Controlled short residence time coal liquefaction process
Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.
1982-05-04
Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.
Short residence time coal liquefaction process including catalytic hydrogenation
Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.
1982-05-18
Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.
Short residence time coal liquefaction process including catalytic hydrogenation
Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.
1982-05-18
Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.
Metathesis process for preparing an alpha, omega-functionalized olefin
Burdett, Kenneth A.; Mokhtarzadeh, Morteza; Timmers, Francis J.
2010-10-12
A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.
Coal liquefaction with subsequent bottoms pyrolysis
Walchuk, George P.
1978-01-01
In a coal liquefaction process wherein heavy bottoms produced in a liquefaction zone are upgraded by coking or a similar pyrolysis step, pyrolysis liquids boiling in excess of about 1000.degree. F. are further reacted with molecular hydrogen in a reaction zone external of the liquefaction zone, the resulting effluent is fractionated to produce one or more distillate fractions and a bottoms fraction, a portion of this bottoms fraction is recycled to the reaction zone, and the remaining portion of the bottoms fraction is recycled to the pyrolysis step.
Method for reducing nitrogen oxides in combustion effluents
Zauderer, Bert
2000-01-01
Method for reducing nitrogen oxides (NO.sub.x) in the gas stream from the combustion of fossil fuels is disclosed. In a narrow gas temperature zone, NO.sub.x is converted to nitrogen by reaction with urea or ammonia with negligible remaining ammonia and other reaction pollutants. Specially designed injectors are used to introduce air atomized water droplets containing dissolved urea or ammonia into the gaseous combustion products in a manner that widely disperses the droplets exclusively in the optimum reaction temperature zone. The injector operates in a manner that forms droplet of a size that results in their vaporization exclusively in this optimum NO.sub.x -urea/ammonia reaction temperature zone. Also disclosed is a design of a system to effectively accomplish this injection.
Siegrist, Robert L; Parzen, Rebecca; Tomaras, Jill; Lowe, Kathryn S
2014-04-01
Drip dispersal of partially treated wastewater was investigated as an approach for onsite water reclamation and beneficial reuse of water and nutrients in a semi-arid climate. At the Mines Park Test Site in Golden, Colorado, a drip dispersal system (DDS) was installed at 20- to 30-cm depth in an Ascalon sandy loam soil profile. Two zones with the same layout were established to enable study of two different hydraulic loading rates. Zones 1 and 2 each had one half of the landscape surface with native vegetation and the other with Kentucky bluegrass sod. After startup activities, domestic septic tank effluent was dispersed five times a day at footprint loading rates of 5 L/m(2)/d for Zone 1 and 10 L/m(2)/d for Zone 2. Over a two-year period, monitoring included the frequency and volume of effluent dispersed and its absorption by the landscape. After the first year of operation in October a (15)N tracer test was completed in the sodded portion of Zone 1 and samples of vegetation and soil materials were collected and analyzed for water content, pH, nitrogen, (15)N, and bacteria. Research revealed that both zones were capable of absorbing the effluent water applied at 5 or 10 L/m(2)/d. Effluent water dispersed from an emitter infiltrates at the emitter and along the drip tubing and water movement is influenced by hydrologic conditions. Based on precipitation and evapotranspiration at the Test Site, only a portion of the effluent water dispersed migrated downward in the soil (approx. 34% or 64% for Zone 1 or 2, respectively). Sampling within Zone 1 revealed water filled porosities were high throughout the soil profile (>85%) and water content was most elevated along the drip tubing (17-22% dry wt.), which is also where soil pH was most depressed (pH 4.5) due to nitrification reactions. NH4(+) and NO3(-) retention occurred near the dispersal location for several days and approximately 51% of the N applied was estimated to be removed by plant uptake and denitrification. Heterotrophic bacteria levels were elevated (up to 1 log) in the subsurface within the DDS but there was effective elimination of effluent fecal coliform and Escherichia coli bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.
King, Jeffrey N.; Decker, Jeremy D.
2018-02-09
Nonhazardous, secondarily treated, domestic wastewater (effluent) has been injected about 1 kilometer below land surface into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant in southeastern Florida. The Boulder Zone contains saline, nonpotable water. Effluent transport out of the injection zone is a risk of underground effluent injection. At the North District Wastewater Treatment Plant, injected effluent was detected outside the Boulder Zone. The U.S. Geological Survey, in cooperation with Miami-Dade Water and Sewer Department, investigated effluent transport from the Boulder Zone to overlying permeable zones in the Floridan aquifer system.One conceptual model is presented to explain the presence of effluent outside of the injection zone in which effluent injected into the Boulder Zone was transported to the Avon Park permeable zone, forced by buoyancy and injection pressure. In this conceptual model, effluent injected primarily into the Boulder Zone reaches a naturally occurring feature (a karst-collapse structure) near an injection well, through which the effluent is transported vertically upward to the uppermost major permeable zone of the Lower Floridan aquifer. The effluent is then transported laterally through the uppermost major permeable zone of the Lower Floridan aquifer to another naturally occurring feature northwest of the North District Wastewater Treatment Plant, through which it is then transported vertically upward into the Avon Park permeable zone. In addition, a leak within a monitoring well, between monitoring zones, allowed interflow between the Avon Park permeable zone and the Upper Floridan aquifer. A groundwater flow and effluent transport simulation of the hydrogeologic system at the North District Wastewater Treatment Plant, based on the hypothesized and non-unique conceptualization of the subsurface hydrogeology and flow system, generally replicated measured effluent constituent concentration trends. The model was calibrated to match observed concentration trends for total ammonium (NH4+) and total dissolved solids.The investigation qualitatively indicates that fractures, karst-collapse structures, faults, or other hydrogeologic features may permit effluent injected into the Boulder Zone to be transported to overlying permeable zones in the Floridan aquifer system. These findings, however, are qualitative because the locations of transport pathways that might exist from the Boulder Zone to the Avon Park permeable zone are largely unknown.
CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE
Reinhart, G.M.; Collopy, T.J.
1962-11-13
A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)
NASA Technical Reports Server (NTRS)
Thomas, R. R.
1975-01-01
Automated chemiluminescent and bioluminescent sensors were developed for continuous monitoring of microbial levels in wastewater effluent. Development of the chemiluminescent system included optimization of reagent concentrations as well as two new techniques which will allow for increased sensitivity and specificity. The optimal reagent concentrations are 0.0025 M luminol and 0.0125 M sodium perborate in 0.75N sodium hydroxide before addition of sample. The methods developed to increase specificity include (1) extraction of porphyrins from bacteria collected in a filter using 0.1N NaOH - 50 percent Ethanol, and (2) use of the specific reaction rate characteristics for the different luminol catalysts. Since reaction times are different for each catalyst, the reaction can be made specific for bacteria by measuring only the light emission from the particular reaction time zone specific for bacteria. Developments of the bioluminescent firefly luciferase system were in the area of flow system design.
Mixing of Pure Air Jets with a Reacting Fuel-Rich Crossflow
NASA Technical Reports Server (NTRS)
Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.
1997-01-01
Jets in a crossflow play an integral role in practical combustion systems such as can and annular gas turbine combustors in conventional systems, and the Rich-burn/Quick-mix/Lean-burn (RQL) combustor utilized in stationary applications and proposed for advanced subsonic and supersonic transports. The success of the RQL combustor rests with the performance of the quick-mixing section that bridges the rich and lean zones. The mixing of jet air with a rich crossflow to bring the reaction to completion in the lean zone must be performed rapidly and thoroughly in order to decrease the extent of near-stoichiometric fluid pocket formation. Fluid pockets at near-stoichiometric equivalence ratios are undesirable because the high temperatures attained accelerate pollutant formation kinetics associated with nitric oxide (NO). The present study develops a model experiment designed to reveal the processes that occur when jet air is introduced into hot effluent emanating from a fuel-rich reaction zone.
Hemachandra, C K; Pathiratne, A
2017-10-01
Complex effluents originating from diverse industrial processes in industrial zones could pose cytotoxic/genotoxic hazards to biota in the receiving ecosystems which cannot be revealed by conventional monitoring methods. This study assessed potential cytotoxicity/genotoxicity of treated effluents of two industrial zones which are discharged into Kelani river, Sri Lanka combining erythrocytic abnormality tests and comet assay of the tropical model fish, Nile tilapia. Exposure of fish to the effluents induced erythrocytic DNA damage and deformed erythrocytes with serrated membranes, vacuolations, nuclear buds and micronuclei showing cytotoxic/genotoxic hazards in all cases. Occasional exceedance of industrial effluent discharge regulatory limits was noted for color and lead which may have contributed to the observed cytotoxicity/genotoxicity of effluents. The results demonstrate that fish erythrocytic responses could be used as effective bioanalytical tools for cytotoxic/genotoxic hazard assessments of complex effluents of industrial zones for optimization of the waste treatment process in order to reduce biological impacts.
Method and system for the removal of oxides of nitrogen and sulfur from combustion processes
Walsh, John V.
1987-12-15
A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.
Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons
Gorin, Everett
1978-01-01
Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.
Manatee use of power plant effluents in Brevard County, Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shane, S.H.
The relationship between manatees and power plants was investigated at 2 power plants on the Indian River in Brevard County, Florida from January 1978-February 1980. Manatee presence in the power plant effluent zones was correlated with cold air and water temperatures. When air temperatures were below 16 C most manatees in the country were found in the effluent zones. Manatees in the effluent zones move with the wind-blown warm water plume, demonstrating a sensitivity to small changes in water temperature. Some individuals were frequently resighted at 1 plant, while others moved between the 2 plants. Because industrial warm water sourcesmore » are less reliable than natural warm water refuges, it is recommended that no new artificial warm water effluents be constructed north of the species' traditional winter range. 16 references, 3 figures, 1 table.« less
Coal hydrogenation and deashing in ebullated bed catalytic reactor
Huibers, Derk T. A.; Johanson, Edwin S.
1983-01-01
An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.
Chaturvedi, Sonal; Chandra, Ram; Rai, Vibhuti
2008-01-01
Susceptibility patterns of 12 different antibiotics were investigated against rhizospheric bacteria isolated from Phragmites australis from three different zones i.e. upper (0-5 cm), middle (5-10 cm), lower (10-15 cm) in constructed wetland system with and without distillery effluent. The major pollutants of distillery effluent were phenols, sulphide, heavy metals, and higher levels of biological oxygen demand (BOD), chemical oxygen demand (COD) etc. The antibiotic resistance properties of bacteria were correlated with the heavy metal tolerance (one of distillery pollutant). Twenty-two species from contaminated and seventeen species from non-contaminated site were tested by agar disc-diffusion method. The results revealed that more than 63% of total isolates were resistance towards one or more antibiotics tested from all the three different zones of contaminated sites. The multiple-drug resistance property was shown by total 8 isolates from effluent contaminated region out of which 3 isolates were from upper zone, 3 isolates from middle zone and 2 isolates were from lower zone. Results indicated that isolates from contaminated rhizosphere were found more resistant to antibiotics than isolates from non-contaminated rhizosphere. Further this study produces evidence suggesting that tolerance to antibiotics was acquired by isolates for the adaptation and detoxification of all the pollutants present in the effluent at contaminated site. This consequently facilitated the phytoremediation of effluent, which emerges the tolerance and increases resistance to antibiotics.
Origin of increased sulfate in groundwater at the ETF disposal site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, E.C.
1997-09-01
Treated effluent being discharged to the vadose zone from the C-018H Effluent Treatment Facility (ETF) at the Hanford Site has infiltrated vertically to the unconfined aquifer, as indicated by increasing tritium activity levels in the groundwater. Well 699-48-77A, in particular, exhibits increased levels of tritium and also sulfate in the groundwater. The origin of increased sulfate levels in the groundwater is attributed to the dissolution of gypsum as the effluent flows through the vadose zone. This is supported by the observation that sulfate was found to be present in soils collected from the vadose zone at an average value ofmore » about 10.6 ppm. The maximum observed sulfate concentration of 190 mg/L from well 699-48-77A was observed on August 6, 1996, and is less than the maximum value of 879 mg/L that potentially could be achieved if water in the vadose zone was to attain saturation with respect to gypsum and calcite. It is suggested that infiltration rates were high enough that the effluent did not completely equilibrate with gypsum in the vadose zone, and thus, sulfate levels remained below gypsum saturation levels. Sulfate levels appear to be dropping, which may be attributed to the completion of the dissolution of the bulk of gypsum present along the vadose zone flow path traversed by the effluent. Geochemical modeling was undertaken to evaluate the influence of effluent chemistry on sulfate concentration levels in the presence of excess calcite and gypsum. In general, the effect is fairly minor for dilute solutions, but becomes more significant for concentrated solutions.« less
NASA Astrophysics Data System (ADS)
Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K.
2018-04-01
Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.
Enhanced attenuation of septic system phosphate in noncalcareous sediments.
Robertson, W D
2003-01-01
Review of phosphate behavior in four mature septic system plumes on similar textured sand has revealed a strong correlation between carbonate mineral content and phosphate concentrations. A plume on calcareous sand (Cambridge site, 27 wt % CaCO3 equiv.) has proximal zone PO4 concentrations (4.8 mg/L P average) that are about 75% of the septic tank effluent value, whereas three plumes on noncalcareous sand (Muskoka, L. Joseph, and Nobel sites, <1 wt % CaCO3 equiv.) have proximal zone phosphate concentrations (<0.1 mg/L P) that are consistently less than 2% of the effluent values. Phosphate attenuation at the noncalcareous sites appears to be an indirect result of the development of acidic conditions (site average pH 3.5 to 5.9) and elevated Al concentrations (up to 24 mg/L), which subsequently causes the precipitation of Al-P minerals such as variscite (AlPO4 x 2H2O). This is supported by scanning electron microscope analyses, which show the widespread occurrence of (Al+P)--rich secondary mineral coatings on sand grains below the infiltration beds. All of these septic systems are more than 10 years old, indicating that these attenuation reactions have substantial longevity. A field lysimeter experiment demonstrated that this reaction sequence can be readily incorporated into engineered waste water treatment systems. We feel this important P removal mechanism has not been adequately recognized, particularly for its potential significance in reducing P loading from septic systems in lakeshore environments.
Chen, Lei; Han, Zhaoxing; Li, Shuang; Shen, Zhenyao
2016-10-01
The efficacy of traditional effluent trading systems is questionable due to their neglect of seasonal hydrological variation and the creation of upstream hot spots within a watershed. Besides, few studies have been conducted to distinguish the impacts of each influencing factor on effluent trading systems outputs. In this study, a water environmental functional zone-based effluent trading systems framework was configured and a comprehensive analysis of its influencing factors was conducted. This proposed water environmental functional zone-based effluent trading systems was then applied for the control of chemical oxygen demand in the Beiyun River watershed, Beijing, China. Optimal trading results highlighted the integration of water quality constraints and different hydrological seasons, especially for downstream dischargers. The optimal trading of each discharger, in terms of pollutant reduction load and abatement cost, is greatly influenced by environmental and political factors such as background water quality, the location of river assessment points, and tradable discharge permits. In addition, the initial permit allowance has little influence on the market as a whole but does impact the individual discharger. These results provide information that is critical to understanding the impact of policy design on the functionality of an effluent trading systems.
NASA Astrophysics Data System (ADS)
Chen, Lei; Han, Zhaoxing; Li, Shuang; Shen, Zhenyao
2016-10-01
The efficacy of traditional effluent trading systems is questionable due to their neglect of seasonal hydrological variation and the creation of upstream hot spots within a watershed. Besides, few studies have been conducted to distinguish the impacts of each influencing factor on effluent trading systems outputs. In this study, a water environmental functional zone-based effluent trading systems framework was configured and a comprehensive analysis of its influencing factors was conducted. This proposed water environmental functional zone-based effluent trading systems was then applied for the control of chemical oxygen demand in the Beiyun River watershed, Beijing, China. Optimal trading results highlighted the integration of water quality constraints and different hydrological seasons, especially for downstream dischargers. The optimal trading of each discharger, in terms of pollutant reduction load and abatement cost, is greatly influenced by environmental and political factors such as background water quality, the location of river assessment points, and tradable discharge permits. In addition, the initial permit allowance has little influence on the market as a whole but does impact the individual discharger. These results provide information that is critical to understanding the impact of policy design on the functionality of an effluent trading systems.
Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes
Nizamoff, Alan J.
1980-01-01
In a coal liquefaction process wherein feed coal is contacted with molecular hydrogen and a hydrogen-donor solvent in a liquefaction zone to form coal liquids and vapors and coal liquids in the solvent boiling range are thereafter hydrogenated to produce recycle solvent and liquid products, the improvement which comprises separating the effluent from the liquefaction zone into a hot vapor stream and a liquid stream; cooling the entire hot vapor stream sufficiently to condense vaporized liquid hydrocarbons; separating condensed liquid hydrocarbons from the cooled vapor; fractionating the liquid stream to produce coal liquids in the solvent boiling range; dividing the cooled vapor into at least two streams; passing the cooling vapors from one of the streams, the coal liquids in the solvent boiling range, and makeup hydrogen to a solvent hydrogenation zone, catalytically hydrogenating the coal liquids in the solvent boiling range and quenching the hydrogenation zone with cooled vapors from the other cooled vapor stream.
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Verger, F.; Monget, J. M.; Crepon, M. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1980-01-01
The results of an investigation to map the various thermal gradients in the coastal zones of France are presented. Paricular emphasis is given to the natural phenomena and man made thermal effluents. It is shown that a close correlation exist between wind speed direction and the offshore width of the effluent.
Power recovery system for coal liquefaction process
Horton, Joel R.
1985-01-01
Method and apparatus for minimizing energy required to inject reactant such as coal-oil slurry into a reaction vessel, using high pressure effluent from the latter to displace the reactant from a containment vessel into the reaction vessel with assistance of low pressure pump. Effluent is degassed in the containment vessel, and a heel of the degassed effluent is maintained between incoming effluent and reactant in the containment vessel.
Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system
Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.
2010-01-01
During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.
Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.
Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T
2010-02-01
During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.
NASA Astrophysics Data System (ADS)
Regberg, A. B.; Singha, K.; Picardal, F.; Brantley, S. L.
2011-12-01
Previous research has linked measured changes in the bulk electrical conductivity (σb) of water-saturated sediments to the respiration and growth of anaerobic bacteria. If the mechanism causing this signal is understood and characterized it could be used to identify and monitor zones of bacterial activity in the subsurface. The 1-D reactive transport model PHREEQC was used to understand σb signals by modeling chemical gradients within two column reactors and corresponding changes in effluent chemistry. The flow-through column reactors were packed with Fe(III)-bearing sediment from Oyster, VA and inoculated with an environmental consortia of microorganisms. Influent in the first reactor was amended with 1mM Na-acetate to encourage the growth of iron-reducing bacteria. Influent in the second reactor was amended with 0.1mM Na-Acetate and 2mM NaNO3 to encourage the growth of nitrate-reducing bacteria. While effluent concentrations of acetate, Fe(II), NO3-, NO2-, and NH4+ remained at steady state, we measured a 3-fold increase (0.055 S/m - 0.2 S/m) in σb in the iron-reducing column and a 10-fold increase in σb (0.07 S/m - 0.8 S/m) in the nitrate-reducing column over 198 days. The ionic strength in both reactors remained constant through time indicating that the measured increases in σb were not caused by changing effluent concentrations. PHREEQC successfully matched the measured changes in effluent concentrations for both columns when the reaction database was modified in the following manner. For the iron-reducing column, kinetic expressions governing the rate of iron reduction, the rate of bacterial growth, and the production of methane were added to the reaction database. Additionally, surface adsorption and cation exchange reactions were added so that the model was consistent with measured effluent chemistry. For the nitrate-reducing column, kinetic expressions governing nitrate reduction and bacterial growth were added to the reaction database. Additionally, immobile porosity was added along with adsorption and cation exchange reactions. Although the model revealed the existence of chemical and biological gradients within the columns that were not discernable as changes in effluent concentrations, none of the chemical reactions or gradients could explain the measured σb increases in either column. This result is not consistent with chemical gradients within the column reactor causing the measured changes in σb. To test the alternate hypothesis that microbial biofilms are electrically conductive, we used the output from PHREEQC to calculate the amount of biomass produced within the column reactors. If biofilm causes the σb changes, our model is consistent with an electrical conductivity for biomass in the iron-reducing column between 2.75 and 220 S/m. The model is also consistent with an electrical conductivity for biomass in the nitrate-reducing column between 350 and 35,000 S/m. These estimates of biomass electrical conductivity are poorly constrained but represent a first step towards understanding the electrical properties associated with respiring biofilms.
Robertson, G.L.; Noble, M.A.; Xu, J. P.; Rosenfeld, L.K.; McGee, C.D.
2005-01-01
Data from pre- and post-disinfection fecal indicator bacteria (FIB) samples from final effluent, an offshore ocean outfall, and surf zone stations off Huntington Beach, CA were compared. Analysis of the results from these data sets confirmed that the ocean outfall was not the FIB source responsible for the postings and closures of local beaches that have occurred each summer since 1999. While FIB counts in the final effluent and offshore showed several order of magnitude reductions after disinfection, there were no significant reductions at the nearby surf zone stations. Additionally, the FIB spectral patterns suggest different sources. The dominant fortnightly cycle suggested that the source was related to the wetting and draining of the land from large spring tide tidal excursions.
Catalytic destruction of groundwater contaminants in reactive extraction wells
McNab, Jr., Walt W.; Reinhard, Martin
2002-01-01
A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.
Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin.
Bodhipaksha, Laleen C; Sharpless, Charles M; Chin, Yu-Ping; MacKay, Allison A
2017-03-01
The photoreactivity of treated wastewater effluent organic matter differs from that of natural organic matter, and the indirect phototransformation rates of micropollutants originating in wastewater are expected to depend on the fractional contribution of wastewater to total stream flow. Photodegradation rates of four common compounds of wastewater origin (sulfamethoxazole, sulfadimethoxine, cimetidine and caffeine) were measured in river water, treated municipal wastewater effluent and mixtures of both to simulate various effluent-stream water mixing conditions that could occur in environmental systems. Compounds were chosen for their unique photodegradation pathways with the photochemically produced reactive intermediates, triplet-state excited organic matter ( 3 OM*), singlet oxygen ( 1 O 2 ), and hydroxyl radicals (OH). For all compounds, higher rates of photodegradation were observed in effluent relative to upstream river water. Sulfamethoxazole degraded primarily via direct photolysis, with some contribution from OH and possibly from carbonate radicals and other unidentified reactive intermediates in effluent-containing samples. Sulfadimethoxine also degraded mainly by direct photolysis, and natural organic matter appeared to inhibit this process to a greater extent than predicted by light screening. In the presence of effluent organic matter, sulfadimethoxine showed additional reactions with OH and 1 O 2 . In all water samples, cimetidine degraded by reaction with 1 O 2 (>95%) and caffeine by reaction with OH (>95%). In river water mixtures, photodegradation rate constants for all compounds increased with increasing fractions of effluent. A conservative mixing model was able to predict reaction rate constants in the case of hydroxyl radical reactions, but it overestimated rate constants in the case of 3 OM* and 1 O 2 pathways. Finally, compound degradation rate constants normalized to the rate of light absorption by water correlated with E 2 /E 3 ratios (sample absorbance at 254 nm divided by sample absorbance at 365 nm), suggesting that organic matter optical properties may hold promise to predict indirect compound photodegradation rates for various effluent mixing ratios. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaimoussi, Aziz; Chafik, Abdelghani; Mouzdahir, Abdelkrim; Bakkas, Salem
2001-09-01
The present study characterizes the effluents of the 'Maroc Phosphore' factories III and IV (of Jorf Lasfar coastal zone). The results show that the effluent (Cs/l) is very acid, very phosphate-rich, high in suspended matter and calcium-rich. Hydrological parameters indicate an important content of phosphates, especially in the stations located in the South of Cs/l. Tissues of mussel Mytilus galloprovincialis from the Jorf Lasfar zone present high concentrations of Cd and Cu.
Nickelson, Reva A.; Walsh, Stephanie; Richardson, John G.; Dick, John R.; Sloan, Paul A.
2005-06-28
Processes and methods relating to treating contaminants and collecting desired substances from a zone of interest using subterranean collection and containment barriers. Tubular casings having interlock structures are used to create subterranean barriers for containing and treating buried waste and its effluents. The subterranean barrier includes an effluent collection system. Treatment solutions provided to the zone of interest pass therethrough and are collected by the barrier and treated or recovered, allowing on-site remediation. Barrier components may be used to in the treatment by collecting or removing contaminants or other materials from the zone of interest.
Nickelson, Reva A.; Walsh, Stephanie; Richardson, John G.; Dick, John R.; Sloan, Paul A.
2006-12-26
Processes and methods relating to treating contaminants and collecting desired substances from a zone of interest using subterranean collection and containment barriers. Tubular casings having interlock structures are used to create subterranean barriers for containing and treating buried waste and its effluents. The subterranean barrier includes an effluent collection system. Treatment solutions provided to the zone of interest pass therethrough and are collected by the barrier and treated or recovered, allowing on-site remediation. Barrier components may be used to in the treatment by collecting or removing contaminants or other materials from the zone of interest.
NASA Technical Reports Server (NTRS)
Erstfield, T. E.; Williams, R. J.
1979-01-01
A thermodynamic analysis discusses the compositions of gaseous effluents from the reaction of carbon and chlorine and of hydrogen with lunar anorthite and ilmenite, respectively. The computations consider the effects of the indigenous volatiles on the solid/gas reactions and on the composition of the effluent gases. A theoretical parameterization of the high temperature electrolysis of such gases is given for several types of solid ceramic electrolytes, and the effect of oxygen removal on the effluents is computed. Potential chemical interactions between the gases and the ceramic electrolytes are analyzed and discussed.
The emphasis of this paper is to show that most probable number-polymerase chain reaction (MPNPCR) assay can be used to detect Cryptosporidium parvum in WWTP effluents as an alternative to immunfluorescent assay (IFA). I am concerned, however, that the paper suggests that all WW...
UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction.
Tokumura, Masahiro; Ohta, Ayano; Znad, Hussein T; Kawase, Yoshinori
2006-12-01
The photochemical decolorization of coffee effluent has been examined by photo-Fenton (UV/Fe2+/H2O2) process. Effects of UV light intensity, initial coffee concentration, iron dose and H2O2 dose on the color removal of model coffee effluent have been investigated. The rate of decolorization increased with decreasing initial coffee effluent concentration. It was found that the Fe ion dose and UV light intensity enhanced the decolorization rate. The decolorization process of coffee effluent could be divided into three established phases. At the beginning of the photo-Fenton process, the instantaneous and significant increase in color of the solution was found (Phase-I). In the subsequent phase (Phase-II), the decolorization rate was initially fast and subsequently decreased. In Phase-III, the rate was accelerated and then the complete decolorization of model coffee effluent was achieved. In order to elucidate the mechanisms of coffee effluent color removal process, the concentration changes in Fe3+ and Fe2+ besides H2O2 were measured during the course of the photo-Fenton process. The rate-determining step in Phase-II was the photo-Fenton reaction or photoreduction of Fe3+. On the other hand, the decolorization process in Phase-III was highly affected by Fenton reaction or decomposition of H2O2 with Fe2+. About 93% mineralization of 250 mg L(-1) model coffee effluent was achieved after 250 min. A comparative study for TiO2, ZnO and photo-Fenton oxidation processes has been also carried out and the photo-Fenton process was found to be the most effective for color removal of coffee effluent.
NASA Astrophysics Data System (ADS)
Osaliya, R.; Kansiime, F.; Oryem-Origa, H.; Kateyo, E.
During the operation of the Kilembe Mines (copper mining) a cobaltiferous stockpile was constructed, which began to erode after the closure of the mines in the early 1970s. The erosion of the pyrite stockpile resulted in a large acid trail all the way to Lake George (a Ramsar site). The acid trail contaminated a large area of Queen Elizabeth National Park (QENP) resulting in the death of most of the shallow-rooted vegetation. Processes and conditions created by storm water and effluent from a constructed wetland were assessed for vegetation regeneration in the degraded QENP pyrite trail. Cynodon dactylon, Imperata cylindrica and Hyparrhenia filipendula dominated the regeneration zone (RZ) where storm water and effluent from a constructed wetland was flowing; and the adjacent unpolluted area (UP) with importance value indices of 186.4 and 83.3 respectively. Typha latifolia and C. dactylon formed two distinct vegetation sub-zones within the RZ with the former inhabiting areas with a higher water table. Soil pH was significantly higher in the RZ, followed by UP and bare pyrite trail (BPT) at both 0-15 cm and 16-30 cm depths. Soil electrical conductivity was not significantly different in the RZ and BPT but significantly higher than that in UP for both depths. For 0-15 cm depth, RZ had significantly higher concentrations of copper than BPT and UP which had similar concentrations. Still at this depth (0-15 cm), the unpolluted area had significantly higher concentrations of total phosphorus and total nitrogen than the regeneration zone and the bare pyrite trail which had similar concentrations. The RZ dominated by Typha had significantly higher concentrations of TP and TN compared to the RZ dominated by Cynodon. The concentrations of NH 4-N were significantly lower in Typha regeneration zone than in CRZ at 0-15 cm depth but similar at 16-30 cm depth. At 16-30 cm depth, concentrations of copper were significantly higher in the regeneration zone followed by the bare pyrite trail and the unpolluted zone. The concentration of lead in the regeneration zone and bare pyrite trail were similar but significantly higher in the unpolluted zone. Concentrations of TP and TN were significantly higher in unpolluted zone, followed by regeneration zone and bare pyrite trail. Storm water and effluent from a constructed wetland enhanced the revegetation process by modifying soil pH, making plant growth nutrients available and by providing a steady supply of moisture necessary for plant growth. T. latifolia and C. dactylon which seem to have tolerance of high concentrations of metals were the dominant species in the regeneration zone. If storm water and effluent supply continues, the aforementioned vegetation will colonize the pyrite trail and will eventually protect QENP and Lake George from metal contamination.
NASA Astrophysics Data System (ADS)
Sigeneger, F.; Becker, M. M.; Foest, R.; Loffhagen, D.
2016-09-01
The gas flow and plasma in a miniaturized non-thermal atmospheric pressure plasma jet for plasma enhanced chemical vapour deposition has been investigated by means of hydrodynamic modelling. The investigation focuses on the interplay between the plasma generation in the active zone where the power is supplied by an rf voltage to the filaments, the transport of active plasma particles due to the gas flow into the effluent, their reactions with the thin film precursor molecules and the transport of precursor fragments towards the substrate. The main features of the spatially two-dimensional model used are given. The results of the numerical modelling show that most active particles of the argon plasma are mainly confined within the active volume in the outer capillary of the plasma jet, with the exception of molecular argon ions which are transported remarkably into the effluent together with slow electrons. A simplified model of the precursor kinetics yields radial profiles of precursor fragment fluxes onto the substrate, which agree qualitatively with the measured profiles of thin films obtained by static film deposition experiments.
Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana
2013-02-01
A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.
Remote sensing in the mixing zone. [water pollution in Wisconsin
NASA Technical Reports Server (NTRS)
Villemonte, J. R.; Hoopes, J. A.; Wu, D. S.; Lillesand, T. M.
1973-01-01
Characteristics of dispersion and diffusion as the mechanisms by which pollutants are transported in natural river courses were studied with the view of providing additional data for the establishment of water quality guidelines and effluent outfall design protocols. Work has been divided into four basic categories which are directed at the basic goal of developing relationships which will permit the estimation of the nature and extent of the mixing zone as a function of those variables which characterize the outfall structure, the effluent, and the river, as well as climatological conditions. The four basic categories of effort are: (1) the development of mathematical models; (2) laboratory studies of physical models; (3) field surveys involving ground and aerial sensing; and (4) correlation between aerial photographic imagery and mixing zone characteristics.
de Sousa, José Tavares; Lima, Jéssyca de Freitas; da Silva, Valquíria Cordeiro; Leite, Valderi Duarte; Lopes, Wilton Silva
2017-03-01
The aim of the present study was to evaluate the biological oxidation of sulphide in two different UASB reactors by assessing the occurrence of oxidized forms of sulphur in the effluents and the amount of S 0 that could be recovered in the process. The bioreactors employed were an anaerobic hybrid (AH) reactor employing porous polyurethane foam as support media and a micro-aerated UASB reactor equipped with an aeration device above the digestion zone. The AH reactor produced a final effluent containing low concentrations of S 2- (3.87% of total sulphur load). It was achieved due to a complete oxidation of 56.1% of total sulphur. The partial biological oxidation that occurred in the AH reactor allowed the recovery of 30% of the sulphur load as S 0 . The effluent from the micro-aerated UASB reactor contained 5% of the sulphur load in the form of S 2- , while 20.9% was present as dissolved SO 4 2- and 46% was precipitated as S 0 . It is concluded that the AH reactor or micro-aeration carried out above the digestion zone of the UASB reactor favoured the biological oxidation of S 2- and the release of odourless effluents. Both technologies represent feasible and low-cost alternatives for the anaerobic treatment of domestic sewage.
Colman, John A.
2005-01-01
Surface-water resources in Massachusetts often are affected by eutrophication, excessive plant growth, which has resulted in impaired use for a majority of the freshwater ponds and lakes and a substantial number of river-miles in the State. Because supply of phosphorus usually is limiting to plant growth in freshwater systems, control of phosphorus input to surface waters is critical to solving the impairment problem. Wastewater is a substantial source of phosphorus for surface water, and removal of phosphorus before disposal may be necessary. Wastewater disposed onland by infiltration loses phosphorus from the dissolved phase during transport through the subsurface and may be an effective disposal method; quantification of the phosphorus loss can be simulated to determine disposal feasibility. In 2003, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated a project to simulate distance of phosphorus transport in the subsurface for plausible conditions of onland wastewater disposal and subsurface properties. A coupled one-dimensional unsaturated-zone and three-dimensional saturated-zone reactive-solute-transport model (PHAST) was used to simulate lengths of phosphorus plumes. Knowledge of phosphorus plume length could facilitate estimates of setback distances for wastewater-infiltration sites from surface water that would be sufficient to protect the surface water from eutrophication caused by phosphorus transport through the subsurface and ultimate discharge to surface water. The reactive-solute-transport model PHAST was used to simulate ground-water flow, solute transport, equilibrium chemistry for dissolved and sorbed species, and kinetic regulation of organic carbon decomposition and phosphate mineral formation. The phosphorus plume length was defined for the simulations as the maximum extent of the contour for the 0.015 milligram-per-liter concentration of dissolved phosphorus downgradient from the infiltration bed after disposal cessation. Duration of disposal before cessation was assumed to be 50 years into an infiltration bed of 20,000 square feet at the rate of 3 gallons per square foot per day. Time for the maximum extent of the phosphorus plume to develop is on the order of 100 years after disposal cessation. Simulations indicated that phosphorus transport beyond the extent of the 0.015 milligram-per-liter concentration contour was never more than 0.18 kilogram per year, an amount that would likely not alter the ecology of most surface water. Simulations of phosphorus plume lengths were summarized in a series of response curves. Simulated plume lengths ranged from 200 feet for low phosphorus-concentration effluents (0.25 milligram per liter) and thick (50 feet) unsaturated zones to 3,400 feet for high phosphorus-concentration effluents (14 milligrams per liter) discharged directly into the aquifer (unsaturated-zone thickness of 0 feet). Plume length was nearly independent of unsaturated-zone thickness at phosphorus concentrations in the wastewater that were less than 2 milligrams per liter because little or no phosphorus mineral formed at low phosphorus concentrations. For effluents of high phosphorus concentration, plume length varied from 3,400 feet for unsaturated-zone thickness of 0 to 2,550 feet for unsaturated-zone thickness of 50 feet. Model treatments of flow and equilibrium-controlled chemistry likely were more accurate than rates of kinetically controlled reactions, notably precipitation of iron-phosphate minerals; the kinetics of such reactions are less well known and thus less well defined in the model. Sensitivity analysis indicated that many chemical and physical aquifer properties, such as hydraulic gradient and model width, did not affect the simulated plume length appreciably, but duration of discharge, size of infiltration bed, amount of dispersion, and number of sorption sites on the aquifer sediments did affect plume length ap
Liu, Zhiguo; Stromberg, David; Liu, Xuming; Liao, Wei; Liu, Yan
2015-03-21
A new multiple-stage treatment process was developed via integrating electrocoagulation with biogas pumping to simultaneously reclaim anaerobic digestion effluent and clean up biogas. The 1st stage of electrocoagulation treatment under the preferred reaction condition led to removal efficiencies of 30%, 81%, 37% and >99.9% for total solids, chemical oxygen demand, total nitrogen and total phosphorus, respectively. Raw biogas was then used as a reactant and pumped into the effluent to simultaneously neutralize pH of the effluent and remove H2S in the biogas. The 2nd stage of electrocoagulation treatment on the neutralized effluent showed that under the selected reaction condition, additional 60% and 10% of turbidity and chemical oxygen demand were further removed. The study concluded a dual-purpose approach for the first time to synergistically combine biogas purification and water reclamation for anaerobic digestion system, which well addresses the downstream challenges of anaerobic digestion technology. Copyright © 2014 Elsevier B.V. All rights reserved.
Woodard, Kenneth R; Sollenberger, Lynn E; Sweat, Lewin A; Graetz, Donald A; Nair, Vimala D; Rymph, Stuart J; Walker, Leighton; Joo, Yongsung
2007-01-01
There is concern that P from dairy effluent sprayfields will leach into groundwater beneath Suwannee River basins in northern Florida. Our purpose was to describe the effects of dairy effluent irrigation on the movement of soil P and other nutrients within the upper soil profile of a sprayfield over three 12-mo cycles (April 1998-March 2001). Effluent P rates of 70, 110, and 165 kg ha(-1) cycle(-1) were applied to forages that were grown year-round. The soil is a deep, excessively drained sand (thermic, uncoated Typic Quartzipsamment). Mean P concentration in soil water below the rooting zone (152-cm depth) was < or = 0.1 mg L(-1) during 11 3-mo periods. Mehlich-1-extractable (M1) P, Al, and Ca in the topsoil increased over time but did not change in subsoil depths of 25 to 51, 51 to 71, 71 to 97, and 97 to 122 cm. Topsoil Ca increased as effluent rate increased. High Ca levels were found in dairy effluent (avg.: 305 mg L(-1)) and supplemental irrigation water (avg.: 145 mg L(-1)) which likely played a role in retaining P in the topsoil. An effect of effluent rate on P and Al concentrations in the topsoil was not detected, probably due to large and variable quantities present at project initiation. The P retention capacity (i.e., Al plus Fe) increased in the topsoil because Al increased. Dairy effluent contained Al (avg.: 31 mg L(-1)). Phosphorus saturation ratio (PSR) increased over time in the topsoil but not in subsoil layers. Regardless of effluent rate, the P retention capacity and PSR of subsoil, which contained 119 to 229 mg kg(-1) of Al, should be taken into account when assessing the risk of P moving below the rooting zone of most forage crops.
Garcia, J C; Oliveira, J L; Silva, A E C; Oliveira, C C; Nozaki, J; de Souza, N E
2007-08-17
This work investigated the treatability of real textile effluents using several systems involving advanced oxidation processes (AOPs) such as UV/H2O2, UV/TiO2, UV/TiO2/H2O2, and UV/Fe2+/H2O2. The efficiency of each technique was evaluated according to the reduction levels observed in the UV absorbance of the effluents, COD, and organic nitrogen reduction, as well as mineralization as indicated by the formation of ammonium, nitrate, and sulfate ions. The results indicate the association of TiO2 and H2O2 as the most efficient treatment for removing organic pollutants from textile effluents. In spite of their efficiency, Fenton reactions based treatment proved to be slower and exhibited more complicated kinetics than the ones using TiO2, which are pseudo-first-order reactions. Decolorization was fast and effective in all the experiments despite the fact that only H2O2 was used.
Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent.
Thalmann, Basilius; Voegelin, Andreas; von Gunten, Urs; Behra, Renata; Morgenroth, Eberhard; Kaegi, Ralf
2015-09-15
Silver nanoparticles used in consumer products are likely to be released into municipal wastewater. Transformation reactions, most importantly sulfidation, lead to the formation of nanoscale silver sulfide (nano-Ag2S) particles. In wastewater treatment plants (WWTP), ozonation can enhance the effluent quality by eliminating organic micropollutants. The effect of ozonation on the fate of nano-Ag2S, however, is currently unknown. In this study, we investigate the interaction of ozone with nano-Ag2S and evaluate the effect of ozonation on the short-term toxicity of WWTP effluent spiked with nano-Ag2S. The oxidation of nano-Ag2S by ozone resulted in a stoichiometric factor (number of moles of ozone required to oxidize one mole of sulfide to sulfate) of 2.91, which is comparable to the results obtained for the reaction of bisulfide (HS(-)) with ozone. The second-order rate constant for the reaction of nano-Ag2S with ozone (k = 3.1 × 10(4) M(-1) s(-1)) is comparable to the rate constant of fast-reacting micropollutants. Analysis of the ozonation products of nano-Ag2S by transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) revealed that ozonation dominantly led to the formation of silver chloride in WWTP effluent. After ozonation of the Ag2S-spiked effluent, the short-term toxicity for the green algae Chlamydomonas reinhardtii increased and reached EC50 values comparable to Ag(+). This study thus reveals that ozone treatment of WWTP effluent results in the oxidation of Ag2S and, hence, an increase of the Ag toxicity in the effluent, which may become relevant at elevated Ag concentrations.
Desimone, Leslie A.; Howes, Brian L.
1998-01-01
Nitrogen transport and transformations were followed over the initial 3 years of development of a plume of wastewater-contaminated groundwater in Cape Cod, Massachusetts. Ammonification and nitrification in the unsaturated zone and ammonium sorption in the saturated zone were predominant, while loss of fixed nitrogen through denitrification was minor. The major effect of transport was the oxidation of discharged organic and inorganic forms to nitrate, which was the dominant nitrogen form in transit to receiving systems. Ammonification and nitrification in the unsaturated zone transformed 16–19% and 50–70%, respectively, of the total nitrogen mass discharged to the land surface during the study but did not attenuate the nitrogen loading. Nitrification in the unsaturated zone also contributed to pH decrease of 2 standard units and to an N2O increase (46–660 µg N/L in the plume). Other processes in the unsaturated zone had little net effect: Ammonium sorption removed <1% of the total discharged nitrogen mass; filtering of particulate organic nitrogen was less than 3%; ammonium and nitrate assimilation was less than 6%; and ammonia volatilization was less than 0.25%. In the saturated zone a central zone of anoxic groundwater (DO ≤ 0.05 mg/L) was first detected 17 months after effluent discharge to the aquifer began, which expanded at about the groundwater-flow velocity. Although nitrate was dominant at the water table, the low, carbon-limited rates of denitrification in the anoxic zone (3.0–9.6 (ng N/cm3)/d) reduced only about 2% of the recharged nitrogen mass to N2. In contrast, ammonium sorption in the saturated zone removed about 16% of the recharged nitrogen mass from the groundwater. Ammonium sorption was primarily limited to anoxic zone, where nitrification was prevented, and was best described by a Langmuir isotherm in which effluent ionic concentrations were simulated. The initial nitrogen load discharged from the groundwater system may depend largely on the growth and stability of the sorbed ammonium pool, which in turn depends on effluent-loading practices, subsurface microbial processes, and saturation of available exchange sites.
NASA Astrophysics Data System (ADS)
Olson, Mitchell R.; Sale, Tom C.
2015-06-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (> 96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (< 4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (> 10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to > 99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time.
Removal of pharmaceuticals from secondary effluents by an electro-peroxone process.
Yao, Weikun; Wang, Xiaofeng; Yang, Hongwei; Yu, Gang; Deng, Shubo; Huang, Jun; Wang, Bin; Wang, Yujue
2016-01-01
This study compared the removal of pharmaceuticals from secondary effluents of wastewater treatment plants (WWTPs) by conventional ozonation and the electro-peroxone (E-peroxone) process, which involves electrochemically generating H2O2 in-situ from O2 in sparged O2 and O3 gas mixture (i.e., ozone generator effluent) during ozonation. Several pharmaceuticals with kO3 ranging from <0.1 to 6.8 × 10(5) M(-1) s(-1) were spiked into four secondary effluents collected from different WWTPs, and then treated by ozonation and the E-peroxone process. Results show that both processes can rapidly remove ozone reactive pharmaceuticals (diclofenac and gemfibrozil), while the E-peroxone process can considerably accelerate the removal of ozone-refractory pharmaceuticals (e.g., ibuprofen and clofibric acid) via indirect oxidation with OH generated from the reaction of sparged O3 with electro-generated H2O2. Compared with ozonation, the E-peroxone process enhanced the removal kinetics of ozone-refractory pharmaceuticals in the four secondary effluents by ∼40-170%, and the enhancement was more pronounced in secondary effluents that had relatively lower effluent organic matter (EfOM). Due to its higher efficiency for removing ozone-refractory pharmaceuticals, the E-peroxone process reduced the reaction time and electrical energy consumption required to remove ≥90% of all spiked pharmaceuticals from the secondary effluents as compared to ozonation. These results indicate that the E-peroxone process may provide a simple and effective way to improve existing ozonation system for pharmaceutical removal from secondary effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Waste Load Allocation for Conservative Substances to Protect Aquatic Organisms
NASA Astrophysics Data System (ADS)
Hutcheson, M. R.
1992-01-01
A waste load allocation process is developed to determine the maximum effluent concentration of a conservative substance that will not harm fish and wildlife propagation. If this concentration is not exceeded in the effluent, the acute toxicity criterion will not be violated in the receiving stream, and the chronic criterion will not be exceeded in the zone of passage, defined in many state water quality standards to allow the movement of aquatic organisms past a discharge. Considerable simplification of the concentration equation, which is the heart of any waste load allocation, is achieved because it is based on the concentration in the receiving stream when the concentration gradient on the zone of passage boundary is zero. Consequently, the expression obtained for effluent concentration is independent of source location or stream morphology. Only five independent variables, which are routinely available to regulatory agencies, are required to perform this allocation. It aids in developing permit limits which are protective without being unduly restrictive or requiring large expenditures of money and manpower on field investigations.
Iron catalyzed coal liquefaction process
Garg, Diwakar; Givens, Edwin N.
1983-01-01
A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.
Analysis and optimization of chlorocarbon incineration through use of a detailed reaction mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, W.; Booty, M.R.; Magee, R.S.
1995-12-01
Chemical species profiles are calculated by using a detailed reaction mechanism and a reactor code that simulates a well-mixed, three-zone incineration process. The chemical systems include CH{sub 3}Cl/CH{sub 4} and CH{sub 2}Cl{sub 2}/CH{sub 4} oxidation in air at fuel equivalence ratios {phi} from 0.8 to 1.1, with additives injected at downstream positions. Combustion is characterized for temperature, principal organic hazardous constituent (POHC), and product of incomplete combustion (PIC) levels. Major PICs comprise Cl, CL{sub 2}, CO, HOCl, and COCl{sub 2} and are calculated versus time, temperature, fuel equivalence ratio, and feed conditions. Steam, H{sub 2}O{sub 2}, O{sub 2}, air, andmore » other species are injected as additives in the burnout region to discern changes i the combustion chemistry. Steam addition improves or decreases the CO/CO{sub 2} ratio at an additive mole fraction of 0.1. Atomic Cl is the active radical species of highest concentration in the initial high-temperature reaction zone when CH{sub 3}Cl is the POHC at a feed concentration above 1,200 ppm and {phi} {le} 1. Cl{sub 2} is found to be a major PIC under fuel-lean and stoichiometric conditions, while CO is a major PIC under fuel-rich conditions. Reduction of combined CO and Cl{sub 2} levels in the incinerator stack effluent is achieved by operation at stoichiometric conditions or slightly fuel-lean with the controlled addition of high-temperature steam.« less
NASA Astrophysics Data System (ADS)
Berns, E. C.; Zeng, R.; Singh, H.; Valocchi, A. J.; Sanford, R. A.; Strathmann, T. J.; Schaefer, C. E.; Werth, C. J.
2017-12-01
Low permeability zones (LPZs) comprised of silts and clays, and contaminated with chlorinated ethenes, can act as a long term source of contaminated groundwater by diffusion into adjacent high permeability zones (HPZs). Following initial remediation efforts, chlorinated ethenes that have diffused into LPZs will back diffuse and recontaminate HPZs. Because chlorinated ethenes are known to cause cancer and damage the liver, kidneys, and central nervous system, it is important to understand how they degrade in natural systems and how to model their fate and transport. Previous work has shown that anaerobic hydrogenolysis reactions are facilitated by both dechlorinating microorganisms and reactive minerals. Abiotic dichloro-elimination reactions with reactive minerals can also degrade chlorinated ethenes to acetylene, albeit at slower rates than biotic processes. More recently, studies have explored aerobic abiotic degradation of chlorinated ethenes to formate, glycolate, and carbon dioxide. This study focuses on these biotic and abiotic reactions and their contributions to chlorinated ethene degradation under aerobic and anaerobic conditions at the LPZ/HPZ interface. A two-dimensional flow cell was constructed to model this interface using clay and sand from Pease Air Force Base. The clay was inoculated with a dechlorinating enrichment culture. Tenax adsorbent beads equilibrated with trichloroethylene (TCE) were used as a chlorinated ethene source zone at the base of the clay. TCE and its degradation products diffused from the clay into the sand, where they were removed from the flow cell by groundwater at a rate of 50 mL/day. Volatile compounds were trapped in a sample loop and removed every 48 hours for analysis by GC-FID. Organic and inorganic ions in the effluent were analyzed on the HPLC and IC. The experiment was terminated by freezing the flow cell, and chemical profiles through the flow cell material were created to show the spatial distribution of degradation products. Chemical profiles through the clay were modeled using a 1D diffusion-reaction model, and the contributions of abiotic and biotic processes to TCE degradation were determined. The model and experimental data lend insights into transformation processes that control the fate and transport of chlorinated ethenes at contaminated sites.
Method for continuously recovering metals using a dual zone chemical reactor
Bronson, Mark C.
1995-01-01
A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing.
NASA Astrophysics Data System (ADS)
King, J. N.; Walsh, V.; Cunningham, K. J.; Evans, F. S.; Langevin, C. D.; Dausman, A.
2009-12-01
The Miami-Dade Water and Sewer Department (MDWASD) injects buoyant effluent from the North District Wastewater Treatment Plant (NDWWTP) through four Class I injection wells into the Boulder Zone---a saline (35 parts per thousand) and transmissive (105 to 106 square meters per day) hydrogeologic unit located approximately 1000 meters below land surface. Miami-Dade County is located in southeast Florida, U.S.A. Portions of the Floridan and Biscayne aquifers are located above the Boulder Zone. The Floridan and Biscayne aquifers---underground sources of drinking water---are protected by U.S. Federal Laws and Regulations, Florida Statutes, and Miami-Dade County ordinances. In 1998, MDWASD began to observe effluent constituents within the Floridan aquifer. Continuous-source and impulse-source analytical models for advective and diffusive transport of effluent are used in the present work to test contaminant flow-path hypotheses, suggest transport mechanisms, and estimate dispersivity. MDWASD collected data in the Floridan aquifer between 1996 and 2007. A parameter estimation code is used to optimize analytical model parameters by fitting model data to collected data. These simple models will be used to develop conceptual and numerical models of effluent transport at the NDWWTP, and in the vicinity of the NDWWTP.
Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal
2015-12-01
Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.
Method for continuously recovering metals using a dual zone chemical reactor
Bronson, M.C.
1995-02-14
A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing. 6 figs.
Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping
2013-01-01
Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.
NASA Astrophysics Data System (ADS)
Menke, H. P.; Bijeljic, B.; Blunt, M. J.
2017-05-01
We study the impact of brine acidity and initial pore structure on the dynamics of fluid/solid reaction at high Péclet numbers and low Damköhler numbers. A laboratory μ-CT scanner was used to image the dissolution of Ketton, Estaillades, and Portland limestones in the presence of CO2-acidified brine at reservoir conditions (10 MPa and 50 °C) at two injected acid strengths for a period of 4 h. Each sample was scanned between 6 and 10 times at ∼4 μm resolution and multiple effluent samples were extracted. The images were used as inputs into flow simulations, and analysed for dynamic changes in porosity, permeability, and reaction rate. Additionally, the effluent samples were used to verify the image-measured porosity changes. We find that initial brine acidity and pore structure determine the type of dissolution. Dissolution is either uniform where the porosity increases evenly both spatially and temporally, or occurs as channelling where the porosity increase is concentrated in preferential flow paths. Ketton, which has a relatively homogeneous pore structure, dissolved uniformly at pH = 3.6 but showed more channelized flow at pH = 3.1. In Estaillades and Portland, increasingly complex carbonates, channelized flow was observed at both acidities with the channel forming faster at lower pH. It was found that the effluent pH, which is higher than that injected, is a reasonably good indicator of effective reaction rate during uniform dissolution, but a poor indicator during channelling. The overall effective reaction rate was up to 18 times lower than the batch reaction rate measured on a flat surface at the effluent pH, with the lowest reaction rates in the samples with the most channelized flow, confirming that transport limitations are the dominant mechanism in determining reaction dynamics at the fluid/solid boundary.
