible to the occurrence of a target located close to the observer or farther away while the offset between target locations was increased from Experiment 1 to Experiment 2. At the same time perceived target size (by varying the retinal size across depth planes) and target type (sphere vs. soccer ball) were modulated. Both experiments revealed faster and more forceful reactions when targets were presented closer to the observers. Perceived size and target type barely affected RT and RF in Experiment 1 but differentially affected both variables in Experiment 2. Thus, the present findings emphasize the usefulness of RF as a supplement to conventional RT measurement. On a behavioral level the results confirm that (at least) within virtual 3D space perceived object size neither strongly influences RT nor RF. Rather the relative position within egocentric (body-centered) space presumably indicates an object’s behavioral relevance and consequently constitutes an important modulator of visual processing. PMID:28018273

  3. Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex.

    PubMed

    Wang, Xinge; Luo, Zhigang; Xiao, Zhigang

    2014-01-30

    β-Cyclodextrin (β-CD), which is widely used to increase the stability, solubility, and bioavailability of guests, can form host-guest inclusion complexes with a wide variety of organic molecules. In this study the β-CD/soybean lecithin inclusion complex was prepared. The effect of reaction parameters such as reaction temperature, reaction time and the molar ratio of β-CD/soybean lecithin on inclusion ratio were studied. The inclusion ratio of the product prepared under the optimal conditions of β-CD/soybean lecithin molar ratio 2:1, reaction temperature 60°C reaction time 2h was 40.2%. The results of UV-vis, DSC, XRD and FT-IR spectrum indicated the formation of inclusion complex. The thermal stability experiment indicated that the thermal stability of soybean lecithin in inclusion complex was significantly improved compared with free soybean lecithin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Exploration of kinetic and multiple-ion-fluids effects in D3He and T3He gas-filled ICF implosions using multiple nuclear reaction histories

    NASA Astrophysics Data System (ADS)

    Sio, Hong; Rinderknecht, Hans; Rosenberg, Michael; Zylstra, Alex; Séguin, Fredrick; Gatu Johnson, Maria; Li, Chikang; Petrasso, Richard; Hoffman, Nelson; Kagan, Krigory; Molvig, Kim; Amendt, Peter; Bellei, Claudio; Wilks, Scott; Stoeckl, Christian; Glebov, Vladimir; Betti, Riccardo; Sangster, Thomas; Katz, Joseph

    2014-10-01

    To explore kinetic and multi-ion-fluid effects in D3He and T3He gas-filled shock-driven implosions, multiple nuclear reaction histories were measured using the upgraded Particle Temporal Diagnostic (PTD) on OMEGA. For D3He gas-filled implosions, the relative timing of the DD and D3He reaction histories were measured with 20 ps precision. For T3He gas-filled implosions (with 1-2% deuterium), the relative timing of the DT and D3He reaction histories were measured with 10 ps precision. The observed differences between the reaction histories on these two OMEGA experiments are contrasted to 1-D single-ion hydro simulations for different gas-fill pressure and gas mixture. This work is supported in part by the U.S. DOE, LLNL, LLE, and NNSA SSGF.

  5. Real-Time NMR Studies of Oxyamine Ligations of Reducing Carbohydrates under Equilibrium Conditions.

    PubMed

    Baudendistel, Oliver R; Wieland, Daniel E; Schmidt, Magnus S; Wittmann, Valentin

    2016-11-21

    Ligation reactions at the anomeric center of carbohydrates have gained increasing importance in the field of glycobiology. Oxyamines are frequently used in labeling, immobilization, and bioconjugation of reducing carbohydrates. Herein, we present a systematic investigation of these ligation reactions under aqueous conditions. A series of four unprotected monosaccharides (glucose, N-acetylglucosamine, mannose, and 2-deoxyglucose) and one disaccharide (N,N'-diacetylchitobiose) was reacted with three primary and one secondary oxyamine. We monitored the concentrations of the starting materials and products by 1 H NMR spectroscopy and determined reaction times and equilibrium yields. Our experiments show that the outcome of the ligation reaction is not only dependent on the sugar and oxyamine used but also strongly on the reaction conditions. In the case of glucose, lowering the pH from 6 to 3 led to steadily increasing reaction rates, whereas the yields were decreasing at the same time. Variation of the temperature did not only influence the product ratio in equilibrium but can also have a strong impact on the equilibrium yield. In the case of reactions of a primary oxyamine, increased temperatures led to a higher proportion of acyclic products. Reaction of the secondary oxyamine with glucose unexpectedly led to lower yields at higher temperatures. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Food Cravings Consume Limited Cognitive Resources

    ERIC Educational Resources Information Center

    Kemps, Eva; Tiggemann, Marika; Grigg, Megan

    2008-01-01

    Using Tiffany's (1990) cognitive model of drug use and craving as a theoretical basis, the present experiments investigated whether cravings for food expend limited cognitive resources. Cognitive performance was assessed by simple reaction time (Experiment 1) and an established measure of working memory capacity, the operation span task…

  7. Computerized approaches to enhance understanding of organic reaction mechanisms: CAN reaction mechanisms and CPLEX prelaboratory methodology

    NASA Astrophysics Data System (ADS)

    Al-Shammari, Abdulrahman G. Alhamzani

    2008-10-01

    Two approaches to enhance the understanding of organic reaction mechanisms are described. First, a new method for teaching organic reaction mechanisms that can be used in a Computer-Assisted Instruction (CAI) environment is proposed and tested (Chapter 1). The method concentrates upon the important intermediate structures, which are assumed to be on the reaction coordinate, and which can be evaluated and graded by currently available computer techniques. At the same time, the "curved arrows" that show the electron flow in a reaction mechanism are neglected, since they cannot be evaluated and graded with currently available computer techniques. By allowing student practice for learning organic reaction mechanisms using the Curved Arrow Neglect (CAN) method within a "Practice Makes Perfect" CAI method, student performance in the drawing of traditional reaction mechanisms, in which students had to include the "curved arrows" on their written classroom exams, was significantly enhanced. Second, computerized prelaboratory experiments (CPLEX) for organic chemistry laboratory 1 & 2 courses have been created, used, and evaluated (Chapters 2 and 3). These computerized prelabs are unique because they combine both "dry lab" actions with detailed animations of the actual chemistry occurring at the molecular level. The "dry lab" serves to simulate the actual physical manipulations of equipment and chemicals that occur in the laboratory experiment through the use of drag-and-drop computer technology. At the same time, these physical actions are accompanied on a separate part of the computer screen by animations showing the chemistry at the molecular level that is occurring in the experiment. These CPLEX modules were made into Internet accessible modules. The students were allowed to access the CPLEX modules prior to performing the actual laboratory experiment. A detailed evaluation of students' perception of the modules was accomplished via survey methodology during the entire implementation process over the course of three semesters. Results of the survey data indicate that students thought that they better understood the chemical principles and procedures of the laboratory experiment. Interestingly, students prefer the CPLEX prelaboratory materials, compared to the traditional textbooks, by a wide margin (Chapter 2). The utility of CPLEX was further demonstrated by enabling a study of the effectiveness of animated reaction mechanisms to promote student learning. While most instructors believe that animated mechanisms aid student understanding of reactions, there has been no quantitative data to-date to support this view. In this work, a quantitative study, using an experimental/control group study, was conducted to provide data on the effectiveness of animated reaction mechanisms to promote student learning. Analysis of student answers, using an appropriate rubric, demonstrated that there was a statistically significant improvement in students' scores in the mechanistic question of a pre-laboratory quiz in the post-treatment results of the experimental group which had had access to the animated reaction mechanisms (Chapter 3).

  8. RETRACTED ARTICLE: Personal distress, but not sympathy, predicts the negative influence of bystanders on responding to an emergency.

    PubMed

    2015-06-01

    At the request of the authors this article has been retracted. During the preparation of a follow-up study, a mistake was found in the experimental script of the cued reaction time task of experiment 2. Four out of six conditions were mislabeled. Consequently, the reported findings and their interpretation and discussion are incorrect. Careful reexamination and reanalyzing of the data using the correct labels revealed a pattern of results that is not entirely compatible with several of the main claims of the article. Importantly, the corrected results show that reaction times do not increase with more bystanders present at an emergency.Moreover, not only personal distress but also perspective taking predicts the negative influence of bystanders on reaction times.We believe that these new findings undermine our central claim of decreased action preparation as a function of bystanders present at an emergency and the enhancement of this effect in people with higher levels of trait personal distress. While the results and discussion of experiment 1 and 3 remain correct, the new results of experiment 2 influence the article to such an extent that we currently see no other option than to retract the article from publication. We will continue to work on this topic and hope to publish the new results in due time. We deeply regret the publication of invalid results.We sincerely apologize to the Editor and reviewers of the manuscript, and the readers of Cognitive, Affective, & Behavioral Neuroscience.

  9. Reaction kinetics in open reactors and serial transfers between closed reactors

    NASA Astrophysics Data System (ADS)

    Blokhuis, Alex; Lacoste, David; Gaspard, Pierre

    2018-04-01

    Kinetic theory and thermodynamics of reaction networks are extended to the out-of-equilibrium dynamics of continuous-flow stirred tank reactors (CSTR) and serial transfers. On the basis of their stoichiometry matrix, the conservation laws and the cycles of the network are determined for both dynamics. It is shown that the CSTR and serial transfer dynamics are equivalent in the limit where the time interval between the transfers tends to zero proportionally to the ratio of the fractions of fresh to transferred solutions. These results are illustrated with a finite cross-catalytic reaction network and an infinite reaction network describing mass exchange between polymers. Serial transfer dynamics is typically used in molecular evolution experiments in the context of research on the origins of life. The present study is shedding a new light on the role played by serial transfer parameters in these experiments.

  10. Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon.

    PubMed

    Wu, Limei; Liao, Libing; Lv, Guocheng; Qin, Faxiang; He, Yujuan; Wang, Xiaoyu

    2013-06-15

    In this paper we prepared a novel material of activated carbon/nanoscale zero-valent iron (C-Fe(0)) composite. The C-Fe(0) was proved to possess large specific surface area and outstanding reducibility that result in the rapid and stable reaction with Cr (VI). The prepared composite has been examined in detail in terms of the influence of solution pH, concentration and reaction time in the Cr (VI) removal experiments. The results showed that the C-Fe(0) formed a micro-electrolysis which dominated the reaction rate. The Micro-electrolysis reaches equilibrium is ten minutes. Its reaction rate is ten times higher than that of traditional adsorption reaction, and the removal rate of Cr reaches up to 99.5%. By analyzing the obtained profiles from the cyclic voltammetry, PXRD and XPS, we demonstrate that the Cr (VI) is reduced to insoluble Cr (III) compound in the reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Hydroxyacetone production from C 3 Criegee intermediates

    DOE PAGES

    Taatjes, Craig A.; Liu, Fang; Rotavera, Brandon; ...

    2016-12-21

    Hydroxyacetone (CH 3C(O)CH 2OH) is observed as a stable end product from reactions of the (CH 3) 2COO Criegee intermediate, acetone oxide, in a flow tube coupled with multiplexed photoionization mass spectrometer detection. In the experiment, the isomers at m/z = 74 are distinguished by their different photoionization spectra and reaction times. Hydroxyacetone is observed as a persistent signal at longer reaction times at a higher photoionization threshold of ca. 9.7 eV than Criegee intermediate and definitively identified by comparison with the known photoionization spectrum. Complementary electronic structure calculations reveal multiple possible reaction pathways for hydroxyacetone formation, including unimolecular isomerizationmore » via hydrogen atom transfer and –OH group migration as well as self-reaction of Criegee intermediates. Varying the concentration of Criegee intermediates suggests contributions from both unimolecular and self-reaction pathways to hydroxyacetone. As a result, the hydroxyacetone end product can provide an effective, stable marker for the production of transient Criegee intermediates in future studies of alkene ozonolysis.« less

  12. Note: A well-confined pulsed low-energy ion beam: Test experiments of Ar+

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Wu, Chun-Xiao; Tian, Shan Xi

    2018-06-01

    Here we report a pulsed low-energy ion beam source for ion-molecule reaction study, in which the ions produced by the pulsed electron impact are confined well in the spatial size of each bunch. In contrast to the ion focusing method to reduce the transverse section of the beam, the longitudinal section in the translational direction is compressed by introducing a second pulse in the ion time-of-flight system. The test experiments for the low-energy argon ions are performed. The present beam source is ready for applications in the ion-molecule reaction dynamics experiments, in particular, in combination with the ion velocity map imaging technique.

  13. Body-part specific interactions of action verb processing with motor behaviour.

    PubMed

    Klepp, Anne; Niccolai, Valentina; Sieksmeyer, Jan; Arnzen, Stephanie; Indefrey, Peter; Schnitzler, Alfons; Biermann-Ruben, Katja

    2017-06-15

    The interaction of action-related language processing with actual movement is an indicator of the functional role of motor cortical involvement in language understanding. This paper describes two experiments using single action verb stimuli. Motor responses were performed with the hand or the foot. To test the double dissociation of language-motor facilitation effects within subjects, Experiments 1 and 2 used a priming procedure where both hand and foot reactions had to be performed in response to different geometrical shapes, which were preceded by action verbs. In Experiment 1, the semantics of the verbs could be ignored whereas Experiment 2 included semantic decisions. Only Experiment 2 revealed a clear double dissociation in reaction times: reactions were facilitated when preceded by verbs describing actions with the matching effector. In Experiment 1, by contrast, there was an interaction between verb-response congruence and a semantic variable related to motor features of the verbs. Thus, the double dissociation paradigm of semantic motor priming was effective, corroborating the role of the motor system in action-related language processing. Importantly, this effect was body part specific. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Study of Biobehavioral Rhythms in a Psychology Laboratory Course.

    ERIC Educational Resources Information Center

    Rowland, David L.; Wesselhoft, Theresa

    1998-01-01

    Reports on a laboratory experiment where students measured their heart rate, blood pressure, mood, alertness, and cognitive performance. Measures showed significant circadian heart rhythm variations. They were strongly correlated and peaked at different times. Discusses the implications of this and students' reactions to the experiment. (MJP)

  15. Temporal properties of material categorization and material rating: visual vs non-visual material features.

    PubMed

    Nagai, Takehiro; Matsushima, Toshiki; Koida, Kowa; Tani, Yusuke; Kitazaki, Michiteru; Nakauchi, Shigeki

    2015-10-01

    Humans can visually recognize material categories of objects, such as glass, stone, and plastic, easily. However, little is known about the kinds of surface quality features that contribute to such material class recognition. In this paper, we examine the relationship between perceptual surface features and material category discrimination performance for pictures of materials, focusing on temporal aspects, including reaction time and effects of stimulus duration. The stimuli were pictures of objects with an identical shape but made of different materials that could be categorized into seven classes (glass, plastic, metal, stone, wood, leather, and fabric). In a pre-experiment, observers rated the pictures on nine surface features, including visual (e.g., glossiness and transparency) and non-visual features (e.g., heaviness and warmness), on a 7-point scale. In the main experiments, observers judged whether two simultaneously presented pictures were classified as the same or different material category. Reaction times and effects of stimulus duration were measured. The results showed that visual feature ratings were correlated with material discrimination performance for short reaction times or short stimulus durations, while non-visual feature ratings were correlated only with performance for long reaction times or long stimulus durations. These results suggest that the mechanisms underlying visual and non-visual feature processing may differ in terms of processing time, although the cause is unclear. Visual surface features may mainly contribute to material recognition in daily life, while non-visual features may contribute only weakly, if at all. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Photodisintegration reactions for nuclear astrophysics studies at ELI-NP

    NASA Astrophysics Data System (ADS)

    Matei, C.; Balabanski, D.; Filipescu, D. M.; Tesileanu, O.

    2018-01-01

    Extreme Light Infrastructure - Nuclear Physics facility will come online in Bucharest-Magurele, Romania, in 2018 and will deliver high intensity laser and brilliant gamma beams. We present the physics cases and instruments proposed at ELI-NP to measure capture reactions by means of the inverse photodisintegration reaction. We propose to study the 16O(γ, α)12C reaction using a Time Projection Chamber detector with electronic readout. Several other reactions, such as 24Mg(γ, α)20Ne and reactions on heavy nuclei relevant in the p-process, are central to stellar evolution and will be investigated with a proposed Silicon Strip Detector array and a 4π neutron detector. The status of the experimental facilities and first-day experiments will be presented in detail.

  17. Results Of Copper Catalyzed Peroxide Oxidation (CCPO) Of Tank 48H Simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Pareizs, J. M.; Newell, J. D.

    2012-12-13

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity ofmore » organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. A processing temperature of 50°C as part of an overall set of conditions appears to provide a viable TPB destruction time on the order of 4 days. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. The data in this report suggests 100-250 mg/L as a minimum. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. An addition rate of 0.4 mL/hour, scaled to the full vessel, is suggested for the process. SRNL recommends that for pH adjustment, an acid addition rate 42 mL/hour, scaled to the full vessel, is used. This is the same addition rate used in the testing. Even though the TPB and phenylborates can be destroyed in a relative short time period, the residual organics will take longer to degrade to <10 mg/L. Low level leaching on titanium occurred, however, the typical concentrations of released titanium are very low (~40 mg/L or less). A small amount of leaching under these conditions is not surprising and is consistent with a previous study. Acidification with phosphoric and formic acids, in lieu of nitric acid, provides benefits in reducing the amount of benzene emitted over the lifetime of a reaction. Analyses of the post-reaction residual material indicate that slurry initially adjusted down to a pH 7 produced a greater degree of energetic material than material initially adjusted to a pH of 9. No more than 140 {micro}g/m{sup 3} of mercury was indicated in reactor head spaces at any time. An estimation of less than 1% of the initial mercury was vaporized in each experiment. A limited number of replicate tests were performed to determine experimental reproducibility. These tests indicate a reasonable degree of reproducibility. The conclusion of the simulant testing has provided a set of reaction conditions that can destroy the TPB and phenylborates quickly. While longer times will be required to degrade the residual organics, the reactions appear to perform in a consistent manner. A real waste test or tests are recommended and further investigation into the use of phosphoric or formic acid is warranted.« less

  18. Mechanism of the reaction, CH4+O(1D2)→CH3+OH, studied by ultrafast and state-resolved photolysis/probe spectroscopy of the CH4ṡO3 van der Waals complex

    NASA Astrophysics Data System (ADS)

    Miller, C. Cameron; van Zee, Roger D.; Stephenson, John C.

    2001-01-01

    The mechanism of the reaction CH4+O(1D2)→CH3+OH was investigated by ultrafast, time-resolved and state-resolved experiments. In the ultrafast experiments, short ultraviolet pulses photolyzed ozone in the CH4ṡO3 van der Waals complex to produce O(1D2). The ensuing reaction with CH4 was monitored by measuring the appearance rate of OH(v=0,1;J,Ω,Λ) by laser-induced fluorescence, through the OH A←X transition, using short probe pulses. These spectrally broad pulses, centered between 307 and 316 nm, probe many different OH rovibrational states simultaneously. At each probe wavelength, both a fast and a slow rise time were evident in the fluorescence signal, and the ratio of the fast-to-slow signal varied with probe wavelength. The distribution of OH(v,J,Ω,Λ) states, Pobs(v,J,Ω,Λ), was determined by laser-induced fluorescence using a high-resolution, tunable dye laser. The Pobs(v,J,Ω,Λ) data and the time-resolved data were analyzed under the assumption that different formation times represent different reaction mechanisms and that each mechanism produces a characteristic rovibrational distribution. The state-resolved and the time-resolved data can be fit independently using a two-mechanism model: Pobs(v,J,Ω,Λ) can be decomposed into two components, and the appearance of OH can be fit by two exponential rise times. However, these independent analyses are not mutually consistent. The time-resolved and state-resolved data can be consistently fit using a three-mechanism model. The OH appearance signals, at all probe wavelengths, were fit with times τfast≈0.2 ps, τinter≈0.5 ps and τslow≈5.4 ps. The slowest of these three is the rate for dissociation of a vibrationally excited methanol intermediate (CH3OH*) predicted by statistical theory after complete intramolecular energy redistribution following insertion of O(1D2) into CH4. The Pobs(v,J,Ω,Λ) was decomposed into three components, each with a linear surprisal, under the assumption that the mechanism producing OH at a statistical rate would be characterized by a statistical prior. Dissociation of a CH4O* intermediate before complete energy randomization was identified as producing OH at the intermediate rate and was associated with a population distribution with more rovibrational energy than the slow mechanism. The third mechanism produces OH promptly with a cold rovibrational distribution, indicative of a collinear abstraction mechanism. After these identifications were made, it was possible to predict the fraction of signal associated with each mechanism at different probe wavelengths in the ultrafast experiment, and the predictions proved consistent with measured appearance signals. This model also reconciles data from a variety of previous experiments. While this model is the simplest that is consistent with the data, it is not definitive for several reasons. First, the appearance signals measured in these experiments probe simultaneously many OH(v,J,Ω,Λ) states, which would tend to obfuscate differences in the appearance rate of specific rovibrational states. Second, only about half of the OH(v,J,Ω,Λ) states populated by this reaction could be probed by laser-induced fluorescence through the OH A←X band with our apparatus. Third, the cluster environment might influence the dynamics compared to the free bimolecular reaction.

  19. Graphene Facilitated Removal of Labetalol in Laccase-ABTS System: Reaction Efficiency, Pathways and Mechanism

    PubMed Central

    Dong, Shipeng; Xiao, Huifang; Huang, Qingguo; Zhang, Jian; Mao, Liang; Gao, Shixiang

    2016-01-01

    The widespread occurrence of the beta-blocker labetalol causes environmental health concern. Enzymatic reactions are highly efficient and specific offering biochemical transformation of trace contaminants with short reaction time and little to none energy consumption. Our experiments indicate that labetalol can be effectively transformed by laccase-catalyzed reaction using 2, 2-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a mediator, while no significant removal of labetalol can be achieved in the absence of ABTS. A total of three products were identified. It is interesting that the presence of graphene greatly increased the reaction rate while not changed the products. In the presence of 100 μg/L graphene, the pseudo-first-order reaction rate constant was increased ~50 times. We found that the enhancement of graphene is probably attributed to the formation and releasing of ABTS2+ which has a much greater reactivity towards labetalol when graphene is present. This study provides fundamental information for laccase-ABTS mediated labetalol reactions and the effect of graphene, which could eventually lead to development of novel methods to control beta-blocker contamination. PMID:26891761

  20. Psychological differences between influence of temperament with the hemishere asymmetry of a brain on size of sensorymotor reactions of male and female cosmonauts

    NASA Astrophysics Data System (ADS)

    Prisniakova, Lyudmila; Prisniakov, Volodymyr; Volkov, D. S.

    The purpose of research was definition and comparison of relative parameters of sensorimotor reactions with a choice depending on a level of lateral asymmetry of hemispheres of a brain at representatives of various types of temperament OF male and female cosmonauts . These parameters were by the bases for verification of theoretical dependence for the latent period of reaction in conditions of weightlessness and overloads. The hypothesis about influence of functional asymmetry on parameters of psychomotor in sensory-motor reactions was laid in a basis of experiment. Techniques of definition of individual characters of the sensori-motor asymmetries were used, and G. Ajzenk's questionnaire EPQ adapted by Prisniakova L. Time of sensorimotor reaction has significant distinctions between representatives of different types of temperament with a various level interchemishere asymmetry OF male and female cosmonauts. With increase in expressiveness of the right hemisphere time of reaction tends to reduction at representatives of all types of temperament, the number of erroneous reactions as a whole increases also a level of achievement tends to reduction. Results of time of sensorimotor reaction correspond with parameter L. Prisniakova which characterizes individual - psychological features. .Earlier the received experimental data of constant time of processing of the information in memory at a period of a sensorimotor reactions of the man and new results for women were used for calculation of these time constants for overloads distinct from terrestrial. These data enable to predict dynamics of behavior of cosmonauts with differing sex in conditions of flight in view of their individual characteristics connected with the hemisphere asymmetry of a brain and with by a various degree of lateralization.

  1. Maternal peanut exposure during pregnancy and lactation reduces peanut allergy risk in offspring.

    PubMed

    López-Expósito, Iván; Song, Ying; Järvinen, Kirsi M; Srivastava, Kamal; Li, Xiu-Min

    2009-11-01

    Maternal allergy is believed to be a risk factor for peanut allergy (PNA) in children. However, there is no direct evidence of maternal transmission of PNA susceptibility, and it is unknown whether maternal peanut exposure affects the development of PNA in offspring. To investigate the influence of maternal PNA on offspring reactions to the first peanut exposure, and whether maternal low-dose peanut exposure during pregnancy and lactation influences these reactions and peanut sensitization in a murine model. Five-week-old offspring of PNA C3H/HeJ mothers (PNA-Ms) were challenged intragastrically with peanut (first exposure), and reactions were determined. In a subset of the experiment, PNA-Ms were fed a low dose of peanut (PNA-M/PN) or not fed peanut (PNA-M/none) during pregnancy and lactation. Their 5-week-old offspring were challenged intragastrically with peanut, and reactions were determined. In another subset of the experiment, offspring of PNA-M/PN or PNA-M/none were sensitized with peanut intragastrically for 6 weeks, and serum peanut-specific antibodies were determined. PNA-M offspring exhibited anaphylactic reactions at first exposure to peanut that were associated with peanut-specific IgG(1) levels and prevented by a platelet activation factor antagonist. In a subset experiment, PNA-M/PN offspring showed significantly reduced first-exposure peanut reactions, increased IgG(2a), and reduced mitogen-stimulated splenocyte cytokine production compared with PNA-M/none offspring. In an additional experiment, PNA-M/PN offspring showed reduction of peanut-specific IgE to active peanut sensitization. We show for the first time maternal transmission of susceptibility to first-exposure peanut reactions and active peanut sensitization. Low-dose peanut exposure during pregnancy and lactation reduced this risk.

  2. Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification.

    PubMed

    Novo, Lísias Pereira; Gurgel, Leandro Vinícius Alves; Marabezi, Karen; Curvelo, Antonio Aprigio da Silva

    2011-11-01

    This paper describes the organosolv delignification of depithed bagasse using glycerol-water mixtures without a catalyst. The experiments were performed using two separate experimental designs. In the first experiment, two temperatures (150 and 190°C), two time periods (60 and 240 min) and two glycerol contents (20% and 80%, v/v) were used. In the second experiment, which was a central composite design, the glycerol content was maintained at 80%, and a range of temperatures (141.7-198.3°C) and time (23-277 min) was used. The best result, obtained with a glycerol content of 80%, a reaction time of 150 min and a temperature of 198.3°C, produced pulps with 54.4% pulp yield, 7.75% residual lignin, 81.4% delignification and 13.7% polyose content. The results showed that high contents of glycerol tend to produce pulps with higher delignification and higher polyoses content in relation to the pulps obtained from low glycerol content reactions. In addition, the proposed method shows potential as a pretreatment for cellulose saccharification. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Measuring explosive non-ideality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P C

    1999-02-17

    The sonic reaction zone length may be measured by four methods: (1) size effect, (2) detonation front curvature, (3) crystal interface velocity and (4) in-situ gauges. The amount of data decreases exponentially from (1) to (4) with there being almost no gauge data for prompt detonation at steady state. The ease and clarity of obtaining the reaction zone length increases from (1) to (4). The method of getting the reaction zone length, , is described for the four methods. A measure of non-ideality is proposed: the reaction zone length divided by the cylinder radius. N = /R{sub o}.more » N = 0 for true ideality. It also decreases with increasing radius as it should. For N < 0.10, an equilibrium EOS like the JWL may be used. For N > 0.10, a time-dependent description is essential. The crystal experiment, which measures the particle velocity of an explosive-transparent material interface, is presently rising in importance. We examine the data from three experiments and apply: (1) an impedance correction that transfers the explosive C-J particle velocity to the corresponding value for the interface, and (2) multiplies the interface time by 3/4 to simulate the explosive speed of sound. The result is a reaction zone length comparable to those obtained by other means. A few explosives have reaction zones so small that the change of slope in the particle velocity is easily seen.« less

  4. Preliminary studies on immobilization of lipase using chicken eggshell

    NASA Astrophysics Data System (ADS)

    Salleh, S.; Serri, N. A.; Hena, S.; Tajarudin, H. A.

    2016-06-01

    A few advantages of enzyme immobilization are reusability of expensive enzyme, improvement of stability and activity compared to crude enzyme. Various organic components can be used as carrier for enzyme immobilization such as chicken eggshell. It can be used as a carrier for immobilization as its mineral component mostly contains of calcium carbonate. In the present study, Tributyrin method was used to test enzyme activity of Rhizomucour Miehei, Candida Antarctica and Candida Rugosa. Rhizomucour Miehei shows the highest enzyme activity (360.8 mol/min/mL lipase) and was used in further experiment. Experiment was continued to study incubation time for lipase immobilization on eggshell (1-4 hours) and reaction time of esterification of sugar ester (0-72 hours). Two hours incubation time for lipase immobilization was observed and gives the highest yield of sugar ester (78.13%). Fructose and stearic acid as substrate was used for the production of sugar ester. The highest percentage of sugar ester production was shown at 36 hours of reaction time.

  5. Controlling behavioral experiments with a new programming language (SORCA) for microcomputer systems.

    PubMed

    Brinkhus, H B; Klinkenborg, H; Estorf, R; Weber, R

    1983-01-01

    A new programming language SORCA has been defined and a compiler has been written for Z80-based microcomputer systems with CP/M operating system. The language was developed to control behavioral experiments by external stimuli and by time schedule in real-time. Eight binary hardware input lines are sampled cyclically by the computer and can be used to sense switches, level detectors and other binary information, while 8 binary hardware output lines, that are cyclically updated, can be used to control relays, lamps, generate tones or for other purposes. The typical reaction time (cycle time) of a SORCA-program is 500 microseconds to 1 ms. All functions can be programmed as often as necessary. Included are the basic logic functions, counters, timers, majority gates and other complex functions. Parameters can be given as constants or as a result of a step function or of a random process (with Gaussian or equal distribution). Several tasks can be performed simultaneously. In addition, results of an experiment (e.g., number of reactions or latencies) can be measured and printed out on request or automatically. The language is easy to learn and can also be used for many other control purposes.

  6. Monitoring mass transport in heterogeneously catalyzed reactions by field-gradient NMR for assessing reaction efficiency in a single pellet

    NASA Astrophysics Data System (ADS)

    Buljubasich, L.; Blümich, B.; Stapf, S.

    2011-09-01

    An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H 2O 2.

  7. Experimental system for measurement of radiologists' performance by visual search task.

    PubMed

    Maeda, Eriko; Yoshikawa, Takeharu; Nakashima, Ryoichi; Kobayashi, Kazufumi; Yokosawa, Kazuhiko; Hayashi, Naoto; Masutani, Yoshitaka; Yoshioka, Naoki; Akahane, Masaaki; Ohtomo, Kuni

    2013-01-01

    Detective performance of radiologists for "obvious" targets should be evaluated by visual search task instead of ROC analysis, but visual task have not been applied to radiology studies. The aim of this study was to set up an environment that allows visual search task in radiology, to evaluate its feasibility, and to preliminarily investigate the effect of career on the performance. In a darkroom, ten radiologists were asked to answer the type of lesion by pressing buttons, when images without lesions, with bulla, ground-glass nodule, and solid nodule were randomly presented on a display. Differences in accuracy and reaction times depending on board certification were investigated. The visual search task was successfully and feasibly performed. Radiologists were found to have high sensitivity, specificity, positive predictive values and negative predictive values in non-board and board groups. Reaction time was under 1 second for all target types in both groups. Board radiologists were significantly faster in answering for bulla, but there were no significant differences for other targets and values. We developed an experimental system that allows visual search experiment in radiology. Reaction time for detection of bulla was shortened with experience.

  8. Impaired motor inhibition in adults who stutter - evidence from speech-free stop-signal reaction time tasks.

    PubMed

    Markett, Sebastian; Bleek, Benjamin; Reuter, Martin; Prüss, Holger; Richardt, Kirsten; Müller, Thilo; Yaruss, J Scott; Montag, Christian

    2016-10-01

    Idiopathic stuttering is a fluency disorder characterized by impairments during speech production. Deficits in the motor control circuits of the basal ganglia have been implicated in idiopathic stuttering but it is unclear how these impairments relate to the disorder. Previous work has indicated a possible deficiency in motor inhibition in children who stutter. To extend these findings to adults, we designed two experiments to probe executive motor control in people who stutter using manual reaction time tasks that do not rely on speech production. We used two versions of the stop-signal reaction time task, a measure for inhibitory motor control that has been shown to rely on the basal ganglia circuits. We show increased stop-signal reaction times in two independent samples of adults who stutter compared to age- and sex-matched control groups. Additional measures involved simple reaction time measurements and a task-switching task where no group difference was detected. Results indicate a deficiency in inhibitory motor control in people who stutter in a task that does not rely on overt speech production and cannot be explained by general deficits in executive control or speeded motor execution. This finding establishes the stop-signal reaction time as a possible target for future experimental and neuroimaging studies on fluency disorders and is a further step towards unraveling the contribution of motor control deficits to idiopathic stuttering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Morphology of tissue reactions around implants after combined surgical repair of the abdominal wall].

    PubMed

    Vostrikov, O V; Zotov, V A; Nikitenko, E V

    2004-01-01

    Tissue reactions to titanium-nickelide and polypropylen and caprone implants used in surgical treatment of anterior aldomen wall hernias were studied in experiment. Digital density of leukocytes, fibroblasts, vessels, thickness of the capsule were studied. Pronounced inflammatory reaction was observed on day 3 which attenuated on day 14 in case of titanium nickelide and on day 30-60 in case of polypropylene and caprone. Fibroplastic processes start in the first group after 7 days while in the second group only after 30 days of the experiment. Thickness of the capsule around titanium-nickelide was 2-3 times less than around polypropylene and caprone. Thus, titanium-nickelide material is biologically more inert than caprone and polypropylen which are widely used in surgery of hernias.

  10. Supercomputer analysis of sedimentary basins.

    PubMed

    Bethke, C M; Altaner, S P; Harrison, W J; Upson, C

    1988-01-15

    Geological processes of fluid transport and chemical reaction in sedimentary basins have formed many of the earth's energy and mineral resources. These processes can be analyzed on natural time and distance scales with the use of supercomputers. Numerical experiments are presented that give insights to the factors controlling subsurface pressures, temperatures, and reactions; the origin of ores; and the distribution and quality of hydrocarbon reservoirs. The results show that numerical analysis combined with stratigraphic, sea level, and plate tectonic histories provides a powerful tool for studying the evolution of sedimentary basins over geologic time.

  11. Evaluation of the user experience of "astronaut training device": an immersive, vr-based, motion-training system

    NASA Astrophysics Data System (ADS)

    Yue, Kang; Wang, Danli; Yang, Xinpan; Hu, Haichen; Liu, Yuqing; Zhu, Xiuqing

    2016-10-01

    To date, as the different application fields, most VR-based training systems have been different. Therefore, we should take the characteristics of application field into consideration and adopt different evaluation methods when evaluate the user experience of these training systems. In this paper, we propose a method to evaluate the user experience of virtual astronauts training system. Also, we design an experiment based on the proposed method. The proposed method takes learning performance as one of the evaluation dimensions, also combines with other evaluation dimensions such as: presence, immersion, pleasure, satisfaction and fatigue to evaluation user experience of the System. We collect subjective and objective data, the subjective data are mainly from questionnaire designed based on the evaluation dimensions and user interview conducted before and after the experiment. While the objective data are consisted of Electrocardiogram (ECG), reaction time, numbers of reaction error and the video data recorded during the experiment. For the analysis of data, we calculate the integrated score of each evaluation dimension by using factor analysis. In order to improve the credibility of the assessment, we use the ECG signal and reaction test data before and after experiment to validate the changes of fatigue during the experiment, and the typical behavioral features extracted from the experiment video to explain the result of subjective questionnaire. Experimental results show that the System has a better user experience and learning performance, but slight visual fatigue exists after experiment.

  12. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    DOE PAGES

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; ...

    2017-01-25

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to notmore » only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. Furthermore, the algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.« less

  13. Catalytic conversion of isophorone to jet-fuel range aromatic hydrocarbons over a MoO(x)/SiO2 catalyst.

    PubMed

    Chen, Fang; Li, Ning; Wang, Wentao; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2015-07-28

    For the first time, jet fuel range C8-C9 aromatic hydrocarbons were synthesized in high carbon yield (∼80%) by the catalytic conversion of isophorone over MoO(x)/SiO2 at atmospheric pressure. A possible reaction pathway was proposed according to the control experiments and the intermediates generated during the reaction.

  14. Matrix isolation infrared spectra of O2 and N2 insertion reactions with atomic uranium

    NASA Astrophysics Data System (ADS)

    Hunt, Rodney D.; Toth, L. Mac; Yustein, Jason T.; Andrews, Lester

    1993-10-01

    Laser ablation of refractory metals can be an effective source of vapor for matrix isolation IR studies. This combination of techniques was used for the first time to study the mechanisms of U vapor reactions with atmospheric components. U atoms and O2 were codeposited with excess Ar at 12 K. The dominant codeposition products were UO2 and UO3. In contrast, the UO yield was always small because UO2 is formed by an insertion mechanism. This mechanism was verified in the 16O2/18O2 experiments which failed to produce 16OU18O. The effects of UV photolysis and matrix annealings were also examined. The U atoms and O2 reaction requires little or no activation energy since UO2 was formed from cold reagents. New charge-transfer species, (UO2+2)(O2-2) and (UO+2)(O-2), and a weak complex, UO3-O2, were primarily produced under conditions which favored further O2 reactions. Similar U atom and N2 experiments produced only linear NUN which is also produced by an insertion mechanism. This U reaction represents the first time that atom was observed breaking and inserting into the triple bond of N2. Photolysis dramatically increased the NUN yield by 3-fold. Matrix annealings produced weak UN2-N2 and UN2-2N2 complexes.

  15. The Experience of Social Participation in Everyday Contexts among Individuals with Autism Spectrum Disorders: An Experience Sampling Study

    ERIC Educational Resources Information Center

    Chen, Yu-Wei; Bundy, Anita; Cordier, Reinie; Chien, Yi-Ling; Einfeld, Stewart

    2016-01-01

    This study explored the everyday life experiences of individuals with an autism spectrum disorder (ASD). Fourteen Australians and 16 Taiwanese (aged 16-45 years) with Asperger syndrome/high functioning autism recorded what they were doing, level of interest/involvement, emotional reactions and preference for being alone 7 times/day for 7 days.…

  16. Path of Carbon in Photosynthesis III.

    DOE R&D Accomplishments Database

    Benson, A. A.; Calvin, M.

    1948-06-01

    Although the overall reaction of photosynthesis can be specified with some degree of certainty (CO{sub 2} + H{sub 2}O + light {yields} sugars + possibly other reduced substances), the intermediates through which the carbon passes during the course of this reduction have, until now, been largely a matter of conjecture. The availability of isotopic carbon, that is, a method of labeling the carbon dioxide, provides the possibility of some very direct experiments designed to recognize these intermediates and, perhaps, help to understand the complex sequence and interplay of reactions which must constitute the photochemical process itself. The general design of such experiments is an obvious one, namely the exposure of the green plant to radioactive carbon dioxide and light under a variety of conditions and for continually decreasing lengths of time, followed by the identification of the compounds into which the radioactive carbon is incorporated under each condition and time period. From such data it is clear that in principle, at least, it should be possible to establish the sequence of compounds in time through which the carbon passes on its path from carbon dioxide to the final products. In the course of shortening the photosynthetic times, one times, one ultimately arrives at the condition of exposing the plants to the radioactive carbon dioxide with a zero illumination time, that is, in the dark. Actually, in the work the systematic order of events was reversed, and they have begun by studying first the dark fixation and then the shorter photosynthetic times. The results of the beginnings of this sort of a systematic investigation are given in Table I which includes three sets of experiments, namely a dark fixation experiment and two photosynthetic experiments, one of 30 seconds duration and the other of 60 seconds duration.

  17. Using rapid infrared forming to control interfaces in titanium-matrix composites

    NASA Technical Reports Server (NTRS)

    Warrier, Sunil G.; Lin, Ray Y.

    1993-01-01

    Control of the fiber-matrix reaction during composite fabrication is commonly achieved by shortening the processing time, coating the reinforcement with relatively inert materials, or adding alloying elements to retard the reaction. To minimize the processing time, a rapid IR forming (RIF) technique for metal-matrix composite fabrication has been developed. Experiments have shown that the RIF technique is a quick, simple, and low-cost process to fabricate titanium-alloy matrix composites reinforced with either silicon carbide or carbon fibers. Due to short processing times (typically on the order of 1-2 minutes in an inert atmosphere for composites with up to eight-ply reinforcements), the interfacial reaction is limited and well controlled. Composites fabricated by this technique have mechanical properties that are comparable to (in several cases, superior to) those made with conventional diffusion-bonding techniques.

  18. Estimation of hydrocarbon biodegradation rates in gasoline-contaminated sediment from measured respiration rates

    USGS Publications Warehouse

    Baker, R.J.; Baehr, A.L.; Lahvis, M.A.

    2000-01-01

    An open microcosm method for quantifying microbial respiration and estimating biodegradation rates of hydrocarbons in gasoline-contaminated sediment samples has been developed and validated. Stainless-steel bioreactors are filled with soil or sediment samples, and the vapor-phase composition (concentrations of oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and selected hydrocarbons) is monitored over time. Replacement gas is added as the vapor sample is taken, and selection of the replacement gas composition facilitates real-time decision-making regarding environmental conditions within the bioreactor. This capability allows for maintenance of field conditions over time, which is not possible in closed microcosms. Reaction rates of CO2 and O2 are calculated from the vapor-phase composition time series. Rates of hydrocarbon biodegradation are either measured directly from the hydrocarbon mass balance, or estimated from CO2 and O2 reaction rates and assumed reaction stoichiometries. Open microcosm experiments using sediments spiked with toluene and p-xylene were conducted to validate the stoichiometric assumptions. Respiration rates calculated from O2 consumption and from CO2 production provide estimates of toluene and p- xylene degradation rates within about ??50% of measured values when complete mineralization stoichiometry is assumed. Measured values ranged from 851.1 to 965.1 g m-3 year-1 for toluene, and 407.2-942.3 g m-3 year-1 for p- xylene. Contaminated sediment samples from a gasoline-spill site were used in a second set of microcosm experiments. Here, reaction rates of O2 and CO2 were measured and used to estimate hydrocarbon respiration rates. Total hydrocarbon reaction rates ranged from 49.0 g m-3 year-1 in uncontaminated (background) to 1040.4 g m-3 year-1 for highly contaminated sediment, based on CO2 production data. These rate estimates were similar to those obtained independently from in situ CO2 vertical gradient and flux determinations at the field site. In these experiments, aerobic conditions were maintained in the microcosms by using air as the replacement gas, thus preserving the ambient aerobic environment of the subsurface near the capillary zone. This would not be possible with closed microcosms.