Olson, Mitchell R; Sale, Tom C
2015-01-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (<4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (>10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
King, J. N.; Cunningham, K. J.; Foster, A. L.
2011-12-01
The Miami-Dade Water and Sewer Department (MDWASD) injects effluent approximately one km below land surface into the Boulder Zone (BZ) at the North District Wastewater Treatment Plant (NDWWTP). The BZ is highly conductive and composed of fractured dolomite. MDWASD monitors upward effluent migration 450 m below land surface in the Avon Park Permeable Zone (APPZ). The BZ and APPZ---units within the Floridan aquifer system---are separated by a series of inter-bedded aquifers and leaky confining units with hydraulic conductivities that are orders of magnitude smaller than the BZ. MDWASD injected effluent at the NDWWTP during two distinct periods: (1) July 1997 to September 1999, and (2) August 2004 to January 2011. No effluent was injected between October 1999 and July 2004. A few months after the July 1997 injection, MDWASD observed effluent constituents in the APPZ (Figure 1). Some confinement bypass feature permits effluent constituents to be transported from the BZ to the APPZ. Bypass features may include poorly-cased wells, or natural conduits such as fractures, faults, or karst collapse systems. It is possible to describe confinement bypass features with conductance KA/L, where K is hydraulic conductivity, A is cross-sectional area, and L is length. MDWASD observed a distinct transition in the transport response to injection stress of total dissolved solids (TDS) concentration in the APPZ. The conductance required to describe early system response (1997-1999) is one order-of-magnitude larger than the conductance required to describe late system response (2004-2011). Hypotheses to explain transient conductance include clogging of bypass features by some geochemical or biological process that results from the mixing of effluent with groundwater; dissolution or precipitation; or changes in bypass-feature geometry forced by cyclical changes in aquifer-fluid pressure associated with injection. Hypotheses may be tested with geochemical analyses, tracer tests, hydraulic tomography, or microseismic monitoring.
USDA-ARS?s Scientific Manuscript database
We investigated a deammonification process for the removal of ammonia from anaerobi digestion (AD) effluents. This process is autotrophic and removes N without carbon. Instant deammonification reaction was obtained by mixing a high performance nitrifying sludge (HPNS) (NRRL B-50298) with anammox slu...
Photoreactor with self-contained photocatalyst recapture
Gering, Kevin L.
2004-12-07
A system for the continuous use and recapture of a catalyst in liquid, comprising: a generally vertical reactor having a reaction zone with generally downwardly flowing liquid, and a catalyst recovery chamber adjacent the reaction zone containing a catalyst consisting of buoyant particles. The liquid in the reaction zone flows downward at a rate which exceeds the speed of upward buoyant migration of catalyst particles in the liquid, whereby catalyst particles introduced into the liquid in the reaction zone are drawn downward with the liquid. A slow flow velocity flotation chamber disposed below the reaction zone is configured to recapture the catalyst particles and allow them to float back into the catalyst recovery chamber for recycling into the reaction zone, rather than being swept downstream. A novel 3-dimensionally adjustable solar reflector directs light into the reaction zone to induce desired photocatalytic reactions within the liquid in the reaction zone.
Chromium distribution in an Amazonian river exposed to tannery effluent.
de Sousa, Eduardo Araujo; Luz, Cleber Calado; de Carvalho, Dario Pires; Dorea, Caetano Chang; de Holanda, Igor Bruno Barbosa; Manzatto, Ângelo Gilberto; Bastos, Wanderley Rodrigues
2016-11-01
This study aims to evaluate the Cr concentrations in surface water, suspended particles, and bottom sediments exposed to tannery effluent releases in the Candeias River. Cr concentrations were compared in relation to environmental thresholds imposed by United States Environmental Protection Agency (USEPA) and the Brazilian Environmental Council (CONAMA), and the geoaccumulation index (Igeo) was calculated in bottom sediment. Samples were collected in flood and dry seasons. Cr extraction was done by an acid extraction and quantified by flame atomic absorption spectrometry. Most samples were found to be below the environmental thresholds imposed by CONAMA and USEPA, except in the one from the discharge zone sampled during the dry season, showing values 1.5 and 6.1 higher than CONAMA in water and bottom sediment, respectively. Cr concentrations were significantly higher (P < 0.001) in suspended particles during dry season than flood season. Surface water and bottom sediment did not show significant differences between the seasons. The Igeo revealed an enrichment of Cr in bottom sediments after discharge zone, indicating that the effluent may be contributing to metal accumulation in the sediment. Apparently, the Candeias River shows a wash behavior on the river bottom, leaching the accumulated metal deposited on the riverbed to other areas during the flood pulses, which decreases Cr concentration in the discharge zone during dry seasons. Thus, this behavior can promote Cr dispersion to unpolluted areas.
Optimisation of Noosa BNR plant to improve performance and reduce operating costs.
Thomas, M; Wright, P; Blackall, L; Urbain, V; Keller, J
2003-01-01
Noosa WWTP is publicly owned and privately operated by Australian Water Services. The process includes primary sedimentation, raw sludge fermentation, biological nutrient removal (BNR), sand filtration and ultraviolet (UV) disinfection. An innovative feature of the plant is the supplementary carbon dosing facility to avoid the use of metal salts (alum or ferric) for phosphorus removal. The average flow treated during 2000 was 9.0 ML/d. The annual 50 percentile effluent quality requirements for nutrients are total N < 5 mg/L and total P < 1 mg/L. The objectives of this project were to: determine the cause of variability in phosphorus removal; develop a strategy to control the variability in phosphorus removal; and minimise the operating cost of supplementary carbon dosing while achieving the effluent quality requirements. An investigation of chemical and microbiological parameters was implemented and it was concluded that there were several factors causing variability in phosphorus removal, rather than a single cause. The following four major causes were identified, and the control strategies that were adopted resulted in the plant achieving annual 50 percentile effluent total P = 0.37 mg/L and total N = 3.0 mg/L during 2001. First, phosphorus removal was limited by the available VFA supply due to consumption of VFA by other organisms competing with phosphate accumulating organisms (PAO), and due to diurnal variations in the sewage VFA and phosphate concentrations. Therefore, supplementary carbon dosing was essential to make allowance for competing reactions. Second, increasing the fermenter VFA yield via supplementary carbon dosing with molasses was found to be an effective and economic way of ensuring reliable phosphorus removal. Third, nitrate in the RAS resulted in consumption of VFA by denitrifying bacteria, particularly with process configurations where the RAS was recycled directly into the anaerobic zone. Incorporating a RAS denitrification zone into the process rectified this problem. Finally, glycogen accumulating organisms (GAO) were observed in BNR sludge samples, and consumption of VFA by GAO appeared to cause decreased phosphorus removal. Better phosphorus removal was obtained using VFA derived from the fermenter than dosing an equivalent amount of acetic acid. It was hypothesized that GAO have a competitive advantage to use acetate and PAO have a competitive advantage to use propionate, butyrate or some other soluble COD compound in the fermenter effluent. Contrary to popular belief, acetate may not be the optimum VFA for biological phosphorus removal. The competition between PAO and GAO for different VFA species under anaerobic conditions requires further investigation in order to control the growth of GAO and thereby improve reliability of biological phosphorus removal processes.
Effluent migration from septic tank systems in two different lithologies, Broward County, Florida
Waller, B.G.; Howie, Barbara; Causaras, C.R.
1987-01-01
Two septic tank test sites, one in sand and one in limestone, in Broward County, Florida, were analyzed for effluent migration. Groundwater from shallow wells, both in background areas and hydraulically down-gradient of the septic tank system, was sampled during a 16-month period from April 1983 through August 1984. Water quality indicators were used to determine the effluent affected zone near the septic tank systems. Specific conductance levels and concentrations of chloride, sulfate, ammonium, and nitrate indicated effluent movement primarily in a vertical direction with abrupt dilution as it moved down-gradient. Effluent was detected in the sand to a depth more than 20 ft below the septic tank outlet, but was diluted to near background conditions 50 ft down-gradient from the tank. Effluent in the limestone was detected in all three observation wells to depths exceeding 25 ft below the septic tank outlet and was diluted, but still detectable, 40 ft down-gradient. The primary controls on effluent movement from septic tank systems in Broward County are the lithology and layering of the geologic materials, hydraulic gradients, and the volume and type of use the system receives. (Author 's abstract)
Gomes, Lúcio de Moura; Duarte, José Leandro da Silva; Pereira, Nathalia Marcelino; Martínez-Huitle, Carlos A; Tonholo, Josealdo; Zanta, Carmen Lúcia de Paiva E Silva
2014-01-01
The coconut processing industry generates a significant amount of liquid waste. New technologies targeting the treatment of industrial effluents have emerged, including advanced oxidation processes, the Fenton reaction, and electrochemical processes, which produce strong oxidizing species to remove organic matter. In this study we combined the Fenton reaction and electrochemical process to treat wastewater generated by the coconut industry. We prepared a synthetic wastewater consisting of a mixture of coconut milk and water and assessed how the Fenton reagents' concentration, the cathode material, the current density, and the implementation of associated technologies affect its treatment. Electrochemical treatment followed by the Fenton reaction diminished turbidity and chemical oxygen demand (COD) by 85 and 95%, respectively. The Fenton reaction followed by the electrochemical process reduced turbidity and COD by 93 and 85%, respectively. Therefore, a combination of the Fenton and electrochemical technologies can effectively treat the effluent from the coconut processing industry.
Fate of individual sewage disposal system wastewater within regolith in mountainous terrain
NASA Astrophysics Data System (ADS)
Dano, Kathleen; Poeter, Eileen; Thyne, Geoff
2008-06-01
In order to improve understanding of the fate of septic tank or individual sewage disposal system (ISDS) effluent in regolith overlying fractured-rock aquifers, effluent from an ISDS in such a setting was tracked via geophysical, hydrological, and geochemical methods. Under typical precipitation conditions, the effluent entered the fractured bedrock within 5 m of the boundary of the constructed infiltration area. During a period of unusually high spring recharge, the plume migrated between 50 and 100 m within the regolith before infiltrating the fractured bedrock. The chemical signature of the effluent is similar to that required to account for the decline in water quality, suggesting a causative relationship (as estimated from mass-balance models of the surface-water chemistry near the mouth of the basin). The elevated salt content of the effluent during periods of high natural recharge to the infiltration area correlates with elevated salt concentrations in surface and groundwater at the basin scale, suggesting that some of the effluent salt load may be stored in the unsaturated zone during dry periods and flushed during periods of elevated natural recharge.
Cunningham, Kevin J.
2015-01-01
In addition to the preceding seismic-reflection analysis, interpretation of geophysical well log data from four effluent injection wells at the North District “Boulder Zone” Well Field delineated a narrow karst collapse structure beneath the injection facility that extends upward about 900 ft from the top of the Boulder Zone to about 125 ft above the top of the uppermost major permeable zone of the Lower Floridan aquifer. No karst collapse structures were identified in the seismic-reflection profiles acquired near the North District “Boulder Zone” Well Field. However, karst collapse structures at the level of the lowermost major permeable zone of the Lower Floridan aquifer at the South District “Boulder Zone” Well Field are present at three locations, as indicated by seismic-reflection data acquired in the C–1 Canal bordering the south side of the injection facility. Results from the North District “Boulder Zone” Well Field well data indicate that a plausible hydraulic connection between faults and stratiform permeability zones may contribute to the upward transport of effluent, terminating above the base of the deepest U.S. Environmental Protection Agency designated underground source of drinking water at the North District “Boulder Zone” Well Field.
Zhao, Wen-Tao; Huang, Xia; He, Miao; Zhang, Peng-Yi; Zuo, Chen-Yan
2009-02-15
The practical ammonia stripping effectiveness of coke-plant wastewater treatment may vary widely, and high NH4+-N shock loading will lead to the fluctuation of residual NH4+-N concentration of biological effluent. A zeolite media packed multistage-biofilm system (ZMBS) was used for coke-plant wastewater treatment for enhancing the NH4+-N treatment ability of the bio-system to shock loading, as well as achieving high COD removal efficiency. Treatment performance during steady-state and shock loading and transformation of organic pollutants in the system were investigated systematically. The experiment results indicated that when the system was operated at NH4+-N loading 0.21 kg/(m3 x d) and COD loading < or = 1.35 kg/(m3 x d), the average effluent NH4+-N and COD concentrations were (2.2 +/- 1.2) mg/L, (228 +/- 60) mg/L with average removal efficiencies of (99.1 +/- 0.5)% and (86.0 +/- 2.6)%. During the twice NH4+-N shock loadings [0.03 kg/(m3 x d) and 0.06 kg/(m3 x d)], ZMBS showed a strong resisting ability with average removal efficiencies of 99.0% and 92.9% higher than those of a compared system's 96.8% and 89.3%. By monitoring the change of water quality along the length of the ZMBS's cells, two function zones for different pollutant removal were found to exist, named as decarbonization/nitrification (C/N) zone and nitrification (N) zone, and the NH4+-N removal rate in N zone was 2-8 times as that in C/N zone. TOC concentrations of organic matters with relative molecular weight < 1 x 10(3), 1 x 10(3) to 1 x 10(4), and > 1 x 10(4), were 227.6, 104.8 and 35.0 mg/L in raw wastewater, and 31.2, 22.9 and 31.5 mg/L in the effluent, respectively. Organic matters with relative molecular weight < 1 x 10(3) and 1 x 10(3) to 1 x 10(4) in raw wastewater were removed effectively by ZMBS, but those with relative molecular weight > 1x 10(3) were the main remained substances in the effluent.
Zhao, Zilong; Liu, Zekun; Wang, Hongjie; Dong, Wenyi; Wang, Wei
2018-07-01
Treatment of Ni-EDTA in industrial nickel plating effluents was investigated by integrated application of Fenton and ozone-based oxidation processes. Determination of integrated sequence found that Fenton oxidation presented higher apparent kinetic rate constant of Ni-EDTA oxidation and capacity for contamination load than ozone-based oxidation process, the latter, however, was favorable to guarantee the further mineralization of organic substances, especially at a low concentration. Serial-connection mode of two oxidation processes was appraised, Fenton effluent after treated by hydroxide precipitation and filtration negatively affected the overall performance of the sequential system, as evidenced by the removal efficiencies of Ni 2+ and TOC dropping from 99.8% to 98.7%, and from 74.8% to 66.6%, respectively. As a comparison, O 3 /Fe 2+ oxidation process was proved to be more effective than other processes (e.g. O 3 -Fe 2+ , O 3 /H 2 O 2 /Fe 2+ , O 3 /H 2 O 2 -Fe 2+ ), and the final effluent Ni 2+ concentration could satisfied the discharge standard (<0.1 mg L -1 , China) under the optimal conditions (H 2 O 2 dosage of 1.0 mL L -1 , Fe 2+ : H 2 O 2 mole ratio of 1.46, and reaction time of 10 min for Fenton reaction, initial influent pH of 3.0, O 3 dosage of 252 mg L -1 , Fe 2+ of 150 mg L -1 , and reaction time of 30 min for O 3 /Fe 2+ oxidation). Furthermore, pilot-scale test was carried out to study the practical treatability towards the real nickel plating effluent, revealing the effective removal of some other co-existence contaminations. And Fenton reaction has contributed most, with the percentage ranging from 72.41% to 93.76%. The economic cost advantage made it a promising alternative to the continuous Fenton oxidation. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Takashima, Keisuke; Kaneko, Toshiro
2016-09-01
The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1980-01-01
The various thermal gradients in the coastal zones of France were mapped with regard to natural phenomena and man made thermal effluents. The mesoscale thermal features of the English Channel, the Bay of Biscay, and the northwestern Mediterranean Sea were also studied. The evolution of the thermal gradients generated by the main estuaries of the French coastal zones was investigated along with the modeling of diurnal heating of the sea surface and its influence on the oceanic surface layers.
McDonough, Kathleen; Casteel, Kenneth; Itrich, Nina; Menzies, Jennifer; Belanger, Scott; Wehmeyer, Kenneth; Federle, Thomas
2016-12-01
Alcohol sulfates (AS), alcohol ethoxysulfates (AES), linear alkyl benzenesulfonates (LAS) and methyl ester sulfonates (MES) are anionic surfactants that are widely used in household detergents and consumer products resulting in over 1 million tons being disposed of down the drain annually in the US. A monitoring campaign was conducted which collected grab effluent samples from 44 wastewater treatment plants (WWTPs) across the US to generate statistical distributions of effluent concentrations for anionic surfactants. The mean concentrations for AS, AES, LAS and MES were 5.03±4.5, 1.95±0.7, 15.3±19, and 0.35±0.13μg/L respectively. Since each of these surfactants consist of multiple homologues that differ in their toxicity, the concentration of each homologue measured in an effluent sample was converted into a toxic unit (TU) by normalizing to the predicted no effect concentration (PNEC) derived from high tier effects data (mesocosm studies). The statistical distributions of the combined TUs in the effluents were used in combination with distributions of dilution factors for WWTP mixing zones to conduct a US-wide probabilistic risk assessment for the aquatic environment for each of the surfactants. The 90th percentile level of TUs for AS, AES, LAS and MES in mixing zones were 1.89×10 -2 , 2.73×10 -3 , 2.72×10 -2 , and 3.65×10 -5 under 7Q10 (lowest river flow occurring over a 7day period every 10years) low flow conditions. Because these surfactants have the same toxicological mode of action, the TUs were summed and the aquatic safety for anionic surfactants as a whole was assessed. At the 90th percentile level under the conservative 7Q10 low flow conditions the forecasted TUs were 4.21×10 -2 which indicates that there is a significant margin of safety for the class of anionic surfactants in US aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydrogen donor solvent coal liquefaction process
Plumlee, Karl W.
1978-01-01
An indigenous hydrocarbon product stream boiling within a range of from about C.sub.1 -700.degree. F., preferably C.sub.1 -400.degree. F., is treated to produce an upgraded hydrocarbon fuel component and a component which can be recycled, with a suitable donor solvent, to a coal liquefaction zone to catalyze the reaction. In accordance therewith, a liquid hydrocarbon fraction with a high end boiling point range up to about 700.degree. F., preferably up to about 400.degree. F., is separated from a coal liquefaction zone effluent, the separated fraction is contacted with an alkaline medium to provide a hydrocarbon phase and an aqueous extract phase, the aqueous phase is neutralized, and contacted with a peroxygen compound to convert indigenous components of the aqueous phase of said hydrocarbon fraction into catalytic components, such that the aqueous stream is suitable for recycle to the coal liquefaction zone. Naturally occurring phenols and alkyl substituted phenols, found in the aqueous phase, are converted, by the addition of hydroxyl constituents to phenols, to dihydroxy benzenes which, as disclosed in copending Application Ser. Nos. 686,813 now U.S. Pat. No. 4,049,536; 686,814 now U.S. Pat. No. 4,049,537; 686,827 now U.S. Pat. No. 4,051,012 and 686,828, K. W. Plumlee et al, filed May 17, 1976, are suitable hydrogen transfer catalysts.
Leifeld, Vanessa; Dos Santos, Tâmisa Pires Machado; Zelinski, Danielle Wisniewski; Igarashi-Mafra, Luciana
2018-09-15
Cassava is the most important tuberous root in tropical and subtropical regions of the world, being the third largest source of carbohydrates. The root processing is related to the production of starch, an important industrial input, which releases a highly toxic liquid wastewater due to its complex composition, which inhibits high performances of conventional effluent treatments. This study aims to evaluate Fenton-like and photo-Fenton-like reactions for treatment of cassava wastewater, reusing ferrous ions from the preliminary coagulation stage. Pre-treated cassava wastewater was submitted to oxidation in three variations of hydrogen peroxide concentrations, with more relevant analytical responses verified in color, turbidity, COD (Chemical Oxygen Demand), and acute toxicity in Artemia salina, besides the action of radicals during Fenton-like reactions. At higher peroxide concentrations, a decrease of 68% in turbidity and 70% in COD on the photo-Fenton-like system was observed, even at slow reaction rates (fastest rate constant k = 2 × 10 -4 min -1 ). Inclusion of UV increases the viability of the Fenton-like reactions by supplementing the reaction medium with hydroxyl radicals, verified by the tert-butanol tests. The oxidation process leads to high EC 50 values in 24 h of incubation in Fenton-like reactions and 48 h in photo-Fenton-like reactions. Final COD and turbidity suggests that the reuse of iron, which remains in the preliminary treatment step shows a great potential as a catalyst for Fenton-like advanced oxidation processes. Tertiary treatment can be less expensive and harmful to the environment, reducing production of residual sludge and metal content in the final effluent, which reduces polluting potential of the effluent regarding solid waste. Copyright © 2018 Elsevier Ltd. All rights reserved.
Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba
2016-05-01
An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1972-01-01
Important data were compiled for use with the Richmond-Cape Henry Environmental Laboratory (RICHEL) remote sensing project in coastal zone land use and marine resources management, and include analyses and projections of population characteristics, formulation of soil loss prediction techniques, and sources and quantity analyses of air and water effluents.
Mackuľak, Tomáš; Mosný, Michal; Grabic, Roman; Golovko, Oksana; Koba, Olga; Birošová, Lucia
2015-03-01
We analyzed 13 psychoactive pharmaceuticals, illicit drugs and their metabolites in wastewater treatment plant influent and effluent and the possibility of their degradation by biological and chemical processes. Tramadol (413-853 ng/L) and methamphetamine (460-682 ng/L) were the most concentrated compounds in the wastewater in winter and summer, respectively. A significant decrease in the concentration of tramadol in wastewater was measured during the summer. The lowest efficiency was observed for tramadol, venlafaxine, citalopram and oxazepam (∼ 10%) and the highest efficiency was observed for amphetamine and THC-COOH (∼ 80%). The efficiency of compound degradation via the Fenton reaction, a modified Fenton reaction and different degradation (by algae, wood-rotting fungi and enzymes at influent versus effluent) was determined. The Fenton reaction and its modification were efficient at eliminating these substances in comparison with the tested biological processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Gaseous optical contamination of the spacecraft environment: A review
NASA Technical Reports Server (NTRS)
Tran, N. H.; Maris, M. A.; Kofsky, I. L.; Murad, E.
1990-01-01
Interactions between the ambient atmosphere and orbiting spacecraft, sounding rockets, and suborbital vehicles, and with their effluents, give rise to optical (extreme UV to LWIR) foreground radiation which constitutes noise that raises the detection threshold for terrestrial and celestial radiations, as well as military targets. Researchers review the current information on the on-orbit optical contamination. Its source species are created in interaction processes that can be grouped into three categories: (1) Reactions in the gas phase between the ambient atmosphere and desorbates and exhaust; (2) Reactions catalyzed by exposed ram surfaces, which occur spontaneously even in the absence of active material releases from the vehicles; and (3) Erosive excitative reactions with exposed bulk (organic) materials, which have recently been identified in the laboratory though not as yet observed on spacecraft. Researchers also assess the effect of optical pumping by earthshine and sunlight of both reaction products and effluents.
Babu, Suresh P.; Bair, Wilford G.
1992-01-01
A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.
NASA Technical Reports Server (NTRS)
Hoopes, J. A.; Wu, D. S.; Ganatra, R.
1973-01-01
Effluent concentration distributions from the waste water discharge of the Kraft Division Mill, Consolidated Paper Company, into the Wisconsin River at Wisconsin Rapids, Wisconsin, is investigated. Effluent concentrations were determined from measurements of the temperature distribution, using temperature as a tracer. Measurements of the velocity distribution in the vicinity of the outfall were also made. Due to limitations in the extent of the field observations, the analysis and comparison of the measurements is limited to the region within about 300 feet from the outfall. Effects of outfall submergence, of buoyancy and momentum of the effluent and of the pattern and magnitude of river currents on these characteristics are considered.
Effects of wastewater effluent on the South Platte River from Littleton to Denver
Spahr, N.E.; Blakely, S.R.
1985-01-01
The U.S. Geological Survey 's one-dimensional steady-state water quality model was used to investigate the effects of the effluent from the Bi-City WWTP (Wastewater Treatment Plant) on the South Platte River. The Bi-City WWTP is operated by the Cities of Littleton and Englewood. The model was calibrated from a 14.5 mile reach for 5-day carbonaceous biochemical oxygen demand, organic, ammonia, nitrite and nitrate using data collected during September 1983. Model verification was completed using data collected during October 1982 and January 1984 for all constituents except nitrite nitrogen. Nitrite nitrogen could not be verified for the cold temperature conditions of January of 1984. Measured benthic sediment oxygen demand used in model ranged from 1.01 to 2.77 grams per square meter per day. Model simulations were made for an estimated 7-day, 10-year discharge of 18 cubic feet per second, upstream from the outfall of the WWTP. Two groups of simulations were made for both warm and cold temperature conditions. In the first group of simulation variations were made in effluent 5-day carbonaceous biochemical oxygen demand concentrations and flow rates. The second group of simulations varied the amount of nitrogen discharged as ammonia and nitrate. The extent of the mixing zone downstream of the WWTP outfall was determined by injecting Rhodamine WT dye into the effluent. The mixing zone was found to extend 0.8 miles during low-flow conditions. (USGS)
Furfural production by 'acidic steam stripping' of lignocellulose.
van Buijtenen, Jeroen; Lange, Jean-Paul; Espinosa Alonso, Leticia; Spiering, Wouter; Polmans, Rob F; Haan, Rene J
2013-11-01
Furfural and acetic acid are produced with approximately 60 and 90 mol % yield, respectively, upon stripping bagasse with a gaseous stream of HCl/steam and condensing the effluent to water/furfural/acetic acid. The reaction kinetics is 1(st) order in furfural and 0.5(th) order in HCl. A process concept with full recycling of the reaction effluents is proposed to reduce the energy demand to <10 tonsteam tonfurfural (-1) and facilitate the product recovery through a simple liquid/liquid separation of the condensate into a water-rich and a furfural-rich phase. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sharp, David W.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
NASA Astrophysics Data System (ADS)
Saito, Mitsuyo; Onodera, Shin-ichi; Jin, Guangzhe; Shimizu, Yuta; Taniguchi, Masanobu
2018-12-01
In this study, we examined the nitrogen dynamics of a highly urbanized coastal area, focusing on the impacts of sewage-derived nitrogen. High levels of dissolved inorganic nitrogen were detected in seawater near treated sewage effluent (TSE) discharge points before decreasing in the offshore direction, suggesting that the impact zone of sewage effluent is about 1-2 km from the discharge point. The stable isotope ratios of nitrate and particulate organic nitrogen suggest nitrogen uptake by phytoplankton as well as dilution by offshore seawater, which contributed to a decrease in sewage-derived nitrogen levels. However, the extent of the impact zone was controlled by tidal variations and differences in temperature between the TSE and seawater. Our results also identify nitrogen transport processes, through exchange between seawater and sediment pore water, as an additional important source of nitrogen in the study area.
Method of forming and starting a sodium sulfur battery
Paquette, David G.
1981-01-01
A method of forming a sodium sulfur battery and of starting the reactive capability of that battery when heated to a temperature suitable for battery operation is disclosed. An anodic reaction zone is constructed in a manner that sodium is hermetically sealed therein, part of the hermetic seal including fusible material which closes up openings through the container of the anodic reaction zone. The hermetically sealed anodic reaction zone is assembled under normal atmospheric conditions with a suitable cathodic reaction zone and a cation-permeable barrier. When the entire battery is heated to an operational temperature, the fusible material of the hermetically sealed anodic reaction zone is fused, thereby allowing molten sodium to flow from the anodic reaction zone into reactive engagement with the cation-permeable barrier.
Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.
Tong, Xuejiao; Xu, Renkou
2013-04-01
The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation, and neutralized its acidity. The removal efficiency of Cu(II) by the biochars followed the order: peanut straw char > soybean straw char > canola straw char > rice straw char > a commercial activated carbonaceous material, which is consistent with the alkalinity of the biochars. The pH of the effluent was a key factor determining the removal efficiency of Cu(II) by biochars. Raising the initial pH of the effluent enhanced the removal of Cu(II) from it. The optimum pyrolysis temperature was 400 degrees C for producing biochar from crop straws for acidic wastewater treatment, and the optimum reaction time was 8 hr.
Khan, Ilham; Khan, Azim; Khan, Muhammad Sohail; Zafar, Shabnam; Hameed, Asma; Badshah, Shakeel; Rehman, Shafiq Ur; Ullah, Hidayat; Yasmeen, Ghazala
2018-04-04
The impact of city effluents on water quality of Indus River was assessed in the southern region of Khyber Pakhtunkhwa, Pakistan. Water samples were collected in dry (DS) and wet (WS) seasons from seven sampling zones along Indus River and the physical, bacteriological, and chemical parameters determining water quality were quantified. There were marked temporal and spatial variations in the water quality of Indus River. The magnitude of pollution was high in WS compared with DS. The quality of water varied across the sampling zones, and it greatly depended upon the nature of effluents entering the river. Water samples exceeded the WHO permissible limits for pH, EC, TDS, TS, TSS, TH, DO, BOD, COD, total coliforms, Escherichia coli, Ca 2+ , Mg 2+ , NO 3 - , and PO 4 2- . Piper analysis indicated that water across the seven sampling zones along Indus River was alkaline in nature. Correlation analyses indicated that EC, TDS, TS, TH, DO, BOD, and COD may be considered as key physical parameters, while Na + , K + , Ca 2+ , Mg 2+ , Cl - , F - , NO 3 - , PO 4 2- , and SO 4 2- as key chemical parameters determining water quality, because they were strongly correlated (r > 0.70) with most of the parameters studied. Cluster analysis indicated that discharge point at Shami Road is the major source of pollution impairing water quality of Indus River. Wastewater treatment plants must be installed at all discharge points along Indus River for protecting the quality of water of this rich freshwater resource in Pakistan.
Xu, Dong; Liu, Sitong; Chen, Qian; Ni, Jinren
2017-12-01
The microbial community diversity in anaerobic-, anoxic- and oxic-biological zones of a conventional Carrousel oxidation ditch system for domestic wastewater treatment was systematically investigated. The monitored results of the activated sludge sampled from six full-scale WWTPs indicated that Proteobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Verrucomicrobia, Acidobacteria and Nitrospirae were dominant phyla, and Nitrospira was the most abundant and ubiquitous genus across the three biological zones. The anaerobic-, anoxic- and oxic-zones shared approximately similar percentages across the 50 most abundant genera, and three genera (i.e. uncultured bacterium PeM15, Methanosaeta and Bellilinea) presented statistically significantly differential abundance in the anoxic-zone. Illumina high-throughput sequences related to ammonium oxidizer organisms and denitrifiers with top50 abundance in all samples were Nitrospira, uncultured Nitrosomonadaceae, Dechloromonas, Thauera, Denitratisoma, Rhodocyclaceae (norank) and Comamonadaceae (norank). Moreover, environmental variables such as water temperature, water volume, influent ammonium nitrogen, influent chemical oxygen demand (COD) and effluent COD exhibited significant correlation to the microbial community according to the Monte Carlo permutation test analysis (p < 0.05). The abundance of Nitrospira, uncultured Nitrosomonadaceae and Denitratisoma presented strong positive correlations with the influent/effluent concentration of COD and ammonium nitrogen, while Dechloromonas, Thauera, Rhodocyclaceae (norank) and Comamonadaceae (norank) showed positive correlations with water volume and temperature. The established relationship between microbial community and environmental variables in different biologically functional zones of the six representative WWTPs at different geographical locations made the present work of potential use for evaluation of practical wastewater treatment processes.
Method for heating nongaseous carbonaceous material
Lumpkin, Jr., Robert E.
1978-01-01
Nongaseous carbonaceous material is heated by a method comprising introducing tangentially a first stream containing a nongaseous carbonaceous material and carbon monoxide into a reaction zone; simultaneously and separately introducing a second stream containing oxygen into the reaction zone such that the oxygen enters the reaction zone away from the wall thereof and reacts with the first stream thereby producing a gaseous product and heating the nongaseous carbonaceous material; forming an outer spiralling vortex within the reaction zone to cause substantial separation of gases, including the gaseous product, from the nongaseous carbonaceous material; removing a third stream from the reaction zone containing the gaseous product which is substantially free of the nongaseous carbonaceous material before a major portion of the gaseous product can react with the nongaseous carbonaceous material; and removing a fourth stream containing the nongaseous carbonaceous material from the reaction zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partridge Jr, William P.; Choi, Jae-Soon
By directly resolving spatial and temporal species distributions within operating honeycomb monolith catalysts, spatially resolved capillary inlet mass spectrometry (SpaciMS) provides a uniquely enabling perspective for advancing automotive catalysis. Specifically, the ability to follow the spatiotemporal evolution of reactions throughout the catalyst is a significant advantage over inlet-and-effluent-limited analysis. Intracatalyst resolution elucidates numerous catalyst details including the network and sequence of reactions, clarifying reaction pathways; the relative rates of different reactions and impacts of operating conditions and catalyst state; and reaction dynamics and intermediate species that exist only within the catalyst. These details provide a better understanding of how themore » catalyst functions and have basic and practical benefits; e.g., catalyst system design; strategies for on-road catalyst state assessment, control, and on-board diagnostics; and creating robust and accurate predictive catalyst models. Moreover, such spatiotemporally distributed data provide for critical model assessment, and identification of improvement opportunities that might not be apparent from effluent assessment; i.e., while an incorrectly formulated model may provide correct effluent predictions, one that can accurately predict the spatiotemporal evolution of reactions along the catalyst channels will be more robust, accurate, and reliable. In such ways, intracatalyst diagnostics comprehensively enable improved design and development tools, and faster and lower-cost development of more efficient and durable automotive catalyst systems. Beyond these direct contributions, SpaciMS has spawned and been applied to enable other analytical techniques for resolving transient distributed intracatalyst performance. This chapter focuses on SpaciMS applications and associated catalyst insights and improvements, with specific sections related to lean NOx traps, selective catalytic reduction catalysts, oxidation catalysts, and particulate filters. The objective is to promote broader use and development of intracatalyst analytical methods, and thereby expand the insights resulting from this detailed perspective for advancing automotive catalyst technologies.« less
Goblick, Gregory N; Ao, Yaping; Anbarchian, Julie M; Calci, Kevin R
2017-02-15
Since 1925, dilution analysis has been used to minimize pathogenic impacts to bivalve molluscan shellfish growing areas from treated wastewater effluent in the National Shellfish Sanitation Program (NSSP). For over twenty five years, the U.S. Food and Drug Administration (FDA) has recommended a minimum of 1000:1 dilution of effluent within prohibited closure zones established around wastewater treatment plant (WWTP) discharges. During May 2010, using recent technologies, a hydrographic dye study was conducted in conjunction with a pathogen bioaccumulation study in shellfish adjacent to a WWTP discharge in Yarmouth, ME. For the first time an improved method of the super-position principle was used to determine the buildup of dye tagged sewage effluent and steady state dilution in tidal waters. Results of the improved method of dilution analysis illustrate an economical, reliable and more accurate and manageable approach for estimating the buildup and steady state pollutant conditions in coastal and estuarine waters. Published by Elsevier Ltd.
Padoley, K V; Tembhekar, P D; Saratchandra, T; Pandit, A B; Pandey, R A; Mudliar, S N
2012-09-01
This study looks at the possibility of wet air oxidation (WAO) based pretreatment of complex effluent to selectively enhance the biodegradability (without substantial COD destruction) and facilitate biogas generation potential. A lab-scale wet air oxidation reactor with biomethanated distillery wastewater (B-DWW) as a model complex effluent (COD 40,000 mg L(-1)) was used to demonstrate the proof-of-concept. The studies were conducted using a designed set of experiments and reaction temperature (150-200°C), air pressure (6-12 bar) and reaction time (15-120 min) were the main process variables of concern for WAO process optimization. WAO pretreatment of B-DWW enhanced the biodegradability of the complex wastewater by the virtue of enhancing its biodegradability index (BI) from 0.2 to 0.88, which indicate favorable Biochemical Methane Potential (BMP) for biogas generation. The kinetics of COD destruction and BI enhancement has also been reported. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassery, A.; Universite de Toulouse, Laboratoire de Genie Chimique, Toulouse; CNRS, Laboratoire de Genie Chimique, Toulouse
Within the framework of the dismantling of fast breeder reactors in France several processes are under investigation regarding sodium disposal. One of them, called ELA (radioactive sodium waste treatment process), is based on the implementation of the sodium-water reaction, in a controlled and progressive way, to remove residual sodium. This sodium contains impurities such as sodium hydride, sodium oxide and tritiated sodium hydride. The hydrolysis of these various chemical species leads to the production of a liquid effluent, mainly composed of an aqueous solution of sodium hydroxide, and a gaseous effluent, mainly composed of nitrogen (inert gas), hydrogen and steam.more » The tritium is distributed between these effluents, and, within the gaseous effluent, according to its forms HT and HTO (tritiated water). HTO being 10,000 times more radio-toxic than HT, a precise knowledge of the mechanisms governing the phase distribution of tritium is necessary. This paper presents the first experimental results from a parametric study on the tritium distribution between the various effluents generated during hydrolysis operations. A series of experiments have been performed in order to study the influence of water flow rate, argon flow rate, initial mass and specific activity of the hydrolyzed sodium sample. An important influence of the total tritium concentration in the hydrolyzed sample has been highlighted. As for the phenomena suspected to be responsible for the phase change of tritiated water, in the studied range of parameters, vaporization induced by the heat of reactions seems to be dominant over the evaporation induced by the inert gas flow rate.« less
Use of ozone and/or UV in the treatment of effluents from board paper industry.
Amat, A M; Arques, A; Miranda, M A; López, F
2005-08-01
The aim of this work has been to study the viability of ozone and/or UV in the treatment of cardboard industry effluents. Several model compounds have been chosen for the experiments: guaicol, eugenol, glucose, acetate and butyrate. Significant differences in the ozonisation rates are observed between phenolic products coming from lignin (eugenol and guaiacol) and aliphatic compounds. Reactions fit in all cases a pseudo-first order kinetics and are influenced by the pH of the solution. Real effluents have also been tested, and the COD decrease has been found to depend on the fatty acids/phenols ratio. Finally, respirometric studies have shown an increase in the BODst in effluents subjected to a mild oxidation, while under stronger conditions a BODst decrease is observed.
Catalytic distillation process
Smith, Jr., Lawrence A.
1982-01-01
A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.
Catalytic distillation process
Smith, L.A. Jr.
1982-06-22
A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.
Kim, H S; Shin, M S; Jang, D S; Jung, S H
2006-01-01
To make an indepth diagnosis of a full-scale rectangular secondary clarifier, an experimental and numerical study has been performed in a wastewater treatment facility. Calculation results by the numerical model with the adoption of the SIMPLE algorithm of Patankar are validated with radiotracer experiments. Emphasis is given to the prediction of residence time distribution (RTD) curves. The predicted RTD profiles are in good agreement with the experimental RTD curves at the upstream and center sections except for the withdrawal zone of the complex effluent weir structure. The simulation results predict successfully the well-known flow characteristics of each stage such as the waterfall phenomenon at the front of the clarifier, the bottom density current and the surface return flow in the settling zone, and the upward flow in the exit zone. The detailed effects of density current are thoroughly investigated in terms of high SS loading and temperature difference between influent and ambient fluid. The program developed in this study shows the high potential to assist in the design and determination of optimal operating conditions to improve effluent quality in a full-scale secondary clarifier.
Pharmaceuticals in on-site sewage effluent and ground water, Western Montana
Godfrey, E.; Woessner, W.W.; Benotti, M.J.
2007-01-01
Human use of pharmaceuticals results in the excretion and disposal of compounds that become part of municipal and domestic waste streams. On-site waste water disposal and leaking city sewer systems can provide avenues for the migration of effluent to the underlying aquifers. This research assessed the occurrence and persistence of 22 target pharmaceuticals in septic tank effluent and two shallow, coarse-grained aquifers in western Montana. Twelve compounds (acetaminophen, caffeine, codeine, carbamazepine, cotinine, erythromycin-18, nicotine, paraxanthine, ranitidine, sulfamethoxazole, trimethoprim, and warfarin) were detected in a high school septic tank effluent. Three of the 12 compounds, carbamazepine, sulfamethoxazole, and nicotine, were detected in the underlying sand and gravel aquifer after effluent percolation through a 2.0-m thick sand vadose zone. Sampling of a second sand, gravel, and cobble dominated unconfined aquifer, partially overlain by septic systems and a city sewer system, revealed the presence of caffeine, carbamazepine, cotinine, nicotine, and trimethoprim. The presence of carbamazepine and sulfamethoxazole in these aquifers appears to correlate with local usage based on a reported monthly prescription volume. This work highlights the need for expanding geochemical investigations of sewage waste impacted ground water systems to include sampling for selected pharmaceuticals. ?? 2007 National Ground Water Association.
Pharmaceuticals in on-site sewage effluent and ground water, Western Montana.
Godfrey, Emily; Woessner, William W; Benotti, Mark J
2007-01-01
Human use of pharmaceuticals results in the excretion and disposal of compounds that become part of municipal and domestic waste streams. On-site waste water disposal and leaking city sewer systems can provide avenues for the migration of effluent to the underlying aquifers. This research assessed the occurrence and persistence of 22 target pharmaceuticals in septic tank effluent and two shallow, coarse-grained aquifers in western Montana. Twelve compounds (acetaminophen, caffeine, codeine, carbamazepine, cotinine, erythromycin-18, nicotine, paraxanthine, ranitidine, sulfamethoxazole, trimethoprim, and warfarin) were detected in a high school septic tank effluent. Three of the 12 compounds, carbamazepine, sulfamethoxazole, and nicotine, were detected in the underlying sand and gravel aquifer after effluent percolation through a 2.0-m thick sand vadose zone. Sampling of a second sand, gravel, and cobble dominated unconfined aquifer, partially overlain by septic systems and a city sewer system, revealed the presence of caffeine, carbamazepine, cotinine, nicotine, and trimethoprim. The presence of carbamazepine and sulfamethoxazole in these aquifers appears to correlate with local usage based on a reported monthly prescription volume. This work highlights the need for expanding geochemical investigations of sewage waste impacted ground water systems to include sampling for selected pharmaceuticals.
Toledano Garcia, Diego; Ozer, Lütfiye Y; Parrino, Francesco; Ahmed, Menatalla; Brudecki, Grzegorz Przemyslaw; Hasan, Shadi W; Palmisano, Giovanni
2018-06-06
Photocatalysis and photocatalytic ozonation under visible light have been applied for the purification of a complex aqueous matrix such as the grey water of Masdar City (UAE), by using N-doped brookite-rutile catalysts. Preliminary runs on 4-nitrophenol (4-NP) solutions allowed to test the reaction system in the presence of a model pollutant and to afford the relevant kinetic parameters of the process. Subsequently, the remediation of grey water effluent has been evaluated in terms of the reduction of total organic carbon (TOC) and bacterial counts. The concentration of the most abundant inorganic ionic species in the effluent has been also monitored during reaction. Photocatalytic ozonation under visible light allowed to reduce the TOC content of the grey water by ca. 60% in the optimized experimental conditions and to reduce the total bacterial count by ca. 97%. The extent of TOC mineralization reached ca. 80% when the photocatalytic ozonation occurred downstream to a preliminary electro-membrane bioreactor (eMBR). Coupling the two processes enhanced the global efficiency. In fact, the eMBR treatment lowered the turbidity and the organic load of the effluent entering the photocatalytic ozonation treatment, which in turn enhanced the extent of purification and disinfection. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Impact of liquid volume of recycled methanogenic effluent on anaerobic hydrolysis].
Hao, Li-ping; Lü, Fan; He, Pin-jing; Shao, Li-ming
2008-09-01
Methanogenic effluent was recycled to regulate hydrolysis during two-phase anaerobic digestion of organic solid wastes. In order to study the impact of recycled effluent's volume on hydrolysis, four hydrolysis reactors filled with vegetable and flower wastes were constructed, with different liquid volumes of recycled methanogenic effluent, i.e., 0.1, 0.5, 1.0, 2.0 m3/(m3 x d), respectively. The parameters related to hydrolytic environment (pH, alkalinity, ORP, concentrations of ammonia and reducing sugar), microbial biomass and hydrolysis efficiency (accumulated SCOD, accumulated reducing sugar, and hydrolysis rate constants) were monitored. This research shows that recycling methanogenic effluent into the hydrolysis reactor can enhance its buffer capability and operation stability; higher recycled volume is favorable for microbial anabolism and further promotes hydrolysis. After 9 days of reaction, the accumulated SCOD in the hydrolytic effluent reach 334, 407, 413, 581 mg/g at recycled volumes of 0.1, 0.5, 1.0, 2.0 m3/(m3 x d) and their first-order hydrolysis rate kinetic constants are 0.065, 0.083, 0.089, 0.105 d(-1), respectively.
Ahmed, Golam; Miah, M Arzu; Anawar, Hossain M; Chowdhury, Didarul A; Ahmad, Jasim U
2012-07-01
Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.
Method for coating ultrafine particles, system for coating ultrafine particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie; Liu, Yung
The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particlesmore » with a coating moiety.« less
Li, Jie; Liu, Yung Y
2015-01-20
The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.
He, Xiao-Song; Yu, Jing; Xi, Bei-Dou; Jiang, Yong-Hai; Zhang, Jin-Bao; Li, Dan; Pan, Hong-Wei; Liu, Hong-Liang
2012-09-01
In order to investigate remove characteristics of dissolved organic matter in landfill leachate, leachates were sampled during the process (i. e. , adjusting tank, anaerobic zone, oxidation ditch and MBR processing). Dissolved organic matter was extracted and its content and structure were characterized by fluorescence excitation-emission matrix spectra, UV-Vis specrtra and FTIR spectra. The results showed that an amount of 377.6 mg x L(-1) dissolved organic carbon (DOC) was removed during the whole treatment process, and the total removal rate was up to 78.34%. The 25.56% of DOC in the adjusting tank was removed during the anaerobic zone, 41.58% of DOC in anaerobic effluent was removed during the oxidation ditch, while 50.19% of DOC in the oxidation ditch effluent decreased in the MBR process. The anaerobic process increased the content of unsaturated compound and polysaccharides in leachate DOM, which improved the leachate biochemical characteristics. The unsaturated compound and polysaccharides were removed effectively during being in oxidation ditch. Protein-like and humic-like fluorescence peaks were observed in the adjusting tank and anaerobic zone, while humic-like fluorescence peaks were just presented in the oxidation ditch and MBR processing. Protein-like and fulvic-like substances were biodegraded in the adjusting tank and anaerobic zone, while humic-like materials were removed in the MBR process.
Binder enhanced refuse derived fuel
Daugherty, Kenneth E.; Venables, Barney J.; Ohlsson, Oscar O.
1996-01-01
A refuse derived fuel (RDF) pellet having about 11% or more particulate calcium hydroxide which is utilized in a combustionable mixture. The pellets are used in a particulate fuel bring a mixture of 10% or more, on a heat equivalent basis, of the RDF pellet which contains calcium hydroxide as a binder, with 50% or more, on a heat equivalent basis, of a sulphur containing coal. Combustion of the mixture is effective to produce an effluent gas from the combustion zone having a reduced SO.sub.2 and polycyclic aromatic hydrocarbon content of effluent gas from similar combustion materials not containing the calcium hydroxide.
Liu, Qing; Zhang, Li-Ping; Liu, Wen-Jun; Nie, Xue-Biao; Zhang, Su-Xia; Zhang, Shun
2010-01-01
In this study, the effects of disinfectant dosage, reaction time and the ratio of Cl2 to N of disinfectant on genotoxicity of effluent of ozone-biological activated carbon (O3-BAC) during chlorine or chloramine disinfection were investigated using umu-test. It was found that, the genotoxicity of effluent of O3-BAC before disinfection ranged from 20-70 ng/L, and it increased after disinfection by chlorine or chloramines. With the same reaction time(24 h), genotoxicity after chlorination (40-95 ng/L) was higher than that after chloramination (20-40 ng/L) under same initial dosage. For chlorination, with initial dosage increasing from 0 mg/L to 10 mg/L, genotoxicity increased firstly, and got the maximum value at about 0.5-1 mg/L dosage, then decreased and got the minimum value at about 3-5 mg/L dosage, and finally increased again. For chloramination, genotoxicity didn't change that much. With the dosage of 3 mg/L and reaction time increasing from 0 h to 72 h, no matter for chlorine or chloramines disinfection, genotoxicity of effluent of O3-BAC both increased firstly, and got the maximum value at about 2 h, then decreased and got the minimum value at about 18 h, and finally increased again, and genotoxicity after chlorine disinfection (83-120 ng/L) was higher than that after chloramines disinfection (20-62 ng/L) under same reaction time. Further more, effects of the different ratios of Cl2 to N of disinfectant on genotoxicity of effluent of O3-BAC were also studied. Results of this study demonstrate that under test conditions, chloramine disinfection is safer than chlorine disinfection in the aspect of genotoxicity for drinking water, and the changes of genotoxicity are different from those of total HAAs.
Method for preparing a sodium/sulfur cell
Weiner, Steven A.
1978-01-01
A method for preparing a sodium/sulfur cell comprising (A) inserting a solid sodium slug, adapted to be connected to an external circuit, into the anodic reaction zone of a cell subassembly maintained within an inert atmosphere, said cell subassembly comprising a cell container and a tubular cation-permeable barrier disposed within said container such that a first reaction zone is located within cation-permeable barrier and a second reaction zone is located between the outer surface of said cation-permeable barrier and the inner surface of said container, one of said reaction zones being said anodic reaction zone and the other of said reaction zone being a cathodic reaction zone containing a precast composite cathodic reactant comprising a sulfur impregnated porous conductive material connected to said cation permeable barrier and adapted to be connected to said external circuit; and (B) providing closure means for said subassembly and sealing the same to said subassembly at a temperature less than about 100.degree. C. The method of the invention overcomes deficiencies of the prior art methods by allowing preparation of a sodium/sulfur cell without the use of molten reactants and the fill spouts which are required when the cell is filled with molten reactants.
Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives
NASA Astrophysics Data System (ADS)
Wescott, Bradley
2007-06-01
The pseudo-reaction zone model was proposed to improve engineering scale simulations when using Detonation Shock Dynamics with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below their steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity---shock curvature relation. The generalized pseudo-reaction zone model proposed here predicts the cylinder expansion to within 1% by accounting for the slow reaction in ANFO.
Launer, M; Lyko, S; Fahlenkamp, H; Jagemann, P; Ehrhard, P
2013-01-01
Since November 2009, Germany's first full-scale ozonation plant for tertiary treatment of secondary effluent is in continuous operation. A kinetic model was developed and combined with the commercial computational fluid dynamics (CFD) software ANSYS(®) CFX(®) to simulate the removal of micropollutants from secondary effluents. Input data like reaction rate constants and initial concentrations of bulk components of the effluent organic matter (EfOM) were derived from experimental batch tests. Additionally, well-known correlations for the mass transfer were implemented into the simulation model. The CFD model was calibrated and validated by full-scale process data and by analytical measurements for micropollutants. The results show a good consistency of simulated values and measured data. Therewith, the validated CFD model described in this study proved to be suited for the application of secondary effluent ozonation. By implementing site-specific ozone exposition and the given reactor geometry the described CFD model can be easily adopted for similar applications.
Donohue, Shane; McCarthy, Valerie; Rafferty, Patrick; Orr, Alison; Flynn, Raymond
2015-08-01
Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar settings across Ireland suggest the phenomena observed in this study are more widespread than previously suspected. Copyright © 2015 Elsevier B.V. All rights reserved.
[Research of input water ratio's impact on the quality of effluent water from hydrolysis reactor].
Liang, Kang-Qiang; Xiong, Ya; Qi, Mao-Rong; Lin, Xiu-Jun; Zhu, Min; Song, Ying-Hao
2012-11-01
Based on high SS/BOD and low C/N ratio of waste water of municipal wastewater treatment plant, the structure of currently existing hydrolysis reactor was reformed to improve the influent quality. In order to strengthen the sludge hydrolysis and improve effluent water quality, two layers water distributors were set up so that the sludge hydrolysis zone was formed between the two layers distribution. For the purpose of the hydrolysis reactor not only plays the role of the primary sedimentation tank but also improves the effluent water biodegradability, input water ratios of the upper and lower water distributor in the experiment were changed to get the best input water ratio to guide the large-scale application of this sort hydrolysis reactor. Results show, four kinds of input water ratio have varying degrees COD and SS removal efficiency, however, input water ratio for 1 : 1 can substantially increase SCOD/COD ratio and VFA concentration of effluent water compared with the other three input water ratios. To improve the effluent biodegradability, input water ratio for 1 : 1 was chosen for the best input water ratio. That was the ratio of flow of upper distributor was 50%, and the ratio of the lower one was 50%, at this case it can reduce the processing burden of COD and SS for follow-up treatment, but also improve the biodegradability of the effluent.