  19. Inquiry-Based Experiments for Large-Scale Introduction to PCR and Restriction Enzyme Digests

    ERIC Educational Resources Information Center

    Johanson, Kelly E.; Watt, Terry J.

    2015-01-01

    Polymerase chain reaction and restriction endonuclease digest are important techniques that should be included in all Biochemistry and Molecular Biology laboratory curriculums. These techniques are frequently taught at an advanced level, requiring many hours of student and faculty time. Here we present two inquiry-based experiments that are…

  20. Students' Stressors and Reactions to Stress.

    ERIC Educational Resources Information Center

    Gadzella, Bernadette M.; And Others

    All human beings experience stress at some time. Some stressors help us to achieve goals and experience successes in life. Other stressors are detrimental as they inhibit performance and affect health. This study investigated the differences among college students (N=530) who reported their stress levels as mild (N=90), moderate (N=374), or severe…

  1. Cognitive representations and cognitive processing of team-specific tactics in soccer.

    PubMed

    Lex, Heiko; Essig, Kai; Knoblauch, Andreas; Schack, Thomas

    2015-01-01

    Two core elements for the coordination of different actions in sport are tactical information and knowledge about tactical situations. The current study describes two experiments to learn about the memory structure and the cognitive processing of tactical information. Experiment 1 investigated the storage and structuring of team-specific tactics in humans' long-term memory with regard to different expertise levels. Experiment 2 investigated tactical decision-making skills and the corresponding gaze behavior, in presenting participants the identical match situations in a reaction time task. The results showed that more experienced soccer players, in contrast to less experienced soccer players, possess a functionally organized cognitive representation of team-specific tactics in soccer. Moreover, the more experienced soccer players reacted faster in tactical decisions, because they needed less fixations of similar duration as compared to less experienced soccer players. Combined, these experiments offer evidence that a functionally organized memory structure leads to a reaction time and a perceptual advantage in tactical decision-making in soccer. The discussion emphasizes theoretical and applied implications of the current results of the study.

  2. Sustained Attention is Associated with Error Processing Impairment: Evidence from Mental Fatigue Study in Four-Choice Reaction Time Task

    PubMed Central

    Xiao, Yi; Ma, Feng; Lv, Yixuan; Cai, Gui; Teng, Peng; Xu, FengGang; Chen, Shanguang

    2015-01-01

    Attention is important in error processing. Few studies have examined the link between sustained attention and error processing. In this study, we examined how error-related negativity (ERN) of a four-choice reaction time task was reduced in the mental fatigue condition and investigated the role of sustained attention in error processing. Forty-one recruited participants were divided into two groups. In the fatigue experiment group, 20 subjects performed a fatigue experiment and an additional continuous psychomotor vigilance test (PVT) for 1 h. In the normal experiment group, 21 subjects only performed the normal experimental procedures without the PVT test. Fatigue and sustained attention states were assessed with a questionnaire. Event-related potential results showed that ERN (p < 0.005) and peak (p < 0.05) mean amplitudes decreased in the fatigue experiment. ERN amplitudes were significantly associated with the attention and fatigue states in electrodes Fz, FC1, Cz, and FC2. These findings indicated that sustained attention was related to error processing and that decreased attention is likely the cause of error processing impairment. PMID:25756780

  3. Cognitive Representations and Cognitive Processing of Team-Specific Tactics in Soccer

    PubMed Central

    Lex, Heiko; Essig, Kai; Knoblauch, Andreas; Schack, Thomas

    2015-01-01

    Two core elements for the coordination of different actions in sport are tactical information and knowledge about tactical situations. The current study describes two experiments to learn about the memory structure and the cognitive processing of tactical information. Experiment 1 investigated the storage and structuring of team-specific tactics in humans’ long-term memory with regard to different expertise levels. Experiment 2 investigated tactical decision-making skills and the corresponding gaze behavior, in presenting participants the identical match situations in a reaction time task. The results showed that more experienced soccer players, in contrast to less experienced soccer players, possess a functionally organized cognitive representation of team-specific tactics in soccer. Moreover, the more experienced soccer players reacted faster in tactical decisions, because they needed less fixations of similar duration as compared to less experienced soccer players. Combined, these experiments offer evidence that a functionally organized memory structure leads to a reaction time and a perceptual advantage in tactical decision-making in soccer. The discussion emphasizes theoretical and applied implications of the current results of the study. PMID:25714486

  4. Are Experienced Hearing Aid Users Faster at Grasping the Meaning of a Sentence Than Inexperienced Users? An Eye-Tracking Study

    PubMed Central

    Kollmeier, Birger; Neher, Tobias

    2016-01-01

    This study assessed the effects of hearing aid (HA) experience on how quickly a participant can grasp the meaning of an acoustic sentence-in-noise stimulus presented together with two similar pictures that either correctly (target) or incorrectly (competitor) depict the meaning conveyed by the sentence. Using an eye tracker, the time taken by the participant to start fixating the target (the processing time) was measured for two levels of linguistic complexity (low vs. high) and three HA conditions: clinical linear amplification (National Acoustic Laboratories-Revised), single-microphone noise reduction with National Acoustic Laboratories-Revised, and linear amplification ensuring a sensation level of ≥ 15 dB up to at least 4 kHz for the speech material used here. Timed button presses to the target stimuli after the end of the sentences (offline reaction times) were also collected. Groups of experienced (eHA) and inexperienced (iHA) HA users matched in terms of age, hearing loss, and working memory capacity took part (N = 15 each). For the offline reaction times, no effects were found. In contrast, processing times increased with linguistic complexity. Furthermore, for all HA conditions, processing times were longer (poorer) for the iHA group than for the eHA group, despite comparable speech recognition performance. Taken together, these results indicate that processing times are more sensitive to speech processing-related factors than offline reaction times. Furthermore, they support the idea that HA experience positively impacts the ability to process noisy speech quickly, irrespective of the precise gain characteristics. PMID:27595793

  5. Evaluation of the Combined Effects of Heat and Lighting on the Level of Attention and Reaction Time: Climate Chamber Experiments in Iran.

    PubMed

    Mohebian, Zohreh; Farhang Dehghan, Somayeh; Dehghan, Habiballah

    2018-01-01

    Heat exposure and unsuitable lighting are two physical hazardous agents in many workplaces for which there are some evidences regarding their mental effects. The purpose of this study was to assess the combined effect of heat exposure and different lighting levels on the attention rate and reaction time in a climatic chamber. This study was conducted on 33 healthy students (17 M/16 F) with a mean (±SD) age of 22.1 ± 2.3 years. The attention and reaction time test were done by continuous performance test and the RT meter, respectively, in different exposure conditions including the dry temperatures (22°C and 37°C) and lighting levels (200, 500, and 1500 lux). Findings demonstrated that increase in heat and lighting level caused a decrease in average attention percentage and correct responses and increase in commission error, omission error, and response time ( P < 0.05). The average of simple, diagnostic, two-color selective, and two-sound selective reaction times increased after combined exposure to heat and lighting ( P < 0.05). The results of this study indicated that, in job task which requires using cognitive functions like attention, vigilance, concentration, cautiousness, and reaction time, the work environment must be optimized in terms of heat and lighting level.

  6. CO 2-induced chemo-mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.

    Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less

  7. CO 2-induced chemo-mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing

    DOE PAGES

    Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.; ...

    2017-09-22

    Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less

  8. Multiple cues add up in defining a figure on a ground.

    PubMed

    Devinck, Frédéric; Spillmann, Lothar

    2013-01-25

    We studied the contribution of multiple cues to figure-ground segregation. Convexity, symmetry, and top-down polarity (henceforth called wide base) were used as cues. Single-cue displays as well as ambiguous stimulus patterns containing two or three cues were presented. Error rate (defined by responses to uncued stimuli) and reaction time were used to quantify the figural strength of a given cue. In the first experiment, observers were asked to report which of two regions, left or right, appeared as foreground figure. Error rate did not benefit from adding additional cues if convexity was present, suggesting that responses were based on convexity as the predominant figural determinant. However, reaction time became shorter with additional cues even if convexity was present. For example, when symmetry and wide base were added, figure-ground segregation was facilitated. In a second experiment, stimulus patterns were exposed for 150ms to rule out eye movements. Results were similar to those found in the first experiment. Both experiments suggest that under the conditions of our experiment figure-ground segregation is perceived more readily, when several cues cooperate in defining the figure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Kinetics of the reactions of alkyl radicals with HBr and DBr

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Van Dijk, C. A.; Kreutter, K. D.; Wine, P. H.

    1991-01-01

    The kinetics of the reactions CH3 + HBr, CD3 + HBr, CH3 + DBr, C2H5 + HBr, C2H5 + DBr, t-C4H9 + HBr, and t-C4H9 + DBr is studied as a function of temperature (257-430 K) and pressure (10-300 Torr of N2). Time-resolved resonance fluorescence detection of Br atom appearance following laser flash photolysis of RI was used in the experiments. Results show that the rates of all reactions increased as the temperature decreased.

  10. Levels in N 12 via the N 14 ( p ,   t ) reaction using the JENSA gas-jet target

    DOE PAGES

    Chipps, K. A.; Pain, S. D.; Greife, U.; ...

    2015-09-25

    As one of a series of physics cases to demonstrate the unique benefit of the new Jet Experiments in Nuclear Structure and Astrophysics gas-jet target for enabling next-generation transfer reaction studies, the ¹⁴N (p, t)¹²N reaction was studied for the first time, using a pure jet of nitrogen, in an attempt to resolve conflicting information on the structure of ¹²N. A new level at 4.561-MeV excitation energy in ¹²N was found.

  11. Processing of visually presented clock times.

    PubMed

    Goolkasian, P; Park, D C

    1980-11-01

    The encoding and representation of visually presented clock times was investigated in three experiments utilizing a comparative judgment task. Experiment 1 explored the effects of comparing times presented in different formats (clock face, digit, or word), and Experiment 2 examined angular distance effects created by varying positions of the hands on clock faces. In Experiment 3, encoding and processing differences between clock faces and digitally presented times were directly measured. Same/different reactions to digitally presented times were faster than to times presented on a clock face, and this format effect was found to be a result of differences in processing that occurred after encoding. Angular separation also had a limited effect on processing. The findings are interpreted within the framework of theories that refer to the importance of representational codes. The applicability to the data of Bank's semantic-coding theory, Paivio's dual-coding theory, and the levels-of-processing view of memory are discussed.

  12. Changes in NMR relaxation times of adjacent muscle after implantation of malignant and normal tissue.

    PubMed Central

    Ling, C. R.; Foster, M. A.; Mallard, J. R.

    1979-01-01

    In separate experiments, normal foreign tissue and malignant tumour were implanted s.c. into the rat thigh. NMR T1 values of the adjacent normal muscle, resulting from local inflammatory reactions or from malignant invasion, were measured. Elevations in T1 of the underlying muscle occurred within 24 h in both experiments, and it is believed these were caused by rapid inflammatory and immunological reactions to the implants. However the T1 values of muscle samples adjacent to the non-malignant implants decreased during the 11 days after implantation, dropping to values within the normal range. In the second experiment there was progressive malignant invasion into the normal adjacent tissue and the elevated T1 values were maintained throughout the 12-day period. The effects of the implantation on tissue water content are discussed in relation to NMR T1 relaxation times, and the relevance to whole-body NMR imaging of elevated T1 values due to nonmalignant pathological states is considered. PMID:526431

  13. Consequences of Base Time for Redundant Signals Experiments

    PubMed Central

    Townsend, James T.; Honey, Christopher

    2007-01-01

    We report analytical and computational investigations into the effects of base time on the diagnosticity of two popular theoretical tools in the redundant signals literature: (1) the race model inequality and (2) the capacity coefficient. We show analytically and without distributional assumptions that the presence of base time decreases the sensitivity of both of these measures to model violations. We further use simulations to investigate the statistical power model selection tools based on the race model inequality, both with and without base time. Base time decreases statistical power, and biases the race model test toward conservatism. The magnitude of this biasing effect increases as we increase the proportion of total reaction time variance contributed by base time. We marshal empirical evidence to suggest that the proportion of reaction time variance contributed by base time is relatively small, and that the effects of base time on the diagnosticity of our model-selection tools are therefore likely to be minor. However, uncertainty remains concerning the magnitude and even the definition of base time. Experimentalists should continue to be alert to situations in which base time may contribute a large proportion of the total reaction time variance. PMID:18670591

  14. Optimization of magnetization transfer measurements: statistical analysis by stochastic simulation. Application to creatine kinase kinetics.

    PubMed

    Rydzy, M; Deslauriers, R; Smith, I C; Saunders, J K

    1990-08-01

    A systematic study was performed to optimize the accuracy of kinetic parameters derived from magnetization transfer measurements. Three techniques were investigated: time-dependent saturation transfer (TDST), saturation recovery (SRS), and inversion recovery (IRS). In the last two methods, one of the resonances undergoing exchange is saturated throughout the experiment. The three techniques were compared with respect to the accuracy of the kinetic parameters derived from experiments performed in a given, fixed, amount of time. Stochastic simulation of magnetization transfer experiments was performed to optimize experimental design. General formulas for the relative accuracies of the unidirectional rate constant (k) were derived for each of the three experimental methods. It was calculated that for k values between 0.1 and 1.0 s-1, T1 values between 1 and 10 s, and relaxation delays appropriate for the creatine kinase reaction, the SRS method yields more accurate values of k than does the IRS method. The TDST method is more accurate than the SRS method for reactions where T1 is long and k is large, within the range of k and T1 values examined. Experimental verification of the method was carried out on a solution in which the forward (PCr----ATP) rate constant (kf) of the creatine kinase reaction was measured.

  15. Experimental study of the energy dependence of the total cross section for the 6He + natSi and 9Li + natSi reactions

    NASA Astrophysics Data System (ADS)

    Sobolev, Yu. G.; Penionzhkevich, Yu. E.; Aznabaev, D.; Zemlyanaya, E. V.; Ivanov, M. P.; Kabdrakhimova, G. D.; Kabyshev, A. M.; Knyazev, A. G.; Kugler, A.; Lashmanov, N. A.; Lukyanov, K. V.; Maj, A.; Maslov, V. A.; Mendibayev, K.; Skobelev, N. K.; Slepnev, R. S.; Smirnov, V. V.; Testov, D.

    2017-11-01

    New experimental measurements of the total reaction cross sections for the 6He + natSi and 9Li + natSi processes in the energy range of 5 to 40 A MeV are presented. A modified transmission method based on high-efficiency detection of prompt n-γ radiation has been used in the experiment. A bump is observed for the first time in the energy dependence σR( E) at E ˜ 10-30 A MeV for the 9Li + natSi reaction, and existence of the bump in σR( E) at E ˜ 10-20 A MeV first observed in the standard transmission experiments is experimentally confirmed for the 6He + natSi reaction. Theoretical analysis of the measured 6He + natSi and 9Li + natSi reaction cross sections is performed within the microscopic double folding model. Disagreement is observed between the experimental and theoretical cross sections in the region of the bump at the energies of 10 to 20 A MeV, which requires further study.

  16. High-temperature shock tube and modeling studies on the reactions of methanol with D-atoms and CH3-radicals.

    PubMed

    Peukert, S L; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the hydrogen abstraction reactions D + CH3OH → CH2O + H + HD (A) and CH3 + CH3OH → CH2O + H + CH4 (B). For reaction A, the experiments span a T-range of 1016 K ≤ T ≤ 1325 K, at pressures 0.25 bar ≤ P ≤ 0.46 bar. The experiments on reaction B, CH3 + CH3OH, cover a T-range of 1138 K ≤ T ≤ 1270 K, at pressures around 0.40 bar. Reflected shock tube experiments, monitoring the depletion of D-atoms by applying D-atom atomic resonance absorption spectrometry (ARAS), were performed on reaction A using gas mixtures of C2D5I and CH3OH in Kr bath gas. C2D5I was used as precursor for D-atoms. For reaction B, reflected shock tube experiments monitoring H-atom formation with H-ARAS, were carried out using gas mixtures of diacetyl ((CH3CO)2) and CH3OH in Kr bath gas. (CH3CO)2 was used as the source of CH3-radicals. Detailed reaction models were assembled to fit the D-atom and H-atom time profiles in order to obtain experimental rate constants for reactions A and B. Total rate constants from the present experiments on D + CH3OH and CH3 + CH3OH can be represented by the Arrhenius equations kA(T) = 1.51 × 10(-10) exp(-3843 K/T) cm(3) molecules(-1) s(-1) (1016 K ≤ T ≤ 1325 K) and kB(T) = 9.62 × 10(-12) exp(-7477 K/T) cm(3) molecules(-1) s(-1) (1138 K ≤ T ≤ 1270 K). The experimentally obtained rate constants were compared with available rate data from the literature. The results from quantum chemical studies on reaction A were found to be in good agreement with the present results. The present work represents the first direct experimental study on these bimolecular reactions at combustion temperatures and is important to the high-temperature oxidation of CH3OH.

  17. Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation

    NASA Astrophysics Data System (ADS)

    Xiaoxu, SUN; Jin, XU; Xingyu, LI

    2017-12-01

    In this paper dyeing waste water was simulated by reactive brilliant blue XBR, activated carbon adsorption process, coagulation process and chemical oxidation process were used to treat dyeing waste water. In activated carbon adsorption process and coagulation process, the water absorbance values were measured. The CODcr value of water was determined in Fenton chemical oxidation process. Then, the decolorization rate and COD removal rate were calculated respectively. The results showed that the optimum conditions of activated carbon adsorption process were as follows: pH=2, the dosage of activated carbon was 1.2g/L, the adsorption reaction time was 60 min, and the average decolorization rate of the three parallel experiments was 85.30%. The optimum conditions of coagulation experiment were as follows: pH=8~9, PAC dosage was 70mg/L, stirring time was 20min, standing time was 45min, the average decolorization rate of the three parallel experiments was 74.48%. The optimum conditions for Fenton oxidation were Fe2+ 0.05g/L, H2O2 (30%) 14mL/L, pH=3, reaction time 40min. The average CODcr removal rate was 69.35% in three parallel experiments. It can be seen that in the three methods the activated carbon adsorption treatment of dyeing wastewater was the best one.

  18. PID Controller Settings Based on a Transient Response Experiment

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Lito, Patricia F.; Neves, Patricia S.; Da Silva, Francisco A.

    2008-01-01

    An experimental work on controller tuning for chemical engineering undergraduate students is proposed using a small heat exchange unit. Based upon process reaction curves in open-loop configuration, system gain and time constant are determined for first order model with time delay with excellent accuracy. Afterwards students calculate PID…

  19. Voice reaction times with recognition for Commodore computers

    NASA Technical Reports Server (NTRS)

    Washburn, David A.; Putney, R. Thompson

    1990-01-01

    Hardware and software modifications are presented that allow for collection and recognition by a Commodore computer of spoken responses. Responses are timed with millisecond accuracy and automatically analyzed and scored. Accuracy data for this device from several experiments are presented. Potential applications and suggestions for improving recognition accuracy are also discussed.

  20. Estimating reaction rate coefficients within a travel-time modeling framework.

    PubMed

    Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D; Jardine, P M; Brooks, S C; Criddle, C S; Kitanidis, P K; Luo, J

    2011-01-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  1. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, R; Lu, C; Luo, Jian

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transportmore » over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.« less

  2. Experimental collaboration for thick concrete structures with alkali-silica reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezell, N Dianne Bull; Hayes, Nolan W.; Lenarduzzi, Roberto

    Alkali-Silica Reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, non-crystalline silica in aggregates. An expansive gel is formed within the aggregates which results in micro-cracks in aggregates and adjacent cement paste. The reaction requires the presence of water and has been predominantly detected in groundwater-impacted portions of below grade structures, with limited impact to exterior surfaces in above grade structures. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, shear strength, and tensile strength. Since ASR degradation often takes significant amounts of time, developingmore » ASR detection techniques is important to the sustainability and extended operation lifetimes of nuclear power plants (NPPs). The University of Tennessee, Knoxville (UTK) in collaboration with Oak Ridge National Laboratory (ORNL) designed and built an experiment representative of typical NPP structures to study ASR in thick concrete structures.« less

  3. Estimating the executive demands of a one-back choice reaction time task by means of the selective interference paradigm.

    PubMed

    Szmalec, Arnaud; Vandierendonck, André

    2007-08-01

    The present study proposes a new executive task, the one-back choice reaction time (RT) task, and implements the selective interference paradigm to estimate the executive demands of the processing components involved in this task. Based on the similarities between a one-back choice RT task and the n-back updating task, it was hypothesized that one-back delaying of a choice reaction involves executive control. In three experiments, framed within Baddeley's (1986) working-memory model, a one-back choice RT task, a choice RT task, articulatory suppression, and matrix tapping were performed concurrently with primary tasks involving verbal, visuospatial, and executive processing. The results demonstrate that one-back delaying of a choice reaction interferes with tasks requiring executive control, while the potential interference at the level of the verbal or visuospatial working memory slave systems remains minimal.

  4. Experimental collaboration for thick concrete structures with alkali-silica reaction

    NASA Astrophysics Data System (ADS)

    Ezell, N. Dianne Bull; Hayes, Nolan; Lenarduzzi, Roberto; Clayton, Dwight; Ma, Z. John; Le Pape, Sihem; Le Pape, Yann

    2018-04-01

    Alkali-Silica Reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, non-crystalline silica in aggregates. An expansive gel is formed within the aggregates which results in micro-cracks in aggregates and adjacent cement paste. The reaction requires the presence of water and has been predominantly detected in groundwater-impacted portions of below grade structures, with limited impact to exterior surfaces in above grade structures. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, shear strength, and tensile strength. Since ASR degradation often takes significant amounts of time, developing ASR detection techniques is important to the sustainability and extended operation lifetimes of nuclear power plants (NPPs). The University of Tennessee, Knoxville (UTK) in collaboration with Oak Ridge National Laboratory (ORNL) designed and built an experiment representative of typical NPP structures to study ASR in thick concrete structures.

  5. Low gravity synthesis of polymers with controlled molecular configuration

    NASA Technical Reports Server (NTRS)

    Heimbuch, A. H.; Parker, J. A.; Schindler, A.; Olf, H. G.

    1975-01-01

    Heterogeneous chemical systems have been studied for the synthesis of isotactic polypropylene in order to establish baseline parameters for the reaction process and to develop sensitive and accurate methods of analysis. These parameters and analytical methods may be used to make a comparison between the polypropylene obtained at one g with that of zero g (gravity). Baseline reaction parameters have been established for the slurry (liquid monomer in heptane/solid catalyst) polymerization of propylene to yield high purity, 98% isotactic polypropylene. Kinetic data for the slurry reaction showed that a sufficient quantity of polymer for complete characterization can be produced in a reaction time of 5 min; this time is compatible with that available on a sounding rocket for a zero-g simulation experiment. The preformed (activated) catalyst was found to be more reproducible in its activity than the in situ formed catalyst.

  6. Solvent friction changes the folding pathway of the tryptophan zipper TZ2.

    PubMed

    Narayanan, Ranjani; Pelakh, Leslie; Hagen, Stephen J

    2009-07-17

    Because the rate of a diffusional process such as protein folding is controlled by friction encountered along the reaction pathway, the speed of folding is readily tunable through adjustment of solvent viscosity. The precise relationship between solvent viscosity and the rate of diffusion is complex and even conformation-dependent, however, because both solvent friction and protein internal friction contribute to the total reaction friction. The heterogeneity of the reaction friction along the folding pathway may have subtle consequences. For proteins that fold on a multidimensional free-energy surface, an increase in solvent friction may drive a qualitative change in folding trajectory. Our time-resolved experiments on the rapidly and heterogeneously folding beta-hairpin TZ2 show a shift in the folding pathway as viscosity increases, even though the energetics of folding is unaltered. We also observe a nonlinear or saturating behavior of the folding relaxation time with rising solvent viscosity, potentially an experimental signature of the shifting pathway for unfolding. Our results show that manipulations of solvent viscosity in folding experiments and simulations may have subtle and unexpected consequences on the folding dynamics being studied.

  7. Double Shock Experiments and Reactive Flow Modeling on LX-17 to Understand the Reacted Equation of State

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin; Garcia, Frank; Fried, Laurence; Tarver, Craig

    2013-06-01

    Experimental data from measurements of the reacted state of an energetic material are desired to incorporate reacted states in modeling by computer codes. In a case such as LX-17 (92.5% TATB and 7.5% Kel-F by weight), where the time dependent kinetics of reaction is still not fully understood and the reacted state may evolve over time, this information becomes even more vital. Experiments were performed to measure the reacted state of LX-17 using a double shock method involving the use of two flyer materials (with known properties) mounted on the projectile that send an initial shock through the material close to or above the Chapman-Jouguet (CJ) state followed by a second shock at a higher magnitude into the detonated material. By measuring the parameters of the first and second shock waves, information on the reacted state can be obtained. The LX-17 detonation reaction zone profiles plus the arrival times and amplitudes of reflected shocks in LX-17 detonation reaction products were measured using Photonic Doppler Velocimetry (PDV) probes and an aluminum foil coated LiF window. A discussion of this work will include the experimental parameters, velocimetry profiles, data interpretation, reactive CHEETAH and Ignition and Growth modeling, as well as possible future experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Moving attention - Evidence for time-invariant shifts of visual selective attention

    NASA Technical Reports Server (NTRS)

    Remington, R.; Pierce, L.

    1984-01-01

    Two experiments measured the time to shift spatial selective attention across the visual field to targets 2 or 10 deg from central fixation. A central arrow cued the most likely target location. The direction of attention was inferred from reaction times to expected, unexpected, and neutral locations. The development of a spatial attentional set with time was examined by presenting target probes at varying times after the cue. There were no effects of distance on the time course of the attentional set. Reaction times for far locations were slower than for near, but the effects of attention were evident by 150 msec in both cases. Spatial attention does not shift with a characteristic, fixed velocity. Rather, velocity is proportional to distance, resulting in a movement time that is invariant over the distances tested.

  9. Experiments Developed to Study Microgravity Smoldering Combustion

    NASA Technical Reports Server (NTRS)

    Vergilii, Franklin

    2001-01-01

    The overall objective of the Microgravity Smoldering Combustion (MSC) research program is to understand and predict smoldering combustion under normal and microgravity (near-zero-gravity) conditions to help prevent and control smolder-originated fires, in both environments. Smoldering is defined as a nonflaming, self-sustaining, propagating, exothermic surface reaction. If a material is sufficiently permeable, smoldering is not confined to its outer surface, but can propagate as a reaction wave through the interior of the material. The MSC program will accomplish its goals by conducting smolder experiments on the ground and in a space-based laboratory, and developing theoretical models of the process. Space-based experiments are necessary because smoldering is a very slow process and, consequently, its study in a microgravity environment requires extended periods of time that can only be achieved in space. Smoldering can occur in a variety of processes ranging from the smolder of porous insulating materials to underground coal combustion. Many materials can sustain smoldering, including wood, cloth, foams, tobacco, other dry organic materials, and charcoal. The ignition, propagation, transition to flaming, and extinction of the smolder reaction are controlled by complex, thermochemical mechanisms that are not well understood. As with many forms of combustion, gravity affects the availability of the oxidizer and the transport of heat, and therefore, the rate of combustion. The smoldering combustion of porous materials has been studied both experimentally and theoretically, usually in the context of fire safety. Smoldering encompasses a number of fundamental processes, including heat and mass transfer in a porous media; endothermic pyrolysis of combustible material; ignition, propagation, and extinction of heterogeneous exothermic reactions at the solid-gas pore interface; and the onset of gas phase reactions (flaming) from existing surface reactions. Smoldering presents a serious fire risk because the combustion can propagate slowly in a material's interior and go undetected for long periods of time. It typically yields a substantially higher conversion of fuel to toxic compounds than does flaming (though more slowly), and may undergo a sudden transition to flaming.

  10. Expressing thoughts and feelings following a collective trauma: immediate responses to 9/11 predict negative outcomes in a national sample.

    PubMed

    Seery, Mark D; Silver, Roxane Cohen; Holman, E Alison; Ence, Whitney A; Chu, Thai Q

    2008-08-01

    Collective traumas can negatively affect large numbers of people who ostensibly did not experience events directly, making it particularly important to identify which people are most vulnerable to developing mental and physical health problems as a result of such events. It is commonly believed that successful coping with a traumatic event requires expressing one's thoughts and feelings about the experience, suggesting that people who choose not to do so would be at high risk for poor adjustment. To test this idea in the context of collective trauma, 2,138 members of a nationally representative Web-enabled survey panel were given the opportunity to express their reactions to the terrorist attacks of September 11, 2001, on that day and those following. Follow-up surveys assessing mental and physical health outcomes were completed over the next 2 years. Contrary to common belief, participants who chose not to express any initial reaction reported better outcomes over time than did those who expressed an initial reaction. Among those who chose to express their immediate reactions, longer responses predicted worse outcomes over time. Implications for myths of coping, posttrauma interventions, and psychology in the media are discussed. Copyright 2008 APA, all rights reserved.

  11. Continuous protein concentration via free-flow moving reaction boundary electrophoresis.

    PubMed

    Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi

    2017-07-28

    In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Implications of Measurement Assay Type in Design of HIV Experiments.

    PubMed

    Cannon, LaMont; Jagarapu, Aditya; Vargas-Garcia, Cesar A; Piovoso, Michael J; Zurakowski, Ryan

    2017-12-01

    Time series measurements of circular viral episome (2-LTR) concentrations enable indirect quantification of persistent low-level Human Immunodeficiency Virus (HIV) replication in patients on Integrase-Inhibitor intensified Combined Antiretroviral Therapy (cART). In order to determine the magnitude of these low level infection events, blood has to be drawn from a patients at a frequency and volume that is strictly regulated by the Institutional Review Board (IRB). Once the blood is drawn, the 2-LTR concentration is determined by quantifying the amount of HIV DNA present in the sample via a PCR (Polymerase Chain Reaction) assay. Real time quantitative Polymerase Chain Reaction (qPCR) is a widely used method of performing PCR; however, a newer droplet digital Polymerase Chain Reaction (ddPCR) method has been shown to provide more accurate quantification of DNA. Using a validated model of HIV viral replication, this paper demonstrates the importance of considering DNA quantification assay type when optimizing experiment design conditions. Experiments are optimized using a Genetic Algorithm (GA) to locate a family of suboptimal sample schedules which yield the highest fitness. Fitness is defined as the expected information gained in the experiment, measured by the Kullback-Leibler Divergence (KLD) between the prior and posterior distributions of the model parameters. We compare the information content of the optimized schedules to uniform schedules as well as two clinical schedules implemented by researchers at UCSF and the University of Melbourne. This work shows that there is a significantly greater gain information in experiments using a ddPCR assay vs. a qPCR assay and that certain experiment design considerations should be taken when using either assay.

  13. A chain reaction approach to modelling gene pathways.

    PubMed

    Cheng, Gary C; Chen, Dung-Tsa; Chen, James J; Soong, Seng-Jaw; Lamartiniere, Coral; Barnes, Stephen

    2012-08-01

    BACKGROUND: Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. RESULTS: In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By applying it to microarray data, the chain reaction model computed a set of reaction rates to examine the effects of three polyphenols (EGCG, genistein, and resveratrol) on gene expression in this pathway during puberty. We first performed statistical analysis to test the time factor on the estrogen synthesis pathway. Global tests were used to evaluate an overall gene expression change during puberty for each experimental group. Then, a chain reaction model was employed to simulate the estrogen synthesis pathway. Specifically, the model computed the reaction rates in a set of ordinary differential equations to describe interactions between genes in the pathway (A reaction rate K of A to B represents gene A will induce gene B per unit at a rate of K; we give details in the "method" section). Since disparate changes of gene expression may cause numerical error problems in solving these differential equations, we used an implicit scheme to address this issue. We first applied the chain reaction model to obtain the reaction rates for the control group. A sensitivity study was conducted to evaluate how well the model fits to the control group data at Day 50. Results showed a small bias and mean square error. These observations indicated the model is robust to low random noises and has a good fit for the control group. Then the chain reaction model derived from the control group data was used to predict gene expression at Day 50 for the three polyphenol groups. If these nutrients affect the estrogen synthesis pathways during puberty, we expect discrepancy between observed and expected expressions. Results indicated some genes had large differences in the EGCG (e.g., Hsd3b and Sts) and the resveratrol (e.g., Hsd3b and Hrmt12) groups. CONCLUSIONS: In the present study, we have presented (I) experimental studies of the effect of nutrient diets on the gene expression changes in a selected estrogen synthesis pathway. This experiment is valuable because it allows us to examine how the nutrient-containing diets regulate gene expression in the estrogen synthesis pathway during puberty; (II) global tests to assess an overall association of this particular pathway with time factor by utilizing generalized linear models to analyze microarray data; and (III) a chain reaction model to simulate the pathway. This is a novel application because we are able to translate the gene pathway into the chemical reactions in which each reaction channel describes gene-gene relationship in the pathway. In the chain reaction model, the implicit scheme is employed to efficiently solve the differential equations. Data analysis results show the proposed model is capable of predicting gene expression changes and demonstrating the effect of nutrient-containing diets on gene expression changes in the pathway. One of the objectives of this study is to explore and develop a numerical approach for simulating the gene expression change so that it can be applied and calibrated when the data of more time slices are available, and thus can be used to interpolate the expression change at a desired time point without conducting expensive experiments for a large amount of time points. Hence, we are not claiming this is either essential or the most efficient way for simulating this problem, rather a mathematical/numerical approach that can model the expression change of a large set of genes of a complex pathway. In addition, we understand the limitation of this experiment and realize that it is still far from being a complete model of predicting nutrient-gene interactions. The reason is that in the present model, the reaction rates were estimated based on available data at two time points; hence, the gene expression change is dependent upon the reaction rates and a linear function of the gene expressions. More data sets containing gene expression at various time slices are needed in order to improve the present model so that a non-linear variation of gene expression changes at different time can be predicted.

  14. The Modality Shift Experiment in Adults and Children with High Functioning Autism

    ERIC Educational Resources Information Center

    Williams, Diane L.; Goldstein, Gerald; Minshew, Nancy J.

    2013-01-01

    This study used the modality shift experiment, a relatively simple reaction time measure to visual and auditory stimuli, to examine attentional shifting within and across modalities in 33 children and 42 adults with high-functioning autism as compared to matched numbers of age- and ability-matched typical controls. An exaggerated "modality shift…

  15. Sequential Effects on Speeded Information Processing: A Developmental Study

    ERIC Educational Resources Information Center

    Smulders, S.F.A.; Notebaert, W.; Meijer, M.; Crone, E.A.; van der Molen, M.W.; Soetens, E.

    2005-01-01

    Two experiments were performed to assess age-related changes in sequential effects on choice reaction time (RT). Sequential effects portray the influence of previous trials on the RT to the current stimulus. In Experiment 1, three age groups (7-9, 10-12, and 18-25 years) performed a spatially compatible choice task, with response-to-stimulus…

  16. Time Keeps on Ticking: The Experience of Clinical Judgment

    ERIC Educational Resources Information Center

    Spengler, Paul M.; White, Michael J.; Aegisdottir, Stefania; Maugherman, Alan S.

    2009-01-01

    The reactions by Ridley and Shaw-Ridley (EJ832451) and Lichtenberg (EJ832452) to the authors' meta-analysis on the effects of experience on judgment accuracy add positively to what is hoped will become an ever more focused discourse on this most basic question: How can mental health clinical decision making be improved? In this rejoinder, the…

  17. Parallel effects of memory set activation and search on timing and working memory capacity.

    PubMed

    Schweickert, Richard; Fortin, Claudette; Xi, Zhuangzhuang; Viau-Quesnel, Charles

    2014-01-01

    Accurately estimating a time interval is required in everyday activities such as driving or cooking. Estimating time is relatively easy, provided a person attends to it. But a brief shift of attention to another task usually interferes with timing. Most processes carried out concurrently with timing interfere with it. Curiously, some do not. Literature on a few processes suggests a general proposition, the Timing and Complex-Span Hypothesis: A process interferes with concurrent timing if and only if process performance is related to complex span. Complex-span is the number of items correctly recalled in order, when each item presented for study is followed by a brief activity. Literature on task switching, visual search, memory search, word generation and mental time travel supports the hypothesis. Previous work found that another process, activation of a memory set in long term memory, is not related to complex-span. If the Timing and Complex-Span Hypothesis is true, activation should not interfere with concurrent timing in dual-task conditions. We tested such activation in single-task memory search task conditions and in dual-task conditions where memory search was executed with concurrent timing. In Experiment 1, activating a memory set increased reaction time, with no significant effect on time production. In Experiment 2, set size and memory set activation were manipulated. Activation and set size had a puzzling interaction for time productions, perhaps due to difficult conditions, leading us to use a related but easier task in Experiment 3. In Experiment 3 increasing set size lengthened time production, but memory activation had no significant effect. Results here and in previous literature on the whole support the Timing and Complex-Span Hypotheses. Results also support a sequential organization of activation and search of memory. This organization predicts activation and set size have additive effects on reaction time and multiplicative effects on percent correct, which was found.

  18. Measurement of 235U(n,n'γ) and 235U(n,2nγ) reaction cross sections

    NASA Astrophysics Data System (ADS)

    Kerveno, M.; Thiry, J. C.; Bacquias, A.; Borcea, C.; Dessagne, P.; Drohé, J. C.; Goriely, S.; Hilaire, S.; Jericha, E.; Karam, H.; Negret, A.; Pavlik, A.; Plompen, A. J. M.; Romain, P.; Rouki, C.; Rudolf, G.; Stanoiu, M.

    2013-02-01

    The design of generation IV nuclear reactors and the studies of new fuel cycles require knowledge of the cross sections of various nuclear reactions. Our research is focused on (n,xnγ) reactions occurring in these new reactors. The aim is to measure unknown cross sections and to reduce the uncertainty on present data for reactions and isotopes of interest for transmutation or advanced reactors. The present work studies the 235U(n,n'γ) and 235U(n,2nγ) reactions in the fast neutron energy domain (up to 20 MeV). The experiments were performed with the Geel electron linear accelerator GELINA, which delivers a pulsed white neutron beam. The time characteristics enable measuring neutron energies with the time-of-flight (TOF) technique. The neutron induced reactions [in this case inelastic scattering and (n,2n) reactions] are identified by on-line prompt γ spectroscopy with an experimental setup including four high-purity germanium (HPGe) detectors. A fission ionization chamber is used to monitor the incident neutron flux. The experimental setup and analysis methods are presented and the model calculations performed with the TALYS-1.2 code are discussed.

  19. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices.

    PubMed

    Jebrail, Mais J; Renzi, Ronald F; Sinha, Anupama; Van De Vreugde, Jim; Gondhalekar, Carmen; Ambriz, Cesar; Meagher, Robert J; Branda, Steven S

    2015-01-07

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate that this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4-95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. This simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.

  20. Monitoring mass transport in heterogeneously catalyzed reactions by field-gradient NMR for assessing reaction efficiency in a single pellet.

    PubMed

    Buljubasich, L; Blümich, B; Stapf, S

    2011-09-01

    An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H2O2. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate thatmore » this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.« less

  2. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    DOE PAGES

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama; ...

    2014-10-01

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate thatmore » this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.« less

  3. Beliefs underlying the intention to donate again among first-time blood donors who experience a mild adverse event.

    PubMed

    Masser, Barbara M; White, Katherine M; Terry, Deborah J

    2013-10-01

    Using the belief basis of the theory of planned behavior (TPB), the current study explored the rate of mild reactions reported by donors in relation to their first donation and the intention and beliefs of those donors with regard to returning to donate again. A high proportion of first-time donors indicated that they had experienced a reaction to blood donation. Further, donors who reacted were less likely to intend to return to donate. Regression analyses suggested that targeting different beliefs for those donors who had and had not reacted would yield most benefit in bolstering donors' intentions to remain donating. The findings provide insight into those messages that could be communicated via the mass media or in targeted communications to retain first-time donors who have experienced a mild vasovagal reaction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Using rapid infrared forming to control interfaces in titanium-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warrier, S.G.; Lin, R.Y.

    1993-03-01

    Control of the fiber-matrix reaction during composite fabrication is commonly achieved by shortening the processing time, coating the reinforcement with relatively inert materials, or adding alloying elements to retard the reaction. To minimize the processing time, a rapid IR forming (RIF) technique for metal-matrix composite fabrication has been developed. Experiments have shown that the RIF technique is a quick, simple, and low-cost process to fabricate titanium-alloy matrix composites reinforced with either silicon carbide or carbon fibers. Due to short processing times (typically on the order of 1-2 minutes in an inert atmosphere for composites with up to eight-ply reinforcements), themore » interfacial reaction is limited and well controlled. Composites fabricated by this technique have mechanical properties that are comparable to (in several cases, superior to) those made with conventional diffusion-bonding techniques. 21 refs.« less

  5. Ignition delays, heats of combustion, and reaction rates of aluminum alkyl derivatives used as ignition and combustion enhancers for supersonic combustion

    NASA Technical Reports Server (NTRS)

    Ryan, Thomas W., III; Schwab, S. T.; Harlowe, W. W.

    1992-01-01

    The subject of this paper is the design of supersonic combustors which will be required in order to achieve the needed reaction rates in a reasonable sized combustor. A fuel additive approach, which is the focus of this research, is the use of pyrophorics to shorten the ignition delay time and to increase the energy density of the fuel. Pyrophoric organometallic compounds may also provide an ignition source and flame stabilization mechanism within the combustor, thus permitting use of hydrocarbon fuels in supersonic combustion systems. Triethylaluminum (TEA) and trimethylaluminum (TMA) were suggested for this application due to their high energy density and reactivity. The objective here is to provide comparative data for the ignition quality, the energy content, and the reaction rates of several different adducts of both TEA and TMA. The results of the experiments indicate the aluminum alkyls and their more stable derivatives reduce the ignition delay and total reaction time to JP-10 jet fuel. Furthermore, the temperature dependence of ignition delay and total reaction time of the blends of the adducts are significantly lower than in neat JP-10.

  6. Reactions to First Postpubertal Female Same-Sex Sexual Experience in the Kinsey Sample: A Comparison of Minors with Peers, Minors with Adults, and Adults with Adults.

    PubMed

    Rind, Bruce

    2017-07-01

    This study examined reactions to first postpubertal same-sex sexual experience in the Kinsey female same-sex sample (consisting of females with extensive postpubertal same-sex experience) as a function of participant and partner ages. As such, it complemented the Rind and Welter (2016) study, which examined the same in the Kinsey male same-sex sample. Data were collected by Kinsey interviewers between 1939 and 1961 (M year = 1947). Girls under 18 (M age = 14.9), whose sexual experience was with a woman (M age = 26.3), reacted positively just as often as girls under 18 (M age = 14.1) with peers (M age = 15.0) and women (M age = 22.7) with women (M age = 26.3). The positive-reaction rates were, respectively, 85, 82, and 79 %. In a finer-graded analysis, younger adolescent girls (≤14) (M age = 12.8) with women (M age = 27.4) had a high positive-reaction rate (91 %), a rate reached by no other group. For women (M age = 22.2) with same-aged peers (M age = 22.3), this rate was 86 %. Girls with peers or women had no emotionally negative reactions (e.g., fear, disgust, shame, regret); women with women rarely did. Results contradicted prevailing clinical, legal, and lay beliefs that minor-adult sex is inherently traumatic and would be distinguished as such compared to age-concordant sex. The findings are discussed in terms of the time period in which the sexual experiences occurred.

  7. A "Stationery" Kinetics Experiment.

    ERIC Educational Resources Information Center

    Hall, L.; Goberdhansingh, A.

    1988-01-01

    Describes a simple redox reaction that occurs between potassium permanganate and oxalic acid that can be used to prepare an interesting disappearing ink for demonstrating kinetics for introductory chemistry. Discusses laboratory procedures and factors that influence disappearance times. (CW)

  8. First real-time detection of solar pp neutrinos by Borexino

    NASA Astrophysics Data System (ADS)

    Pallavicini, M.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Empl, A.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Al.; Ianni, An.; Kayser, M.; Kobychev, V.; Korablëv, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meindl, Q.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-07-01

    Solar neutrinos have been pivotal to the discovery of neutrino flavour oscillations and are a unique tool to probe the reactions that keep the Sun shine. Although most of solar neutrino components have been directly measured, the neutrinos emitted by the keystone pp reaction, in which two protons fuse to make a deuteron, have so far eluded direct detection. The Borexino experiment, an ultra-pure liquid scintillator detector running at the Laboratori Nazionali del Gran Sasso in Italy, has now filled the gap, providing the first direct real time measurement of pp neutrinos and of the solar neutrino luminosity.

  9. Do Reactions of Adaptation to Disability Influence the Fluctuation of Future Time Orientation among Individuals with Spinal Cord Injuries?

    ERIC Educational Resources Information Center

    Martz, Erin

    2004-01-01

    Rehabilitation counseling involves the construction of vocational goals, which involves future-oriented thinking. Yet, research indicates that time orientations may change after the experience of a trauma. Due to the potential importance of a future time orientation (FTO) in rehabilitation counseling, predictors of an FTO were examined among 317…

  10. Bereavement experiences of mothers and fathers over time after the death of a child due to cancer.

    PubMed

    Alam, Rifat; Barrera, Maru; D'Agostino, Norma; Nicholas, David B; Schneiderman, Gerald

    2012-01-01

    The authors investigated longitudinally bereavement in mothers and fathers whose children died of cancer. Thirty-one parents were interviewed 6 and 18 months post-death. Analyses revealed parental differences and changes over time: (a) employment--fathers were more work-focused; (b) grief reactions--mothers expressed more intense grief reactions that lessened over time; (c) coping--mothers were more child-focused, fathers more task-focused; (d) relationship with bereaved siblings-mothers actively nurtured relationship with child; (e) spousal relationship--parents reported diversity in their relationship over time; and (f) relationship with extended family--mothers maintained contact with extended family more. Findings illustrate parental differences in bereavement over time that might be partly socially determined. These findings emphasize the need for tailoring bereavement support services in the family.

  11. A self-consistent, multivariate method for the determination of gas-phase rate coefficients, applied to reactions of atmospheric VOCs and the hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Shaw, Jacob T.; Lidster, Richard T.; Cryer, Danny R.; Ramirez, Noelia; Whiting, Fiona C.; Boustead, Graham A.; Whalley, Lisa K.; Ingham, Trevor; Rickard, Andrew R.; Dunmore, Rachel E.; Heard, Dwayne E.; Lewis, Ally C.; Carpenter, Lucy J.; Hamilton, Jacqui F.; Dillon, Terry J.

    2018-03-01

    Gas-phase rate coefficients are fundamental to understanding atmospheric chemistry, yet experimental data are not available for the oxidation reactions of many of the thousands of volatile organic compounds (VOCs) observed in the troposphere. Here, a new experimental method is reported for the simultaneous study of reactions between multiple different VOCs and OH, the most important daytime atmospheric radical oxidant. This technique is based upon established relative rate concepts but has the advantage of a much higher throughput of target VOCs. By evaluating multiple VOCs in each experiment, and through measurement of the depletion in each VOC after reaction with OH, the OH + VOC reaction rate coefficients can be derived. Results from experiments conducted under controlled laboratory conditions were in good agreement with the available literature for the reaction of 19 VOCs, prepared in synthetic gas mixtures, with OH. This approach was used to determine a rate coefficient for the reaction of OH with 2,3-dimethylpent-1-ene for the first time; k = 5.7 (±0.3) × 10-11 cm3 molecule-1 s-1. In addition, a further seven VOCs had only two, or fewer, individual OH rate coefficient measurements available in the literature. The results from this work were in good agreement with those measurements. A similar dataset, at an elevated temperature of 323 (±10) K, was used to determine new OH rate coefficients for 12 aromatic, 5 alkane, 5 alkene and 3 monoterpene VOC + OH reactions. In OH relative reactivity experiments that used ambient air at the University of York, a large number of different VOCs were observed, of which 23 were positively identified. Due to difficulties with detection limits and fully resolving peaks, only 19 OH rate coefficients were derived from these ambient air samples, including 10 reactions for which data were previously unavailable at the elevated reaction temperature of T = 323 (±10) K.

  12. In situ redox manipulation of subsurface sediments from Fort Lewis, Washington: Iron reduction and TCE dechlorination mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JE Szecsody; JS Fruchter; DS Sklarew

    2000-03-21

    Pacific Northwest National Laboratory (PNNL) conducted a bench-scale study to determine how effective chemically treated Ft. Lewis sediments can degrade trichloroethylene (TCE). The objectives of this experimental study were to quantify: (1) sediment reduction and oxidation reactions, (2) TCE degradation reactions, and (3) other significant geochemical changes that occurred. Sediment reduction and oxidation were investigated to determine the mass of reducible iron in the Ft. Lewis sediments and the rate of this reduction and subsequent oxidation at different temperatures. The temperature dependence was needed to be able to predict field-scale reduction in the relatively cold ({approximately}11 C) Ft. Lewis aquifer.more » Results of these experiments were used in conjunction with other geochemical and hydraulic characterization to design the field-scale injection experiment and predict barrier longevity. For example, the sediment reduction rate controls the amount of time required for the dithionite solution to fully react with sediments. Sediment oxidation experiments were additionally conducted to determine the oxidation rate and provide a separate measure of the mass of reduced iron. Laboratory experiments that were used to meet these objectives included: (1) sediment reduction in batch (static) systems, (2) sediment reduction in 1-D columns, and (3) sediment oxidation in 1-D columns. Multiple reaction modeling was conducted to quantify the reactant masses and reaction rates.« less

  13. Experimental Constraints on Fluid-Rock Reactions during Incipient Serpentinization of Harzburgite

    NASA Astrophysics Data System (ADS)

    Klein, F.; Grozeva, N. G.; Seewald, J.; McCollom, T. M.; Humphris, S. E.; Moskowitz, B. M.; Berquo, T. S.; Kahl, W. A.

    2014-12-01

    The exposure of mantle peridotite to water at crustal levels leads to a cascade of interconnected dissolution-precipitation and reduction-oxidation reactions - a process referred to as serpentinization. These reactions have major implications for microbial life through the provision of hydrogen (H2). To simulate incipient serpentinization and the release of H2 under well-constrained conditions, we reacted uncrushed harzburgite with chemically modified seawater at 300°C and 35 MPa for ca. 1.5 years (13441 hours), monitored changes in fluid chemistry over time, and examined the secondary mineralogy at the termination of the experiment. Approximately 4 mol % of the protolith underwent alteration forming serpentine, accessory magnetite, chlorite, and traces of calcite and heazlewoodite. Alteration textures bear remarkable similarities to those found in partially serpentinized abyssal peridotites. Neither brucite nor talc precipitated during the experiment. Given that the starting material contained ~3.8 times more olivine than orthopyroxene on a molar basis, mass balance requires that dissolution of orthopyroxene was significantly faster than dissolution of olivine. However, the H2 release rate was not uniform, slowing from ~2 nmol H2(aq) gperidotite-1 s-1 at the beginning of the experiment to ~0.2 nmol H2(aq) gperidotite-1 s-1 at its termination. Serpentinization consumed water but did not release significant amounts of dissolved species (other than H2) suggesting that incipient hydration reactions involved a volume increase of ~40%. The reduced access of water to olivine surfaces due to filling of fractures and coating of primary minerals with alteration products led to decreased rates of serpentinization and H2 release. While this concept might seem at odds with completely serpentinized seafloor peridotites, reaction-driven fracturing offers an intriguing solution to the seemingly self-limiting nature of serpentinization. Indeed, the reacted sample revealed a number of textural features diagnostic of incipient reaction-driven fracturing. Reaction-driven and tectonic fracturing must have far reaching impacts on the release rate of H2 in peridotite-hosted hydrothermal systems and therefore represent key mechanisms in regulating the supply of reduced gases to microbial ecosystems.

  14. Evaluation of the effect of temperature, NaOH concentration and time on solubilization of palm oil mill effluent (POME) using response surface methodology (RSM).

    PubMed

    Chou, K W; Norli, I; Anees, A

    2010-11-01

    In this study, palm oil mill effluent (POME) was solubilized by batch thermo-alkaline pre-treatments. A three-factor central composite design (CCD) was applied to identify the optimum COD solubilization condition. The individual and interactive effects of three factors, temperature, NaOH concentration and reaction time, on solubilization of POME were evaluated by employing response surface methodology (RSM). The experimental results showed that temperature, NaOH concentration and reaction time all had an individual significant effect on the solubilization of POME. But these three factors were independent, or there was insignificant interaction on the response. The maximum COD solubilization of 82.63% was estimated under the optimum condition at 32.5 degrees C, 8.83g/L of NaOH and 41.23h reaction time. The confirmation experiment of the predicted optimum conditions verified that the RSM with the central composite design was useful for optimizing the solubilization of POME.

  15. State-to-state quantum dynamics of the F + HCl (vi = 0, ji = 0) → HF(vf, jf) + Cl reaction on the ground state potential energy surface.

    PubMed

    Li, Anyang; Guo, Hua; Sun, Zhigang; Kłos, Jacek; Alexander, Millard H

    2013-10-07

    The state-to-state reaction dynamics of the title reaction is investigated on the ground electronic state potential energy surface using two quantum dynamical methods. The results obtained using the Chebyshev real wave packet method are in excellent agreement with those obtained using the time-independent method, except at low translational energies. It is shown that this exothermic hydrogen abstraction reaction is direct, resulting in a strong back-scattered bias in the product angular distribution. The HF product is highly excited internally. Agreement with available experimental data is only qualitative. We discuss several possible causes of disagreement with experiment.

  16. A Prospective Screening of HLA-B*57.01 Allelic Variant for Preventing the Hypersensivity Reaction to Abacavir: Experience from the Laboratory of Molecular Biology of the Infectious Diseases Division at the University Hospital of Salerno.

    PubMed

    Senatore, C; Charlier, B; Truono, A; Punzi, R; D'Aniello, F; Boffa, N; Izzo, V; Conti, V; Russomanno, G; Manzo, V; Filippelli, A; Mazzeo, M

    2015-01-01

    Abacavir is a nucleoside reverse transcriptase inhibitor largely used as part of the antiretroviral therapy in Human Immunodeficiency Virus (HIV)-infected patients. Some individuals (2-9%) who start an abacavir treatment show an immunologic reaction indicated as hypersensitivity reaction syndrome (HSR) that is often responsible for therapy discontinuation and could represent a life-threatening event. Some studies demonstrated a correlation between this adverse reaction and the class I of the major histocompatibility complex (MHC) allele, HLA-B*57.01, in several populations, including Caucasians. Nowadays, International HIV treatment guidelines recommend the HLA-B*57.01 genotyping before abacavir administration to reduce the incidence of HSR. Both male and female HIV-infected patients were enrolled at the Infectious Diseases Division at the University Hospital of Salerno, and admitted to a prospective HLAB*57.01 screening. Genetic analysis was carried out through two sequential Real-Time PCR reactions in which Sybr-Green was used. Out of 248 patients, 215 were Italians from Southern Italy and 33 were coming from several non-EU members countries. All were genotyped: 6 Italians (2.8%) and 1 of the non-EU group (3%) were identified as HLAB*57.01 carriers. In this paper we present our experience in the field of abacavir pharmacogenetic and confirm the importance of Real Time PCR as a valid and cost-effective HLA-B*57.01 typing methodology.

  17. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  18. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    PubMed

    Dixit, Vinayak V; Chand, Sai; Nair, Divya J

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  19. Autonomous Vehicles: Disengagements, Accidents and Reaction Times

    PubMed Central

    Dixit, Vinayak V.; Chand, Sai; Nair, Divya J.

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems. PMID:27997566

  20. Salience Is Only Briefly Represented: Evidence from Probe-Detection Performance

    ERIC Educational Resources Information Center

    Donk, Mieke; Soesman, Leroy

    2010-01-01

    Salient objects in the visual field tend to capture attention. The present study aimed to examine the time-course of salience effects using a probe-detection task. Eight experiments investigated how the salience of different orientation singletons affected probe reaction time as a function of stimulus onset asynchrony (SOA) between the…

  1. Waiting Time: The De-Subjectification of Children in Danish Asylum Centres

    ERIC Educational Resources Information Center

    Vitus, Kathrine

    2010-01-01

    This article analyses the relationship between time and subjectification, focusing on the temporal structures created within Danish asylum centres and politics, and on children's experiences of and reactions to open-ended waiting. Such waiting leads to existential boredom which manifests in the children as restlessness, fatigue and despair. The…

  2. The Active Target Time Projection Chamber at NSCL

    NASA Astrophysics Data System (ADS)

    Bazin, D.; Bradt, J.; Ayyad, Y.; Mittig, W.; Ahn, T.; Beceiro-Novo, S.; Carpenter, L.; Cortesi, M.; Fritsch, A.; Kolata, J. J.; Lynch, W.; Watwood, N.

    2017-11-01

    Reactions in inverse kinematics close to the Coulomb barrier offer unique opportunities to study exotic nuclei, but they are plagued by the difficulty to efficiently and precisely measure the characteristics of the emerging particles. The Active Target Time Projection Chamber (AT-TPC) offers an elegant solution to this dilemma. In this device, the detector gas of the time projection chamber is at the same time the target in which nuclear reactions take place. The use of this new paradigm offers several advantages over conventional inert target methods, the most significant being the ability to increase the luminosity of experiments without loss of resolution. The AT-TPC and some results obtained on resonant α scattering to explore the clustering properties of neutron-rich nuclei are presented, as well as fusion cross section results using a 10Be radioactive beam. In addition, the first re-accelerated radioactive beam experiment using the fully commissioned ReA3 linac was conducted recently at the NSCL with the AT-TPC, where proton resonant scattering of a 4.6 MeV/u 46Ar beam was used to measure the neutron single-particle strength in 47Ar.

  3. Transport with Bimolecular Reactions: Applications to In-Situ Chemical Oxidation of DNAPLs by Permanganate in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. Our objectives in this research were to carry out a sequence of experimental, computational and theoretical tasks aimed at improving current understanding of permanganate oxidation in fractured rock systems, and also develop modeling tools that can be used for preliminary design of oxidation schemes at field sites. Our research focused on both free-phase entrapped DNAPL in variable-aperture fractures and dissolved DNAPL in the rock matrix. In the first section of our research, we present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were measured quantitatively. We present results on the time-evolution of fracture-scale TCE consumption and DNAPL removal rates for all the experiments. In the next part of this work, we developed theoretical understanding of the reaction front dynamics in the case of chemical oxidation of aqueous-phase DNAPL within fracture-matrix system, backed up by numerical simulations. We also consider the influence of NOD consumption and contaminant sorption to solid aquifer materials in our models. Based on the results from this task we are able to propose simple strategies for remediation design (e.g. the time needed to degrade DNAPL inside the fracture-matrix system and the permanganate injection pattern) for a given set of conditions. Our numerical simulations of diffusion with bimolecular reaction in the rock matrix demonstrated a transition in the spatially integrated reaction rate - increasing with time initially, and transitioning to a decrease with time. We developed a general non-dimensionalization of the problem and a perturbation analysis to show that there is always an early time regime where the spatially integrated reaction rate scales as √t rather than 1/√t. The duration of this early time regime (where the total reaction rate is kinetically rather than diffusion controlled) is shown to depend on the kinetic rate parameters, diffusion coefficients and initial concentrations of the two species.

  4. Atmospheric Chemiluminescence: COCHISE and FACELIF Experiments

    DTIC Science & Technology

    1989-02-24

    reaction, we find that the branch for O(|D) pro- However, in similar studies of CO(vJ) excitation by energy duction (reaction 2b) can account for all the...interaction zone to account for the observed emissions with the number densities determined from modeling studies . The number density calculations have...detailed time-resolved kinetic studies rate coefficient would be sufficient to account for the quanti- will be required to resolve this issue. ty of N. (w

  5. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2011-03-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid organic aerosols (squalane, brassidic acid and 2-octyldodecanoic acid) are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  6. Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. [deuterium-carbon monoxide reaction catalysis

    NASA Technical Reports Server (NTRS)

    Nooner, D. W.; Gibert, J. M.; Gelpi, E.; Oro, J.

    1976-01-01

    Experiments were performed in which meteoritic iron, iron ore and nickel-iron alloy were used to catalyze (in Fischer-Tropsch synthesis) the reaction of deuterium and carbon monoxide in a closed vessel. Normal alkanes and alkenes and their monomethyl substituted isomers and aromatic hydrocarbons were synthesized. Iron oxide and oxidized-reduced Canyon Diablo used as Fischer-Tropsch catalysts were found to produce aromatic hydrocarbons in distributions having many of the features of those observed in carbonaceous chondrites, but only at temperatures and reaction times well above 300 C and 6-8 h.

  7. Forecasted economic change and the self-fulfilling prophecy in economic decision-making

    PubMed Central

    2017-01-01

    This study addresses the self-fulfilling prophecy effect, in the domain of economic decision-making. We present experimental data in support of the hypothesis that speculative forecasts of economic change can impact individuals’ economic decision behavior, prior to any realized changes. In a within-subjects experiment, participants (N = 40) played 180 trials in a Balloon Analogue Risk Talk (BART) in which they could make actual profit. Simple messages about possible (positive and negative) changes in outcome probabilities of future trials had significant effects on measures of risk taking (number of inflations) and actual profits in the game. These effects were enduring, even though no systematic changes in actual outcome probabilities took place following any of the messages. Risk taking also found to be reflected in reaction times revealing increasing reaction times with riskier decisions. Positive and negative economic forecasts affected reaction times slopes differently, with negative forecasts resulting in increased reaction time slopes as a function of risk. These findings suggest that forecasted positive or negative economic change can bias people’s mental model of the economy and reduce or stimulate risk taking. Possible implications for media-fulfilling prophecies in the domain of the economy are considered. PMID:28334031

  8. Cyclically optimized electrochemical processes

    NASA Astrophysics Data System (ADS)

    Ruedisueli, Robert Louis

    It has been frequently observed in experiment and industry practice that electrochemical processes (deposition, dissolution, fuel cells) operated in an intermittent or cyclic (AC) mode show improvements in efficiency and/or quality and yield over their steady (DC) mode of operation. Whether rationally invoked by design or empirically tuned-in, the optimal operating frequency and duty cycle is dependent upon the dominant relaxation time constant for the process in question. The electrochemical relaxation time constant is a function of: double-layer and reaction intermediary pseudo-capacitances, ion (charge) transport via electrical migration (mobility), and diffusion across a concentration gradient to electrode surface reaction sites where charge transfer and species incorporation or elimination occurs. The rate determining step dominates the time constant for the reaction or process. Electrochemical impedance spectroscopy (EIS) and piezoelectric crystal electrode (PCE) response analysis have proven to be useful tools in the study and identification of reaction mechanisms. This work explains and demonstrates with the electro-deposition of copper the application of EIS and PCE measurement and analysis to the selection of an optimum cyclic operating schedule, an optimum driving frequency for efficient, sustained cyclic (pulsed) operation.

  9. UV-Photochemistry of the Disulfide Bond: Evolution of Early Photoproducts from Picosecond X-ray Absorption Spectroscopy at the Sulfur K-Edge.

    PubMed

    Ochmann, Miguel; Hussain, Abid; von Ahnen, Inga; Cordones, Amy A; Hong, Kiryong; Lee, Jae Hyuk; Ma, Rory; Adamczyk, Katrin; Kim, Tae Kyu; Schoenlein, Robert W; Vendrell, Oriol; Huse, Nils

    2018-05-30

    We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH 2 S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.

  10. Analysis of parameter and interaction between parameter of the microwave assisted transesterification process of coconut oil using response surface methodology

    NASA Astrophysics Data System (ADS)

    Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud

    2015-12-01

    A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.

  11. High-resolution experiments on chemical oxidation of DNAPL in variable-aperture fractures

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud; Rajaram, Harihar; Detwiler, Russell L.; Jones, Trevor

    2015-04-01

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. We present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were quantified for each experiment. The integrated mass transfer rate from the TCE phase for all experiments exhibited three time regimes: an early-time regime with slower mass transfer rates limited by low specific interfacial area; an intermediate-time regime with higher mass transfer rates resulting from breakup of large TCE blobs, which greatly increases specific interfacial area; and a late-time regime with low mass transfer rates due to the deposition of MnO2 precipitates. In two experiments, mass balance analyses suggested that TCE mass removal rates exceeded the maximum upper bound mass removal rates derived by assuming that oxidation and dissolution are the only mechanisms for TCE mass removal. We propose incomplete oxidation by permanganate and TCE solubility enhancement by intermediate reaction products as potential mechanisms to explain this behavior. We also speculate that some intermediate reaction products with surfactant-like properties may play a role in lowering the TCE-water interfacial tension, thus causing breakup of large TCE blobs. Our quantitative experimental measurements will be useful in the context of developing accurate computational models for chemical oxidation of TCE in fractures.

  12. Results of experiments related to contact of mine-spoils water with coal, West Decker and Big Sky Mines, southeastern Montana

    USGS Publications Warehouse

    Davis, R.E.; Dodge, K.A.

    1986-01-01

    Batch-mixing experiments using spoils water and coal from the West Decker and Big Sky Mines were conducted to determine possible chemical changes in water moving from coal-mine spoils through a coal aquifer. The spoils water was combined with air-dried and oven-dried chunks of coal and air-dried and oven-dried crushed coal at a 1:1 weight ratio, mixed for 2 hr, and separated after a total contact time of 24 hr. The dissolved-solids concentration in water used in the experiments decreased an average 210 mg/liter (5-10%). Other chemical changes included general decreases in the concentrations of magnesium, potassium, and bicarbonate, and general increases in the concentrations of barium and boron. The magnitude of the changes increased as the surface area of the coal increased. The quantity of extractable cations and exchangeable cations on the post-mixing coal was larger than on the pre-mixing coal. Equilibrium and mass-transfer relations indicate that adsorption reactions or ion-exchange and precipitation reactions, or both, probably are the major reactions responsible for the chemical changes observed in the experiments. (Authors ' abstract)

  13. Statistical approach to tunneling time in attosecond experiments

    NASA Astrophysics Data System (ADS)

    Demir, Durmuş; Güner, Tuğrul

    2017-11-01

    Tunneling, transport of particles through classically forbidden regions, is a pure quantum phenomenon. It governs numerous phenomena ranging from single-molecule electronics to donor-acceptor transition reactions. The main problem is the absence of a universal method to compute tunneling time. This problem has been attacked in various ways in the literature. Here, in the present work, we show that a statistical approach to the problem, motivated by the imaginary nature of time in the forbidden regions, lead to a novel tunneling time formula which is real and subluminal (in contrast to various known time definitions implying superluminal tunneling). In addition to this, we show explicitly that the entropic time formula is in good agreement with the tunneling time measurements in laser-driven He ionization. Moreover, it sets an accurate range for long-range electron transfer reactions. The entropic time formula is general enough to extend to the photon and phonon tunneling phenomena.

  14. Measurement of the {sup 12}C({alpha},{gamma}){sup 16}O reaction at TRIAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makii, H.; Miyatake, H.; Wakabayashi, Y.

    2012-11-12

    We have measured the {gamma}-ray angular distribution of the {sup 12}C({alpha},{gamma}){sup 16}O reaction at TRIAC (Tokai Radioactive Ion Accelerator Complex) to accurately determine the E1 and E2 cross sections. In this experiment, we used high efficiency anti-Compton NaI(T1) spectrometers to detect a {gamma}-ray from the reaction with large S/N ratio, intense pulsed {alpha}-beams to discriminate true event from background events due to neutrons from {sup 13}C({alpha},n){sup 16}O reaction with a time-of-flight (TOF) method. We succeeded in removing a background events due to neutrons and clearly detected {gamma}-ray from the {sup 12}C({alpha}{gamma}){sup 16}O reaction with high statistics.

  15. Reaction Time and Attention: Toward a New Standard in the Assessment of ADHD? A Pilot Study.

    PubMed

    De la Torre, Gabriel G; Barroso, Juan M; León-Carrión, José; Mestre, Jose M; Bozal, Rocío Guil

    2015-12-01

    This pilot study shows results of an experiment comparing reaction times (RTs) and attentional performance between an ADHD group of 30 children and 30 controls, both Spanish speaking. The experiment was carried out using the Seville computerized neuropsychological battery (SNB). This study had two goals: One was to test sensitivity of SNB for attention deficits in ADHD and the second was to detect differences in RTs between ADHD and controls. Possible explanations and implications of such differences are also discussed. SNB computerized system was used to assess RTs and accuracy, and alternate forms of continuous performance task were used. Results showed high sensitivity of some of the SNB tests, especially cancellation tests. RTs were significantly different between groups. SNB represents a helpful tool for detection of attention deficits, and RT indices represent the most significant variable in differentiation of both groups studied. © The Author(s) 2012.

  16. Effects of Response Task and Accessory Stimuli on Redundancy Gain: Tests of the Hemispheric Coactivation Model

    ERIC Educational Resources Information Center

    Miller, Jeff; Van Nes, Fenna

    2007-01-01

    Two experiments tested predictions of the hemispheric coactivation model for redundancy gain (J. O. Miller, 2004). Simple reaction time was measured in divided attention tasks with visual stimuli presented to the left or right of fixation or redundantly to both sides. Experiment 1 tested the prediction that redundancy gain--the decrease in…

  17. Effects of spatial frequency content on classification of face gender and expression.

    PubMed

    Aguado, Luis; Serrano-Pedraza, Ignacio; Rodríguez, Sonia; Román, Francisco J

    2010-11-01

    The role of different spatial frequency bands on face gender and expression categorization was studied in three experiments. Accuracy and reaction time were measured for unfiltered, low-pass (cut-off frequency of 1 cycle/deg) and high-pass (cutoff frequency of 3 cycles/deg) filtered faces. Filtered and unfiltered faces were equated in root-mean-squared contrast. For low-pass filtered faces reaction times were higher than unfiltered and high-pass filtered faces in both categorization tasks. In the expression task, these results were obtained with expressive faces presented in isolation (Experiment 1) and also with neutral-expressive dynamic sequences where each expressive face was preceded by a briefly presented neutral version of the same face (Experiment 2). For high-pass filtered faces different effects were observed on gender and expression categorization. While both speed and accuracy of gender categorization were reduced comparing to unfiltered faces, the efficiency of expression classification remained similar. Finally, we found no differences between expressive and non expressive faces in the effects of spatial frequency filtering on gender categorization (Experiment 3). These results show a common role of information from the high spatial frequency band in the categorization of face gender and expression.

  18. A class of exact solutions for biomacromolecule diffusion-reaction in live cells.

    PubMed

    Sadegh Zadeh, Kouroush; Montas, Hubert J

    2010-06-07

    A class of novel explicit analytic solutions for a system of n+1 coupled partial differential equations governing biomolecular mass transfer and reaction in living organisms are proposed, evaluated, and analyzed. The solution process uses Laplace and Hankel transforms and results in a recursive convolution of an exponentially scaled Gaussian with modified Bessel functions. The solution is developed for wide range of biomolecular binding kinetics from pure diffusion to multiple binding reactions. The proposed approach provides solutions for both Dirac and Gaussian laser beam (or fluorescence-labeled biomacromolecule) profiles during the course of a Fluorescence Recovery After Photobleaching (FRAP) experiment. We demonstrate that previous models are simplified forms of our theory for special cases. Model analysis indicates that at the early stages of the transport process, biomolecular dynamics is governed by pure diffusion. At large times, the dominant mass transfer process is effective diffusion. Analysis of the sensitivity equations, derived analytically and verified by finite difference differentiation, indicates that experimental biologists should use full space-time profile (instead of the averaged time series) obtained at the early stages of the fluorescence microscopy experiments to extract meaningful physiological information from the protocol. Such a small time frame requires improved bioinstrumentation relative to that in use today. Our mathematical analysis highlights several limitations of the FRAP protocol and provides strategies to improve it. The proposed model can be used to study biomolecular dynamics in molecular biology, targeted drug delivery in normal and cancerous tissues, motor-driven axonal transport in normal and abnormal nervous systems, kinetics of diffusion-controlled reactions between enzyme and substrate, and to validate numerical simulators of biological mass transport processes in vivo. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Display size effects in visual search: analyses of reaction time distributions as mixtures.

    PubMed

    Reynolds, Ann; Miller, Jeff

    2009-05-01

    In a reanalysis of data from Cousineau and Shiffrin (2004) and two new visual search experiments, we used a likelihood ratio test to examine the full distributions of reaction time (RT) for evidence that the display size effect is a mixture-type effect that occurs on only a proportion of trials, leaving RT in the remaining trials unaffected, as is predicted by serial self-terminating search models. Experiment 1 was a reanalysis of Cousineau and Shiffrin's data, for which a mixture effect had previously been established by a bimodal distribution of RTs, and the results confirmed that the likelihood ratio test could also detect this mixture. Experiment 2 applied the likelihood ratio test within a more standard visual search task with a relatively easy target/distractor discrimination, and Experiment 3 applied it within a target identification search task within the same types of stimuli. Neither of these experiments provided any evidence for the mixture-type display size effect predicted by serial self-terminating search models. Overall, these results suggest that serial self-terminating search models may generally be applicable only with relatively difficult target/distractor discriminations, and then only for some participants. In addition, they further illustrate the utility of analysing full RT distributions in addition to mean RT.

  20. Study of the laser-induced decomposition of energetic materials at static high-pressure by time-resolved absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hebert, Philippe; Saint-Amans, Charles

    2013-06-01

    A detailed description of the reaction rates and mechanisms occurring in shock-induced decomposition of condensed explosives is very important to improve the predictive capabilities of shock-to-detonation transition models. However, direct measurements of such experimental data are difficult to perform during detonation experiments. By coupling pulsed laser ignition of an explosive in a diamond anvil cell (DAC) with time-resolved streak camera recording of transmitted light, it is possible to make direct observations of deflagration phenomena at detonation pressure. We have developed an experimental set-up that allows combustion front propagation rates and time-resolved absorption spectroscopy measurements. The decomposition reactions are initiated using a nanosecond YAG laser and their kinetics is followed by time-resolved absorption spectroscopy. The results obtained for two explosives, nitromethane (NM) and HMX are presented in this paper. For NM, a change in reactivity is clearly seen around 25 GPa. Below this pressure, the reaction products are essentially carbon residues whereas at higher pressure, a transient absorption feature is first observed and is followed by the formation of a white amorphous product. For HMX, the evolution of the absorption as a function of time indicates a multi-step reaction mechanism which is found to depend on both the initial pressure and the laser fluence.

  1. Low Temperature Reaction Experiments Between Basalt, Seawater and CO2, and Implications for Carbon Dioxide Sequestration in Deep-Sea Basalts

    NASA Astrophysics Data System (ADS)

    Marieni, C.; Teagle, D. A. H.; Matter, J. M.

    2015-12-01

    Reactions between divalent cation-rich silicate minerals and CO2-bearing fluids to form (Ca, Mg, Fe) carbonate minerals could facilitate the safe and permanent storage of anthropogenic carbon dioxide. Deep-sea basalt formations provide large storage reservoir capacities and huge potential sources of Ca2+, Mg2+ and Fe2+. However, better knowledge of silicate mineral reaction rates with carbonate-bearing fluids is required to understand the overall carbon storage potential of these reservoirs. This study investigates key reactions associated with progressive seawater-rock interaction using far-from equilibrium dissolution experiments. The experiments were carried out at 40 ˚C and at constant CO2 partial pressure of 1 atm. Mid-ocean ridge basalts from the Juan de Fuca and Mid-Atlantic Ridges and a gabbro from the Troodos ophiolite were reacted with 500 mL of CO2-charged seawater using thick-walled fluorinated polypropylene bottles combined with rubber stoppers. The starting material was crushed, sieved and thoroughly cleaned to remove fine particles (< 63 μm) to ensure a particle grain size between 63 and 125 μm for all the samples. The seawater chemistry and the pH were monitored throughout the experiments by daily analysis of 1 mL of fluid. The pH increased rapidly from 4.8 to 5.0 before stabilizing at 5.1 after 10 days of reaction time. The analysis of anions (S, Cl) highlighted a substantial evaporation (up to 15 %) during the experiments, requiring a correction factor for the measured dissolved ion concentrations. Evaporation corrected silicon (Si) and calcium (Ca) concentrations in the seawater increased by 5900 % and 14 %, resulting in total dissolved Si and Ca from basalt of 0.3 % and 2.4 %, respectively. The results are comparable with literature data for fresh water experiments conducted on basaltic glass at higher temperature or pressure, illustrating the considerable potential of the mineral sequestration of CO2 in submarine basalts.

  2. Time of flight in MUSE at PIM1 at Paul Scherrer Institute

    NASA Astrophysics Data System (ADS)

    Lin, Wan; Gilman, Ronald; MUSE Collaboration

    2016-09-01

    The MUSE experiment at PIM1 at Paul Scherrer Institute in Villigen, Switzerland, measures elastic scattering of electrons and muons from a liquid hydrogen target. The intent of the experiment is to deduce whether the radius of the proton is the same when determined from the two different particle types. Precision timing is an important aspect of the experiment, used to determine particle types, reaction types, and beam momentum. Here we present results for a test setup measuring time of flight between prototypes of two detector systems to be used in the experiment, compared to Geant4 simulations. The results demonstrate time of flight resolution better than 100 ps, and beam momentum determination at the level of a few tenths of a percent. Douglass Project for Rutgers Women in Math, Science & Engineering, National Science Foundation Grant 1306126 to Rutgers University.

  3. Impact Initiation of Rods of Pressed Polytetrafluoroethylene (PTFE) and Aluminum Powders

    NASA Astrophysics Data System (ADS)

    Mock, Willis, Jr.

    2005-07-01

    A gas gun has been used to investigate the shock initiation of rods consisting of a mixture of 74 wt % PTFE (28 μm particle size) and 26 wt % aluminum (5 μm particle size) powders. The 7.6 mm diameter by 51 mm long rods were fabricated from material that had been pressed and sintered to a full density of 2.27 gm/cm^ 3. The rods were sabot-launched into 4340 steel anvils at impact velocities ranging from 104 to 777 m/s. This corresponds to calculated impact stresses of 3.3 to 48 kbar. The experiments were carried out in a 50-100 mtorr vacuum. A framing camera was used to observe the time sequence of events. These include changes in rod shape, fracture, and the initiation and evolution of the reaction phenomena. Observation of first visible light after impact was taken as the initiation time. Initiation of the reaction occurred at discrete locations in the rod material. At low velocity, no initiation occurred. Above an initiation threshold, the initiation time dropped abruptly from 56 μs just above threshold to 4 μs at the highest impact velocity. Two experiments were performed for pure PTFE material for comparison with the PTFE/Al rods. The pure PTFE showed more extensive radial flow without obvious brittle fracture. For the 784 m/s impact experiment, small points of light were observed on the edge of the mushroomed portion of the rod about 20 μs after impact, suggesting the onset of chemical reaction.

  4. Effects of hypnagogic imagery on the event-related potential to external tone stimuli.

    PubMed

    Michida, Nanae; Hayashi, Mitsuo; Hori, Tadao

    2005-07-01

    The purpose of this study was to examine the influence of hypnagogic imagery on the information processes of external tone stimuli during the sleep onset period with the use of event-related potentials. Event-related potentials to tone stimuli were compared between conditions with and without the experience of hypnagogic imagery. To control the arousal level when the tone was presented, a certain criterion named the electroencephalogram stage was used. Stimuli were presented at electroencephalogram stage 4, which was characterized by the appearance of a vertex sharp wave. Data were collected in the sleep laboratory at Hiroshima University. Eleven healthy university and graduate school students participated in the study. N/A. Experiments were performed at night. Reaction times to tone stimuli were measured, and only trials with shorter reaction times than 5000 milliseconds were analyzed. Electroencephalograms were recorded from Fz, Cz, Pz, Oz, T5 and T6. There were no differences in reaction times and electroencephalogram spectra between the conditions of with and without hypnagogic imagery. These results indicated that the arousal levels were not different between the 2 conditions. On the other hand, the N550 amplitude of the event-related potentials in the imagery condition was lower than in the no-imagery condition. The decrease in the N550 amplitude in the imagery condition showed that experiences of hypnagogic imagery exert some influence on the information processes of external tone stimuli. It is possible that the processing of hypnagogic imagery interferes with the processing of external stimuli, lowering the sensitivity to external stimuli.

  5. Perception while watching movies: Effects of physical screen size and scene type.

    PubMed

    Troscianko, Tom; Meese, Timothy S; Hinde, Stephen

    2012-01-01

    Over the last decade, television screens and display monitors have increased in size considerably, but has this improved our televisual experience? Our working hypothesis was that the audiences adopt a general strategy that "bigger is better." However, as our visual perceptions do not tap directly into basic retinal image properties such as retinal image size (C. A. Burbeck, 1987), we wondered whether object size itself might be an important factor. To test this, we needed a task that would tap into the subjective experiences of participants watching a movie on different-sized displays with the same retinal subtense. Our participants used a line bisection task to self-report their level of "presence" (i.e., their involvement with the movie) at several target locations that were probed in a 45-min section of the movie "The Good, The Bad, and The Ugly." Measures of pupil dilation and reaction time to the probes were also obtained. In Experiment 1, we found that subjective ratings of presence increased with physical screen size, supporting our hypothesis. Face scenes also produced higher presence scores than landscape scenes for both screen sizes. In Experiment 2, reaction time and pupil dilation results showed the same trends as the presence ratings and pupil dilation correlated with presence ratings, providing some validation of the method. Overall, the results suggest that real-time measures of subjective presence might be a valuable tool for measuring audience experience for different types of (i) display and (ii) audiovisual material.

  6. Furfural production in biphasic media using an acidic ionic liquid as a catalyst.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Parajó, Juan C

    2016-11-20

    Ionic liquids are valuable tools for biorefineries. This study provides an experimental assessment on the utilization of an acidic ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate) as a catalyst for furfural production in water/solvent media. The substrates employed in experiments were commercial xylose (employed as a reference compound) or hemicellulosic saccharides obtained by hydrothermal processing of Eucalyptus globulus wood (which were employed as produced, after membrane concentration or after freeze-drying). A variety of reaction conditions (defined by temperature, reaction time and type of organic solvent) were considered. The possibility of recycling the catalyst was assessed in selected experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [Effect of caffeine and phenamin on caudate inhibition of aggressive reactions in cats].

    PubMed

    Belozertsev, Iu A

    1975-01-01

    In chronic experiments conducted on cats it was shown that caffeine (10--30 mg/kg) failed to change agressive reactions developing in stimulation of the meso- or diencephalic structures. Phenamine (1--3 mg/kg) facilitated the appearance of emotional manifestations and lowered the threshold of the agressive response. Subliminal stimulation of the caudate nucleus in control experiments caused motor tranquilization and depressed the agressive behaviour to a lesser degree when practised against the background of the caffeine action. At the same time, phenamine abolished the influence not only of the threshold, but also of the subliminal stimulation of the caudate nucleus on the spontaneous motor activity and the rage behaviour.

  8. The Synthesis and Characterization of Tetrakis [(p - amino phenoxy) methyl] methane

    NASA Astrophysics Data System (ADS)

    Peng, Yongli; Zou, Qian

    2017-06-01

    In order to solve the shortcomings of the cured epoxy resin poor toughness, this paper proceeded from the structural design of curing agent to synthesize a special curing agent tetrakis [(p-aminophenoxy) methyl] methane which containing both Benzene ring and amino group. A Symmetric compound of tetrakis [(p - acetamidophenoxy) methyl] methane was prepared by using simple and easy to get pentaerythritoltetratosylate and acetaminophen for raw materials, after Williamson etherification reaction intermediates for synthesis of a symmetrical structure of the compound tetrakis [(p-acetamido phenoxy) methyl] methane, then hydrolysed under acidic conditions it can be tetrakis [(p-amino phenoxy) methyl] methane. The influence of reaction time, reaction temperature and reactant ratio to production yield of tetrakis [(p - acetamidophenoxy) methyl] methane was studied by orthogonal experiment of three factors and three levels, and get the optimal process parameters: the reaction time: 16 h, the reaction temperature: 170 °C, reactant ratio, 1:5. The Structure of tetrakis [(p - acetamidophenoxy) methyl] methane and tetrakis [(p-amino phenoxy) methyl] methane were characterized by infrared and 1H-NMR.