Indoor Chemical Exposures: Humans' Non-respiratory Interactions with Room Air
Charles Weschler
2017-12-09
March 18, 2010 Berkeley Lab Environmental Energy Technology Division distinguished lecture: The marked difference in pollutant concentrations between an occupied and un-occupied room are only partially explained by human bio-effluents. Humans alter levels of ozone and related oxidants such as nitrate and hydroxyl radicals in the rooms they inhabit; in effect, they change the oxidative capacity of room air. Ozone-initiated reactions on exposed skin, hair and clothing generate products, including potentially irritating chemicals whose concentrations are much higher in the occupant's breathing zone than in the core of the room. Charles J. Weschler is a Professor at the School of Public Health, the Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute (EOHSI) at the University of Medicine and Dentistry of New Jersey (UMDNJ)/Robert Wood Johnson Medical School & Rutgers University (New Jersey). He is also a Visiting Professor at the International Centre for Indoor Environment and Energy, Technical University of Denmark (DTU, Lyngby, Denmark).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles Weschler
March 18, 2010 Berkeley Lab Environmental Energy Technology Division distinguished lecture: The marked difference in pollutant concentrations between an occupied and un-occupied room are only partially explained by human bio-effluents. Humans alter levels of ozone and related oxidants such as nitrate and hydroxyl radicals in the rooms they inhabit; in effect, they change the oxidative capacity of room air. Ozone-initiated reactions on exposed skin, hair and clothing generate products, including potentially irritating chemicals whose concentrations are much higher in the occupant's breathing zone than in the core of the room. Charles J. Weschler is a Professor at the School ofmore » Public Health, the Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute (EOHSI) at the University of Medicine and Dentistry of New Jersey (UMDNJ)/Robert Wood Johnson Medical School & Rutgers University (New Jersey). He is also a Visiting Professor at the International Centre for Indoor Environment and Energy, Technical University of Denmark (DTU, Lyngby, Denmark).« less
Desimone, Leslie A.; Barlow, Paul M.; Howes, Brian L.
1996-01-01
Physical, chemical, and microbial processes controlled transport of a nitrogen-rich ground-water plume through a glacial aquifer. Lithologic heterogeneity and vertical head gradients influenced plume movement and geometry. Nitrate was the predominant nitrogen form and oxygen was depleted in the ground-water plume. However, denitrification transformed only 2 percent of plume nitrogen because of limited organic-carbon availability. Aerobic respiration, nitrification and cation exchange (unsaturated zone) and ammonium sorption (saturated zone) had larger effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostick, D.T.; DePaoli, S.M.; Lucero, A.J.
1999-10-18
A gamma counting system has been assembled that can profile the breakthrough fronts of gamma-emitting radioisotopes longitudinally and axially along a loaded column. This profiling technique has been particularly useful in columns studies such as those performed with IONSP IE-911, a crystalline silicotitanate (CST) manufactured by UOP, in which unusually long operating times are required to observe cesium breakthrough in column effluent. The length of the mass transfer zone and extent of column saturation can be detected early in a column study by viewing the relative emission of gamma emitters along I the length of the column. In this study,more » gamma scans were used to analyze loaded CST and zeolite columns used in the treatment of process wastewater simulant and actual groundwater. Results indicate good run-to-run reproductibility in acquiring the scans. The longitudinal gamma scans for both {sup 90}Sr and {sup 137}Cs conformed with breakthrough results reported on the basis of column effluent activity. Although not obvious from data obtained by monitoring effluent activity, the gamma scans indicated that both cesium and strontium in the saturated zone of the CST column are slowly displaced by the higher levels of groundwater cations and are then resorbed further down the column. This displacement phenomenon identified by gamma scans was verified using data from a zeolite column, in which both the gamma scan and column effluent data exhibited radionuclide displacement by groundwater cations. The gamma emission intensities from the CST column runs are used to quantitate and compare the distribution coefficient and loading capacity of {sup 137}Cs on CST versus zeolite.« less
Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Rymph, Stuart J; Wade, Brett L; Prine, Gordon M; Van Horn, Harold H
2003-01-01
In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.
Nie, J Y; Zhu, N W; Zhao, K; Wu, L; Hu, Y H
2011-01-01
Soil columns were set up to survey the bacterial community in the soil for septic tank effluent treatment. When bio-clogging occurred in the soil columns, the effluent from the columns was in poorer quality. To evaluate changes of the soil bacterial community in response to bio-clogging, the bacterial community was characterized by DNA gene sequences from soil samples after polymerase chain reaction coupled with denaturing gradient gel electrophoresis process. Correspondence analysis showed that Proteobacteria related bacteria were the main bacteria within the soil when treating septic tank effluent. However, Betaproteobacteria related bacteria were the dominant microorganisms in the normal soil, whereas Alphaproteobacteria related bacteria were more abundant in the clogged soil. This study provided insight into changes of the soil bacterial community in response to bio-clogging. The results can supply some useful information for the design and management of soil infiltration systems.
Barber, Larry B.; Keefe, Steffanie H.; LeBlanc, Denis R.; Bradley, Paul M.; Chapelle, Francis H.; Meyer, Michael T.; Loftin, Keith A.; Koplin, Dana W.; Rubio, Fernando
2009-01-01
Organic wastewater contaminants (OWCs) were measured in samples collected from monitoring wells located along a 4.5-km transect of a plume of groundwater contaminated by 60 years of continuous rapid infiltration disposal of wastewater treatment plant effluent. Fifteen percent of the 212 OWCs analyzed were detected, including the antibiotic sulfamethoxazole (SX), the nonionic surfactant degradation product 4-nonylphenol (NP), the solvent tetrachloroethene (PCE), and the disinfectant 1,4-dichlorobenzene (DCB). Comparison of the 2005 sampling results to data collected from the same wells in 1985 indicates that PCE and DCB are transported more rapidly in the aquifer than NP, consistent with predictions based on compound hydrophobicity. Natural gradient in situ tracer experiments were conducted to evaluate the subsurface behavior of SX, NP, and the female sex hormone 17β-estradiol (E2) in two oxic zones in the aquifer: (1) a downgradient transition zone at the interface between the contamination plume and the overlying uncontaminated groundwater and (2) a contaminated zone located beneath the infiltration beds, which have not been loaded for 10 years. In both zones, breakthrough curves for the conservative tracer bromide (Br−) and SX were nearly coincident, whereas NP and E2 were retarded relative to Br− and showed mass loss. Retardation was greater in the contaminated zone than in the transition zone. Attenuation of NP and E2 in the aquifer was attributed to biotransformation, and oxic laboratory microcosm experiments using sediments from the transition and contaminated zones show that uniform-ring-labeled 14C 4-normal-NP was biodegraded more rapidly (30−60% recovered as 14CO2 in 13 days) than 4-14C E2 (20−90% recovered as 14CO2in 54 days). There was little difference in mineralization potential between sites.
Cyclic flow underground coal gasification process
Bissett, Larry A.
1978-01-01
The present invention is directed to a method of in situ coal gasification for providing the product gas with an enriched concentration of carbon monoxide. The method is practiced by establishing a pair of combustion zones in spaced-apart boreholes within a subterranean coal bed and then cyclically terminating the combustion in the first of the two zones to establish a forward burn in the coal bed so that while an exothermic reaction is occurring in the second combustion zone to provide CO.sub.2 -laden product gas, an endothermic CO-forming reaction is occurring in the first combustion zone between the CO.sub.2 -laden gas percolating thereinto and the hot carbon in the wall defining the first combustion zone to increase the concentration of CO in the product gas. When the endothermic reaction slows to a selected activity the roles of the combustion zones are reversed by re-establishing an exothermic combustion reaction in the first zone and terminating the combustion in the second zone.
Application of remote sensing to water resources problems
NASA Technical Reports Server (NTRS)
Clapp, J. L.
1972-01-01
The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.
Method for reacting nongaseous material with a gaseous reactant
Lumpkin, Robert E.; Duraiswamy, Kandaswamy
1979-03-27
This invention relates to a new and novel method and apparatus for reacting nongaseous material with a gaseous reactant comprising introducing a first stream containing a nongaseous material into a reaction zone; simultaneously introducing a second stream containing a gaseous reactant into the reaction zone such that the gaseous reactant immediately contacts and reacts with the first stream thereby producing a gaseous product; forming a spiralling vortex within the reaction zone to cause substantial separation of gases, including the gaseous product, from the nongaseous material; forming and removing a third stream from the reaction zone containing the gaseous product which is substantially free of the nongaseous material before a major portion of the gaseous product can react with the nongaseous material; and forming and removing a fourth stream containing the nongaseous material from the reaction zone.
Katz, S.; Weber, C.W.
1960-02-16
A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.
The Extent of Denitrification in Long Island Groundwater using MIMS
NASA Astrophysics Data System (ADS)
Young, C.; Hanson, G. N.; Kroeger, K. D.
2009-12-01
Long Island drinking water is provided by a sole source aquifer with nitrate levels in some North Shore communities approaching or exceeding the drinking water standard of 10 mgL-1. Previous workers, using mass balance approaches, suggested that the primary source of nitrogen is sewage effluent and observed a 50% deficit of nitrate in Long Island’s groundwater system. We analyzed dissolved N2/Ar ratios in groundwater from wells to determine if groundwater denitrification is the cause of the nitrogen deficit at two locations where septic tanks are used for sewage treatment and the effluent leaches to the groundwater; a suburban community on the north shore of Long Island (Northport, NY) and parkland on a barrier island at the south shore of Long Island (Watch Hill, Fire Island National Seashore). In Northport we found 0 to 20 % of the nitrate in groundwater denitrified with excess N-NO3- concentrations ranging from 0 to 1.5 mgL-1. These samples had concentrations high in dissolved oxygen (DO), 6 to 11 mgL-1, and low in dissolved organic carbon (DOC), 0.4 to 2.8 mgL-1. At Watch Hill nitrogen is primarily retained as ammonium or dissolved organic nitrogen. Where nitrate is formed, we found up to 99% denitrification. Excess N-NO3- ranged from 0 to 8 mgL-1 with concentrations low in DO, 0.3 to 3.4 mgL-1, and high in DOC, 5.3 to 18.4 mgL-1. The vadose zone in the Northport area has an average thickness of 10-100 feet whereas at Watch Hill it is 1 - 2 feet thick. We hypothesize that the vadose zone thickness affects the extent of denitrification by controlling the amount of DOC and DO that reaches the groundwater. A thick vadose zone allows for more extensive interaction of infiltrating sewage effluent with atmospheric oxygen in the vadose zone which oxidizes DOC. In Northport groundwater has high DO, low DOC and essentially no denitrification leaving 2 to 11 mgL-1 N-NO3- remaining. At the Watch Hill site a thin vadose zone below the sewage leach field provides anaerobic conditions under which DOC is recharged with the sewage to the groundwater. Under these conditions any nitrate in the groundwater is denitrified and the groundwater has less than 0.01 mgL-1 nitrate remaining.
Removal of boron (B) from waste liquors.
Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K
2006-01-01
This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.
NASA Technical Reports Server (NTRS)
Park, C.
1976-01-01
Chemical reactions expected to occur among the constituents of solid-fuel rocket engine effluents in the hot region behind a Mach disk are analyzed theoretically. With the use of a rocket plume model that assumes the flow to be separated in the base region, and a chemical reaction scheme that includes evaporation of alumina and the associated reactions of 17 gas species, the reformation of the effluent is calculated. It is shown that AlClO and AlOH are produced in exchange for a corresponding reduction in the amounts of HCl and Al2O3. For the case of the space shuttle booster engines, up to 2% of the original mass of the rocket fuel can possibly be converted to these two new species and deposited in the atmosphere between the altitudes of 10 and 40 km. No adverse effects on the atmospheric environment are anticipated with the addition of these two new species.
Chou, K W; Norli, I; Anees, A
2010-11-01
In this study, palm oil mill effluent (POME) was solubilized by batch thermo-alkaline pre-treatments. A three-factor central composite design (CCD) was applied to identify the optimum COD solubilization condition. The individual and interactive effects of three factors, temperature, NaOH concentration and reaction time, on solubilization of POME were evaluated by employing response surface methodology (RSM). The experimental results showed that temperature, NaOH concentration and reaction time all had an individual significant effect on the solubilization of POME. But these three factors were independent, or there was insignificant interaction on the response. The maximum COD solubilization of 82.63% was estimated under the optimum condition at 32.5 degrees C, 8.83g/L of NaOH and 41.23h reaction time. The confirmation experiment of the predicted optimum conditions verified that the RSM with the central composite design was useful for optimizing the solubilization of POME.
Fackrell, Joseph K; Glenn, Craig R; Popp, Brian N; Whittier, Robert B; Dulai, Henrietta
2016-09-15
We utilize N and C species concentration data along with δ(15)N values of NO3(-) and δ(13)C values of dissolved inorganic C to evaluate the stoichiometry of biogeochemical reactions (mineralization, nitrification, anammox, and denitrification) occurring within a subsurface wastewater plume that originates as treated wastewater injection and enters the coastal waters of Maui as submarine groundwater discharge. Additionally, we compare wastewater effluent time-series data, injection rates, and treatment history with submarine spring discharge time-series data. We find that heterotrophic denitrification is the primary mechanism of N loss within the groundwater plume and that chlorination for pathogen disinfection suppresses microbial activity in the aquifer responsible for N loss, resulting in increased coastal ocean N loading. Replacement of chlorination with UV disinfection may restore biogeochemical reactions responsible for N loss within the aquifer and return N-attenuating conditions in the effluent plume, reducing N loading to coastal waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA
1981-01-01
Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.
Friedman, J.; Oberg, C. L.; Russell, L. H.
1981-06-23
Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.
Method for production of magnesium
Diaz, Alexander F.; Howard, Jack B.; Modestino, Anthony J.; Peters, William A.
1998-01-01
A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.
Method for production of magnesium
Diaz, A.F.; Howard, J.B.; Modestino, A.J.; Peters, W.A.
1998-07-21
A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400 C or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products. 12 figs.
Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide
Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.
2001-03-27
A hydrocarbon fuel reforming method is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first mixture of an oxygen-containing gas and a first fuel is directed into a first tube 108 to produce a first reaction reformate. A second mixture of steam and a second fuel is directed into a second tube 116 annularly disposed about the first tube 108 to produce a second reaction reformate. The first and second reaction reformates are then directed into a reforming zone 144 and subject to a catalytic reforming reaction. In another aspect of the method, a first fuel is combusted with an oxygen-containing gas in a first zone 108 to produce a reformate stream, while a second fuel under steam reforming in a second zone 116. Heat energy from the first zone 108 is transferred to the second zone 116.
Liang, Hanwen; Gao, Min; Liu, Junxin; Wei, Yuansong; Guo, Xuesong
2010-01-01
For wastewater treatment in rural areas, a novel three-stage step-feed wastewater treatment system, combined with a drop-aeration biofilm process, was tested in the laboratory to investigate its performance in removing suspended solids (SS), chemical oxygen demand (COD), NH4(+)-N, total nitrogen (TN), and total phosphorus (TP). The removal rates of SS, COD and NH4(+)-N were 90%, 80%, and 90% in effluent concentrations less than 10 mg/L, 50 mg/L and 8 mg/L, respectively. The TP removal rate was less satisfactory. The C/N ratio in the raw wastewater was often less than 3.5, and the removal efficiency of TN was therefore limited. A carbon-release batch experiment was carried out to measure the feasibility of enhancing denitrification at low influent C/N ratios. The result showed that the C/N could be over 9.0 in the supernatant. Polymerase chain reaction denaturing gradient gel electrophoresis technology was used to reveal the changes in the bacterial community during different stages of the integrated step-feed biofilm process. The results showed that banding patterns and the distribution of dominant bands for the same experimental period in different aerobic zones were similar. Phylogenetic analysis indicated that lanes 10, 11 and 12, which presented three aerobic zones at the same operation period, had the closest phylogenetic relationship among the lanes.
Hydrogenation of carbonaceous materials
Friedman, Joseph; Oberg, Carl L.; Russell, Larry H.
1980-01-01
A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.
40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT... resulting from the production of ammonium chloride by the reaction of anhydrous ammonia with hydrogen...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fengshan; Guelder, OEmer L.
2005-11-01
The structures of freely propagating rich CH{sub 4}/air and CH{sub 4}/O{sub 2} flames were studied numerically using a relatively detailed reaction mechanism. Species diffusion was modeled using five different methods/assumptions to investigate the effects of species diffusion, in particular H{sub 2} and H, on superadiabatic flame temperature. With the preferential diffusion of H{sub 2} and H accounted for, significant amount of H{sub 2} and H produced in the flame front diffuse from the reaction zone to the preheat zone. The preferential diffusion of H{sub 2} from the reaction zone to the preheat zone has negligible effects on the phenomenon ofmore » superadiabatic flame temperature in both CH{sub 4}/air and CH{sub 4}/O{sub 2} flames. It is therefore demonstrated that the superadiabatic flame temperature phenomenon in rich hydrocarbon flames is not due to the preferential diffusion of H{sub 2} from the reaction zone to the preheat zone as recently suggested by Zamashchikov et al. [V.V. Zamashchikov, I.G. Namyatov, V.A. Bunev, V.S. Babkin, Combust. Explosion Shock Waves 40 (2004) 32]. The suppression of the preferential diffusion of H radicals from the reaction zone to the preheat zone drastically reduces the degree of superadiabaticity in rich CH{sub 4}/O{sub 2} flames. The preferential diffusion of H radicals plays an important role in the occurrence of superadiabatic flame temperature. The assumption of unity Lewis number for all species leads to the suppression of H radical diffusion from the reaction zone to the preheat zone and significant diffusion of CO{sub 2} from the postflame zone to the reaction zone. Consequently, the degree of superadiabaticity of flame temperature is also significantly reduced. Through reaction flux analyses and numerical experiments, the chemical nature of the superadiabatic flame temperature phenomenon in rich CH{sub 4}/air and CH{sub 4}/O{sub 2} flames was identified to be the relative scarcity of H radical, which leads to overshoot of H{sub 2}O and CH{sub 2}CO in CH{sub 4}/air flames and overshoot of H{sub 2}O in CH{sub 4}/O{sub 2} flames.« less
Ge, Shijian; Peng, Yongzhen; Qiu, Shuang; Zhu, Ao; Ren, Nanqi
2014-05-15
This study assessed the technical feasibility of removing nitrogen from municipal wastewater by partial nitrification (nitritation) in a continuous plug-flow step feed process. Nitrite in the effluent accumulated to over 81.5 ± 9.2% but disappeared with the transition of process operation from anoxic/oxic mode to the anaerobic/anoxic/oxic mode. Batch tests showed obvious ammonia oxidizing bacteria (AOB) stimulation (advanced ammonia oxidation rate) and nitrite (NOB) oxidizing bacteria inhibition (reduced nitrite oxidation rate) under transient anoxic conditions. Two main factors contributed to nitritation in this continuous plug-flow process: One was the alternating anoxic and oxic operational condition; the step feed strategy guaranteed timely denitrification in anoxic zones, allowing a reduction in energy supply (nitrite) to NOB. Fluorescence in Situ Hybridization and quantitative real-time polymerase chain reaction analysis indicated that NOB population gradually decreased to 1.0 ± 0.1% of the total bacterial population (dominant Nitrospira spp., 1.55 × 10(9) copies/L) while AOB increased approximately two-fold (7.4 ± 0.9%, 1.25 × 10(10) copies/L) during the above anoxic to anaerobic transition. Most importantly, without addition of external carbon sources, the above wastewater treatment process reached 86.0 ± 4.2% of total nitrogen (TN) removal with only 7.23 ± 2.31 mg/L of TN in the effluent, which met the discharge requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.
Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H.J.
2000-01-01
An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.
Ammonia-based feedforward and feedback aeration control in activated sludge processes.
Rieger, Leiv; Jones, Richard M; Dold, Peter L; Bott, Charles B
2014-01-01
Aeration control at wastewater treatment plants based on ammonia as the controlled variable is applied for one of two reasons: (1) to reduce aeration costs, or (2) to reduce peaks in effluent ammonia. Aeration limitation has proven to result in significant energy savings, may reduce external carbon addition, and can improve denitrification and biological phosphorus (bio-P) performance. Ammonia control for limiting aeration has been based mainly on feedback control to constrain complete nitrification by maintaining approximately one to two milligrams of nitrogen per liter of ammonia in the effluent. Increased attention has been given to feedforward ammonia control, where aeration control is based on monitoring influent ammonia load. Typically, the intent is to anticipate the impact of sudden load changes, and thereby reduce effluent ammonia peaks. This paper evaluates the fundamentals of ammonia control with a primary focus on feedforward control concepts. A case study discussion is presented that reviews different ammonia-based control approaches. In most instances, feedback control meets the objectives for both aeration limitation and containment of effluent ammonia peaks. Feedforward control, applied specifically for switching aeration on or off in swing zones, can be beneficial when the plant encounters particularly unusual influent disturbances.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
... reaction time and the ability of the coxswains to determine the target of interest's (TOI) intent, properly... reaction vessels are required to wait until a target of interest (TOI) enters the zone prior to taking... to 500 yards (457 meters) would allow reaction time to a vessel closing in at 20 knots to increase...
Muchesa, P.; Mwamba, O.; Barnard, T. G.; Bartie, C.
2014-01-01
Free-living amoebae pose a potential health risk in water systems as they may be pathogenic and harbor potential pathogenic bacteria known as amoebae resistant bacteria. Free-living amoebae were observed in 150 (87.2%) of the environmental water samples. In particular, Acanthamoeba sp. was identified in 22 (12.8%) using amoebal enrichment and confirmed by molecular analysis. FLA were isolated in all 8 stages of the wastewater treatment plant using the amoebal enrichment technique. A total of 16 (9.3%) samples were positive for FLA from influent, 20 (11.6%) from bioreactor feed, 16 (9.3%) from anaerobic zone, 16 (9.3%) from anoxic zone, 32 (18.6%) from aerators, 16 (9.3%) from bioreactor effluent, 11 (6.4%) from bioreactor final effluent, and 45 (26.2%) from maturation pond. This study provides baseline information on the occurrence of amoebae in wastewater treatment plant. This has health implications on receiving water bodies as some FLA are pathogenic and are also involved in the transmission and dissemination of pathogenic bacteria. PMID:25530964
Fate of human viruses in groundwater recharge systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, J.M.; Landry, E.F.
1980-03-01
The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations ofmore » viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.« less
NASA Astrophysics Data System (ADS)
Fernando, G. W. A. R.; Dharmapriya, P. L.; Baumgartner, Lukas P.
2017-07-01
Sri Lanka is a crucial Gondwana fragment mostly composed of granulitic rocks in the Highland Complex surrounded by rocks with granulite to amphibolite grade in the Vijayan and Wanni Complex that were structurally juxtaposed during Pan-African orogeny. Fluids associated with granulite-facies metamorphism are thought to have controlled various lower crustal processes such as dehydration/hydration reactions, partial melting, and high-temperature metasomatism. Chemical disequilibrium in the hybrid contact zone between a near peak post-tectonic ultramafic enclave and siliceous granulitic gneiss at Rupaha within the Highland Complex produced metasomatic reaction zones under the presence of melt. Different reaction zones observed in the contact zone show the mineral assemblages phlogopite + spinel + sapphirine (zone A), spinel + sapphirine + corundum (zone B), corundum ( 30%) + biotite + plagioclase zone (zone C) and plagioclase + biotite + corundum ( 5%) zone (zone D). Chemical potential diagrams and mass balance reveal that the addition of Mg from ultramafic rocks and removal of Si from siliceous granulitic gneiss gave rise to residual enrichment of Al in the metasomatized mineral assemblages. We propose that contact metasomatism between the two units, promoted by melt influx, caused steady state diffusional transport across the profile. Corundum growth was promoted by the strong residual Al enrichment and Si depletion in reaction zone whereas sapphirine may have been formed under high Mg activity near the ultramafic rocks. Modelling also indicated that metasomatic alteration occurred at ca. 850 °C at 9 kbar, which is consistent with post-peak metamorphic conditions reached during the initial stage of exhumation in the lower crust and with temperature calculations based on conventional geothermometry.
Plasma-catalyzed fuel reformer
Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele
2013-06-11
A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.
Mixing-dependent Reactions in the Hyporheic Zone: Laboratory and Numerical Experiments
NASA Astrophysics Data System (ADS)
Santizo, K. Y.; Eastes, L. A.; Hester, E. T.; Widdowson, M.
2017-12-01
The hyporheic zone is the surface water-groundwater interface surrounding the river's perimeter. Prior research demonstrates the ability of the hyporheic zone to attenuate pollutants when surface water cycles through reactive sediments (non-mixing-dependent reactions). However, the colocation of both surface and ground water within hyporheic sediments also allows mixing-dependent reactions that require mixing of reactants from these two water sources. Recent modeling studies show these mixing zones can be small under steady state homogeneous conditions, but do not validate those results in the laboratory or explore the range of hydrological characteristics that control the extent of mixing. Our objective was to simulate the mixing zone, quantify its thickness, and probe its hydrological controls using a "mix" of laboratory and numerical experiments. For the lab experiments, a hyporheic zone was simulated in a sand mesocosm, and a mixing-dependent abiotic reaction of sodium sulfite and dissolved oxygen was induced. Oxygen concentration response and oxygen consumption were visualized via planar optodes. Sulfate production by the mixing-dependent reaction was measured by fluid samples and a spectrophometer. Key hydrologic controls varied in the mesocosm included head gradient driving hyporheic exchange and hydraulic conductivity/heterogeneity. Results show a clear mixing area, sulfate production, and oxygen gradient. Mixing zone length (hyporheic flow cell size) and thickness both increase with the driving head gradient. For the numerical experiments, transient surface water boundary conditions were implemented together with heterogeneity of hydraulic conductivity. Results indicate that both fluctuating boundary conditions and heterogeneity increase mixing-dependent reaction. The hyporheic zone is deemed an attenuation hotspot by multiple studies, but here we demonstrate its potential for mixing-dependent reactions and the influence of important hydrological parameters.
Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives
NASA Astrophysics Data System (ADS)
Wescott, B. L.
2007-12-01
The pseudo-reaction zone model was proposed to improve engineering scale simulations with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below the steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics (DSD) and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity—shock curvature relation. Cylinder test simulations predict the proper expansion to within 1% even though significant reaction occurs as the cylinder expands.
Systems and methods for reactive distillation with recirculation of light components
Stickney, Michael J [Nassau Bay, TX; Jones, Jr., Edward M.
2011-07-26
Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.
Yu, Junchao; Wang, Thanh; Han, Shanlong; Wang, Pu; Zhang, Qinghua; Jiang, Guibin
2013-10-01
In this study, we investigated the distribution of polychlorinated biphenyls (PCBs) in a riparian zone affected by the effluent from a wastewater treatment plant (WWTP). River water, sediment, aquatic invertebrates and samples from the surrounding terrestrial compartment such as soil, reed plants and several land based invertebrates were collected. A relatively narrow range of δ(13)C values was found among most invertebrates (except butterflies, grasshoppers), indicating a similar energy source. The highest concentration of total PCBs was observed in zooplankton (151.1 ng/g lipid weight), and soil dwelling invertebrates showed higher concentrations than phytophagous insects at the riparian zone. The endobenthic oligochaete Tubifex tubifex (54.28 ng/g lw) might be a useful bioindicator of WWTP derived PCBs contamination. High bioaccumulation factors (BAFs) were observed in collected aquatic invertebrates, although the biota-sediment/soil accumulation factors (BSAF) remained relatively low. Emerging aquatic insects such as chironomids could carry waterborne PCBs to the terrestrial compartment via their lifecycles. The estimated annual flux of PCBs for chironomids ranged from 0.66 to 265 ng⋅m(-2)⋅y(-1). Although a high prevalence of PCB-11 and PCB-28 was found for most aquatic based samples in this riparian zone, the mid-chlorinated congeners (e.g. PCB-153 and PCB-138) became predominant among chironomids and dragonflies as well as soil dwelling invertebrates, which might suggest a selective biodriven transfer of different PCB congeners. Copyright © 2013 Elsevier B.V. All rights reserved.
Maa, Peter S.
1978-01-01
A process for liquefying a particulate coal feed to produce useful petroleum-like liquid products which comprises contacting; in a series of two or more coal liquefaction zones, or stages, graded with respect to temperature, an admixture of a polar compound; or compounds, a hydrogen donor solvent and particulate coal, the total effluent being passed in each instance from a low temperature zone, or stage to the next succeeding higher temperature zone, or stage, of the series. The temperature within the initial zone, or stage, of the series is maintained about 70.degree. F and 750.degree. F and the temperature within the final zone, or stage, is maintained between about 750.degree. F and 950.degree. F. The residence time within the first zone, or stage, ranges, generally, from about 20 to about 150 minutes and residence time within each of the remaining zones, or stages, of the series ranges, generally, from about 10 minutes to about 70 minutes. Further steps of the process include: separating the product from the liquefaction zone into fractions inclusive of a liquid solvent fraction; hydrotreating said liquid solvent fraction in a hydrogenation zone; and recycling the hydrogenated liquid solvent mixture to said coal liquefaction zones.
Long-term flow-through column experiments and their relevance to natural granitoid weathering rates
White, Arthur F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.
2017-01-01
Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds—Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico—were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt. %), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2 to 3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages.Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of reaction (fresh granitoids) or increased slowly with time (weathered granitoids). Analysis of cumulative Na release indicated that plagioclase dissolution achieved steady state in 3 of the 4 fresh granitoids during the last decade of reaction. Surface-area normalized plagioclase dissolution rates exhibited a narrow range (0.95 to 1.26 10-13 moles m-2 s-1), in spite of significant stoichiometric differences (An0.21 to An0.50). Rates were an order of magnitude slower than previously reported in shorter duration experiments but generally 2 to 3 orders of magnitude faster than corresponding natural analogs. CrunchFlow simulations indicated that more than a hundredfold decrease in column flow rates would be required to produce near-saturation reaction affinities that would start to slow plagioclase weathering to real-world levels. Extending simulations to approximate long term weathering in naturally weathered profiles required additional decreases in the intrinsic plagioclase dissolution and kaolinite precipitation rates and relatively large decreases in the fluid flow rate, implying that exposure to reactive mineral surfaces is significantly limited in the natural environment compared to column experiments.
Long-term flow-through column experiments and their relevance to natural granitoid weathering rates
NASA Astrophysics Data System (ADS)
White, Art F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.
2017-04-01
Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds-Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico-were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt.%), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2-3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages. Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of reaction (fresh granitoids) or increased slowly with time (weathered granitoids). Analysis of cumulative Na release indicated that plagioclase dissolution achieved steady state in 3 of the 4 fresh granitoids during the last decade of reaction. Surface-area normalized plagioclase dissolution rates exhibited a narrow range (0.95-1.26 10-13 moles m-2 s-1), in spite of significant stoichiometric differences (An0.21 to An0.50). Rates were an order of magnitude slower than previously reported in shorter duration experiments but generally 2-3 orders of magnitude faster than corresponding natural analogs. CrunchFlow simulations indicated that more than a hundredfold decrease in column flow rates would be required to produce near-saturation reaction affinities that would start to slow plagioclase weathering to real-world levels. Extending simulations to approximate long term weathering in naturally weathered profiles required additional decreases in the intrinsic plagioclase dissolution and kaolinite precipitation rates and relatively large decreases in the fluid flow rate, implying that exposure to reactive mineral surfaces is significantly limited in the natural environment compared to column experiments.
Driving Ability of HMX based Aluminized Explosive Affected by the Reaction Degree of Aluminum Powder
NASA Astrophysics Data System (ADS)
Duan, Yingliang
2017-06-01
Due to the time scale of aluminum reaction, the detonation process of the aluminized explosive becomes very complex, and there is less agreement on the reaction mechanism of aluminum powder. If the reaction of aluminum occurs in the reaction zone, the energy released will further strengthen the work ability of detonation wave. So it is very important for characterizing the detonation parameters and detonation driving ability to accurately understand the role of aluminum powder in the reaction zone. In this paper, detonation driving process of HMX based aluminized explosive was studied by cylinder test, obtaining the expansion track of cylinder wall. In order to further research the reaction degree (λ) of aluminum in the reaction zone, the thermodynamic program VHL was used to calculate the detonation process at different reaction degrees, obtaining the parameters of detonation products thermodynamic state. Using the dynamic software LS-DYNA and the JWL equation of state by fitting the pressure and relative volume relationship, the cylinder test was simulated. Compared with the experimental results, when the reaction degree is 20%, the driving ability is found to be in agreement with measured ones. It is concluded that the driving ability of HMX based aluminized explosive can be more accurately characterized by considering the reaction degree of aluminum powder in the reaction zone.
Catalytic oxidation for treatment of ECLSS and PMMS waste streams
NASA Technical Reports Server (NTRS)
Akse, James R.; Jolly, Clifford D.
1991-01-01
It is shown that catalytic oxidation is an effective technique for the removal of trace organic contaminants in a multifiltration potable processor's effluent. Essential elements of this technology are devices that deliver oxygen to the influent, and remove gaseous reaction byproducts from the effluent, via hollow-tube, gas-permeable membranes. Iodine, which poisons existing catalysis, is removed by a small deiodination bed prior to catalytic reactor entrance. The catalyst used is a mixture of Pt and Ru deposited on carbon, operating at 125-160 C and 39-90 psi pressures.
Performance of Hybrid Photocatalytic-Ceramic Membrane System for the Treatment of Secondary Effluent
Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha
2017-01-01
Evaluation of an advanced wastewater treatment system that combines photocatalysis with ceramic membrane filtration for the treatment of secondary effluent was undertaken. The results showed that, after photocatalysis and ceramic membrane filtration, the removal of dissolved organic carbon and UV254 was 60% and 54%, respectively, at a concentration of 4 g/L of TiO2. Dissolved organic matter (DOM) present in the secondary effluent was characterised with a liquid chromatography-organic carbon detector (LC-OCD) technique. The results showed low removal of humics, building blocks, the other oxidation by-products and no removal of biopolymers after TiO2/UV photocatalytic treatment. This suggested that the radical non-selective oxidation mechanisms of TiO2/UV process resulted in secondary effluent in which all of the DOM fractions were present. However, the hybrid system was effective for removing biopolymers with the exception of low molecular weight (LMW) compounds acids, which accumulated from the beginning of the reaction. In addition, monitoring of the DOM fractions with LC-OCD analysis demonstrated that the reduction of the effluent aromaticity was not firmly correlated with the removal of humic substances for the combined processes. PMID:28350320
Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha
2017-03-28
Evaluation of an advanced wastewater treatment system that combines photocatalysis with ceramic membrane filtration for the treatment of secondary effluent was undertaken. The results showed that, after photocatalysis and ceramic membrane filtration, the removal of dissolved organic carbon and UV 254 was 60% and 54%, respectively, at a concentration of 4 g/L of TiO₂. Dissolved organic matter (DOM) present in the secondary effluent was characterised with a liquid chromatography-organic carbon detector (LC-OCD) technique. The results showed low removal of humics, building blocks, the other oxidation by-products and no removal of biopolymers after TiO₂/UV photocatalytic treatment. This suggested that the radical non-selective oxidation mechanisms of TiO₂/UV process resulted in secondary effluent in which all of the DOM fractions were present. However, the hybrid system was effective for removing biopolymers with the exception of low molecular weight (LMW) compounds acids, which accumulated from the beginning of the reaction. In addition, monitoring of the DOM fractions with LC-OCD analysis demonstrated that the reduction of the effluent aromaticity was not firmly correlated with the removal of humic substances for the combined processes.
Quick-Mixing Studies Under Reacting Conditions
NASA Technical Reports Server (NTRS)
Leong, May Y.; Samuelsen, G. S.
1996-01-01
The low-NO(x) emitting potential of rich-burn/quick-mix/lean-burn )RQL) combustion makes it an attractive option for engines of future stratospheric aircraft. Because NO(x) formation is exponentially dependent on temperature, the success of the RQL combustor depends on minimizing high temperature stoichiometric pocket formation in the quick-mixing section. An experiment was designed and built, and tests were performed to characterize reaction and mixing properties of jets issuing from round orifices into a hot, fuel-rich crossflow confined in a cylindrical duct. The reactor operates on propane and presents a uniform, non-swirling mixture to the mixing modules. Modules consisting of round orifice configurations of 8, 9, 10, 12, 14, and 18 holes were evaluated at a momentum-flux ratio of 57 and jet-to-mainstream mass-flaw ratio of 2.5. Temperatures and concentrations of O2, CO2, CO, HC, and NO(x) were obtained upstream, down-stream, and within the orifice plane to determine jet penetration as well as reaction processes. Jet penetration was a function of the number of orifices and affected the mixing in the reacting system. Of the six configurations tested, the 14-hole module produced jet penetration close to the module half-radius and yielded the best mixing and most complete combustion at a plane one duct diameter from the orifice leading edge. The results reveal that substantial reaction and heat release occur in the jet mixing zone when the entering effluent is hot and rich, and that the experiment as designed will serve to explore satisfactorily jet mixing behavior under realistic reacting conditions in future studies.
NASA Technical Reports Server (NTRS)
Stevens, F W
1932-01-01
This study of gaseous explosive reaction has brought out a number of important fundamental characteristics of the explosive reaction indicating that the basal processes of the transformation are much simpler and corresponds more closely to the general laws and principles of ordinary transformations than is usually supposed. The report calls attention to the point that the rate of molecular transformation within the zone was found in all cases to be proportional to pressure, that the transformation within the zone is the result of binary impacts. This result is of unusual interest in the case of the reaction of heavy hydrocarbon fuels and the reaction mechanism proposed by the recent kinetic theory of chain reactions.
Method for production of an isotopically enriched compound
Watrous, Matthew G.
2012-12-11
A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.
Geochemical signatures of groundwater in the coastal aquifers of Thiruvallur district, south India
NASA Astrophysics Data System (ADS)
Senthilkumar, S.; Balasubramanian, N.; Gowtham, B.; Lawrence, J. F.
2017-03-01
An attempt has been made to identify the chemical processes that control the hydrochemistry of groundwater in the coastal aquifers of Thiruvallur coastal village of Thiruvallur district, Tamil Nadu, south India. The parameters such as pH, EC, TDS and major ion concentrations of Na, K, Ca, Mg, Cl, HCO3, SO4 and NO3 of the groundwater were analyzed. Abundances of these ions are in the following order Na > Ca > Mg > K and HCO3 > Cl > SO4 > NO3. The dominant water types are in the order of NaCl> mixed CaMgCl > CaHCO3 > CaNaHCO3. Water types (mixed CaHCO3, mixed CaMgCl and NaCl) suggest that the mixing of high salinity water caused from surface contamination sources such as irrigation return flow, domestic wastewater and septic tank effluents with existing water followed by ion exchange reaction processes, silicate weathering and evaporation are responsible for the groundwater chemistry of the study area. The above statement is further supported by Gibbs plot where most of the samples fall within the evaporation zone.
Shu, Xiao-ming; Xu, Can-can; Liu, Rui; Zhao, Yuan; Chen, Lü-jun
2016-02-15
Nanoscale Ni/Fe was applied to biologically treated effluent of chemical dyestuff wastewater. The removal rates of absorbable organic halogens (AOX) and chroma were investigated at different Ni loadings (0-5%), initial wastewater pH (4.1-10.0), Ni/Fe dosage (1-5 g x L(-1)) and reaction time (0.5-96 h). The results showed that the removal rates of AOX and chroma firstly increased and then decreased with the increase of the Ni loading, while continuously increased with the decrease of the initial wastewater pH and the increase of Ni/Fe dosage. The optimal condition was Ni loading of 1%, initial wastewater pH of 4.1 and Ni/Fe dosage of 3 g x L(-1), under which 29.2% of AOX and 79.6% of chroma were removed after 24 h reaction, and 50.6% of AOX and 80.7% of chroma were removed after 96 h reaction. GC-MS analysis revealed that toxicants such as chlorinated anilines, p-nitroaniline, 4-methoxy-2-nitroaniline and halogenated hydrocarbons were efficiently removed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott I.
As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less
The dynamic adsorption characteristics of phenol by granular activated carbon.
Namane, A; Hellal, A
2006-09-01
The objective of the present work is to determine the operating conditions of an activated carbon filter, based on the characteristics of breakthrough curves. For this we apply the technical developed by Mickaels for the ionic exchange and applied by Luchkis for the adsorption, and which is the mass transfer zone. To reach our goal, an evaluation of the operating conditions (height of the bed, flow and concentration of effluent) on the characteristics of the mass transfer zone was made and an explanation of the mechanism of adsorption was given. Thereafter a modeling of the experimental results was done.
Process for preparing fluorine-18
Winchell, Harry S.; Wells, Dale K.; Lamb, James F.; Beaudry, Samuel B.
1976-09-21
An improved process for preparation of fluorine-18 by a neon (deuteron, alpha particle) fluorine-18 nuclear reaction in a non-reactive enclosed reaction zone wherein a ultrapure product is recovered by heating the reaction zone to a high temperature and removing the product with an inert gas.
NASA Astrophysics Data System (ADS)
Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.
2017-12-01
New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.
NASA Astrophysics Data System (ADS)
Kallioras, Andreas; Tsertou, Athanasia; Foglia, Laura; Bumberger, Jan; Vienken, Thomas; Dietrich, Peter; Schüth, Christoph
2014-05-01
Artificial recharge of groundwater has an important role to play in water reuse. Treated sewage effluent can be infiltrated into the ground for recharge of aquifers. As the effluent water moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. Recharge systems for SAT can be designed as infiltration-recovery systems, where all effluent water is recovered as such from the aquifer, or after blending with native groundwater. SAT typically removes essentially all suspended solids, biochemical oxygen demand (BOD), and pathogens (viruses, bacteria, protozoa, and helminthic eggs). Concentrations of synthetic organic carbon, phosphorous, and heavy metals are greatly reduced. The pilot site of LTCP will involve the employment of infiltration basins, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. T he LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved through the development and installation of an integrated system of prototype sensors, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time Domain Reflectometry (TDR) sensors will be developed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. The above technique will offer continuous monitoring of infiltration rates and possible mechanical clogging effects. The qualitative monitoring of the unsaturated zone will be achieved through the installation of appropriate pore-water samplers within a multi-level basis, ensuring repeatability of sampling of infiltrating water of impaired quality. This study also involves the qualitative and quantitative assessment of the Lavrion multi-aquifer system through continuous monitoring of the performance of (i) the alluvial aquifer and its potential for additional water treatment as well as (ii) the effects of the SAT system for countermeasuring seawater intrusion in the area of Lavrion. Additionally, setup and calibration of numerical flow and transport models for evaluating and optimizing different operational modes of the SAT system within both saturated and unsaturated zones will be conducted. The monitoring system will be connected to an ad-hoc wireless network for continuous data transfer within the SAT facilities. It is envisaged that the development and combined application of all the above technologies will provide an integrated monitoring platform for the evaluation of SAT system performance.
Research on soybean protein wastewater treatment by the integrated two-phase anaerobic reactor
Yu, Yaqin
2015-01-01
The start-up tests of treating soybean protein wastewater by the integrated two-phase anaerobic reactor were studied. The results showed that the soybean protein wastewater could be successfully processed around 30 days when running under the situation of dosing seed sludge with the influent of approximately 2000 mg/L and an HRT of 40 h. When the start-up was finished, the removal rate of COD by the reactor was about 80%. In the zone I, biogas mainly revealed carbon dioxide (CO2) and hydrogen (H2). Methane was the main component in the zone 2 which ranged from 53% to 59% with an average of 55%. The methane content in biogas increased from the zone I to II. It indicated that the methane-producing capacity of the anaerobic sludge increased. It was found that the uniquely designed two-phase integrated anaerobic reactor played a key role in treating soybean protein wastewater. The acidogenic fermentation bacteria dominated in the zone I, while methanogen became dominant in the zone II. It realized the relatively effective separation of hydrolysis acidification and methanogenesis process in the reactor, which was benefit to promote a more reasonable space distribution of the microbial communities in the reactor. There were some differences between the activities of the sludge in the two reaction zones of the integrated two-phase anaerobic reactor. The activity of protease was higher in the reaction zone I. And the coenzyme F420 in the reaction zone II was twice than that in the reaction zone I, which indicated that the activity of the methanogens was stronger in the reaction zone II. PMID:26288554
Method for forming synthesis gas using a plasma-catalyzed fuel reformer
Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele
2015-04-28
A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.
METHOD FOR PREPARATION OF SPHERICAL UO$sub 4$
Gregory, J.F. Jr.; Levey, R.P. Jr.
1962-06-01
A method is given for continuously precipitating ura nium peroxide in the form of spherical particles. Seed crystals are formed in a first reaction zone by introducing an acidified aqueous uranyl nitrate solution and an aqueous hydrogen peroxide solution at a ratio of 5 to 20 per cent of the stoichiometric amount required for complete precipitation. After a mean residence time of 2 to 5 minutes in the first reaction zone, the resulting mixture is introduced into a second reaction zone, together with a large excess of hydrogen peroxide solution. The resulting UO4 is rapidly separated from the mother liquor after an over-all residence time of 5 to 11 minutes. The first reaction is maintained at a temperature of 85 to 90 deg C and the second zone above 50 deg C. Additional reaction zones may be employed for further crystal growth. The UO/sub 4/ is converted to U/sub 3/O/sub 8/ or UO/sub 2/ by heating in air or hydrogen atmosphere. This method is particularly useful for the preparation of spherical UO/sub 2/ particles 10 to 25 microns in diameter. (AEC)
Verification Test of the SURF and SURFplus Models in xRage: Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2016-06-20
The previous study used an underdriven detonation wave (steady ZND reaction zone profile followed by a scale invariant rarefaction wave) for PBX 9502 as a validation test of the implementation of the SURF and SURFplus models in the xRage code. Even with a fairly fine uniform mesh (12,800 cells for 100mm) the detonation wave profile had limited resolution due to the thin reaction zone width (0.18mm) for the fast SURF burn rate. Here we study the effect of finer resolution by comparing results of simulations with cell sizes of 8, 2 and 1 μm, which corresponds to 25, 100 andmore » 200 points within the reaction zone. With finer resolution the lead shock pressure is closer to the von Neumann spike pressure, and there is less noise in the rarefaction wave due to fluctuations within the reaction zone. As a result the average error decreases. The pointwise error is still dominated by the smearing the pressure kink in the vicinity of the sonic point which occurs at the end of the reaction zone.« less
Impacts of blending on dilution of negatively buoyant brine discharge in a shallow tidal sea.
Kämpf, Jochen
2009-07-01
A fine-resolution three-dimensional hydrodynamic model is applied to study the dilution of desalination brine discharged into a tidal sea. Based on given inflow rate and salinity excess of discharge brine, this study explores variations in mid-field dilutions when other low-salinity wastewater is added to the discharge. Findings reveal that this blending leads to a decrease in dilution in the mixing zone and therefore to higher levels of pollutants in this zone, while, on the other hand, the mixing zone occupies a smaller area. The reason is that the discharge of brine creates a density-driven flow that operates to partially remove effluent from the discharge location. This removal is less efficient for the decrease in density excess of the discharge. Hence, in an ambient sea of moderate mixing, blending can be expected to increase the risk of marine pollution in the mixing zone.
Hangx, Suzanne J T; van der Linden, Arjan; Marcelis, Fons; Liteanu, Emilia
2016-01-19
To predict the behavior of the cement sheath after CO2 injection and the potential for leakage pathways, it is key to understand how the mechanical properties of the cement evolves with CO2 exposure time. We performed scratch-hardness tests on hardened samples of class G cement before and after CO2 exposure. The cement was exposed to CO2-rich fluid for one to six months at 65 °C and 8 MPa Ptotal. Detailed SEM-EDX analyses showed reaction zones similar to those previously reported in the literature: (1) an outer-reacted, porous silica-rich zone; (2) a dense, carbonated zone; and (3) a more porous, Ca-depleted inner zone. The quantitative mechanical data (brittle compressive strength and friction coefficient) obtained for each of the zones suggest that the heterogeneity of reacted cement leads to a wide range of brittle strength values in any of the reaction zones, with only a rough dependence on exposure time. However, the data can be used to guide numerical modeling efforts needed to assess the impact of reaction-induced mechanical failure of wellbore cement by coupling sensitivity analysis and mechanical predictions.
Biologically Pre-Treated Habitation Waste Water as a Sustainable Green Urine Pre-Treat Solution
NASA Technical Reports Server (NTRS)
Jackson, W. Andrew; Thompson, Bret; Sevanthi, Ritesh; Morse, Audra; Meyer, Caitlin; Callahan, Michael
2017-01-01
The ability to recover water from urine and flush water is a critical process to allow long term sustainable human habitation in space or bases on the moon or mars. Organic N present as urea or similar compounds can hydrolyze producing free ammonia. This reaction results in an increase in the pH converting ammonium to ammonia which is volatile and not removed by distillation. The increase in pH will also cause precipitation reactions to occur. In order to prevent this, urine on ISS is combined with a pretreat solution. While use of a pretreatment solution has been successful, there are numerous draw backs including: storage and use of highly hazardous solutions, limitations on water recovery (less than 85%), and production of brine with pore dewatering characteristics. We evaluated the use of biologically treated habitation wastewaters (ISS and early planetary base) to replace the current pretreat solution. We evaluated both amended and un-amended bioreactor effluent. For the amended effluent, we evaluated "green" pretreat chemicals including citric acid and citric acid amended with benzoic acid. We used a mock urine/air separator modeled after the urine collection assembly on ISS. The urine/air separator was challenged continually for >6 months. Depending on the test point, the separator was challenged daily with donated urine and flushed with amended or un-amended reactor effluent. We monitored the pH of the urine, flush solution and residual pH in the urine/air separator after each urine event. We also evaluated solids production and biological growth. Our results support the use of both un-amended and amended bioreactor effluent to maintain the operability of the urine /air separator. The ability to use bioreactor effluent could decrease consumable cost, reduce hazards associated with current pre-treat chemicals, allow other membrane based desalination processes to be utilized, and improve brine characteristics.
NASA Astrophysics Data System (ADS)
Velpula, Priyadarshini; Ghuge, Santosh; Saroha, Anil K.
2018-04-01
Ozonation is a chemical treatment process in which ozone reacts with the pollutants present in the effluent by infusion of ozone into the effluent. This study includes the effect of various parameters such as inlet ozone dose, pH of solution and initial concentration of dye on decolorization of dye in terms CRE. The maximum CRE of 98.62% with the reaction rate constant of 0.26 min-1 is achieved in 18 minutes of reaction time at inlet ozone dose of 11.5 g/m3, solution pH of 11 and 30 mg/L of initial concentration of dye. The presence of radical scavenger (Tertiary Butyl Alcohol) suppressed the CRE from 98.62% to 95.4% at high pH values indicates that the indirect mechanism dominates due to the presence of hydroxyl radicals which are formed by the decomposition of ozone. The diffusive and convective mass transfer coefficients of ozone are calculated as 1.78 × 10-5 cm2/sec and 0.075 min-1. It is observed that the fraction of resistance offered by liquid is very much high compared to gas phase indicates that the ozonation is a liquid phase mass transfer controlled operation.
Yan, Jingchun; Gao, Weiguo; Qian, Linbo; Han, Lu; Chen, Yun; Chen, Mengfang
2015-01-01
The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4•−, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil. PMID:26266532
Oladzad, Sepideh; Fallah, Narges; Nasernejad, Bahram
2017-07-01
In the present study a combination of a novel coalescing oil water separator (COWS) and electrocoagulation (EC) technique was used for treatment of petroleum product contaminated groundwater. In the first phase, COWS was used as the primary treatment. Two different types of coalescing media and two levels of flow rates were examined in order to find the optimum conditions. The effluent of COWS was collected in optimum conditions and was treated using an EC process in the second phase of the research. In this phase, preliminary experiments were conducted in order to investigate the effect of EC reaction time and sedimentation time on chemical oxygen demand (COD) removal efficiency. Best conditions for EC reaction time and sedimentation time were obtained to be 5 min and 30 min, respectively. Response surface methodology was applied to evaluate the effect of initial pH, current density and aeration rate on settling velocity (V s ) and effluent COD. The optimum conditions, for achieving maximum values of V s as well as the values of effluent COD, in the range of results were obtained at conditions of 7, 34 mA·cm -2 and 1.5 L·min -1 for initial pH, current density and aeration rate, respectively.
Massé, D I; Croteau, F; Masse, L
2007-11-01
The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4% and 79.9%, respectively. The nitrogen, potassium, and sodium fed with the manure to the PASBRs were recovered in the effluent. The bioreactors retained on average 25.5% of the P, 8.7% of the Ca, 41.5% of the Cu, 18.4% of the Zn, and 67.7% of the S fed to the PASBRs. The natural settling of bioreactor effluent allowed further nutrient separation. The supernatant fraction, which represented 71.4% of effluent volume, contained 61.8% of the total N, 67.1% of the NH4-N, and 73.3% of the Na. The settled sludge fraction, which represented 28.6% of the volume, contained 57.6% of the solids, 62.3% of the P, 71.6% of the Ca, 89.6% of the Mg, 76.1% of the Al, 90.0% of the Cu, 74.2% of the Zn, and 52.2% of the S. The N/P ratio was increased from 3.9 in the raw manure to 5.2 in the bioreactor effluent and 9.2 in the supernatant fraction of the settled effluent. The PASBR technology will then substantially decrease the manure management costs of swine operations producing excess phosphorus, by reducing the volume of manure to export outside the farm. The separation of nutrients will also allow land spreading strategies that increase the agronomic value of manure by matching more closely the crop nutrient requirements.