  9. High Energy Density Plasmas (HEDP) for studies of basic nuclear science relevant to Stellar and Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Frenje, Johan

    2014-06-01

    Thermonuclear reaction rates and nuclear processes have been explored traditionally by means of conventional accelerator experiments, which are difficult to execute at conditions relevant to stellar nucleosynthesis. Thus, nuclear reactions at stellar energies are often studied through extrapolations from higher-energy data or in low-background underground experiments. Even when measurements are possible using accelerators at relevant energies, thermonuclear reaction rates in stars are inherently different from those in accelerator experiments. The fusing nuclei are surrounded by bound electrons in accelerator experiments, whereas electrons occupy mainly continuum states in a stellar environment. Nuclear astrophysics research will therefore benefit from an enlarged toolkit for studies of nuclear reactions. In this presentation, we report on the first use of High Energy Density Plasmas for studies of nuclear reactions relevant to basic nuclear science, stellar and Big Bang nucleosynthesis. These experiments were carried out at the OMEGA laser facility at University of Rochester and the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, in which spherical capsules were irradiated with powerful lasers to compress and heat the fuel to high enough temperatures and densities for nuclear reactions to occur. Four experiments will be highlighted in this presentation. In the first experiment, the differential cross section for the elastic neutron-triton (n-T) scattering at 14.1 MeV was measured with significantly higher accuracy than achieved in accelerator experiments. In the second experiment, the T(t,2n)4He reaction, a mirror reaction to the 3He(3He,2p)4He reaction that plays an important role in the proton-proton chain that transforms hydrogen into ordinary 4He in stars like our Sun, was studied at energies in the range 15-40 keV. In the third experiment, the 3He+3He solar fusion reaction was studied directly, and in the fourth experiment, we probed the T+3He reaction, possibly relevant to Big Bang nucleosynthesis.

  10. Measurement of the 19F(α,n)22Na Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Lowe, Marcus; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Chipps, K. A.; Thompson, S. J.; Grinder, M.; Grzywacz, R.; Smith, K.; Thornsberry, C.; Thompson, P.; Peters, W. A.; Waddell, D.; Blanchard, R.; Carls, A.; Shadrick, S.; Engelhardt, A.; Hertz-Kintish, D.; Allen, N.; Sims, H.

    2015-10-01

    Enriched uranium is commonly stored in fluoride matrices such as UF6. Alpha decays of uranium in UF6 will create neutrons via the 19F(α,n)22Na reaction. An improved cross section for this reaction will enable improved nondestructive assays of uranium content in storage cylinders at material enrichment facilities. To determine this reaction cross section, we have performed experiments using both forward and inverse kinematic techniques at the University of Notre Dame (forward) and Oak Ridge National Laboratory (inverse). Both experiments utilized the Versatile Array of Neutron Detectors at Low Energy (VANDLE) for neutron detection. The ORNL experiment also used a new ionization chamber for 22Na particle identification. Gating on the 22Na nuclei detected drastically reduced the background counts in the neutron time-of-flight spectra. The latest analysis and results will be presented for 19F beam energies ranging from 20-37 MeV. This work is funded in part by the DOE Office of Nuclear Physics, the National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  11. Direct reaction theories for exotic nuclei: An introduction via semi-classical methods

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Angela

    2018-07-01

    The structure of exotic nuclei has only been studied from around 1985, because they are very short lived and because before that, it was not possible to produce and deliver them as beams on a target. They have large N / Z or Z / N ratios, are weakly bound and quite extended most of the time. Thus breakup, transfer and/or inelastic excitations of the surface are some of their most common reaction mechanisms. Direct reactions, for their simplicity, have played a fundamental role in the last thirty years in the process of understanding such "new" type of structures. On the other hand, direct reactions have been studied and understood for a much longer time, starting with the pioneering experiments in the early '50 on deuteron-induced reactions and the reaction models developed by S.T. Butler and collaborators. Both subjects are extremely vast and there is a large literature available of books, review articles and original papers. I will discuss here only a few selected examples of the many interesting problems that have been encountered and solved in all those years. I consider them breakthroughs in the field and as such I hope they can inspire young generations of researchers.

  12. Modeling Studies of Inhomogeneity Effects during Laser Flash Photolysis Experiments: A Reaction-Diffusion Approach.

    PubMed

    Dóka, Éva; Lente, Gábor

    2017-04-13

    This work presents a rigorous mathematical study of the effect of unavoidable inhomogeneities in laser flash photolysis experiments. There are two different kinds of inhomegenities: the first arises from diffusion, whereas the second one has geometric origins (the shapes of the excitation and detection light beams). Both of these are taken into account in our reported model, which gives rise to a set of reaction-diffusion type partial differential equations. These equations are solved by a specially developed finite volume method. As an example, the aqueous reaction between the sulfate ion radical and iodide ion is used, for which sufficiently detailed experimental data are available from an earlier publication. The results showed that diffusion itself is in general too slow to influence the kinetic curves on the usual time scales of laser flash photolysis experiments. However, the use of the absorbances measured (e.g., to calculate the molar absorption coefficients of transient species) requires very detailed mathematical consideration and full knowledge of the geometrical shapes of the excitation laser beam and the separate detection light beam. It is also noted that the usual pseudo-first-order approach to evaluating the kinetic traces can be used successfully even if the usual large excess condition is not rigorously met in the reaction cell locally.

  13. Secondary Organic Aerosol Formation from Glyoxal: photochemical versus dark uptake and reversible versus irreversible SOA formation

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Slowik, J. G.; Kampf, C. J.; Timkovsky, J.; Noziere, B.; Praplan, A. P.; Pfaffenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A. S.; Baltensperger, U.; Volkamer, R.

    2011-12-01

    Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.

  14. Secondary Organic Aerosol Formation from Glyoxal: photochemical versus dark uptake and reversible versus irreversible SOA formation

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Slowik, J.; Kampf, C.; Timkovsky, J.; Noziere, B.; Praplan, A.; Pffafenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A.; Baltensperger, U.; Volkamer, R.

    2012-04-01

    Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.

  15. Night-time tropospheric chemistry of the unsaturated alcohols ( Z)-pent-2-en-1-ol and pent-1-en-3-ol: Kinetic studies of reactions of NO 3 and N 2O 5 with stress-induced plant emissions

    NASA Astrophysics Data System (ADS)

    Pfrang, Christian; Baeza Romero, Maria T.; Cabanas, Beatriz; Canosa-Mas, Carlos E.; Villanueva, Florentina; Wayne, Richard P.

    The night-time tropospheric chemistry of two stress-induced volatile organic compounds (VOCs), ( Z)-pent-2-en-1-ol and pent-1-en-3-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO 3) with these pentenols were measured using the discharge-flow technique. Because of the relatively low volatility of these compounds, we employed off-axis continuous-wave cavity-enhanced absorption spectroscopy for detection of NO 3 in order to be able to work in pseudo first-order conditions with the pentenols in large excess over NO 3. The rate coefficients were determined to be (1.53±0.23)×10 -13 and (1.39±0.19)×10 -14 cm 3 molecule -1 s -1 for reactions of NO 3 with ( Z)-pent-2-en-1-ol and pent-1-en-3-ol. An attempt to study the kinetics of these reactions with a relative-rate technique, using N 2O 5 as source of NO 3 resulted in significantly higher apparent rate coefficients. Performing relative-rate experiments in known excesses of NO 2 allowed us to determine the rate coefficients for the N 2O 5 reactions to be (5.0±2.8)×10 -19 cm 3 molecule -1 s -1 for ( Z)-pent-2-en-1-ol, and (9.1±5.8)×10 -19 cm 3 molecule -1 s -1 for pent-1-en-3-ol. We show that these relatively slow reactions can indeed interfere with rate determinations in conventional relative-rate experiments.

  16. Mirror me: Imitative responses in adults with autism.

    PubMed

    Schunke, Odette; Schöttle, Daniel; Vettorazzi, Eik; Brandt, Valerie; Kahl, Ursula; Bäumer, Tobias; Ganos, Christos; David, Nicole; Peiker, Ina; Engel, Andreas K; Brass, Marcel; Münchau, Alexander

    2016-02-01

    Dysfunctions of the human mirror neuron system have been postulated to underlie some deficits in autism spectrum disorders including poor imitative performance and impaired social skills. Using three reaction time experiments addressing mirror neuron system functions under simple and complex conditions, we examined 20 adult autism spectrum disorder participants and 20 healthy controls matched for age, gender and education. Participants performed simple finger-lifting movements in response to (1) biological finger and non-biological dot movement stimuli, (2) acoustic stimuli and (3) combined visual-acoustic stimuli with different contextual (compatible/incompatible) and temporal (simultaneous/asynchronous) relation. Mixed model analyses revealed slower reaction times in autism spectrum disorder. Both groups responded faster to biological compared to non-biological stimuli (Experiment 1) implying intact processing advantage for biological stimuli in autism spectrum disorder. In Experiment 3, both groups had similar 'interference effects' when stimuli were presented simultaneously. However, autism spectrum disorder participants had abnormally slow responses particularly when incompatible stimuli were presented consecutively. Our results suggest imitative control deficits rather than global imitative system impairments. © The Author(s) 2015.

  17. Thermodynamic Analysis of a Coupled Chemical Reaction.

    ERIC Educational Resources Information Center

    Trimm, Harold; And Others

    1979-01-01

    Describes a typical relaxation kinetic experiment using a sudden increase in the temperature of the system. Time involved is described as minimal and the approach as quicker, more accurate, sensitive, and producing simultaneous determination of several thermodynamic parameters. (Author/SA)

  18. Particle velocity measurements of the reaction zone in nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, S. A.; Engelke, R. P.; Alcon, R. R.

    2002-01-01

    The detonation reaction-zone length in neat, deuterated, and chemically sensitized nitromethane (NM) has been measured by using several different laser-based velocity interferometry systems. The experiments involved measuring the particle velocity history at a NM/PMMA (polymethylmethacrylate) window interface during the time a detonation in the NM interacted with the interface. Initially, Fabry-Perot interferometry was used, but, because of low time resolution (>5 ns), several different configurations of VISAR interferometry were subsequently used. Early work was done with VISARs with a time resolution of about 3 ns. By making changes to the recording system, we were able to improve this to {approx}1more » ns. Profiles measured at the NM/PMMA interface agree with the ZND theory, in that a spike ({approx}2.45 mm/{micro}s) is measured that is consistent with an extrapolated reactant NM Hugoniot matched to the PMMA window. The spike is rather sharp, followed by a rapid drop in particle velocity over a time of 5 to 10 ns; this is evidence of early fast reactions. Over about 50 ns, a much slower particle velocity decrease occurs to the assumed CJ condition - indicating a total reaction zone length of {approx}300 {micro}m. When the NM is chemically changed, such as replacing the hydrogen atoms with deuterium or chemically sensitizing with a base, some changes are observed in the early part of the reaction zone.« less

  19. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  20. The formation of illite from nontronite by mesophilic and thermophilic bacterial reaction

    USGS Publications Warehouse

    Jaisi, Deb P.; Eberl, Dennis D.; Dong, Hailiang; Kim, Jinwook

    2011-01-01

    The formation of illite through the smectite-to-illite (S-I) reaction is considered to be one of the most important mineral reactions occurring during diagenesis. In biologically catalyzed systems, however, this transformation has been suggested to be rapid and to bypass the high temperature and long time requirements. To understand the factors that promote the S-I reaction, the present study focused on the effects of pH, temperature, solution chemistry, and aging on the S-I reaction in microbially mediated systems. Fe(III)-reduction experiments were performed in both growth and non-growth media with two types of bacteria: mesophilic (Shewanella putrefaciens CN32) and thermophilic (Thermus scotoductus SA-01). Reductive dissolution of NAu-2 was observed and the formation of illite in treatment with thermophilic SA-01 was indicated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A basic pH (8.4) and high temperature (65°C) were the most favorable conditions for the formation of illite. A long incubation time was also found to enhance the formation of illite. K-nontronite (non-permanent fixation of K) was also detected and differentiated from the discrete illite in the XRD profiles. These results collectively suggested that the formation of illite associated with the biologically catalyzed smectite-to-illite reaction pathway may bypass the prolonged time and high temperature required for the S-I reaction in the absence of microbial activity.

  1. Removal of organic pollutants from produced water using Fenton oxidation

    NASA Astrophysics Data System (ADS)

    Afzal, Talia; Hasnain Isa, Mohamed; Mustafa, Muhammad Raza ul

    2018-03-01

    Produced water (PW) is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L), [H2O2]/[Fe2+] molar ratio (2 to 75), and reaction time (30 to 200 minutes), on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O) and hydrogen peroxide (H2O2) were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.

  2. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX

    NASA Astrophysics Data System (ADS)

    White, Bradley W.; Tarver, Craig M.

    2017-01-01

    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  3. Nuclear Physics Laboratory technical progress report, November 1, 1972-- November 1, 1973

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-11-01

    The experimental program was divided into the areas of nuclear physics (charged-particle experiments, gamma-ray experiments andd beta decay, neutron time-of-flight experiments, x-ray fluorescence analysis, other activities), intermediate enengy physics, and apparatus and facility development. The energy- loss spectrograph, rotating-beam neutron time-of-flight spectrometer, and cyclotron and the rearch done using these facilities are described. The theoretical program has concentrated on the effects of two-step processes in nuclear reactions. The trace element analysis program continued, and a neutron beam for cancer therapy is being developed. Lists of publications and personnel are also included. (RWR)

  4. Electric Fields and Enzyme Catalysis

    PubMed Central

    Fried, Stephen D.; Boxer, Steven G.

    2017-01-01

    What happens inside an enzyme’s active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists’ attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme’s active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site. PMID:28375745

  5. Low-Energy Nuclear Reactions Resulting as Picometer Interactions with Similarity to K-Shell Electron Capture

    NASA Astrophysics Data System (ADS)

    Hora, H.; Miley, G. H.; Li, X. Z.; Kelly, J. C.; Osman, F.

    2006-02-01

    Since the appeal by Brian Josephson at the meeting of the Nobel Laureates July 2004, it seems to be indicated to summarize the following serious, reproducible and confirmed observations on reactions of protons or deuterons incorporated in host metals such as palladium. Some reflections to Rutherford's discovery of nuclear physics, the Cockroft-Oliphant discovery of anomalous low-energy fusion reactions and the chemist Hahn's discovery of fission had to be included. Using gaseous atmosphere or discharges between palladium targets, rather significant results were seen e.g. from the "life after death" heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect - preferably in the swimming electron layer - may lead to reactions at nuclear distances d of picometers with reaction probability times U of about megaseconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to low-energy nuclear reactions (LENR) where the involvement of pollution could be excluded from the appearance of very seldom rare earth elements. A basically new theory for DD cross-sections is used to confirm the picometer-megasecond reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nuclei generation, magic numbers and to quark-gluon plasmas.

  6. Bereavement Experiences of Mothers and Fathers over Time after the Death of a Child due to Cancer

    ERIC Educational Resources Information Center

    Alam, Rifat; Barrera, Maru; D'Agostino, Norma; Nicholas, David B.; Schneiderman, Gerald

    2012-01-01

    The authors investigated longitudinally bereavement in mothers and fathers whose children died of cancer. Thirty-one parents were interviewed 6 and 18 months post-death. Analyses revealed parental differences and changes over time: (a) employment--fathers were more work-focused; (b) grief reactions--mothers expressed more intense grief reactions…

  7. Useful field of view in simulated driving: Reaction times and eye movements of drivers

    PubMed Central

    Seya, Yasuhiro; Nakayasu, Hidetoshi; Yagi, Tadasu

    2013-01-01

    To examine the spatial distribution of a useful field of view (UFOV) in driving, reaction times (RTs) and eye movements were measured in simulated driving. In the experiment, a normal or mirror-reversed letter “E” was presented on driving images with different eccentricities and directions from the current gaze position. The results showed significantly slower RTs in the upper and upper left directions than in the other directions. The RTs were significantly slower in the left directions than in the right directions. These results suggest that the UFOV in driving may be asymmetrical among the meridians in the visual field. PMID:24349688

  8. [Treatment of cetyltrimethyl ammonium bromide wastewater by potassium ferrate].

    PubMed

    Yang, Wei-hua; Wang, Hong-hui; Zeng, Xiao-xu; Huang, Ting-ting

    2009-08-15

    A novel oxidant potassium ferrate (K2FeO4) was used to remove cetyltrimethyl ammonium bromide (CTAB) at room temperature. The effects of various conditions on the removal ratio, such as reaction time, dosing quantity of K2FeO4 and initial pH, were investigated. The experiments results show that the removal ratio reaches 79.4% when the reaction time is 30 min, the dosing quantity of K2FeO4 to CTAB is 1:1, the initial pH of the solution is 7. In the reaction progress, the oxidation of K2FeO4 and the flocculation of the reduction product have synergistic effect on the removal of CTAB. In addition, infrared spectra of CTAB before and after being treated with K2FeO4 were further studied. The results indicate that the degradation process involves the interruption of chain and the subsequent mineralization to inorganic molecules. Furthermore, the reaction of K2FeO4 and CTAB follows second order kinetics law.

  9. Optical Excitation of Carbon Nanotubes Drives Localized Diazonium Reactions

    PubMed Central

    2016-01-01

    Covalent chemistries have been widely used to modify carbon nanomaterials; however, they typically lack the precision and efficiency required to directly engineer their optical and electronic properties. Here, we show, for the first time, that visible light which is tuned into resonance with carbon nanotubes can be used to drive their functionalization by aryldiazonium salts. The optical excitation accelerates the reaction rate 154-fold (±13) and makes it possible to significantly improve the efficiency of covalent bonding to the sp2 carbon lattice. Control experiments suggest that the reaction is dominated by a localized photothermal effect. This light-driven reaction paves the way for precise nanochemistry that can directly tailor carbon nanomaterials at the optical and electronic levels. PMID:27588432

  10. In situ characterization of natural pyrite bioleaching using electrochemical noise technique

    NASA Astrophysics Data System (ADS)

    Chen, Guo-bao; Yang, Hong-ying; Li, Hai-jun

    2016-02-01

    An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.

  11. Transient porosity pulses and microfracturing during a stress-generating retrograde metamorphic reaction

    NASA Astrophysics Data System (ADS)

    Renard, F.; Zheng, X.; Cordonnier, B.; Zhu, W.; Jamtveit, B.

    2017-12-01

    Several geological processes involve mineral transformations where nominally dry rocks transform into hydrated ones when left in contact with water (i.e. eclogitization, serpentinization). In these systems, the transformation induces stress if the rock is confined, and the new minerals create a so-called force of crystallization. Here, we study a model retrograde metamorphic reaction, the hydration of periclase, MgO, into brucite, Mg(OH)2, to quantify the coupling between reaction, stress generation, porosity evolution and fracturing. This hydration reaction generates a volume increase of 110%, and a density decrease of 33.8% of the solid. Samples of a microporous MgO ceramics were reacted at 170-211°C, 5-80 MPa confining pressure, 6-95 MPa differential stress and 5 MPa pore fluid pressure. They were installed into an X-ray transparent triaxial deformation rig, called Hades, and mounted on a synchrotron microtomography stage. Each experiment lasted between 2 and 5 hours, during which between 35 and 130 three-dimensional images were acquired, allowing to follow the chemical transformation and the deformation of the sample. Below 30 MPa mean pressure, the hydration reaction was coupled to fracturing of the MgO ceramics, and the transformation rate followed a sigmoidal kinetics curve with a slow initiation, a fast reaction coupled to fracturing and the generation of a transient porosity pulse, and a slow-down until an almost complete transformation of periclase into brucite.. Conversely, above 30 MPa, the reaction kinetics was very slow, without fracturing over the time scale of the experiment. When considering the driving force of the hydration reaction, stress generation should be several hundreds MPa, whereas the present experiments show that fracturing occurred only below 30 MPa. This indicates that the potential energy due to phase transformation generates much lower stress than what is estimated from non-equilibrium thermodynamics. A possible interpretation of this observation is that the stress created by the reaction may overcome the disjoining pressure at the grain-grain interface, expelling the water film trapped there and reducing the kinetics of reaction. As a consequence, only a fraction of the available potential driving force was used to accelerate the reaction by microfracturing.

  12. Theoretical determination of chemical rate constants using novel time-dependent methods

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.

    1994-01-01

    The work completed within the grant period 10/1/91 through 12/31/93 falls primarily in the area of reaction dynamics using both quantum and classical mechanical methodologies. Essentially four projects have been completed and have been or are in preparation of being published. The majority of time was spent in the determination of reaction rate coefficients in the area of hydrocarbon fuel combustion reactions which are relevant to NASA's High Speed Research Program (HSRP). These reaction coefficients are important in the design of novel jet engines with low NOx emissions, which through a series of catalytic reactions contribute to the deterioration of the earth's ozone layer. A second area of research studied concerned the control of chemical reactivity using ultrashort (femtosecond) laser pulses. Recent advances in pulsed-laser technologies have opened up a vast new field to be investigated both experimentally and theoretically. The photodissociation of molecules adsorbed on surfaces using novel time-independent quantum mechanical methods was a third project. And finally, using state-of-the-art, high level ab initio electronic structure methods in conjunction with accurate quantum dynamical methods, the rovibrational energy levels of a triatomic molecule with two nonhydrogen atoms (HCN) were calculated to unprecedented levels of agreement between theory and experiment.

  13. Calcium-deficient apatite synthesized by ammonia hydrolysis of dicalcium phosphate dihydrate: influence of temperature, time, and pressure.

    PubMed

    Obadia, Laetitia; Rouillon, Thierry; Bujoli, Bruno; Daculsi, Guy; Bouler, Jean Michel

    2007-01-01

    In this work, calcium-deficient apatites (CDA) were synthesized by ammonia hydrolysis reaction of dicalcium phosphate dihydrate (DCPD; CaHPO4 x 2 H2O) to obtain biphasic calcium phosphates (BCP) without any extraionic substitution. The influence of three parameters was studied: temperature of the reaction (70 and 100 degrees C), time of the reaction (4 and 18 h), and the pressure (open and closed system). Experiments were made according to a factorial design method (FDM) allowing optimization of the number of samples as well as statistical analysis of results. Moreover, the influence of temperature (until 200 degrees C) was investigated. The crystal size of CDA was determined according to the Scherrer's formula and from Rietveld refinements taking the CDA anisotropy into account. The last method seems to be a reliable method to determine crystallite sizes of CDA, since crystallite sizes of CDA along <00l> and directions were accessible. The results describe the hydroxyapatite % (HA%) in BCP by a first-order polynomial equation in the experimental area studied and the HA content was found to increase by raising time and temperature of the reaction. Moreover, the type of reaction system (open/closed vessel) appeared to have little influence on HA%. 2006 Wiley Periodicals, Inc.

  14. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberg, S.E.

    1998-05-01

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scanmore » FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.« less

  15. Evaluation and linking of effective parameters in particle-based models and continuum models for mixing-limited bimolecular reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Papelis, Charalambos; Sun, Pengtao; Yu, Zhongbo

    2013-08-01

    Particle-based models and continuum models have been developed to quantify mixing-limited bimolecular reactions for decades. Effective model parameters control reaction kinetics, but the relationship between the particle-based model parameter (such as the interaction radius R) and the continuum model parameter (i.e., the effective rate coefficient Kf) remains obscure. This study attempts to evaluate and link R and Kf for the second-order bimolecular reaction in both the bulk and the sharp-concentration-gradient (SCG) systems. First, in the bulk system, the agent-based method reveals that R remains constant for irreversible reactions and decreases nonlinearly in time for a reversible reaction, while mathematical analysis shows that Kf transitions from an exponential to a power-law function. Qualitative link between R and Kf can then be built for the irreversible reaction with equal initial reactant concentrations. Second, in the SCG system with a reaction interface, numerical experiments show that when R and Kf decline as t-1/2 (for example, to account for the reactant front expansion), the two models capture the transient power-law growth of product mass, and their effective parameters have the same functional form. Finally, revisiting of laboratory experiments further shows that the best fit factor in R and Kf is on the same order, and both models can efficiently describe chemical kinetics observed in the SCG system. Effective model parameters used to describe reaction kinetics therefore may be linked directly, where the exact linkage may depend on the chemical and physical properties of the system.

  16. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, Judson W.; Fuller, Christopher C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1/λs ≈ 1.3 hours), and the hyporheic porewater residence timescale (ts ≈ 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (Ls = stream velocity/storage-zone exchange coefficient ≈ 1.3 km) and the length of Pinal Creek (L ≈ 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, Rs = λstsL/Ls (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of Rs > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.

  17. Study on the syhthesis process of tetracaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Li, Wenli; Zhao, Jie; Cui, Yujie

    2017-05-01

    Tetrachloride hydrochloride is a local anesthetic with long-acting ester, and it is usually present in the form of a hydrochloride salt. Firsleb first synthesized the tetracaine by experiment in 1928, which is one of the recognized clinical potent anesthetics. This medicine has the advantages of stable physical and chemical properties, the rapid role and long maintenance. Tetracaine is also used for ophthalmic surface anesthesia as one of the main local anesthetic just like conduction block anesthesia, mucosal surface anesthesia and epidural anesthesia. So far, the research mainly engaged in its clinical application research, and the research strength is relatively small in the field of synthetic technology. The general cost of the existing production process is high, and the yield is low. In addition, the reaction time is long and the reaction conditions are harsh. In this paper, a new synthetic method was proposed for the synthesis of tetracaine hydrochloride. The reaction route has the advantages of few steps, high yield, short reaction time and mild reaction conditions. The cheap p-nitrobenzoic acid was selected as raw material. By esterification with ethanol and reaction with n-butyraldehyde (the reaction process includes nitro reduction, aldol condensation and hydrogenation reduction), the intermediate was transesterified with dimethylaminoethanol under basic conditions. Finally, the PH value was adjusted in the ethanol solvent. After experiencing 4 steps reaction, the crude tetracaine hydrochloride was obtained.

  18. Casual Video Games as Training Tools for Attentional Processes in Everyday Life.

    PubMed

    Stroud, Michael J; Whitbourne, Susan Krauss

    2015-11-01

    Three experiments examined the attentional components of the popular match-3 casual video game, Bejeweled Blitz (BJB). Attentionally demanding, BJB is highly popular among adults, particularly those in middle and later adulthood. In experiment 1, 54 older adults (Mage = 70.57) and 33 younger adults (Mage = 19.82) played 20 rounds of BJB, and completed online tasks measuring reaction time, simple visual search, and conjunction visual search. Prior experience significantly predicted BJB scores for younger adults, but for older adults, both prior experience and simple visual search task scores predicted BJB performance. Experiment 2 tested whether BJB practice alone would result in a carryover benefit to a visual search task in a sample of 58 young adults (Mage = 19.57) who completed 0, 10, or 30 rounds of BJB followed by a BJB-like visual search task with targets present or absent. Reaction times were significantly faster for participants who completed 30 but not 10 rounds of BJB compared with the search task only. This benefit was evident when targets were both present and absent, suggesting that playing BJB improves not only target detection, but also the ability to quit search effectively. Experiment 3 tested whether the attentional benefit in experiment 2 would apply to non-BJB stimuli. The results revealed a similar numerical but not significant trend. Taken together, the findings suggest there are benefits of casual video game playing to attention and relevant everyday skills, and that these games may have potential value as training tools.

  19. Dynamic Vibrotactile Signals for Forward Collision Avoidance Warning Systems

    PubMed Central

    Meng, Fanxing; Gray, Rob; Ho, Cristy; Ahtamad, Mujthaba

    2015-01-01

    Objective: Four experiments were conducted in order to assess the effectiveness of dynamic vibrotactile collision-warning signals in potentially enhancing safe driving. Background: Auditory neuroscience research has demonstrated that auditory signals that move toward a person are more salient than those that move away. If this looming effect were found to extend to the tactile modality, then it could be utilized in the context of in-car warning signal design. Method: The effectiveness of various vibrotactile warning signals was assessed using a simulated car-following task. The vibrotactile warning signals consisted of dynamic toward-/away-from-torso cues (Experiment 1), dynamic versus static vibrotactile cues (Experiment 2), looming-intensity- and constant-intensity-toward-torso cues (Experiment 3), and static cues presented on the hands or on the waist, having either a low or high vibration intensity (Experiment 4). Results: Braking reaction times (BRTs) were significantly faster for toward-torso as compared to away-from-torso cues (Experiments 1 and 2) and static cues (Experiment 2). This difference could not have been attributed to differential responses to signals delivered to different body parts (i.e., the waist vs. hands; Experiment 4). Embedding a looming-intensity signal into the toward-torso signal did not result in any additional BRT benefits (Experiment 3). Conclusion: Dynamic vibrotactile cues that feel as though they are approaching the torso can be used to communicate information concerning external events, resulting in a significantly faster reaction time to potential collisions. Application: Dynamic vibrotactile warning signals that move toward the body offer great potential for the design of future in-car collision-warning system. PMID:25850161

  20. Determination of phosphorus fertilizer soil reactions by Raman and synchrotron infrared microspectroscopy.

    PubMed

    Vogel, Christian; Adam, Christian; Sekine, Ryo; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don

    2013-10-01

    The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate.

  1. Impact cratering: The process and its effects on planetary evolution. [and silicate-carbonate reactions on Venus

    NASA Technical Reports Server (NTRS)

    Grieve, R. A. F.

    1984-01-01

    The potential for silicate-carbon dioxide reactions as a geochemical weathering agent on Venus was studied. A tholetitic basalt close to the composition determined by the XRF experiment at the Venera 14 sites was subjected to high temperature and pressure (with pure CO2 as the pressure medium) for varying time durations. The starting basalt material and the run products were examined optically and by X-ray diffraction and electron microscopy. The kinetics of the silicate-carbonate reactions is discussed. A study to elucidate details of impact processes and to assess the effects of impact cratering on planetary evolution is mentioned.

  2. Inside out: Speed-dependent barriers to reactive mixing

    NASA Astrophysics Data System (ADS)

    Kelley, Douglas; Nevins, Thomas

    2015-11-01

    Reactive mixing occurs wherever fluid flow and chemical or biological growth interact over time and space. Those interactions often lead to steep gradients in reactant and product concentration, arranged in complex spatial structures that can cause wide variation in the global reaction rate and concentrations. By simultaneously measuring fluid velocity and reaction front locations in laboratory experiments with the Belousov-Zhabotinsky reaction, we find that the barriers defining those structures vary dramatically with speed. In particular, we find that increasing flow speed causes reacted regions to move from vortex edges to vortex cores, thus turning the barriers ``inside out''. This observation has implications for reactive mixing of phytoplankton in global oceans.

  3. Formation, aggregation and reactivity of amorphous ferric oxyhydroxides on dissociation of Fe(III)-organic complexes in dilute aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Bligh, Mark W.; Waite, T. David

    2010-10-01

    While chemical reactions that take place at the surface of amorphous ferric oxides (AFO) are known to be important in aquatic systems, incorporation of these reactions into kinetic models is hindered by a lack of ability to reliably quantify the reactivity of the surface and the changes in reactivity that occur over time. Long term decreases in the reactivity of iron oxides may be considered to result from changes in the molecular structure of the solid, however, over shorter time scales where substantial aggregation may occur, the mechanisms of reactivity loss are less clear. Precipitation of AFO may be described as a combination of homogeneous and heterogeneous reactions, however, despite its potentially significant role, the latter reaction is usually neglected in kinetic models of aquatic processes. Here, we investigate the role of AFO in scavenging dissolved inorganic ferric (Fe(III)) species (Fe') via the heterogeneous precipitation reaction during the net dissociation of organically complexed Fe(III) in seawater. Using sulfosalicylic acid (SSA) as a model ligand, AFO was shown to play a significant role in inducing the net dissociation of the Fe-SSA complexes with equations describing both the heterogeneous precipitation reaction and the aging of AFO being required to adequately describe the experimental data. An aggregation based mechanism provided a good description of AFO aging over the short time scale of the experiments. The behaviour of AFO described here has implications for the bioavailability of iron in natural systems as a result of reactions involving AFO which are recognised to occur over time scales of minutes, including adsorption of Fe' and AFO dissolution, precipitation and ageing.

  4. Personality stability is associated with better cognitive performance in adulthood: are the stable more able?

    PubMed

    Graham, Eileen K; Lachman, Margie E

    2012-09-01

    Although personality is relatively stable over time, there are individual differences in the patterns and magnitude of change. There is some evidence that personality change in adulthood is related to physical health and longevity. The present study expanded this work to consider whether personality stability or change would be associated with better cognitive functioning, especially in later adulthood. A total of 4,974 individuals participated in two waves of The Midlife in the United States Study (MIDUS) in 1994-1995 and 2004-2005. Participants completed the MIDUS personality inventory at both times and the Brief Test of Adult Cognition by Telephone cognitive battery at Time 2. Multiple regression and analysis of covariance analyses showed that, consistent with predictions, individuals remaining stable in openness to experience and neuroticism had faster reaction times and better inductive reasoning than those who changed. Among older adults, those who remained stable or decreased in neuroticism had significantly faster reaction times than those who increased. As predicted, personality stability on some traits was associated with more adaptive cognitive performance on reasoning and reaction time. Personality is discussed as a possible resource for protecting against or minimizing age-related declines in cognition.

  5. The formation of CdS quantum dots and Au nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiener, Andreas; Schmidt, Ella; Bergmann, Christoph

    Abstract We report on microsecond-resolved in-situ SAXS experiments of the early nucleation and growth behavior of both cadmium sulfide (CdS) quantum dots in aqueous solution including the temperature dependence and of gold (Au) nanoparticles. A novel free-jet setup was developped to access reaction times as early as 20 μs. As the signal in particular in the beginning of the reaction is weak the containment-free nature of this sample environment prooved crucial. The SAXS data reveal a two-step pathway with a surprising stability of a structurally relaxed cluster with a diameter of about 2 nm. While these develop rapidly by ionicmore » assembly, a further slower growth is attributed to cluster attachment. WAXS diffraction confirms, that the particles at this early stage are not yet crystalline. This growth mode is confirmed for a temperature range from 25°C to 45°C. An energy barrier for the diffusion of primary clusters in water of 0.60 eV was experimentally observed in agreement with molecular simulations. To access reaction times beyond 100 ms, a stopped-drop setup -again contaiment- free is introduced. SAXS experiments on the growth of Au nanoparticles on an extended time scale provide a much slower growth with one population only. Further, the influence of ionizing X-ray radiation on the Au particle fromation and growth is discussed.« less

  6. Comparison of Fenton and Fenton-like oxidation for the treatment of cosmetic wastewater.

    PubMed

    Bautista, P; Casas, J A; Zazo, J A; Rodriguez, J J; Mohedano, A F

    2014-01-01

    The treatment of cosmetic wastewaters by Fenton (Fe²⁺/H₂O₂) and Fenton-like (Fe³⁺/H₂O₂) oxidation has been studied. From batch and continuous experiments it has been proved that both versions of the Fenton process lead to quite similar results in terms of chemical oxygen demand (COD) and total organic carbon reduction although the COD shows a slightly higher rate in the early stages of reaction. COD reductions of around 55% after 2 h reaction time and 75-80% with 4 h residence time were reached in batch and continuous experiments, respectively, conducted at pH around 3, ambient temperature (20 °C), with 200 mg/L of Fe dose and an initial H₂O₂/COD weight ratio corresponding to the theoretical stoichiometric value. Achieving the locally allowable limit of COD for industrial wastewater discharge into the municipal sewer system takes no more than 30 min reaction time under those conditions by both Fenton systems. However, the Fenton-like process, where iron is fed as Fe(3+), would be preferable for industrial applications since the ferric sludge resulting upon final neutralization of the effluent can be recycled to the process. A second-order kinetic equation with respect to COD fitted fairly well the experimental results at different temperatures, thus providing a simple practical tool for design purposes.

  7. Model creation of moving redox reaction boundary in agarose gel electrophoresis by traditional potassium permanganate method.

    PubMed

    Xie, Hai-Yang; Liu, Qian; Li, Jia-Hao; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-02-21

    A novel moving redox reaction boundary (MRRB) model was developed for studying electrophoretic behaviors of analytes involving redox reaction on the principle of moving reaction boundary (MRB). Traditional potassium permanganate method was used to create the boundary model in agarose gel electrophoresis because of the rapid reaction rate associated with MnO(4)(-) ions and Fe(2+) ions. MRB velocity equation was proposed to describe the general functional relationship between velocity of moving redox reaction boundary (V(MRRB)) and concentration of reactant, and can be extrapolated to similar MRB techniques. Parameters affecting the redox reaction boundary were investigated in detail. Under the selected conditions, good linear relationship between boundary movement distance and time were obtained. The potential application of MRRB in electromigration redox reaction titration was performed in two different concentration levels. The precision of the V(MRRB) was studied and the relative standard deviations were below 8.1%, illustrating the good repeatability achieved in this experiment. The proposed MRRB model enriches the MRB theory and also provides a feasible realization of manual control of redox reaction process in electrophoretic analysis.

  8. A more robust model of the biodiesel reaction, allowing identification of process conditions for significantly enhanced rate and water tolerance.

    PubMed

    Eze, Valentine C; Phan, Anh N; Harvey, Adam P

    2014-03-01

    A more robust kinetic model of base-catalysed transesterification than the conventional reaction scheme has been developed. All the relevant reactions in the base-catalysed transesterification of rapeseed oil (RSO) to fatty acid methyl ester (FAME) were investigated experimentally, and validated numerically in a model implemented using MATLAB. It was found that including the saponification of RSO and FAME side reactions and hydroxide-methoxide equilibrium data explained various effects that are not captured by simpler conventional models. Both the experiment and modelling showed that the "biodiesel reaction" can reach the desired level of conversion (>95%) in less than 2min. Given the right set of conditions, the transesterification can reach over 95% conversion, before the saponification losses become significant. This means that the reaction must be performed in a reactor exhibiting good mixing and good control of residence time, and the reaction mixture must be quenched rapidly as it leaves the reactor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Reaction of atomic hydrogen with formic acid.

    PubMed

    Cao, Qian; Berski, Slawomir; Latajka, Zdzislaw; Räsänen, Markku; Khriachtchev, Leonid

    2014-04-07

    We study the reaction of atomic hydrogen with formic acid and characterize the radical products using IR spectroscopy in a Kr matrix and quantum chemical calculations. The reaction first leads to the formation of an intermediate radical trans-H2COOH, which converts to the more stable radical trans-cis-HC(OH)2via hydrogen atom tunneling on a timescale of hours at 4.3 K. These open-shell species are observed for the first time as well as a reaction between atomic hydrogen and formic acid. The structural assignment is aided by extensive deuteration experiments and ab initio calculations at the UMP2 and UCCSD(T) levels of theory. The simplest geminal diol radical trans-cis-HC(OH)2 identified in the present work as the final product of the reaction should be very reactive, and further reaction channels are of particular interest. These reactions and species may constitute new channels for the initiation and propagation of more complex organic species in the interstellar clouds.

  10. Gaseous species as reaction tracers in the solvothermal synthesis of the zinc oxide terephthalate MOF-5.

    PubMed

    Hausdorf, Steffen; Baitalow, Felix; Seidel, Jürgen; Mertens, Florian O R L

    2007-05-24

    Gaseous species emitted during the zinc oxide/zinc hydroxide 1,4-benzenedicarboxylate metal organic framework synthesis (MOF-5, MOF-69c) have been used to investigate the reaction scheme that leads to the framework creation. Changes of the gas-phase composition over time indicate that the decomposition of the solvent diethylformamide occurs at least via two competing reaction pathways that can be linked to the reaction's overall water and pH management. From isotope exchange experiments, we deduce that one of the decomposition pathways leads to the removal of water from the reaction mixture, which sets the conditions when the synthesis of an oxide-based (MOF-5) instead of an hydroxide-based MOF (MOF-69c) occurs. A quantitative account of most reactants and byproducts before and after the MOF-5/MOF-69c synthesis is presented. From the investigation of the reaction intermediates and byproducts, we derive a proposal of a basic reaction scheme for the standard synthesis zinc oxide carboxylate MOFs.

  11. Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaleski, Daniel P.; Harding, Lawrence B.; Klippenstein, Stephen J.

    Chirped-pulse Fourier transform millimeter-wave spectroscopy is a potentially powerful tool for studying chemical reaction dynamics and kinetics. Branching ratios of multiple reaction products and intermediates can be measured with unprecedented chemical specificity; molecular isomers, conformers, and vibrational states have distinct rotational spectra. Here we demonstrate chirped-pulse spectroscopy of vinyl cyanide photoproducts in a flow tube reactor at ambient temperature of 295 K and pressures of 1-10 mu bar. This in situ and time-resolved experiment illustrates the utility of this novel approach to investigating chemical reaction dynamics and kinetics. Following 193 nm photodissociation of CH2CHCN, we observe rotational relaxation of energizedmore » HCN, HNC, and HCCCN photoproducts with 10 mu s time resolution and sample the vibrational population distribution of HCCCN. The experimental branching ratio HCN/HCCCN is compared with a model based on RRKM theory using high-level ab initio calculations, which were in turn validated by comparisons to Active Thermochemical Tables enthalpies.« less

  12. Impact initiation of reactive aluminized fluorinated acrylic nanocomposites

    DOE PAGES

    White, Bradley W.; Crouse, Christopher A.; Spowart, Jonathan E.; ...

    2016-04-18

    The initiation of aluminized fluorinated acrylic (AlFA) nanocomposites during modified Taylor impact tests was investigated. Samples were impacted against a steel or sapphire anvil at a nominal velocity of 150 m/s. A framing camera was used to capture head-on and side-profile impact images for the sapphire window and steel plate rigid anvils, respectively. Correlations were drawn between both experimental setups to determine the initiation locations and reaction times. Reactions were found to initiate at an intermediate radius on the impact face of the pellet at a time near full compaction. From simulations, the highest strains and temperatures were found atmore » radii similar to those observed in experiments at the time of ignition. Off-normal impacts produced higher localized straining and temperatures on one-half of the pellet. As a result, the copper projectile, used for delivery, was revealed to aid in a shear assisted reaction by helping to drive the pellet material outward as the projectile deformed radially.« less

  13. Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor

    DOE PAGES

    Zaleski, Daniel P.; Harding, Lawrence B.; Klippenstein, Stephen J.; ...