De, Mriganka; Toor, Gurpal S
2016-11-01
Septic systems can be a major source of nitrogen (N) in shallow groundwater. We designed an in situ engineered drainfield with aerobic-anaerobic (sand-woodchips) and anaerobic (elemental sulfur-oyster shell) media to remove N in the vadose zone and reduce N transport to groundwater. Effluent was dispersed on top of the engineered drainfield (3.72 m infiltrative surface) and then infiltrated through the aerobic-anaerobic and anaerobic media before reaching natural soil. Water samples were collected over 64 sampling events (May 2012-December 2013) from three parts of the drainfield: (i) a suction cup lysimeter installed at the sand-woodchips interface, (ii) a pipe after effluent passed through the aerobic-anaerobic media, and (iii) a tank containing anaerobic media. In the effluent, most of the total N (66 mg L) was present as NH-N (88.8%), whereas at the sand-woodchips interface the dominant N form was NO-N (31 mg L; 85% of total N). As the effluent passed through the aerobic-anaerobic media in the drainfield, heterotrophic denitrification reduced NO-N to 5.4 mg L. In the tank containing anaerobic media, autotrophic denitrification, facilitated by elemental sulfur, further reduced NO-N to 1 mg L. Overall, 90% of total added N was removed as the effluent passed through the aerobic-anaerobic and anaerobic media within the engineered drainfield. We conclude that the use of multiple electron donors from external media (sand-woodchips and elemental sulfur-oyster shell) was effective at removing N in the engineered drainfield and will reduce the risk of groundwater N contamination from septic systems in areas with shallow groundwater. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Detonation Reaction Zones in Condensed Explosives
NASA Astrophysics Data System (ADS)
Tarver, Craig M.
2006-07-01
Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich - von Neumann - Doling (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes are discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).
Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems
NASA Astrophysics Data System (ADS)
Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.
2013-12-01
25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.
The dependence of Ammonium-Nitrate Fuel-Oil (ANFO) detonation on confinement
Jackson, Scott I.
2016-11-17
As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less
NASA Astrophysics Data System (ADS)
Yamashita, Teruo; Schubnel, Alexandre
2016-10-01
Sustained slow slip, which is a distinctive feature of slow slip events (SSEs), is investigated theoretically, assuming a fault embedded within a fluid-saturated 1D thermo-poro-elastic medium. The object of study is specifically SSEs occurring at the down-dip edge of seismogenic zone in hot subduction zones, where mineral dehydrations (antigorite, lawsonite, chlorite, and glaucophane) are expected to occur near locations where deep slow slip events are observed. In the modeling, we introduce dehydration reactions, coupled with slip-induced dilatancy and thermal pressurization, and slip evolution is assumed to interact with fluid pressure change through Coulomb's frictional stress. Our calculations show that sustained slow slip events occur when the dehydration reaction is coupled with slip-induced dilatancy. Specifically, slow slip is favored by a low initial stress drop, an initial temperature of the medium close to that of the dehydration reaction equilibrium temperature, a low permeability, and overall negative volume change associated with the reaction (i.e., void space created by the reaction larger than the space occupied by the fluid released). Importantly, if we do not assume slip-induced dilatancy, slip is accelerated with time soon after the slip onset even if the dehydration reaction is assumed. This suggests that slow slip is sustained for a long time at hot subduction zones because dehydration reaction is coupled with slip-induced dilatancy. Such slip-induced dilatancy may occur at the down-dip edge of seismogenic zone at hot subduction zones because of repetitive occurrence of dehydration reaction there.
Reductive dissolution and reactive solute transport in a sewage-contaminated glacial outwash aquifer
Lee, R.W.; Bennett, P.C.
1998-01-01
Contamination of shallow ground water by sewage effluent typically contains reduced chemical species that consume dissolved oxygen, developing either a low oxygen geochemical environment or an anaerobic geochemical environment. Based on the load of reduced chemical species discharged to shallow ground water and the amounts of reactants in the aquifer matrix, it should be possible to determine chemical processes in the aquifer and compare observed results to predicted ones. At the Otis Air Base research site (Cape Cod, Massachusetts) where sewage effluent has infiltrated the shallow aquifer since 1936, bacterially mediated processes such as nitrification, denitrification, manganese reduction, and iron reduction have been observed in the contaminant plume. In specific areas of the plume, dissolved manganese and iron have increased significantly where local geochemical conditions are favorable for reduction and transport of these constituents from the aquifer matrix. Dissolved manganese and iron concentrations ranged from 0.02 to 7.3 mg/L, and 0.001 to 13.0 mg/L, respectively, for 21 samples collected from 1988 to 1989. Reduction of manganese and iron is linked to microbial oxidation of sewage carbon, producing bicarbonate and the dissolved metal ions as by-products. Calculated production and flux of CO2 through the unsaturated zone from manganese reduction in the aquifer was 0.035 g/m2/d (12% of measured CO2 flux during winter). Manganese is limited in the aquifer, however. A one-dimensional, reaction-coupled transport model developed for the mildly reducing conditions in the sewage plume nearest the source beds showed that reduction, transport, and removal of manganese from the aquifer sediments should result in iron reduction where manganese has been depleted.
On a non-thermal atmospheric pressure plasma jet used for the deposition of silicon-organic films
NASA Astrophysics Data System (ADS)
Schäfer, Jan; Sigeneger, Florian; Foest, Rüdiger; Loffhagen, Detlef; Weltmann, Klaus-Dieter
2018-05-01
This work represents a concise overview on the results achieved by the authors over the last years on the plasma of a non-thermal reactive plasma jet at atmospheric pressure and of related thin film formation by plasma enhanced chemical vapour deposition (PECVD). The source was developed considering the application of the plasma self-organization for PECVD. The experimental methods comprise spectroscopic measurements of plasma parameters in the active zone, temperature measurements in the active zone and the effluent as well as the analysis of deposited films at the substrate surface. The theoretical investigations are devoted to a single filament in the active zone using a phase-resolved model and to an overall description of the jet including the substrate using a period-averaged model.
Weld Repair of a Stamped Pressure Vessel in a Radiologically Controlled Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannell, Gary L.; Huth, Ralph J.; Hallum, Randall T.
2013-08-26
In September 2012 an ASME B&PVC Section VIII stamped pressure vessel located at the DOE Hanford Site Effluent Treatment Facility (ETF) developed a through-wall leak. The vessel, a steam/brine heat exchanger, operated in a radiologically controlled zone (by the CH2MHill PRC or CHPRC), had been in service for approximately 17 years. The heat exchanger is part of a single train evaporator process and its failure caused the entire system to be shut down, significantly impacting facility operations. This paper describes the activities associated with failure characterization, technical decision making/planning for repair by welding, logistical challenges associated with performing work inmore » a radiologically controlled zone, performing the repair, and administrative considerations related to ASME code requirements.« less
Zhu, Huaqing; Lu, Xiwu; Dai, Hongliang
2018-03-01
In this work, a surface-flow constructed wetland (SFCW) dominated by Cladophora was used to remove and reclaim nutrients in diffuse domestic effluent (DDE) discharged from rural regions around Taihu Lake, a eutrophic shallow lake in China. Growth rate of Cladophora was investigated and linked to ambient factors and nutrient consuming rates. The growth performances of Cladophora and animal-feed microbes were studied during the commissioning of SFCW. Results show that the growth rate of Cladophora was closely correlated with field temperature and surface irradiance, while surface coverage was suitable for the manipulation of SFCW. Harvest of Cladophora along with animal-feed microbes and removal of nutrients in DDE could be achieved by manipulating surface coverage to drag growth rate back at the end of linear zone and to quickly restore Cladophora biomass in the mid zone of surface growth rate. Among four stages of the commissioning, concentrating stage experienced the majority species of animal-feed microbes and maximal nutrient removal; during decomposing stage, however, the reproduction of animal-feed microbes and nutrient removal were lower, whereas the density of pathogens was higher. Copyright © 2017 Elsevier Ltd. All rights reserved.
Methane production by attached film
Jewell, William J.
1981-01-01
A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.
Gas dynamics of reactive gases in swirling-type furnace
NASA Astrophysics Data System (ADS)
Akhmetshina, A. I.; Pavlov, G. I.; Sabirzyanov, A. N.; Tikhonov, O. A.
2017-09-01
It is known from the literature that for the complete reaction of two gases (fuel and oxidizer), it is necessary to fulfill three basic conditions: the stoichiometric ratio of reactive gases, qualitative mixing and ensuring the cooling of combustion products without "quenching". Of the above-stated conditions it is more difficult to organize a qualitative mixture formation. This physical process requires additional expenditure of energy flow. In this work we present the results of experimental and theoretical studies of the gas dynamics of a reactive gas mixture in a swirling-type furnace. The design scheme of the furnace includes two reaction zones for combustible components: the first zone is the zone of generation of combustible gases which composition is constant; the second zone of the furnace - zone of a homogeneous combustion reaction.
Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.
2000-01-01
A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.
Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Deletic, Ana; Hatt, Belinda E; Fletcher, Tim D
2017-04-04
Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N 2 O) and methane (CH 4 ) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH 4 and N 2 O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N 2 O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH 4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N 2 O accounted for <1.5% of the incoming total nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N 2 O or CH 4 in biofilter effluent appears relatively low.
Measuring explosive non-ideality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souers, P C
1999-02-17
The sonic reaction zone length may be measured by four methods: (1) size effect, (2) detonation front curvature, (3) crystal interface velocity and (4) in-situ gauges. The amount of data decreases exponentially from (1) to (4) with there being almost no gauge data for prompt detonation at steady state. The ease and clarity of obtaining the reaction zone length increases from (1) to (4). The method of getting the reaction zone length,
Alkali metal recovery from carbonaceous material conversion process
Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.
Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction
Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping
2010-08-03
A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.
Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.
2016-01-01
Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.
Kent, D.B.; Fox, P.M.
2004-01-01
We examined the chemical reactions influencing dissolved concentrations, speciation, and transport of naturally occurring arsenic (As) in a shallow, sand and gravel aquifer with distinct geochemical zones resulting from land disposal of dilute sewage effluent. The principal geochemical zones were: (1) the uncontaminated zone above the sewage plume [350 ??M dissolved oxygen (DO), pH 5.9]; (2) the suboxic zone (5 ??M DO, pH 6.2, elevated concentrations of sewage-derived phosphate and nitrate); and (3) the anoxic zone [dissolved iron(II) 100-300 ??M, pH 6.5-6.9, elevated concentrations of sewage-derived phosphate]. Sediments are comprised of greater than 90% quartz but the surfaces of quartz and other mineral grains are coated with nanometer-size iron (Fe) and aluminum (Al) oxides and/or silicates, which control the adsorption properties of the sediments. Uncontaminated groundwater with added phosphate (620 ??M) was pumped into the uncontaminated zone while samples were collected 0.3 m above the injection point. Concentrations of As(V) increased from below detection (0.005 ??M) to a maximum of 0.07 ??M during breakthrough of phosphate at the sampling port; As(III) concentrations remained below detection. These results are consistent with the hypothesis that naturally occurring As(V) adsorbed to constituents of the coatings on grain surfaces was desorbed by phosphate in the injected groundwater. Also consistent with this hypothesis, vertical profiles of groundwater chemistry measured prior to the tracer test showed that dissolved As(V) concentrations increased along with dissolved phosphate from below detection in the uncontaminated zone to approximately 0.07 and 70 ??M, respectively, in the suboxic zone. Concentrations of As(III) were below detection in both zones. The anoxic zone had approximately 0.07 ??M As(V) but also had As(III) concentrations of 0.07-0.14 ??M, suggesting that release of As bound to sediment grains occurred by desorption by phosphate, reductive dissolution of Fe oxides, and reduction of As(V) to As(III), which adsorbs only weakly to the Fe-oxide-depleted material in the coatings. Results of reductive extractions of the sediments suggest that As associated with the coatings was relatively uniformly distributed at approximately 1 nmol/g of sediment (equivalent to 0.075 ppm As) and comprised 20%-50% of the total As in the sediments, determined from oxidative extractions. Quartz sand aquifers provide high-quality drinking water but can become contaminated when naturally occurring arsenic bound to Fe and Al oxides or silicates on sediment surfaces is released by desorption and dissolution of Fe oxides in response to changing chemical conditions. ?? 2004 American Institute of Physics.
Transformation of Nitrate and Toluene in Groundwater by Sulfur Modified Iron(SMI-III)
NASA Astrophysics Data System (ADS)
Lee, W.; Park, S.; Lim, J.; Hong, U.; Kwon, S.; Kim, Y.
2009-12-01
In Korea, nitrate and benzene, toluene, ethylbenzene, and xylene isomers (BTEX) are frequently detected together as ground water contaminants. Therefore, a system simultaneously treating both nitrate (inorganic compound) and BTEX (organic compounds) is required to utilize groundwater as a water resource. In this study, we investigated the efficiency of Sulfur Modified Iron (SMI-III) in treating both nitrate and BTEX contaminated groundwater. Based on XRD (X-Ray Diffraction) analysis, the SMI-III is mainly composed of Fe3O4, S, and Fe. A series of column tests were conducted at three different empty bed contact times (EBCTs) for each compound. During the experiments, removal efficiency for both nitrate and toluene were linearly correlated with EBCT, suggesting that SMI-III have an ability to transform both nitrate and toluene. The concentration of SO42- and oxidation/reduction potential (ORP) were also measured. After exposed to nitrate contaminated groundwater, the composition of SMI-III was changed to Fe2O3, Fe3O4, Fe, and Fe0.95S1.05. The trends of effluent sulfate concentrations were inversely correlated with effluent nitrate concentrations, while the trends of ORP values, having the minimum values of -480 mV, were highly correlated with effluent nitrate concentrations. XRD analysis before and after exposed to nitrate contaminated groundwater, sulfate production, and nitrite detection as a reductive transformation by-product of nitrate suggest that nitrate is reductively transformed by SMI-III. Interestingly, in the toluene experiments, the trends of ORP values were inversely correlated with effluent toluene concentrations, suggesting that probably degrade through oxidation reaction. Consequently, nitrate and toluene probably degrade through reduction and oxidation reaction, respectively and SMI-III could serve as both electron donor and acceptor.
Storage of treated sewage effluent and stormwater in a saline aquifer, Pinellas Peninsula, Florida
Rosenshein, J.S.; Hickey, J.J.
1977-01-01
The Pinellas Peninsula, an area of 750 square kilometres (290 square miles) in coastal west-central Florida, is a small hydrogeologic replica of Florida. Most of the Peninsula's water supply is imported from well fields as much as 65 kilometres (40 miles) inland. Stresses on the hydrologic environment of the Peninsula and on adjacent water bodies, resulting from intensive water-resources development and waste discharge, have resulted in marked interest in subsurface storage of waste water (treated effluent and untreated storm water) and in future retrieval of the stored water for nonpotable use. If subsurface storage is approved by regulatory agencies, as much as 265 megalitres per day (70 million gallons a day) of waste water could be stored underground within a few years, and more than 565 megalitres per day (150 million gallons a day) could be stored in about 25 years. This storage would constitute a large resource of nearly fresh water in the saline aquifers underlying about 520 square kilometres (200 square miles) of the Peninsula.The upper 1,060 metres (3,480 feet) of the rock column underlying four test sites on the Pinellas Peninsula have been explored. The rocks consist chiefly of limestone and dolomite. Three moderately to highly transmissive zones, separated by leaky confining beds, (low permeability limestone) from about 225 to 380 metres (740 to 1,250 feet) below mean sea level, have been identified in the lower part of the Floridan aquifer in the Avon Park Limestone. Results of withdrawal and injection tests in Pinellas County indicate that the middle transmissive zone has the highest estimated transmissivity-about 10 times other reported values. The chloride concentration of water in this zone, as well as in the two other transmissive zones in the Avon Park Limestone in Pinellas Peninsula, is about 19,000 milligrams per litre. If subsurface storage is approved and implemented, this middle zone probably would be used for storage of the waste water and the zone would become the most extensively used in Florida for this purpose.
Abrams , Robert H.; Loague, Keith; Kent, Douglas B.
1998-01-01
The work reported here is the first part of a larger effort focused on efficient numerical simulation of redox zone development in contaminated aquifers. The sequential use of various electron acceptors, which is governed by the energy yield of each reaction, gives rise to redox zones. The large difference in energy yields between the various redox reactions leads to systems of equations that are extremely ill-conditioned. These equations are very difficult to solve, especially in the context of coupled fluid flow, solute transport, and geochemical simulations. We have developed a general, rational method to solve such systems where we focus on the dominant reactions, compartmentalizing them in a manner that is analogous to the redox zones that are often observed in the field. The compartmentalized approach allows us to easily solve a complex geochemical system as a function of time and energy yield, laying the foundation for our ongoing work in which we couple the reaction network, for the development of redox zones, to a model of subsurface fluid flow and solute transport. Our method (1) solves the numerical system without evoking a redox parameter, (2) improves the numerical stability of redox systems by choosing which compartment and thus which reaction network to use based upon the concentration ratios of key constituents, (3) simulates the development of redox zones as a function of time without the use of inhibition factors or switching functions, and (4) can reduce the number of transport equations that need to be solved in space and time. We show through the use of various model performance evaluation statistics that the appropriate compartment choice under different geochemical conditions leads to numerical solutions without significant error. The compartmentalized approach described here facilitates the next phase of this effort where we couple the redox zone reaction network to models of fluid flow and solute transport.
Comparison of EPA Method 1615 RT-qPCR Assays in Standard and Kit Format
EPA Method 1615 contains protocols for measuring enterovirus and norovirus by reverse transcription quantitative polymerase chain reaction. A commercial kit based upon these protocols was designed and compared to the method's standard approach. Reagent grade, secondary effluent, ...
Recent Studies in Phthalocyanine Chemistry.
1986-07-01
desulfurisation ) etc. Many of the uses cited In the preceding sentence involve a redox process in which two or more electrons are exchanged per reaction...phthalocyanine as a catalyst for desulfurisation of residues, effluents etc 144]. Acknowledgmnts We ars Indebted to the Natural Sciences and Engineering
Theory and Modeling of Liquid Explosive Detonation
NASA Astrophysics Data System (ADS)
Tarver, Craig M.; Urtiew, Paul A.
2010-10-01
The current understanding of the detonation reaction zones of liquid explosives is discussed in this article. The physical and chemical processes that precede and follow exothermic chemical reaction within the detonation reaction zone are discussed within the framework of the nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation. Nonequilibrium chemical and physical processes cause finite time duration induction zones before exothermic chemical energy release occurs. This separation between the leading shock wave front and the chemical energy release needed to sustain it results in shock wave amplification and the subsequent formation of complex three-dimensional cellular structures in all liquid detonation waves. To develop a practical Zeldovich-von Neumann-Doring (ZND) reactive flow model for liquid detonation, experimental data on reaction zone structure, confined failure diameter, unconfined failure diameter, and failure wave velocity in the Dremin-Trofimov test for detonating nitromethane are calculated using the ignition and growth reactive flow model.
Soluble phosphate fertilizer production using acid effluent from metallurgical industry.
Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B
2016-01-15
Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aaron, Timothy Mark [East Amherst, NY; Shah, Minish Mahendra [East Amherst, NY; Jibb, Richard John [Amherst, NY
2009-03-10
A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.
Fernández-Ramos, C; Ballesteros, O; Blanc, R; Zafra-Gómez, A; Jiménez-Díaz, I; Navalón, A; Vílchez, J L
2012-08-30
In the present paper, we developed an accurate method for the analysis of alcohol sulfates (AS) in wastewater samples from wastewater treatment plant (WWTP) influents and effluents. Although many methodologies have been published in the literature concerning the study of anionic surfactants in environmental samples, at present, the number of analytical methodologies that focus in the determination of AS by gas chromatography in the different environmental compartments is limited. The reason for this is that gas chromatography-mass spectrometry (GC-MS) technique requires a previous hydrolysis reaction followed by derivatization reactions. In the present work, we proposed a new procedure in which the hydrolysis and derivatization reactions take place in one single step and AS are directly converted to trimethylsilyl derivatives. The main factors affecting solid-phase extraction (SPE), hydrolysis/derivatization and GC-MS procedures were accurately optimised. Quantification of the target compounds was performed by using GC-MS in selected ion monitoring (SIM) mode. The limits of detection (LOD) obtained ranged from 0.2 to 0.3 μg L(-1), and limits of quantification (LOQ) from 0.5 to 1.0 μg L(-1), while inter- and intra-day variability was under 5%. A recovery assay was also carried out. Recovery rates for homologues in spiked samples ranged from 96 to 103%. The proposed method was successfully applied for the determination of anionic surfactants in wastewater samples from one WWTP located in Granada (Spain). Concentration levels for the homologues up to 39.4 μg L(-1) in influent and up to 8.1 μg L(-1) in effluent wastewater samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-02
... produce an effluent with no more than 200 fecal coliform per 100 mL, and no more than 150 mg total... under SB 771, that showed oceangoing vessel port calls averaged two days in duration.\\12\\ The two day... Survey) of large passenger and large oceangoing vessels calling on California ports in order to better...
Fate of effluent-borne contaminants beneath septic tank drainfields overlying a Karst aquifer.
Katz, Brian G; Griffin, Dale W; McMahon, Peter B; Harden, Harmon S; Wade, Edgar; Hicks, Richard W; Chanton, Jeffrey P
2010-01-01
Groundwater quality effects from septic tanks were investigated in the Woodville Karst Plain, an area that contains numerous sinkholes and a thin veneer of sands and clays overlying the Upper Floridan aquifer (UFA). Concerns have emerged about elevated nitrate concentrations in the UFA, which is the source of water supply in this area of northern Florida. At three sites during dry and wet periods in 2007-2008, water samples were collected from the septic tank, shallow and deep lysimeters, and drainfield and background wells in the UFA and analyzed for multiple chemical indicators including nutrients, nitrate isotopes, organic wastewater compounds (OWCs), pharmaceutical compounds, and microbiological indicators (bacteria and viruses). Median NO3-N concentration in groundwater beneath the septic tank drainfields was 20 mg L(-1) (8.0-26 mg L(-1)). After adjusting for dilution, about 25 to 40% N loss (from denitrification, ammonium sorption, and ammonia volatilization) occurs as septic tank effluent moves through the unsaturated zone to the water table. Nitrogen loading rates to groundwater were highly variable at each site (3.9-12 kg N yr(-1)), as were N and chloride depth profiles in the unsaturated zone. Most OWCs and pharmaceutical compounds were highly attenuated beneath the drainfields; however, five Cs (caffeine, 1,7-dimethylxanthine, phenol, galaxolide, and tris(dichloroisotopropyl)phosphate) and two pharmaceutical compounds (acetaminophen and sulfamethoxazole) were detected in groundwater samples. Indicator bacteria and human enteric viruses were detected in septic tank effluent samples but only intermittently in soil water and groundwater. Contaminant movement to groundwater beneath each septic tank system also was related to water use and differences in lithology at each site.
Nitrogen removal and nitrate leaching for forage systems receiving dairy effluent.
Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Wade, Brett L; Rymph, Stuart J; Prine, Gordon M; Van Horn, Harold H
2002-01-01
Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.
Revealing fate of CO2 leakage pathways in the Little Grand Wash Fault, Green River, Utah
NASA Astrophysics Data System (ADS)
Han, K.; Han, W. S.; Watson, Z. T.; Guyant, E.; Park, E.
2015-12-01
To assure long-term security of geologic carbon sequestration site, evaluation of natural CO2 leakage should be preceded before actual construction of the CO2 facility by comparing natural and artificial reservoir systems. The Little Grand Wash fault is located at the northwestern margin of the Paradox Basin and roles on a bypass of deep subsurface CO2 and brine water onto the surface, e.g., cold water geyser, CO2 spring, and surface travertine deposits. CO2 degassed out from brine at the Little Grand Wash fault zone may react with formation water and minerals while migrating through the fault conduit. Leakage observed by soil CO2 flux on the fault trace shows this ongoing transition of CO2, from supersaturated condition in deep subsurface to shallow surface equilibria. The present study aims to investigate the reactions induced by changes in hydrological and mineralogical factors inside of the fault zone. The methodology to develop site-specific geochemical model of the Little Grand Wash Fault combines calculated mechanical movements of each fluid end-member, along with chemical reactions among fluid, free CO2 gas and rock formations. Reactive transport modeling was conducted to simulate these property changes inside of the fault zone, using chemistry dataset based on 86 effluent samples of CO2 geysers, springs and in situ formation water from Entrada, Carmel, and Navajo Sandstone. Meanwhile, one- and two-dimensional models were separately developed to delineate features mentioned above. The results from the 3000-year simulation showed an appearance of self-sealing processes near the surface of the fault conduit. By tracking physicochemical changes at the depth of 15 m on the 2-dimensional model, significant changes induced by fluid mixing were indicated. Calculated rates of precipitation for calcite, illite, and pyrite showed increase in 2.6 x 10-4, 2.25 x 10-5, and 3.0 x 10-6 in mineral volume fraction at the depth of 15m, respectively. Concurrently, permeability and porosity were decreased 4.0 x 10-18 m2 and 3.0 x 10-4 due to precipitation of minerals. At the middle of the fault conduit (400 m), however, indicates consistent dissolution of minerals in formation which enhances vertical fluid migration.
Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua
2017-03-07
Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.
Electromagnetic effects on explosive reaction and plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasker, Douglas G; Whitley, Von H; Mace, Jonathan L
2010-01-01
A number of studies have reported that electric fields can have quantifiable effects on the initiation and growth of detonation, yet the mechanisms of these effects are not clear. Candidates include Joule heating of the reaction zone, perturbations to the activation energy for chemical reaction, reduction of the Peierls energy barrier that facilitates dislocation motion, and acceleration of plasma projected from the reaction zone. In this study the possible role of plasma in the initiation and growth of explosive reaction is investigated. The effects of magnetic and electric field effects on reaction growth will be reviewed and recent experiments reported.
Makene, Vedastus W; Tijani, Jimoh O; Petrik, Leslie F; Pool, Edmund J
2016-08-01
Effective treatment of textile effluent prior to discharge is necessary in order to avert the associated adverse health impacts on human and aquatic life. In the present investigation, coagulation/flocculation processes were evaluated for the effectiveness of the individual treatment. Effectiveness of the treatment was evaluated based on the physicochemical characteristics. The quality of the pre-treated and post-flocculation treated effluent was further evaluated by determination of cytotoxicity and inflammatory activity using RAW264.7 cell cultures. Cytotoxicity was determined using WST-1 assay. Nitric oxide (NO) and interleukin 6 (IL-6) were used as biomarkers of inflammation. NO was determined in cell culture supernatant using the Griess reaction assay. The IL-6 secretion was determined using double antibody sandwich enzyme linked immunoassay (DAS ELISA). Cytotoxicity results show that raw effluent reduced the cell viability significantly (P < 0.001) compared to the negative control. All effluent samples treated by coagulation/flocculation processes at 1 in 100 dilutions had no cytotoxic effects on RAW264.7 cells. The results on inflammatory activities show that the raw effluent and effluent treated with 1.6 g/L of Fe-Mn oxide induced significantly (P < 0.001) higher NO production than the negative control. The inflammatory results further show that the raw effluent induced significantly (P < 0.001) higher production of IL-6 than the negative control. Among the coagulants/flocculants evaluated Al2(SO4)3.14H2O at a dosage of 1.6 g/L was the most effective to remove both toxic and inflammatory pollutants. In conclusion, the inflammatory responses in RAW264.7 cells can be used as sensitive biomarkers for monitoring the effectiveness of coagulation/flocculation processes used for textile effluent treatment.
Rapid gas hydrate formation process
Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.
2013-01-15
The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.
NASA Astrophysics Data System (ADS)
Kullerud, K.
2009-12-01
At Nusfjord in Lofoten, Norway, three 0.3 - 3 m thick shear zones occur in a gabbro-anorthosite. During deformation, the shear zones were infiltrated by a hydrous fluid enriched in Cl. In the central parts of the shear zones, fluid-rock interaction resulted in complete break-down of the primary mafic silicates. Complete hydration of these minerals to Cl-free amphibole and biotite suggests that the hydrous fluid was present in excess during deformation in these parts of the shear zones. Along the margins of the shear zones, however, the igneous mafic silicates (Cpx, Bt, Opx) were only partly overgrown by hydrous minerals. Here, Cl-enriched minerals (Amph, Bt, Scp, Ap) can be observed. Amphibole shows compositions covering the range 0.1 - 4.0 wt % Cl within single thin sections. Mineral textures and extreme compositional variations of the Cl-bearing minerals indicate large chemical gradients of the fluid phase. Relics of primary mafic silicates and compositionally zoned reaction coronas around primary mafic silicates suggest that the free fluid was totally consumed before the alteration of the primary phases were completed. The extreme variations in the Cl-content of amphibole are inferred to monitor a gradual desiccation of the Cl-bearing grain-boundary fluid during fluid-mineral reactions accordingly: 1) The first amphibole that formed during the reactions principally extracted water from the fluid, resulting in a slight increase in the Cl content of the fluid. 2) Continued amphibole-forming reactions resulted in gradual consumption of the free fluid phase, principally by extracting water from the fluid, resulting in an increase in its Cl-content. Higher Cl-content of the fluid resulted in higher Cl-content of the equilibrium amphibole. 3) The most Cl-enriched amphibole (4 wt % Cl) formed in equilibrium with the last volumes of the grain-boundary fluid, which had evolved to a highly saline solution. Mineral reactions within a 1-2 thick zone of the host rock along the contact to the shear zones indicate a more complicated involvement of fluids during shear zone formation than described above. Apparently, fluids have been transported laterally from the outer parts of the shear zones into the gabbro-anorthosite along thin recrystallized zones of plagioclase. The fluid that infiltrated the undeformed host rock of the shear zones resulted in formation of Cl-free amphibole and garnet between the primary mafic minerals and plagioclase. A working hypothesis is that narrow fractures formed within the host rock, outside the sheared rock during shear zone formation. During shear zone formation, the central parts of the shear zones were completely hydrated by an externally derived Cl-bearing hydrous fluid. Some of the fluid migrated to the marginal parts of the shear zones and evolved to a highly saline solution. However, during desiccation of the fluid along the marginal parts of the shear zones, some of the fluid escaped along narrow fractures into the host rock of the shear zones. The Cl-free amphibole that formed from this fluid suggests that the narrow pathways of the fluid provided a path for water transport, but acted as a filter for the much larger ions of Cl.
NASA Astrophysics Data System (ADS)
Oyanagi, Ryosuke; Okamoto, Atsushi; Hirano, Nobuo; Tsuchiya, Noriyoshi
2015-09-01
Serpentinization occurs via interactions between mantle peridotite and water that commonly passes through the crust. Given that such a fluid has a high silica activity compared with mantle peridotite, it is thought that serpentinization and silica metasomatism occur simultaneously at the crust-mantle boundary. In this study, we conducted hydrothermal experiments in the olivine (Ol)-quartz (Qtz)-H2O system at 250 °C and vapor-saturated pressure under highly alkaline conditions (NaOHaq, pH = 13.8 at 25 °C) to clarify the mechanism of silica metasomatism at the crust-mantle boundary. Composite powders consisting of a Qtz layer and an Ol layer were set in tube-in-tube vessels. After the experiments, the extents of serpentinization and metasomatic reactions were evaluated as a function of distance from the Ol-Qtz boundary. The mineralogy of the reaction products in the Ol-hosted region changed with increasing distance from the Ol-Qtz boundary, from smectite + serpentine (Smc zone) to serpentine + brucite + magnetite (Brc zone). Olivine hydration proceeded in both zones, but the total H2O content in the products was greater in the Brc zone than in the Smc zone. Mass balance calculations revealed that olivine hydration occurred without any supply of silica in the brucite zone. In contrast, the Smc zone was formed by silica metasomatism via competitive hydration and dehydration reactions. In the Smc zone, smectite formed via the simultaneous progress of olivine hydration and serpentine dehydration, and around the boundary of the Smc and Brc zones, serpentine formation occurred by olivine hydration and brucite dehydration. The relative extent of hydration and dehydration reactions controlled the along-tube variation in the rate of H2O production/consumption and the rate of volume increase. Our findings suggest that the competitive progress of serpentinization and silica metasomatic reactions would cause fluctuations in pore fluid pressure, possibly affecting the mechanical behavior of the crust-mantle boundary.
Ma, Jiawen; Hu, Yue; Villegas, Eric N.; Xiao, Lihua
2018-01-01
Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In the standard for wastewater treatment plant (WWTP) effluents in China and other countries, the fecal coliform count is the only microbial indicator, raising concerns about the potential for pathogen transmission through WWTP effluent reuse. In this study, we collected 50 effluent samples (30 L/sample) from three municipal WWTPs in Shanghai, China, and analyzed for Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi by microscopy and/or polymerase chain reaction (PCR). Moreover, propidium monoazide (PMA)-PCR was used to assess the viability of oocysts/cysts. The microscopy and PCR-positive rates for Cryptosporidium spp. were 62% and 40%, respectively. The occurrence rates of G. duodenalis were 96% by microscopy and 92–100% by PCR analysis of three genetic loci. Furthermore, E. bieneusi was detected in 70% (35/50) of samples by PCR. Altogether, 10 Cryptosporidium species or genotypes, two G. duodenalis genotypes, and 11 E. bieneusi genotypes were found, most of which were human-pathogenic. The chlorine dioxide disinfection employed in WWTP1 and WWTP3 failed to inactivate the residual pathogens; 93% of the samples from WWTP1 and 83% from WWTP3 did not meet the national standard on fecal coliform levels. Thus, urban WWTP effluents often contain residual waterborne human pathogens. PMID:27280607
Impact of dissolution and carbonate precipitation on carbon storage in basalt
NASA Astrophysics Data System (ADS)
Wells, R. K.; Xiong, W.; Tadeoye, J.; Menefee, A.; Ellis, B. R.; Skemer, P. A.; Giammar, D.
2016-12-01
The spatial evolution of silicate mineral dissolution, carbonate precipitation, and the transport of fluids influence the viability of carbon storage in basalt reservoirs. Dissolution of natural basalt and subsequent carbonate precipitation in systems with different transport processes operating were characterized using static and flow-through (5 mL/hr) experiments at 50, 100, and 150 °C, and 100 bar CO2. Intact samples and cores with milled pathways that simulate fractures were tested. Spatial and mineralogical patterns in dissolution and precipitation were analyzed using optical and electron microscopy, microCT scanning, and surface roughness data. Precipitates and fluid chemistry were analyzed using Raman spectroscopy, SEM-EDS, and ICP-MS. Analysis of the bulk solution and surface topography suggests dissolution of olivine and pyroxene grains begins within hours of the start of the experiments. In flow-through experiments, total effluent cation concentrations reach a peak concentration within a few hours then drop towards a steady state within a few days. In static experiments, the initial rate of cation release is faster than it is after several weeks. In both cases Ca2+, Mg2+, and Fe2+ are the dominant cations in solution in the initial stages of reaction. Lower concentrations of Na2+, K+, and Al3+, and the preservation of feldspar and matrix grains after several weeks of reaction indicate the slow reactivity of these minerals. As the reaction progresses, the surface roughness increases steadily with cavities developing at the sites of olivine and pyroxene grains. Post-reaction analysis of basalt samples reacted at static conditions with milled pathways reveals that both siderite and amorphous silica precipitated within diffusion-limited zones as early as 4-6 weeks. Siderite abundance varies with distance along the pathway with the highest concentration of carbonates 1-2 cm below the fracture opening. Siderite precipitates are large enough to fill fracture opening 100 μm wide within 4-6 weeks.
Role of membrane fouling substances on the rejection of N-nitrosamines by reverse osmosis.
Fujioka, Takahiro; Kodamatani, Hitoshi; Aizawa, Hidenobu; Gray, Stephen; Ishida, Kenneth P; Nghiem, Long D
2017-07-01
The impact of fouling substances on the rejection of four N-nitrosamines by a reverse osmosis (RO) membrane was evaluated by characterizing individual organic fractions in a secondary wastewater effluent and deploying a novel high-performance liquid chromatography-photochemical reaction-chemiluminescence (HPLC-PR-CL) analytical technique. The HPLC-PR-CL analytical technique allowed for a systematic examination of the correlation between the fouling level and the permeation of N-nitrosamines in the secondary wastewater effluent and synthetic wastewaters through an RO membrane. Membrane fouling caused by the secondary wastewater effluent led to a notable decrease in the permeation of N-nitrosodimethylamine (NDMA) while a smaller but nevertheless discernible decrease in the permeation of N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR) and N-nitrosomorpholine (NMOR) was also observed. Fluorescence spectrometry analysis revealed that major foulants in the secondary wastewater effluent were humic and fulvic acid-like substances. Analysis using the size exclusion chromatography technique also identified polysaccharides and proteins as additional fouling substances. Thus, further examination was conducted using solutions containing model foulants (i.e., sodium alginate, bovine serum albumin, humic acid and two fulvic acids). Similar to the secondary wastewater effluent, membrane fouling with fulvic acid solutions resulted in a decrease in N-nitrosamine permeation. In contrast, membrane fouling with the other model foulants resulted in a negligible impact on N-nitrosamine permeation. Overall, these results suggest that the impact of fouling on the permeation of N-nitrosamines by RO is governed by specific small organic fractions (e.g. fulvic acid-like organics) in the secondary wastewater effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kumar, Vikas; Majumdar, Chandrajeetbalo; Roy, Partha
2008-09-01
The leather tanning industry is characterized by the production of different kinds of effluents, generated in each step of leather processing. These effluents have various chemical compounds which may cause toxicity and endocrine disruption and are thus known as endocrine disrupting chemicals (EDC). This study was aimed to examine the androgenic potential of leather industry effluents collected from northern region of India. Hershberger assay data showed a significant increase (p<0.05) in the weight and structure of sex accessory tissues of castrated rats. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis demonstrated a significant change (p<0.05) in the expression patterns of the major steroidogenic enzymes in adrenal and testes namely, cytochrome P450scc, 3beta-hydroxysteroid dehydrogenase, 17beta-hydroxysteroid dehydorgenase in castrated and intact rats. This was further supported by increased enzymatic activities measured in vitro spectrophotometrically. Serum hormone profile demonstrated a dose dependent increase in testicular and adrenal testosterone productions in intact and castrated rats, respectively. This was further supported by decreased level of gonadotrophic hormones (LH and FSH) in treated groups of animals. Further, the effluent treatment resulted in the development of hyperplasia in seminiferous tubules of testes in treated rats as evident from histopathological studies and about two-fold increases in daily sperm production. On analysis of water samples using GC-MS, it was found to contain various aromatic compounds (nonylphenol, hexaclrobenzene and several azo dyes) some of which independently demonstrated similar effects as shown by water samples. Our data suggests that the effluents from leather industry have potential EDC demonstrating androgenic activities.
Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent.
Sarkhot, D V; Ghezzehei, T A; Berhe, A A
2013-09-01
The use of biochar for recovery of excess nutrients in dairy manure effluent and the use of nutrient-enriched biochar as soil amendment can offer a robust solution for multiple environmental issues. In this study we determined the capacity of biochar, produced by pyrolyzing mixed hardwood feedstock at 300°C, to adsorb and retain or release two major nutrient ions: ammonium (NH) and phosphate (PO). We conducted the experiment using a range of nutrient concentrations that represent those commonly observed in dairy manure effluent (0-50 mg L for PO and 0-1000 mg L for NH). Up to 5.3 mg g NH and 0.24 mg g PO was adsorbed from manure by biochar (18 and 50% of total amount in the manure slurry, respectively). During the desorption phase of the experiment, biochar retained 78 to 91% of the sorbed NH and 60% of the sorbed PO at reaction times <24 h. Our findings confirm that biochar can be used for recovering excess nitrogen and phosphorus from agricultural water, such as dairy manure effluent. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Zhang, S.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P. J.
2015-08-01
The ozone density distribution in the effluent of a time modulated RF atmospheric pressure plasma jet (APPJ) is investigated by time and spatially resolved by UV absorption spectroscopy. The plasma jet is operated with an averaged dissipated power of 6.5 W and gas flow rate 2 slm argon +2% O2. The modulation frequency of the RF power is 50 Hz with a duty cycle of 50%. To investigate the production and destruction mechanism of ozone in the plasma effluent, the atomic oxygen and gas temperature is also obtained by TALIF and Rayleigh scattering, respectively. A temporal increase in ozone density is observed close to the quartz tube exit when the plasma is switched off due to the decrease in O density and gas temperature. Ozone absorption at different axial positions indicates that the ozone distribution is dominated by the convection induced by the gas flow and allows estimating the on-axis local gas velocity in the jet effluent. Transient vortex structures occurring during the switch on and off of the RF power also significantly affect the ozone density in the far effluent.
Post, R.F.
1963-06-11
The invention relates to a pyrotron, i.e., magnetic mirror device, designed for continuous operation in producing a high-temperature fusion reaction plasma and for directly converting the plasma energy into electrical power. The device utilizes a system in which an axially symmetric magnetic field is produced and transports plasma through a first zone of progressively rising field intensity, a second reaction zone of slowly increasing intensity, and thenceforth through a third zone of progressively decreasing intensity wherein the plasma expands against the magnetic field thereby producing electrical current in magnetic field generating solenoids associated with said third zone. (AEC)
Modeling Land Application of Food-Processing Wastewater in the Central Valley, California
NASA Astrophysics Data System (ADS)
Rubin, Y.; Benito, P.; Miller, G.; McLaughlin, J.; Hou, Z.; Hermanowicz, S.; Mayer, U.
2007-12-01
California's Central Valley contains over 640 food-processing plants, serving a multi-billion dollar agricultural industry. These processors consume approximately 7.9 x 107 m3 of water per year. Approximately 80% of these processors discharge the resulting wastewater, which is typically high in organic matter, nitrogen, and salts, to land, and many of these use land application as a treatment method. Initial investigations revealed elevated salinity levels to be the most common form of groundwater degradation near land application sites, followed by concentrations of nitrogen compounds, namely ammonia and nitrate. Enforcement actions have been taken against multiple food processors, and the regulatory boards have begun to re-examine the land disposal permitting process. This paper summarizes a study that was commissioned in support of these actions. The study has multiple components which will be reviewed briefly, including: (1) characterization of the food-processing related waste stream; (2) fate and transport of the effluent waste stream in the unsaturated zone at the land application sites; (3) fate and transport of the effluent waste stream at the regional scale; (4) predictive uncertainty due to spatial variability and data scarcity at the land application sites and at the regional scale; (5) problem mitigation through off-site and in-situ actions; (6) long-term solutions. The emphasis of the talk will be placed on presenting and demonstrating a stochastic framework for modeling the transport and attenuation of these wastes in the vadose zone and in the saturated zone, and the related site characterization needs, as affected by site conditions, water table depth, waste water application rate, and waste constituent concentrations.
Study of Reaction Mechanism in Tracer Munitions
1974-12-01
Effect of Fuel Particle Size on Reaction Zone Thickness 39 10 Temperature Distribution in Solid 41 11 Computed Reaction Rates as Func’ion of Heat Flux...dissociation (cal/g) R = gan constant (cal/mole K) r radius of fuel droplet (cm) s or x = distance increments in solid phase (cm) T = surface temperature ...of solid (*K) S T = arerage temperature in the reaction zone (°K) a t = ti-ne (sec) tb = avaporation time for droplet (sec) v = regression or burning
NASA Astrophysics Data System (ADS)
Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.
2016-04-01
Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding contaminants due to its highly active adsorbing surfaces. The result concluded that the effective adsorption and decolourization of contaminants is observed in different concentration with the maximum time period of 45 mins with the optimized concentration of Fe3O4.
Zhao, Yingxin; Feng, Chuanping; Wang, Qinghong; Yang, Yingnan; Zhang, Zhenya; Sugiura, Norio
2011-09-15
An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO(3)(-)-N50 mg L(-1)) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO(3)(-)-N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO(2) produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate. Copyright © 2011 Elsevier B.V. All rights reserved.
Removal of oxides of nitrogen from gases in multi-stage coal combustion
Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.
1998-01-13
Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.
Removal of oxides of nitrogen from gases in multi-stage coal combustion
Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.
1998-01-01
Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.
Norovirus outbreak caused by a new septic system in a dolomite aquifer
Borchardt, M. A.; Bradbury, K.R.; Alexander, E.C.; Kolberg, R.J.; Alexander, S.C.; Archer, John R.; Braatz, L.A.; Forest, B.M.; Green, J.A.; Spencer, S. K.
2011-01-01
Septic systems that are built in compliance with regulations are generally not expected to be the cause of groundwater borne disease outbreaks, especially in areas with thick vadose zones. However, this case study demonstrates that a disease outbreak can occur in such a setting and outlines the combination of epidemiological, microbiological, and hydrogeological methods used to confirm the source of the outbreak. In early June 2007, 229 patrons and employees of a new restaurant in northeastern Wisconsin were affected by acute gastroenteritis; 6 people were hospitalized. Epidemiological case-control analysis indicated that drinking the restaurant's well water was associated with illness (odds ratio = 3.2, 95% confidence interval = 0.9 to 11.4, P = 0.06). Microbiological analysis (quantitative reverse transcription-polymerase chain reaction) measured 50 genomic copies per liter of norovirus genogroup I in the well water. Nucleotide sequencing determined the genotype as GI.2 and further showed the identical virus was present in patrons' stool specimens and in the septic tank. Tracer tests using dyes injected at two points in the septic system showed that effluent was traveling from the tanks (through a leaking fitting) and infiltration field to the well in 6 and 15 d, respectively. The restaurant septic system and well (85-m deep, in a fractured dolomite aquifer) both conformed to state building codes. The early arrival of dye in the well, which was 188 m from the septic field and located beneath a 35-m thick vadose zone, demonstrates that in highly vulnerable hydrogeological settings, compliance with regulations may not provide adequate protection from fecal pathogens.
Plasma discharge elemental detector for a mass spectrometer
NASA Astrophysics Data System (ADS)
Heppner, R. A.
1983-06-01
A material to be analyzed is injected into a mirowave-induced plasma discharge unit, in which the material is carried with a flow of buffer gas through an intense microwave energy field which produces a plasma discharge in the buffer gas. As the material exits from the plasma discharge, the material is sampled and conveyed along a capillary transfer tube to a mass spectrometer where it is analyzed. The plasma discharge causes dissociation of complex organic molecules into simpler molecules which return to the neutral ground state before they are analyzed in the mass spectrometer. The buffer gas is supplied to one end portion of the discharge tube and is withdrawn from the other end portion by a vacuum pump which maintains a subatmospheric pressure in the discharge tube. The sample material is injected by a capillary injection tube into the buffer gas flow as it enters the plasma discharge zone. The dissociated materials are sampled by an axial sampling tube having an entrance where the buffer gas exits from the plasma discharge zone. The sample material may be supplied by a gas chromatography having a capillary effluent line connected to the capillary injection tube, so that the effluent material is injected into the microwave induced plasma discharge. The microwave field is produced by a cavity resonator through which the discharge tube passes.
NASA Technical Reports Server (NTRS)
Zellars, G. R.; Benfold, S. M.; Rowe, A. P.; Lowell, C. E.
1979-01-01
Superalloy turbine rotors in a single stage turbine with 6 percent partial admittance were operated in the effluent of a pressurized fluidized bed coal combustor for up to 164 hours. Total mass flow was 300 kg/hr and average particulate loadings ranged from 600 to 2800 ppm for several coal/sorbent combinations. A 5.5 atm turbine inlet gas pressure and inlet gas temperatures from 700 to 800 C yielded absolute gas velocities at the stator exit of about 500 m/s. The angular rotation speed (40,000 rpm) of the six inch diameter rotors was equivalent to a tip speed of about 300 m/s, and average gas velocities relative to the rotating surface ranged from 260 to 330 m/s at mean radius. The rotor erosion pattern reflects heavy particle separation with severe (5 to 500 cm/yr) erosion at the leading edge, pressure side center, and suction side trailing edge at the tip. The erosion distribution pattern provides a spectrum of erosion/oxidation/deposition as a function of blade position. This spectrum includes enhanced oxidation (10 to 100 x air), mixed oxides in exposed depletion zones, sulfur rich oxides in deposition zones, and rugged areas of erosive oxide removal.
Condition assessment survey of onsite sewage disposal systems (OSDSs) in Hawaii.
Babcock, Roger W; Lamichhane, Krishna M; Cummings, Michael J; Cheong, Gloria H
2014-01-01
Onsite sewage disposal systems (OSDSs) are the third leading cause of groundwater contamination in the USA. The existing condition of OSDSs in the State of Hawaii was investigated to determine whether a mandatory management program should be implemented. Based on observed conditions, OSDSs were differentiated into four categories: 'pass', 'sludge scum', 'potential failure' and 'fail'. Of all OSDSs inspected, approximately 68% appear to be in good working condition while the remaining 32% are failing or are in danger of failing. Homeowner interviews found that 80% of OSDSs were not being serviced in any way. About 70% of effluent samples had values of total-N and total-P greater than typical values and 40% had total suspended solids (TSS) and 5-day biochemical oxygen demand (BOD5) greater than typical values. The performance of aerobic treatment units (ATUs) was no better than septic tanks and cesspools indicating that the State's approach of requiring but not enforcing maintenance contracts for ATUs is not working. In addition, effluent samples from OSDSs located in drinking water wells estimated 2-year capture zones had higher average concentrations of TSS, BOD5, and total-P than units outside of these zones, indicating the potential for contamination. These findings suggest the need to introduce a proactive, life-cycle OSDS management program in the State of Hawaii.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, M A.; Karl, H; Murray, Christopher J.
2001-12-01
Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km{sup 2}, which encompasses a volume of about 3.2 million m{sup 3}. The deposit's basal reflector is acoustically distinct overmore » most of the mapped area, implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30 m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs.« less
Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.
2002-01-01
Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.
Process and continuous apparatus for chemical conversion of materials
Rugg, Barry; Stanton, Robert
1983-01-01
A process and apparatus for the acid hydrolysis of waste cellulose to glucose of the type wherein waste cellulose is continuously fed into an inlet port of a twin screw extruder, water is continuously fed into reaction zone in the extruder, downstream of the inlet port, the cellulose is continuously reacted with water in the presence of an acid catalyst at elevated temperature and pressure in the reaction zone while being continuously conveyed to an outlet port of the extruder having a given diameter and the reacted cellulose is discharged from the extruder while the elevated temperature and pressure in the reaction zone is maintained. The elevated pressure is maintained by forming a dynamic seal zone at the upstream end of the reaction and continuously discharging the reacted material downstream of the outlet port at a predetermined volume rate of flow to maintain the pressure by passing the discharge through an orifice pipe having a smaller diameter than the given diameter of the outlet port.
NASA Astrophysics Data System (ADS)
Gupta, S.; Nayek, S.; Saha, R. N.; Satpati, S.
2008-08-01
The present study deals with the characterization of effluent released from sponge iron industries and distribution of heavy metals in soil and macrophytes near to effluent discharge channel. Apart from this, accumulation of heavy metals in nearby soil and vegetation system irrigated with effluent-contaminated water is also the subject of this study. Physico-chemical analysis of effluent reveals that the concentration of total suspended solids (TSS), total hardness (TH), iron (Fe2+), and oil and grease are greater than the IS (1981) norms for discharge of water into inland water body. The soil along the sides of the effluent channel also shows higher concentration of heavy metals than the background soil. The enrichment of the heavy metals are in the order of Chromium (Cr) > Iron (Fe) > Manganese (Mn) > Zinc (Zn) > Copper (Cu) > Cadmium (Cd). Macrophytes growing along the sides of the effluent channel also show significant accumulation of heavy metals almost in the same order as accumulated in soil. Higher uptake of heavy metals by these varieties reveals that these species can be used for future phytoremediation. The effluent as well as contaminated water is extensively used for irrigation for growing vegetables like tomato ( Lycopersicon esculatum) in the surrounding areas. Heavy metal accumulation in this agricultural soil are in the sequence of Cr > Fe > Mn > Zn > Cu > Cd. More or less similar type of accumulation pattern are also found in tomato plants except Fe and Zn exceeding Cr and Mn. Transfer Factor of heavy metals from soil to tomato plants (TFS) shows average value of <1, suggesting less uptake of heavy metals from soil. Among the plant parts studied, fruit shows least accumulation. Although tomato plants show some phenotypic changes, the survival of tomato plants as well as least accumulation of metals in fruit reveals their tolerance to heavy metals. Therefore it may be suggested that this plant can be grown successfully in the heavy metal contaminated soil. Further research work on in situ toxicity test will be necessary in order to identify the most resistive variety on this particular type of contaminated site.
Catalytic hydrotreating process
Karr, Jr., Clarence; McCaskill, Kenneth B.
1978-01-01
Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.
Method for fluorination of uranium oxide
Petit, George S.
1987-01-01
Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.
USDA-ARS?s Scientific Manuscript database
In this work we describe new findings that allowed rapid implementation of deammonification reaction in livestock anaerobic digestion effluents using mixtures of two bacterial cultures and a one-stage process (partial nitritation and anammox in a single tank). The bacterial cultures were high perf...
Ozonolysis and Oxyphotolysis of Municipal and Industrial Effluents.
1981-07-14
which it reacts. Reaction rates of such materials as bacteria, nitrites, hydrojen sulphide , unsaturated compounds, etc., are limited only by mass transfer...rate. The runs were conducted only A{ter allowing several minutes for the U.V. lamp to attain the ried power levels. 1 Two types of mercury lamp (low
USDA-ARS?s Scientific Manuscript database
Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. Our research has found that th...
USDA-ARS?s Scientific Manuscript database
Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. Our research has found that th...
The Measurement of Electrical Conductivity in Detonating Condensed Explosives
1993-03-01
in the light of our existing understanding. DETONATION CONDUCTION MODELS Various models of conduction have been considered during the course of these...reduction, shock induced conduction in the reaction products, and conduction in coagulated carbon behind the reaction zone. The first model , due to...results below show. The second model was proposed by Griem. 3 For relative simplicity, he assumed that the reaction zone could be represented by a
Choi, Jungyill; Harvey, Judson W.; Conklin, Martha H.
2000-01-01
The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single‐storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (>90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (ts ratio > 5.0) and when the dominance of storage capacity and exchange flux occurred in different storage zones. We also used the one storage zone model to estimate a “single” lumped rate constant representing the net removal of a solute by biogeochemical reactions in multiple storage zones. For most cases the lumped rate constant that was optimized by one storage zone modeling estimated the flux‐weighted rate constant for multiple storage zones. Our results explain how the relative hydrologic properties of multiple storage zones (retention time, storage capacity, exchange flux, and biogeochemical reaction rate constant) affect the reliability of lumped parameters determined by a one storage zone transport model. We conclude that stream transport models with a single storage compartment will in most cases reliably characterize the dominant physical processes of solute retention and biogeochemical reactions in streams with multiple storage zones.
Sağlam, Emine Selva; Akçay, Miğraç; Çolak, Dilşat Nigar; İnan Bektaş, Kadriye; Beldüz, Ali Osman
2016-09-01
The Karaerik Cu mine is a worked-out deposit with large volumes of tailings and slags which were left around the mine site without any protection. Natural feeding of these material and run-off water from the mineralised zones into the Acısu effluent causes a serious environmental degradation and creation of acid mine drainage (AMD) along its entire length. This research aims at modelling the formation of AMD with a specific attempt on the characterisation of the bacterial population in association with AMD and their role on its occurrence. Based on 16SrRNA analyses of the clones obtained from a composite water sample, the bacterial community was determined to consist of Acidithiobacillus ferrivorans, Ferrovum myxofaciens, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans as iron-oxidising bacteria, Acidocella facilis, Acidocella aluminiidurans, Acidiphilium cryptum and Acidiphilium multivorum as iron-reducing bacteria, and Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidiphilium cryptum as sulphur-oxidising bacteria. This association of bacteria with varying roles was interpreted as evidence of a concomitant occurrence of sulphur and iron cycles during the generation of AMD along the Acısu effluent draining the Karaerik mine.
Enhanced nitrogen removal with an onsite aerobic cyclic biological treatment unit.
Babcock, Roger W; Senthill, Atiim; Lamichhane, Krishna M; Agsalda, Jessica; Lindbo, Glen D
2015-01-01
Coastal Zone Act Reauthorization Amendments (CZARA, Section 6217) necessitate the requirement that onsite wastewater disposal units located near impaired surface waters or groundwater to provide at least 50% nitrogen removal. Approximately 38% of Hawaii households use onsite systems including septic tanks and cesspools that cannot meet this requirement. Upgrades to aerobic treatment units (ATUs) are a possible compliance solution. In Hawaii, ATUs must meet National Sanitation Foundation Standard 40 (NSF40) Class I effluent criteria. Previously, a multi-chamber, flow-through, combined attached/suspended growth type ATU (OESIS-750) and presently, a sequencing batch type ATU (CBT 0.8KF-210) were evaluated for NSF40 compliance, nutrient removal capability (NSF245), and adaptability for water reuse (NSF350). Both units easily achieved the NSF40 Class I effluent criteria. While the OESIS-750 achieved only 19% nitrogen removal, the CBT unit achieved 81% nitrogen removal, meeting the NSF245 criteria and CZARA requirements for applications in critical wastewater disposal areas. In addition, the CBT consistently produced effluent with turbidity less than 2 NTU (NSF350) and UVT254 greater than 70%, facilitating the production of unrestricted-use recycled water.
Wood, Joseph; Turner, Paul H
2003-03-01
Near-infrared (NIR) spectroscopy has been applied to determine the conversion of itaconic acid in the effluent stream of a trickle bed reactor. Hydrogenation of itaconic to methyl succinic acid was carried out, with the trickle bed operating in recycle mode. For the first time, NIR spectra of itaconic and methyl succinic acids in aqueous solution, and aqueous mixtures withdrawn from the reactor over a range of reaction times, have been recorded using a fiberoptic sampling probe. The infrared spectra displayed a clear isolated absorption band at a wavenumber of 6186 cm(-1) (wavelength 1.617 microm) resulting from the =C-H bonds of itaconic acid, which was found to decrease in intensity with increasing reaction time. The feature could be more clearly observed from plots of the first derivatives of the spectra. A partial least-squares (PLS) model was developed from the spectra of 13 reference samples and was used successfully to calculate the concentration of the two acids in the reactor effluent solution. Itaconic acid conversions of 23-29% were calculated after 360 min of reaction time. The potential of FT-NIR with fiber-optic sampling for remote monitoring of three-phase catalytic reactors and validation of catalytic reactor models is highlighted in the paper.
Cheung, K C; Venkitachalam, T H
2006-01-01
A systematic kinetic study of phosphorus (P) sorption by various materials in the soil infiltration system of septic tanks was undertaken by following the time course of P sorption by sorbents in contact with various P solutions over periods up to 360 days. Uptake of P seemed to consist of two distinct stages. Initial uptake was very rapid and this phase was completed in 4 days or less. A slower removal stage followed for some materials over many months. Phosphorus sorption during the fast reaction stage appeared to be associated with the soluble Ca content of the materials. The fast reaction of calcareous materials accounted for the bulk (>70%) of the total P removed. Merribrook loamy sand exhibited the highest proportion of P sorption during the slow phase. It should be noted, however, that for solution P concentrations in the range found in typical effluents (approximately 20 mg L(-1)) the fast reaction phase seemed to be responsible for virtually all P removed. None of the six kinetic formulae examined possessed the sophistication and detail needed to portray accurately the time course of P sorption for all the sorbents investigated. The Elovich equation and the kinetic modification of the Freundlich isotherm expression appeared to provide a reasonable fit of the experimental data.
NASA Astrophysics Data System (ADS)
Gulley, J. D.; Cohen, M. J.; Kramer, M. G.; Martin, J. B.; Graham, W. D.
2013-12-01
Carbonate terrains cover 20% of Earth's ice-free land and are modified through interactions between rocks, water and biota that couple ecosystems processes to weathering reactions within the critical zone. Weathering in carbonate systems differs from the Critical Zone Reactor model developed for siliciclastic systems because reactions in siliciclastic critical zones largely consist of incongruent weathering (e.g., feldspar to secondary clay minerals) that typically occur in the soil zone within a few meters of the land surface. These incongruent reactions create regolith, which is removed by physical transport mechanisms that drive landscape denudation. In contrast, carbonate critical zones are mostly composed of homogeneous and soluble minerals, which dissolve congruently with the weathering products exported in solution, limiting regolith in the soil mantle to small amounts of insoluble residues. These reactions can extend to depths greater than 2 km below the surface. As water at the land surface drains preferentially through vertical joints and horizontal bedding planes of the carbonate critical zones, it is 'charged' with biologically-derived carbon dioxide, which decreases pH, dissolves carbonate rock, and enlarges subsurface flowpaths through feedbacks between flow and dissolution. Caves are extreme end products of this process and are key morphological features of carbonate critical zones. Caves link surface processes to the deep subsurface and serve as efficient delivery agents for oxygen, carbon and nutrients to zones within the critical zone that are deficient in all three, interrupting vertical and horizontal chemical gradients that would exist if caves were not present. We present select data from air and water-filled caves in the upper Floridan aquifer, Florida, USA, that demonstrate how caves, acting as very large preferential flow paths, alter processes in carbonate relative to siliciclastic critical zones. While caves represent an extreme end member of hydraulic and chemical heterogeneity that has no direct counterpart siliciclastic systems, these large voids provide easily accessible laboratories to investigate processes in carbonate critical zones, and how they differ from standard siliciclastic models of critical zones.
Lignin recovery and it effects quality of anaerobic treated palm oil mill effluent (AT-POME)
NASA Astrophysics Data System (ADS)
Haqi Ibrahim, Abdul; Fahmi Ridwan, Muhammad; Zulzikrami Azner Abidin, Che; Ong, Soon Ann; Shian Wong, Yee; Wazira Azhari, Ayu; Norruhaidawati Ozir, Siti
2018-03-01
Lignin is one of the main structural polymers present in plant tissue. It can also be found as an isolated product of the pulp and paper industry. Palm oil mill effluent (POME) has been known as high strength industrial wastewater that is difficult to treat due to its large variety of inorganic and organic contents. The main purpose of this study is to recover soluble lignin from anaerobically treated palm oil mill effluent (AT-POME) and indirectly improves the quality of AT-POME. AT-POME was adjusted to different pH using different type of acids. Response Surface Methodology (RSM) was utilized to obtain the optimum operating parameters as well as to analyse the interaction between them. Model shows that 74.67 % of lignin can be recovered from AT-POME after 5 minutes reaction time using sulfuric acid (H2S04) at pH 5. Hence from the experiment, it was proved that simple pH adjustment could precipitate the soluble lignin from AT-POME.
The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil.
Sousa, O V; Macrae, A; Menezes, F G R; Gomes, N C M; Vieira, R H S F; Mendonça-Hagler, L C S
2006-12-01
The effects of shrimp farm effluents on bacterial communities in mangroves have been infrequently reported. Classic and molecular biology methods were used to survey bacterial communities from four mangroves systems. Water temperature, salinity, pH, total heterotrophic bacteria and maximum probable numbers of Vibrio spp. were investigated. Genetic profiles of bacterial communities were also characterized by polymerase chain reaction (PCR) amplification of eubacterial and Vibrio 16S rDNA using denaturing gradient gel electrophoresis (DGGE). Highest heterotrophic counts were registered in the mangrove not directly polluted by shrimp farming. The Enterobacteriaceae and Chryseomonas luteola dominated the heterotrophic isolates. Vibrio spp. pathogenic to humans and shrimps were identified. Eubacterial genetic profiles suggest a shared community structure independent of mangrove system. Vibrio genetic profiles were mangrove specific. Neither microbial counts nor genetic profiling revealed a significant decrease in species richness associated with shrimp farm effluent. The complex nature of mangrove ecosystems and their microbial communities is discussed.
NASA Astrophysics Data System (ADS)
Zhang, Silong; Feng, Yu; Jiang, Yuguang; Qin, Jiang; Bao, Wen; Han, Jiecai; Haidn, Oskar J.
2016-10-01
To study the thermal behavior in the cracking reaction zone of regeneratively cooled scramjet cooling channels at different aspect ratios, 3-D model of fuel flow in terms of the fuel's real properties and cracking reaction is built and validated through experiments. The whole cooling channel is divided into non-cracking and cracking reaction zones. Only the cracking reaction zone is studied in this article. The simulation results indicate that the fuel conversion presents a similar distribution with temperature because the fuel conversion in scramjet cooling channels is co-decided by the temperature and velocity but the temperature plays the dominate role. For the cases given in this paper, increasing the channel aspect ratio will increase the pressure drop and it is not beneficial for reducing the wall temperature because of the much severer thermal stratification, larger conversion non-uniformity, the corresponding M-shape velocity profile which will cause local heat transfer deterioration and the decreased chemical heat absorption. And the decreased chemical heat absorption caused by stronger temperature and conversion non-uniformities is bad for the utilization of chemical heat sink, chemical recuperation process and the ignition performance.
NASA Astrophysics Data System (ADS)
Ma, Kaihui; Xu, Jian; Deng, Junyi; Wang, Dongdong; Xu, Yang; Liao, Zhehan; Sun, Chengfeng; Zhang, Shengfu; Wen, Liangying
2018-06-01
The blast furnace cohesive zone plays an important role in the gas flow distribution and heat-transfer efficiency. Previous work mainly employed temperature-based indices to evaluate and predict the shape and thickness of the cohesive zone, whereas the internal reactions and related effects on the softening and melting properties of a complex burden are ignored. In this study, an innovative index, namely, shrinkage rate (SR), is first proposed to directly estimate the shrinkage behavior of wustite (FeO)-packed bed inside a simulated cohesive zone. The index is applied as the temperature increases to elucidate the transient interaction between reduction and slagging reactions. Results show that the thermally induced slagging reaction causes the packed bed to shrink at lower temperature, and the SR doubles when compounds with low melting temperature are generated by adding a reasonable concentration of CaO or SiO2. The reduction reaction becomes the driving force during the shrinkage of the packed bed between 1173 K and 1273 K when CO is introduced in the mixture gas. Then, the dominating factors for further shrinkage include slagging, reduction, or both factors. These factors vary with respect to the added compounds or temperature.
Pang, Liping; Lafogler, Mark; Knorr, Bastian; McGill, Erin; Saunders, Darren; Baumann, Thomas; Abraham, Phillip; Close, Murray
2016-04-15
Phosphorous (P) leaching (e.g., from effluents, fertilizers) and transport in highly permeable subsurface media can be an important pathway that contributes to eutrophication of receiving surface waters as groundwater recharges the base-flow of surface waters. Here we investigated attenuation and transport of orthophosphate-P in gravel aquifer and vadose zone media in the presence and absence of model colloids (Escherichia coli, kaolinite, goethite). Experiments were conducted using repacked aquifer media in a large column (2m long, 0.19m in diameter) and intact cores (0.4m long, 0.24m in diameter) of vadose zone media under typical field flow rates. In the absence of the model colloids, P was readily traveled through the aquifer media with little attenuation (up to 100% recovery) and retardation, and P adsorption was highly reversible. Conversely, addition of the model colloids generally resulted in reduced P concentration and mass recovery (down to 28% recovery), and increased retardation and adsorption irreversibility in both aquifer and vadose zone media. The degree of colloid-assisted P attenuation was most significant in the presence of fine material and Fe-containing colloids at low flow rate but was least significant in the presence of coarse gravels and E. coli at high flow rate. Based on the experimental results, setback distances of 49-53m were estimated to allow a reduction of P concentrations in groundwater to acceptable levels in the receiving water. These estimates were consistent with field observations in the same aquifer media. Colloid-assisted P attenuation can be utilized to develop mitigation strategies to better manage effluent applications in gravelly soils. To efficiently retain P within soil matrix and reduce P leaching to groundwater, it is recommended to select soils that are rich in iron oxides, to periodically disturb soil preferential flow paths by tillage, and to apply a low irrigation rate. Copyright © 2016 Elsevier B.V. All rights reserved.
Patil, Sagar; Chakraborty, Saswati
2017-03-21
The effect of step feed strategy and intermittent aeration on removal of chemical oxygen demand (COD) and nitrogen was investigated in a laboratory scale horizontal subsurface flow constructed wetland (HSSFCW). Wetland was divided into four zones along the length (zone I to IV), and influent was introduced into first and third zones by step feeding. Continuous study was carried out in four phases. In phases I to III, 30% of influent was bypassed to zone III for denitrification along with organics removal. Intermittent aeration was provided only in zone II at 2.5 L/min for 4 h/day, during phases II, III and IV. In phase I, 87% COD and 43% NH 4 + -N (ammonia-nitrogen) removal were obtained from influents of 331 and 30 mg/L, respectively. In phase II study, external aeration resulted in 97% COD and 71% NH 4 + -N removal in the wetland. In phase IV, 40% of feed was delivered to zone III. Higher supply of organic in zone III resulted in higher denitrification, and total nitrogen removal rate increased to 70% from 56%. In the final effluent, concentration of NO 3 - -N was 9-11 mg/L in phase I to III and decreased to 4 mg/L in phase IV. Batch study showed that COD and NH 4 + -N removal followed first order kinetics in different zones of wetland.
Method of installing subsurface barrier
Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.
2007-10-09
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Subsurface materials management and containment system
Nickelson, Reva A.; Richardson, John G.; Kosteinik, Kevin M.; Sloan, Paul A.
2004-07-06
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Subsurface materials management and containment system
Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.
2006-10-17
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Reaction behavior of SO2 in the sintering process with flue gas recirculation.
Yu, Zhi-Yuan; Fan, Xiao-Hui; Gan, Min; Chen, Xu-Ling; Chen, Qiang; Huang, Yun-Song
2016-07-01
The primary goal of this paper is to reveal the reaction behavior of SO2 in the sinter zone, combustion zone, drying-preheating zone, and over-wet zone during flue gas recirculation (FGR) technique. The results showed that SO2 retention in the sinter zone was associated with free-CaO in the form of CaSO3/CaSO4, and the SO2 adsorption reached a maximum under 900ºC. SO2 in the flue gas came almost from the combustion zone. One reaction behavior was the oxidation of sulfur in the sintering mix when the temperature was between 800 and 1000ºC; the other behavior was the decomposition of sulfite/sulfate when the temperature was over 1000ºC. However, the SO2 adsorption in the sintering bed mainly occurred in the drying-preheating zone, adsorbed by CaCO3, Ca(OH)2, and CaO. When the SO2 adsorption reaction in the drying-preheating zone reached equilibrium, the excess SO2 gas continued to migrate to the over-wet zone and was then absorbed by Ca(OH)2 and H2O. The emission rising point of SO2 moved forward in combustion zone, and the concentration of SO2 emissions significantly increased in the case of flue gas recirculation (FGR) technique. Aiming for the reuse of the sensible heat and a reduction in exhaust gas emission, the FGR technique is proposed in the iron ore sintering process. When using the FGR technique, SO2 emission in exhaust gas gets changed. In practice, the application of the FGR technique in a sinter plant should be cooperative with the flue gas desulfurization (FGD) technique. Thus, it is necessary to study the influence of the FGR technique on SO2 emissions because it will directly influence the demand and design of the FGD system.
NASA Astrophysics Data System (ADS)
Dausman, A.; Langevin, C.; Sukop, M.; Walsh, V.
2006-12-01
The South District Wastewater Treatment Plant (SDWWTP), located in southeastern Miami-Dade County about 1 mi west of the Biscayne Bay coastline, is the largest capacity deep-well injection plant in the United States. Currently, about 100 Mgal/d of partially treated, essentially fresh (less than 1000 mg/L total dissolved solids) effluent is injected through 17 wells (each approximately 2500 ft below land surface) into the highly transmissive, lower-temperature, saline Boulder Zone composed of highly fractured dolomite. A thin confining unit called the Delray Dolomite, which is 8-16 ft thick, overlies the intended injection zone at the site. Although the Delray Dolomite has a vertical hydraulic conductivity estimated between 0.001 and 0.00001 ft/d, well casings for 10 of the 17 wells do not extend beneath the unit. A 700-ft-thick middle confining unit, with estimated vertical hydraulic conductivities between 0.1 and 28 ft/d, overlies the Delray Dolomite and separates it from the Upper Floridan aquifer. Protected by the Safe Drinking Water Act (SDWA), the Upper Floridan aquifer contains water that is less than 10,000 mg/L total dissolved solids. In southern Florida, this aquifer is used for reverse osmosis, blending with other waters, and as a reservoir for aquifer storage and recovery. At the SDWWTP, ammonia concentrations that exceed background conditions have been observed in monitoring wells open in and above the middle confining unit, indicating upward vertical migration of effluent, possibly toward the Upper Floridan aquifer. The U.S. Geological Survey currently is developing a variable-density groundwater flow and solute transport model for the Floridan aquifer system in Miami-Dade County. This model includes the injection of treated wastewater at the SDWWTP. The developed numerical model uses SEAWAT, a code that calculates variable- density flow as a function of salinity, to capture the buoyancy effects at the site and along the coast. Simulation efforts have been designed to determine likely mechanisms for vertical fluid migration as well as predict future movement of the effluent. Two alternative mechanisms for upward fluid migration are being tested with the model: (1) site-wide, diffuse upward movement through the Delray Dolomite and middle confining unit with all 17 injection wells; and (2) localized upward movement from the shallow casing depths at 10 of the 17 wells. The parameter estimation program, PEST, has estimated two different hydraulic conductivity configurations for the Delray Dolomite, middle confining unit, and other layers under these two possible conditions. The different parameter sets have yielded two satisfactory model calibrations. Results of these calibrations indicate that vertical effluent migration potentially is occurring either from (1) the 10 wells open above the Delray Dolomite, with virtually no effluent migration through the Delray Dolomite; or (2) all 17 wells open above and below the Delray Dolomite, with effluent migration through the Delray Dolomite.
Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation.
Li, Zhaohui; Hanlie, Hong
2008-02-01
A combination of surfactant solubilization with permanganate oxidation of trichloroethylene (TCE) was studied in batch, flow-through column, and three-dimensional (3-D) tank tests. Batch results showed that chloride production, an indication of TCE degradation, followed a pseudo-first-order reaction kinetics with respect to KMnO4 in the presence of free-phase TCE. A higher chloride production rate was achieved when anionic surfactants were present. The observed pseudo-first-order reaction rate constant increased as the concentrations of anionic surfactants Ninate 411 and Calfax increased from 0% to 0.1%, 0.3%, and 1.0%. Column experiments on TCE reduction by permanganate in the presence and absence of surfactants were carried out using well-sorted coarse Ottawa sand. The peak effluent TCE concentration reached 1700 mg/L due to enhanced solubilization when both sodium dodecyl sulfate (SDS) and permanganate were used, in contrast to less than 300 mg/L when only permanganate solution was used. In addition, the effluent TCE concentration decreased much faster when SDS was present in the permanganate solution, compared with the case when SDS was absent. With an initial 1 mL of TCE emplaced in the columns, the effluent TCE concentration dropped to <5mg/L after 29-31h of flushing with 1% SDS and 0.1% KMnO4 solution in contrast to 37-73 h when only 0.1% KMnO4 was used. Furthermore, KMnO4 breakthrough occurred after 21-25 h of injection when SDS was present compared with 45-70 h later when SDS was absent. A slightly higher chloride concentration was observed in the earlier stage of the column experiment and the chloride concentration decreased quickly once KMnO4 was seen in the effluent. The 3-D tank test showed that the MnO2 precipitation front formed more quickly when 1% SDS was present, which further confirmed the observation from the column study.
USDA-ARS?s Scientific Manuscript database
Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. Our research has found that t...
Microscreen radiation shield for thermoelectric generator
Hunt, Thomas K.; Novak, Robert F.; McBride, James R.
1990-01-01
The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.
Identification of a volatile phytotoxin from algae
NASA Technical Reports Server (NTRS)
Garavelli, J. S.; Fong, F.; Funkhouser, E. A.
1984-01-01
The objectives were to develop a trap system for isolating fractions of volatile algal phytotoxin and to characterize the major components of the isolated phytotoxin fractions. A bioassay using Phaseolus vulgaris seedlings was developed to aid in investigating the properties of the phytotoxin produced by cultures of Euglena gracilis var. bacillaris and Chlorella vulgaris. Two traps were found, 1.0 M hydrochloric acid and 0 C, which removed the phytotoxin from the algal effluent and which could be treated to release that phytotoxin as judged with the bioassay procedure. It was also determined that pretraps of 1.0 M sodium hydroxide and 1.0 M potassium biocarbonate could be used without lowering the phytotoxin effect. Ammonia was identified in trap solutions by ninhydrin reaction, indophenol reaction and derivatization with dansyl chloride and phenylisothiocyanate. Ammonia at the gaseous concentrations detected was found to have the same effects in the bioassay system as the volatile phytotoxin. It is possible that other basic, nitrogen containing compounds which augment the effects of ammonia were present at lower concentrations in the algal effluent.
Zone separator for multiple zone vessels
Jones, John B.
1983-02-01
A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.
Fluidized bed selective pyrolysis of coal
Shang, J.Y.; Cha, C.Y.; Merriam, N.W.
1992-12-15
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.
Fluidized bed selective pyrolysis of coal
Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.
1992-01-01
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.
Harvey, Judson W.; Böhlke, John Karl; Voytek, Mary A.; Scott, Durelle; Tobias, Craig R.
2013-01-01
Stream denitrification is thought to be enhanced by hyporheic transport but there is little direct evidence from the field. To demonstrate at a field site, we injected 15NO3−, Br (conservative tracer), and SF6 (gas exchange tracer) and compared measured whole-stream denitrification with in situ hyporheic denitrification in shallow and deeper flow paths of contrasting geomorphic units. Hyporheic denitrification accounted for between 1 and 200% of whole-stream denitrification. The reaction rate constant was positively related to hyporheic exchange rate (greater substrate delivery), concentrations of substrates DOC and nitrate, microbial denitrifier abundance (nirS), and measures of granular surface area and presence of anoxic microzones. The dimensionless product of the reaction rate constant and hyporheic residence time, λhzτhz define a Damköhler number, Daden-hz that was optimal in the subset of hyporheic flow paths where Daden-hz ≈ 1. Optimal conditions exclude inefficient deep pathways transport where substrates are used up and also exclude inefficient shallow pathways that require repeated hyporheic entries and exits to complete the reaction. The whole-stream reaction significance, Rs (dimensionless), was quantified by multiplying Daden-hz by the proportion of stream discharge passing through the hyporheic zone. Together these two dimensionless metrics, one flow-path scale and the other reach-scale, quantify the whole-stream significance of hyporheic denitrification. One consequence is that the effective zone of significant denitrification often differs from the full depth of the hyporheic zone, which is one reason why whole-stream denitrification rates have not previously been explained based on total hyporheic-zone metrics such as hyporheic-zone size or residence time.
TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.
Ferguson, Megan A; Hering, Janet G
2006-07-01
Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally benign method for As(III) oxidation.
Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili
2016-04-15
This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe(2+)/H2O2) and UV/H2O2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H2O2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H2O2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe(2+)/H2O2 had a molar ratio of 0.1 and a H2O2 concentration of 0.01molL(-1) with a pH of 3.0 and reaction time of 2h, 2.58-3.79 logs of target genes were removed. Under the initial effluent pH condition (pH=7.0), the removal was 2.26-3.35 logs. For the UV/H2O2 process, when the pH was 3.5 with a H2O2 concentration of 0.01molL(-1) accompanied by 30min of UV irradiation, all ARGs could achieve a reduction of 2.8-3.5 logs, and 1.55-2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H2O2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe(2+)/H2O2 molar ratios, H2O2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. Copyright © 2016 Elsevier B.V. All rights reserved.
Dissolved silica in the tidal Potomac River and Estuary, 1979-81 water years
Blanchard, Stephen F.
1988-01-01
The Potomac River at Chain Bridge is the major riverine source of dissolved silica (DSi) to the tidal Potomac River and Estuary. DSi concentrations at Chain Bridge are positively correlated with river discharge; river discharge is an important factor controlling rates of supply, dilution, and residence time. When river flow is high, the longitudinal DSi distribution is conservative. When river flow is low, other processes, such as phytoplankton uptake, benthic flux, resuspension, ground-water discharge, and water-column dissolution of diatoms, tend to be more influential than the river. Elevated concentrations of DSi in sewage-treatment-plant effluent in the Washington, D.C., area raise the DSi concentration of receiving Potomac River water. The tidal river zone serves as a net sink for DSi as a result of phytoplankton uptake. Ultimately, the biogenic silica from the tidal river is transported to the transition zone, where it is mineralized. As a result, the DSi concentration in the transition zone increases during summer. The DSi concentrations in the estuarine zone are largely controlled by dilution by Chesapeake Bay water and by phytoplankton uptake.
Li, Xiang; Huang, Yong; Yuan, Yi; Bi, Zhen; Liu, Xin
2017-08-01
The differences in the physiological characteristics between AOB and ANAMMOX bacteria lead to suboptimal performance when used in a single reactor. In this study, aerobic and anaerobic zones with different survival environments were constructed in a single reactor to realize partitioned culture of AOB and ANAMMOX bacteria. An external air-lift reflux system was formed which used the exhaust from the aeration zone as power to return the effluent to the aeration zone. The reflux system effectively alleviated the large pH fluctuations and promoted NO 2 - -N to rapidly use by ANAMMOX bacteria, effectively inhibiting the activity of NOB. After 95d of running, the nitrogen removal rate increased from the initial 0.21kg/(m 3 ·d) to 3.1kg/(m 3 ·d). FISH analyses further demonstrated that AOB and ANAMMOX bacteria acquired efficient enrichment in the corresponding zone. Thus, this type of integrative reactor may create the environments needed for the partial nitritation-ANAMMOX processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance
Harvey, Judson W.; Fuller, Christopher C.
1998-01-01
We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1/λs ≈ 1.3 hours), and the hyporheic porewater residence timescale (ts ≈ 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (Ls = stream velocity/storage-zone exchange coefficient ≈ 1.3 km) and the length of Pinal Creek (L ≈ 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, Rs = λstsL/Ls (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of Rs > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.
1981-11-01
Presque Isle , Pennsylvania , Lake Erie . For more information on headlands see Coastal Enqineering, 2, Sedimentation, Estuaries, Tides, Effluents, and...Environmental Inventory. 1978. Erie County Metropolitan Planning Commission. Erie County Land Use Plan, Erie County, Pennsylvania . 1971. Geis, James W...International Lake Erie Regulation Study A-I-13 e. New York State Coastal Zone Management Program A-1-14 f. Pollution from Land Use Activities (PLUARG) A-1-14
Method of sealing casings of subsurface materials management system
Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.
2007-02-06
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Enhanced vadose zone nitrogen removal by poplar during dormancy.
Ausland, Hayden; Ward, Adam; Licht, Louis; Just, Craig
2015-01-01
A pilot-scale, engineered poplar tree vadose zone system was utilized to determine effluent nitrate (NO3(-)) and ammonium concentrations resulting from intermittent dosing of a synthetic wastewater onto sandy soils at 4.5°C. The synthetic wastewater replicated that of an industrial food processor that irrigates onto sandy soils even during dormancy which can leave groundwater vulnerable to NO3(-) contamination. Data from a 21-day experiment was used to assess various Hydrus model parameterizations that simulated the impact of dormant roots. Bromide tracer data indicated that roots impacted the hydraulic properties of the packed sand by increasing effective dispersion, water content and residence time. The simulated effluent NO3(-) concentration on day 21 was 1.2 mg-N L(-1) in the rooted treatments compared to a measured value of 1.0 ± 0.72 mg-N L(-1). For the non-rooted treatment, the simulated NO3(-) concentration was 4.7 mg-N L(-1) compared to 5.1 ± 3.5 mg-N L(-1) measured on day 21. The model predicted a substantial "root benefit" toward protecting groundwater through increased denitrification in rooted treatments during a 21-day simulation with 8% of dosed nitrogen converted to N2 compared to 3.3% converted in the non-rooted test cells. Simulations at the 90-day timescale provided similar results, indicating increased denitrification in rooted treatments.
Combustion process for synthesis of carbon nanomaterials from liquid hydrocarbon
Diener, Michael D.; Alford, J. Michael; Nabity, James; Hitch, Bradley D.
2007-01-02
The present invention provides a combustion apparatus for the production of carbon nanomaterials including fullerenes and fullerenic soot. Most generally the combustion apparatus comprises one or more inlets for introducing an oxygen-containing gas and a hydrocarbon fuel gas in the combustion system such that a flame can be established from the mixed gases, a droplet delivery apparatus for introducing droplets of a liquid hydrocarbon feedstock into the flame, and a collector apparatus for collecting condensable products containing carbon nanomaterials that are generated in the combustion system. The combustion system optionally has a reaction zone downstream of the flame. If this reaction zone is present the hydrocarbon feedstock can be introduced into the flame, the reaction zone or both.
Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj
2011-04-01
Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs contamination in the water environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suriyaprabha, R., E-mail: sooriyarajendran@gmail.com; Khan, Samreen Heena; Pathak, Bhawana
2016-04-13
Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe{sub 3}O{sub 4}, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from themore » industrial effluent. Fe{sub 3}O{sub 4} is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe{sub 3}O{sub 4} nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe{sub 3}O{sub 4} nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe{sub 3}O{sub 4} proved to be the potential material for the adsorption of corresponding contaminants due to its highly active adsorbing surfaces. The result concluded that the effective adsorption and decolourization of contaminants is observed in different concentration with the maximum time period of 45 mins with the optimized concentration of Fe{sub 3}O{sub 4}.« less
Cravotta, C.A.; Ward, S.J.; Hammarstrom, J.M.
2008-01-01
Acidic mine drainage (AMD) containing elevated concentrations of dissolved iron and other metals can be neutralized to varying degrees by reactions with limestone in passive treatment systems. We evaluated the chemical and mineralogical characteristics and the effectiveness of calcitic and dolomitic limestone for the neutralization of net-acidic, oxic, iron-laden AMD from a flooded anthracite mine. The calcitic limestone, with CaCO3 and MgCO3 contents of 99.8 and <0.1 wt%, respectively, and the dolomitic limestone, with CaCO3 and MgCO3 contents of 60.3 and 40.2 wt%, were used to construct a downflow treatment system in 2003 at the Bell Mine, a large source of AMD and baseflow to the Schuylkill River in the Southern Anthracite Coalfield, in east-central Pennsylvania. In the winter of 2002-2003, laboratory neutralization-rate experiments evaluated the evolution of effluent quality during 2 weeks of continuous contact between AMD from the Bell Mine and the crushed calcitic or dolomitic limestone in closed, collapsible containers (cubitainers). The cubitainer tests showed that: (1) net-alkaline effluent could be achieved with detention times greater than 3 h, (2) effluent alkalinities and associated dissolution rates were equivalent for uncoated and Fe(OH)3-coated calcitic limestone, and (3) effluent alkalinities and associated dissolution rates for dolomitic limestone were about half those for calcitic limestone. The dissolution rate data for the cubitainer tests were used with data on the volume of effuent and surface area of limestone in the treatment system at the Bell Mine to evaluate the water-quality data for the first 1.5 years of operation of the treatment system. These rate models supported the interpretation of field results and indicated that treatment benefits were derived mainly from the dissolution of calcitic limestone, despite a greater quantity of dolomitic limestone within the treatment system. The dissolution-rate models were extrapolated on a decadal scale to indicate the expected decreases in the mass of limestone and associated alkalinities resulting from the long-term reaction of AMD with the treatment substrate. The models indicated the calcitic limestone would need to be replenished approaching the 5-year anniversary of treatment operations to maintain net-alkaline effluent quality. ?? 2008 Springer-Verlag.
Norovirus outbreak caused by a new septic system in a dolomite aquifer.
Borchardt, Mark A; Bradbury, Kenneth R; Alexander, E Calvin; Kolberg, Rhonda J; Alexander, Scott C; Archer, John R; Braatz, Laurel A; Forest, Brian M; Green, Jeffrey A; Spencer, Susan K
2011-01-01
Septic systems that are built in compliance with regulations are generally not expected to be the cause of groundwater borne disease outbreaks, especially in areas with thick vadose zones. However, this case study demonstrates that a disease outbreak can occur in such a setting and outlines the combination of epidemiological, microbiological, and hydrogeological methods used to confirm the source of the outbreak. In early June 2007, 229 patrons and employees of a new restaurant in northeastern Wisconsin were affected by acute gastroenteritis; 6 people were hospitalized. Epidemiological case-control analysis indicated that drinking the restaurant's well water was associated with illness (odds ratio = 3.2, 95% confidence interval = 0.9 to 11.4, P = 0.06). Microbiological analysis (quantitative reverse transcription-polymerase chain reaction) measured 50 genomic copies per liter of norovirus genogroup I in the well water. Nucleotide sequencing determined the genotype as GI.2 and further showed the identical virus was present in patrons' stool specimens and in the septic tank. Tracer tests using dyes injected at two points in the septic system showed that effluent was traveling from the tanks (through a leaking fitting) and infiltration field to the well in 6 and 15 d, respectively. The restaurant septic system and well (85-m deep, in a fractured dolomite aquifer) both conformed to state building codes. The early arrival of dye in the well, which was 188 m from the septic field and located beneath a 35-m thick vadose zone, demonstrates that in highly vulnerable hydrogeological settings, compliance with regulations may not provide adequate protection from fecal pathogens. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
Imhoff, D.H.; Harker, W.H.
1963-12-01
Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)
The Determination of Hydrogen Sulfide in Stack Gases, Iodometric Titration After Sulfite Removal.
ERIC Educational Resources Information Center
Robles, E. G.
The determination of hydrogen sulfide in effluents from coal-fired furnaces and incinerators is complicated by the presence of sulfur oxides (which form acids). Organic compounds also may interfere with or prevent the formation of the cadmium sulfide precipitate or give false positive results because of reaction with iodine. The report presents a…
Fluidized bed heating process and apparatus
NASA Technical Reports Server (NTRS)
McHale, Edward J. (Inventor)
1981-01-01
Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.
Onsite wastewater nitrogen reduction with expanded media and elemental sulfur biofiltration.
Smith, D P
2012-01-01
A passive biofiltration process has been developed to enhance nitrogen removal from onsite sanitation water. The system employs an initial unsaturated vertical flow biofilter with expanded clay media (nitrification), followed in series by a horizontal saturated biofilter for denitrification containing elemental sulfur media as electron donor. A small-scale prototype was operated continuously over eight months on primary wastewater effluent with total nitrogen (TN) of 72.2 mg/L. The average hydraulic loading to the unsaturated biofilter surface was 11.9 cm/day, applied at a 30 min dosing cycle. Average effluent TN was 2.6 mg/L and average TN reduction efficiency was 96.2%. Effluent nitrogen was 1.7 mg/L as organic N, 0.93 mg/L as ammonium (NH(4)-N), and 0.03 as oxidized (NO(3) + NO(2)) N. There was no surface clogging of unsaturated media, nitrate breakthrough, or replenishment of sulfur media over eight months. Visual and microscopic examinations revealed substantially open pores with limited material accumulation on the upper surface of the unsaturated media. Material accumulation was observed at the inlet zone of the denitrification biofilter, and sulfur media exhibited surface cavities consistent with oxidative dissolution. Two-stage biofiltration is a simple and resilient system for achieving high nitrogen reductions in onsite wastewater.
Data report: an assessment of the occurrence of human viruses in Long Island aquatic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, J.M.; Landry, E.F.
1977-12-01
A virus survey was conducted in Nassau and Suffolk Counties under the auspices of the federally-funded ''208'' program from June 1976 to June 1977. The survey involved the concentration, enumeration, and identification of human enteroviruses from selected aquatic systems on Long Island including embayments, lakes, creeks, public drinking water supplies, groundwater influenced by wastewater recharge, sanitary landfills, and stormwater recharge basins; and the effluents from secondary and tertiary sewage treatment plants. Enteroviruses were isolated from all systems studied except the public water supply wells. As expected, viruses were most often encountered in the chlorinated effluents of sewage treatment plants. Onmore » two separate occasions, wild type Poliovirus was isolated from one of these plants. The limited sampling conducted at each site (1 per month) obviated any extensive interpretation of the data for the purpose of identifying the precise hazard posed by enteric viruses in Long Island waters. Among tentative conclusions were: support for the continued study of recharge of groundwater aquifers via the application of properly treated domestic wastewater to recharge basins; caution regarding placement of private septic systems in saturated zones near surface water bodies; the discharge of sewage effluents into embayments; and the identification of those areas requiring further virological study.« less
Bunani, Samuel; Yörükoğlu, Eren; Sert, Gökhan; Kabay, Nalan; Yüksel, Ümran; Yüksel, Mithat; Egemen, Özdemir; Pek, Taylan Özgür
2018-02-01
Membrane bioreactor (MBR) effluent collected from a wastewater treatment plant installed at an industrial zone was used for reverse osmosis (RO) membrane tests in the laboratory. For this, two different GE Osmonics RO membranes (AK-BWRO and AD-SWRO) were employed. The results showed that AK-brackish water reverse osmosis (AK-BWRO) and AD-seawater reverse osmosis (AD-SWRO) membranes have almost similar rejection performances regarding analyzed parameters such as conductivity, salinity, color, chemical oxygen demand (COD), and total organic carbon (TOC). On the other hand, these membranes behaved quite differently considering their permeate water flux at the same applied pressure of 10 bar. AD-SWRO membrane was also tested at 20 bar. The results revealed that AD-SWRO membrane had almost the same rejections either at 10 or at 20 bar of applied pressure. Compared with irrigation water standards, AK-BWRO and AD-SWRO gave an effluent with low salinity value and sodium adsorption ratio (SAR) which makes it unsuitable for irrigation due to the infiltration problems risi0ng from unbalanced values of salinity and SAR. Combination of MBR effluent and RO effluent at respective proportions of 0.3:0.7 and 0.4:0.6 for AK-BWRO and AD-SWRO, respectively, are the optimum mixing ratios to overcome the infiltration hazard problem. Choice of less-sensitive crops to chloride and sodium ions is another strategy to overcome all hazards which may arise from above suggested mixing proportions.
Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...
2017-03-08
Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue
Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less
Modeling contamination of shallow unconfined aquifers through infiltration beds
Ostendorf, D.W.
1986-01-01
We model the transport of a simply reactive contaminant through an infiltration bed and underlying shallow, one-dimensional, unconfined aquifer with a plane, steeply sloping bottom in the assumed absence of dispersion and downgradient dilution. The effluent discharge and ambient groundwater flow under the infiltration beds are presumed to form a vertically mixed plume marked by an appreciable radial velocity component in the near field flow region. The near field analysis routes effluent contamination as a single linear reservoir whose output forms a source plane for the one-dimensional, far field flow region downgradient of the facility; the location and width of the source plane reflect the relative strengths of ambient flow and effluent discharge. We model far field contaminant transport, using an existing method of characteristics solution with frame speeds modified by recharge, bottom slope, and linear adsorption, and concentrations reflecting first-order reaction kinetics. The near and far field models simulate transport of synthetic detergents, chloride, total nitrogen, and boron in a contaminant plume at the Otis Air Force Base sewage treatment plant in Barnstable County, Massachusetts, with reasonable accuracy.
Assessment and management of the performance risk of a pilot reclaimed water disinfection process.
Zhou, Guangyu; Zhao, Xinhua; Zhang, Lei; Wu, Qing
2013-10-01
Chlorination disinfection has been widely used in reclaimed water treatment plants to ensure water quality. In order to assess the downstream quality risk of a running reclaimed water disinfection process, a set of dynamic equations was developed to simulate reactions in the disinfection process concerning variables of bacteria, chemical oxygen demand (COD), ammonia and monochloramine. The model was calibrated by the observations obtained from a pilot disinfection process which was designed to simulate the actual process in a reclaimed water treatment plant. A Monte Carlo algorithm was applied to calculate the predictive effluent quality distributions that were used in the established hierarchical assessment system for the downstream quality risk, and the key factors affecting the downstream quality risk were defined using the Regional Sensitivity Analysis method. The results showed that the seasonal upstream quality variation caused considerable downstream quality risk; the effluent ammonia was significantly influenced by its upstream concentration; the upstream COD was a key factor determining the process effluent risk of bacterial, COD and residual disinfectant indexes; and lower COD and ammonia concentrations in the influent would mean better downstream quality.
Bioprospecting of lipolytic microorganisms obtained from industrial effluents.
Peil, Greice H S; Kuss, Anelise V; Rave, Andrés F G; Villarreal, José P V; Hernandes, Yohana M L; Nascente, Patrícia S
2016-01-01
The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2(r)). Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml) however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.
Prevention of deleterious deposits in a coal liquefaction system
Carr, Norman L.; Prudich, Michael E.; King, Jr., William E.; Moon, William G.
1984-07-03
A process for preventing the formation of deleterious coke deposits on the walls of coal liquefaction reactor vessels involves passing hydrogen and a feed slurry comprising feed coal and recycle liquid solvent to a coal liquefaction reaction zone while imparting a critical mixing energy of at least 3500 ergs per cubic centimeter of reaction zone volume per second to the reacting slurry.
Homa, Dereje; Haile, Ermias; Washe, Alemayehu P
2017-01-01
The effect of Cr(VI) pollution on the corrosion rate of corrugated iron roof samples collected from tanning industry areas was investigated through simulated laboratory exposure and spectrophotometric detection of Cr(III) deposit as a product of the reaction. The total level of Cr detected in the samples ranged from 113.892 ± 0.17 ppm to 53.05 ± 0.243 ppm and showed increasing trend as sampling sites get closer to the tannery and in the direction of tannery effluent stream. The laboratory exposure of a newly manufactured material to a simulated condition showed a relatively faster corrosion rate in the presence of Cr(VI) with concomitant deposition of Cr(III) under pH control. A significant ( P = 0.05) increase in the corrosion rate was also recorded when exposing scratched or stress cracked samples. A coupled redox process where Cr(VI) is reduced to a stable, immobile, and insoluble Cr(III) accompanying corrosion of the iron is proposed as a possible mechanism leading to the elevated deposition of the latter on the materials. In conclusion, the increased deposits of Cr detected in the corrugated iron roof samples collected from tanning industry zones suggested possible atmospheric Cr pollution as a factor to the accelerated corrosion of the materials.
Homa, Dereje; Haile, Ermias
2017-01-01
The effect of Cr(VI) pollution on the corrosion rate of corrugated iron roof samples collected from tanning industry areas was investigated through simulated laboratory exposure and spectrophotometric detection of Cr(III) deposit as a product of the reaction. The total level of Cr detected in the samples ranged from 113.892 ± 0.17 ppm to 53.05 ± 0.243 ppm and showed increasing trend as sampling sites get closer to the tannery and in the direction of tannery effluent stream. The laboratory exposure of a newly manufactured material to a simulated condition showed a relatively faster corrosion rate in the presence of Cr(VI) with concomitant deposition of Cr(III) under pH control. A significant (P = 0.05) increase in the corrosion rate was also recorded when exposing scratched or stress cracked samples. A coupled redox process where Cr(VI) is reduced to a stable, immobile, and insoluble Cr(III) accompanying corrosion of the iron is proposed as a possible mechanism leading to the elevated deposition of the latter on the materials. In conclusion, the increased deposits of Cr detected in the corrugated iron roof samples collected from tanning industry zones suggested possible atmospheric Cr pollution as a factor to the accelerated corrosion of the materials. PMID:28469950
Fenet, Hélène; Arpin-Pont, Lauren; Vanhoutte-Brunier, Alice; Munaron, Dominique; Fiandrino, Annie; Martínez Bueno, Maria-Jesus; Boillot, Clotilde; Casellas, Claude; Mathieu, Olivier; Gomez, Elena
2014-07-01
Concentrations of the antiepileptic drugs carbamazepine (Cbz), oxcarbazepine (OxCz) and their main metabolites were predicted in a wastewater treatment plant (WTP) and in the vicinity of its submarine outfall located in a Mediterranean coastal zone. Refined predicted environmental concentrations (PECs) were calculated in effluents based on consumption data and human excretion rates. PECs were estimated in the sea using the hydrodynamic MARS 3D model integrating meteorological data, oceanic conditions (wind, tide, atmospheric pressure), freshwater and sewage inputs. Measured environmental concentrations (MECs) were compared to PECs to assess the estimation relevance. In the coastal zone, PEC and MEC were in the same magnitude range. Modeling of Cbz diffusion and advection just above the submarine outfall showed the influence of the thermocline during summer, with low diffusion of Cbz from the bottom to the surface. This work allowed understanding the dispersion of target compounds and deserved further development for a better acknowledgement of vulnerability at local scales. Copyright © 2014 Elsevier Ltd. All rights reserved.
1988-12-12
groundwater , and/or surface water to determine existance af contamination, if any, and to evaluate potential for offsite migration; and (5) identify off... water source, was found to be contaminated with explosives. A shallow perched groundwater zone, created by effluent sdepage through the base was also...Evidence of groundwater contamination from past activities at the OB/OD Grounds was not indicated as a result of sampling and analysis of two water
Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.
2006-04-18
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Convectively driven PCR thermal-cycling
Benett, William J.; Richards, James B.; Milanovich, Fred P.
2003-07-01
A polymerase chain reaction system provides an upper temperature zone and a lower temperature zone in a fluid sample. Channels set up convection cells in the fluid sample and move the fluid sample repeatedly through the upper and lower temperature zone creating thermal cycling.
Particle velocity measurements of the reaction zone in nitromethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheffield, S. A.; Engelke, R. P.; Alcon, R. R.
2002-01-01
The detonation reaction-zone length in neat, deuterated, and chemically sensitized nitromethane (NM) has been measured by using several different laser-based velocity interferometry systems. The experiments involved measuring the particle velocity history at a NM/PMMA (polymethylmethacrylate) window interface during the time a detonation in the NM interacted with the interface. Initially, Fabry-Perot interferometry was used, but, because of low time resolution (>5 ns), several different configurations of VISAR interferometry were subsequently used. Early work was done with VISARs with a time resolution of about 3 ns. By making changes to the recording system, we were able to improve this to {approx}1more » ns. Profiles measured at the NM/PMMA interface agree with the ZND theory, in that a spike ({approx}2.45 mm/{micro}s) is measured that is consistent with an extrapolated reactant NM Hugoniot matched to the PMMA window. The spike is rather sharp, followed by a rapid drop in particle velocity over a time of 5 to 10 ns; this is evidence of early fast reactions. Over about 50 ns, a much slower particle velocity decrease occurs to the assumed CJ condition - indicating a total reaction zone length of {approx}300 {micro}m. When the NM is chemically changed, such as replacing the hydrogen atoms with deuterium or chemically sensitizing with a base, some changes are observed in the early part of the reaction zone.« less
Component mobility at 900 °C and 18 kbar from experimentally grown coronas in a natural gabbro
NASA Astrophysics Data System (ADS)
Keller, Lukas M.; Wunder, Bernd; Rhede, Dieter; Wirth, Richard
2008-09-01
Several approximately 100-μm-wide reaction zones were grown under experimental conditions of 900 °C and 18 kbar along former olivine-plagioclase contacts in a natural gabbro. The reaction zone comprises two distinct domains: (i) an irregularly bounded zone with idiomorphic grains of zoisite and minor corundum and kyanite immersed in a melt developed at the plagioclase side and (ii) a well-defined reaction band comprising a succession of mineral layers forming a corona structure around olivine. Between the olivine and the plagioclase reactant phases we observe the following layer sequence: olivine|pyroxene|garnet|partially molten domain|plagioclase. Within the pyroxene layer two micro-structurally distinct layers comprising enstatite and clinopyroxene can be discerned. Chemical potential gradients persisted for the CaO, Al 2O 3, SiO 2, MgO and FeO components, which drove diffusion of Ca, Al and Si bearing species from the garnet-matrix interface to the pyroxene-olivine interface and diffusion of Mg- and Fe-bearing species in the opposite direction. The systematic mineralogical organization and chemical zoning across the corona suggest that the olivine corona was formed by a "diffusion-controlled" reaction. We estimate a set of diffusion coefficients and conclude that LAlAl < LCaCa < ( LSiSi, LFeFe) < LMgMg during reaction rim growth.
Asaithambi, P; Aziz, Abdul Raman Abdul; Sajjadi, Baharak; Daud, Wan Mohd Ashri Bin Wan
2017-02-01
In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm 2 ), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm 2 , electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.
Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.
2011-12-01
The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and dechlorination kinetics were reflected in a transient, spatially heterogeneous bioavailability number and dissolution enhancement. In agreement with the literature, source zone architecture largely determined the impact of mass transfer on potential dissolution enhancement, with bioavailability decreasing the most at high ganglia to pool ratios. The results of this study suggest that if mass transfer rate limitations are not considered in designing bioremediation applications at DNAPL source zones, the enhancement of DNAPL depletion and the overall effectiveness of enhanced bioremediation may be significantly overestimated.
Hyper-localized carbon mineralization in diffusion-limited basalt fractures
NASA Astrophysics Data System (ADS)
Menefee, A. H.; Giammar, D.; Ellis, B. R.