    2017-12-01

    Chirped-pulse Fourier transform millimeter-wave spectroscopy is a potentially powerful tool for studying chemical reaction dynamics and kinetics. Branching ratios of multiple reaction products and intermediates can be measured with unprecedented chemical specificity; molecular isomers, conformers, and vibrational states have distinct rotational spectra. Here we demonstrate chirped-pulse spectroscopy of vinyl cyanide photoproducts in a flow tube reactor at ambient temperature of 295 K and pressures of 1-10 mu bar. This in situ and time-resolved experiment illustrates the utility of this novel approach to investigating chemical reaction dynamics and kinetics. Following 193 nm photodissociation of CH2CHCN, we observe rotational relaxation of energizedmore » HCN, HNC, and HCCCN photoproducts with 10 mu s time resolution and sample the vibrational population distribution of HCCCN. The experimental branching ratio HCN/HCCCN is compared with a model based on RRKM theory using high-level ab initio calculations, which were in turn validated by comparisons to Active Thermochemical Tables enthalpies.« less

  14. Continuous production of biodiesel under supercritical methyl acetate conditions: Experimental investigation and kinetic model.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2017-10-01

    In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.

  15. Reaction time following yoga bellows-type breathing and breath awareness.

    PubMed

    Telles, Shirley; Yadav, Arti; Gupta, Ram Kumar; Balkrishna, Acharya

    2013-08-01

    The reaction time (RT) was assessed in two groups of healthy males, yoga group (M age = 29.0 yr.) and non-yoga or control group (M age = 29.0 yr.), with 35 participants each. The yoga group had an average experience of 6 months, while the control group was yoga-naïve. The yoga group was assessed in two sessions, (i) bhastrika pranayama or bellows breathing and (ii) breath awareness, while the control group had a single control session. The two experimental sessions, one with each type of breathing, and the control session consisted of pre- (5 min.), during (18 min.), and post-session epochs (5 min.). Assessments were made in the pre- and post-session epochs using a Multi-Operational Apparatus for Reaction Time. Following 18 min. of bhastrika pranayama there was a statistically significant reduction in number of anticipatory responses compared to before the practice. This suggests that the immediate effect of bhastrika pranayama is to inhibit unnecessary responding to stimuli.

  16. Impact initiation of reactive aluminized fluorinated acrylic nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Bradley W.; Crouse, Christopher A.; Spowart, Jonathan E.

    The initiation of aluminized fluorinated acrylic (AlFA) nanocomposites during modified Taylor impact tests was investigated. Samples were impacted against a steel or sapphire anvil at a nominal velocity of 150 m/s. A framing camera was used to capture head-on and side-profile impact images for the sapphire window and steel plate rigid anvils, respectively. Correlations were drawn between both experimental setups to determine the initiation locations and reaction times. Reactions were found to initiate at an intermediate radius on the impact face of the pellet at a time near full compaction. From simulations, the highest strains and temperatures were found atmore » radii similar to those observed in experiments at the time of ignition. Off-normal impacts produced higher localized straining and temperatures on one-half of the pellet. As a result, the copper projectile, used for delivery, was revealed to aid in a shear assisted reaction by helping to drive the pellet material outward as the projectile deformed radially.« less

  17. Isothermal Time-Temperature-Precipitation Diagram for an Aluminum Alloy 6005A by In Situ DSC Experiments

    PubMed Central

    Milkereit, Benjamin; Giersberg, Lydia; Kessler, Olaf; Schick, Christoph

    2014-01-01

    Time-temperature-precipitation (TTP) diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies. PMID:28788587

  18. Isothermal Time-Temperature-Precipitation Diagram for an Aluminum Alloy 6005A by In Situ DSC Experiments.

    PubMed

    Milkereit, Benjamin; Giersberg, Lydia; Kessler, Olaf; Schick, Christoph

    2014-03-28

    Time-temperature-precipitation (TTP) diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e ., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies.

  19. Coupled hydrological and geochemical process evolution at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, P. A. A.

    2015-12-01

    Predictions of hydrologic and biogeochemical responses to natural and anthropogenic forcing at the landscape scale are highly uncertain due to the effects of heterogeneity on the scaling of reaction, flow and transport phenomena. The physical, chemical and biological structures and processes controlling reaction, flow and transport in natural landscapes interact at multiple space and time scales and are difficult to quantify. The current paradigm of hydrological and geochemical theory is that process descriptions derived from observations at small scales in controlled systems can be applied to predict system response at much larger scales, as long as some 'equivalent' or 'effective' values of the scale-dependent parameters can be identified. Furthermore, natural systems evolve in time in a way that is hard to observe in short-run laboratory experiments or in natural landscapes with unknown initial conditions and time-variant forcing. The spatial structure of flow pathways along hillslopes determines the rate, extent and distribution of geochemical reactions (and biological colonization) that drive weathering, the transport and precipitation of solutes and sediments, and the further evolution of soil structure. The resulting evolution of structures and processes, in turn, produces spatiotemporal variability of hydrological states and flow pathways. There is thus a need for experimental research to improve our understanding of hydrology-biogeochemistry interactions and feedbacks at appropriate spatial scales larger than laboratory soil column experiments. Such research is complicated in real-world settings because of poorly constrained impacts of initial conditions, climate variability, ecosystems dynamics, and geomorphic evolution. The Landscape Evolution Observatory (LEO) at Biosphere 2 offers a unique research facility that allows real-time observations of incipient hydrologic and biogeochemical response under well-constrained initial conditions and climate forcing. The LEO allows to close the water, carbon and energy budgets at hillslope scales, thereby enabling elucidation of the tight coupling between the time water spends along subsurface flow paths and geochemical weathering reactions, including the feedbacks between flow and pedogenesis.

  20. Investigation of the oxidation of methyl vinyl ketone (MVK) by OH radicals in the atmospheric simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Fuchs, Hendrik; Albrecht, Sascha; Acir, Ismail-Hakki; Bohn, Birger; Breitenlechner, Martin; Dorn, Hans-Peter; Gkatzelis, Georgios I.; Hofzumahaus, Andreas; Holland, Frank; Kaminski, Martin; Keutsch, Frank N.; Novelli, Anna; Reimer, David; Rohrer, Franz; Tillmann, Ralf; Vereecken, Luc; Wegener, Robert; Zaytsev, Alexander; Kiendler-Scharr, Astrid; Wahner, Andreas

    2018-06-01

    The photooxidation of methyl vinyl ketone (MVK) was investigated in the atmospheric simulation chamber SAPHIR for conditions at which organic peroxy radicals (RO2) mainly reacted with NO (high NO case) and for conditions at which other reaction channels could compete (low NO case). Measurements of trace gas concentrations were compared to calculated concentration time series applying the Master Chemical Mechanism (MCM version 3.3.1). Product yields of methylglyoxal and glycolaldehyde were determined from measurements. For the high NO case, the methylglyoxal yield was (19 ± 3) % and the glycolaldehyde yield was (65 ± 14) %, consistent with recent literature studies. For the low NO case, the methylglyoxal yield reduced to (5 ± 2) % because other RO2 reaction channels that do not form methylglyoxal became important. Consistent with literature data, the glycolaldehyde yield of (37 ± 9) % determined in the experiment was not reduced as much as implemented in the MCM, suggesting additional reaction channels producing glycolaldehyde. At the same time, direct quantification of OH radicals in the experiments shows the need for an enhanced OH radical production at low NO conditions similar to previous studies investigating the oxidation of the parent VOC isoprene and methacrolein, the second major oxidation product of isoprene. For MVK the model-measurement discrepancy was up to a factor of 2. Product yields and OH observations were consistent with assumptions of additional RO2 plus HO2 reaction channels as proposed in literature for the major RO2 species formed from the reaction of MVK with OH. However, this study shows that also HO2 radical concentrations are underestimated by the model, suggesting that additional OH is not directly produced from RO2 radical reactions, but indirectly via increased HO2. Quantum chemical calculations show that HO2 could be produced from a fast 1,4-H shift of the second most important MVK derived RO2 species (reaction rate constant 0.003 s-1). However, additional HO2 from this reaction was not sufficiently large to bring modelled HO2 radical concentrations into agreement with measurements due to the small yield of this RO2 species. An additional reaction channel of the major RO2 species with a reaction rate constant of (0.006 ± 0.004) s-1 would be required that produces concurrently HO2 radicals and glycolaldehyde to achieve model-measurement agreement. A unimolecular reaction similar to the 1,5-H shift reaction that was proposed in literature for RO2 radicals from MVK would not explain product yields for conditions of experiments in this study. A set of H-migration reactions for the main RO2 radicals were investigated by quantum chemical and theoretical kinetic methodologies, but did not reveal a contributing route to HO2 radicals or glycolaldehyde.

  1. GEOCHEMICAL INVESTIGATIONS OF CO₂-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoksoulian, Lois; Berger, Peter; Freiburg, Jared

    Increased output of greenhouse gases, particularly carbon dioxide (CO₂), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO₂ emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin – Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO₂. The Knox Group-Maquoketa Shale reservoir and seal system, locatedmore » stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO₂ without the potential for the release of harmful contaminants liberated by the reaction between CO₂-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (9101–9860 kPa [1320–1430 psi] and 32°–42°C [90°– 108°F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO₂ as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this study suggests only limited potential for the release of United States Environmental Protection Agency regulated inorganic contaminants into potable water sources. Short-term core flood experiments further verify that the carbonate reactions occurring in Knox Group reservoir samples reach equilibrium rapidly. The core flood experiments also lend insight to pressure changes that may occur during CO₂ injection. The Maquoketa Shale experiments reveal that this rock is initially chemically reactive when in contact with CO₂ and brine. However, due to the conservative nature of silicate and clay reaction kinetics and the rapid equilibration of carbonate reactions that occur in the shale, these reactions would not present a significant risk to the competency of the shale as an effective seal rock.« less

  2. Variation in working memory capacity and cognitive control: goal maintenance and microadjustments of control.

    PubMed

    Unsworth, Nash; Redick, Thomas S; Spillers, Gregory J; Brewer, Gene A

    2012-01-01

    Variation in working memory capacity (WMC) and cognitive control was examined in four experiments. In the experiments high- and low-WMC individuals performed a choice reaction time task (Experiment 1), a version of the antisaccade task (Experiment 2), a version of the Stroop task (Experiment 3), and an arrow version of the flanker task (Experiment 4). An examination of response time distributions suggested that high- and low-WMC individuals primarily differed in the slowest responses in each experiment, consistent with the notion that WMC is related to active maintenance abilities. Examination of two indicators of microadjustments of control (posterror slowing and conflict adaptation effects) suggested no differences between high- and low-WMC individuals. Collectively these results suggest that variation in WMC is related to some, but not all, cognitive control operations. The results are interpreted within the executive attention theory of WMC.

  3. Potassium Permanganate as an Alternative for Gold Mining Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Ordiales, M.; Fernández, D.; Verdeja, L. F.; Sancho, J.

    2015-09-01

    The feasibility of using potassium permanganate as a reagent for cyanide oxidation in wastewater was experimentally studied. Both artificial and production wastewater from two different gold mines were tested. The experiments had three goals: determine the optimum reagent concentration and reaction time required to achieve total cyanide removal, obtain knowledge of the reaction kinetics, and improve the management of the amount of reagent. The results indicate that potassium permanganate is an effective and reliable oxidizing agent for the removal of cyanide from gold mining wastewater.

  4. Test of time-reversal invariance at COSY (TRIC)

    NASA Astrophysics Data System (ADS)

    Eversheim, D.; Valdau, Yu.; Lorentz, B.

    2013-03-01

    At the Cooler Synchrotron COSY a novel (P-even, T-odd) null test of time-reversal invariance to an accuracy of 10 - 6 is planned as an internal target transmission experiment. The parity conserving time-reversal violating observable is the total cross-section asymmetry Ay,xz. This quantity is measured using a polarized proton beam with an energy of 135 MeV and an internal tensor polarized deuteron target from the PAX atomic beam source. The reaction rate will be measured by means of an integrating beam current transformer. Thus, in this experiment the cooler synchroton ring serves as ideal forward spectrometer, as a detector, and an accelerator.

  5. Effect of Silicon on Desulfurization of Aluminum-killed Steels

    NASA Astrophysics Data System (ADS)

    Roy, Debdutta

    Recent reports have suggested that silicon has a beneficial effect on the rate of desulfurization of Al-killed steel. This effect is difficult to understand looking at the overall desulfurization reaction which does not include silicon. However an explanation is proposed by taking into account the (SiO2)/[Si] equilibrium in which some Al reaching the slag-metal interface is used in reducing the SiO2 in the slag. This reaction can be suppressed to some extent if the silicon content of the metal is increased and in doing so, more Al will be available at the slag-metal interface for the desulfurization reaction and this would increase the rate of the desulfurization reaction. A model was developed, assuming the rates are controlled by mass transfer, taking into account the coupled reactions of the reduction of silica, and other unstable oxides, namely iron oxide and manganese oxide, in the slag and desulfurization reaction in the steel by aluminum. The model predicts that increasing silicon increases the rate and extent of desulfurization. Plant data was analyzed to obtain rough estimates of ladle desulfurization rates and also used to validate the model predictions. Experiments have been conducted on a kilogram scale of material in an induction furnace to test the hypothesis. The major conclusions of the study are as follows: The rate and extent of desulfurization improve with increasing initial silicon content in the steel; the effect diminishes at silicon contents higher than approximately 0.2% and with increasing slag basicity. This was confirmed with kilogram-scale laboratory experiments. The effects of the silicon content in the steel (and of initial FeO and MnO in the slag) largely arise from the dominant effects of these reactions on the equilibrium aluminum content of the steel: as far as aluminum consumption or pick-up is concerned, the Si/SiO2 reaction dominates, and desulfurization has only a minor effect on aluminum consumption. The rate is primarily controlled by mass transfer in the metal and slag phase mass transfer has a minor effect on the overall desulfurization kinetics. The model results are in agreement with the experimental data for the change in sulfur, silicon and aluminum contents with time which renders credibility to the underlying hypothesis of the kinetic model. Although the change of sulfur content with time is not very sensitive to the activity data source, the change of aluminum and silicon contents with time depend on the activity data source. The experimental results demonstrate that if the silicon content in the steel is high enough, the silicon can reduce the alumina from the slag and thus the steel melt will pick up aluminum. This can cause significant savings in aluminum consumption. For most of the slag compositions used in the experiments, the overall mass transfer is only limited by the steel phase and the slag phase mass transfer can be neglected for most practical cases. Mass balance calculations in the experiments support the basis of the model and also show that with respect to aluminum consumption, silica reduction is the main aluminum consuming (or production) reaction and the desulfurization reaction is only a secondary consumer of aluminum. Results from the plant trials conducted to test the effect of silicon on ladle desulfurization show that the rate and extent of desulfurization increase with the increase of the initial Si content, so in the ladle refining process, adding all the silicon in the beginning with the aluminum and the fluxes will be beneficial and could save considerable processing time at the ladle. The aluminum consumption for the heats with silicon added in the beginning (both in terms of the Al added to the steel and as slag deoxidants) is considerably lower compared to the cases where the silicon is added at the end. However, on a relative cost term, aluminum and silicon are similarly priced so substitution would not offer a major cost advantage.

  6. Auditory perception and the control of spatially coordinated action of deaf and hearing children.

    PubMed

    Savelsbergh, G J; Netelenbos, J B; Whiting, H T

    1991-03-01

    From birth onwards, auditory stimulation directs and intensifies visual orientation behaviour. In deaf children, by definition, auditory perception cannot take place and cannot, therefore, make a contribution to visual orientation to objects approaching from outside the initial field of view. In experiment 1, a difference in catching ability is demonstrated between deaf and hearing children (10-13 years of age) when the ball approached from the periphery or from outside the field of view. No differences in catching ability between the two groups occurred when the ball approached from within the field of view. A second experiment was conducted in order to determine if differences in catching ability between deaf and hearing children could be attributed to execution of slow orientating movements and/or slow reaction time as a result of the auditory loss. The deaf children showed slower reaction times. No differences were found in movement times between deaf and hearing children. Overall, the findings suggest that a lack of auditory stimulation during development can lead to deficiencies in the coordination of actions such as catching which are both spatially and temporally constrained.

  7. Disentangling perceptual from motor implicit sequence learning with a serial color-matching task.

    PubMed

    Gheysen, Freja; Gevers, Wim; De Schutter, Erik; Van Waelvelde, Hilde; Fias, Wim

    2009-08-01

    This paper contributes to the domain of implicit sequence learning by presenting a new version of the serial reaction time (SRT) task that allows unambiguously separating perceptual from motor learning. Participants matched the colors of three small squares with the color of a subsequently presented large target square. An identical sequential structure was tied to the colors of the target square (perceptual version, Experiment 1) or to the manual responses (motor version, Experiment 2). Short blocks of sequenced and randomized trials alternated and hence provided a continuous monitoring of the learning process. Reaction time measurements demonstrated clear evidence of independently learning perceptual and motor serial information, though revealed different time courses between both learning processes. No explicit awareness of the serial structure was needed for either of the two types of learning to occur. The paradigm introduced in this paper evidenced that perceptual learning can occur with SRT measurements and opens important perspectives for future imaging studies to answer the ongoing question, which brain areas are involved in the implicit learning of modality specific (motor vs. perceptual) or general serial order.

  8. Monitoring binding affinity between drug and α1-acid glycoprotein in real time by Venturi easy ambient sonic-spray ionization mass spectrometry.

    PubMed

    Liu, Ning; Lu, Xin; Yang, YuHan; Yao, Chen Xi; Ning, BaoMing; He, Dacheng; He, Lan; Ouyang, Jin

    2015-10-01

    A new approach for monitoring the binding affinity between drugs and alpha 1-acid glycoprotein in real time was developed based on a combination of drug-protein reaction followed by Venturi easy ambient sonic-spray ionization mass spectrometry determination of the free drug concentrations. A known basic drug, propranolol was used to validate the new built method. Binding constant values calculated by venturi easy ambient sonic-spray ionization mass spectrometry was in good accordance with a traditional ultrafiltration combined with high performance liquid chromatography method. Then six types of basic drugs were used as the samples to conduct the real time analysis. Upon injection of alpha 1-acid glycoprotein to the drug mixture, the ion chromatograms were extracted to show the changes in the free drug concentrations in real time. By observing the drop-out of six types of drugs during the whole binding reaction, the binding affinities of different drugs were distinguished. A volume shift validating experiment and an injection delay correcting experiment were also performed to eliminate extraneous factors and verify the reliability of our experiment. Therefore, the features of Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS) and the experimental results indicate that our technique is likely to become a powerful tool for monitoring drug-AGP binding affinity in real time. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Ozone layer depletion simulation in an Environmental Chemistry course.

    NASA Astrophysics Data System (ADS)

    Cano, G. S.; Gavilán, I. C.; Garcia-Reynoso, J. A.; Santos, E.; Mendoza, A.; Perea, B.

    2015-12-01

    The reactions taking place between the ozone (O3) and various compounds present in the stratosphere has been studied extensively. When the balance between these reactions breakdown, destruction of ozone is favored. Here we create an experiment for and Environmental Chemistry laboratory course where students evaluate the ozone behavior by comparing its reactivity to various physical and chemical conditions; and observe the destruction of ozone by the action of halogenated compounds by means of volumetric technic. The conditions used are: (1) Ozone vs. Time; (2) Ozone + UV vs. Time; (3) Ozone + halogenated compound vs. Time; and (4) Ozone + UV + halogenated compound vs. Time. The results show that the O3 breaks down rapidly within about 25 min (Fig). They also explain the chemical reactions that occur in the destruction and generation of the ozone layer and demonstrate ozone depletion through the presence of halogenated compounds. The aim of this work is to bring the knowledge gained from theory into practice and thus the possibility of developing a critical attitude towards various environmental problems that arise today.

  10. Fast Abiotic Production of Methane at Temperatures Below 100°C

    NASA Astrophysics Data System (ADS)

    Etiope, G.; Ionescu, A.

    2015-12-01

    Fischer-Tropsch Type (FTT) reactions, e.g., the Sabatier synthesis between H2 and CO2, are considered a main source of abiotic methane on Earth and likely on other planets. Several laboratory FTT experiments demonstrated abiotic CH4 production at temperatures above 200°C, by using Fe, Ni or Cr catalysts, simulating hydrothermal conditions in peridotite-hosted systems in mid-ocean ridges. Nevertheless, at least on laboratory experiment time-scale, Fe-Ni-Cr catalysts do not support CH4 generation at T<100°C, such as those of land-based serpentinization systems. We have recently reported rapid production of considerable amounts of CH4 (>800 ppmv in 155 mL bottles after 1 day) via Sabatier reaction at 90, 50 and 25°C, using small concentrations of non-pretreated ruthenium (Ru) equivalent to those occurring in chromitites in continental ultramafic rocks (Etiope & Ionescu, 2014; Geofluids, doi:10.1111/gfl.12106). We have repeated the experiments by using 13C-enriched CO2 and we confirm fast production of CH4at percentage levels. The experiments performed so far show that: 1. considerable amounts of CH4can be produced in dry conditions below 100°C with small quantities of Ru; 2. under the same experimental conditions (<100°C), Fe, Ni and Cr oxides do not produce CH4; 3. low T Sabatier reaction can produce CH4 with a large C isotope fractionation between CO2 and CH4, leading to relatively " light" (13C-depleted) CH4, resembling microbial gas; 4. the CO2-CH4isotope separation decreases over time and by increasing the temperature; 5. minor amounts of C2-C6hydrocarbons are also generated. Our laboratory data are compatible with the isotopic patterns of CH4 naturally occurring in land-based seeps and springs. Our experiments suggest that Ru-enriched chromitites could potentially generate CH4 at low T. Since Ru is reported in Martian meteorites, low T abiotic CH4 production on Mars via Sabatier reaction cannot be excluded (Etiope et al. 2013, Icarus, 224, 276-285).

  11. Measurements of Isoprene and its Oxidation Products during the CLOUD9 Experiment

    NASA Astrophysics Data System (ADS)

    Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Coburn, Sean; Volkamer, Rainer; Hansel, Armin

    2015-04-01

    Isoprene (C5H8), being produced and emitted by the biosphere, is by far the dominant biogenic volatile organic compound (BVOC) in the atmosphere. Its complex reaction pathways with OH radicals, O3 and NO3, lead to compounds with lower volatilities and increasing water solubility. The high hydrophilicity allows for easy partitioning between the gas and liquid phase making those compounds good candidates for aqueous phase droplet chemistry that may contribute to particle growth. (Ervens et al., 2008). The CLOUD experiment (Cosmics Leaving Outdoor Droplets) at CERN allows the studying the evolution of particles originating from precursor gases in, in our case isoprene, in an ultraclean and very well controlled environmental chamber. Gas phase concentrations of isoprene and its first reaction products were measured in real-time with a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS, Graus et al., 2010) and Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS, Thalman and Volkamer, 2010). PTR-ToF-MS was calibrated using gas standards with known VOC concentrations. The PTR-ToF-MS was operated with H3O+ and NO+ as primary ions, continuously switching between both operating modes throughout the experiments. The use of different primary ions allows the discrimination of isomeric compounds like the main high NOx oxidation products methyl vinyl ketone (MVK) and methacroleine (MACR). The experiment was conducted at high isoprene concentrations and a constant level of O3. The highly water soluble gas phase oxidation products from the reaction of isoprene with O3 and OH radicals (from isoprene ozonolysis) were investigated and compared for two temperatures (+10 °C and -10 °C) and different NOx concentrations during cloud formation experiments. Here we will present first results of isoprene oxidation products observed with PTR-ToF-MS and CE-DOAS. References Ervens et al. (2008), Geophys. Res. Lett., 35, L02816 Graus et al. (2010), J. Am. Soc. Mass. Spectrom., 21, 1037-1044 Thalman and Volkamer (2010), Atmos. Meas. Tech., 3(6), 2681-2721.

  12. Dissolution Rates and Reaction Products of Olivine Interaction with Ammonia-Rich Fluid

    NASA Astrophysics Data System (ADS)

    Zandanel, A. E.; Truche, L.; Hellmann, R.; Tobie, G.; Marrocchi, Y.

    2018-05-01

    Olivine dissolution rates and reaction products in NH3-rich fluids are determined from experiments simulating H2O-rock interaction on Enceladus. Kinetic rates are calculated from flow through experiments and reaction products from static experiments.

  13. EFFECTS OF THERMAL TREATMENTS ON THE CHEMICAL REACTIVITY OF TRICHLOROETHYLENE

    EPA Science Inventory

    A series of experiments was completed to investigate abiotic degradation and reaction product formation of trichloroethylene (TCE) when heated. A quartz-tube apparatus was used to study short residence time and high temperature conditions that are thought to occur during thermal ...

  14. Water nanoelectrolysis: A simple model

    NASA Astrophysics Data System (ADS)

    Olives, Juan; Hammadi, Zoubida; Morin, Roger; Lapena, Laurent

    2017-12-01

    A simple model of water nanoelectrolysis—defined as the nanolocalization at a single point of any electrolysis phenomenon—is presented. It is based on the electron tunneling assisted by the electric field through the thin film of water molecules (˜0.3 nm thick) at the surface of a tip-shaped nanoelectrode (micrometric to nanometric curvature radius at the apex). By applying, e.g., an electric potential V1 during a finite time t1, and then the potential -V1 during the same time t1, we show that there are three distinct regions in the plane (t1, V1): one for the nanolocalization (at the apex of the nanoelectrode) of the electrolysis oxidation reaction, the second one for the nanolocalization of the reduction reaction, and the third one for the nanolocalization of the production of bubbles. These parameters t1 and V1 completely control the time at which the electrolysis reaction (of oxidation or reduction) begins, the duration of this reaction, the electrolysis current intensity (i.e., the tunneling current), the number of produced O2 or H2 molecules, and the radius of the nanolocalized bubbles. The model is in good agreement with our experiments.

  15. [The validation of kit of reagents for quantitative detection of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode].

    PubMed

    Sil'veĭstrova, O Iu; Domonova, É A; Shipulina, O Iu

    2014-04-01

    The validation of kit of reagents destined to detection and quantitative evaluation of DNA of human cytomegalovirus in biological material using polymerase chain reaction technique in real time operation mode was implemented. The comparison was made against international WHO standard--The first WHO international standard for human cytomegalovirus to implement measures the kit of reagents "AmpliSens CMV-screen/monitor-FL" and standard sample of enterprise DNA HCMV (The central research institute of epidemiology of Rospotrebnadzor) was applied. The fivefold dilution of international WHO standard and standard sample of enterprise were carried out in concentrations of DNA HCMV from 106 to 102. The arrangement of polymerase chain reaction and analysis of results were implemented using programed amplifier with system of detection of fluorescent signal in real-time mode "Rotor-Gene Q" ("Qiagen", Germany). In the total of three series of experiments, all stages of polymerase chain reaction study included, the coefficient of translation of quantitative evaluation of DNA HCMV from copy/ml to ME/ml equal to 0.6 was introduced for this kit of reagents.

  16. Measuring pilot workload in a motion base simulator. III - Synchronous secondary task

    NASA Technical Reports Server (NTRS)

    Kantowitz, Barry H.; Bortolussi, Michael R.; Hart, Sandra G.

    1987-01-01

    This experiment continues earlier research of Kantowitz et al. (1983) conducted in a GAT-1 motion-base trainer to evaluate choice-reaction secondary tasks as measures of pilot work load. The earlier work used an asynchronous secondary task presented every 22 sec regardless of flying performance. The present experiment uses a synchronous task presented only when a critical event occurred on the flying task. Both two- and four-choice visual secondary tasks were investigated. Analysis of primary flying-task results showed no decrement in error for altitude, indicating that the key assumption necessary for using a choice secondary task was satisfied. Reaction times showed significant differences between 'easy' and 'hard' flight scenarios as well as the ability to discriminate among flight tasks.

  17. O+OH-->O(2)+H: A key reaction for interstellar chemistry. New theoretical results and comparison with experiment.

    PubMed

    Lique, F; Jorfi, M; Honvault, P; Halvick, P; Lin, S Y; Guo, H; Xie, D Q; Dagdigian, P J; Kłos, J; Alexander, M H

    2009-12-14

    We report extensive, fully quantum, time-independent (TID) calculations of cross sections at low collision energies and rate constants at low temperatures for the O+OH reaction, of key importance in the production of molecular oxygen in cold, dark, interstellar clouds and in the chemistry of the Earth's atmosphere. Our calculations are compared with TID calculations within the J-shifting approximation, with wave-packet calculations, and with quasiclassical trajectory calculations. The fully quantum TID calculations yield rate constants higher than those from the more approximate methods and are qualitatively consistent with a low-temperature extrapolation of earlier experimental values but not with the most recent experiments at the lowest temperatures.

  18. R/S analysis of reaction time in Neuron Type Test for human activity in civil aviation

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Yan; Kang, Ming-Cui; Li, Jing-Qiang; Liu, Hai-Tao

    2017-03-01

    Human factors become the most serious problem leading to accidents of civil aviation, which stimulates the design and analysis of Neuron Type Test (NTT) system to explore the intrinsic properties and patterns behind the behaviors of professionals and students in civil aviation. In the experiment, normal practitioners' reaction time sequences, collected from NTT, exhibit log-normal distribution approximately. We apply the χ2 test to compute the goodness-of-fit by transforming the time sequence with Box-Cox transformation to cluster practitioners. The long-term correlation of different individual practitioner's time sequence is represented by the Hurst exponent via Rescaled Range Analysis, also named by Range/Standard deviation (R/S) Analysis. The different Hurst exponent suggests the existence of different collective behavior and different intrinsic patterns of human factors in civil aviation.

  19. Chaos control by electric current in an enzymatic reaction.

    PubMed

    Lekebusch, A; Förster, A; Schneider, F W

    1996-09-01

    We apply the continuous delayed feedback method of Pyragas to control chaos in the enzymatic Peroxidase-Oxidase (PO) reaction, using the electric current as the control parameter. At each data point in the time series, a time delayed feedback function applies a small amplitude perturbation to inert platinum electrodes, which causes redox processes on the surface of the electrodes. These perturbations are calculated as the difference between the previous (time delayed) signal and the actual signal. Unstable periodic P1, 1(1), and 1(2) orbits (UPOs) were stabilized in the CSTR (continuous stirred tank reactor) experiments. The stabilization is demonstrated by at least three conditions: A minimum in the experimental dispersion function, the equality of the delay time with the period of the stabilized attractor and the embedment of the stabilized periodic attractor in the chaotic attractor.

  20. [Temporal changes in conscious and unconscious trace phenomena in six to seven-year-old children].

    PubMed

    Fedotchev, A I

    1975-01-01

    Development in time of unconscious trace reactions as well as a change in the time of reproduction of verbal material in natural conditions was studied by the conditioned reflex to time method on 107 school children aged from six to seven years and on 35 subjects of the same age from a kindergarten. It has been found that in schoolchildren the transfer of trace reactions to long-term storage is completed faster, and their voluntary acts in the course of conscious reproduction of an interstimuli intervals are more adequate than in the kindergarten children of the same age. The trace phenomena formed in natural conditions and in the laboratory experiment develop in time in a similar way. The change in time of conscious trace phenomena is of a more complex nature than of the unconscious phenomena. The practical significance of the data obtained is noted.

  1. Tunneling Flight Time, Chemistry, and Special Relativity.

    PubMed

    Petersen, Jakob; Pollak, Eli

    2017-09-07

    Attosecond ionization experiments have not resolved the question "What is the tunneling time?". Different definitions of tunneling time lead to different results. Second, a zero tunneling time for a material particle suggests that the nonrelativistic theory includes speeds greater than the speed of light. Chemical reactions, occurring via tunneling, should then not be considered in terms of a nonrelativistic quantum theory calling into question quantum dynamics computations on tunneling reactions. To answer these questions, we define a new experimentally measurable paradigm, the tunneling flight time, and show that it vanishes for scattering through an Eckart or a square barrier, irrespective of barrier length or height, generalizing the Hartman effect. We explain why this result does not lead to experimental measurement of speeds greater than the speed of light. We show that this tunneling is an incoherent process by comparing a classical Wigner theory with exact quantum mechanical computations.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondy, Lisa Ann; Rao, Rekha Ranjana; Shelden, Bion

    We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions,more » following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.« less

  3. Timing and tracking for the Crystal Barrel detector

    NASA Astrophysics Data System (ADS)

    Beck, Reinhard; Brinkmann, Kai; Novotny, Rainer

    2017-01-01

    The aim of the project D.3 is the upgrade of several detector components used in the CBELSA/TAPS experiment at ELSA. The readout of the Crystal Barrel Calorimeter will be extended by a timing branch in order to gain trigger capability for the detector, which will allow to measure completely neutral final states in photoproduction reactions (see projects A.1 and C.5). Additionally, the readout of the inner crystals of the TAPS detector, which covers the forward opening of the Crystal Barrel Calorimeter, will be modified to be capable of high event rates due to the intensity upgrade of ELSA. Furthermore, a full-scale prototype Time Projection Chamber (TPC) has been built to be used as a new central tracker for the CBELSA/TAPS experiment at ELSA and the FOPI experiment at GSI.

  4. The relation between body semantics and spatial body representations.

    PubMed

    van Elk, Michiel; Blanke, Olaf

    2011-11-01

    The present study addressed the relation between body semantics (i.e. semantic knowledge about the human body) and spatial body representations, by presenting participants with word pairs, one below the other, referring to body parts. The spatial position of the word pairs could be congruent (e.g. EYE / MOUTH) or incongruent (MOUTH / EYE) with respect to the spatial position of the words' referents. In addition, the spatial distance between the words' referents was varied, resulting in word pairs referring to body parts that are close (e.g. EYE / MOUTH) or far in space (e.g. EYE / FOOT). A spatial congruency effect was observed when subjects made an iconicity judgment (Experiments 2 and 3) but not when making a semantic relatedness judgment (Experiment 1). In addition, when making a semantic relatedness judgment (Experiment 1) reaction times increased with increased distance between the body parts but when making an iconicity judgment (Experiments 2 and 3) reaction times decreased with increased distance. These findings suggest that the processing of body-semantics results in the activation of a detailed visuo-spatial body representation that is modulated by the specific task requirements. We discuss these new data with respect to theories of embodied cognition and body semantics. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    PubMed Central

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar–similar (e.g., “apple is to orange as dog is to cat”) versus different–different (e.g., “he is to his brother as chalk is to cheese”) derived relational responding, in both speed-contingent and speed-noncontingent conditions. Experiment 2 examined the event-related potentials (ERPs) associated with these two response patterns. Both experiments showed similar–similar responding to be significantly faster than different–different responding. Experiment 2 revealed significant differences between the waveforms of the two response patterns in the left-hemispheric prefrontal regions; different–different waveforms were significantly more negative than similar–similar waveforms. The behavioral and neurophysiological data support the RFT prediction that, all things being equal, similar–similar responding is relationally “simpler” than, and functionally distinct from, different–different analogical responding. The ERP data were fully consistent with findings in the neurocognitive literature on analogy. These findings strengthen the validity of the RFT model of analogical reasoning and supplement the behavior-analytic approach to analogy based on the relating of derived relations. PMID:16596974

  6. Pain perception in people with Down syndrome: a synthesis of clinical and experimental research

    PubMed Central

    McGuire, Brian E.; Defrin, Ruth

    2015-01-01

    People with an intellectual disability experience both acute and chronic pain with at least the same frequency as the general population. However, considerably less is known about the pain perception of people with Down syndrome. In this review paper, we evaluated the available clinical and experimental evidence. Some experimental studies of acute pain have indicated that pain threshold was higher than normal but only when using a reaction time method to measure pain sensitivity. However, when reaction time is not part of the calculation of the pain threshold, pain sensitivity in people with Down syndrome is in fact lower than normal (more sensitive to pain). Clinical studies of chronic pain have shown that people with an intellectual disability experience chronic pain and within that population, people with Down syndrome also experience chronic pain, but the precise prevalence of chronic pain in Down syndrome has yet to be established. Taken together, the literature suggests that people with Down syndrome experience pain, both acute and chronic, with at least the same frequency as the rest of the population. Furthermore, the evidence suggests that although acute pain expression appears to be delayed, once pain is registered, there appears to be a magnified pain response. We conclude by proposing an agenda for future research in this area. PMID:26283936

  7. The kinetics of lanthanide complexation by EDTA and DTPA in lactate media.

    PubMed

    Nash, K L; Brigham, D; Shehee, T C; Martin, A

    2012-12-28

    The interaction of trivalent lanthanide and actinide cations with polyaminopolycarboxylic acid complexing agents in lactic acid buffer systems is an important feature of the chemistry of the TALSPEAK process for the separation of trivalent actinides from lanthanides. To improve understanding of metal ion coordination chemistry in this process, the results of an investigation of the kinetics of lanthanide complexation by ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) and diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) in 0.3 M lactic acid/0.3 M ionic strength solution are reported. Progress of the reaction was monitored using the distinctive visible spectral changes attendant to lanthanide complexation by the colorimetric indicator ligand Arsenazo III, which enables the experiment but plays no mechanistic role. Under the conditions of these experiments, the reactions occur in a time regime suitable for study by stopped-flow spectrophotometric techniques. Experiments have been conducted as a function of EDTA/DTPA ligand concentration, total lactic acid concentration, and pH. The equilibrium perturbation reaction proceeds as a first order approach to equilibrium over a wide range of conditions, allowing the simultaneous determination of complex formation and dissociation rate constants. The rate of the complexation reaction has been determined for the entire lanthanide series (except Pm(3+)). The predominant pathway for lanthanide-EDTA and lanthanide-DTPA dissociation is inversely dependent on the total lactate concentration; the complex formation reaction demonstrates a direct dependence on [H(+)]. Unexpectedly, the rate of the complex formation reaction is seen in both ligand systems to be fastest for Gd(3+). Correlation of these results indicates that in 0.3 M lactate solutions the exchange of lanthanide ions between lactate complexes and the polyaminopolycarboxylate govern the process.

  8. Perception while watching movies: Effects of physical screen size and scene type

    PubMed Central

    Troscianko, Tom; Meese, Timothy S.; Hinde, Stephen

    2012-01-01

    Over the last decade, television screens and display monitors have increased in size considerably, but has this improved our televisual experience? Our working hypothesis was that the audiences adopt a general strategy that “bigger is better.” However, as our visual perceptions do not tap directly into basic retinal image properties such as retinal image size (C. A. Burbeck, 1987), we wondered whether object size itself might be an important factor. To test this, we needed a task that would tap into the subjective experiences of participants watching a movie on different-sized displays with the same retinal subtense. Our participants used a line bisection task to self-report their level of “presence” (i.e., their involvement with the movie) at several target locations that were probed in a 45-min section of the movie “The Good, The Bad, and The Ugly.” Measures of pupil dilation and reaction time to the probes were also obtained. In Experiment 1, we found that subjective ratings of presence increased with physical screen size, supporting our hypothesis. Face scenes also produced higher presence scores than landscape scenes for both screen sizes. In Experiment 2, reaction time and pupil dilation results showed the same trends as the presence ratings and pupil dilation correlated with presence ratings, providing some validation of the method. Overall, the results suggest that real-time measures of subjective presence might be a valuable tool for measuring audience experience for different types of (i) display and (ii) audiovisual material. PMID:23145293

  9. Determination of detonation parameters for liquid High Explosives

    NASA Astrophysics Data System (ADS)

    Mochalova, Valentina; Utkin, Alexander

    2011-06-01

    The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. Von Neumann spike was recorded for these HE and its parameters were determined. The different methods for C-J point determination were used for each HE. For FEFO reaction time τ was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ~ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ~ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump and induction time was not recorded.

  10. Preparation of the oligosaccharides derived from Flammulina velutipes and their antioxidant activities.

    PubMed

    Xia, Zhenqiang

    2015-03-15

    The oligosaccharides were prepared from Flammulina velutipes by hydrolysis of F. velutipes polysaccharides with hydrogen peroxide (H2O2). The yields of F. velutipes derived oligosaccharides (FVOs) were monitored during the hydrolysis process. FVOs yields were affected by three factors, i.e. reaction temperature, H2O2 concentration, and time, which were optimized by using an orthogonal design experiments as follows: reaction temperature 70°C, H2O2 concentration 3%, and reaction time 6h. Under these optimum conditions, the maximal yield of the oligosaccharides reached 17.10%, which was higher than that of hot water extraction method. The oligosaccharides were partially characterized by Fourier transform infrared spectrum, monosaccharide composition, and antioxidant activity. The results indicate that the oligosaccharides derived from F. velutipes showed strong hydroxyl radical activity and reducing capacity at the concentration of 100 μg/mL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. DANCE : Device for Measurement of (n.g.) Reactions on radioactive Species /

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlin, E. P.; Dragowsky, M.; Fowler, Malcolm M.

    2001-01-01

    DANCE (Device for Advanced Neutron Capture Experiments) is a 4{pi} 162 element BaF{sub 2} array under development at Los Alamos National Laboratory. It is designed to provide high granularity, fast timing and high photon detection efficiency. It will be located at the Los Alamos Neutron Scattering Center where neutrons are produced using 800 MeV proton induced spallation reactions on heavy element production targets. Using the pulsed high neutron fluence available at this facility combined with time of flight techniques it will be possible to make neutron capture measurements in the neutron energy range from eV to 100's of keV onmore » rare and radioactive target material at the milligram and below level. These measurements will provide critically needed data for the interpretation of the astrophysical s-process 'branching point' nuclei as well as information for reactions needed in understanding transmutation processes of radioactive species.« less

  12. Time course of anger and other emotions in women with borderline personality disorder: a preliminary study.

    PubMed

    Jacob, Gitta A; Guenzler, Cindy; Zimmermann, Sabine; Scheel, Corinna N; Rüsch, Nicolas; Leonhart, Rainer; Nerb, Josef; Lieb, Klaus

    2008-09-01

    Borderline personality disorder (BPD) is characterized by emotional dysregulation including strong emotional reactions to emotional stimuli and a slow return to baseline emotions. Difficulties controlling anger are particularly prominent in BPD. To experimentally test emotional dysregulation with a special focus on anger, we investigated whether a standardized anger induction by a short story caused stronger and prolonged anger reactions in women with BPD (n=27) as compared to female healthy controls (n=26) and whether other emotions were affected by the anger induction. Although the anger reaction was not stronger in the BPD group, it was significantly prolonged. The BPD group showed also stronger negative emotions over the whole experiment. The study is the first to demonstrate prolonged anger reactions in BPD patients in an experimental setting.

  13. A study of the reaction Li+HCl by the technique of time-resolved laser-induced fluorescence spectroscopy of Li (2 2PJ-2 2S1/2, λ=670.7 nm) between 700 and 1000 K

    NASA Astrophysics Data System (ADS)

    Plane, John M. C.; Saltzman, Eric S.

    1987-10-01

    A kinetic study is presented of the reaction between lithium atoms and hydrogen chloride over the temperature range 700-1000 K. Li atoms are produced in an excess of HCl and He bath gas by pulsed photolysis of LiCl vapor. The concentration of the metal atoms is then monitored in real time by the technique of laser-induced fluorescence of Li atoms at λ=670.7 nm using a pulsed nitrogen-pumped dye laser and box-car integration of the fluorescence signal. Absolute second-order rate constants for this reaction have been measured at T=700, 750, 800, and 900 K. At T=1000 K the reverse reaction is sufficiently fast that equilibrium is rapidly established on the time scale of the experiment. A fit of the data between 700 and 900 K to the Arrhenius form, with 2σ errors calculated from the absolute errors in the rate constants, yields k(T)=(3.8±1.1)×10-10 exp[-(883±218)/T] cm3 molecule-1 s-1. This result is interpreted through a modified form of collision theory which is constrained to take account of the conservation of total angular momentum during the reaction. Thereby we obtain an estimate for the reaction energy threshold, E0=8.2±1.4 kJ mol-1 (where the error arises from uncertainty in the exothermicity of the reaction), in very good agreement with a crossed molecular beam study of the title reaction, and substantially lower than estimates of E0 from both semiempirical and ab initio calculations of the potential energy surface.

  14. Mechanism to preserve phrenic nerve function during photosensitization reaction: drug uptake and photosensitization reaction effect on electric propagation

    NASA Astrophysics Data System (ADS)

    Takahashi, Haruka; Hamada, Risa; Ogawa, Emiyu; Arai, Tsunenori

    2018-02-01

    To study a mechanism of phrenic nerve preservation phenomena during a photosensitization reaction, we investigated an uptake of talaporfin sodium and photosensitization reaction effect on an electric propagation. Right phrenic nerve was completely preserved after superior vena cava isolations using the photosensitization reaction in canine animal experiments, in spite of adjacent myocardium was electrically blocked. We predicted that low drug uptake and/or low photosensitization reaction effect on the nerve might be a mechanism of that phenomena. To investigate uptake to various nerve tissue, a healthy extracted crayfish ventral nerve cord and an extracted porcine phrenic nerve were immersed in 20 μg/ml talaporfin sodium solution for 0-240 min. The mean talaporfin sodium fluorescence brightness increased depending on the immersion time. This brightness saturated around the immersion time of 120 min. We found that talaporfin sodium uptake inside the perineurium which directly related to the electric propagation function was lower than that of outside in the porcine phrenic nerve. To investigate photosensitization reaction effect on electric propagation, the crayfish nerve was immersed into the same solution for 15 min and irradiated by a 663 nm laser light with 120 mW/cm2. Since we found the action potential disappeared when the irradiation time was 25-65 s, we consider that the crayfish nerve does not tolerant to the photosensitization reaction on electric propagation function at atmospheric pressure. From these results, we think that the low uptake of talaporfin sodium inside the perineurium and low oxygen partial pressure of nerve might be the possible mechanism to preserve phrenic nerve in vivo.

  15. Polymerization of amino acids under high-pressure conditions: Implication to chemical evolution on the early Earth

    NASA Astrophysics Data System (ADS)

    Kakegawa, T.; Ohara, S.; Ishiguro, T.; Abiko, H.; Nakazawa, H.

    2008-12-01

    Prebiotic polymerization of amino acids is the most fundamental reaction to promote the chemical evolution for origin of life. Polymerization of amino acids is the dehydration reaction. This questions as to if submarine hydrothermal conditions, thus hydrated enironments, were appropreate for peptide formations. Our previous experiments implied that non-aqueous and high-pressure environments (more than 20 MPa) would be suitable for polymerization of amino acids (Ohara et al., 2006). This leads to the hypothesis that the first peptides may have formed in the Hadean oceanic crustal environments, where dehydration proceeded with availability of appropriate temperatures and pressures. In the present study, experiments simulating the crustal conditions were performed with various pressures (1-175 MPa) and temperatures (100- 200 C degree) using autoclaves. Purified powders (100 mg) of alanine, glycine, valine and aspartic acid were used in the experiments without mixing water in order to examine the solid-solid reactions. The products were analyzed using HPLC and LC-MS. Results indicate that: (1) longer time is required to form peptide compared to those of previous aqueous experiments; (2) pressure has a role to limit the production of melanoidine and cyclic amino acids, which are inhibitors for elongation of peptides; (3) glycine was polymerized up to 11-mer, which was not formed in any previous experiments without catalyses; (4) valine was polymerized up to 3-mer; and (5) aspartic acid was polymerized to 4-mer, accompanied with production of other amino acids. It is noteworthy that high-pressure environments favor all examined polymerization reactions. Such situations would have happened inside of deep oceanic crusts of the early Earth.

  16. Ultrasound augmented leaching of nickel sulfate in sulfuric acid and hydrogen peroxide media.

    PubMed

    Li, Haoyu; Li, Shiwei; Peng, Jinhui; Srinivasakannan, Chandrasekar; Zhang, Libo; Yin, Shaohua

    2018-01-01

    A new method of preparation high purity nickel sulfate assisted by ultrasonic was studied. The process mechanism was analyzed by Inductively Coupled Plasma (ICP), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectrometry (EDS).The reaction mechanisms of oxidizing leaching and ultrasonic leaching were explored, respectively. Results showed that ultrasonic treatment peel off the oxide film on the surface of nickel. The leachate under strongly agitated, the yield rate of nickel sulfate was accelerate. And the reaction area was increased by the cavitation effect, the liquid-solid reaction was promoted, and the activation energy was reduced. The leaching rate of nickel reached 46.29% by conventional leaching, which takes about 5h. Under the same conditions, the ultrasonic leaching rate reached 40%, only half of the conventional leaching time. Concentration of leaching agent, reaction temperature, ultrasonic power, leaching time had significant effect on the enhancement of the leaching reaction with ultrasonic radiation. The leaching rate of 60.41% under the optimum experiment conditions as follows: sulfuric acid concentration 30%, hydrogen peroxide 10%, leaching temperature 333K, ultrasonic power 200W and leaching time 4h. The kinetic study of the system was investigated, and the reaction rates of conventional leaching and ultrasonic leaching were controlled by diffusion, and the apparent activation energies were 16.2kJ/mol and 11.83kJ/mol. Copyright © 2017. Published by Elsevier B.V.

  17. Direct and Efficient Dehydrogenation of Tetrahydroquinolines and Primary Amines Using Corona Discharge Generated on Ambient Hydrophobic Paper Substrate.

    PubMed

    Davis, Kathryn M; Badu-Tawiah, Abraham K

    2017-04-01

    The exposure of an aqueous-based liquid drop containing amines and graphite particles to plasma generated by a corona discharge results in heterogeneous aerobic dehydrogenation reactions. This green oxidation reaction occurring in ambient air afforded the corresponding quinolines and nitriles from tetrahydroquinolines and primary amines, respectively, at >96% yields in less than 2 min of reaction time. The accelerated dehydrogenation reactions occurred on the surface of a low energy hydrophobic paper, which served both as container for holding the reacting liquid drop and as a medium for achieving paper spray ionization of reaction products for subsequent characterization by ambient mass spectrometry. Control experiments indicate superoxide anions (O 2 •- ) are the main reactive species; the presence of graphite particles introduced heterogeneous surface effects, and enabled the efficient sampling of the plasma into the grounded analyte droplet solution. Graphical Abstract ᅟ.

  18. A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2015-09-01

    In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Direct and Efficient Dehydrogenation of Tetrahydroquinolines and Primary Amines Using Corona Discharge Generated on Ambient Hydrophobic Paper Substrate

    NASA Astrophysics Data System (ADS)

    Davis, Kathryn M.; Badu-Tawiah, Abraham K.

    2017-04-01

    The exposure of an aqueous-based liquid drop containing amines and graphite particles to plasma generated by a corona discharge results in heterogeneous aerobic dehydrogenation reactions. This green oxidation reaction occurring in ambient air afforded the corresponding quinolines and nitriles from tetrahydroquinolines and primary amines, respectively, at >96% yields in less than 2 min of reaction time. The accelerated dehydrogenation reactions occurred on the surface of a low energy hydrophobic paper, which served both as container for holding the reacting liquid drop and as a medium for achieving paper spray ionization of reaction products for subsequent characterization by ambient mass spectrometry. Control experiments indicate superoxide anions (O2 •-) are the main reactive species; the presence of graphite particles introduced heterogeneous surface effects, and enabled the efficient sampling of the plasma into the grounded analyte droplet solution.

  20. Chemical kinetic reaction mechanism for the combustion of propane

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1984-01-01

    A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.

  1. Latent curing systems stabilized by reaction equilibrium in homogeneous mixtures of benzoxazine and amine

    PubMed Central

    Wang, Jun; Xu, Ya Zhen; Fu, Ya Fei; Liu, Xiang Dong

    2016-01-01

    Latent curing systems are widely used in industrial thermosets in applications such as adhesion, coating, and composites. Despite many attempts to improve the practicality of this dormant reaction system, the majority of commercially available latent products still use particulate hardeners or liquid compounds with blocked active groups. These formulations generally lack fluidity or rapid reaction characteristics and thus are problematic in some industry applications. Here we describe a novel concept that stabilizes highly reactive benzoxazine/amine mixtures by reaction equilibrium. These new latent benzoxazine curing systems have a long storable lifetime but very short gel time at 150 °C. The reversible reaction between benzoxazine and amine is further demonstrated by FT-IR spectral measurements and rheological experiments, and it is shown that the overall characteristics of the latent system are promising for many industrial applications. PMID:27917932

  2. Development of interactive graphic user interfaces for modeling reaction-based biogeochemical processes in batch systems with BIOGEOCHEM

    NASA Astrophysics Data System (ADS)

    Chang, C.; Li, M.; Yeh, G.

    2010-12-01

    The BIOGEOCHEM numerical model (Yeh and Fang, 2002; Fang et al., 2003) was developed with FORTRAN for simulating reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions in batch systems. A complete suite of reactions including aqueous complexation, adsorption/desorption, ion-exchange, redox, precipitation/dissolution, acid-base reactions, and microbial mediated reactions were embodied in this unique modeling tool. Any reaction can be treated as fast/equilibrium or slow/kinetic reaction. An equilibrium reaction is modeled with an implicit finite rate governed by a mass action equilibrium equation or by a user-specified algebraic equation. A kinetic reaction is modeled with an explicit finite rate with an elementary rate, microbial mediated enzymatic kinetics, or a user-specified rate equation. None of the existing models has encompassed this wide array of scopes. To ease the input/output learning curve using the unique feature of BIOGEOCHEM, an interactive graphic user interface was developed with the Microsoft Visual Studio and .Net tools. Several user-friendly features, such as pop-up help windows, typo warning messages, and on-screen input hints, were implemented, which are robust. All input data can be real-time viewed and automated to conform with the input file format of BIOGEOCHEM. A post-processor for graphic visualizations of simulated results was also embedded for immediate demonstrations. By following data input windows step by step, errorless BIOGEOCHEM input files can be created even if users have little prior experiences in FORTRAN. With this user-friendly interface, the time effort to conduct simulations with BIOGEOCHEM can be greatly reduced.

  3. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  4. An Experiment to Illustrate the Hazards of Exothermic Reaction Scale-Up

    ERIC Educational Resources Information Center

    Clark, William; Lei, Melinda; Kirichenko, Erika; Dickerson, Kellie; Prytko, Robert

    2017-01-01

    Exothermic reactions can present safety hazards and there is a recognized need for reaction safety education at the undergraduate level. We present an experiment that illustrates the pitfall of direct scale-up of an exothermic reaction that can lead to thermal runaway. The iodide-catalyzed hydrogen peroxide decomposition reaction yields…

  5. Enhancement of force patterns classification based on Gaussian distributions.

    PubMed

    Ertelt, Thomas; Solomonovs, Ilja; Gronwald, Thomas

    2018-01-23

    Description of the patterns of ground reaction force is a standard method in areas such as medicine, biomechanics and robotics. The fundamental parameter is the time course of the force, which is classified visually in particular in the field of clinical diagnostics. Here, the knowledge and experience of the diagnostician is relevant for its assessment. For an objective and valid discrimination of the ground reaction force pattern, a generic method, especially in the medical field, is absolutely necessary to describe the qualities of the time-course. The aim of the presented method was to combine the approaches of two existing procedures from the fields of machine learning and the Gauss approximation in order to take advantages of both methods for the classification of ground reaction force patterns. The current limitations of both methods could be eliminated by an overarching method. Twenty-nine male athletes from different sports were examined. Each participant was given the task of performing a one-legged stopping maneuver on a force plate from the maximum possible starting speed. The individual time course of the ground reaction force of each subject was registered and approximated on the basis of eight Gaussian distributions. The descriptive coefficients were then classified using Bayesian regulated neural networks. The different sports served as the distinguishing feature. Although the athletes were all given the same task, all sports referred to a different quality in the time course of ground reaction force. Meanwhile within each sport, the athletes were homogeneous. With an overall prediction (R = 0.938) all subjects/sports were classified correctly with 94.29% accuracy. The combination of the two methods: the mathematical description of the time course of ground reaction forces on the basis of Gaussian distributions and their classification by means of Bayesian regulated neural networks, seems an adequate and promising method to discriminate the ground reaction forces without any loss of information. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Emory Ming-Yue

    2006-01-01

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystalmore » diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag 2Se nanocrystal cation exchange reaction are measured insitu with micro-X-ray Absorption Spectroscopy in silicon microreactorsspecifically designed for rapid mixing and time-resolved X-rayspectroscopy. These results demonstrate that microreactors are valuablefor controlling and characterizing a wide range of reactions in nLvolumes even when nanoscale particles, high temperatures, causticreagents, and rapid time scales are involved. These experiments providethe foundation for future microfluidic investigations into the mechanismsof nanocrystal growth, crystal phase evolution, and heterostructureassembly.« less

  7. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2011-07-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane) and supercooled (brassidic acid and 2-octyldodecanoic acid) organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  8. HIV Status Disclosure in the Workplace: Positive and Stigmatizing Experiences of Health Care Workers Living with HIV.

    PubMed

    Stutterheim, Sarah E; Brands, Ronald; Baas, Ineke; Lechner, Lilian; Kok, Gerjo; Bos, Arjan E R

    We explored workplace experiences of 10 health care providers with HIV in the Netherlands. We used semi-structured interviews to discuss motivations for disclosure and concealment, reactions to disclosures, the impact of reactions, and coping with negative reactions. Reasons for disclosure were wanting to share the secret, expecting positive responses, observing positive reactions to others, wanting to prevent negative reactions, and being advised to disclose. Reasons for concealment included fearing negative reactions, observing negative reactions, previous negative experiences, having been advised to conceal, and considering disclosure unnecessary. Positive reactions included seeing HIV as a nonissue; showing interest, support, and empathy; and maintaining confidentiality. Negative reactions included management wanting to inform employees, work restrictions, hiring difficulties, gossip, and hurtful comments, resulting in participants being upset, taken aback, angry, depressed, or feeling resignation. Participants coped by providing information, standing above the experience, attributing reactions to ignorance, seeking social support, or leaving their jobs. Copyright © 2017 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  9. Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times

    NASA Technical Reports Server (NTRS)

    Slack, M. W.

    1977-01-01

    Shock tube experiments measured hydrogen-air induction times near the second explosion limit. By matching these experimental results with numerically predicted induction times, the rate coefficient for the reaction H + O2 + M = HO2 + M was evaluated as k-sub 4,N2 = 3.3 (plus or minus .6) x 10 to the 15 cm to the 6th/sq mole/s.

  10. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology.

    PubMed

    Sun, Wen-Jing; Zhao, Hong-Xia; Cui, Feng-Jie; Li, Yun-Hong; Yu, Si-Lian; Zhou, Qiang; Qian, Jing-Ya; Dong, Ying

    2013-07-08

    Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid's oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One-factor-at-a-time experiments and response surface methodology (RSM). The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from "one-factor-at-a-time" experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time. The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives.

  11. Family structure and posttraumatic stress reactions: a longitudinal study using multilevel analyses

    PubMed Central

    2011-01-01

    Background There is limited research on the relevance of family structures to the development and maintenance of posttraumatic stress following disasters. We longitudinally studied the effects of marital and parental statuses on posttraumatic stress reactions after the 2004 Southeast Asian tsunami and whether persons in the same households had more shared stress reactions than others. Method The study included a tourist population of 641 Norwegian adult citizens, many of them from families with children. We measured posttraumatic stress symptoms with the Impact of Event Scale-Revised at 6 months and 2 years post-disaster. Analyses included multilevel methods with mixed effects models. Results Results showed that neither marital nor parental status was significantly related to posttraumatic stress. At both assessments, adults living in the same household reported levels of posttraumatic stress that were more similar to one another than adults who were not living together. Between households, disaster experiences were closely related to the variance in posttraumatic stress symptom levels at both assessments. Within households, however, disaster experiences were less related to the variance in symptom level at 2 years than at 6 months. Conclusions These results indicate that adult household members may influence one another's posttraumatic stress reactions as well as their interpretations of the disaster experiences over time. Our findings suggest that multilevel methods may provide important information about family processes after disasters. PMID:22171549

  12. Rushed, unhappy, and drained: an experience sampling study of relations between time pressure, perceived control, mood, and emotional exhaustion in a group of accountants.

    PubMed

    Teuchmann, K; Totterdell, P; Parker, S K

    1999-01-01

    Experience sampling methodology was used to examine how work demands translate into acute changes in affective response and thence into chronic response. Seven accountants reported their reactions 3 times a day for 4 weeks on pocket computers. Aggregated analysis showed that mood and emotional exhaustion fluctuated in parallel with time pressure over time. Disaggregated time-series analysis confirmed the direct impact of high-demand periods on the perception of control, time pressure, and mood and the indirect impact on emotional exhaustion. A curvilinear relationship between time pressure and emotional exhaustion was shown. The relationships between work demands and emotional exhaustion changed between high-demand periods and normal working periods. The results suggest that enhancing perceived control may alleviate the negative effects of time pressure.

  13. Individual and Developmental Differences in Cognitive-Processing Components of Mental Ability

    ERIC Educational Resources Information Center

    Keating, Daniel P.; Bobbitt, Bruce L.

    1978-01-01

    Three experiments (simple versus choice reaction time, Posner letter identification, and Sternberg memory scanning) attempted to determine whether reliable individual differences in cognitive processing exist in children and, if so, whether these differences are systematically related to age and ability. (Author/JMB)

  14. Real-Time Optical Monitoring of Flow Kinetics and Gas Phase Reactions Under High-Pressure OMCVD Conditions

    NASA Technical Reports Server (NTRS)

    Dietz, N.; McCall, S.; Bachmann, K. J.

    2001-01-01

    This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.

  15. High utilization ratio of metal organic sources for MOCVD-derived GdYBCO films based on a narrow channel reaction chamber

    NASA Astrophysics Data System (ADS)

    Zhao, Ruipeng; Liu, Qing; Xia, Yudong; Tang, Hao; Lu, Yuming; Cai, Chuanbing; Tao, Bowan; Li, Yanrong

    2018-01-01

    A narrow channel reaction chamber is designed in our home-made MOCVD system and applied to deposit GdYBCO films on the template of LaMnO3/epitaxial MgO/IBAD-MgO/solution deposition planarization-Y2O3-buffered Hastelloy tapes. In the reaction chamber, metal organic sources are transferred from the inlet to the outlet along the direction of the tape movement. Thus, compared to the vertical injection way of metal organic sources, the residence time of metal organic sources on the surface of substrates would be extended through adopting the novel reaction chamber. Therefore, the utilization of metal organic sources, which is calculated according to the measured results of experiments, can reach 31%. Additionally, the utilization ratio of metal organic sources based on the novel reaction chamber is basically two times as much as that of the commonly used vertical injection slit shower. What is more, through adjusting the process, the critical current density of 300 nm thick GdYBCO film prepared the reel-to-reel way has reached 3.2 MA cm-2 (77 K, 0 T).

  16. Initiation reactions in acetylene pyrolysis

    DOE PAGES

    Zador, Judit; Fellows, Madison D.; Miller, James A.

    2017-05-10

    In gas-phase combustion systems the interest in acetylene stems largely from its role in molecular weight growth processes. The consensus is that above 1500 K acetylene pyrolysis starts mainly with the homolytic fission of the C–H bond creating an ethynyl radical and an H atom. However, below ~1500 K this reaction is too slow to initiate the chain reaction. It has been hypothesized that instead of dissociation, self-reaction initiates this process. Nevertheless, rigorous theoretical or direct experimental evidence is lacking, to an extent that even the molecular mechanism is debated in the literature. In this work we use rigorous abmore » initio transition-state theory master equation methods to calculate pressure- and temperature-dependent rate coefficients for the association of two acetylene molecules and related reactions. We establish the role of vinylidene, the high-energy isomer of acetylene in this process, compare our results with available experimental data, and assess the competition between the first-order and second-order initiation steps. As a result, we also show the effect of the rapid isomerization among the participating wells and highlight the need for time-scale analysis when phenomenological rate coefficients are compared to observed time scales in certain experiments.« less

  17. Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.

    PubMed

    Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A

    2013-02-21

    A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.

  18. Impact of Automation on Drivers' Performance in Agricultural Semi-Autonomous Vehicles.

    PubMed

    Bashiri, B; Mann, D D

    2015-04-01

    Drivers' inadequate mental workload has been reported as one of the negative effects of driving assistant systems and in-vehicle automation. The increasing trend of automation in agricultural vehicles raises some concerns about drivers' mental workload in such vehicles. Thus, a human factors perspective is needed to identify the consequences of such automated systems. In this simulator study, the effects of vehicle steering task automation (VSTA) and implement control and monitoring task automation (ICMTA) were investigated using a tractor-air seeder system as a case study. Two performance parameters (reaction time and accuracy of actions) were measured to assess drivers' perceived mental workload. Experiments were conducted using the tractor driving simulator (TDS) located in the Agricultural Ergonomics Laboratory at the University of Manitoba. Study participants were university students with tractor driving experience. According to the results, reaction time and number of errors made by drivers both decreased as the automation level increased. Correlations were found among performance parameters and subjective mental workload reported by the drivers.

  19. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy.

    PubMed

    Treff, Nathan R; Scott, Richard T

    2013-03-15

    Embryonic comprehensive chromosomal euploidy may represent a powerful biomarker to improve the success of IVF. However, there are a number of aneuploidy screening strategies to consider, including different technologic platforms with which to interrogate the embryonic DNA, and different embryonic developmental stages from which DNA can be analyzed. Although there are advantages and disadvantages associated with each strategy, a series of experiments producing evidence of accuracy, safety, clinical predictive value, and clinical efficacy indicate that trophectoderm biopsy and quantitative real-time polymerase chain reaction (qPCR)-based comprehensive chromosome screening (CCS) may represent a useful strategy to improve the success of IVF. This Biomarkers in Reproductive Medicine special issue review summarizes the accumulated experience with the development and clinical application of a 4-hour blastocyst qPCR-based CCS technology. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Rethinking fast and slow based on a critique of reaction-time reverse inference

    PubMed Central

    Krajbich, Ian; Bartling, Björn; Hare, Todd; Fehr, Ernst

    2015-01-01

    Do people intuitively favour certain actions over others? In some dual-process research, reaction-time (RT) data have been used to infer that certain choices are intuitive. However, the use of behavioural or biological measures to infer mental function, popularly known as ‘reverse inference', is problematic because it does not take into account other sources of variability in the data, such as discriminability of the choice options. Here we use two example data sets obtained from value-based choice experiments to demonstrate that, after controlling for discriminability (that is, strength-of-preference), there is no evidence that one type of choice is systematically faster than the other. Moreover, using specific variations of a prominent value-based choice experiment, we are able to predictably replicate, eliminate or reverse previously reported correlations between RT and selfishness. Thus, our findings shed crucial light on the use of RT in inferring mental processes and strongly caution against using RT differences as evidence favouring dual-process accounts. PMID:26135809

  1. Simulator Evaluation of Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Elliott, Dawn M.

    2001-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2500 ft. This report describes the AILS operational concept and the results of a ground-based flight simulation experiment of one implementation of this concept. The focus of this simulation experiment was to evaluate pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which all aircraft oil one approach intrudes into the path of an aircraft oil the other approach. Results from this study showed that the design-goal mean miss-distance of 1200 ft to potential collision situations was surpassed with an actual mean miss-distance of 2236 ft. Pilot reaction times to the alerting system, which was an operational concern, averaged 1.11 sec, well below the design-goal reaction time 2.0 sec.These quantitative results and pilot subjective data showed that the AILS concept is reasonable from an operational standpoint.

  2. Rethinking fast and slow based on a critique of reaction-time reverse inference.

    PubMed

    Krajbich, Ian; Bartling, Björn; Hare, Todd; Fehr, Ernst

    2015-07-02

    Do people intuitively favour certain actions over others? In some dual-process research, reaction-time (RT) data have been used to infer that certain choices are intuitive. However, the use of behavioural or biological measures to infer mental function, popularly known as 'reverse inference', is problematic because it does not take into account other sources of variability in the data, such as discriminability of the choice options. Here we use two example data sets obtained from value-based choice experiments to demonstrate that, after controlling for discriminability (that is, strength-of-preference), there is no evidence that one type of choice is systematically faster than the other. Moreover, using specific variations of a prominent value-based choice experiment, we are able to predictably replicate, eliminate or reverse previously reported correlations between RT and selfishness. Thus, our findings shed crucial light on the use of RT in inferring mental processes and strongly caution against using RT differences as evidence favouring dual-process accounts.

  3. A highly versatile automatized setup for quantitative measurements of PHIP enhancements

    NASA Astrophysics Data System (ADS)

    Kiryutin, Alexey S.; Sauer, Grit; Hadjiali, Sara; Yurkovskaya, Alexandra V.; Breitzke, Hergen; Buntkowsky, Gerd

    2017-12-01

    The design and application of a versatile and inexpensive experimental extension to NMR spectrometers is described that allows to carry out highly reproducible PHIP experiments directly in the NMR sample tube, i.e. under PASADENA condition, followed by the detection of the NMR spectra of hyperpolarized products with high spectral resolution. Employing this high resolution it is feasible to study kinetic processes in the solution with high accuracy. As a practical example the dissolution of hydrogen gas in the liquid and the PHIP kinetics during the hydrogenation reaction of Fmoc-O-propargyl-L-tyrosine in acetone-d6 are monitored. The timing of the setup is fully controlled by the pulse-programmer of the NMR spectrometer. By flushing with an inert gas it is possible to efficiently quench the hydrogenation reaction in a controlled fashion and to detect the relaxation of hyperpolarization without a background reaction. The proposed design makes it possible to carry out PHIP experiments in an automatic mode and reliably determine the enhancement of polarized signals.

  4. Experimental Measurements of the Chemical Reaction Zone of Detonating Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Bouyer, Viviane; Sheffield, Stephen A.; Dattelbaum, Dana M.; Gustavsen, Richard L.; Stahl, David B.; Doucet, Michel

    2009-06-01

    We have a joint project between CEA-DAM Le Ripault and Los Alamos National Laboratory (LANL) to study the chemical reaction zone in detonating high explosives using several different laser velocimetry techniques. The short temporal duration of the features (von Neumann spike and sonic locus) of the reaction zone make these measurements difficult. Here, we report results obtained from using and PDV (photon Doppler velocimetry) methods to measure the particle velocity history at a detonating HE (nitromethane)/PMMA interface. Experiments done at CEA were high-explosive-plane-wave initiated and those at LANL were gas-gun-projectile initiated with a detonation run of about 6 charge diameters in all experiments, in either glass or brass confinement. Excellent agreement of the interface particle velocity measurements at both Laboratories were obtained even though the initiation systems and the velocimetry systems were different. Some differences were observed in the von Neumann spike height because of the approximately 2 nanosecond time resolution of the techniques -- in some or all cases the spike top was truncated.

  5. Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D₂-³He or CD₄-³He clustering gases.

    PubMed

    Bang, W; Barbui, M; Bonasera, A; Quevedo, H J; Dyer, G; Bernstein, A C; Hagel, K; Schmidt, K; Gaul, E; Donovan, M E; Consoli, F; De Angelis, R; Andreoli, P; Barbarino, M; Kimura, S; Mazzocco, M; Natowitz, J B; Ditmire, T

    2013-09-01

    We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d,^{3}He)n, D(d,t)p, and ^{3}He(d,p)^{4}He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time of flight and (2) utilizing the ratio of neutron yield to proton yield from D(d,^{3}He)n and ^{3}He(d,p)^{4}He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.

  6. GaMin’11 – an international inter-laboratory comparison for geochemical CO₂ - saline fluid - mineral interaction experiments

    DOE PAGES

    Ostertag-Henning, C.; Risse, A.; Thomas, B.; ...

    2014-12-31

    Due to the strong interest in geochemical CO₂-fluid-rock interaction in the context of geological storage of CO₂ a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in compositionmore » of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.« less

  7. Spatiotemporal patterns in reaction-diffusion system and in a vibrated granular bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinney, H.L.; Lee, K.J.; McCormick, W.D.

    Experiments on a quasi-two-dimensional reaction-diffusion system reveal transitions from a uniform state to stationary hexagonal, striped, and rhombic spatial patterns. For other reactor conditions lamellae and self-replicating spot patterns are observed. These patterns form in continuously fed thin gel reactors that can be maintained indefinitely in well-defined nonequilibrium states. Reaction-diffusion models with two chemical species yield patterns similar to those observed in the experiments. Pattern formation is also being examined in vertically oscillated thin granular layers (typically 3-30 particle diameters deep). For small acceleration amplitudes, a granular layer is flat, but above a well-defined critical acceleration amplitude, spatial patterns spontaneouslymore » form. Disordered time-dependent granular patterns are observed as well as regular patterns of squares, stripes, and hexagons. A one-dimensional model consisting of a completely inelastic ball colliding with a sinusoidally oscillating platform provides a semi-quantitative description of most of the observed bifurcations between the different spatiotemporal regimes.« less

  8. Improved synthesis of fine zinc borate particles using seed crystals

    NASA Astrophysics Data System (ADS)

    Gürhan, Deniz; Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim

    2009-03-01

    Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical compositions and structures. In this study, the production of zinc borate having the molecular formula of 2ZnO·3B 2O 3·3.5H 2O was reexamined by studying the effects of reaction parameters on the properties of product as well as the reaction kinetics. Production of zinc borate from the reaction of boric acid and zinc oxide in the presence of seed crystals was performed in a continuously stirred, temperature-controlled batch reactor having a volume of 1.5 L. Samples taken in regular time intervals during the experiments were analyzed for the concentration of zinc oxide and boron oxide in the solid as well as for the conversion of zinc oxide to zinc borate versus time. The zinc borate production reaction was fit to the logistic model. The reaction rate, reaction completion time, composition and particle size distribution of zinc borate product were determined by varying the following parameters: the boric acid to zinc oxide ratio (H 3BO 3:ZnO=3:1, 3.5:1, 5:1 and 7:1), the particle size of zinc oxide (10 and 25 μm), stirring rate (275, 400, 800 and 1600 rpm), temperature (75, 85 and 95 °C) and the size of seed crystals (10 and 2 μm). The products were also analyzed for particle size distribution. The experimental results showed that the reaction rate increases with the increase in H 3BO 3:ZnO ratio, particle size of zinc oxide, stirring rate and temperature. Concomitantly, the reaction completion time is decreased by increasing the H 3BO 3:ZnO ratio, stirring rate and temperature. The average particle sizes of the zinc borate products are in the range 4.3-16.6 μm (wet dispersion analysis).

  9. Experimental investigation of the reaction between corundum xenocrysts and alkaline basaltic host magma: Constraints on magma residence times of basalt-hosted sapphires

    NASA Astrophysics Data System (ADS)

    Baldwin, L. C.; Ballhaus, C.

    2018-03-01

    Megacrystic sapphires (Fe-Ti-rich corundum) of up to 5 cm in size are well known from alkaline mafic rocks from intra-continental rift-related magmatic fields. There is no doubt that these sapphires represent xenocrysts that were trapped from their original lithology by ascending basaltic magmas carrying them to the Earth's surface. Most studies about basalt-hosted sapphires address the question about the origin of the sapphires, but there is hardly any information available about the time the sapphires resided inside the carrier melt. Sapphires are in reaction relationship with basalt and produce spinel coronas at the sapphire-basalt interface, spatially separating the mutually incompatible phases from one another. Assuming isothermal and isobaric conditions of spinel rim formation, the rim-thickness should be a function of the reaction time with the basaltic melt. In this paper, we report time-series experiments aimed at investigating the kinetics of spinel rim formation due to igneous corrosion of corundum. Therefore, we reacted corundum fragments with alkaline basalt powder at 1250 °C and 1GPa, using a Piston Cylinder Apparatus. The width of the spinel rim was used to estimate a residence time. Extrapolating the experimentally derived reaction rates to the thickness of natural spinel rims as described from the Siebengebirge Volcanic Field, Germany, and from Changle, China, we estimated residence times in the order of a few weeks to months.

  10. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    NASA Astrophysics Data System (ADS)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  11. SOCIAL AND NON-SOCIAL CUEING OF VISUOSPATIAL ATTENTION IN AUTISM AND TYPICAL DEVELOPMENT

    PubMed Central

    Pruett, John R.; LaMacchia, Angela; Hoertel, Sarah; Squire, Emma; McVey, Kelly; Todd, Richard D.; Constantino, John N.; Petersen, Steven E.

    2013-01-01

    Three experiments explored attention to eye gaze, which is incompletely understood in typical development and is hypothesized to be disrupted in autism. Experiment 1 (n=26 typical adults) involved covert orienting to box, arrow, and gaze cues at two probabilities and cue-target times to test whether reorienting for gaze is endogenous, exogenous, or unique; experiment 2 (total n=80: male and female children and adults) studied age and sex effects on gaze cueing. Gaze cueing appears endogenous and may strengthen in typical development. Experiment 3 tested exogenous, endogenous, and/or gaze-based orienting in 25 typical and 27 Autistic Spectrum Disorder (ASD) children. ASD children made more saccades, slowing their reaction times; however, exogenous and endogenous orienting, including gaze cueing, appear intact in ASD. PMID:20809377

  12. A combined plant and reaction chamber setup to investigate the effect of pollution and UV-B radiation on biogenic emissions

    NASA Astrophysics Data System (ADS)

    Timkovsky, J.; Gankema, P.; Pierik, R.; Holzinger, R.

    2012-12-01

    Biogenic emissions account for almost 90% of total non-methane organic carbon emissions in the atmosphere. The goal of this project is to study the effect of pollution (ozone, NOx) and UV radiation on the emission of real plants. We have designed and built a setup where we combine plant chambers with a reaction chamber (75L volume) allowing the addition of pollutants at different locations. The main analytical tool is a PTR-TOF-MS instrument that can be optionally coupled with a GC system for improved compound identification. The setup is operational since March 2012 and first measurements indicate interesting results, three types of experiments will be presented: 1. Ozonolysis of b-pinene. In this experiment the reaction chamber was flushed with air containing b-pinene at approximate levels of 50 nmol/mol. After ~40 min b-pinene levels reached equilibrium in the reaction chamber and a constant supply of ozone was provided. Within 30 minutes this resulted in a 10 nmol/mol decrease of b-pinene levels in accordance with a reaction rate constant of 1.5*10-17 cm3molec-1s-1 and a residence time of 10 minutes in the reaction chamber. In addition we observed known oxidation products such as formaldehyde, acetone, and nopinone the molar yields of which were also in accordance with reported values. 2. Ozonolysis of biogenic emissions from tomato plants. The air containing the emissions from tomato plants was supplied to the reaction chamber. After adding ozone we observed the decrease of monoterpene concentrations inside the reaction chamber. The observed decrease is consistent for online PTR-MS and GC/PTR-MS measurements. Several ozonolysis products have been observed in the chamber. 3. The effect of UV-B radiation on biogenic emissions of tomato plants. Tomato plants were exposed to UV-B radiation and their emissions measured during and after the treatment. We observed significant changes in the emissions of volatile organic compounds, with specific compounds increasing at different times during the first 24h of the experiment. In situ BVOC emission changes as response to UV-B radiation provide interesting clues to the biological functions of the emitted compounds. These first results show the potential of this system to be a powerful tool to study the effect of pollution and UV radiation on real emissions from plants.

  13. Double Shock Experiments Performed at -55°C on LX-17 with Reactive Flow Modeling to Understand the Reacted Equation of State

    NASA Astrophysics Data System (ADS)

    Dehaven, Martin R.; Vandersall, Kevin S.; Strickland, Shawn L.; Fried, Laurence E.; Tarver, Craig M.

    2017-06-01

    Experiments were performed at -55°C to measure the reacted state of LX-17 (92.5% TATB and 7.5% Kel-F by weight) using a double shock technique using two flyer materials (with known properties) mounted on a projectile that send an initial shock through the material close to the Chapman-Jouguet (CJ) state followed by a second shock at a higher magnitude into the detonated material. Information on the reacted state is obtained by measuring the relative timing and magnitude of the first and second shock waves. The LX-17 detonation reaction zone profiles plus the arrival times and amplitudes of reflected shocks in LX-17 detonation reaction products were measured using Photonic Doppler Velocimetry (PDV) probes and an aluminum foil coated LiF window. A discussion of this work will include a comparison to prior work at ambient temperature, the experimental parameters, velocimetry profiles, data interpretation, reactive CHEETAH and Ignition and Growth modeling, as well as detail on possible future experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Incorrect predictions reduce switch costs.

    PubMed

    Kleinsorge, Thomas; Scheil, Juliane

    2015-07-01

    In three experiments, we combined two sources of conflict within a modified task-switching procedure. The first source of conflict was the one inherent in any task switching situation, namely the conflict between a task set activated by the recent performance of another task and the task set needed to perform the actually relevant task. The second source of conflict was induced by requiring participants to guess aspects of the upcoming task (Exps. 1 & 2: task identity; Exp. 3: position of task precue). In case of an incorrect guess, a conflict accrues between the representation of the guessed task and the actually relevant task. In Experiments 1 and 2, incorrect guesses led to an overall increase of reaction times and error rates, but they reduced task switch costs compared to conditions in which participants predicted the correct task. In Experiment 3, incorrect guesses resulted in faster performance overall and to a selective decrease of reaction times in task switch trials when the cue-target interval was long. We interpret these findings in terms of an enhanced level of controlled processing induced by a combination of two sources of conflict converging upon the same target of cognitive control. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effect of Repetition Lag on Priming of Unfamiliar Visual Objects in Young and Older Adults

    PubMed Central

    Gordon, Leamarie T.; Soldan, Anja; Thomas, Ayanna K.; Stern, Yaakov

    2013-01-01

    Across three experiments, we examined the effect of repetition lag on priming of unfamiliar visual objects in healthy young and older adults. Multiple levels of lag were examined, ranging from short (one to four intervening stimuli) to long (50+ intervening stimuli). In each experiment, subjects viewed a series of new and repeated line drawings of objects and decided whether they depicted structurally possible or impossible figures. Experiment 1 and 2 found similar levels of priming in young and older adults at short and medium lags. At the longer repetition lags (∼20+ intervening stimuli), older adults showed less overall priming, as measured by reaction time facilitation, than young adults. This indicates that older adults can rapidly encode unfamiliar three-dimensional objects to support priming at shorter lags; however, they cannot maintain these representations over longer intervals. In addition to repetition lag, we also explored the relationship between priming and cognitive reserve, as measured by education and verbal intelligence. In the older adults, higher levels of cognitive reserve were associated with greater reaction time priming, suggesting that cognitive reserve may mediate the relationship between aging and priming. PMID:23276220

  16. Chewing Stimulation Reduces Appetite Ratings and Attentional Bias toward Visual Food Stimuli in Healthy-Weight Individuals.

    PubMed

    Ikeda, Akitsu; Miyamoto, Jun J; Usui, Nobuo; Taira, Masato; Moriyama, Keiji

    2018-01-01

    Based on the theory of incentive sensitization, the exposure to food stimuli sensitizes the brain's reward circuits and enhances attentional bias toward food. Therefore, reducing attentional bias to food could possibly be beneficial in preventing impulsive eating. The importance of chewing has been increasingly implicated as one of the methods for reducing appetite, however, no studies to investigate the effect of chewing on attentional bias to food. In this study, we investigated whether chewing stimulation (i.e., chewing tasteless gum) reduces attentional bias to food as well as an actual feeding (i.e., ingesting a standardized meal) does. We measured reaction time, gaze direction and gaze duration to assess attentional bias toward food images in pairs of food and non-food images that were presented in a visual probe task (Experiment 1, n = 21) and/or eye-tracking task (Experiment 2, n = 20). We also measured appetite ratings using visual analog scale. In addition, we conducted a control study in which the same number of participants performed the identical tasks to Experiments 1 and 2, but the participants did not perform sham feeding with gum-chewing/actual feeding between tasks and they took a rest. Two-way ANOVA revealed that after actual feeding, subjective ratings of hunger, preoccupation with food, and desire to eat significantly decreased, whereas fullness significantly increased. Sham feeding showed the same trends, but to a lesser degree. Results of the visual probe task in Experiment 1 showed that both sham feeding and actual feeding reduced reaction time bias significantly. Eye-tracking data showed that both sham and actual feeding resulted in significant reduction in gaze direction bias, indexing initial attentional orientation. Gaze duration bias was unaffected. In both control experiments, one-way ANOVAs showed no significant differences between immediately before and after the resting state for any of the appetite ratings, reaction time bias, gaze direction bias, or gaze duration bias. In conclusion, chewing stimulation reduced subjective appetite and attentional bias to food, particularly initial attentional orientation to food. These findings suggest that chewing stimulation, even without taste, odor, or ingestion, may affect reward circuits and help prevent impulsive eating.