2017-12-01
Basalt formations could enable secure carbon sequestration through mineral trapping. CO2 injection acidifies formation brines and drives dissolution of the host rock, which releases divalent metal cations that combine with dissolved carbonate ions to form stable carbonate minerals. Here, a series of high-pressure flow-through experiments was conducted to evaluate how transport limitations and geochemical gradients drive microscale carbonation reactions in fractured basalts. To isolate advection- and diffusion-controlled zones, surfaces of saw-cut basalt cores were milled to create one primary flow channel adjoined by four dead-end fracture pathways. In the first experiment, a representative basalt brine (6.3 mM NaHCO3) equilibrated with CO2 (100ºC, 10 MPa) was injected at 1 mL/h under 20 MPa confining stress. The second experiment was conducted under the same physical conditions but [NaHCO3] was elevated to 640 mM, and in the third, temperature was also raised to 150ºC. Effluent chemistry was monitored via ICP-MS to infer dissolution trends and calibrate reactive transport models. Reacted cores were characterized using x-ray computed tomography (xCT), optical microscopy, scanning electron microscopy, and Raman spectroscopy. Carbonation occurred in all experiments but increased in experiments with higher alkalinity and higher temperature. At low [NaHCO3], secondary precipitate coatings formed distinct reaction fronts that varied with distance into dead-end fractures. Reactive transport modeling demonstrated that these reactions fronts were due to sharp gradients in pH and dissolved inorganic carbon. Carbonation was restricted to transport-limited vugs and pores between the confined core surfaces and was highly localized on reactive primary mineral grains (e.g. pyroxene) that contributed major divalent cations. Increasing [NaHCO3] by two orders of magnitude significantly enhanced carbonation and promoted Mg and Fe uptake into carbonates. While xCT scans revealed clays filling the advective path, no permeability changes were measured. Our coupled experiment-modeling approach further elucidates the geochemical conditions controlling carbonation reactions and extends unique microstructural observations to implications for long-term CO2 mineralization in basalt reservoirs.
Highly sensitive silicon microreactor for catalyst testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henriksen, Toke R.; Hansen, Ole; Department of Physics, Danish National Research Foundation's Center for Individual Nanoparticle Functionality
2009-12-15
A novel microfabricated chemical reactor for highly sensitive measurements of catalytic activity and surface kinetics is presented. The reactor is fabricated in a silicon chip and is intended for gas-phase reactions at pressures ranging from 0.1 to 5.0 bar. A high sensitivity is obtained by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model catalysts which canmore » only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally. A corresponding theoretical model is presented, and the gas flow through an on-chip flow-limiting capillary is predicted to be in the intermediate regime. The experimental data for the gas flow are found to be in good agreement with the theoretical model. At typical experimental conditions, the total gas flow through the reaction zone is around 3x10{sup 14} molecules s{sup -1}, corresponding to a gas residence time in the reaction zone of about 11 s. To demonstrate the operation of the microreactor, CO oxidation on low-area platinum thin film circles is employed as a test reaction. Using temperature ramping, it is found that platinum catalysts with areas as small as 15 {mu}m{sup 2} are conveniently characterized with the device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla
2014-09-01
Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at amore » substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.« less
Cordy, Gail E.; Duran, Norma L.; Bouwer, Herman; Rice, Robert C.; Furlong, Edward T.; Zaugg, Steven D.; Meyer, Michael T.; Barber, Larry B.; Kolpin, Dana W.
2004-01-01
A proof-of-concept experiment was devised to determine if pharmaceuticals and other organic waste water compounds (OWCs), as well as pathogens, found in treated effluent could be transported through a 2.4 m soil column and, thus, potentially reach ground water under recharge conditions similar to those in arid or semiarid climates. Treated effluent was applied at the top of the 2.4 m long, 32.5 cm diameter soil column over 23 days, Samples of the column inflow were collected from the effluent storage tank at the beginning (Tbegin) and end (Tend) of the experiment, and a sample of the soil column drainage at the base of the column (Bend) was collected at the end of the experiment. Samples were analyzed for 131 OWCs including veterinary and human antibiotics, other prescription and nonprescription drugs, widely used household and industrial chemicals, and steroids and reproductive hormones, as well as the pathogens Salmonella and Legionella. Analytical results for the two effluent samples taken at the beginning (Tbegin) and end (Tend) of the experiment indicate that the number of OWCs detected in the column inflow decreased by 25% (eight compounds) and the total concentration of OWCs decreased by 46% while the effluent was in the storage tank during the 23-day experiment. After percolating through the soil column, an additional 18 compounds detected in Tend (67% of OWCs) were no longer detected in the effluent (Bend) and the total concentration of OWCs decreased by more than 70%. These compounds may have been subject to transformation (biotic and abiotic), adsorption, and (or) volatilization in the storage tank and during travel through the soil column. Eight compounds—carbamazapine; sulfamethoxazole; benzophenone; 5-methyl-1H-benzotriazole; N,N-diethyltoluamide; tributylphosphate; tri(2-chloroethyl) phosphate; and cholesterol—were detected in all three samples indicating they have the potential to reach ground water under recharge conditions similar to those in arid and semiarid climates. Results from real-time polymerase chain reactions demonstrated the presence of Legionella in all three samples. Salmonella was detected only in Tbegin, suggesting that the bacteria died off in the effluent storage tank over the period of the experiment. This proof-of-concept experiment demonstrates that, under recharge conditions similar to those in arid or semiarid climates, some pharmaceuticals, pathogens, and other OWCs can persist in treated effluent after soil-aquifer treatment.
Extending helium partial pressure measurement technology to JET DTE2 and ITER.
Klepper, C C; Biewer, T M; Kruezi, U; Vartanian, S; Douai, D; Hillis, D L; Marcus, C
2016-11-01
The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE2) and for ITER.
Analysis of Effluent Gases During the CCVD Growth of Multi Wall Carbon Nanotubes from Acetylene
NASA Technical Reports Server (NTRS)
Schmitt, T. C.; Biris, A. S.; Miller, D. W.; Biris, A. R.; Lupu, D.; Trigwell, S.; Rahman, Z. U.
2005-01-01
Catalytic chemical vapor deposition was used to grow multi-walled carbon nanotubes on a Fe:Co:CaCO3 catalyst from acetylene. The influent and effluent gases were analyzed by gas chromatography and mass spectrometry at different time intervals during the nanotubes growth process in order to better understand and optimize the overall reaction. A large number of byproducts were identified and it was found that the number and the level for some of the carbon byproducts significantly increased over time. The CaCO3 catalytic support thermally decomposed into CaO and CO2 resulting in a mixture of two catalysts for growing the nanotubes, which were found to have outer diameters belonging to two main groups 8 to 35 nm and 40 to 60 nm, respectively.
Integrated monitoring technologies for the management of a Soil-Aquifer-Treatment (SAT) system.
NASA Astrophysics Data System (ADS)
Papadopoulos, Alexandros; Kallioras, Andreas; Kofakis, Petros; Bumberger, Jan; Schmidt, Felix; Athanasiou, Georgios; Uzunoglou, Nikolaos; Amditis, Angelos; Dietrich, Peter
2016-04-01
Artificial recharge of groundwater has an important role to play in water reuse as treated wastewater effluent can be infiltrated into the ground for aquifer recharge. As the effluent moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. The pilot site of Lavrion Technological & Cultural Park (LTCP) of the National Technical University of Athens (NTUA), involves the employment of plot infiltration basins at experimental scale, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. Τhe LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved by the development and installation of an integrated system of prototype sensing technologies, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time and Frequency Domain Reflectometry (TDR & FDR) sensors is developed and will be installed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. Additionally, the system contains two different radar-based sensing systems that will be offering (i) identification of preferential flow effects of the TDR/FDR sensors and (ii) monitoring of the water table within the shallow karst aquifer layer. The above technique will offer continuous monitoring of infiltration rates and identify possible mechanical or biological clogging effects. The monitoring system will be connected to an ad-hoc wireless network for continuous data transfer within the SAT facilities. It is envisaged that the development and combined application of all the above technologies will provide an integrated monitoring platform for the evaluation of SAT system performance.
Effects of remediation amendments on vadose zone microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Hannah M.; Tilton, Fred A.
2012-08-10
Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had nomore » affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.« less
Ducey, T F; Johnson, P R; Shriner, A D; Matheny, T A; Hunt, P G
2013-01-01
Riparian buffer zones are important for both natural and developed ecosystems throughout the world because of their ability to retain nutrients, prevent soil erosion, protect aquatic environments from excessive sedimentation, and filter pollutants. Despite their importance, the microbial community structures of riparian buffer zones remains poorly defined. Our objectives for this study were twofold: first, to characterize the microbial populations found in riparian buffer zone soils; and second, to determine if microbial community structure could be linked to denitrification enzyme activity (DEA). To achieve these objectives, we investigated the microbial populations of a riparian buffer zone located downslope of a pasture irrigated with swine lagoon effluent, utilizing DNA sequencing of the 16S rDNA, DEA, and quantitative PCR (qPCR) of the denitrification genes nirK, nirS, and nosZ. Clone libraries of the 16S rDNA gene were generated from each of twelve sites across the riparian buffer with a total of 986 partial sequences grouped into 654 operational taxonomic units (OTUs). The Proteobacteria were the dominant group (49.8% of all OTUs), with the Acidobacteria also well represented (19.57% of all OTUs). Analysis of qPCR results identified spatial relationships between soil series, site location, and gene abundance, which could be used to infer both incomplete and total DEA rates.
Metals purification by improved vacuum arc remelting
Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.
1994-12-13
The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.
NASA Astrophysics Data System (ADS)
Darnault, C. J.; Darnault, C. J.; Garnier, P.; Kim, Y.; Oveson, K.; Jenkins, M.; Ghiorse, W.; Baveye, P.; Parlange, J.; Steenhuis, T.
2001-12-01
Oocysts of the protozoan Cryptosporidium parvum, when they contaminate drinking water supplies, can cause outbreaks of Cryptosporidiosis, a common waterborne disease. Of the different pathways by which oocysts can wind up in drinking water, one has received very little attention to date; because soils are often considered to be perfect filters, the transport of oocysts through the subsoil to groundwater by preferential flow is generally ignored. To evaluate its significance, three set of laboratory experiments investigated transport of oocysts through vadose zone. Experiment set I was carried out in a vertical 50 cm-long column filled with silica sand, under conditions known to foster fingered flow. Experiment set II investigates the effect of gas-water interfaces by modifying the hydrodynamical conditions in the sand columns with water-repellent sand barriers. Experiment III involved undisturbed soil columns subjected to macropores flow. The sand and soil columns were subjected to artificial rainfall and were allowed to reach steady-state. At that point, feces of contaminated calves were applied at the surface, along with a known amount of KCl to serve as tracer, and rainfall was continued at the same rate. The breakthrough of oocysts and Cl-, monitored in the effluent, demonstrate the importance of preferential flow - fingered flow and macropore flow - on the transport of oocysts through vadose zone. Peak oocyst concentrations were not appreciably delayed, compared to Cl-, and in some cases, occurred even before the Cl- peak. However, the numbers of oocysts present in the effluents were still orders of magnitude higher than the 5 to 10 oocysts per liter that are considerable sufficient to cause cryptosporidiosis in healthy adults. The transport of oocysts was simulated based on a partitioning the soil profile in both a distribution zone and a preferential zone, In particular, the model simulates accurately the markedly asymmetric breakthrough patterns, and the long exponential tailing. The spatial distribution of oocysts suggest a close relationship between oocyst retention and the extent of gas-water interfaces; sharp increases in oocyst numbers are consistently observed in regions of the sand where the water content has steep gradients, and therefore where one expects capillary meniscii to have maximal extent. These observations imply that oocyst transport in the vadose zone is likely to be very limited in the absence of preferential flow. However, experimental results suggest that the transport of oocysts in the subsurface via preferential flow may create a significant risk of groundwater contamination in some situations.
NASA Astrophysics Data System (ADS)
Marzadri, A.; Tonina, D.; Bellin, A.
2012-12-01
We introduce a new Damköhler number, Da, to quantify the biogeochemical status of the hyporheic zone and to upscale local hyporheic processes to reach scale. Da is defined as the ratio between the median hyporheic residence time, τup,50, which is a representative time scale of the hyporheic flow, and a representative time scale of biogeochemical reactions, which we define as the time τlim needed to consume dissolved oxygen to a prescribed threshold concentration below which reducing reactions are activated: Da = τup,50/τlim. This approach accounts for streambed topography and surface hydraulics via the hyporheic residence time and biogeochemical reaction via the time limit τlim. Da can readily evaluate the redox status of the hyporheic zone. Values of Da larger than 1 indicate prevailing anaerobic conditions, whereas values smaller than 1 prevailing aerobic conditions. This new Damköhler number can quantify the efficiency of hyporheic zone in transforming dissolved inorganic nitrogen species such as ammonium and nitrate, whose transformation depends on the redox condition of the hyporheic zone. We define a particular value of Da, Das, that indicates when the hyporheic zone is a source or a sink of nitrate. This index depends only on the relative abundance of ammonium and nitrate. The approach can be applied to any hyporheic zone of which the median hyporheic residence time is known. Application to streams with pool-riffle morphology shows that Da increases passing from small to large streams implying that the fraction of the hyporheic zone in anaerobic conditions increases with stream size.
Enhanced wet air oxidation : synergistic rate acceleration upon effluent recirculation
Matthew J. Birchmeier; Charles G. Hill; Carl J. Houtman; Rajai H. Atalla; Ira A. Weinstock
2000-01-01
Wet air oxidation (WAO) reactions of cellobiose, phenol, and syringic acid were carried out under mild conditions (155°C; 0.93MPa 02; soluble catalyst, Na5[PV2Mo10O40]). Initial oxidation rates were rapid but decreased to small values as less reactive oxidation products accumulated. Recalcitrant oxidation products were consumed more rapidly, however, if additional...
Dechlorination of TCE with palladized iron
Fernando, Q.; Muftikian, R.; Korte, N.
1997-04-01
The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. 10 figs.
Dechlorination of TCE with palladized iron
Fernando, Quintus; Muftikian, Rosy; Korte, Nic
1997-01-01
The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products.
Liu, Zhanmeng; Li, Xian; Rao, Zhiwei; Hu, Fengping
2018-02-15
Nano-Fe 3 O 4 was used as heterogeneous catalyst to activate Na 2 S 2 O 8 for the generation of the sulfate radicals (SO 4 - ) to oxidize the residual pollutants in landfill leachate biochemical effluent. The oxidation performance, wastewater spectral analysis and activator characterization were discussed. Oxidation experimental result shows that nano-Fe 3 O 4 has obvious catalytic effect on Na 2 S 2 O 8 and can significantly enhance the oxidation efficiencies of Na 2 S 2 O 8 on landfill leachate biochemical effluent, with COD and color removals above 63% and 95%, respectively. Based on the analyses of three-dimensional excitation emission matrix fluorescence spectrum (3DEEM), ultraviolet-visible spectra (UV-vis), and Fourier Transform infrared spectroscopy (FTIR) of wastewater samples before and after treatment, it can be concluded that the pollution level of dissolved organic matter (DOM) declined and that the humic acid (HA) fractions were efficiently degraded into small molecules of fulvic acid (FA) fractions with less weight and stable structure. Compared to the raw wastewater sample, the aromaticity and substituent groups of the DOM were lessened in the treated wastewater sample. Moreover, the main structure of the organics and functional groups were changed by the Fe 3 O 4 /Na 2 S 2 O 8 system, with substantial decrease of conjugated double bonds. The micro morphology of nano-Fe 3 O 4 was characterized before and after reaction by the methods of scanning electron microscope spectra (SEM), X-ray diffraction pattern (XRD), and X-ray photoelectron spectroscopy (XPS). The XRD pattern analysis showed that nano-Fe 3 O 4 was oxidized into r-Fe 2 O 3 and that the particle size of it also became smaller after reaction. XPS was employed to analyze the content and iron valence on the nano-Fe 3 O 4 surface, and it can be found that the ratio of Fe 3+ /Fe 2+ decreased from 1.8 before reaction to 0.8 after reaction. From the SEM analysis after the treatment, it was determined that the spacing between nano-Fe 3 O 4 was increased, but in turn, the particles decreased in diameter. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Piazolo, Sandra; Daczko, Nathan R.; Smith, James R.; Evans, Lynn
2015-04-01
The effect of pre-tectonic reaction and annealing extent on the rheology of lower crustal rocks during a subsequent deformation event was studied using field and detailed microstructural analyses combined with numerical simulations to examine. In the studied rocks (Pembroke granulite, South Island, New Zealand) granulite facies two-pyroxene-pargasite orthogneiss partially to completely reacted to garnet bearing granulite either side of felsic dykes. The metamorphic reaction not only changed the abundance of phases but also their shape and grain size distribution. The reaction is most advanced close to the dykes, whereas further away the reaction is incomplete. As a consequence, grain size and the abundance of the rheologically hard phase garnet decreases away from the felsic dykes. Aspect ratios of mafic clusters which may include garnet decrease from high in the host, to near equidimensional close to the dyke. Post-reaction deformation localized in those areas that experienced minor to moderate reaction extent producing two spaced "paired" shear zones within the garnet-bearing reaction zone at either side of the felsic dykes. Our study shows how rock flow properties are governed by the pre-deformation history of a rock in terms of reaction and coupled annealing extent. If the grain size is sufficiently reduced by metamorphic reaction, deformation localizes in the partially finer grained rock domains, where deformation dominantly occurs by grain size sensitive deformation flow. Even if the reaction produces a nominally stronger phase (e.g. garnet) than the reactants, a local switch in dominant deformation behaviour from a grain size insensitive to a grain size sensitive in reaction induced fine-grained portions of the rock may occur and result in significant strain localization.
Growth Kinetics for Microalgae Grown in Palm Oil Mill Effluent (POME) medium at various CO2 Levels
NASA Astrophysics Data System (ADS)
Razali, S.; Salihon, J.; Ahmad, M. A.
2018-05-01
This paper sought to find the growth kinetic data of maximum specific growth rate (μmax) and substrate saturation constant (KS) for a microalgal reaction system over various dissolved CO2 levels (0.04, 0.1, 0.3, 0.5, 0.8, 1.0, 5.0, 10.0% v/v) at a constant sparging rate of 1.2 vvm, by using logistic model and Monod kinetics. The reaction system consisted of microalgae growing in palm oil mill effluent (POME) medium in 1 L flask with constant light illumination and sparged with the specified CO2 gas mixture. It is found from the experimental works that the values of μmax and KS to be at 0.04958 h-1 and 0.03523% (v/v) respectively. The results also showed that utilizing CO2 levels (v/v) in the sparging gas mixture more than 1% (v/v) would not improve microalgae growth significantly as expressed in the values of specific growth rate µ. These data and information are critically important for bioreactor scaling up purposes, especially bioreactor system dedicated for microalgae products and CO2 sequestration.
NASA Astrophysics Data System (ADS)
Nakatani, T.; Nakamura, M.
2016-08-01
To constrain the water circulation in subduction zones, the hydration rates of peridotites were investigated experimentally in fore-arc mantle conditions. Experiments were conducted at 400-580°C and 1.3 and 1.8 GPa, where antigorite is expected to form as a stable serpentine phase. Crushed powders of olivine ± orthopyroxene and orthopyroxene + clinopyroxene were reacted with 15 wt % distilled water for 4-19 days. The synthesized serpentine varieties were lizardite and aluminous lizardite (Al-lizardite) in all experimental conditions except those of 1.8 GPa and 580°C in the olivine + orthopyroxene system, in which antigorite was formed. In the olivine + orthopyroxene system, the reactions were interface-controlled except for the reaction at 400°C, which was transport-controlled. The corresponding reaction rates were 7.0 × 10-12 to 1.5 × 10-11 m s-1 at 500-580°C and 7.5 × 10-16 m2 s-1 at 400°C for the interface and transport-controlled reactions, respectively. Based on a simple reaction-transport model including these hydration rates, we infer that penetration of the slab-derived fluid all the way through a water-unsaturated fore-arc mantle is allowed only when focused flow occurs with a spacing larger than 77-229 km in hot subduction zones such as Nankai and Cascadia. However, the necessary spacing is only 2.3-4.6 m in intermediate-temperature subduction zones such as Kyushu and Costa Rica. These calculations imply that fluid leakage in hot subduction zones may occur after the fore-arc mantle is totally hydrated, whereas in intermediate-temperature subduction zones, leakage through a water-unsaturated fore-arc mantle may be facilitated.
Propagation of detonations in hydrazine vapor
NASA Technical Reports Server (NTRS)
Heinrich, H. J.
1985-01-01
In the range of greater hydrazine vapor pressure, detonation speed depends exclusively on the extent of the ammonia decomposition in the second reaction stage. As vapor pressure decreases, the ammonia disintegration speed becomes increasingly slower and the reaction reached in the reaction zone increasingly decreases until finally, in the vapor pressure range between 53 and 16 Torr, the contribution of the second stage to detonation propagation disappears, and only the first stage remains active. Since the disintegration speed of the hydrazine in this pressure range has decreased markedly as well, no level, but rather only spinning, detonations occur. Temporary separations of the impact front and the reaction zone in the process lead to fluctuations of the detonation speed.
Denitrification and nitrogen transport in a coastal aquifer receiving wastewater discharge
DeSimone, L.A.; Howes, B.L.
1996-01-01
Denitrification and nitrogen transport were quantified in a sandy glacial aquifer receiving wastewater from a septage-treatment facility on Cape Cod, MA. The resulting groundwater plume contained high concentrations of NO3- (32 mg of NL-1), total dissolved nitrogen (40.5 mg of N L-1), and dissolved organic carbon (1.9 mg of C L-1) and developed a central anoxic zone after 17 months of effluent discharge. Denitrifying activity was measured using four approaches throughout the major biogeochemical zones of the plume. Three approaches that maintained the structure of aquifer materials yielded comparable rates: acetylene block in intact sediment cores, 9.6 ng of N cm-3 d-1 (n = 61); in situ N2 production, 3.0 ng of N cm-3 d-1 (n = 11); and in situ NO3- depletion, 7.1 ng of N cm-3 d-1 (n = 3). In contrast, the mixing of aquifer materials using a standard slurry method yielded rates that were more than 15-fold higher (150 ng of N cm-3 d-1, n = 16) than other methods. Concentrations and ??15N of groundwater and effluent N2, NO3-, and NH4+ were consistent with the lower rates of denitrification determined by the intact-core or in situ methods. These methods and a plumewide survey of excess N2 indicate that 2-9% of the total mass of fixed nitrogen recharged to the anoxic zone of the plume was denitrified during the 34-month study period. Denitrification was limited by organic carbon (not NO3-) concentrations, as evidenced by a nitrate and carbon addition experiment, the correlation of denitrifying activity with in situ concentrations of dissolved organic carbon, and the assessments of available organic carbon in plume sediments. Carbon limitation is consistent with the observed conservative transport of 85-96% of the nitrate in the anoxic zone. Although denitrifying activity removed a significant amount (46250 kg) of fixed nitrogen during transport, the effects of aquifer denitrification on the nitrogen load to receiving ecosystems are likely to be small (<10%).
PDF investigations of turbulent non-premixed jet flames with thin reaction zones
NASA Astrophysics Data System (ADS)
Wang, Haifeng; Pope, Stephen
2012-11-01
PDF (probability density function) modeling studies are carried out for the Sydney piloted jet flames. These Sydney flames feature much thinner reaction zones in the mixture fraction space compared to those in the well-studied Sandia piloted jet flames. The performance of the different turbulent combustion models in the Sydney flames with thin reaction zones has not been examined extensively before, and this work aims at evaluating the capability of the PDF method to represent the thin turbulent flame structures in the Sydney piloted flames. Parametric and sensitivity PDF studies are performed with respect to the different models and model parameters. A global error parameter is defined to quantify the departure of the simulation results from the experimental data, and is used to assess the performance of the different set of models and model parameters.
Maher, Chris; Neethling, J B; Murthy, Sudhir; Pagilla, Krishna
2015-11-15
The role of adsorption and/or complexation in removal of reactive or unreactive effluent phosphorus by already formed chemical precipitates or complexes has been investigated. Potential operational efficiency gains resulting from age of chemically precipitated tertiary alum sludge and the recycle of sludge to the process stream was undertaken at the Iowa Hill Water Reclamation Facility which employs the DensaDeg(®) process (IDI, Richmond, VA) for tertiary chemical P removal to achieve a filtered final effluent total phosphorus concentration of <30 μg/L. The effect of sludge solids age was found to be insignificant over the solids retention time (SRT) of 2-8 days, indicating that the solids were unaffected by the aging effects of decreasing porosity and surface acidity. The bulk of solids inventory was retained in the clarifier blanket, providing no advantage in P removal from increased solids inventory at higher SRTs. When solids recycle was redirected from the traditional location of the flocculation reactor to a point just prior to chemical addition in the chemical mixing reactor, lower effluent soluble P concentrations at lower molar doses of aluminum were achieved. At laboratory scale, the "spent" or "waste" chemical alum sludge from P removal showed high capacity and rapid kinetics for P sorption from real wastewater effluents. Saturation concentrations were in the range of 8-29 mg soluble reactive P/g solids. Higher saturation concentrations were found at higher temperatures. Alum sludge produced without a coagulant aid polymer had a much higher capacity for P sorption than polymer containing alum sludge. The adsorption reaction reached equilibrium in less than 10 min with 50% or greater removal within the first minute. Copyright © 2015 Elsevier Ltd. All rights reserved.
Circulating platelet aggregates damage endothelial cells in culture.
Aluganti Narasimhulu, Chandrakala; Nandave, Mukesh; Bonilla, Diana; Singaravelu, Janani; Sai-Sudhakar, Chittoor B; Parthasarathy, Sampath
2017-06-01
Presence of circulating endothelial cells (CECs) in systemic circulation may be an indicator of endothelial damage and/or denudation, and the body's response to repair and revascularization. Thus, we hypothesized that aggregated platelets (AgPlts) can disrupt/denude the endothelium and contribute to the presence of CEC and EC-derived particles (ECDP). Endothelial cells were grown in glass tubes and tagged with/without 0.5 μm fluorescent beads. These glass tubes were connected to a mini-pump variable-flow system to study the effect of circulating AgPlts on the endothelium. ECs in glass tube were exposed to medium alone, nonaggregated platelets (NAgPlts), AgPlts, and 90 micron polystyrene beads at a flow rate of 20 mL/min for various intervals. Collected effluents were cultured for 72 h to analyze the growth potential of dislodged but intact ECs. Endothelial damage was assessed by real time polymerase chain reaction (RT-PCR) for inflammatory genes and Western blot analysis for von Willebrand factor. No ECs and ECDP were observed in effluents collected after injecting medium alone and NAgPlts, whereas AgPlts and Polybeads drastically dislodged ECs, releasing ECs and ECDP in effluents as the time increased. Effluents collected when endothelial cell damage was seen showed increased presence of von Willebrand factor as compared to control effluents. Furthermore, we analyzed the presence of ECs and ECDPs in heart failure subjects, as well as animal plasma samples. Our study demonstrates that circulating AgPlts denude the endothelium and release ECs and ECDP. Direct mechanical disruption and shear stress caused by circulating AgPlts could be the underlying mechanism of the observed endothelium damage. Copyright © 2017 Elsevier Inc. All rights reserved.
Huete, A; de Los Cobos-Vasconcelos, D; Gómez-Borraz, T; Morgan-Sagastume, J M; Noyola, A
2018-06-15
The direct anaerobic treatment of municipal wastewater represents an adapted technology to the conditions of developing countries. In order to get an increased acceptance of this technology, a proper control of dissolved methane in the anaerobic effluents should be considered, as methane is a potent greenhouse gas. In this study, a pilot-scale system was operated for 168 days to recover dissolved methane from an effluent of an upflow anaerobic sludge blanket reactor and then oxidize it in a compost biofilter. The system operated at a constant air (0.9 m 3 /h ±0.09) and two air-to anaerobic effluent ratio (1:1 and 1:2). In both conditions (CH 4 concentration of 2.7 ± 0.87 and 4.3% ± 1.14, respectively) the desorption column recovered 99% of the dissolved CH 4 and approximately 30% ± 8.5 of H 2 S, whose desorption was limited due to the high pH (>8) of the effluent. The biofilter removed 70% ± 8 of the average CH 4 load (60 gCH 4 /m 3 h ± 13) and 100% of the H 2 S load at an empty bed retention time of 23 min. The average temperature inside the biofilter was 42 ± 9 °C due to the CH 4 oxidation reaction, indicating that temperature and moisture control is particularly important for CH 4 removal in compost biofilters. The system may achieve a 54% reduction of greenhouse gas emissions from dissolved CH 4 in this particular case. Copyright © 2017 Elsevier Ltd. All rights reserved.
Research on denitrification efficiency of three types of solid carbon source
NASA Astrophysics Data System (ADS)
Cai, Y.; Zhang, J. D.; Li, F.; Cao, Y. X.; Zhu, L. Y.; Xiao, M. S.
2018-01-01
C/N rates can greatly influence efficiency of denitrification. It is difficult for current treated effluent to reach GB18918-2002 primary effluent standard because of its low C/N rate. To improve the efficiency of denitrification, the quality of effluent, and realize the waste recycling, this article selected magnolia leaves, loofah and degradable meal box as the solid carbon source and set different solid-liquid ratio of magnolia leaves for periodic denitrification stage to study the change of NO3 --N, TN, COD, NO2 --N, NH4 +, PO4 3- and color. The results showed that in the condition of influent nitrate concentration of 40 mg/L, carbon dosage of 10 g, the reaction temperature of 25°C, the nitrate removal rates of magnolia leaves and loofah reached 89.0% and 96.8% respectively, rather higher than degradable meal box (56.3%). The TN removal rates of magnolia leaves (91.7%) and loofah (77.7%) were both higher than degradable meal box (53.9%), and the effluent TN concentration of loofah and degradable meal box reached 25.4 mg/L and 21.1 mg/L respectively, which couldn’t be discharged according to the primary effluent concentration standard of GB18918-2002. The released concentration of ammonia nitrogen and phosphate: loofah> magnolia> degradable meal box. The high solid-liquid ratio of magnolia leaves helped to improve the TN removal rate, which reached 75.0% (1:200) and 91.7% (1:100), but it caused higher released concentration of carbon, ammonia nitrogen and phosphate to effect system heavily. Under the integrated analysis, the low solid-liquid ratio (1:200) of magnolia leaves was more suitable to be the denitrification external carbon source.
Assessing the relative bioavailability of DOC in regional groundwater systems
Chapelle, Francis H.; Bradley, Paul M.; Journey, Celeste A.; McMahon, Peter B.
2013-01-01
It has been hypothesized that the degree to which a hyperbolic relationship exists between concentrations of dissolved organic carbon (DOC) and dissolved oxygen (DO) in groundwater may indicate the relative bioavailability of DOC. This hypothesis was examined for 73 different regional aquifers of the United States using 7745 analyses of groundwater compiled by the National Water Assessment (NAWQA) program of the U.S. Geological Survey. The relative reaction quotient (RRQ), a measure of the curvature of DOC concentrations plotted versus DO concentrations and regressed to a decaying hyperbolic equation, was used to assess the relative bioavailability of DOC. For the basalt aquifer of Oahu, Hawaii, RRQ values were low (0.0013 mM−2), reflecting a nearly random relationship between DOC and DO concentrations. In contrast, on the island of Maui, treated sewage effluent injected into a portion of the basalt aquifer resulted in pronounced hyperbolic DOC-DO behavior and a higher RRQ (142 mM−2). RRQ values for the 73 aquifers correlated positively with mean concentrations of ammonia, dissolved iron, and manganese, and correlated negatively with mean pH. This indicates that greater RRQ values are associated with greater concentrations of the final products of microbial reduction reactions. RRQ values and DOC concentrations were negatively correlated with the thickness of the unsaturated zone (UNST) and depth to the top of the screened interval. Finally, RRQ values were positively correlated with mean annual precipitation (MAP), and the highest observed RRQ values were associated with aquifers receiving MAP rates ranging between 900 and 1300 mm/year. These results are uniformly consistent with the hypothesis that the hyperbolic behavior of DOC-DO plots, as quantified by the RRQ metric, can be an indicator of relative DOC bioavailability in groundwater systems.
Hydrogen production from carbonaceous material
Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.
2004-09-14
Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.
Cardoso-Mohedano, J G; Páez-Osuna, F; Amezcua-Martínez, F; Ruiz-Fernández, A C; Ramírez-Reséndiz, G; Sanchez-Cabeza, J A
2016-03-15
Nutrient pollution causes environmental damages on aquatic ecosystems worldwide. Eutrophication produces impacts in coastal ecosystems, affecting biota and ecosystem services. The Urias coastal lagoon (SE Gulf of California) is a sub-tropical estuary under several environmental pressures such as nutrient inputs from shrimp farm effluents and dredging related to port operations, which can release substances accumulated in sediments. We assessed the water quality impacts caused by these activities and results showed that i) nitrogen was the limiting nutrient, ii) shrimp farm effluents increased particulate organic matter and chlorophyll a in the receiving stations, and iii) dredging activities increased nitrite and reduced dissolved oxygen concentrations. The co-occurrence of the shrimp farm releases and dredging activities was likely the cause of a negative synergistic effect on water quality which mainly decreases dissolved oxygen and increases nitrite concentrations. Coastal zone management should avoid the co-occurrence of these, and likely others, stressors in coastal ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microbial communities in riparian soils of a settling pond for mine drainage treatment.
Fan, Miaochun; Lin, Yanbing; Huo, Haibo; Liu, Yang; Zhao, Liang; Wang, Entao; Chen, Weimin; Wei, Gehong
2016-06-01
Mine drainage leads to serious contamination of soil. To assess the effects of mine drainage on microbial communities in riparian soils, we used an Illumina MiSeq platform to explore the soil microbial composition and diversity along a settling pond used for mine drainage treatment. Non-metric multidimensional scaling analysis showed that the microbial communities differed significantly among the four sampling zones (influent, upstream, downstream and effluent), but not seasonally. Constrained analysis of principal coordinates indicated heavy metals (zinc, lead and copper), total sulphur, pH and available potassium significantly influenced the microbial community compositions. Heavy metals were the key determinants separating the influent zone from the other three zones. Lower diversity indices were observed in the influent zone. However, more potential indicator species, related to sulphur and organic matter metabolism were found there, such as the sulphur-oxidizing genera Acidiferrobacter, Thermithiobacillus, Limnobacter, Thioprofundum and Thiovirga, and the sulphur-reducing genera Desulfotomaculum and Desulfobulbus; the organic matter degrading genera, Porphyrobacter and Paucimonas, were also identified. The results indicated that more microorganisms related to sulphur- and carbon-cycles may exist in soils heavily contaminated by mine drainage. Copyright © 2016 Elsevier Ltd. All rights reserved.
DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cyburt, R. H.; Keek, L.; Schatz, H.
2016-10-20
X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to matchmore » calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.« less
Method And Reactor For Production Of Aluminum By Carbothermic Reduction Of Alumina
Aune, Jan Arthur; Johansen, Kai
2004-10-19
A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.
NASA Astrophysics Data System (ADS)
Ahrns, Johannes; Bartak, Rico; Grischek, Thomas; Pörschke, Richard
2017-11-01
In subsurface iron removal (SIR), oxygen-enriched water is injected into an aquifer to create a reaction zone. Aside from the hydraulic properties of the aquifer, groundwater quality often varies with depth so that in vertical wells the dissolved oxygen distribution (reaction zone) may not correspond to the dissolved iron concentration which may result in a lower efficiency coefficient. Therefore, measures to hydraulically optimize the formation of the reaction zone through a non-conventional injection were investigated. A high-resolution groundwater flow model was calibrated based on tracer and pump tests and used to plan the optimized injection for a SIR-pilot well with two screen segments. An optimized injection appears to be possible through the inactivation of well screen sections using packers. A doubling of the efficiency coefficient in comparison to a conventional injection was predicted when a packer, which remains evacuated inside the well while pumping, was used to seal 4/5 of the upper well screen length during injection. This scenario was used to plan the operating regime for a SIR field test, which is presented in Part 2.
Lindholm-Lehto, Petra C; Ahkola, Heidi S J; Knuutinen, Juha S; Herve, Sirpa H
2015-11-01
The presence of five different pharmaceuticals, consisting of four anti-inflammatory and one antiepileptic drug, was determined in influent and effluent of a municipal wastewater treatment plant (WWTP) near the city of Jyväskylä, Finland, and in the receiving water, northern Lake Päijänne. In addition, samples of sedimented particles were collected among water samples from five locations near the discharge point of the treated wastewater. The solid phase extracts (SPEs) of water samples were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The studied pharmaceuticals were detected from influent, effluent, and lake water but also in the sedimented particles. The concentrations of carbamazepine, diclofenac, ibuprofen, ketoprofen, and naproxen in Lake Päijänne ranged from 1 to 21 ng L(-1), 4 to 209 ng L(-1), 5 to 836 ng L(-1), 9 to 952 ng L(-1), and 2 to 129 ng L(-1), respectively. The concentrations of ketoprofen in sedimented particles ranged from 79 to 135 μg g(-1) while only trace amounts of other selected pharmaceuticals were detected. The results indicate that the concentrations of pharmaceuticals are affected by the biological and chemical reactions occurring in the wastewater treatment processes but also by the UV light in the photic layer of Lake Päijänne. It can be concluded that considerable amount of selected pharmaceuticals are present in the influent and effluent of municipal WWTP but also in the water phase and sedimented particles of northern Lake Päijänne.
Ng, Kim Hoong; Khan, Maksudur R; Ng, Yun Hau; Hossain, Sk Safdar; Cheng, Chin Kui
2017-07-01
In this study, we have employed a photocatalytic method to restore the liquid effluent from a palm oil mill in Malaysia. Specifically, the performance of both TiO 2 and ZnO was compared for the photocatalytic polishing of palm oil mill effluent (POME). The ZnO photocatalyst has irregular shape, bigger in particle size but smaller BET specific surface area (9.71 m 2 /g) compared to the spherical TiO 2 photocatalysts (11.34 m 2 /g). Both scavenging study and post-reaction FTIR analysis suggest that the degradation of organic pollutant in the TiO 2 system has occurred in the bulk solution. In contrast, it is necessary for organic pollutant to adsorb onto the surface of ZnO photocatalyst, before the degradation took place. In addition, the reactivity of both photocatalysts differed in terms of mechanisms, photocatalyst loading and also the density of photocatalysts. From the stability test, TiO 2 was found to offer higher stability, as no significant deterioration in activity was observed after three consecutive cycles. On the other hand, ZnO lost around 30% of its activity after the 1st-cycle of photoreaction. The pH studies showed that acidic environment did not improve the photocatalytic degradation of the POME, whilst in the basic environment, the reaction media became cloudy. In addition, longevity study also showed that the TiO 2 was a better photocatalyst compared to the ZnO (74.12%), with more than 80.0% organic removal after 22 h of UV irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals
NASA Astrophysics Data System (ADS)
Liu, Yuan; Illangasekare, Tissa H.; Kitanidis, Peter K.
2014-02-01
Understanding and being able to predict the long-term behavior of DNAPL (i.e., PCE and TCE) residuals after active remediation has ceased have become increasingly important as attention at many sites turns from aggressive remediation to monitored natural attenuation and long-term stewardship. However, plume behavior due to mass loading and reactions during these later phases is less studied as they involve large spatial and temporal scales. We apply both theoretical analysis and pore-scale simulations to investigate mass transfer from DNAPL residuals and subsequent reactions within the generated plume, and, in particular, to show the differences between early- and late-time behaviors of the plume. In the zone of entry of the DNAPL entrapment zone where the concentration boundary layer in the flowing groundwater has not fully developed, the pore-scale simulations confirm the past findings based on laboratory studies that the mass transfer increases as a power-law function of the Peclét number, and is enhanced due to reactions in the plume. Away from the entry zone and further down gradient, the long-term reactions are limited by the available additive and mixing in the porous medium, thereby behave considerably differently from the entry zone. For the reaction between the contaminant and an additive with intrinsic second-order bimolecular kinetics, the late-time reaction demonstrates a first-order decay macroscopically with respect to the mass of the limiting additive, not with respect to that of the contaminant. The late-time decay rate only depends on the intrinsic reaction rate and the solubility of the entrapped DNAPL. At the intermediate time, the additive decays exponentially with the square of time (t2), instead of time (t). Moreover, the intermediate decay rate also depends on the initial conditions, the spatial distribution of DNAPL residuals, and the effective dispersion coefficient.
Torres, Mariana de Almeida; de Liz, Marcus Vinicius; Martins, Lucia Regina Rocha; Freitas, Adriane Martins
2018-04-18
Increased concentrations of nutrients in water bodies caused by effluent discharge, fertilizers and other inputs can lead to artificial eutrophication, increasing the primary productivity, bringing well-known and serious consequences to the environment (such as excessive macrophyte and microalgae growth). Most strategies for phytoplankton control in aquatic ecosystems result in metal accumulation or toxic by-product formation after chlorination. Concerning this matter, the photo-Fenton process (usually applied in wastewater treatment and degradation of a variety of contaminants) has been studied for water and effluent disinfection. However, its application in microalgae inactivation has not been reported until now. Therefore, this work aimed to evaluate the process effectiveness in inactivating microalgae, using Desmodesmus subspicatus as a model. Photo-Fenton experiments were carried out at the lab scale, at 105 cells per mL with 20 mg L-1 of H2O2 and 5 mg L-1 of Fe2+ (complexed with oxalic acid). The cell concentration and Growth Inhibition Test (GIT) were used to evaluate the process efficiency and Scanning Electron Microscopy (SEM) to analyze any alterations in the cell morphology. After performing the photo-Fenton reaction, the individual contribution of the reactants and radiation was investigated. The cell concentration was not significantly reduced during the photo-Fenton reaction, but SEM images indicated possible morphology alterations and the GIT showed the loss of cell viability after 30 minutes of exposure. Effects on the cell growth were also observed when exposed only to hydrogen peroxide.
Yadav, Bholu Ram; Garg, Anurag
2018-01-01
In the present study, activated carbon (AC) supported bi-metallic catalyst (3.3Cu/2.2Ce/4.4AC) was subjected to catalytic wet oxidation (CWO) of simulated pulping effluent at moderate operating conditions (temperatures = 120-190 °C and oxygen partial pressures = 0.5-1.2 MPa). The oxidation reaction was performed in a high pressure reactor (capacity = 0.7 l) with catalyst concentration of 1-5 g/l for 3 h duration. During CWO at 190 °C temperature and 0.9 MPa oxygen pressure, the chemical oxygen demand (COD), total organic carbon (TOC), lignin and color removals from the wastewater were 79%, 77%, 88% and 89%, respectively, while the wastewater biodegradability was enhanced to 0.52 from an initial value of 0.16. TOC mass balance suggested that nearly 86-97% of the degraded TOC was mineralized whereas copper and cerium leaching from the catalyst were in the range of 1-15% and 0.7-1% with respect to their initial amounts. Metal leaching was reduced with increase in the reaction temperature. Global kinetic rate model was also developed using TOC degradation data and the activation energies of two step (rapid followed by slower TOC removal) CWO reaction were determined as 34.2 kJ/mol and 28.5 kJ/mol, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microwave plasma generation of hydrogen atoms for rocket propulsion
NASA Technical Reports Server (NTRS)
Chapman, R.; Filpus, J.; Morin, T.; Snellenberger, R.; Asmussen, J.; Hawley, M.; Kerber, R.
1981-01-01
A flow microwave plasma reaction system is used to study the conversion of hydrogen to hydrogen atoms as a function of pressure, power density, cavity tuning, cavity mode, and time in the plasma zone. Hydrogen atom concentration is measured down-stream from the plasma by NOCl titration. Extensive modeling of the plasma and recombination zones is performed with the plasma zone treated as a backmix reaction system and the recombination zone treated as a plug flow. The thermodynamics and kinetics of the recombination process are examined in detail to provide an understanding of the conversion of recombination energy to gas kinetic energy. It is found that cavity tuning, discharge stability, and optimum power coupling are critically dependent on the system pressure, but nearly independent of the flow rate.
Comparisons between thermodynamic and one-dimensional combustion models of spark-ignition engines
NASA Technical Reports Server (NTRS)
Ramos, J. I.
1986-01-01
Results from a one-dimensional combustion model employing a constant eddy diffusivity and a one-step chemical reaction are compared with those of one-zone and two-zone thermodynamic models to study the flame propagation in a spark-ignition engine. One-dimensional model predictions are found to be very sensitive to the eddy diffusivity and reaction rate data. The average mixing temperature found using the one-zone thermodynamic model is higher than those of the two-zone and one-dimensional models during the compression stroke, and that of the one-dimensional model is higher than those predicted by both thermodynamic models during the expansion stroke. The one-dimensional model is shown to predict an accelerating flame even when the front approaches the cold cylinder wall.
Preferential dealkylation reactions of s-triazine herbicides in the unsaturated zone
Mills, M.S.; Michael, Thurman E.
1994-01-01
The preferential dealkylation pathways of the s-triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), propazine [2-chloro-4,6-bis(isopropylamino)-s-triazine], and simazine [2-chloro-4,6-bis(ethylamino)-s-triazine], and two monodealkylated triazine metabolites, deisopropylatrazine (DIA: 2-amino-4-chloro-6-ethylamino-s-triazine) and deethylatrazine (DEA: 2-amino-4-chloro-6-isopropylamino-s-triazine) were investigated on two adjacent Eudora silt-loam plots growing corn (Zea mays L.). Results from the shallow unsaturated zone and surface-water runoff showed preferential removal of an ethyl side chain from atrazine, simazine, and DIA relative to an isopropyl side chain from atrazine, propazine, and DEA. It is hypothesized that deethylation reactions may proceed at 2-3 times the rate of deisopropylation reactions. It is concluded that small concentrations of DIA reportedly associated with the degradation of atrazine may be due to a rapid turnover rate of the metabolite in the unsaturated zone, not to small production levels. Because of continued dealkylation of both monodealkylated metabolites, a strong argument is advanced for the presence of a didealkylated metabolite in the unsaturated zone.
Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl
NASA Astrophysics Data System (ADS)
Liao, Ying-Hao
This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO emissions. The elevated NO emissions are due to a longer combustion residence time due to the flow recirculation within the swirl-induced recirculation zone. The reaction zone structure, based on OH planar laser-induced fluorescence (PLIF) is broadly consistent with the observation of luminous flame structure for these types of flames. In many cases, the reaction zone exhibits discontinuities at the instantaneous flame tip in the early period of fuel injection. These discontinuities in the reaction zone likely result from the non-ignition of injected fuel, due to a relatively slower reaction rate in comparison with the mixing rate. The discontinuity in the OH zone is generally seen to diminish with increased swirl level. Statistics generated from the OH PLIF signals show that the reaction zone area generally increases with increased swirl level, consistent with a broader and more convoluted OH-zone structure for flames with swirl. The reaction zone area for swirled flames generally exhibits a higher degree of fluctuation, suggesting a relatively stronger impact of flow turbulence on the flame structure for flames with swirl.
Gutiérrez, Juan Manuel; da Conceição, Moisés Basilio; Molisani, Mauricio Mussi; Weber, Laura Isabel
2018-03-01
Offshore oil exploration creates threats to coastal ecosystems, including increasing urbanization and associated effluent releases. Genotoxicity biomarkers in mussels were determined across a gradient of coastal zone influences of offshore petroleum exploration in southeastern Brazil. Coastal ecosystems such as estuaries, beaches and islands were seasonally monitored for genotoxicity evaluation using the brown mussel Perna perna. The greatest DNA damage (5.2% ± 1.9% tail DNA and 1.5‰ ± 0.8‰ MN) were observed in urban estuaries, while Santana Archipelago showed levels of genotoxicity near zero and is considered a reference site. Mussels from urban and pristine beaches showed intermediate damage levels, but were also influenced by urbanization. Thus, mussel genotoxicity biomarkers greatly indicated the proposed oil exploration and urbanization scenarios that consequently are genetically affecting coastal organisms.
A novel thermal biosensor based on enzyme reaction for pesticides measurement.
Zheng, Yi-Hu; Hua, Tse-Chao; Xu, Fei
2005-01-01
A novel thermal biosensor based on enzyme reaction for pesticides detection has been developed. This biosensor is a flow injection analysis system and consists of two channels with enzyme reaction column and identical reference column, which is set for eliminating the unspecific heat. The enzyme reaction takes place in the enzyme reaction column at a constant temperature (40 degrees C) realized by a thermoelectric thermostat. Thermosensor based on the thermoelectric module containing 127 serial BiTe-thermocouples is used to monitor the temperature difference between two effluents from enzyme reaction column and reference column. The ability of this biosensor to detect pesticides is demonstrated by the decreased degree of the hydrolytic heat in two types of thermosensor mode. The hydrolytic reaction is inhibited by 36% at 1 mg/L DDVP and 50% at 10 mg/L DDVP when cell-typed thermosensor is used. The percent inhibition is 30% at 1 mg/L DDVP and 42% at 10 mg/L DDVP in tube-typed thermosensor mode. The detection for real sample shows that this biosensor can be used for detection of organophosphate pesticides residue.
Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence
NASA Technical Reports Server (NTRS)
Leonard, Andy D.; Hill, James C.
1992-01-01
Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.
Auxiliary reactor for a hydrocarbon reforming system
Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.
2006-01-17
An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.
Applying fenton process in acrylic fiber wastewater treatment and practice teaching
NASA Astrophysics Data System (ADS)
Zhang, Chunhui; Jiang, Shan
2018-02-01
Acrylic fiber manufacturing wastewater, containing a wider range of pollutants, high concentration of refractory organics, poisonous and harmful matters, was significant to treat from the effluents of wastewater treatment plants (WWTPs). In this work, a Fenton reactor was employed for advanced treatment of the WWTP effluents. An orthogonal test and a parametric study were carried out to determine the effect of the main operating conditions and the Fenton process attain excellent performance on the degradation of pollutants under an optimal condition of ferrous dosage was 6.25 mM, hydrogen peroxide was 75 mM and initial pH value was 3.0 in 90 min reaction time. The removal efficiency of COD, TOC, NH4 +-N and TN reached from 45% to 69%. Lastly, as a teaching advice, the Fenton reactor was used in practicing teaching nicely.
Ottoni, Cristiane; Simões, Marta F; Fernandes, Sara; Santos, Cledir R; Lima, Nelson
2016-08-02
Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L(-1)) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs.
Behavior of medically-derived 131I in the tidal Potomac River.
Rose, Paula S; Smith, Joseph P; Cochran, J Kirk; Aller, Robert C; Swanson, R Lawrence
2013-05-01
Iodine-131 (t1/2=8.04 d) is administered to patients for treatment of thyroid disorders, excreted by patients and discharged to surface waters via sewage effluent. Radionuclides generally behave like their stable analogs; therefore, medically-derived (131)I is useful as a transport-reaction tracer of anthropogenic inputs and the aquatic biogeochemistry of iodine. Iodine-131 was measured in Potomac River water and sediments in the vicinity of the Blue Plains Water Pollution Control Plant (WPCP), Washington, DC, USA. Concentrations measured in sewage effluent from Blue Plains WPCP and in the Potomac River suggest a relatively continuous source of this radionuclide. The range of (131)I concentrations detected in surface water was 0.076±0.006 to 6.07±0.07 Bq L(-1). Iodine-131 concentrations in sediments ranged from 1.3±0.8 to 117±2 Bq kg(-1) dry weight. Partitioning in the sewage effluent from Blue Plains and in surface waters indicated that (131)I is associated with colloidal and particulate organic material. The behavior of medically-derived (131)I in the Potomac River is consistent with the nutrient-like behavior of natural iodine in aquatic environments. After discharge to the river via sewage effluent, it is incorporated into biogenic particulate material and deposited in sediments. Solid phase sediment profiles of (131)I indicated rapid mixing or sedimentation of particulate debris and diagenetic remineralization and recycling on short time scales. Copyright © 2013. Published by Elsevier B.V.
Long-term flow rates and biomat zone hydrology in soil columns receiving septic tank effluent.
Beal, C D; Gardner, E A; Kirchhof, G; Menzies, N W
2006-07-01
Soil absorption systems (SAS) are used commonly to treat and disperse septic tank effluent (STE). SAS can hydraulically fail as a result of the low permeable biomat zone that develops on the infiltrative surface. The objectives of this experiment were to compare the hydraulic properties of biomats grown in soils of different textures, to investigate the long-term acceptance rates (LTAR) from prolonged application of STE, and to assess if soils were of major importance in determining LTAR. The STE was applied to repacked sand, Oxisol and Vertisol soil columns over a period of 16 months, at equivalent hydraulic loading rates of 50, 35 and 8L/m(2)/d, respectively. Infiltration rates, soil matric potentials, and biomat hydraulic properties were measured either directly from the soil columns or calculated using established soil physics theory. Biomats 1 to 2 cm thick developed in all soils columns with hydraulic resistances of 27 to 39 d. These biomats reduced a 4 order of magnitude variation in saturated hydraulic conductivity (K(s)) between the soils to a one order of magnitude variation in LTAR. A relationship between biomat resistance and organic loading rate was observed in all soils. Saturated hydraulic conductivity influenced the rate and extent of biomat development. However, once the biomat was established, the LTAR was governed by the resistance of the biomat and the sub-biomat soil unsaturated flow regime induced by the biomat. Results show that whilst initial soil K(s) is likely to be important in the establishment of the biomat zone in a trench, LTAR is determined by the biomat resistance and the unsaturated soil hydraulic conductivity, not the K(s) of a soil. The results call into question the commonly used approach of basing the LTAR, and ultimately trench length in SAS, on the initial K(s) of soils.