  17. Chewing Stimulation Reduces Appetite Ratings and Attentional Bias toward Visual Food Stimuli in Healthy-Weight Individuals

    PubMed Central

    Ikeda, Akitsu; Miyamoto, Jun J.; Usui, Nobuo; Taira, Masato; Moriyama, Keiji

    2018-01-01

    Based on the theory of incentive sensitization, the exposure to food stimuli sensitizes the brain’s reward circuits and enhances attentional bias toward food. Therefore, reducing attentional bias to food could possibly be beneficial in preventing impulsive eating. The importance of chewing has been increasingly implicated as one of the methods for reducing appetite, however, no studies to investigate the effect of chewing on attentional bias to food. In this study, we investigated whether chewing stimulation (i.e., chewing tasteless gum) reduces attentional bias to food as well as an actual feeding (i.e., ingesting a standardized meal) does. We measured reaction time, gaze direction and gaze duration to assess attentional bias toward food images in pairs of food and non-food images that were presented in a visual probe task (Experiment 1, n = 21) and/or eye-tracking task (Experiment 2, n = 20). We also measured appetite ratings using visual analog scale. In addition, we conducted a control study in which the same number of participants performed the identical tasks to Experiments 1 and 2, but the participants did not perform sham feeding with gum-chewing/actual feeding between tasks and they took a rest. Two-way ANOVA revealed that after actual feeding, subjective ratings of hunger, preoccupation with food, and desire to eat significantly decreased, whereas fullness significantly increased. Sham feeding showed the same trends, but to a lesser degree. Results of the visual probe task in Experiment 1 showed that both sham feeding and actual feeding reduced reaction time bias significantly. Eye-tracking data showed that both sham and actual feeding resulted in significant reduction in gaze direction bias, indexing initial attentional orientation. Gaze duration bias was unaffected. In both control experiments, one-way ANOVAs showed no significant differences between immediately before and after the resting state for any of the appetite ratings, reaction time bias, gaze direction bias, or gaze duration bias. In conclusion, chewing stimulation reduced subjective appetite and attentional bias to food, particularly initial attentional orientation to food. These findings suggest that chewing stimulation, even without taste, odor, or ingestion, may affect reward circuits and help prevent impulsive eating. PMID:29472880

  18. Identification of ozonation by-products of 4- and 5-methyl-1H-benzotriazole during the treatment of surface water to drinking water.

    PubMed

    Müller, Alexander; Weiss, Stefan C; Beisswenger, Judith; Leukhardt, H Georg; Schulz, Wolfgang; Seitz, Wolfram; Ruck, Wolfgang K L; Weber, Walter H

    2012-03-01

    During the treatment of surface water to drinking water, ozonation is often used for disinfection and to remove organic trace substances, whereby oxidation by-products can be formed. Here we use the example of tolyltriazole to describe an approach for identifying relevant oxidation by-products in the laboratory and subsequently detecting them in an industrial-scale process. The identification process involves ozonation experiments with pure substances at laboratory level (concentration range mg L(-1)). The reaction solutions from different ozone contact times were analyzed by high performance liquid chromatography - quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) in full scan mode. Various approaches were used to detect the oxidation by-products: (i) target searches of postulated oxidation by-products, (ii) comparisons of chromatograms (e.g., UV/VIS) of the different samples, and (iii) color-coded abundance time courses (kinetic) of all detected compounds were illustrated in a kind of a heat map. MS/MS, H/D exchange, and derivatization experiments were used for structure elucidation for the detected by-product. Due to the low contaminant concentrations (ng L(-1)-range) of contaminants in the untreated water, the conversion of results from laboratory experiments to an industrial-scale required the use of HPLC-MS/MS with sample enrichment (e.g., solid phase extraction.) In cases where reference substances were not available or oxidation by-products without clear structures were detected, reaction solutions from laboratory experiments were used to optimize the analytical method to detect ng L(-1) in the samples of the industrial processes. We exemplarily demonstrated the effectiveness of the methodology with the industrial chemicals 4- and 5-methyl-1H-benzotriazole (4- and 5-MBT) as an example. Moreover, not only did we identify several oxidation by-products in the laboratory experiments tentatively, but also detected three of the eleven reaction products in the outlet of the full-scale ozonation unit. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Simplified jet fuel reaction mechanism for lean burn combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman

    1993-01-01

    Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. Detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.

  20. Observation of the Λ⁷He Hypernucleus by the (e, e'K⁺) Reaction

    DOE PAGES

    Nakamura, S. N.; Matsumura, A.; Okayasu, Y.; ...

    2013-01-02

    An experiment with a newly developed high-resolution kaon spectrometer and a scattered electron spectrometer with a novel configuration was performed in Hall C at Jefferson Lab. The ground state of a neutron-rich hypernucleus, He Λ⁷, was observed for the first time with the (e, e'K⁺) reaction with an energy resolution of ~0.6 MeV. This resolution is the best reported to date for hypernuclear reaction spectroscopy. The He Λ⁷ binding energy supplies the last missing information of the A=7, T=1 hypernuclear isotriplet, providing a new input for the charge symmetry breaking effect of the ΛN potential.

  1. Sensory predictions during action support perception of imitative reactions across suprasecond delays.

    PubMed

    Yon, Daniel; Press, Clare

    2018-04-01

    Perception during action is optimized by sensory predictions about the likely consequences of our movements. Influential theories in social cognition propose that we use the same predictions during interaction, supporting perception of similar reactions in our social partners. However, while our own action outcomes typically occur at short, predictable delays after movement execution, the reactions of others occur at longer, variable delays in the order of seconds. To examine whether we use sensorimotor predictions to support perception of imitative reactions, we therefore investigated the temporal profile of sensory prediction during action in two psychophysical experiments. We took advantage of an influence of prediction on apparent intensity, whereby predicted visual stimuli appear brighter (more intense). Participants performed actions (e.g., index finger lift) and rated the brightness of observed outcomes congruent (index finger lift) or incongruent (middle finger lift) with their movements. Observed action outcomes could occur immediately after execution, or at longer delays likely reflective of those in natural social interaction (1800 or 3600 ms). Consistent with the previous literature, Experiment 1 revealed that congruent action outcomes were rated as brighter than incongruent outcomes. Importantly, this facilitatory perceptual effect was found irrespective of whether outcomes occurred immediately or at delay. Experiment 2 replicated this finding and demonstrated that it was not the result of response bias. These findings therefore suggest that visual predictions generated during action are sufficiently general across time to support our perception of imitative reactions in others, likely generating a range of benefits during social interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Analytical Solution for Reactive Solute Transport Considering Incomplete Mixing

    NASA Astrophysics Data System (ADS)

    Bellin, A.; Chiogna, G.

    2013-12-01

    The laboratory experiments of Gramling et al. (2002) showed that incomplete mixing at the pore scale exerts a significant impact on transport of reactive solutes and that assuming complete mixing leads to overestimation of product concentration in bimolecular reactions. We consider here the family of equilibrium reactions for which the concentration of the reactants and the product can be expressed as a function of the mixing ratio, the concentration of a fictitious non reactive solute. For this type of reactions we propose, in agreement with previous studies, to model the effect of incomplete mixing at scales smaller than the Darcy scale assuming that the mixing ratio is distributed within an REV according to a Beta distribution. We compute the parameters of the Beta model by imposing that the mean concentration is equal to the value that the concentration assumes at the continuum Darcy scale, while the variance decays with time as a power law. We show that our model reproduces the concentration profiles of the reaction product measured in the Gramling et al. (2002) experiments using the transport parameters obtained from conservative experiments and an instantaneous reaction kinetic. The results are obtained applying analytical solutions both for conservative and for reactive solute transport, thereby providing a method to handle the effect of incomplete mixing on multispecies reactive solute transport, which is simpler than other previously developed methods. Gramling, C. M., C. F. Harvey, and L. C. Meigs (2002), Reactive transport in porous media: A comparison of model prediction with laboratory visualization, Environ. Sci. Technol., 36(11), 2508-2514.

  3. T(T,4He)2n and 3He(3He,4He)2p Reactions and the Energy Dependence of Their Mechanisms

    NASA Astrophysics Data System (ADS)

    Bacher, Andrew; McNabb, Dennis; Brune, Carl; Sayre, Dan; Hale, Gerry; Frenje, Johan; Gatu Johnson, Maria

    2015-10-01

    We have studied the T(T,alpha)2n reaction because it is the charge symmetric analog to the 3He(3He,alpha)2p reaction which completes the most direct mode of the p-p chain in stellar interiors. These reactions lead to three-body final states whose energy spectrum shapes are dominated by the strong nucleon-alpha interaction and the weaker nucleon-nucleon interaction. These experiments were done at OMEGA at the University of Rochester and at the NIF at Lawrence Livermore Lab. We will focus on two features: (1) the excitation energy dependence of the reaction mechanism and (2) the center-of-mass energy dependence of the reaction mechanism. At stellar energies (OMEGA and the NIF) we find that the shape of the neutron spectrum peaks in the middle. The n-alpha 1/2-excited state is about two times stronger than the n-alpha 3/2-ground state. For the 3He+3He reaction (at CalTech), the proton spectrum peaks at the high end. The p-alpha 3/2-state is about two times stronger than the 1/2-state. This difference in the spectrum shape is explained by theoretical models which include the interference between the two identical fermions in the final state. At CalTech we have angular distributions of the 3He+3He reaction from 2 MeV to 18 MeV. We see the p-wave strength increasing.

  4. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains

    NASA Astrophysics Data System (ADS)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-06-01

    Experiments designed to reveal the low-temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C=CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 and 100 K. After dosing the reactants on to the surface, temperature-programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C=C double bond, rather than involving the cyano(-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms, and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K), and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K), respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time-scale.

  5. Toward Direct Reaction-in-Flight Measurements

    NASA Astrophysics Data System (ADS)

    Wilhelmy, Jerry; Bredeweg, Todd; Fowler, Malcolm; Gooden, Matthew; Hayes, Anna; Rusev, Gencho; Caggiano, Joseph; Hatarik, Robert; Henry, Eugene; Tonchev, Anton; Yeaman, Charles; Bhike, Megha; Krishichayan, Krishi; Tornow, Werner

    2016-03-01

    At the National Ignition Facility (NIF) neutrons having energies greater than the equilibrium 14.1 MeV value can be produced via Reaction-in-Flight (RIF) interactions between plasma atoms and upscattered D or T ions. The yield and spectrum of these RIF produced neutrons carry information on the plasma properties as well as information on the stopping power of ions under plasma conditions. At NIF the yield of these RIF neutrons is predicted to be 4-7 orders of magnitude below the peak 14 MeV neutron yield. The current generation of neutron time of flight (nTOF) instrumentation has so far been incapable of detecting these low-yield neutrons primarily due to high photon backgrounds. To date, information on RIF neutrons has been obtained in integral activation experiments using reactions with high energy thresholds such as 169Tm(n,3n)167Tm and 209Bi(n,4n) 206Bi. Initial experiments to selectively suppress photon backgrounds have been performed at TUNL using pulsed monoenergetic neutron beams of 14.9, 18.5, 24.2, and 28.5 MeV impinging on a Bibenzyl scintillator. By placing 5 cm of Pb before the scintillator we were able to selectively suppress the photons from the flash occurring at the production target and enhance the n/_signal by ~6 times.

  6. Photochemistry of Glyoxal in Wet Aerosols: Smog Chamber Study

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Kim, H.; Turpin, B. J.

    2015-12-01

    Aqueous chemistry is an important pathway for the formation of secondary organic aerosol (SOA). Reaction vessel studies provide evidence that in the aqueous phase photooxidation of water soluble organic compounds (e.g., glyoxal, methylglyoxal) form multifunctional organic products and oligomers. In this work, we extend this bulk-phase chemistry to the condensed-phase chemistry that occurs in/on aerosols by conducting smog chamber experiments — photooxidation of ammonium sulfate and sulfuric acid aerosols containing glyoxal and hydrogen peroxide in the presence of NOx under dry/humid conditions. Particles were analyzed using ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In the irradiated chamber, photooxidation products of glyoxal as seen in reaction vessel experiments (e.g., oxalic acids and tartaric acids) were also formed in both ammonium sulfate aerosols and sulfuric acid aerosols at humid and even dry conditions. However, the major products were organosulfurs (CHOS), organonitrogens (CHON), and nitrooxy-organosulfates (CHONS), which were also dominantly formed in the dark chamber. These products were formed via non-radical reactions, which depend on acidity and humidity. However, the real-time profiles in the dark chamber and the irradiated chamber were very different, suggesting photochemistry substantially affects non-radical formation in the condensed phase.

  7. Experimental studies of thermal and chemical interactions between molten aluminum and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, A.A.; Corradini, M.L.

    The possibility of rapid physical and chemical aluminum/water interactions during a core melt accident in a noncommercial reactor (e.g., HFIR, ATR) has resulted in extensive research to determine the mechanism by which these interactions occur and propagate on an explosive time scale. These events have been reported in nuclear testing facilities, i.e., during SPERT 1D experiment, and also in aluminum casting industries. Although rapid chemical reactions between molten aluminum and water have been subject of many studies, very few reliable measurements of the extent of the chemical reactions have thus far been made. We have modified an existing 1-D shockmore » tube facility to perform experiments in order to determine the extent of the explosive thermal/chemical interactions between molton aluminum and water by measuring important physical quantities such as the maximum dynamic pressure and the amount of the generated hydrogen. Experimental results show that transient pressures greater than 69 MPa with a rise time of less than 125 {mu}sec can occur as the result of the chemical reaction of 4.2 grams of molton aluminum (approximately 15% of the total mass of the fuel of 28 grams) at 980 C with room temperature water.« less

  8. Ferrocenylmethylation of Aniline: Non-Kinetic Determination of a Reaction Mechanism.

    ERIC Educational Resources Information Center

    Lombardo, Anthony; Bieber, Theodore I.

    1983-01-01

    Describes a series of experiments (intended to approximate the research experience) investigating the reaction of ferrocenylmethylation with aniline. Students carry out reactions in nitrogen atmosphere, identify products by nuclear magnetic resonance spectroscopy and propose mechanisms and structures for reactions. Gives procedures for each…

  9. Variation in spawning time promotes genetic variability in population responses to environmental change in a marine fish

    PubMed Central

    Hutchings, Jeffrey A

    2015-01-01

    Abstract The level of phenotypic plasticity displayed within a population (i.e. the slope of the reaction norm) reflects the short-term response of a population to environmental change, while variation in reaction norm slopes among populations reflects spatial variation in these responses. Thus far, studies of thermal reaction norm variation have focused on geographically driven adaptation among different latitudes, altitudes or habitats. Yet, thermal variability is a function of both space and time. For organisms that reproduce at different times of year, such variation has the potential to promote adaptive variability in thermal responses for critical early life stages. Using common-garden experiments, we examined the spatial scale of genetic variation in thermal plasticity for early life-history traits among five populations of endangered Atlantic cod (Gadus morhua) that spawn at different times of year. Patterns of plasticity for larval growth and survival suggest that population responses to climate change will differ substantially, with increasing water temperatures posing a considerably greater threat to autumn-spawning cod than to those that spawn in winter or spring. Adaptation to seasonal cooling or warming experienced during the larval stage is suggested as a possible cause. Furthermore, populations that experience relatively cold temperatures during early life might be more sensitive to changes in temperature. Substantial divergence in adaptive traits was evident at a smaller spatial scale than has previously been shown for a marine fish with no apparent physical barriers to gene flow (∼200 km). Our findings highlight the need to consider the impact of intraspecific variation in reproductive timing on thermal adaptation when forecasting the effects of climate change on animal populations. PMID:27293712

  10. Variation in spawning time promotes genetic variability in population responses to environmental change in a marine fish.

    PubMed

    Oomen, Rebekah A; Hutchings, Jeffrey A

    2015-01-01

    The level of phenotypic plasticity displayed within a population (i.e. the slope of the reaction norm) reflects the short-term response of a population to environmental change, while variation in reaction norm slopes among populations reflects spatial variation in these responses. Thus far, studies of thermal reaction norm variation have focused on geographically driven adaptation among different latitudes, altitudes or habitats. Yet, thermal variability is a function of both space and time. For organisms that reproduce at different times of year, such variation has the potential to promote adaptive variability in thermal responses for critical early life stages. Using common-garden experiments, we examined the spatial scale of genetic variation in thermal plasticity for early life-history traits among five populations of endangered Atlantic cod (Gadus morhua) that spawn at different times of year. Patterns of plasticity for larval growth and survival suggest that population responses to climate change will differ substantially, with increasing water temperatures posing a considerably greater threat to autumn-spawning cod than to those that spawn in winter or spring. Adaptation to seasonal cooling or warming experienced during the larval stage is suggested as a possible cause. Furthermore, populations that experience relatively cold temperatures during early life might be more sensitive to changes in temperature. Substantial divergence in adaptive traits was evident at a smaller spatial scale than has previously been shown for a marine fish with no apparent physical barriers to gene flow (∼200 km). Our findings highlight the need to consider the impact of intraspecific variation in reproductive timing on thermal adaptation when forecasting the effects of climate change on animal populations.

  11. Nitro-PAH formation studied by interacting artificially PAH-coated soot aerosol with NO 2 in the temperature range of 295-523 K

    NASA Astrophysics Data System (ADS)

    Carrara, Matteo; Wolf, Jan-Christoph; Niessner, Reinhard

    2010-10-01

    Diesel particulate matter poses a threat to human health, and in particular nitrated polycyclic aromatic hydrocarbons (NPAHs) found within and on the surface of these particles. Although diesel particulate filters (DPFs) have been designed and implemented to reduce these and other harmful diesel emissions, the particle loaded filters may act as a reaction chamber for the enhanced production of NPAHs from the nitration of PAHs with NO 2. Focus is on the investigation of the heterogeneous reactions that occur on soot particles by exposing laboratory produced pyrene- or benzo(a)pyrene-coated spark discharge soot particles to varying concentrations of NO 2 and temperatures while following the formation of products over time. The sole nitration product that was observed throughout the experiments with pyrene-coated soot was 1-nitropyrene (1-NPYR), which increased linearly with reaction time for all NO 2 concentrations chosen (0.11, 1.0, 2.0, 4.0 ppm, m m -1). Resulting 1-NPYR formation rate increased exponentially with [NO 2]. Throughout the 3-h experiments less than 10% of pyrene has been converted to 1-NPYR and the partial reaction order with regard to [NO 2] was estimated to 1.52. Benzo(a)pyrene (BaP) was more reactive than pyrene. After 3 h reaction time almost 80% of the BaP has been converted to 6-NBaP. Highest 1-NPYR concentrations on particles were detected at 373 K, and at higher temperatures a considerable decrease in particulate 1-NPYR was observed. A similar trend was observed in a DPF simulation system (PM-Kat ®-like) with BaP-coated soot. In this case, highest 6-NBaP concentration on particles was detected at 423 K. Backed by corroborating results from separate gas/solid-phase partition experiments with 1-NPYR and 6-NBaP, it is likely that the newly formed 1-NPYR and 6-NBaP became transferred from particle to gas phase at higher temperatures. Results from this study confirm the presence of 1-NPYR and 6-NBaP in particulate and gas phase under conditions encountered in DPFs, especially when operated at low temperature situations of the aftertreatment system.

  12. Electrode Reactions in Slowly Relaxing Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyushov, Dmitry V.; Newton, Marshall D.

    Here, standard models of reaction kinetics in condensed materials rely on the Boltzmann-Gibbs distribution for the population of reactants at the top of the free energy barrier separating them from the products. While energy dissipation and quantum effects at the barrier top can potentially affect the transmission coefficient entering the rate preexponential factor, much stronger dynamical effects on the reaction barrier are caused by the breakdown of ergodicity for populating the reaction barrier (violation of the Boltzmann-Gibbs statistics). When the spectrum of medium modes coupled to the reaction coordinate includes fluctuations slower than the reaction rate, such nuclear motions dynamicallymore » freeze on the reaction time-scale and do not contribute to the activation barrier. In this paper, we consider the consequences of this scenario for electrode reactions in slowly relaxing media. Changing electrode overpotential speeds electrode electron transfer up, potentially cutting through the spectrum of nuclear modes coupled to the reaction coordinate. The reorganization energy of electrochemical electron transfer becomes a function of the electrode overpotential, switching between the thermodynamic value at low rates to the nonergodic limit at higher rates. The sharpness of this transition depends of the relaxation spectrum of the medium. The reorganization energy experiences a sudden drop with increasing overpotential for a medium with a Debye relaxation, but becomes a much shallower function of the overpotential for media with stretched exponential dynamics. The latter scenario characterizes electron transfer in ionic liquids. The analysis of electrode reactions in room-temperature ionic liquids shows that the magnitude of the free energy of nuclear solvation is significantly below its thermodynamic limit. Finally, this result applies to reaction times faster than microseconds and is currently limited by the available dielectric relaxation data.« less

  13. Electrode Reactions in Slowly Relaxing Media

    DOE PAGES

    Matyushov, Dmitry V.; Newton, Marshall D.

    2017-11-17

    Here, standard models of reaction kinetics in condensed materials rely on the Boltzmann-Gibbs distribution for the population of reactants at the top of the free energy barrier separating them from the products. While energy dissipation and quantum effects at the barrier top can potentially affect the transmission coefficient entering the rate preexponential factor, much stronger dynamical effects on the reaction barrier are caused by the breakdown of ergodicity for populating the reaction barrier (violation of the Boltzmann-Gibbs statistics). When the spectrum of medium modes coupled to the reaction coordinate includes fluctuations slower than the reaction rate, such nuclear motions dynamicallymore » freeze on the reaction time-scale and do not contribute to the activation barrier. In this paper, we consider the consequences of this scenario for electrode reactions in slowly relaxing media. Changing electrode overpotential speeds electrode electron transfer up, potentially cutting through the spectrum of nuclear modes coupled to the reaction coordinate. The reorganization energy of electrochemical electron transfer becomes a function of the electrode overpotential, switching between the thermodynamic value at low rates to the nonergodic limit at higher rates. The sharpness of this transition depends of the relaxation spectrum of the medium. The reorganization energy experiences a sudden drop with increasing overpotential for a medium with a Debye relaxation, but becomes a much shallower function of the overpotential for media with stretched exponential dynamics. The latter scenario characterizes electron transfer in ionic liquids. The analysis of electrode reactions in room-temperature ionic liquids shows that the magnitude of the free energy of nuclear solvation is significantly below its thermodynamic limit. Finally, this result applies to reaction times faster than microseconds and is currently limited by the available dielectric relaxation data.« less

  14. Measurement of polarization observables in vector meson photoproduction using a transversely-polarized frozen-spin target and polarized photons at CLAS, Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Priyashree

    The study of baryon resonances provides a deeper understanding of the strong interaction because the dynamics and relevant degrees of freedom hidden within them are re ected by the properties of the excited states of baryons. Higher-lying excited states at and above 1.7 GeV/c 2 are generally predicted to have strong couplings to final states involving a heavier meson, e. g. one of the vector mesons, ρ, ω φ, as compared to a lighter pseudoscalar meson, e. g. π and η. Decays to the ππΝ final states via πΔ also become more important through the population of intermediate resonances. We observe that nature invests in mass rather than momentum. The excited states of the nucleon are usually found as broadly overlapping resonances which may decay into a multitude of final states involving mesons and baryons. Polarization observables make it possible to isolate single resonance contributions from other interference terms. The CLAS g9 (FROST) experiment, as part of the N* spectroscopy program at Jefferson Laboratory, accumulated photoproduction data using circularly- & linearly-polarized photons incident on a transversely-polarized butanol target (g9b experiment) in the photon energy range 0:3-2:4 GeV & 0:7-2:1 GeV, respectively. In this work, the analysis of reactions and polarization observables which involve two charged pions, either in the fully exclusive reaction γρ -> ρπ+π- or in the semi-exclusive reaction with a missing neutral pion, γρ -> ρπ +π -(π 0) will be presented. For the reaction ρπ +π -, eight polarization observables (I s, I c, P x, P y,more » $$P^s_{x;y}$$, $$P^c_{x; y}$$) have been extracted. The high statistics data rendered it possible to extract these observables in three dimensions. All of them are first-time measurements. The fairly good agreement of Is, Ic obtained from this analysis with the experimental results from a previous CLAS experiment provides support for the first-time measurements. For the reaction γρ -> ρω -> ρπ +π(π 0, five polarization observables (T, Σ, F, H, P) have been extracted, four of which are first-time measurements at all energies. This analysis thus represents a comprehensive program on vector-meson photoproduction: The ω is observed and studied directly from the data and the polarization observables for the (broad) ω can be extracted from the double-pion reaction in a partial-wave analysis. The 13 polarization observables extracted in this analysis substantially augment the world database of polarization observables for these reactions and are expected to play a crucial role in identifying the contributing baryon resonances.« less

  15. Spectrophotometric Determination of 6-Propyl-2-Thiouracil in Pharmaceutical Formulations Based on Prussian Blue Complex Formation: An Undergraduate Instrumental Analysis Laboratory Experiment

    ERIC Educational Resources Information Center

    Zakrzewski, Robert; Skowron, Monika; Ciesielski, Witold; Rembisz, Zaneta

    2016-01-01

    The laboratory experiment challenges students to determine 6-propyl-2-thiouracil (PTU) based on Prussian blue complex formation. Prussian blue is formed by ferricyanide and Fe(II) ions which are generated in situ from Fe(III) ions reduced by PTU. The absorbance of this product was measured at a wavelength of 840 nm, after a reaction time of 30…

  16. Mirror Me: Imitative Responses in Adults with Autism

    ERIC Educational Resources Information Center

    Schunke, Odette; Schöttle, Daniel; Vettorazzi, Eik; Brandt, Valerie; Kahl, Ursula; Bäumer, Tobias; Ganos, Christos; David, Nicole; Peiker, Ina; Engel, Andreas K; Brass, Marcel; Münchau, Alexander

    2016-01-01

    Dysfunctions of the human mirror neuron system have been postulated to underlie some deficits in autism spectrum disorders including poor imitative performance and impaired social skills. Using three reaction time experiments addressing mirror neuron system functions under simple and complex conditions, we examined 20 adult autism spectrum…

  17. Information Processing in Memory Tasks.

    ERIC Educational Resources Information Center

    Johnston, William A.

    The intensity of information processing engendered in different phases of standard memory tasks was examined in six experiments. Processing intensity was conceptualized as system capacity consumed, and was measured via a divided-attention procedure in which subjects performed a memory task and a simple reaction-time (RT) task concurrently. The…

  18. Reaction Time Asymmetries between Expansion and Contraction

    ERIC Educational Resources Information Center

    Lopez-Moliner, Joan

    2005-01-01

    Different asymmetries between expansion and contraction (radial motions) have been reported in the literature. Often these patterns have been regarded as implying different channels for each type of radial direction (outward versus inwards) operating at a higher level of visual motion processing. In two experiments (detection and discrimination…

  19. Human factors phase II: design and evaluation of decision aids for control of high-speed trains: experiments and model

    DOT National Transportation Integrated Search

    1996-12-01

    Although the speed of some guided ground transportation systems continues to increase, the reaction time and the sensory : and information processing capacities of railroad personnel remain constant. This second report in a series examining : critica...

  20. Discriminatory Questions and Applicant Reactions in the Employment Interview.

    ERIC Educational Resources Information Center

    Saks, Alan M.; And Others

    This study investigated the effects of discriminatory interview questions on applicants' perceptions and intentions toward an organization. Participants included 118 graduate business students (59 percent male), average age of 31 with more than eight years of full-time work experience. Discriminatory questions addressed handicaps, plans for…

  1. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification.

    PubMed

    Baccou, C; Yahia, V; Depierreux, S; Neuville, C; Goyon, C; Consoli, F; De Angelis, R; Ducret, J E; Boutoux, G; Rafelski, J; Labaune, C

    2015-08-01

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.

  2. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baccou, C., E-mail: claire.baccou@polytechnique.edu; Yahia, V.; Labaune, C.

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detectormore » for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.« less

  3. Radiolabeling of a cyclic RGD (cyclo Arg-Gly-Asp-d-Tyr-Lys) peptide using sodium hypochlorite as an oxidizing agent.

    PubMed

    Doll, Stephanie; Woolum, Karen; Kumar, Krishan

    2016-09-01

    A simple and rapid nonradioactive iodide labeling/radiolabeling method for peptides, using an inexpensive oxidizing agent such as sodium hypochlorite and a cyclic peptide, cRGDyK (cyclo Arg-Gly-Asp-d-Tyr-Lys), was developed in this work. Labeling reaction was optimized by conducting experiments under variable ratios of the reagents, the reaction times, and the pH. The study demonstrated that radiolabeling of the cyclic peptide was fast and pH independent. Monoiodinated and di-iodinated cRGDyK were formed under all conditions and varied with the ratio of the reagents and the reaction time. Total percent of the iodinated cRGDyK (monoiodinated and di-iodinated cRGDyK) varied between 44 and 100 depending on the reaction conditions. Excess cyclic peptide over equal molar ratio of sodium iodide and sodium hypochlorite yielded in predominant amounts of monoiodinated cRGDyK, ie, >60% under 2:1:1 ratio and ~88% under 5:1:1 ratio of cRGDyK:sodium iodide:sodium hypochlorite. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Tagatose production with pH control in a stirred tank reactor containing immobilized L-arabinose rom Thermotoga neapolitana.

    PubMed

    Lim, Byung-Chul; Kim, Hye-Jung; Oh, Deok-Kun

    2008-06-01

    Chitopearl beads were used as immobilization supports for D-tagatose production from D-galactose by L-arabinose isomerase from Thermotoga neapolitana because chitopearl beads were more stable than alginate beads at temperatures above 60 degrees C. The pH and temperature for the maximum isomerization of galactose were 7.5 and 90 degrees C, respectively. In thermostability experiments, the half-lives of the immobilized enzyme at 70, 75, 80, 85, and 90 degrees C were 388, 106, 54, 36, and 22 h, respectively. The reaction temperature was determined to be 70 degrees C because the enzyme is highly stable up to 70 degrees C during the reaction. When the reaction time, galactose concentration, and temperature were increased, the pH of a mixture containing enzyme and galactose decreased by the Maillard reaction, resulting in decreased tagatose production. With pH control at 7.5, tagatose production (138 g/L) at 70 degrees C in a stirred tank reactor containing immobilized enzyme and 300 g/L galactose increased two times higher, comparing that without pH control.

  5. Reaction Analysis of Shocked Nitromethane using Extended Lagrangian Born-Oppenheimer Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Perriot, Romain; Kober, Ed; Mniszewski, Sue; Martinez, Enrique; Niklasson, Anders; Yang, Ping; McGrane, Shawn; Cawkwell, Marc

    2017-06-01

    Characterizing the complex, rapid reactions of energetic materials under conditions of high temperatures and pressures presents strong experimental and computational challenges. The recently developed extended Lagrangian Born-Oppenheimer molecular dynamics formalism enables the long-term conservation of the total energy in microcanonical trajectories, and using a density functional tight binding formulation provides good chemical accuracy. We use this combined approach to study the evolution of temperature, pressure, and chemical species in shock-compressed liquid nitromethane over hundreds of picoseconds. The chemical species seen in nitromethane under shock compression are compared with those seen under static high temperature conditions. A reduced-order representation of the complex sequence of chemical reactions that characterize this system has been developed from the molecular dynamics simulations by focusing on classes of chemical reactions rather than specific molecular species. Time-resolved infra-red vibrational spectra were also computed from the molecular trajectories and compared to the chemical analysis. These spectra provide a time history of the species present in the system that can be compared directly with recent experiments at LANL.

  6. Acceleration and sensitivity analysis of lattice kinetic Monte Carlo simulations using parallel processing and rate constant rescaling

    NASA Astrophysics Data System (ADS)

    Núñez, M.; Robie, T.; Vlachos, D. G.

    2017-10-01

    Kinetic Monte Carlo (KMC) simulation provides insights into catalytic reactions unobtainable with either experiments or mean-field microkinetic models. Sensitivity analysis of KMC models assesses the robustness of the predictions to parametric perturbations and identifies rate determining steps in a chemical reaction network. Stiffness in the chemical reaction network, a ubiquitous feature, demands lengthy run times for KMC models and renders efficient sensitivity analysis based on the likelihood ratio method unusable. We address the challenge of efficiently conducting KMC simulations and performing accurate sensitivity analysis in systems with unknown time scales by employing two acceleration techniques: rate constant rescaling and parallel processing. We develop statistical criteria that ensure sufficient sampling of non-equilibrium steady state conditions. Our approach provides the twofold benefit of accelerating the simulation itself and enabling likelihood ratio sensitivity analysis, which provides further speedup relative to finite difference sensitivity analysis. As a result, the likelihood ratio method can be applied to real chemistry. We apply our methodology to the water-gas shift reaction on Pt(111).

  7. Ozone reaction with interior building materials: Influence of diurnal ozone variation, temperature and humidity

    NASA Astrophysics Data System (ADS)

    Rim, Donghyun; Gall, Elliott T.; Maddalena, Randy L.; Nazaroff, William W.

    2016-01-01

    Elevated tropospheric ozone concentrations are associated with increased morbidity and mortality. Indoor ozone chemistry affects human exposure to ozone and reaction products that also may adversely affect health and comfort. Reactive uptake of ozone has been characterized for many building materials; however, scant information is available on how diurnal variation of ambient ozone influences ozone reaction with indoor surfaces. The primary objective of this study is to investigate ozone-surface reactions in response to a diurnally varying ozone exposure for three common building materials: ceiling tile, painted drywall, and carpet tile. A secondary objective is to examine the effects of air temperature and humidity. A third goal is to explore how conditioning of materials in an occupied office building might influence subsequent ozone-surface reactions. Experiments were performed at bench-scale with inlet ozone concentrations varied to simulate daytime (ozone elevated) and nighttime (ozone-free in these experiments) periods. To simulate office conditions, experiments were conducted at two temperatures (22 °C and 28 °C) and three relative humidity values (25%, 50%, 75%). Effects of indoor surface exposures were examined by placing material samples in an occupied office and repeating bench-scale characterization after exposure periods of 1 and 2 months. Deposition velocities were observed to be highest during the initial hour of ozone exposure with slow decrease in the subsequent hours of simulated daytime conditions. Daily-average ozone reaction probabilities for fresh materials are in the respective ranges of (1.7-2.7) × 10-5, (2.8-4.7) × 10-5, and (3.0-4.5) × 10-5 for ceiling tile, painted drywall, and carpet tile. The reaction probability decreases by 7%-47% across the three test materials after two 8-h periods of ozone exposure. Measurements with the samples from an occupied office reveal that deposition velocity can decrease or increase with time. Influence of temperature and humidity on ozone-surface reactivity was not strong.

  8. Temporal production and visuospatial processing.

    PubMed

    Benuzzi, Francesca; Basso, Gianpaolo; Nichelli, Paolo

    2005-12-01

    Current models of prospective timing hypothesize that estimated duration is influenced either by the attentional load or by the short-term memory requirements of a concurrent nontemporal task. In the present study, we addressed this issue with four dual-task experiments. In Exp. 1, the effect of memory load on both reaction time and temporal production was proportional to the number of items of a visuospatial pattern to hold in memory. In Exps. 2, 3, and 4, a temporal production task was combined with two visual search tasks involving either pre-attentive or attentional processing. Visual tasks interfered with temporal production: produced intervals were lengthened proportionally to the display size. In contrast, reaction times increased with display size only when a serial, effortful search was required. It appears that memory and perceptual set size, rather than nonspecific attentional or short-term memory load, can influence prospective timing.

  9. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    DOE PAGES

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; ...

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions,more » (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.« less

  10. High-throughput syntheses of iron phosphite open frameworks in ionic liquids

    NASA Astrophysics Data System (ADS)

    Wang, Zhixiu; Mu, Ying; Wang, Yilin; Bing, Qiming; Su, Tan; Liu, Jingyao

    2017-02-01

    Three open-framework iron phosphites: Feп5(NH4)2(HPO3)6 (1), Feп2Fe♯(NH4)(HPO3)4 (2) and Fe♯2(HPO3)3 (3) have been synthesized under ionothermal conditions. How the different synthesis parameters, such as the gel concentrations, synthetic times, reaction temperatures and solvents affect the products have been monitored by using high-throughput approaches. Within each type of experiment, relevant products have been investigated. The optimal reaction conditions are obtained from a series of experiments by high-throughput approaches. All the structures are determined by single-crystal X-ray diffraction analysis and further characterized by PXRD, TGA and FTIR analyses. Magnetic study reveals that those three compounds show interesting magnetic behavior at low temperature.

  11. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheon, MunSeong, E-mail: munseong@nfri.re.kr; Kim, Junghee

    2015-08-15

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  12. A new electromagnetic NDI-technique based on the measurement of source-sample reaction forces

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. L.; Skaugset, R. L.; Shih, W. C. L.

    2001-04-01

    Faraday's law of induction, Lenz's law, the Lorentz force law and Newton's third law, taken together, insure that sources (e.g., coil sources) of time-dependent electromagnetic fields, and nearby "nonmagnetic" electrical conductors (e.g., aluminum), always experience mutually repulsive (source-conductor) forces. This fact forms the basis for a new method for detecting cracks and corrosion in (aging) multi-layer airframes. The presence of cracks or corrosion (e.g., material thinning) in these structures is observed to reduce (second-harmonic) source-conductor reaction forces.

  13. The Path of Carbon in Photosynthesis IX. Photosynthesis, Photoreduction, and the Hydrogen-Oxygen-Carbon Dioxide Dark Reaction

    DOE R&D Accomplishments Database

    Badin, E. J.; Calvin, M.

    1950-02-01

    A comparison of the rates of fixation of Carbon 14 dioxide in algae for the processes of photosynthesis, photoreduction and the hydrogen-oxygen-carbon dioxide dark reaction has been made. For the same series of experiments, rates of incorporation of tracer carbon into the separate soluble components using the radiogram method have been determined. The mechanism of carbon dioxide uptake has been shown to occur via two distinct paths. In all cases studied, essentially the same compounds appear radioactive. The distribution with time, however, differs markedly.

  14. A DFT investigation of the blue bottle experiment: E∘half-cell analysis of autoxidation catalysed by redox indicators.

    PubMed

    Limpanuparb, Taweetham; Roongruangsree, Pakpong; Areekul, Cherprang

    2017-11-01

    The blue bottle experiment is a collective term for autoxidation reactions catalysed by redox indicators. The reactions are characterized by their repeatable cycle of colour changes when shaken/left to stand and intricate chemical pattern formation. The blue bottle experiment is studied based on calculated solution-phase half-cell reduction potential of related reactions. Our investigation confirms that the reaction in various versions of the blue bottle experiment published to date is mainly the oxidation of an acyloin to a 1,2-dicarbonyl structure. In the light of the calculations, we also propose new non-acyloin reducing agents for the experiment. These results can help guide future experimental studies on the blue bottle experiment.

  15. Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation processes.

    PubMed

    Bandala, Erick R; Peláez, Miguel A; Salgado, Maria J; Torres, Luis

    2008-03-01

    Synthetic wastewater samples containing a model surfactant were treated using two different Fenton-like advanced oxidation processes promoted by solar radiation; the photo-Fenton reaction and Co/PMS/UV processes. Comparison between the different experimental conditions was performed by means of the overall surfactant degradation achieved and by obtaining the initial rate in the first 15 min of reaction (IR15). It was found that, for dark Fenton reaction, the maximum surfactant degradation achieved was 14% under low iron and oxidant concentration. Increasing Fenton reagents by one magnitude order, surfactant degradation achieved 63% in 60 min. The use of solar radiation improved the reaction rate by 17% under same conditions and an additional increase of 12.5% was obtained by adjusting initial pH to 2. IR15 values for dark and irradiated Fenton reactions were 0.143 and 0.154 mmol/min, respectively, for similar reaction conditions and this value increased to 0.189 mmol/min when initial pH was adjusted. The use of the Co/PMS system allow us to determine an increase in the degradation rate, for low reaction conditions (1 mM of transition metal; 4 mM oxidant) similar to those used in dark Fenton reaction. Surfactant degradation increased from 3%, for Fenton reaction, to 44.5% in the case of Co/PMS. When solar irradiation was included in the experiments, under same reaction conditions described earlier, surfactant degradation up to 64% was achieved. By increasing Co/PMS reagent concentration by almost 9 times under irradiated conditions, almost complete (>99%) surfactant degradation was reached in 5 min. Comparing IR15 values for Co/PMS and Co/PMS/UV, it allow us to observe that the use of solar radiation increased the degradation rate in one magnitude order when compared with dark experiments and further increase of reagent concentration increased reaction rate twice.

  16. Enhancing communication about paediatric medicines: lessons from a qualitative study of parents' experiences of their child's suspected adverse drug reaction.

    PubMed

    Arnott, Janine; Hesselgreaves, Hannah; Nunn, Anthony J; Peak, Matthew; Pirmohamed, Munir; Smyth, Rosalind L; Turner, Mark A; Young, Bridget

    2012-01-01

    There is little research on parents' experiences of suspected adverse drug reactions in their children and hence little evidence to guide clinicians when communicating with families about problems associated with medicines. To identify any unmet information and communication needs described by parents whose child had a suspected adverse drug reaction. Semi-structured qualitative interviews with parents of 44 children who had a suspected adverse drug reaction identified on hospital admission, during in-patient treatment or reported by parents using the Yellow Card Scheme (the UK system for collecting spontaneous reports of adverse drug reactions). Interviews were conducted face-to-face or by telephone; most interviews were audiorecorded and transcribed. Analysis was informed by the principles of the constant comparative method. Many parents described being dissatisfied with how clinicians communicated about adverse drug reactions and unclear about the implications for their child's future use of medicines. A few parents felt that clinicians had abandoned their child and reported refusing the use of further medicines because they feared a repeated adverse drug reaction. The accounts of parents of children with cancer were different. They emphasised their confidence in clinicians' management of adverse drug reactions and described how clinicians prospectively explained the risks associated with medicines. Parents linked symptoms to medicines in ways that resembled the established reasoning that clinicians use to evaluate the possibility that a medicine has caused an adverse drug reaction. Clinicians' communication about adverse drug reactions was poor from the perspective of parents, indicating that improvements are needed. The accounts of parents of children with cancer indicate that prospective explanation about adverse drug reactions at the time of prescription can be effective. Convergence between parents and clinicians in their reasoning for linking children's symptoms to medicines could be a starting point for improved communication.

  17. Enhancing Communication about Paediatric Medicines: Lessons from a Qualitative Study of Parents' Experiences of Their Child's Suspected Adverse Drug Reaction

    PubMed Central

    Arnott, Janine; Hesselgreaves, Hannah; Nunn, Anthony J.; Peak, Matthew; Pirmohamed, Munir; Smyth, Rosalind L.