Zone heating for fluidized bed silane pyrolysis
NASA Technical Reports Server (NTRS)
Iya, Sridhar K. (Inventor)
1987-01-01
An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower reaction zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.
Meesap, Kanlayanee; Boonapatcharoen, Nimaradee; Techkarnjanaruk, Somkiet; Chaiprasert, Pawinee
2012-01-01
The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2 g COD/L day, composed mainly of suspended solids (SS) and oil and grease (O&G) concentrations between 5.2 to 10.2 and 0.9 to 1.9 g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD), SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane potentials were higher, and the methane yield increased to 0.30 L CH4/g CODremoved. It was observed these effects on the microbial population and activity in the sludge and packed zones. The eubacterial population and activity in the sludge zone increased to 6.4 × 109 copies rDNA/g VSS and 1.65 g COD/g VSS day, respectively, whereas those in the packed zone were lower. The predominant hydrolytic and fermentative bacteria were Pseudomonas, Clostridium, and Bacteroidetes. In addition, the archaeal population and activity in the packed zone were increased from to 9.1 × 107 copies rDNA/g VSS and 0.34 g COD-CH4/g VSS day, respectively, whereas those in the sludge zone were not much changed. The most represented species of methanogens were the acetoclastic Methanosaeta, the hydrogenotrophic Methanobacterium sp., and the hydrogenotrophic Methanomicrobiaceae. PMID:22927723
Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California
Izbicki, John A.; Flint, Alan L.; O'Leary, David R.; Nishikawa, Tracy; Martin, Peter; Johnson, Russell D.; Clark, Dennis A.
2015-01-01
Mobilization of natural and septic nitrate from the unsaturated zone as a result of managed aquifer recharge has degraded water quality from public-supply wells near Yucca Valley in the western Mojave Desert, California. The effect of nitrate storage and potential for denitrification in the unsaturated zone to mitigate increasing nitrate concentrations were investigated. Storage of water extractable nitrate in unsaturated alluvium up to 160 meters (m) thick, ranged from 420 to 6600 kilograms per hectare (kg/ha) as nitrogen (N) beneath undeveloped sites, from 6100 to 9200 kg/ha as N beneath unsewered sites. Nitrate reducing and denitrifying bacteria were less abundant under undeveloped sites and more abundant under unsewered sites; however, δ15N–NO3, and δ18O–NO3 data show only about 5–10% denitrification of septic nitrate in most samples—although as much as 40% denitrification occurred in some parts the unsaturated zone and near the top of the water table. Storage of nitrate in thick unsaturated zones and dilution with low-nitrate groundwater are the primary attenuation mechanisms for nitrate from septic discharges in the study area. Numerical simulations of unsaturated flow, using the computer program TOUGH2, showed septic effluent movement through the unsaturated zone increased as the number and density of the septic tanks increased, and decreased with increased layering, and increased slope of layers, within the unsaturated zone. Managing housing density can delay arrival of septic discharges at the water table, especially in layered unsaturated alluvium, allowing time for development of strategies to address future water-quality issues.
Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California
NASA Astrophysics Data System (ADS)
Izbicki, John A.; Flint, Alan L.; O'Leary, David R.; Nishikawa, Tracy; Martin, Peter; Johnson, Russell D.; Clark, Dennis A.
2015-05-01
Mobilization of natural and septic nitrate from the unsaturated zone as a result of managed aquifer recharge has degraded water quality from public-supply wells near Yucca Valley in the western Mojave Desert, California. The effect of nitrate storage and potential for denitrification in the unsaturated zone to mitigate increasing nitrate concentrations were investigated. Storage of water extractable nitrate in unsaturated alluvium up to 160 meters (m) thick, ranged from 420 to 6600 kilograms per hectare (kg/ha) as nitrogen (N) beneath undeveloped sites, from 6100 to 9200 kg/ha as N beneath unsewered sites. Nitrate reducing and denitrifying bacteria were less abundant under undeveloped sites and more abundant under unsewered sites; however, δ15N-NO3, and δ18O-NO3 data show only about 5-10% denitrification of septic nitrate in most samples-although as much as 40% denitrification occurred in some parts the unsaturated zone and near the top of the water table. Storage of nitrate in thick unsaturated zones and dilution with low-nitrate groundwater are the primary attenuation mechanisms for nitrate from septic discharges in the study area. Numerical simulations of unsaturated flow, using the computer program TOUGH2, showed septic effluent movement through the unsaturated zone increased as the number and density of the septic tanks increased, and decreased with increased layering, and increased slope of layers, within the unsaturated zone. Managing housing density can delay arrival of septic discharges at the water table, especially in layered unsaturated alluvium, allowing time for development of strategies to address future water-quality issues.
40 CFR 264.98 - Detection monitoring program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conductance, total organic carbon, or total organic halogen), waste constituents, or reaction products that... reaction products in the unsaturated zone beneath the waste management area; (3) The detectability of indicator parameters, waste constituents, and reaction products in ground water; and (4) The concentrations...
Seasonal Solar Thermal Absorption Energy Storage Development.
Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy
2015-01-01
This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations.
Wu, Kai-cheng; Wu, Peng; Shen, Yao-liang; Li, Yue-han; Wang, Han-fang; Xu, Yue-zhong
2015-11-01
Abstract: The last two compartments of the Anaerobic Baffled Readtor ( ABR) were altered into aeration tank and sedimentation tank respectively to get an integrated anaerobic-aerobic reactor, using anaerobic granular sludge in anaerobic zone and aerobic granular sludge in aerobic zone as seed sludge. The research explored the condition to cultivate nitritation granular sludge, under the condition of continuous flow. The C/N rate was decreased from 1 to 0.4 and the ammonia nitrogen volumetric loading rate was increased from 0.89 kg x ( m3 x d)(-1) to 2.23 kg x (m3 x d)(-1) while the setting time of 1 h was controlled in the aerobic zone. After the system was operated for 45 days, the mature nitritation granular sludge in aerobic zone showed a compact structure and yellow color while the nitrite accumulation rate was about 80% in the effluent. The associated inhibition of free ammonia (FA) and free nitrous acid (FNA) dominated the nitritation. Part of granules lost stability during the initial period of operation and flocs appeared in the aerobic zone. However, the flocs were transformed into newly generated small particles in the following reactor operation, demonstrating that organic carbon was benefit to granulation and the enrichment of slow-growing nitrifying played an important role in the stability of granules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel
2009-01-01
We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparisonmore » of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.« less
NASA Astrophysics Data System (ADS)
White, Bradley W.; Tarver, Craig M.
2017-01-01
It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.
Huang, Yuan-Chao Angelo; Huang, Shou-Chung; Meng, Pei-Jie; Hsieh, Hernyi Justin; Chen, Chaolun Allen
2012-04-01
Influences of marine cage culture and monsoonal disturbances, northeasterly (NE) and southwesterly (SW) monsoons on the proximal marine environment were investigated across a gradient of sites in a semi-enclosed bay, Magong Bay (Penghu Islands, Taiwan). Elevated levels of ammonia produced by the cages were the main pollutant and distinguished the cage-culture and intermediary zones (1000 m away from the cages) from the reference zone in the NE monsoon, indicating currents produced by the strong monsoon may have extended the spread of nutrient-enriched waters without necessarily flushing such effluents outside Magong Bay. Moreover, the levels of chlorophyll-a, dissolved oxygen, and turbidity were distinguishable between two seasons, suggesting that resuspension caused by the NE monsoon winds may also influence the water quality across this bay. It indicated that the impacts of marine cage culture vary as a function of distance, and also in response to seasonal movements of water driven by local climatic occurrences. Copyright © 2012 Elsevier Ltd. All rights reserved.
Field determination of vertical permeability to air in the unsaturated zone
Weeks, Edwin P.
1978-01-01
The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)
PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukul Sharma; Steven Bryant; Chun Huh
There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents tomore » better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and viscoelastic behavior as functions of pH; shear rate; polymer concentration; salinity, including divalent ion effects; polymer molecular weight; and degree of hydrolysis. A comprehensive rheological model was developed for HPAM solution rheology in terms of: shear rate; pH; polymer concentration; and salinity, so that the spatial and temporal changes in viscosity during the polymer flow in the reservoir can be accurately modeled. A series of acid coreflood experiments were conducted to understand the geochemical reactions relevant for both the near-wellbore injection profile control and for conformance control applications. These experiments showed that the use hydrochloric acid as a pre-flush is not viable because of the high reaction rate with the rock. The use of citric acid as a pre-flush was found to be quite effective. This weak acid has a slow rate of reaction with the rock and can buffer the pH to below 3.5 for extended periods of time. With the citric acid pre-flush the polymer could be efficiently propagated through the core in a low pH environment i.e. at a low viscosity. The transport of various HPAM solutions was studied in sandstones, in terms of permeability reduction, mobility reduction, adsorption and inaccessible pore volume with different process variables: injection pH, polymer concentration, polymer molecular weight, salinity, degree of hydrolysis, and flow rate. Measurements of polymer effluent profiles and tracer tests show that the polymer retention increases at the lower pH. A new simulation capability to model the deep-penetrating mobility control or conformance control using pH-sensitive polymer was developed. The core flood acid injection experiments were history matched to estimate geochemical reaction rates. Preliminary scale-up simulations employing linear and radial geometry floods in 2-layer reservoir models were conducted. It is clearly shown that the injection rate of pH-sensitive polymer solutions can be significantly increased by injecting it at a pH below 3.5 (at a fixed bottom-hole pressure). This improvement in injectivity by a factor of 2 to 10 can have a significant impact on the economics of chemical flooding and conformance control applications. Simulation tools and experimental data presented in this report help to design and implement such polymer injection projects.« less
Molins, S.; Mayer, K.U.
2007-01-01
The two‐way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate‐rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.
Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks
NASA Astrophysics Data System (ADS)
Harvey, J. W.; Gomez-Velez, J. D.
2014-12-01
Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange beneath meandering river banks mainly has importance only in large rivers. For solutes entering networks in proportion to water inputs it is the lower order streams that tend to dominate cumulative reaction progress.
3D DNS of Turbulent Premixed Flame with over 50 Species and 300 Elementary Reactions
NASA Astrophysics Data System (ADS)
Shimura, Masayasu; Yenerdag, Basmil; Naka, Yoshitsugu; Nada, Yuzuru; Tanahashi, Mamoru
2014-11-01
Three-dimensional direct numerical simulation of methane-air premixed planar flame propagating in homogenous isotropic turbulence is conducted to investigate local flame structure in thin reaction zones. Detailed kinetic mechanism, GRI-Mech 3.0 which includes 53 species and 325 elementary reactions, is used to represent methane-air reaction, and temperature dependences of transport and thermal properties are considered. For a better understanding of the local flame structure in thin reaction zones regime, distributions of mass fractions of major species, heat release rate, temperature and turbulent structures are investigated. Characteristic flame structures, such as radical fingering and multi-layered-like flame structures, are observed. The most expected maximum heat release rate in flame elements is lower than that of laminar flame with same mixture. To clarify mechanism of the decrease in local heat release rate, effects of strain rates tangential to flame front on local heat release rate are investigated.
NASA Astrophysics Data System (ADS)
Marocchi, M.; Hermann, J.; Bargossi, G. M.; Mair, V.; Morten, L.
2006-12-01
Ultramafic blocks belonging to the Hochwart peridotite outcrop (Ulten Zone, Italian Alps) preserve a series of metasomatic mineral zones generated by infiltration of Si-rich hydrous fluids which occurred at the gneiss- peridotite interface. The age of the high pressure metamorphism for the Hochwart complex has been constrained at 330 Ma (Tumiati et al., 2003, EPSL, 210, 509-526). The country rocks are stromatic gneisses consisting mainly of quartz, K-feldspar, garnet, kyanite, biotite and muscovite. The ultramafic body consists of strongly serpentinized metaperidotites which are exposed as a hectometre-size lens along a steep gully, associated to monomineralic zones that developed at the contact between the peridotite body and the garnet gneiss country rocks. The composition of the metasomatic zones has been investigated in detail and records an order of metasomatic zoning formed by phlogopite-rich to tremolite-anthophyllite-rich rocks going from the host gneiss towards the peridotite. In some cases, the ultramafics fade into the gneisses developing serpentine and talc which has replaced, presumably at lower temperatures, the serpentine matrix and occurs in association with chlorite. Phlogopite aggregates (phlogopitite) with accessory minerals (quartz + zircon + apatite) and metabasic pods (phlogopite and hornblende) also occur. Black tourmaline (schorl-dravite solid solution) has been found for the first time in the contact near the phlogopite zone, suggesting an external addition of elements (boron and fluorine) to the system at high temperature. The formation of the metasomatic zones composed exclusively of hydrous phases must have involved extensive H2O-metasomatism as already documented for the Ulten peridotites. The source for these fluids can be a system of trondhjemitic-pegmatitic dikes cutting the peridotite that would have channelled aqueous fluids into the ultramafic rocks. Whole-rock geochemistry and trace element (LA ICP-MS) composition of hydrous phases (phlogopite and amphibole) in different metasomatic zones indicate mobility of many elements, including elements such as Ta which are considered to have scarce mobility in fluids. Trace element composition of accessory minerals in the phlogopite-rich zone suggests that the trace element signature of subduction zone fluids may be fractionated in this zone. The progressive depletion in some trace elements (LREE) and enrichment in LILE and Li from the peridotite towards the gneiss suggests a strong influence of bulk composition on the trace element budget of hydrous minerals. Since the ultramafic blocks can be representative of metasomatic processes occurring at the slab-mantle interface, we can infer that metasomatic reactions between slab-derived fluids and ultramafic mantle wedge will follow a specific series of reactions, creating mineral zonation similar to those observed in this study. Our results further favour the evidence that the primary composition of subduction zone fluids is modified substantially by metasomatic reactions occurring in the mantle wedge.
Catalytic two-stage coal hydrogenation and hydroconversion process
MacArthur, James B.; McLean, Joseph B.; Comolli, Alfred G.
1989-01-01
A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F. temperature for further hydrogenation and thermal hydroconversion reactions. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, which results in significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of undesirable residuum and unconverted coal and hydrocarbon gases, with use of less energy to obtain the low molecular weight products, while catalyst life is substantially increased.
Electro-Fenton as a feasible advanced treatment process to produce reclaimed water.
Durán Moreno, A; Frontana-Uribe, B A; Ramírez Zamora, R M
2004-01-01
The feasibility of the electro-Fenton process to generate simultaneously both of the Fenton's reagent species (Fe2+/H2O2), was assessed as a potentially more economical alternative to the classical Fenton's reaction to produce reclaimed water. An air-saturated combined wastewater (mixture of municipal and laboratory effluents) was treated in discontinuous and continuous reactors at pH = 3.5. The discontinuous reactor was a 2 L electrochemical laboratory cell fitted with concentric graphite and iron electrodes. The continuous reactor tests used a pilot treatment system comprising the aforementioned electrochemical cell, two clarifiers and one sand filter. Several tests were carried out at different conditions of reaction time (0-60 min) and electrical current values (0.2-1.0 A) in the discontinuous reactor. The best operating conditions were 60 min and 1 A without filtration of effluents. At these conditions, in discontinuous and continuous reactors with filtration, the COD, turbidity and color removal were 65-74.8%, 77-92.3% and 80-100%, respectively. Fecal and total coliforms, Escherichia coli, Shigella and Salmonella sp. were not detected at the end of the pilot treatment system. Electrogeneration of the Fenton's reagent is also economical; its cost is one-fifth the cost reported for Advanced Primary Treatment.
EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
HALGREN DL
2008-07-30
The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards tomore » peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finneran, Kevin; Werth, Charles; Strathmann, Timothy
2015-01-10
In situ bioremediation of U(VI) involves amending groundwater with an appropriate electron donor and limiting nutrients to promote biological reduction to the less soluble and mobile U(IV) oxidation state. Groundwater flow is laminar; mixing is controlled by hydrodynamic dispersion. Recent studies indicate that transverse dispersion along plume margins can limit mixing of the amended electron donor and accepter (such as U(VI) in remediation applications). As a result, microbial growth, and subsequently contaminant reaction, may be limited to these transverse mixing zones during bioremediation. The primary objective of this work was to characterize the combined effects of hydrology, geochemistry, and biologymore » on the (bio)remediation of U(VI). Our underlying hypothesis was that U(VI) reaction in groundwater is controlled by transverse mixing with an electron donor along plume margins, and that iron bioavailability in these zones affects U(VI) reduction kinetics and U(IV) re-oxidation. Our specific objectives were to a) quantify reaction kinetics mediated by biological versus geochemical reactions leading to U(VI) reduction and U(IV) re-oxidation, b) understand the influence of bioavailable iron on U(VI) reduction and U(IV) re-oxidation along the transverse mixing zones, c) determine how transverse mixing limitations and the presence of biomass in pores affects these reactions, and d) identify how microbial populations that develop along transverse mixing zones are influenced by the presence of iron and the concentration of electron donor. In the completed work, transverse mixing zones along plume margins were re-created in microfluidic pore networks, referred to as micromodels. We conducted a series of experiments that allowed us to distinguish among the hydraulic, biological, and geochemical mechanisms that contribute to U(VI) reduction, U(IV) re-oxidation, and U(VI) abiotic reaction with the limiting biological nutrient HP042-. This systematic approach may lead to a better understanding of U(VI) remediation, and better strategies for groundwater amendments to maximize remediation efficiency.« less
Ruotolo, L A M; Santos-Júnior, D S; Gubulin, J C
2006-05-01
Compounds of Cr(VI) are very toxic and their reduction to Cr(III) is necessary to allow their further precipitation or adsorption. Chemical methods for Cr(VI) reduction are usually used for this purpose. As an alternative, electrochemical methods using three-dimensional electrodes, such as reticulated vitreous carbon (RVC) and polyaniline-modified RVC, have been used successfully. Since the pH affects reaction of Cr(VI) reduction, in this work its effect on the reaction rate was studied using electrodes of RVC and RVC/PANI. While a maximum in reaction rate was found for a pH 1.5 using the RVC, the RVC/PANI showed no differences in reaction rates in the range of pH between 0 and 1. Practically, no reaction was observed for any pH greater than 3. The effect of different current densities using optimized pH was also evaluated and the RVC/PANI electrode showed the best reaction rates, current efficiencies and energy consumption as a result of the polyaniline electrocatalytic effect.
Modern marine sediments as a natural analog to the chemically stressed environment of a landfill
Baedecker, M.J.; Back, W.
1979-01-01
Chemical reactions that occur in landfills are analogous to those reactions that occur in marine sediments. Lateral zonation of C, N, S, O, H, Fe and Mn species in landfills is similar to the vertical zonation of these species in marine sediments and results from the following reaction sequence: (1) oxidation of C, N and S species in the presence of dissolved free oxygen to HCO3-, NO3- and SO2-4; (2) after consumption of molecular oxygen, then NO3- is reduced, and Fe and Mn are solubilized; (3) SO2-4 is reduced to sulfide; and (4) organic compounds become the source of oxygen, and CH4 and NH4+ are formed as fermentation products. In a landfill in Delaware the oxidation potential increases downgradient and the redox zones in the reducing plume are characterized by: CH4, NH4+, Fe2+. Mn2+, HCO3- and NO3-. Lack of SO2-4 at that landfill eliminates the sulfide zone. Although it has not been observed at landfills, mineral alteration should result in precipitation of pyrite and/or siderite downgradient. Controls on the pH of leachate are the relative rates of production of HCO3-, NH4+ and CH4. Production of methane by fermentation at landfills results in 13C isotope fractionation and the accumulation of isotopically heavy ??CO2 (+10 to +18??? PDB). Isotope measurements may be useful to determine the extent of CO2 reduction in landfills and extent of dilution downgradient. The boundaries of reaction zones in stressed aquifers are determined by head distribution and flow velocity. Thus, if the groundwater flow is rapid relative to reaction rates, redox zones will develop downgradient. Where groundwater flow velocities are low the zones will overlap to the extent that they may be indeterminate. ?? 1979.
Groschen, George E.
1994-01-01
Results of the projected withdrawal simulations from 1984-2000 indicate that the general historical trend of saline-water movement probably will continue. The saline water in the Rio Grande alluvium is the major source of saline-water intrusion into the freshwater zone throughout the historical period and into the future on the basis of simulation results. Some saline water probably will continue to move downward from the Rio Grande alluvium to the freshwater below. Injection of treated sewage effluent into some wells will create a small zone of freshwater containing slightly increased amounts of dissolved solids in the northern area of the Texas part of the Hueco bolson aquifer. Many factors, such as well interference, pumping schedules, and other factors not specifically represented in the regional simulation, can substantially affect dissolved-solids concentrations at individual wells.
Kapsimalis, V; Panagiotopoulos, I P; Talagani, P; Hatzianestis, I; Kaberi, H; Rousakis, G; Kanellopoulos, T D; Hatiris, G A
2014-03-15
Bottom sediments represent a crucial component of the marine environment, since they constitute a habitat, a trophic resource, and a spawning place for various organisms. Unfortunately, the sediments of urban coastal areas are deeply impacted by anthropogenic activities that degrade their quality. In the Drapetsona-Keratsini metropolitan coastal zone of Athens, current industrial and shipping activities together with the effluents from a sewage outfall, which was in operation in the past, have resulted in one of the most contaminated sedimentary environments, in terms of organic compound loads, in Mediterranean. Exceptionally high concentrations of aliphatic hydrocarbons (up to 4457 μg g⁻¹), carcinogenic PAHs (up to 7284 ng g⁻¹), and organochlorines (up to 544 ng g⁻¹ for PCBs; up to 208 ng g⁻¹ for DDTs) constitute a major threat to the marine life of the associated Saronikos Gulf. Copyright © 2013 Elsevier Ltd. All rights reserved.
Outfall siting with dye-buoy remote sensing of coastal circulation
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Welch, C. S.; Gordon, H. H.
1978-01-01
A dye-buoy remote sensing technique has been applied to estuarine siting problems that involve fine-scale circulation. Small hard cakes of sodium fluorescein and polyvinyl alcohol, in anchored buoys and low-windage current followers, dissolve to produce dye marks resolvable in 1:60,000 scale color and color infrared imagery. Lagrangian current vectors are determined from sequential photo coverage. Careful buoy placement reveals surface currents and submergence near fronts and convergence zones. The technique has been used in siting two sewage outfalls in Hampton Roads, Virginia: In case one, the outfall region during flood tide gathered floating materials in a convergence zone, which then acted as a secondary source during ebb; for better dispersion during ebb, the proposed outfall site was moved further offshore. In case two, flow during late flood was found to divide, with one half passing over shellfish beds; the proposed outfall site was consequently moved to keep effluent in the other half.
NASA Astrophysics Data System (ADS)
Zaima, K.; Akashi, H.; Sasaki, K.
2015-09-01
It is widely believed that electron impact processes play essential roles in plasma-assisted combustion. However, the concrete roles of high-energy electrons have not been fully understood yet. In this work, we examined the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). The density of atomic oxygen in the reaction zone was not affected by the superposition of DBD, indicating that the amount of atomic oxygen produced by combustion reactions was much larger than that produced by electron impact processes. On the other hand, in the preheating zone, we observed high-frequency oscillation of the density of atomic oxygen at the timings of the pulsed current of DBD. The oscillation suggests the rapid consumption of additional atomic oxygen by combustion reactions. A numerical simulation using Chemkin indicates the shortened ignition delay time when adding additional atomic oxygen in the period of low-temperature oxidation. The present results reveals the importance of atomic oxygen, which is produced by the effect of high-energy electrons, in the preheating zone in plasma-assisted combustion of the steady-state premixed burner flame.
NASA Astrophysics Data System (ADS)
Tan, Caiwang; Xiao, Liyuan; Liu, Fuyun; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai
2017-05-01
In this work, we describe a method to improve the bonding of an immiscible Mg/steel system using Ni as an interlayer by coating it on the steel surface. Laser welding-brazing of AZ31B Mg alloy to Ni-coated Q235 steel using Mg-based filler was performed in a lap configuration. The influence of laser power on the weld characteristics, including joint appearance, formation of interfacial reaction layers and mechanical properties was investigated. The results indicated that the presence of the Ni-coating promoted the wetting of the liquid filler metal on the steel surface. A thermal gradient along the interface led to the formation of heterogeneous interfacial reaction layers. When using a low laser power of 1600 W, the reaction products were an FeAl phase in the direct laser irradiation zone, an AlNi phase close to the intermediate zone and mixtures of AlNi phase and an (α-Mg + Mg2Ni) eutectic structure near the interface at the seam head zone. For high powers of more than 2000 W, the FeAl phase grew thicker in the direct laser irradiation zone and a new Fe(Ni) transition layer formed at the interface of the intermediate zone and the seam head zone. However, the AlNi phase and (α-Mg + Mg2Ni) eutectic structure were scattered at the Mg seam. All the joints fractured at the fusion zone, indicating that the improved interface was not the weakest joint region. The maximum tensile-shear strength of the Mg/Ni-coated steel joint reached 190 N/mm, and the joint efficiency was 70% with respect to the Mg alloy base metal.
Barber, Larry B.; Hladik, Michelle; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris
2015-01-01
The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m3 d−1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L−1; n=5) and 10 HDBPs (mean total concentration = 4.5 μg L−1), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L−1) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by >90%.
Barber, Larry B; Hladik, Michelle L; Vajda, Alan M; Fitzgerald, Kevin C; Douville, Chris
2015-10-01
The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m(3) d(-1) design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration=2.7 μg L(-1); n=5) and 10 HDBPs (mean total concentration=4.5 μg L(-1)), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration=1.4 μg L(-1)) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by >90%. Copyright © 2015. Published by Elsevier B.V.
Direct Observations of Reaction Zone Structure in Propagating Detonations
2003-02-08
with sufficient spatial resolution and signal-to-noise ratio were achieved by using a tunable KrF laser with a pulse energy of 450 mJ exciting the OH...self-sustaining waves within the test section. The detonation reaction zone has been visualized by exciting OH fluorescence at about 284 nm with a...in some tests. The UV light for excitation of the OH molecules is produced by frequency dou- bling the output of an excimer-pumped dye laser. The
Modeling field-scale cosolvent flooding for DNAPL source zone remediation
NASA Astrophysics Data System (ADS)
Liang, Hailian; Falta, Ronald W.
2008-02-01
A three-dimensional, compositional, multiphase flow simulator was used to model a field-scale test of DNAPL removal by cosolvent flooding. The DNAPL at this site was tetrachloroethylene (PCE), and the flooding solution was an ethanol/water mixture, with up to 95% ethanol. The numerical model, UTCHEM accounts for the equilibrium phase behavior and multiphase flow of a ternary ethanol-PCE-water system. Simulations of enhanced cosolvent flooding using a kinetic interphase mass transfer approach show that when a very high concentration of alcohol is injected, the DNAPL/water/alcohol mixture forms a single phase and local mass transfer limitations become irrelevant. The field simulations were carried out in three steps. At the first level, a simple uncalibrated layered model is developed. This model is capable of roughly reproducing the production well concentrations of alcohol, but not of PCE. A more refined (but uncalibrated) permeability model is able to accurately simulate the breakthrough concentrations of injected alcohol from the production wells, but is unable to accurately predict the PCE removal. The final model uses a calibration of the initial PCE distribution to get good matches with the PCE effluent curves from the extraction wells. It is evident that the effectiveness of DNAPL source zone remediation is mainly affected by characteristics of the spatial heterogeneity of porous media and the variable (and unknown) DNAPL distribution. The inherent uncertainty in the DNAPL distribution at real field sites means that some form of calibration of the initial contaminant distribution will almost always be required to match contaminant effluent breakthrough curves.
Modeling field-scale cosolvent flooding for DNAPL source zone remediation.
Liang, Hailian; Falta, Ronald W
2008-02-19
A three-dimensional, compositional, multiphase flow simulator was used to model a field-scale test of DNAPL removal by cosolvent flooding. The DNAPL at this site was tetrachloroethylene (PCE), and the flooding solution was an ethanol/water mixture, with up to 95% ethanol. The numerical model, UTCHEM accounts for the equilibrium phase behavior and multiphase flow of a ternary ethanol-PCE-water system. Simulations of enhanced cosolvent flooding using a kinetic interphase mass transfer approach show that when a very high concentration of alcohol is injected, the DNAPL/water/alcohol mixture forms a single phase and local mass transfer limitations become irrelevant. The field simulations were carried out in three steps. At the first level, a simple uncalibrated layered model is developed. This model is capable of roughly reproducing the production well concentrations of alcohol, but not of PCE. A more refined (but uncalibrated) permeability model is able to accurately simulate the breakthrough concentrations of injected alcohol from the production wells, but is unable to accurately predict the PCE removal. The final model uses a calibration of the initial PCE distribution to get good matches with the PCE effluent curves from the extraction wells. It is evident that the effectiveness of DNAPL source zone remediation is mainly affected by characteristics of the spatial heterogeneity of porous media and the variable (and unknown) DNAPL distribution. The inherent uncertainty in the DNAPL distribution at real field sites means that some form of calibration of the initial contaminant distribution will almost always be required to match contaminant effluent breakthrough curves.
NASA Astrophysics Data System (ADS)
Roy, James W.; Smith, James E.
2007-01-01
Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.
Roy, James W; Smith, James E
2007-01-30
Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.
NASA Astrophysics Data System (ADS)
Tarling, M.; Smith, S. A. F.; Scott, J.
2017-12-01
Juxtaposition of mantle peridotite and serpentinite against quartzofeldspathic and mafic schists occurs along the shallow slab-mantle interface in some subduction zones. This part of the subduction interface has been invoked as a possible source region of episodic tremor and slow slip, yet geological observations of fault zone structures and chemical reactions pertinent to this region are quite rare. The >1000 km long Livingstone Fault in New Zealand is a superbly exposed fault zone that provides a suitable analogue (both in terms of scale and the rock types involved) for the shallow slab-mantle interface. The fault is characterized by a foliated and highly sheared serpentinite mélange tens to several hundreds of meters wide that separates (partially serpentinised) peridotites from quartzofeldspathic schists. Talc- and tremolite-forming metasomatic reactions occurred along the margins of the mélange and around entrained pods due to mixing of serpentinite with silica- and calcium-rich fluids derived from the adjacent quartzofeldspathic schist. The metasomatic reactions generated significant volumes of water at the melange-schist contact that became trapped between the two relatively impermeable fault zone lithologies. On the schist side of the contact, brittle faulting was promoted by the formation of a laterally-continuous silicified zone up to tens of metres wide. On the melange side, a zone up to tens of metres wide of `crackle-breccias' containing veined stockworks of tremolite indicates periodic increases of pore pressure sufficient to cause hydraulic fracture of serpentinite. The crackle-breccias are multi-generational indicating that this process was episodic. Sr and Nd isotope data and permeability calculations suggest that the episodic brecciation process was critical to the transfer of fluids across the melange. Our observations suggest that fluid-producing metasomatic reactions along the shallow slab-mantle interface may contribute to the tremor signal by triggering brecciation events and promoting brittle failure in serpentinite and schist.
Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian
2014-08-01
Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW. Copyright © 2014 Elsevier Ltd. All rights reserved.
2016-03-24
thickened preheat (TP) regime that is bounded by the Klimov-Williams limit, (b) the broken reaction layers (BR) boundary and the partially-distributed...b) the broken reaction layers (BR) boundary that is bounded by Norbert Peters predicted limit, and the partially-distributed reactions (PDR...Nomenclature BR = broken reaction layer boundary DR = distributed reaction zone boundary Ka = Karlovitz number of Peters (Eq. 1) equal to (δF,L
Experimental Measurements of the Chemical Reaction Zone of Detonating Liquid Explosives
NASA Astrophysics Data System (ADS)
Bouyer, Viviane; Sheffield, Stephen A.; Dattelbaum, Dana M.; Gustavsen, Richard L.; Stahl, David B.; Doucet, Michel
2009-06-01
We have a joint project between CEA-DAM Le Ripault and Los Alamos National Laboratory (LANL) to study the chemical reaction zone in detonating high explosives using several different laser velocimetry techniques. The short temporal duration of the features (von Neumann spike and sonic locus) of the reaction zone make these measurements difficult. Here, we report results obtained from using and PDV (photon Doppler velocimetry) methods to measure the particle velocity history at a detonating HE (nitromethane)/PMMA interface. Experiments done at CEA were high-explosive-plane-wave initiated and those at LANL were gas-gun-projectile initiated with a detonation run of about 6 charge diameters in all experiments, in either glass or brass confinement. Excellent agreement of the interface particle velocity measurements at both Laboratories were obtained even though the initiation systems and the velocimetry systems were different. Some differences were observed in the von Neumann spike height because of the approximately 2 nanosecond time resolution of the techniques -- in some or all cases the spike top was truncated.
Faustov, L A; Nedel'ko, N A; Morozova, M V
2001-01-01
Morphological reactions in tissue adjacent to mandibular angular fracture were studied in guinea pigs treated with sodium succinate and laser magnetotherapy. Due to succinate therapy the exudative component of inflammation was less expressed in comparison with the control, macrophagal reaction and neoangiogenesis were activated, the volume of damaged muscle tissue and the incidence of suppurations decreased. The number of osteoblasts increased and new bone structures acquired a lamellar pattern earlier than in the control. Sodium succinate therapy in combination with laser magnetotherapy had a more pronounced positive effect as regards activation of macrophagal reaction and neoangiogenesis and a decrease in the area of fibrosclerotic changes in the zone of damaged muscles, where newly formed myosymplasts differentiated into myotubes and even in muscle fibers. Suppuration of the wound was prevented. Bone tissue in the fracture zone formed without preliminary formation of cartilaginous tissue, which resulted in more rapid osteogenesis (lamellar bone growth in the fracture zone).
Chien, Shih-Hsiang; Chowdhury, Indranil; Hsieh, Ming-Kai; Li, Heng; Dzombak, David A; Vidic, Radisav D
2012-12-01
Secondary-treated municipal wastewater, an abundant and widely distributed impaired water source, is a promising alternative water source for thermoelectric power plant cooling. However, excessive biological growth is a major challenge associated with wastewater reuse in cooling systems as it can interfere with normal system operation as well as enhance corrosion and scaling problems. Furthermore, possible emission of biological aerosols (e.g., Legionella pneumophila) with the cooling tower drift can lead to public health concerns within the zone of aerosol deposition. In this study, the effectiveness of pre-formed and in-situ-formed monochloramine was evaluated for its ability to control biological growth in recirculating cooling systems using secondary-treated municipal wastewater as the only makeup water source. Bench-scale studies were compared with pilot-scale studies for their ability to predict system behavior under realistic process conditions. Effectiveness of the continuous addition of pre-formed monochloramine and monochloramine formed in-situ through the reaction of free chlorine with ammonia in the incoming water was evaluated in terms of biocide residual and its ability to control both planktonic and sessile microbial populations. Results revealed that monochloramine can effectively control biofouling in cooling systems employing secondary-treated municipal wastewater and has advantages relative to use of free chlorine, but that bench-scale studies seriously underestimate biocide dose and residual requirements for proper control of biological growth in full-scale systems. Pre-formed monochloramine offered longer residence time and more reliable performance than in-situ-formed monochloramine due to highly variable ammonia concentration in the recirculating water caused by ammonia stripping in the cooling tower. Pilot-scale tests revealed that much lower dosing rate was required to maintain similar total chlorine residual when pre-formed monochloramine was used as compared to in-situ-formed monochloramine. Adjustment of biocide dose to maintain monochloramine residual above 3mg/L is needed to achieve successful biological growth control in recirculating cooling systems using secondary-treated municipal effluent as the only source of makeup water. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fang, Qinglin; Xu, Wenlai; Yan, Zhijiao; Qian, Lei
2018-04-04
A constructed rapid infiltration (CRI) system is a new type of sewage biofilm treatment technology, but due to its anaerobic zone it lacks the carbon sources and the conditions for nitrate retention, and its nitrogen removal performance is very poor. However, a shortcut nitrification–denitrification process presents distinctive advantages, as it saves oxygen, requires less organic matter, and requires less time for denitrification compared to conventional nitrogen removal methods. Thus, if the shortcut nitrification–denitrification process could be applied to the CRI system properly, a simpler, more economic, and efficient nitrogen removal method will be obtained. However, as its reaction process shows that the first and the most important step of achieving shortcut nitrification–denitrification is to achieve shortcut nitrification, in this study we explored the feasibility to achieve shortcut nitrification, which produces nitrite as the dominant nitrogen species in effluent, by the addition of potassium chlorate (KClO₃) to the influent. In an experimental CRI test system, the effects on nitrogen removal, nitrate inhibition, and nitrite accumulation were studied, and the advantages of achieving a shortcut nitrification–denitrification process were also analysed. The results showed that shortcut nitrification was successfully achieved and maintained in a CRI system by adding 5 mM KClO₃ to the influent at a constant pH of 8.4. Under these conditions, the nitrite accumulation percentage was increased, while a lower concentration of 3 mM KClO₃ had no obvious effect. The addition of 5mM KClO₃ in influent presumably inhibited the activity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), but inhibition of nitrite-oxidizing bacteria (NOB) was so strong that it resulted in a maximum nitrite accumulation percentage of up to over 80%. As a result, nitrite became the dominant nitrogen product in the effluent. Moreover, if the shortcut denitrification process will be achieved in the subsequent research, it could save 60.27 mg CH₃OH per litre of sewage in the CRI system compared with the full denitrification process.
Villanueva-Rodríguez, Minerva; Bello-Mendoza, Ricardo; Hernández-Ramírez, Aracely; Ruiz-Ruiz, Edgar J
2018-03-01
Non-steroidal anti-inflammatory drugs (NSAID) are compounds frequently found in municipal wastewater and their degradation by conventional wastewater treatment plants (WWTP) is generally incomplete. This study compared the efficiency of two advanced oxidation processes (AOP), namely heterogeneous photocatalysis (HP) and electro-Fenton (EF), in the degradation of a mixture of common NSAID (diclofenac, ibuprofen and naproxen) dissolved in either deionized water or effluent from a WWTP. Both processes were effective in degrading the NSAID mixture and the trend of degradation was as follows, diclofenac > naproxen > ibuprofen. EF with a current density of 40 mA cm -2 and 0.3 mmol Fe 2+ L -1 was the most efficient process to mineralize the organic compounds, achieving up to 92% TOC removal in deionized water and 90% in the WWTP effluent after 3 h of reaction. HP with 1.4 g TiO 2 L -1 at pH 7 under sunlight, produced 85% TOC removal in deionized water and 39% in WWTP effluent also after 3 h treatment. The lower TOC removal efficiency shown by HP with the WWTP effluent was attributed mainly to the scavenging of reactive species by background organic matter in the wastewater. On the contrary, inorganic ions in the wastewater may produce oxidazing species during the EF process, which contributes to a higher degradation efficiency. EF is a promising option for the treatment of anti-inflammatory pharmaceuticals in municipal WWTP at competitive electrical energy efficiencies.
Arslan-Alaton, Idil; Kabdaşli, Işik; Vardar, Burcu; Tünay, Olcay
2009-05-30
Reactive dyebath effluents are ideal candidates for electrocoagulation due to their intensive color, medium strength, recalcitrant COD and high electrolyte (NaCl) content. The present study focused on the treatability of simulated reactive dyebath effluent (COD(o)=300 mg/L; color in terms of absorbance values A(o,436)=0.532 cm(-1), A(o,525)=0.693 cm(-1) and A(o,620)=0.808 cm(-1)) employing electrocoagulation with aluminum and stainless steel electrodes. Optimization of critical operating parameters such as initial pH (pH(o) 3-11), applied current density (J(c)=22-87 mA/cm(2)) and electrolyte type (NaCl or Na(2)SO(4)) improved the overall treatment efficiencies resulting in effective decolorization (99% using stainless steel electrodes after 60 min, 95% using aluminum electrodes after 90 min electrocoagulation) and COD abatement (93% with stainless steel electrodes after 60 min, 86% with aluminum electrodes after 90 min of reaction time). Optimum electrocoagulation conditions were established as pH(o) 5 and J(c)=22 mA/cm(2) for both electrode materials. The COD and color removal efficiencies also depended on the electrolyte type. No in situ, surplus adsorbable organically bound halogens (AOX) formation associated with the use of NaCl as the electrolyte during electrocoagulation was detected. An economical evaluation was also carried out within the frame of the study. It was demonstrated that electrocoagulation of reactive dyebath effluent with aluminum and stainless steel electrodes was a considerably less electrical energy-intensive, alternative treatment method as compared with advanced chemical oxidation techniques.
Pilot monitoring study of ibuprofen in surface waters of north of Portugal.
Paíga, Paula; Santos, Lúcia H M L M; Amorim, Célia G; Araújo, Alberto N; Montenegro, M Conceição B S M; Pena, Angelina; Delerue-Matos, Cristina
2013-04-01
Ibuprofen is amongst the most worldwide consumed pharmaceuticals. The present work presents the first data in the occurrence of ibuprofen in Portuguese surface waters, focusing in the north area of the country, which is one of the most densely populated areas of Portugal. Analysis of ibuprofen is based on pre-concentration of the analyte with solid phase extraction and subsequent determination with liquid chromatography coupled to fluorescence detection. A total of 42 water samples, including surface waters, landfill leachates, Wastewater Treatment Plant (WWTP), and hospital effluents, were analyzed in order to evaluate the occurrence of ibuprofen in the north of Portugal. In general, the highest concentrations were found in the river mouths and in the estuarine zone. The maximum concentrations found were 48,720 ng L(-1) in the landfill leachate, 3,868 ng L(-1) in hospital effluent, 616 ng L(-1) in WWTP effluent, and 723 ng L(-1) in surface waters (Lima river). Environmental risk assessment was evaluated and at the measured concentrations only landfill leachates reveal potential ecotoxicological risk for aquatic organisms. Owing to a high consumption rate of ibuprofen among Portuguese population, as prescribed and non-prescribed medicine, the importance of hospitals, WWTPs, and landfills as sources of entrance of pharmaceuticals in the environment was pointed out. Landfill leachates showed the highest contribution for ibuprofen mass loading into surface waters. On the basis of our findings, more studies are needed as an attempt to assess more vulnerable areas.
Sun, Qian; Li, Mingyue; Ma, Cong; Chen, Xiangqiang; Xie, Xiaoqing; Yu, Chang-Ping
2016-01-01
The occurrence and fate of 48 pharmaceuticals and personal care products (PPCPs) in three wastewater treatment plants (WWTPs) located in different urbanization areas in Xiamen, China was investigated over one year. Results showed that PPCPs were widely detected, but the major PPCPs in the influent, effluent, and sludge were different. Spatial and seasonal variations of PPCP levels in the influent and sludge were observed. The removal efficiencies for most PPCPs were similar among the three WWTPs, although they employed different biological treatment processes. Furthermore, the mass loadings per inhabitant of most pharmaceuticals had a positive correlation with the urbanization levels, indicating that most pharmaceutical usage was higher in the urban core compared to the suburban zones. The total mass loadings of all the 48 PPCPs in the effluent and waste sludge showed close proportions, which suggested the importance of proper waste sludge disposal to prevent a large quantity of PPCPs from entering the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Carlson, P. R. (Principal Investigator); Conomos, T. J.; Janda, R. J.; Peterson, D. H.
1973-01-01
The author has identified the following significant results. ERTS-1 multispectral scanner imagery of the nearshore surface waters of the Northeast Pacific Ocean is proving to be a useful tool for determining source and dispersal of suspended particulate matter. The principal sources of the turbid water, seen best on the green and red bands, are river and stream effluents and actively eroding coastlines; secondary sources are waste effluents and production of planktonic organisms, but these may sometimes be masked by the very turbid plumes of suspended sediment being discharged into the nearshore zone during times of high river discharge. The configuration and distribution of the plumes of turbid water also can be used to infer near-surface current directions. Comparison of imagery of the nearshore water off the northern California coast from October 1972 and January 1973 shows a reversal of the near-surface currents, from predominantly south-setting in the fall (California Current) to north-setting in the winter (Davidson Current).
Detonation equation of state at LLNL, 1995. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souers, P.C.; Wu, B.; Haselman, L.C. Jr.
1996-02-01
JWL`s and 1-D Look-up tables are shown to work for ``one-track`` experiments like cylinder shots and the expanding sphere. They fail for ``many-track`` experiments like the compressed sphere. As long as the one-track experiment has dimensions larger than the explosive`s reaction zone and the explosive is near-ideal, a general JWL with R{sub 1} = 4.5 and R{sub 2} = 1.5 can be constructed, with both {omega} and E{sub o} being calculated from thermochemical codes. These general JWL`s allow comparison between various explosives plus recalculation of the JWL for different densities. The Bigplate experiment complements the cylinder test by providing continuousmore » oblique angles of shock incidence from 0{degrees} to 70{degrees}. Explosive reaction zone lengths are determined from metal plate thicknesses, extrapolated run-to-detonation distances, radius size effects and detonation front curvature. Simple theories of the cylinder test, Bigplate, the cylinder size effect and detonation front curvature are given. The detonation front lag at the cylinder edge is shown to be proportional to the half-power of the reaction zone length. By calibrating for wall blow-out, a full set of reaction zone lengths from PETN to ANFO are obtained. The 1800--2100 K freezing effect is shown to be caused by rapid cooling of the product gases. Compiled comparative data for about 80 explosives is listed. Ten Chapters plus an Appendix.« less
Hunt, Charles D.; Rosa, Sarah N.
2009-01-01
Municipal wastewater plumes discharging from aquifer to ocean were detected by nearshore wading surveys at Kihei and Lahaina, on the island of Maui in Hawaii. Developed in cooperation with the Hawaii State Department of Health, the survey methodology included instrument trolling to detect submarine groundwater discharge, followed by analysis of water and macroalgae for a suite of chemical and isotopic constituents that constitute a 'multitracer' approach. Surveys were conducted May 6-28, 2008, during fair-weather conditions and included: (1) wading and kayak trolling with a multiparameter water-quality sonde, (2) marine water-column sampling, and (3) collection of benthic algae samples. Instrument trolling helped guide the water sampling strategy by providing dense, continuous transects of water properties on which groundwater discharge zones could be identified. Water and algae samples for costly chemical and isotopic laboratory analyses were last to be collected but were highly diagnostic of wastewater presence and nutrient origin because of low detection levels and confirmation across multiple tracers. Laboratory results confirmed the presence of wastewater constituents in marine water-column samples at both locales and showed evidence of modifying processes such as denitrification and mixing of effluent with surrounding groundwater and seawater. Carbamazepine was the most diagnostic pharmaceutical, detected in several marine water-column samples and effluent at both Kihei and Lahaina. Heavy nitrogen-isotope compositions in water and algae were highly diagnostic of effluent, particularly where enriched to even heavier values than effluent source compositions by denitrification. Algae provided an added advantage of time-integrating their nitrogen source during growth. The measured Kihei plume coincided almost exactly with prior model predictions, but the Lahaina plume was detected well south of the expected direct path from injection wells to shore and may be guided by a buried valley fill from an ancestral course of Honokowai Stream. Nutrient concentrations in upland wells at Lahaina were comparable to concentrations in wastewater but originate instead from agricultural fertilizers. A key factor in detecting and mapping the wastewater plumes was sampling very close to shore (mostly within 20 m or so) and in very shallow water (mostly 0.5 to 2 m depth). Effluent probably discharges somewhat offshore as well, although prior attempts to detect an injected fluorescent tracer at Lahaina in the 1990s were inconclusive, having focused farther offshore in water mostly 10-30 m deep. Sampling of benthic porewater and algae would offer the best chances for further effluent detection and mapping offshore, and sampling of onland monitor wells could provide additional understanding of geochemical processes that take place in the effluent plumes and bring about some degree of natural attenuation of nutrients.
Laccase-catalyzed oxidation of oxybenzone in municipal wastewater primary effluent.
Garcia, Hector A; Hoffman, Catherine M; Kinney, Kerry A; Lawler, Desmond F
2011-02-01
Pharmaceuticals and personal care products (PPCPs) are now routinely detected in raw and treated municipal wastewater. Since conventional wastewater treatment processes are not particularly effective for PPCP removal, treated wastewater discharges are the main entry points for PPCPs into the environment, and eventually into our drinking water. This study investigates the use of laccase-catalyzed oxidation for removing low concentrations of PPCPs from municipal wastewater primary effluent. Oxybenzone was selected as a representative PPCP. Like many other PPCPs, it is not recognized directly by the laccase enzyme. Therefore, mediators were used to expand the oxidative range of laccase, and the efficacy of this laccase-mediator system in primary effluent was evaluated. Eight potential mediators were investigated, and 2,2'-Azino-bis(3-ethylbenzthiazoline-6sulphonic acid) diammonium salt (ABTS), a synthetic mediator, and acetosyringone (ACE), a natural mediator, provided the greatest oxybenzone removal efficiencies. An environmentally relevant concentration of oxybenzone (43.8 nM, 10 μg/L) in primary effluent was completely removed (below the detection limit) after two hours of treatment with ABTS, and 95% was removed after two hours of treatment with ACE. Several mediator/oxybenzone molar ratios were investigated at two different initial oxybenzone concentrations. Higher mediator/oxybenzone molar ratios were required at the lower (environmentally relevant) oxybenzone concentration, and ACE required higher molar ratios than ABTS to achieve comparable oxybenzone removal. Oxybenzone oxidation byproducts generated by the laccase-mediator system were characterized and compared to those generated during ozonation. Enzymatic treatment generated byproducts with higher mass to charge (m/z) ratios, likely due to oxidative coupling reactions. The results of this study suggest that, with further development, the laccase-mediator system has the potential to extend the treatment range of laccase to PPCPs not directly recognized by the enzyme, even in a primary effluent matrix. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yang, Shinwoo; Cha, Jongmun; Carlson, Kenneth
2006-06-01
Two wastewater treatment plants (WWTPs) of northern Colorado were monitored for anhydroerythromycin and tylosin. An analytical method has been developed and validated for the trace determination and confirmation of these compounds in the raw influent and final effluent water matrices. This method was used to evaluate the occurrence and fate of these compounds in WWTPs. The method uses solid-phase extraction and liquid chromatography-tandem mass spectrometry with positive electrospray ionization. Detection and quantification was performed using selected reaction monitoring, and a method detection limit of between 0.01 and 0.06 microg/L was obtained. Unequivocal confirmation analysis of analyte identity according to the criteria (based on the use of identification points) of the 2002/657/EC European Commission Decision was possible with satisfactory results. Average recoveries for the two compounds ranged from 89.2+/-9.7% for raw influent to 93.7+/-6.9% for effluent wastewaters. The within-run precision of the assay was found to be always less than 14.1% for the two analytes. The overall precision was always less than 13.7%. The relative uncertainty of the present assay was also evaluated and the combined relative uncertainty ranged from 6.4 to 15.5% over three days of the validation study. These compounds were partially removed in the WWTPs with a removal efficiency of >50%. The measured concentrations in raw influents and effluents ranged from 0.09-0.35 and 0.04-0.12 microg/L for anhydroerythromycin to 0.06-0.18 and ND-0.06 microg/L for tylosin, respectively. The results indicate that WWTP effluents are relevant point sources for residues of these compounds in the aquatic environment. These occurrence results were compared with those in WWTP wastewaters of other countries.