    2012-01-01

    Background There is little research on parents' experiences of suspected adverse drug reactions in their children and hence little evidence to guide clinicians when communicating with families about problems associated with medicines. Objective To identify any unmet information and communication needs described by parents whose child had a suspected adverse drug reaction. Methods Semi-structured qualitative interviews with parents of 44 children who had a suspected adverse drug reaction identified on hospital admission, during in-patient treatment or reported by parents using the Yellow Card Scheme (the UK system for collecting spontaneous reports of adverse drug reactions). Interviews were conducted face-to-face or by telephone; most interviews were audiorecorded and transcribed. Analysis was informed by the principles of the constant comparative method. Results Many parents described being dissatisfied with how clinicians communicated about adverse drug reactions and unclear about the implications for their child's future use of medicines. A few parents felt that clinicians had abandoned their child and reported refusing the use of further medicines because they feared a repeated adverse drug reaction. The accounts of parents of children with cancer were different. They emphasised their confidence in clinicians' management of adverse drug reactions and described how clinicians prospectively explained the risks associated with medicines. Parents linked symptoms to medicines in ways that resembled the established reasoning that clinicians use to evaluate the possibility that a medicine has caused an adverse drug reaction. Conclusion Clinicians' communication about adverse drug reactions was poor from the perspective of parents, indicating that improvements are needed. The accounts of parents of children with cancer indicate that prospective explanation about adverse drug reactions at the time of prescription can be effective. Convergence between parents and clinicians in their reasoning for linking children's symptoms to medicines could be a starting point for improved communication. PMID:23071535

  18. Radiolysis of paracetamol in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Takács, Erzsébet; Wojnárovits, László

    2012-09-01

    Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2-3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily.

  19. Laser interferometry and emission spectroscopy measurements of cold-sprayed copper thermite shocked to 35 GPa

    NASA Astrophysics Data System (ADS)

    Neel, Christopher; Lacina, David; Johnson, Stephanie

    2017-01-01

    Plate impact experiments were conducted on a cold-sprayed Al-CuO thermite at peak stresses between 5-35 GPa to determine the Hugoniot curve and characterize any shock induced energetic reaction. Photon Doppler Velocimetry (PDV) measurements were used to obtain particle velocity histories and shock speed information for both the shock loading and unloading behavior of the material. A jump in shock velocity was observed in the Hugoniot curve when the material was shocked beyond 20 GPa, suggesting a volume-increasing reaction occurs in this shocked Al-CuO thermite near 20 GPa. To better characterize any shock-induced thermite reactions, emission spectroscopy measurements were obtained at stresses above 20 GPa. The best time-resolved spectra obtained thus far, at 25 GPa, does not support the fast thermite reaction hypothesis.

  20. Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review.

    PubMed

    Holm, Nils G; Andersson, Eva

    2005-08-01

    The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of life on Earth and probably also to the other terrestrial planets.

  1. The pupil as an indicator of unconscious memory: Introducing the pupil priming effect.

    PubMed

    Gomes, Carlos Alexandre; Montaldi, Daniela; Mayes, Andrew

    2015-06-01

    We explored whether object behavioral priming and pupil changes occur in the absence of recognition memory. Experiment 1 found behavioral priming for unrecognized objects (Ms) regardless of whether they had been encoded perceptually or conceptually. Using the same perceptual encoding task, Experiment 2 showed greater pupil dilation for Ms than for correct rejections of unstudied objects (CRs) when reaction times were matched. In Experiment 3, there was relatively less pupil dilation for Ms than for similarly matched CRs when objects had been encoded conceptually. Mean/peak pupil dilation for CRs, but not Ms, increased in Experiment 3, in which novelty expectation was also reduced, and the pupillary time course for both Ms and CRs was distinct in the two experiments. These findings indicate that both behavioral and pupil memory occur for studied, but unrecognized stimuli, and suggest that encoding and novelty expectation modulate pupillary memory responses. © 2015 Society for Psychophysiological Research.

  2. A Graphical User Interface for a Method to Infer Kinetics and Network Architecture (MIKANA)

    PubMed Central

    Mourão, Márcio A.; Srividhya, Jeyaraman; McSharry, Patrick E.; Crampin, Edmund J.; Schnell, Santiago

    2011-01-01

    One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis–Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1). PMID:22096591

  3. A graphical user interface for a method to infer kinetics and network architecture (MIKANA).

    PubMed

    Mourão, Márcio A; Srividhya, Jeyaraman; McSharry, Patrick E; Crampin, Edmund J; Schnell, Santiago

    2011-01-01

    One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis-Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1).

  4. Benchmark experiments at ASTRA facility on definition of space distribution of {sup 235}U fission reaction rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.

    2012-07-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of {sup 235}U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of {sup 235}U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  5. Microscale Organic Lab Course Has Many Assets.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1984-01-01

    Describes a microscale laboratory course in which students perform many classic organic reactions using only one-hundredth to one-thousandth the amount of starting material usual in student experiments. Reduction of toxic chemicals concentration in laboratory air and savings in chemical costs and experimental time are benefits of the novel course.…

  6. Readily Made Solvated Electrons

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Guerra-Millan, Francisco J.; Hugerat, Muhamad; Vazquez-Olavarrieta, Jorge L.; Basheer, Ahmad; Abu-Much, Riam

    2011-01-01

    The existence of solvated electrons has been known for a long time. Key methods for their production (i.e., photoionization of reducing ions, water radiolysis, and the reaction between H[middle dot] and OH[superscript -]) are unsuitable for most school laboratories. We describe a simple experiment to produce liquid ammonia and solvated electrons…

  7. Teaching Science: Seat Belt Science.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Describes activities that will help students understand how car seat belts work, the limited reaction time available to passengers in an automobile accident, and the force of impact in a car collision. These activities will provide students with hands-on experiences that demonstrate the importance of always wearing seat belts while in an…

  8. Visual Processing Deficits in Children with Slow RAN Performance

    ERIC Educational Resources Information Center

    Stainthorp, Rhona; Stuart, Morag; Powell, Daisy; Quinlan, Philip; Garwood, Holly

    2010-01-01

    Two groups of 8- to 10-year-olds differing in rapid automatized naming speed but matched for age, verbal and nonverbal ability, phonological awareness, phonological memory, and visual acuity participated in four experiments investigating early visual processing. As low RAN children had significantly slower simple reaction times (SRT) this was…

  9. Fusion Prevents the Redundant Signals Effect: Evidence from Stereoscopically Presented Stimuli

    ERIC Educational Resources Information Center

    Schroter, Hannes; Fiedler, Anja; Miller, Jeff; Ulrich, Rolf

    2011-01-01

    In a simple reaction time (RT) experiment, visual stimuli were stereoscopically presented either to one eye (single stimulation) or to both eyes (redundant stimulation), with brightness matched for single and redundant stimulations. Redundant stimulation resulted in two separate percepts when noncorresponding retinal areas were stimulated, whereas…

  10. Speed and Accuracy in the Processing of False Statements About Semantic Information.

    ERIC Educational Resources Information Center

    Ratcliff, Roger

    1982-01-01

    A standard reaction time procedure and a response signal procedure were used on data from eight experiments on semantic verifications. Results suggest that simple models of the semantic verification task that assume a single yes/no dimension on which discrimination is made are not correct. (Author/PN)

  11. Using a Bracketed Analysis as a Learning Tool.

    ERIC Educational Resources Information Center

    Main, Keith

    1995-01-01

    Bracketed analysis is an examination of experiences within a defined time frame or "bracket." It assumes the ability to learn from any source: behaviors, emotions, rational and irrational thought, insights, reflections, and reactions. A bracketed analysis to determine what went wrong with a grant proposal that missed deadlines…

  12. Second-Impact Syndrome

    ERIC Educational Resources Information Center

    Cobb, Sarah; Battin, Barbara

    2004-01-01

    Sports-related injuries are among the more common causes of injury in adolescents that can result in concussion and its sequelae, postconcussion syndrome and second-impact syndrome (SIS). Students who experience multiple brain injuries within a short period of time (hours, days, or weeks) may suffer catastrophic or fatal reactions related to SIS.…

  13. MODELING MERCURY DYNAMICS IN STREAM SYSTEMS WITH WASP7: CHARACTERIZING PROCESSES CONTROLLING SHORT AND LONG TERM RESPONSE

    EPA Science Inventory

    Mercury transport through stream ecosystems is driven by a complicated set of transport and transformation reactions operating on a variety of scales in the atmosphere, landscape, surface water, and biota. Riverine systems typically have short residence times and can experience l...

  14. Filling Holes with Words: An Interview with Jack Gantos.

    ERIC Educational Resources Information Center

    Shoemaker, Joel

    2003-01-01

    This interview with Jack Gantos, an author who writes books for young adults, focuses on how he uses his own personal experiences in his books. Discusses memories of his father and his childhood, drug-smuggling activities and the resulting jail time, and student reactions to his books. (LRW)

  15. Metacontrast Inferred from Reaction Time and Verbal Report: Replication and Comments on the Feher-Biederman Experiment

    ERIC Educational Resources Information Center

    Amundson, Vickie E.; Bernstein, Ira H.

    1973-01-01

    Authors note that Fehrer and Biederman's two statistical tests were not of equal power and that their conclusion could be a statistical artifact of both the lesser power of the verbal report comparison and the insensitivity of their particular verbal report indicator. (Editor)

  16. Development and learning of saccadic eye movements in 7- to 42-month-old children.

    PubMed

    Alahyane, Nadia; Lemoine-Lardennois, Christelle; Tailhefer, Coline; Collins, Thérèse; Fagard, Jacqueline; Doré-Mazars, Karine

    2016-01-01

    From birth, infants move their eyes to explore their environment, interact with it, and progressively develop a multitude of motor and cognitive abilities. The characteristics and development of oculomotor control in early childhood remain poorly understood today. Here, we examined reaction time and amplitude of saccadic eye movements in 93 7- to 42-month-old children while they oriented toward visual animated cartoon characters appearing at unpredictable locations on a computer screen over 140 trials. Results revealed that saccade performance is immature in children compared to a group of adults: Saccade reaction times were longer, and saccade amplitude relative to target location (10° eccentricity) was shorter. Results also indicated that performance is flexible in children. Although saccade reaction time decreased as age increased, suggesting developmental improvements in saccade control, saccade amplitude gradually improved over trials. Moreover, similar to adults, children were able to modify saccade amplitude based on the visual error made in the previous trial. This second set of results suggests that short visual experience and/or rapid sensorimotor learning are functional in children and can also affect saccade performance.

  17. Change in blood coagulation indices as a function of the incubation period of plasma in a constant magnetic field. [considering heparin tolerance and recalcification

    NASA Technical Reports Server (NTRS)

    Yepishina, S. G.

    1974-01-01

    The influence of a constant magnetic field (CMF) with a strength of 250 and 2500 oersteds on the recalcification reaction and the tolerance of plasma to heparin was studied as a function of the exposure time of the plasma to the CMF. The maximum and reliable change in the activation of the coagulatory system of the blood was observed after a 20-hour incubation of the plasma in a CMF. As the exposure time increased, the recalcification reaction changed insigificantly; the difference between the mean arithmetic of the experiment and control values was not statistically reliable. The tolerance of the plasma to heparin as a function of the exposure time to the CMF of the plasma was considerably modified, an was statistically reliable.

  18. Note: CO₂-mineral dissolution experiments using a rocking autoclave and a novel titanium reaction cell.

    PubMed

    Purser, Gemma; Rochelle, Christopher A; Wallis, Humphrey C; Rosenqvist, Jörgen; Kilpatrick, Andrew D; Yardley, Bruce W D

    2014-08-01

    A novel titanium reaction cell has been constructed for the study of water-rock-CO2 reactions. The reaction cell has been used within a direct-sampling rocking autoclave and offers certain advantages over traditional "flexible gold/titanium cell" approaches. The main advantage is robustness, as flexible cells are prone to rupture on depressurisation during gas-rich experiments. The reaction cell was tested in experiments during an inter-laboratory comparison study, in which mineral kinetic data were determined. The cell performed well during experiments up to 130 °C and 300 bars pressure. The data obtained were similar to those of other laboratories participating in the study, and also to previously published data.

  19. An Automated Method of Scanning Probe Microscopy (SPM) Data Analysis and Reactive Site Tracking for Mineral-Water Interface Reactions Observed at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Campbell, B. D.; Higgins, S. R.

    2008-12-01

    Developing a method for bridging the gap between macroscopic and microscopic measurements of reaction kinetics at the mineral-water interface has important implications in geological and chemical fields. Investigating these reactions on the nanometer scale with SPM is often limited by image analysis and data extraction due to the large quantity of data usually obtained in SPM experiments. Here we present a computer algorithm for automated analysis of mineral-water interface reactions. This algorithm automates the analysis of sequential SPM images by identifying the kinetically active surface sites (i.e., step edges), and by tracking the displacement of these sites from image to image. The step edge positions in each image are readily identified and tracked through time by a standard edge detection algorithm followed by statistical analysis on the Hough Transform of the edge-mapped image. By quantifying this displacement as a function of time, the rate of step edge displacement is determined. Furthermore, the total edge length, also determined from analysis of the Hough Transform, combined with the computed step speed, yields the surface area normalized rate of the reaction. The algorithm was applied to a study of the spiral growth of the calcite(104) surface from supersaturated solutions, yielding results almost 20 times faster than performing this analysis by hand, with results being statistically similar for both analysis methods. This advance in analysis of kinetic data from SPM images will facilitate the building of experimental databases on the microscopic kinetics of mineral-water interface reactions.

  20. Rapid adaptation to microgravity in mammalian macrophage cells.

    PubMed

    Thiel, Cora S; de Zélicourt, Diane; Tauber, Svantje; Adrian, Astrid; Franz, Markus; Simmet, Dana M; Schoppmann, Kathrin; Hauschild, Swantje; Krammer, Sonja; Christen, Miriam; Bradacs, Gesine; Paulsen, Katrin; Wolf, Susanne A; Braun, Markus; Hatton, Jason; Kurtcuoglu, Vartan; Franke, Stefanie; Tanner, Samuel; Cristoforetti, Samantha; Sick, Beate; Hock, Bertold; Ullrich, Oliver

    2017-02-27

    Despite the observed severe effects of microgravity on mammalian cells, many astronauts have completed long term stays in space without suffering from severe health problems. This raises questions about the cellular capacity for adaptation to a new gravitational environment. The International Space Station (ISS) experiment TRIPLE LUX A, performed in the BIOLAB laboratory of the ISS COLUMBUS module, allowed for the first time the direct measurement of a cellular function in real time and on orbit. We measured the oxidative burst reaction in mammalian macrophages (NR8383 rat alveolar macrophages) exposed to a centrifuge regime of internal 0 g and 1 g controls and step-wise increase or decrease of the gravitational force in four independent experiments. Surprisingly, we found that these macrophages adapted to microgravity in an ultra-fast manner within seconds, after an immediate inhibitory effect on the oxidative burst reaction. For the first time, we provided direct evidence of cellular sensitivity to gravity, through real-time on orbit measurements and by using an experimental system, in which all factors except gravity were constant. The surprisingly ultra-fast adaptation to microgravity indicates that mammalian macrophages are equipped with a highly efficient adaptation potential to a low gravity environment. This opens new avenues for the exploration of adaptation of mammalian cells to gravitational changes.

  1. Decomposition reaction rate of BCl3-C3H6(propene)-H2 in the gas phase.

    PubMed

    Xiao, Jun; Su, Kehe; Liu, Yan; Ren, Hongjiang; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong

    2012-07-05

    The decomposition reaction rate in the BCl(3)-C(3)H(6)-H(2) gas phase reaction system in preparing boron carbides was investigated based on the most favorable reaction pathways proposed by Jiang et al. [Theor. Chem. Accs. 2010, 127, 519] and Yang et al. [J. Theor. Comput. Chem. 2012, 11, 53]. The rate constants of all the elementary reactions were evaluated with the variational transition state theory. The vibrational frequencies for the stationary points as well as the selected points along the minimum energy paths (MEPs) were calculated with density functional theory at the B3PW91/6-311G(d,p) level and the energies were refined with the accurate model chemistry method G3(MP2). For the elementary reaction associated with a transition state, the MEP was obtained with the intrinsic reaction coordinates, while for the elementary reaction without transition state, the relaxed potential energy surface scan was employed to obtain the MEP. The rate constants were calculated for temperatures within 200-2000 K and fitted into three-parameter Arrhenius expressions. The reaction rates were investigated by using the COMSOL software to solve numerically the coupled differential rate equations. The results show that the reactions are, consistent with the experiments, appropriate at 1100-1500 K with the reaction time of 30 s for 1100 K, 1.5 s for 1200 K, 0.12 s for 1300 K, 0.011 s for 1400 K, or 0.001 s for 1500 K, for propene being almost completely consumed. The completely dissociated species, boron carbides C(3)B, C(2)B, and CB, have very low concentrations, and C(3)B is the main product at higher temperatures, while C(2)B is the main product at lower temperatures. For the reaction time 1 s, all these concentrations approach into a nearly constant. The maximum value (in mol/m(3)) is for the highest temperature 1500 K with the orders of -13, -17, and -23 for C(3)B, C(2)B, and CB, respectively. It was also found that the logarithm of the overall reaction rate and reciprocal temperature have an excellent linear relationship within 700-2000 K with a correlation coefficient of 0.99996. This corresponds to an apparent activation energy 337.0 kJ/mol, which is comparable with the energy barrier 362.6 kJ/mol of the rate control reaction at 0 K but is higher than either of the experiments 208.7 kJ/mol or the Gibbs free energy barrier 226.2 kJ/mol at 1200 K.

  2. Reaction-Mediated Desorption of Macromolecules: Novel Phenomenon Enabling Simultaneous Reaction and Separation.

    PubMed

    Isakari, Yu; Kishi, Yuhi; Yoshimoto, Noriko; Yamamoto, Shuichi; Podgornik, Aleš

    2018-02-02

    Combining chemical reaction with separation offers several advantages. In this work possibility to induce spontaneous desorption of adsorbed macromolecules, once being PEGylated, through adjustment of the reagent composition is investigated. Bovine serum albumin (BSA) and activated oligonucleotide, 9T, are used as the test molecules and 20 kDa linear activated PEG is used for their PEGylation. BSA solid-phase PEGylation is performed on Q Sepharose HP. Distribution coefficient of BSA and PEG-BSA as a function of NaCl is determined using linear gradient elution (LGE) experiments and Yamamoto model. According to the distribution coefficient the selectivity between BSA and PEG - BSA of around 15 is adjusted by using NaCl. Spontaneous desorption of PEG - BSA is detected with no presence of BSA. However, due to a rather low selectivity, also desorption of BSA occurred at high elution volume. A similar procedure is applied for activated 9T oligonucleotide, this time using monolithic CIM QA disk monolithic column for adsorption. Selectivity of over 2000 is obtained by proper adjustment of PEG reagent composition. High selectivity enables spontaneous desorption of PEG-9T without any desorption of activated 9T. Both experiments demonstrates that reaction-mediated desorption of macromolecules is possible when the reaction conditions are properly tuned. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Notable light-free catalytic activity for pollutant destruction over flower-like BiOI microspheres by a dual-reaction-center Fenton-like process.

    PubMed

    Wang, Liang; Yan, Dengbiao; Lyu, Lai; Hu, Chun; Jiang, Ning; Zhang, Lili

    2018-10-01

    BiOI is widely used as photocatalysts for pollutant removal, water splitting, CO 2 reduction and organic transformation due to its excellent photoelectric properties. Here, we report for the first time that a light-free catalyst consisting of the flower-like BiOI microspheres (f-BiOI MSs) exposing (1 0 1) and (1 1 0) crystal planes prepared by a hydrothermal method in ethylene glycol environment can rapidly eliminate the refractory BPA within only ∼3 min through a Fenton-like process. The reaction activity is ∼190 times higher than that of the conventional Fenton catalyst Fe 2 O 3 . A series of characterizations and experiments reveal the formation of the dual reaction centers on f-BiOI MSs. The electron-rich O centers efficiently reduce H 2 O 2 to OH, while the electron-poor oxygen vacancies capture electrons from the adsorbed pollutants and divert them to the electron-rich area during the Fenton-like reactions. By these processes, pollutants are degraded and mineralized quickly in a wide pH range. Our findings address the problems of the classical Fenton reaction and are useful for the development of efficient Fenton-like catalysts through constructing dual reaction centers. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Neural network modeling of the kinetics of SO2 removal by fly ash-based sorbent.

    PubMed

    Raymond-Ooi, E H; Lee, K T; Mohamed, A R; Chu, K H

    2006-01-01

    The mechanistic modeling of the sulfation reaction between fly ash-based sorbent and SO2 is a challenging task due to a variety reasons including the complexity of the reaction itself and the inability to measure some of the key parameters of the reaction. In this work, the possibility of modeling the sulfation reaction kinetics using a purely data-driven neural network was investigated. Experiments on SO2 removal by a sorbent prepared from coal fly ash/CaO/CaSO4 were conducted using a fixed bed reactor to generate a database to train and validate the neural network model. Extensive SO2 removal data points were obtained by varying three process variables, namely, SO2 inlet concentration (500-2000 mg/L), reaction temperature (60-80 degreesC), and relative humidity (50-70%), as a function of reaction time (0-60 min). Modeling results show that the neural network can provide excellent fits to the SO2 removal data after considerable training and can be successfully used to predict the extent of SO2 removal as a function of time even when the process variables are outside the training domain. From a modeling standpoint, the suitably trained and validated neural network with excellent interpolation and extrapolation properties could have immediate practical benefits in the absence of a theoretical model.

  5. The Cl + O3 reaction: a detailed QCT simulation of molecular beam experiments.

    PubMed

    Menéndez, M; Castillo, J F; Martínez-Haya, B; Aoiz, F J

    2015-10-14

    We have studied in detail the dynamics of the Cl + O3 reaction in the 1-56 kcal mol(-1) collision energy range using quasi-classical trajectory (QCT) calculations on a recent potential energy surface (PES) [J. F. Castillo et al., Phys. Chem. Chem. Phys., 2011, 13, 8537]. The main goal of this work has been to assess the accuracy of the PES and the reliability of the QCT method by comparison with the existing crossed molecular beam results [J. Zhang and Y. T. Lee J. Phys. Chem. A, 1997, 101, 6485]. For this purpose, we have developed a methodology that allows us to determine the experimental observables in crossed molecular beam experiments (integral and differential cross sections, recoil velocity distributions, scattering angle-recoil velocity polar maps, etc.) as continuous functions of the collision energy. Using these distributions, raw experimental data in the laboratory frame (angular distributions and time-of-flight spectra) have been simulated from first principles with the sole information on the instrumental parameters and taking into account the energy spread. A general good agreement with the experimental data has been found, thereby demonstrating the adequacy of the QCT method and the quality of the PES to describe the dynamics of this reaction at the level of resolution of the existing crossed beam experiments. Some features which are apparent in the differential cross sections have also been analysed in terms of the dynamics of the reaction and its evolution with the collision energy.

  6. Nutrient transport and transformation beneath an infiltration basin

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Bradner, L.A.

    1998-01-01

    Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.

  7. Identification and characterization of monomeric, volatile SiCl3NH2 as product of the reaction between SiCl4 and NH3: an important intermediate on the way to silicon nitride?

    PubMed

    Himmel, Hans-Jörg; Schiefenhövel, Nils; Binnewies, Michael

    2003-03-17

    We studied the reaction of SiCl(4) with NH(3) by mass spectrometry and IR spectroscopy. By means of mass spectrometry, SiCl(3)NH(2) was for the first time identified as an intermediate generated in significant amounts in the course of the reaction. In additional experiments, SiCl(3)NH(2) was formed as a stable gaseous product of the ammonolysis of SiCl(4), and the product was identified and characterized in detail by IR spectroscopic methods (gas phase and matrix isolation) in combination with quantum-chemical calculations. The calculations also gave access to important thermodynamical data.

  8. Modeling and optimization aspects of radiation induced grafting of 4-vinylpyridene onto partially fluorinated films

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Ahmad Ali, Amgad; Saidi, Hamdani; Ahmad, Arshad

    2014-01-01

    Modeling and optimization aspects of radiation induced grafting (RIG) of 4-vinylpyridine (4-VP) onto partially fluorinated polymers such as poly(ethylene-co-tetrafluoroethene) (ETFE) and poly(vinylidene fluoride) (PVDF) films were comparatively investigated using response surface method (RSM). The effects of independent parameters: absorbed dose, monomer concentration, grafting time and reaction temperature on the response, grafting yield (GY) were correlated through two quadratic models. The results of this work confirm that RSM is a reliable tool not only for optimization of the reaction parameters and prediction of GY in RIG processes, but also for the reduction of the number of the experiments, monomer consumption and absorbed dose leading to an improvement of the overall reaction cost.

  9. Probing the type of anomalous diffusion with single-particle tracking.

    PubMed

    Ernst, Dominique; Köhler, Jürgen; Weiss, Matthias

    2014-05-07

    Many reactions in complex fluids, e.g. signaling cascades in the cytoplasm of living cells, are governed by a diffusion-driven encounter of reactants. Yet, diffusion in complex fluids often exhibits an anomalous characteristic ('subdiffusion'). Since different types of subdiffusion have distinct effects on timing and equilibria of chemical reactions, a thorough determination of the reactants' type of random walk is key to a quantitative understanding of reactions in complex fluids. Here we introduce a straightforward and simple approach for determining the type of subdiffusion from single-particle tracking data. Unlike previous approaches, our method also is sensitive to transient subdiffusion phenomena, e.g. obstructed diffusion below the percolation threshold. We validate our strategy with data from experiment and simulation.

  10. Reactions of animals and people under conditions of brief weightlessness

    NASA Technical Reports Server (NTRS)

    Kitayev-Smik, L. A.

    1975-01-01

    It has been shown that under brief weightlessness sensory reactions arise in a number of people, mainly those under these conditions for the first time, in the form of spatial and visual illusions, motor excitation, in which tonic and motor components can be distinguished, and vestibular-vegetative disturbances (nausea, vomiting, etc.). In repeated flights with creation of weightlessness, a decrease in the extent of expression and, then, disappearance of these reactions occurred in a significant majority of those studied. Experiments in weightlessness with the vision cut off and with the absence of vestibular functions in the subjects confirm the hypothesis that spatial conceptions of people in weightlessness depend on predominance of gravireceptor or visual afferent signals under these conditions.

  11. The Load and Time Dependence of Chemical Bonding-Induced Frictional Ageing of Silica at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Tian, K.; Gosvami, N. N.; Goldsby, D. L.; Carpick, R. W.

    2015-12-01

    Rate and state friction (RSF) laws are empirical relationships that describe the frictional behavior of rocks and other materials in experiments, and reproduce a variety of observed natural behavior when employed in earthquake models. A pervasive observation from rock friction experiments is the linear increase of static friction with the log of contact time, or 'ageing'. Ageing is usually attributed to an increase in real area of contact associated with asperity creep. However, recent atomic force microscopy (AFM) experiments demonstrate that ageing of nanoscale silica-silica contacts is due to progressive formation of interfacial chemical bonds in the absence of plastic deformation, in a manner consistent with the multi-contact ageing behavior of rocks [Li et al., 2011]. To further investigate chemical bonding-induced ageing, we explored the influence of normal load (and thus contact normal stress) and contact time on ageing. Experiments that mimic slide-hold-slide rock friction experiments were conducted in the AFM for contact loads and hold times ranging from 23 to 393 nN and 0.1 to 100 s, respectively, all in humid air (~50% RH) at room temperature. Experiments were conducted by sequentially sliding the AFM tip on the sample at a velocity V of 0.5 μm/s, setting V to zero and holding the tip stationary for a given time, and finally resuming sliding at 0.5 μm/s to yield a peak value of friction followed by a drop to the sliding friction value. Chemical bonding-induced ageing, as measured by the peak friction minus the sliding friction, increases approximately linearly with the product of normal load and the log of the hold time. Theoretical studies of the roles of reaction energy barriers in nanoscale ageing indicate that frictional ageing depends on the total number of reaction sites and the hold time [Liu & Szlufarska, 2012]. We combine chemical kinetics analyses with contact mechanics models to explain our results, and develop a new approach for curve fitting ageing vs. load data which shows that the friction drop data points all fall on a master curve. The analysis yields physically reasonable values for the activation energy and activation volume of the chemical bonding process. Our study provides a basis to hypothesize that the kinetic processes in chemical bonding-induced ageing do not depend strongly on normal load.

  12. High-Resolution Experimental Investigation of mass transfer enhancement by chemical oxidation from DNAPL entrapped in variable-aperture fractures

    NASA Astrophysics Data System (ADS)

    Arshadi, M.; Rajaram, H.; Detwiler, R. L.; Jones, T.

    2012-12-01

    Permanganate oxidation of DNAPL- contaminated fractured rock is an effective remediation technology. Permanganate ion reacts with dissolved DNAPL in a bi-molecular oxidation-reduction reaction. The consumption of dissolved DNAPL in this reaction results in increased concentration gradients away from the free-phase DNAPL, resulting in reaction-enhanced mass transfer, which accelerates contaminant removal. The specific objective of our research was to perform high-resolution non-intrusive experimental studies of permanganate oxidation in a 15.24 × 15.24 cm, transparent, analog, variable-aperture fracture with complex initial TCE entrapped phase geometry. Our experimental system uses light-transmission techniques to accurately measure both fracture aperture and the evolution of individual entrapped DNAPL blobs during the remediation experiments at high resolution (pixel size : 6.2×10-3 cm). Three experiments were performed with different flow rates and permanganate inflow concentrations to observe DNAPL-permanganate interactions across a broader range of conditions. Prior to initiating each experiment, the aperture field within the fracture was measured. The oxidation experiment was initiated by TCE injection into the water saturated fracture till the TCE reached the outflow end, followed by water re-injection through the fracture. The flowing water mobilized some TCE. We continued injection of water till TCE mobilization ceased, leaving behind the residual TCE entrapped within the variable-aperture fracture. Subsequently, permanganate injection through the fracture resulted in propagation of a fingered reaction front into the fracture. We developed image processing algorithms to analyze the evolution of DNAPL phase geometry over the duration of the experiment. The permanganate consumption rate varied significantly within the fracture due to the complex flow and DNAPL concentration fields. Precipitated MnO2 was clearly evident on the downstream side of DNAPL blobs near the inflow boundary indicating high reaction rates in these regions. This behavior is explained by the diversion of permanganate around entrapped DNAPL blobs and downstream advection of dissolved DNAPL. Our results indicate that the total rate of mass transfer from the DNAPL blobs is higher at early times, when not much MnO2 has formed and precipitated. With time, MnO2 precipitation in the fracture leads to changes the aperture field and flow field. Precipitated MnO2 around TCE blobs also decreases the DNAPL accessible surface area. By comparing the results of three experiments, we conclude that low permanganate concentrations and high flow rates lead to more efficient DNAPL remediation, resulting from the fact that under these conditions there would be slower MnO2 formation and less precipitation within the fracture. We also present results on the time-evolution of fracture-scale permanganate consumption and DNAPL removal rates. The experimental observations are being used to develop improved high-resolution numerical models of reactive transport in variable-aperture fractures. The overall goal is to relate the coupled processes of DNAPL removal, permanganate consumption, MnO2 formation and associated changes in aperture and interface area; to derive fracture-scale effective representations of these processes.

  13. Discovery of a Significant Acetone•Hydroperoxy Adduct Chaperone Effect and Its Impact on the Determination of Room Temperature Rate Constants for Acetonylperoxy/Hydroperoxy Self-Reactions and Cross Reaction Via Infrared Kinetic Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2017-12-01

    In order to model the upper troposphere/lower stratosphere in regions containing acetone properly, the kinetics of the acetonylperoxy/hydroperoxy self-reactions and cross reaction have been studied over a wide temperature range using Infrared Kinetic Spectroscopy. We report here the determination of different rate constants for the acetonylperoxy chemistry that we obtained at 298 K compared to currently accepted values. A considerable increase in the observed HO2 self-reaction rate constant due to rate enhancement via the chaperone effect from the reaction between HO2 and the (CH3)2CO•HO2 hydrogen-bonded adduct, even at room temperature, was discovered that was previously ignored. Correct determination of the acetonylperoxy and hydroperoxy kinetics must include this dependence of the HO2 self-reaction rate on acetone concentration. Via excimer laser flash photolysis to create the radical reactants, HO2 absorption was monitored in the infrared by diode laser wavelength modulation detection simultaneously with CH3C(O)CH2O2absorption monitored in the ultraviolet at 300 nm as a function of time. Resulting decay curves were fit concurrently first over a short time scale to obtain the rate constants minimizing subsequent product reactions. Modeling/fitting with a complete reaction scheme was then performed to refine the rate constants and test their veracity. Experiments were carried out over a variety of concentrations of acetone and methanol. Although no effect due to methanol concentration was found at room temperature, the rate constant for the hydroperoxy self-reaction was found to increase linearly with acetone concentration which is interpreted as the adduct being formed and resulting in a chaperone mechanism that enhances the self-reaction rate: (CH3)2CO·HO2 + HO2 → H2O2 + O2 + (CH3)2CO Including this effect, the resulting room temperature rate constants for the cross reaction and the acetonylperoxy self-reaction were found to be 2-3 times smaller than previously reported. This complex formation/chaperone mechanism is similar to that found for methanol, but different in that it occurs at room temperature. No precursor concentration dependence was found for the acetonylperoxy radical reactions. The equilibrium constant for the complex formation will also be presented.

  14. Performance consequences of alternating directional control-response compatibility: evidence from a coal mine shuttle car simulator.

    PubMed

    Zupanc, Christine M; Burgess-Limerick, Robin J; Wallis, Guy

    2007-08-01

    To investigate error and reaction time consequences of alternating compatible and incompatible steering arrangements during a simulated obstacle avoidance task. Underground coal mine shuttle cars provide an example of a vehicle in which operators are required to alternate between compatible and incompatible steering configurations. This experiment examines the performance of 48 novice participants in a virtual analogy of an underground coal mine shuttle car. Participants were randomly assigned to a compatible condition, an incompatible condition, an alternating condition in which compatibility alternated within and between hands, or an alternating condition in which compatibility alternated between hands. Participants made fewer steering direction errors and made correct steering responses more quickly in the compatible condition. Error rate decreased over time in the incompatible condition. A compatibility effect for both errors and reaction time was also found when the control-response relationship alternated; however, performance improvements over time were not consistent. Isolating compatibility to a hand resulted in reduced error rate and faster reaction time than when compatibility alternated within and between hands. The consequences of alternating control-response relationships are higher error rates and slower responses, at least in the early stages of learning. This research highlights the importance of ensuring consistently compatible human-machine directional control-response relationships.

  15. Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency

    PubMed Central

    An, Ran; Massa, Katherine

    2014-01-01

    AC Faradaic reactions have been reported as a mechanism inducing non-ideal phenomena such as flow reversal and cell deformation in electrokinetic microfluidic systems. Prior published work described experiments in parallel electrode arrays below the electrode charging frequency (fc), the frequency for electrical double layer charging at the electrode. However, 2D spatially non-uniform AC electric fields are required for applications such as in plane AC electroosmosis, AC electrothermal pumps, and dielectrophoresis. Many microscale experimental applications utilize AC frequencies around or above fc. In this work, a pH sensitive fluorescein sodium salt dye was used to detect [H+] as an indicator of Faradaic reactions in aqueous solutions within non-uniform AC electric fields. Comparison experiments with (a) parallel (2D uniform fields) electrodes and (b) organic media were employed to deduce the electrode charging mechanism at 5 kHz (1.5fc). Time dependency analysis illustrated that Faradaic reactions exist above the theoretically predicted electrode charging frequency. Spatial analysis showed [H+] varied spatially due to electric field non-uniformities and local pH changed at length scales greater than 50 μm away from the electrode surface. Thus, non-uniform AC fields yielded spatially varied pH gradients as a direct consequence of ion path length differences while uniform fields did not yield pH gradients; the latter is consistent with prior published data. Frequency dependence was examined from 5 kHz to 12 kHz at 5.5 Vpp potential, and voltage dependency was explored from 3.5 to 7.5 Vpp at 5 kHz. Results suggest that Faradaic reactions can still proceed within electrochemical systems in the absence of well-established electrical double layers. This work also illustrates that in microfluidic systems, spatial medium variations must be considered as a function of experiment time, initial medium conditions, electric signal potential, frequency, and spatial position. PMID:25553200

  16. Biosynthesis of agmatine in isolated mitochondria and perfused rat liver: studies with 15N-labelled arginine

    PubMed Central

    2005-01-01

    An important but unresolved question is whether mammalian mitochondria metabolize arginine to agmatine by the ADC (arginine decarboxylase) reaction. 15N-labelled arginine was used as a precursor to address this question and to determine the flux through the ADC reaction in isolated mitochondria obtained from rat liver. In addition, liver perfusion system was used to examine a possible action of insulin, glucagon or cAMP on a flux through the ADC reaction. In mitochondria and liver perfusion, 15N-labelled agmatine was generated from external 15N-labelled arginine. The production of 15N-labelled agmatine was time- and dose-dependent. The time-course of [U-15N4]agmatine formation from 2 mM [U-15N4]arginine was best fitted to a one-phase exponential curve with a production rate of approx. 29 pmol·min−1·(mg of protein)−1. Experiments with an increasing concentration (0– 40 mM) of [guanidino-15N2]arginine showed a Michaelis constant Km for arginine of 46 mM and a Vmax of 3.7 nmol·min−1·(mg of protein)−1 for flux through the ADC reaction. Experiments with broken mitochondria showed little changes in Vmax or Km values, suggesting that mitochondrial arginine uptake had little effect on the observed Vmax or Km values. Experiments with liver perfusion demonstrated that over 95% of the effluent agmatine was derived from perfusate [guanidino-15N2]arginine regardless of the experimental condition. However, the output of 15N-labelled agmatine (nmol·min−1·g−1) increased by approx. 2-fold (P<0.05) in perfusions with cAMP. The findings of the present study provide compelling evidence that mitochondrial ADC is present in the rat liver, and suggest that cAMP may stimulate flux through this pathway. PMID:15656789

  17. Comparing the demands of destination entry using Google Glass and the Samsung Galaxy S4 during simulated driving.

    PubMed

    Beckers, Niek; Schreiner, Sam; Bertrand, Pierre; Mehler, Bruce; Reimer, Bryan

    2017-01-01

    The relative impact of using a Google Glass based voice interface to enter a destination address compared to voice and touch-entry methods using a handheld Samsung Galaxy S4 smartphone was assessed in a driving simulator. Voice entry (Google Glass and Samsung) had lower subjective workload ratings, lower standard deviation of lateral lane position, shorter task durations, faster remote Detection Response Task (DRT) reaction times, lower DRT miss rates, and resulted in less time glancing off-road than the primary visual-manual interaction with the Samsung Touch interface. Comparing voice entry methods, using Google Glass took less time, while glance metrics and reaction time to DRT events responded to were similar. In contrast, DRT miss rate was higher for Google Glass, suggesting that drivers may be under increased distraction levels but for a shorter period of time; whether one or the other equates to an overall safer driving experience is an open question. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Rapid time-resolved diffraction studies of protein structures using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bartunik, Hans D.; Bartunik, Lesley J.

    1992-07-01

    The crystal structure of intermediate states in biological reactions of proteins of multi-protein complexes may be studied by time-resolved X-ray diffraction techniques which make use of the high spectral brilliance, continuous wavelength distribution and pulsed time structure of synchrotron radiation. Laue diffraction methods provide a means of investigating intermediate structures with lifetimes in the millisecond time range at presently operational facilities. Third-generation storage rings which are under construction may permit one to reach a time resolution of one microsecond for non-cyclic and one nanosecond for cyclic reactions. The number of individual exposures required for exploring reciprocal space and hence the total time scale strongly depend on the lattice order that may be affected, e.g., by conformational changes. Time-resolved experiments require high population of a specific intermediate which has to be homogeneous over the crystal volume. A number of external excitation techniques have been developed including in situ liberation of active metabolites by laser pulse photolysis of photolabile inactive precursors. First applications to crystal structure analysis of catalytic intermediates of enzymes demonstrate the potential of time-resolved protein crystallography.

  19. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke

    NASA Astrophysics Data System (ADS)

    Sleiman, Mohamad; Destaillats, Hugo; Smith, Jared D.; Liu, Chen-Lin; Ahmed, Musahid; Wilson, Kevin R.; Gundel, Lara A.

    2010-11-01

    We used controlled laboratory experiments to evaluate the aerosol-forming potential of ozone reactions with nicotine and secondhand smoke. Special attention was devoted to real-time monitoring of the particle size distribution and chemical composition of SOA as they are believed to be key factors determining the toxicity of SOA. The experimental approach was based on using a vacuum ultraviolet photon ionization time-of-flight aerosol mass spectrometer (VUV-AMS), a scanning mobility particle sizer (SMPS) and off-line thermal desorption coupled to mass spectrometry (TD-GC-MS) for gas-phase byproducts analysis. Results showed that exposure of SHS to ozone induced the formation of ultrafine particles (<100 nm) that contained high molecular weight nitrogenated species ( m/ z 400-500), which can be due to accretion/acid-base reactions and formation of oligomers. In addition, nicotine was found to contribute significantly (with yields 4-9%) to the formation of secondary organic aerosol through reaction with ozone. The main constituents of the resulting SOA were tentatively identified and a reaction mechanism was proposed to elucidate their formation. These findings identify a new component of thirdhand smoke that is associated with the formation of ultrafine particles (UFP) through oxidative aging of secondhand smoke. The significance of this chemistry for indoor exposure and health effects is highlighted.

  20. CLAS+FROST: new generation of photoproduction experiments at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eugene Pasyuk

    2009-12-01

    A large part of the experimental program in Hall B of the Jefferson Lab is dedicated to baryon spectroscopy. Photoproduction experiments are essential part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and availability of circularly and linearly polarized tagged photon beams provide unique conditions for this type of experiments. Recent addition of the Frozen Spin Target (FROST) gives a remarkable opportunity to measure double and triple polarization observables for different pseudo-scalar meson photoproduction processes. For the first time, a complete or nearly complete experiment becomes possible and will allow model independent extraction of the reaction amplitude. An overview ofmore » the experiment and its current status is presented.« less

Top