Symonds, E M; Verbyla, M E; Lukasik, J O; Kafle, R C; Breitbart, M; Mihelcic, J R
2014-11-15
Wastewater treatment ponds (WTP) are one of the most widespread treatment technologies in the world; however, the mechanisms and extent of enteric virus removal in these systems are poorly understood. Two WTP systems in Bolivia, with similar overall hydraulic retention times but different first stages of treatment, were analyzed for enteric virus removal. One system consisted of a facultative pond followed by two maturation ponds (three-pond system) and the other consisted of an upflow anaerobic sludge blanket (UASB) reactor followed by two maturation (polishing) ponds (UASB-pond system). Quantitative polymerase chain reaction with reverse transcription (RT-qPCR) was used to measure concentrations of norovirus, rotavirus, and pepper mild mottle virus, while cell culture methods were used to measure concentrations of culturable enteroviruses (EV). Limited virus removal was observed with RT-qPCR in either system; however, the three-pond system removed culturable EV with greater efficiency than the UASB-pond system. The majority of viruses were not associated with particles and only a small proportion was associated with particles larger than 180 μm; thus, it is unlikely that sedimentation is a major mechanism of virus removal. High concentrations of viruses were associated with particles between 0.45 and 180 μm in the UASB reactor effluent, but not in the facultative pond effluent. The association of viruses with this size class of particles may explain why only minimal virus removal was observed in the UASB-pond system. Quantitative microbial risk assessment of the treated effluent for reuse for restricted irrigation indicated that the three-pond system effluent requires an additional 1- to 2-log10 reduction of viruses to achieve the WHO health target of <10(-4) disability-adjusted life years (DALYs) lost per person per year; however, the UASB-pond system effluent may require an additional 2.5- to 4.5-log10 reduction of viruses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characterization of Microbial Communities Found in Bioreactor Effluent
NASA Technical Reports Server (NTRS)
Flowe, Candice
2013-01-01
The purpose of this investigation was to examine microbial communities of simulated wastewater effluent from hollow fiber membrane bioreactors collected from the Space Life Science Laboratory and Texas Technical University. Microbes were characterized using quantitative polymerase chain reaction where a total count of bacteria and fungi were determined. The primers that were used to determine the total count of bacteria and fungi were targeted for 16S rDNA genes and the internal transcribed spacer, respectively. PCR products were detected with SYBR Green I fluorescent dye and a melting curve analysis was performed to identify unique melt profiles resulting from DNA sequence variations from each species of the community. Results from both the total bacteria and total fungi count assays showed that distinct populations were present in isolates from these bioreactors. This was exhibited by variation in the number of peaks observed on the melting curve analysis graph. Further analysis of these results using species-specific primers will shed light on exactly which microbes are present in these effluents. Information gained from this study will enable the design of a system that can efficiently monitor microbes that play a role in the biogeochemical cycling of nitrogen in wastewater on the International Space Station to assist in the design of a sustainable system capable of converting this nutrient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Lisa; Lekov, Alex; McKane, Aimee
2010-08-20
This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions ofmore » 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.« less
Ottoni, Cristiane; Simões, Marta F.; Fernandes, Sara; Santos, Cledir R.; Lima, Nelson
2016-01-01
Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L−1) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs. PMID:27490563
Diagnosis and Prognostic of Wastewater Treatment System Based on Bayesian Network
NASA Astrophysics Data System (ADS)
Li, Dan; Yang, Haizhen; Liang, XiaoFeng
2010-11-01
Wastewater treatment is a complicated and dynamic process. The treatment effect can be influenced by many variables in microbial, chemical and physical aspects. These variables are always uncertain. Due to the complex biological reaction mechanisms, the highly time-varying and multivariable aspects, the diagnosis and prognostic of wastewater treatment system are still difficult in practice. Bayesian network (BN) is one of the best methods for dealing with uncertainty in the artificial intelligence field. Because of the powerful inference ability and convenient decision mechanism, BN can be employed into the model description and influencing factor analysis of wastewater treatment system with great flexibility and applicability.In this paper, taking modified sequencing batch reactor (MSBR) as an analysis object, BN model was constructed according to the influent water quality, operational condition and effluent effect data of MSBR, and then a novel approach based on BN is proposed to analyze the influencing factors of the wastewater treatment system. The approach presented gives an effective tool for diagnosing and predicting analysis of the wastewater treatment system. On the basis of the influent water quality and operational condition, effluent effect can be predicted. Moreover, according to the effluent effect, the influent water quality and operational condition also can be deduced.
Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes
NASA Technical Reports Server (NTRS)
Flynn, Michael T (Inventor); Baertsch, Robert (Inventor); Trent, Jonathan D (Inventor); Liggett, Travis A (Inventor); Gormly, Sherwin J (Inventor); Delzeit, Lance D (Inventor); Buckwalter, Patrick W (Inventor); Embaye, Tsegereda N (Inventor)
2013-01-01
Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.
Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination.
Mitch, William A; Sedlak, David L
2002-02-15
Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentrations of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.
Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M
2015-12-01
Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.
Formation kinetics of gemfibrozil chlorination reaction products: analysis and application.
Krkosek, Wendy H; Peldszus, Sigrid; Huck, Peter M; Gagnon, Graham A
2014-07-01
Aqueous chlorination kinetics of the lipid regulator gemfibrozil and the formation of reaction products were investigated in deionized water over the pH range 3 to 9, and in two wastewater matrices. Chlorine oxidation of gemfibrozil was found to be highly dependent on pH. No statistically significant degradation of gemfibrozil was observed at pH values greater than 7. Gemfibrozil oxidation between pH 4 and 7 was best represented by first order kinetics. At pH 3, formation of three reaction products was observed. 4'-C1Gem was the only reaction product formed from pH 4-7 and was modeled with zero order kinetics. Chlorine oxidation of gemfibrozil in two wastewater matrices followed second order kinetics. 4'-C1Gem was only formed in wastewater with pH below 7. Deionized water rate kinetic models were applied to two wastewater effluents with gemfibrozil concentrations reported in literature in order to calculate potential mass loading rates of 4'C1Gem to the receiving water.
Oxidation of trimethoprim by ferrate(VI): kinetics, products, and antibacterial activity.
Anquandah, George A K; Sharma, Virender K; Knight, D Andrew; Batchu, Sudha Rani; Gardinali, Piero R
2011-12-15
Kinetics, stoichiometry, and products of the oxidation of trimethoprim (TMP), one of the most commonly detected antibacterial agents in surface waters and municipal wastewaters, by ferrate(VI) (Fe(VI)) were determined. The pH dependent second-order rate constants of the reactions of Fe(VI) with TMP were examined using acid-base properties of Fe(VI) and TMP. The kinetics of reactions of diaminopyrimidine (DAP) and trimethoxytoluene (TMT) with Fe(VI) were also determined to understand the reactivity of Fe(VI) with TMP. Oxidation products of the reactions of Fe(VI) with TMP and DAP were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Reaction pathways of oxidation of TMP by Fe(VI) are proposed to demonstrate the cleavage of the TMP molecule to ultimately result in 3,4,5,-trimethoxybenzaldehyde and 2,4-dinitropyrimidine as among the final identified products. The oxidized products mixture exhibited no antibacterial activity against E. coli after complete consumption of TMP. Removal of TMP in the secondary effluent by Fe(VI) was achieved.
Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone
NASA Astrophysics Data System (ADS)
Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.
2011-03-01
SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down-welling. Stable isotopes and chloride were found to be suitable environmental tracers to forecast the release and fate of organic contaminants within the hyporheic zone.
Micron-Scale Differential Scanning Calorimeter on a Chip
Cavicchi, Richard E; Poirier, Gregory Ernest; Suehle, John S; Gaitan, Michael; Tea, Nim H
1998-06-30
A differential scanning microcalorimeter produced on a silicon chip enables microscopic scanning calorimetry measurements of small samples and thin films. The chip may be fabricated using standard CMOS processes. The microcalorimeter includes a reference zone and a sample zone. The reference and sample zones may be at opposite ends of a suspended platform or may reside on separate platforms. An integrated polysilicon heater provides heat to each zone. A thermopile consisting of a succession of thermocouple junctions generates a voltage representing the temperature difference between the reference and sample zones. Temperature differences between the zones provide information about the chemical reactions and phase transitions that occur in a sample placed in the sample zone.
Time variation in the reaction-zone structure of two-phase spray detonations.
NASA Technical Reports Server (NTRS)
Pierce, T. H.; Nicholls, J. A.
1973-01-01
A detailed theoretical analysis of the time-varying detonation structure in a monodisperse spray is presented. The theory identifies experimentally observed reaction-zone overpressures as deriving from blast waves formed therein by the explosive ignition of the spray droplets, and follows in time the motion, change in strength, and interactions of these blast waves with one another, and with the leading shock. The results are compared with experimental data by modeling the motion of a finite-size circular pressure transducer through the theoretical data field in an x-t space.
Fosetyl-Al photo-Fenton degradation and its endogenous catalyst inhibition.
Micó, María M; Zapata, Ana; Maldonado, Manuel I; Bacardit, Jordi; Malfeito, Jorge; Sans, Carme
2014-01-30
Interferences from many sources can affect photo-Fenton reaction performance. Among them, catalyst inhibition can be caused by the complexation and/or precipitation of iron species by the organic matter and salts present in the reaction media. This is the case of the oxidation of effluents containing organophosphorous fosetyl-Al. The degradation of this fungicide generates phosphate anions that scavenge iron and hinder Fe(II) availability. Experimental design was applied to artificially enlighten photo-Fenton reaction, in order to evaluate fosetyl-Al degradation. The performed experiments suggested how iron inhibition takes place. The monitoring of photo-Fenton reaction over a mixture of fosetyl-Al with other two pesticides also showed the interferences caused by the presence of the fungicide on other species degradation. Solar empowered photo-Fenton was also essayed for comparison purposes. Artificial and solar light photo-Fenton reactions were revealed as effective treatments for the elimination of tested fungicide. However, the phosphate ions generated during fosetyl oxidation decreased iron availability, what hampered organic matter degradation. Copyright © 2014 Elsevier B.V. All rights reserved.
Abrams , Robert H.; Loague, Keith
2000-01-01
This paper, the second of two parts [see Abrams and Loague, this issue], reports the field‐scale application of COMPTRAN (compartmentalized solute transport model) for simulating the development of redox zones. COMPTRAN is fully developed and described in the companion paper. Redox zones, which are often delineated by the relative concentrations of dissolved oxygen, have been observed around the globe. The distribution of other redox‐sensitive species is affected by redox zonation. At the U.S. Geological Survey's Cape Cod research site, an anoxic zone containing high concentrations of dissolved iron has been observed. Field data were abstracted from the Cape Cod site for the one‐dimensional and two‐dimensional COMPTRAN simulations reported in this paper. The purpose of the concept‐development simulations was to demonstrate that the compartmentalized approach reported by Abrams et al. [1998] can be linked with a solute transport model to simulate field‐scale phenomena. The results presented in this paper show that COMPTRAN successfully simulated the development of redox zones at the field scale, including trends in pH and alkalinity. Thermodynamic constraints were used to prevent lower‐energy redox reactions from occurring under infeasible geochemical conditions without imposing equilibrium among all redox species. Empirical methods of reaction inhibition were not needed for the simulations conducted for this study. COMPTRAN can be extended easily to include additional compartments and reactions and is capable of handling complex velocity fields in more than one dimension.
Water, Energy, and Biogeochemical Model (WEBMOD), user’s manual, version 1
Webb, Richard M.T.; Parkhurst, David L.
2017-02-08
The Water, Energy, and Biogeochemical Model (WEBMOD) uses the framework of the U.S. Geological Survey (USGS) Modular Modeling System to simulate fluxes of water and solutes through watersheds. WEBMOD divides watersheds into model response units (MRU) where fluxes and reactions are simulated for the following eight hillslope reservoir types: canopy; snowpack; ponding on impervious surfaces; O-horizon; two reservoirs in the unsaturated zone, which represent preferential flow and matrix flow; and two reservoirs in the saturated zone, which also represent preferential flow and matrix flow. The reservoir representing ponding on impervious surfaces, currently not functional (2016), will be implemented once the model is applied to urban areas. MRUs discharge to one or more stream reservoirs that flow to the outlet of the watershed. Hydrologic fluxes in the watershed are simulated by modules derived from the USGS Precipitation Runoff Modeling System; the National Weather Service Hydro-17 snow model; and a topography-driven hydrologic model (TOPMODEL). Modifications to the standard TOPMODEL include the addition of heterogeneous vertical infiltration rates; irrigation; lateral and vertical preferential flows through the unsaturated zone; pipe flow draining the saturated zone; gains and losses to regional aquifer systems; and the option to simulate baseflow discharge by using an exponential, parabolic, or linear decrease in transmissivity. PHREEQC, an aqueous geochemical model, is incorporated to simulate chemical reactions as waters evaporate, mix, and react within the various reservoirs of the model. The reactions that can be specified for a reservoir include equilibrium reactions among water; minerals; surfaces; exchangers; and kinetic reactions such as kinetic mineral dissolution or precipitation, biologically mediated reactions, and radioactive decay. WEBMOD also simulates variations in the concentrations of the stable isotopes deuterium and oxygen-18 as a result of varying inputs, mixing, and evaporation. This manual describes the WEBMOD input and output files, along with the algorithms and procedures used to simulate the hydrology and water quality in a watershed. Examples are presented that demonstrate hydrologic processes, weathering reactions, and isotopic evolution in an alpine watershed and the effect of irrigation on water flows and salinity in an intensively farmed agricultural area.
The structure of premixed particle-cloud flames
NASA Technical Reports Server (NTRS)
Seshadri, K.; Berlad, A. L.; Tangirala, V.
1992-01-01
The structure of premixed flames propagating in combustible systems, containing uniformly distributed volatile fuel particles, in an oxidizing gas mixture, is analyzed. It is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical structure, which is subsequently oxidized in the gas phase. The analysis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number, based on the gas-phase oxidation of the gaseous fuel is large, and for values of phi(u) greater than or equal to 1.0, where phi(u) is the equivalence ratio based on the fuel available in the fuel particles. The structure of the flame is presumed to consist of a preheat vaporization zone where the rate of the gas-phase chemical reaction is small, a reaction zone where convection and the rate of vaporization of the fuel particles are small and a convection zone where diffusive terms in the conservation equations are small. For given values phi(u) the analysis yields results for the burning velocity and phi(g) where phi(g) is the effective equivalence ratio in the reaction zone. The analysis shows that even though phi(u) greater than or equal to 1.0, for certain cases the calculated value of phi(g) is less than unity. This prediction is in agreement with experimental observations.
NASA Astrophysics Data System (ADS)
Janvekar, Ayub Ahmed; Abdullah, M. Z.; Ahmad, Z. A.; Abas, A.; Ismail, A. K.; Hussien, A. A.; Kataraki, P. S.; Ishak, M. H. H.; Mazlan, M.; Zubair, A. F.
2018-05-01
Addition of porous materials in reaction zone give rise to significant improvements in combustion performance. In this work, a dual layered micro porous media burner was tested for stable flame and emissions. Reaction and preheat layer was made up of discrete (zirconia) and foam (porcelain) type of materials respectively. Three different thickness of reaction zone was tested, each with 10, 20 and 30mm. Interestingly, only 20mm thick layer can able to show better thermal efficiency of 72% as compared to 10 and 30mm. Best equivalence ratio came out to be 0.7 for surface and 0.6 for submerged flame conditions. Moreover, emission was continuously monitored to detect presence of NOx and CO, which were under controlled limits.
Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.
Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo
2015-03-15
Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.
McDonough, Kathleen; Casteel, Kenneth; Zoller, Ann; Wehmeyer, Kenneth; Hulzebos, Etje; Rila, Jean-Paul; Salvito, Daniel; Federle, Thomas
2017-01-01
OTNE [1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthyl)ethan-1-one; trade name Iso E Super] is a fragrance ingredient commonly used in consumer products which are disposed down the drain. This research measured effluent and sludge concentrations of OTNE at 44 US wastewater treatment plants (WWTP). The mean effluent and sludge concentrations were 0.69 ± 0.65 μg/L and 20.6 ± 33.8 mg/kg dw respectively. Distribution of OTNE effluent concentrations and dilution factors were used to predict surface water and sediment concentrations and distributions of OTNE sludge concentrations and loading rates were used to predict terrestrial concentrations. The 90th percentile concentration of OTNE in US WWTP mixing zones was predicted to be 0.04 and 0.85 μg/L under mean and 7Q10 low flow (lowest river flow occurring over a 7 day period every 10 years) conditions respectively. The 90th percentile sediment concentrations under mean and 7Q10 low flow conditions were predicted to be 0.081 and 1.6 mg/kg dw respectively. Based on current US sludge application practices, the 90th percentile OTNE terrestrial concentration was 1.38 mg/kg dw. The probability of OTNE concentrations being below the predicted no effect concentration (PNEC) for the aquatic and sediment compartments was greater than 99%. For the terrestrial compartment, the probability of OTNE concentrations being lower than the PNEC was 97% for current US sludge application practices. Based on the results of this study, OTNE concentrations in US WWTP effluent and sludge do not pose an ecological risk to aquatic, sediment and terrestrial organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of slow energy releasing on divergent detonation of Insensitive High Explosives
NASA Astrophysics Data System (ADS)
Hu, Xiaomian; Pan, Hao; Huang, Yong; Wu, Zihui
2014-03-01
There exists a slow energy releasing (SER) process in the slow reaction zone located behind the detonation wave due to the carbon cluster in the detonation products of Insensitive High Explosives (IHEs), and the process will affect the divergent detonation wave's propagation and the driving process of the explosives. To study the potential effect, a new artificial burn model including the SER process based on the programmed burn model is proposed in the paper. Quasi-steady analysis of the new model indicates that the nonlinearity of the detonation speed as a function of front curvature owes to the significant change of the reaction rate and the reaction zone length at the sonic state. What's more, in simulating the detonation of IHE JB-9014, the new model including the slow reaction can predict a slower jump-off velocity, in good agreement with the result of the test.
NASA Astrophysics Data System (ADS)
Peng, Yi; Zhang, Jie; Li, Dong
2018-03-01
A large wastewater treatment plant (WWTP) could not meet the new demand of urban environment and the need of reclaimed water in China, using a US treatment technology. Thus a multi AO reaction process (Anaerobic/oxic/anoxic/oxic/anoxic/oxic) WWTP with underground structure was proposed to carry out the upgrade project. Four main new technologies were applied: (1) multi AO reaction with step feed technology; (2) deodorization; (3) new energy-saving technology such as water resource heat pump and optical fiber lighting system; (4) dependable old WWTP’s water quality support measurement during new WWTP’s construction. After construction, upgrading WWTP had saved two thirds land occupation, increased 80% treatment capacity and improved effluent standard by more than two times. Moreover, it had become a benchmark of an ecological negative capital changing to a positive capital.
Prabhavathi Devi, B L A; Vijai Kumar Reddy, T; Vijaya Lakshmi, K; Prasad, R B N
2014-02-01
Simultaneous esterification and transesterification method is employed for the preparation of biodiesel from 7.5% free fatty acid (FFA) containing karanja (Pongamia glabra) oil using water resistant and reusable carbon-based solid acid catalyst derived from glycerol in a single step. The optimum reaction parameters for obtaining biodiesel in >99% yield by simultaneous esterification and transesterification are: methanol (1:45 mole ratio of oil), catalyst 20wt.% of oil, temperature 160°C and reaction time of 4h. After the reaction, the catalyst was easily recovered by filtration and reused for five times with out any deactivation under optimized conditions. This single-step process could be a potential route for biodiesel production from high FFA containing oils by simplifying the procedure and reducing costs and effluent generation. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Austrheim, H.; Prestvik, T.
2008-08-01
Ophiolite complexes in mountain chains may give supplementary information on the hydration of the oceanic lithosphere to that obtained from dredged and drilled samples from the ocean floor. The ultramafic (mantle) and the layered ultramafic to anorthositic (crustal) sequences of the Cambrian (497 Ma) Leka ophiolite are variably serpentinized and chloritized. Grossular-rodingite (rodingite s.s.) has been found over a c.500 m long and tens of meters wide zone in the layered, crustal section of the complex and is developed in both pyroxenites and gabbro/anorthosite layers. Shear zones and meter wide fracture zones, where the rock has developed a fracture cleavage, are oriented at high angel to the layering and these zones were the main conduits for transport of fluid and solute between the various lithologies. Some 5-15 cm thick layers of anorthosite (or leucogabbro) have been rodingitized around such a fractures zone, with the development of three distinct metasomatic zones along the plagioclase layer. A central grossular-dominated zone with clinopyroxene, clinozoisite, prehnite, chlorite and minor titanite (rodingite zone) extends for up to 3 m along strike and gives way to a clinozoisite-dominated zone (typically 0.5 m wide) with additional grossular, clinopyroxene and chlorite which is followed outward by a LILE-enriched zone (LILE-zone) with clinozoisite, phlogopite, K-feldspar, plagioclase and preiswerkite. The LILE-zone extends more than 3 m out from the clinozoisite-dominated zone (Clz-zone). Assuming constant volume, the rodingite formed from the plagioclase layer by addition of 20 g of CaO per 100 g of rock. All Na 2O (c. 2 g) was removed from both rodingite- and Clz-zones. Ti and V increase almost 10× in the rodingite compared to its protolith. K, Ba, Rb and Cs are strongly enriched in the LILE-zone compared to the protolith and suggest interaction with sea water. The lithologies alternating with the plagioclase layers (clinopyroxenite, wehrlite, websterite and dunite) display textures indicating a number of Ca-releasing (Cpx → Chl, Cpx → Srp, Cpx → Amph) and Ca-consuming (Opx → Cpx2, Ol → Cpx2, Cpx1 → Cpx2) reactions. The replacement textures are distributed around fracture and shear zones, with the Ca -releasing reactions in the core and the Ca -consuming reactions in distal parts, forming a metasomatic column out from the fluid pathways. Serpentinization and chloritization of clinopyroxene was the main Ca-source for the rodingitization process. This first description of rodingite in a layered sequence of an ophiolite complex indicates that the hydration of the oceanic lithosphere occurred at various structural levels and was associated with Ca-metasomatism also in places where rodingite s.s. is lacking. The different lithologies exchanged elements through transport on shear and fracture zones.
Molins, S; Mayer, K U; Amos, R T; Bekins, B A
2010-03-01
Contaminant attenuation processes in the vadose zone of a crude oil spill site near Bemidji, MN have been simulated with a reactive transport model that includes multicomponent gas transport, solute transport, and the most relevant biogeochemical reactions. Dissolution and volatilization of oil components, their aerobic and anaerobic degradation coupled with sequential electron acceptor consumption, ingress of atmospheric O(2), and the release of CH(4) and CO(2) from the smear zone generated by the floating oil were considered. The focus of the simulations was to assess the dynamics between biodegradation and gas transport processes in the vadose zone, to evaluate the rates and contributions of different electron accepting processes towards vadose zone natural attenuation, and to provide an estimate of the historical mass loss. Concentration distributions of reactive (O(2), CH(4), and CO(2)) and non-reactive (Ar and N(2)) gases served as key constraints for the model calibration. Simulation results confirm that as of 2007, the main degradation pathway can be attributed to methanogenic degradation of organic compounds in the smear zone and the vadose zone resulting in a contaminant plume dominated by high CH(4) concentrations. In accordance with field observations, zones of volatilization and CH(4) generation are correlated to slightly elevated total gas pressures and low partial pressures of N(2) and Ar, while zones of aerobic CH(4) oxidation are characterized by slightly reduced gas pressures and elevated concentrations of N(2) and Ar. Diffusion is the most significant transport mechanism for gases in the vadose zone; however, the simulations also indicate that, despite very small pressure gradients, advection contributes up to 15% towards the net flux of CH(4), and to a more limited extent to O(2) ingress. Model calibration strongly suggests that transfer of biogenically generated gases from the smear zone provides a major control on vadose zone gas distributions and vadose zone carbon balance. Overall, the model was successful in capturing the complex interactions between biogeochemical reactions and multicomponent gas transport processes. However, despite employing a process-based modeling approach, honoring observed parameter ranges, and generally obtaining good agreement between field observations and model simulations, accurate quantification of natural attenuation rates remains difficult. The modeling results are affected by uncertainties regarding gas phase saturations, tortuosities, and the magnitude of CH(4) and CO(2) flux from the smear zone. These findings highlight the need to better delineate gas fluxes at the model boundaries, which will help constrain contaminant degradation rates, and ultimately source zone longevity. Copyright 2009 Elsevier B.V. All rights reserved.
Molins, S.; Mayer, K.U.; Amos, R.T.; Bekins, B.A.
2010-01-01
Contaminant attenuation processes in the vadose zone of a crude oil spill site near Bemidji, MN have been simulated with a reactive transport model that includes multicomponent gas transport, solute transport, and the most relevant biogeochemical reactions. Dissolution and volatilization of oil components, their aerobic and anaerobic degradation coupled with sequential electron acceptor consumption, ingress of atmospheric O2, and the release of CH4 and CO2 from the smear zone generated by the floating oil were considered. The focus of the simulations was to assess the dynamics between biodegradation and gas transport processes in the vadose zone, to evaluate the rates and contributions of different electron accepting processes towards vadose zone natural attenuation, and to provide an estimate of the historical mass loss. Concentration distributions of reactive (O2, CH4, and CO2) and non-reactive (Ar and N2) gases served as key constraints for the model calibration. Simulation results confirm that as of 2007, the main degradation pathway can be attributed to methanogenic degradation of organic compounds in the smear zone and the vadose zone resulting in a contaminant plume dominated by high CH4 concentrations. In accordance with field observations, zones of volatilization and CH4 generation are correlated to slightly elevated total gas pressures and low partial pressures of N2 and Ar, while zones of aerobic CH4 oxidation are characterized by slightly reduced gas pressures and elevated concentrations of N2 and Ar. Diffusion is the most significant transport mechanism for gases in the vadose zone; however, the simulations also indicate that, despite very small pressure gradients, advection contributes up to 15% towards the net flux of CH4, and to a more limited extent to O2 ingress. Model calibration strongly suggests that transfer of biogenically generated gases from the smear zone provides a major control on vadose zone gas distributions and vadose zone carbon balance. Overall, the model was successful in capturing the complex interactions between biogeochemical reactions and multicomponent gas transport processes. However, despite employing a process-based modeling approach, honoring observed parameter ranges, and generally obtaining good agreement between field observations and model simulations, accurate quantification of natural attenuation rates remains difficult. The modeling results are affected by uncertainties regarding gas phase saturations, tortuosities, and the magnitude of CH4 and CO2 flux from the smear zone. These findings highlight the need to better delineate gas fluxes at the model boundaries, which will help constrain contaminant degradation rates, and ultimately source zone longevity. ?? 2009 Elsevier B.V.
Interplay between Reaction and Phase Behaviour in Carbon Dioxide Hydrogenation to Methanol.
Reymond, Helena; Amado-Blanco, Victor; Lauper, Andreas; Rudolf von Rohr, Philipp
2017-03-22
Condensation promotes CO 2 hydrogenation to CH 3 OH beyond equilibrium through in situ product separation. Although primordial for catalyst and reactor design, triggering conditions as well as the impact on sub-equilibrium reaction behaviour remain unclear. Herein we used an in-house designed micro-view-cell to gain chemical and physical insights into reaction and phase behaviour under high-pressure conditions over a commercial Cu/ZnO/Al 2 O 3 catalyst. Raman microscopy and video monitoring, combined with online gas chromatography analysis, allowed the complete characterisation of the reaction bulk up to 450 bar (1 bar=0.1 MPa) and 350 °C. Dew points of typical effluent streams related to a parametric study suggest that the improving reaction performance and reverting selectivities observed from 230 °C strongly correlate with (i) a regime transition from kinetic to thermodynamic, and (ii) a phase transition from a single supercritical to a biphasic reaction mixture. Our results advance a rationale behind transitioning CH 3 OH selectivities for an improved understanding of CO 2 hydrogenation under high pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua
2010-04-01
A sodium carbonate assisted hydrothermal process was induced to stabilize the fly ash from medical waste incinerator. The results showed that sodium carbonate assisted hydrothermal process reduced the heavy metals leachability of fly ash, and the heavy metal waste water from the process would not be a secondary pollution. The leachability of heavy metals studied in this paper were Cd 1.97 mg/L, Cr 1.56 mg/L, Cu 2.56 mg/L, Mn 17.30 mg/L, Ni 1.65 mg/L, Pb 1.56 mg/L and Zn 189.00 mg/L, and after hydrothermal process with the optimal experimental condition (Na2CO3/fly ash dosage = 5/20, reaction time = 8 h, L/S ratio = 10/1) the leachability reduced to < 0.02 mg/L for Cd, Cr, Cu, Mn, Ni, Pb, and 0.05 mg/L for Zn, according to GB 5085.3-2007. Meanwhile, the concentrations of heavy metals in effluent after hydrothermal process were less than 0.8 mg/L. The heavy metals leachability and concentration in effluent reduced with prolonged reaction time. Prolonged aging can affect the leachability of metals as solids become more crystalline, and heavy metals transferred inside of crystalline. The mechanism of heavy metal stabilization can be concluded to the co precipitation and adsorption effect of aluminosilicates formation, crystallization and aging process.
Process for the preparation of vinyl acetate
Tustin, G.C.; Zoeller, J.R.; Depew, L.S.
1998-02-17
This invention pertains to the preparation of vinyl acetate by contacting within a contact zone a mixture of ketene and acetaldehyde with an acid catalyst at about one bar pressure and between about 85 and 200 C and removing the reaction products from the contact zone.
NASA Astrophysics Data System (ADS)
Xie, Tianyan
1994-01-01
Photochemical study of the dechlorination of four model compounds, 4,5-dichloroguaiacol, 2,4,6-trichlorophenol, 2,3,4,5-tetrachlorophenol, and tetrachloroguaiacol in aqueous solutions under UV radiation was conducted using ArF (193 nm) and KrF (248 nm) excimer laser to explore the response of chlorinated phenolics present in the E_1 effluent from conventional chlorine bleaching of softwood kraft pulp towards photo-oxidation processes. Kinetic study show that the overall dechlorination reaction follow the first order rate law. The factors affecting the dechlorination were investigated. The quantum yield of chloride ion formation was found to be dependent on pH of the reaction mixture, and orignal chlorine content of the compounds. The effect of the substituents on the aromatic ring on the reactivity of the compounds was studied. The mechanism for the dechlorination was proposed involving homolytic photo-dissociation, heterolytic cleavage of carbon-chlorine bonds and substitution reactions of hydroxyl radicals. It was found that the dechlorination under formation to chloride is influenced by the amount of organically bound chlorine in the starting material. Dechlorination reaction favors high pH. Guaiacols more easily undergo dechlorination than phenols. Four fractions of high relative molecular-mass chloro-organics or polychlorinated oxylignin (PCOL) were isolated from an E_1 effluent by combination of ultrafiltration, and purified by repeated precipitation. The fractions were analysed by classical functional group analysis and spectrophotometric methods. The analytical data indicated that the major structural differences between PCOL fractions and kraft lignin preparations are with regard to the content of founctional groups such as carboxyl content, methoxyl and hydroxyl contents. In addition, IR, ^1H and ^{13 }C NMR spectral analyses revealed an almost complete absence of absorption attributable to aromatic structures in PCOLs. These results and others led to the conclusion that the PCOL fractions are comprised mainly of non-aromatic lignin oxidation products containing a considerable amount of organically bound chlorine as well as unsaturated aliphatic carbon bonded to either oxygen or chlorine. The PCOL fractions were subjected to 193 nm UV -Excimer laser photolysis in presence and absence of oxygen with and without hydrogen peroxide. Kinetic study showed that they readily undergo dechlorination and decolorization on UV ArF-excimer laser (193 nm) photolysis under both oxygen and nitrogen atmosphere. About 60% dechlorination could be achieved by 3 hours irradiation. However, the relative molecular-mass of the PCOL fractions were not changed during the photolysis. Addition of small amount (2-8% w/w) of hydrogen peroxide lead to a signifiant reduction of color and relative molecular-mass. Thus, hydrogen peroxide play very important role in degradation and decolorization of PCOLs. The possible reaction mechanism for the UV-Excimer laser photolysis of PCOLs are discussed on the basis of the observed results.
Influence of water mist on propagation and suppression of laminar premixed flame
NASA Astrophysics Data System (ADS)
Belyakov, Nikolay S.; Babushok, Valeri I.; Minaev, Sergei S.
2018-03-01
The combustion of premixed gas mixtures containing micro droplets of water was studied using one-dimensional approximation. The dependencies of the burning velocity and flammability limits on the initial conditions and on the properties of liquid droplets were analyzed. Effects of droplet size and concentration of added liquid were studied. It was demonstrated that the droplets with smaller diameters are more effective in reducing the flame velocity. For droplets vaporizing in the reaction zone, the burning velocity is independent of droplet size, and it depends only on the concentration of added liquid. With further increase of the droplet diameter the droplets are passing through the reaction zone with completion of vaporization in the combustion products. It was demonstrated that for droplets above a certain size there are two stable stationary modes of flame propagation with transition of hysteresis type. The critical conditions of the transition are due to the appearance of the temperature maximum at the flame front and the temperature gradient with heat losses from the reaction zone to the products, as a result of droplet vaporization passing through the reaction zone. The critical conditions are similar to the critical conditions of the classical flammability limits of flame with the thermal mechanism of flame propagation. The maximum decrease in the burning velocity and decrease in the combustion temperature at the critical turning point corresponds to predictions of the classical theories of flammability limits of Zel'dovich and Spalding. The stability analysis of stationary modes of flame propagation in the presence of water mist showed the lack of oscillatory processes in the frames of the assumed model.
Miller, D.N.; Smith, R.L.
2009-01-01
Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O2 (> 300????M) and NH4+ (51-800????M). The second site was 2.5??km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O2, NH4+, and NO3- (0-300, 0-500, and 100-200????M with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350??g- 1 and 33 to 35,000??g- 1, respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable.
The impact of land use and season on the riverine transport of mercury into the marine coastal zone.
Saniewska, Dominika; Bełdowska, Magdalena; Bełdowski, Jacek; Saniewski, Michał; Szubska, Marta; Romanowski, Andrzej; Falkowska, Lucyna
2014-11-01
In Mediterranean seas and coastal zones, rivers can be the main source of mercury (Hg). Catchment management therefore affects the load of Hg reaching the sea with surface runoff. The major freshwater inflows to the Baltic Sea consist of large rivers. However, their systems are complex and identification of factors affecting the outflow of Hg from its catchments is difficult. For this reason, a study into the impact of watershed land use and season on mercury biogeochemistry and transport in rivers was performed along two small rivers which may be considered typical of the southern Baltic region. Neither of these rivers are currently impacted by industrial effluents, thus allowing assessment of the influence of catchment terrain and season on Hg geochemistry. The study was performed between June 2008 and May 2009 at 13 sampling points situated at different terrain types within the catchments (forest, wetland, agriculture and urban). Hg analyses were conducted by CVAFS. Arable land erosion was found to be an important source of Hg to the aquatic system, similar to urban areas. Furthermore, inflows of untreated storm water discharge resulted in a fivefold increase of Hg concentration in the rivers. The highest Hg concentration in the urban runoff was observed with the greatest amount of precipitation during summer. Moderate rainfalls enhance the inflow of bioavailable dissolved mercury into water bodies. Despite the lack of industrial effluents entering the rivers directly, the sub-catchments with anthropogenic land use were important sources of Hg in the rivers. This was caused by elution of metal, deposited in soils over the past decades, into the rivers. The obtained results are especially important in the light of recent environmental conscience regulations, enforcing the decrease of pollution by Baltic countries.
Advective removal of intraparticle uranium from contaminated vadose zone sediments, Hanford, U.S.
Ilton, Eugene S; Qafoku, Nikolla P; Liu, Chongxuan; Moore, Dean A; Zachara, John M
2008-03-01
A column study on U(VI)-contaminated vadose zone sediments from the Hanford Site, WA, was performed to investigate U(VI) release kinetics with water advection and variable geochemical conditions. The sediments were collected from an area adjacent to and below tank BX-102 that was contaminated as a result of a radioactive tank waste overfill event. The primary reservoir for U(VI) in the sediments are micrometer-size precipitates composed of nanocrystallite aggregates of a Na-U-Silicate phase, most likely Na-boltwoodite, that nucleated and grew within microfractures of the plagioclase component of sand-sized granitic clasts. Two sediment samples, with different U(VI) concentrations and intraparticle mass transfer properties, were leached with advective flows of three different solutions. The influent solutions were all calcite-saturated and in equilibrium with atmospheric CO2. One solution was prepared from DI water, the second was a synthetic groundwater (SGW) with elevated Na that mimicked groundwater at the Hanford site, and the third was the same SGW but with both elevated Na and Si. The latter two solutions were employed, in part, to test the effect of saturation state on U(VI) release. For both sediments, and all three electrolytes, there was an initial rapid release of U(VI) to the advecting solution followed by slower near steady-state release. U(VI)aq concentrations increased during subsequent stop-flow events. The electrolytes with elevated Na and Si depressed U(VL)aq concentrations in effluent solutions. Effluent U(VI)aq concentrations for both sediments and all three electrolytes were simulated reasonably well by a three domain model (the advecting fluid, fractures, and matrix) that coupled U(VI) dissolution, intraparticle U(VI)aq diffusion, and interparticle advection, where diffusion and dissolution properties were parameterized in a previous batch study.
NASA Astrophysics Data System (ADS)
Miller, Daniel N.; Smith, Richard L.
2009-01-01
Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O 2 (> 300 µM) and NH 4+ (51-800 µM). The second site was 2.5 km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O 2, NH 4+, and NO 3- (0-300, 0-500, and 100-200 µM with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350 g - 1 and 33 to 35,000 g - 1 , respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH 4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable.
Mendonça, N M; Siman, R R; Niciura, C L; Campos, J R
2006-01-01
This paper presents the behaviour of a full-scale expanded bed reactor (160 m3) with overlaid anaerobic and aerobic zones used for municipal wastewater treatment. The research was carried out in two experimental steps: anaerobic and anaerobic-aerobic conditions, and the experimental results presented in this paper refer to four months of reactor operation. In the anaerobic condition, after inoculation and 60 days of operation, the reactor treating 3.40 kg CODm(-3)d(-1) for thetaH of 2.69 h, reached mean removal efficiencies of 76% for BOD, 72% for COD, and 80% for TSS, when the effluent presented mean values of 225 mg.L(-1) of COD, 98 mg.L(-1) of BOD and 35 mg.L(-1) of TSS. Under these conditions, for nitrogen loading of 0.27 kgN.m(-3)d(-1), the reactor generated an effluent with mean N-org. of 8 mg.L(-1) and N-ammon. of 37 mg.L(-1), demonstrating high potential of ammonification. For the anaerobic-aerobic condition (118th day) the system was operated with thetaH of 5.38 h presented mean removal efficiencies of 84% for BOD, 79% for COD, 76% for TSS, and 30% for TKN. The reactor's operation time was less than two months, which was not long enough to reach nitrification. Regarding the obtained results, this research confirmed that this reactor is configured as a flexible and adequate alternative for the treatment of sewage, requiring relatively small area and only thetaH of 10 h that can be adjusted to the local circumstances.
Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment.
Hyun, Seunghun; Jafvert, Chad T; Lee, Linda S; Rao, P Suresh C
2006-06-01
Placement of a microbial active sand cap on a coal tar-contaminated river sediment has been suggested as a cost effective remediation strategy. This approach assumes that the flux of contaminants from the sediment is sufficiently balanced by oxygen and nutrient fluxes into the sand layer such that microbial activity will reduce contaminant concentrations within the new benthic zone and reduce the contaminant flux to the water column. The dynamics of such a system were evaluated using batch and column studies with microbial communities from tar-contaminated sediment under different aeration and nutrient inputs. In a 30-d batch degradation study on aqueous extracts of coal tar sediment, oxygen and nutrient concentrations were found to be key parameters controlling the degradation rates of polycyclic aromatic hydrocarbons (PAHs). For the five PAHs monitored (naphthalene, fluorene, phenanthrene, anthracene, and pyrene), degradation rates were inversely proportional to molecular size. For the column studies, where three columns were packed with a 20-cm sand layer on the top of a 5 cm of sediment layer, flow was established to sand layers with (1) aerated water, (2) N(2) sparged water, or (3) HgCl(2)-sterilized N(2) sparged water. After steady-state conditions, PAH concentrations in effluents were the lowest in the aerated column, except for pyrene, whose concentration was invariant with all effluents. These laboratory scale studies support that if sufficient aeration can be achieved in the field through either active and passive means, the resulting microbially active sand layer can improve the water quality of the benthic zone and reduce the flux of many, but not all, PAHs to the water column.
Role of a Streambed's Benthic Biolayer in Enhancing Chemical Reactions in Hyporheic Flow
NASA Astrophysics Data System (ADS)
Harvey, J. W.
2016-12-01
Chemical processing of metals, nutrients, and organic compounds occurs throughout natural waters, however the rate of reactions often is greater at the streambed interface compared with surface water or deeper groundwater. Hydrologic exchange across the sediment interface brings reactive solutes and fine particulate organic matter from surface waters into contact with the streambed biolayer, a zone with algae and other living microflora and fauna, microbial communities, and reactive geochemical coatings on granular sediments. Compared with surface water or deeper hyporheic sediments, the intrinsic rate of reactions may be stimulated in biolayers because of higher rates of metabolic processing and associated redox reactions. Also, hydrologic transport may enhance reaction rates by relieving potential transport limitations through the re-supply of reactive substrates from surface water. As a result the chemical processing that occurs in the biolayer may far exceed processing that occurs in deeper hyporheic flow. Here I highlight new understanding of enhancement of reaction rates and their hydrologic and biogeochemical controls in streambed biolayers compared with hyporheic flow as a whole. The approach distinguishes and quantifies reaction limitation and transport limitation both at the centimeter-scale within the hyporheic zone and at the river network scale where the effect of streambed reactions accumulates and influences downstream water quality.
Anfruns-Estrada, Eduard; Bruguera-Casamada, Carmina; Salvadó, Humbert; Brillas, Enric; Sirés, Ignasi; Araujo, Rosa M
2017-12-01
This work aims at comparing the ability of two kinds of electrochemical technologies, namely electrocoagulation (EC) and electro-Fenton (EF), to disinfect primary and secondary effluents from municipal wastewater treatment plants. Heterotrophic bacteria, Escherichia coli, enterococci, Clostridium perfringens spores, somatic coliphages and eukaryotes (amoebae, flagellates, ciliates and metazoa) were tested as indicator microorganisms. EC with an Fe/Fe cell at 200 A m -2 and natural pH allowed >5 log unit removal of E. coli and final concentration below 1 bacteria mL -1 of coliphages and eukaryotes from both effluents in ca. 60 min, whereas heterotrophic bacteria, enterococci and spores were more resistant. A larger removal was obtained for the primary effluent, probably because the flocs remove higher amount of total organic carbon (TOC), entrapping more easily the microbiota. EF with a boron-doped diamond (BDD) anode and an air-diffusion cathode that produces H 2 O 2 on site was first performed at pH 3.0, with large or even total inactivation of microorganisms within 30 min. A more effective microorganism removal was attained as compared to EC thanks to • OH formed from Fenton's reaction. A quicker disinfection was observed for the secondary effluent owing to its lower TOC content, allowing the attack of greater quantities of electrogenerated oxidants on microorganisms. Wastewater disinfection by EF was also feasible at natural pH (∼7), showing similar abatement of active microorganisms as a result of the synergistic action of generated oxidants like active chlorine and coagulation with iron hydroxides. A sequential EC/EF treatment (30 min each) was more effective for a combined decontamination and disinfection of urban wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Laboratory scale studies on removal of chromium from industrial wastes.
Baig, M A; Mir, Mohsin; Murtaza, Shazad; Bhatti, Zafar I
2003-05-01
Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr(3+)) and hexavalent (Cr(6+)) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr(3+) is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases. In phase I, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase II showed that lower dose of sodium meta bisulfate was sufficient to obtain 100% efficiency in reducing Cr(6+) to Cr(3+), and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents. Phase III studies indicated the best pH was 8.5 for precipitation of Cr(3+) to chromium hydroxide by using lime. An efficiency of 100% was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase IV actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100% efficiency at a settling time of 30 minutes and confined that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.
Hong, Baoan; Du, Xin; Zhao, Yuan; Chen, Guowei; Zhang, Xiaodong; Zhang, Ning; Yang, Yong
2015-01-01
A model of in vivo porcine kidneys is used to clarify the characteristics of laparoscopic microwave ablation (MWA) of renal tissue. Six pigs were utilised for the experiment using 18G water circulating-cooling microwave needles. The operating frequency was 2450 MHz, and the independent variables were power (50-60 W) and time (300-600 s). The kidneys were dissociated laparoscopically and ablated with a single or double needle at different power/time combinations and depths of puncture. Changes in the kidneys were carefully observed. Specimens of the ablated lesions were stained with haematoxylin-eosin (H&E) to evaluate the pathological features. Thirty-four thermoablations were applied. The effective ablation shape was similar to a chestnut. The ablated lesions could be divided into three zones: carbonization zone, coagulation zone, and inflammatory reaction zone. The ablation zone enlarged with increasing power and time. When combined with two needles, the maximum diameter of the ablated lesions significantly increased. Pathological results indicated that renal tissues of the carbonisation zone were thoroughly necrotic. Coagulative necrosis was observed in the coagulation zone. No 'skipped' areas were noted in any ablation zone. The structure of the inflammatory reaction zone was integrated, and interstitial small blood vessels were highly expanded and congested with infiltrated inflammatory cells. MWA achieved excellent effects in this porcine model. It can be safely and effectively used in renal tissue. For patients with poor physical condition or small renal masses (<4 cm), we can refer to these data and select the appropriate combinations to obtain satisfactory therapeutic efficacy.
Lean direct injection diffusion tip and related method
Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy S [Simpsonville, SC; Lipinski, John [Simpsonville, SC; Kraemer, Gilbert O [Greer, SC; Yilmaz, Ertan [Niskayuna, NY; Lacy, Benjamin [Greer, SC
2012-08-14
A nozzle for a gas turbine combustor includes a first radially outer tube defining a first passage having an inlet and an outlet, the inlet adapted to supply air to a reaction zone of the combustor. A center body is located within the first radially outer tube, the center body including a second radially intermediate tube for supplying fuel to the reaction zone and a third radially inner tube for supplying air to the reaction zone. The second intermediate tube has a first outlet end closed by a first end wall that is formed with a plurality of substantially parallel, axially-oriented air outlet passages for the additional air in the third radially inner tube, each air outlet passage having a respective plurality of associated fuel outlet passages in the first end wall for the fuel in the second radially intermediate tube. The respective plurality of associated fuel outlet passages have non-parallel center axes that intersect a center axis of the respective air outlet passage to locally mix fuel and air exiting said center body.
Influence of a Simple Heat Loss Profile on a Pure Diffusion Flame
NASA Technical Reports Server (NTRS)
Ray, Anjan; Wichman, Indrek S.
1996-01-01
The presence of soot on the fuel side of a diffusion flame results in significant radiative heat losses. The influence of a fuel side heat loss zone on a pure diffusion flame established between a fuel and an oxidizer wall is investigated by assuming a hypothetical sech(sup 2) heat loss profile. The intensity and width of the loss zone are parametrically varied. The loss zone is placed at different distances from the Burke-Schumann flame location. The migration of the temperature and reactivity peaks are examined for a variety of situations. For certain cases the reaction zone breaks through the loss zone and relocates itself on the fuel side of the loss zone. In all cases the temperature and reactivity peaks move toward the fuel side with increased heat losses. The flame structure reveals that the primary balance for the energy equation is between the reaction term and the diffusion term. Extinction plots are generated for a variety of situations. The heat transfer from the flame to the walls and the radiative fraction is also investigated, and an analytical correlation formula, derived in a previous study, is shown to produce excellent predictions of our numerical results when an O(l) numerical multiplicative constant is employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reaugh, J E
2002-01-03
Explosive grain-scale simulations are not practical for weapon safety simulations. Indeed for nearly ideal explosives with reaction zones of order 500 {micro}m, even reactive flow models are not practical for weapon safety simulations. By design, reactive flow models must resolve the reaction zone, which implies computational cells with dimension of order 50 {micro}m for such explosives. The desired result for a simulation in which the reaction zone is not resolved is that the explosive behaves as an ideal one. The pressure at the shock front rises to the Chapman-Jouget (CJ) pressure with a reaction zone dimension that is like thatmore » of a shock propagating in an unreactive medium, on the order of a few computational cells. It should propagate with the detonation velocity that is determined by the equation of state of the products. In the past, this was achieved in one dimensional simulations with ''beta-burn'', a method in which the extent of conversion to final product is proportional to the approach of the specific volume in the shock front to the specific volume of the CJ state. One drawback with this method is that there is a relatively long build-up to steady detonation that is typically 50 to 100 computational cells. The need for relatively coarsely zoned simulations in two dimensions lead to ''program-burn'' by which the time to detonation can be determined by a simple ray-tracing algorithm when there are no barriers or shadows. Complications arise in two and three dimensions to the extent that some calculations of the lighting time in complex geometry can give incorrect results. We sought to develop a model based on reactive flow that might help the needs of the Weapon Safety Simulation milepost. Important features of the model are: (1) That it be useable with any equation of state description of the explosive product gases including both JWL and LEOS table forms. (2) That it exhibits the desired dependence on zone size. We believe that the model described here does exhibit these features.« less
Ramdzan, Adlin N; Almeida, M Inês G S; McCullough, Michael J; Kolev, Spas D
2016-05-05
A low cost, disposable and easy to use microfluidic paper-based analytical device (μPAD) was developed for simple and non-invasive determination of total aldehydes in saliva with a potential to be used in epidemiological studies to assess oral cancer risk. The μPAD is based on the colour reaction between aldehydes (e.g. acetaldehyde, formaldehyde), 3-methyl-2-benzothiazolinone hydrazone (MBTH) and iron(III) to form an intense blue coloured formazan dye. The newly developed μPAD has a 3D design with two overlapping paper layers. The first layer comprises 15 circular detection zones (8 mm in diameter), each impregnated with 8 μL of MBTH, while the second layer contains 15 reagent zones (4 mm in diameter). Two μL of iron(III) chloride are added to each one of the second layer zones after the addition of sample to the detection zones in the first layer. All hydrophilic zones of the μPAD are defined by wax printing using a commercial wax printer. Due to the 2-step nature of the analytical reaction, the two paper layers are separated by a cellulose acetate interleaving sheet to allow for the reaction between the aldehydes in the saliva sample with MBTH to proceed first with the formation of an azine, followed by a blue coloured reaction between the azine and the oxidized by iron(III) form of MBTH, produced after the removal of the interleaving sheet. After obtaining a high resolution image of the detection side zone of the device using a flatbed scanner, the intensity of the blue colour within each detection zone is measured with Image J software. Under optimal conditions, the μPAD is characterised by a working range of 20.4-114.0 μM, limit of detection of 6.1 μM, and repeatability, expressed as RSD, of less than 12.7% (n = 5). There is no statistically significant difference at the 95% confidence level between the results obtained by the μPAD and the reference method (Student's t-test: 0.090 < 0.38). The optimized μPAD is stable for more than 41 days when stored in a freezer (≤-20 °C). Copyright © 2016 Elsevier B.V. All rights reserved.
HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reaugh, J E
2011-11-22
HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the responsemore » of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where explosives were subjected to a gradual rise in pressure and did not exhibit reaction. More recent models do distinguish between slow pressure rises and shocks, and have had some success in the describing the response of explosives to single and multiple shocks, and the increase of shock sensitivity with porosity, at least over a limited range. The original formulation is appropriate for sustained shocks, but further work is ongoing to describe the response to short pulses. The HERMES model combines features from these prior models. It describes burning and explosion in damaged reactant, and also will develop a detonation if the gradual rise in pressure from burning steepens into a strong-enough shock. The shock strength needed for detonation in a fixed run distance decreases with increasing porosity.« less
Reaction front dynamics under shear flow for arbitrary Damköhler numbers
NASA Astrophysics Data System (ADS)
Bandopadhyay, Aditya; Méheust, Yves; Le Borgne, Tanguy
2016-04-01
Reaction fronts where two reactive fluids displace one another play an important role in a range of applications, including contaminant plume transport and reaction, soil and aquifer remediation, CO2 sequestration, geothermal dipoles and the development of hotspots of reaction in mixing zones. The background flow induces enhanced mixing, and therefore reaction, through interfacial shear. Hence the coupling of fluid flow with chemical reactions is pivotal in understanding and quantifying effective reaction kinetics in reaction fronts. While this problem has been addressed in the limit of fast reactions (e.g. de Simoni 2005, Le Borgne 2014), in natural systems reactions can span a large range of Damköhler numbers since their characteristic reaction times vary over a large range of typical values. Here the coupling of shear flow and reversible chemical reactions is studied for a reaction front with initially separated reactants at arbitrary Damköhler numbers. Approximate analytical expressions for the global production rate are derived based on a reactive lamella approach. We observe three distinct regimes, each of them characterized by different scalings of the global production rate and width of the reactive zone. We describe the dependency of these scalings and the associated characteristic transition times as a function of Damköhler and Péclet numbers. These results are validated against 2D numerical simulations. The study is expected to shed light on the inherently complex cases of reactive mixing with varying reaction rates under the influence of an imposed flow. de Simoni et al. (2005) Water Resour. Res., 41, W11410 Le Borgne et al. (2014) GRL, 41(22), 7898
Process for the preparation of vinyl acetate
Tustin, Gerald Charles; Zoeller, Joseph Robert; Depew, Leslie Sharon
1998-01-01
This invention pertains to the preparation of vinyl acetate by contacting within a contact zone a mixture of ketene and acetaldehyde with an acid catalyst at about one bar pressure and between about 85.degree. and 200.degree. C. and removing the reaction products from the contact zone.
Reeves, R.D.; Blakey, J.F.
1976-01-01
Urban development on or adjacent to the recharge zone of the Edwards aquifer is causing concern about the possible pollution of ground water in the aquifer, which is the principal source of water supply for the San Antonio area. Water-quality data for many wells and springs and for selected sites on streams that cross the recharge zone of the aquifer are being collected to provide background information and to detect any current pollution of ground water in the area. Water from the Edwards aquifer is very hard and of the calcium bicarbonate type. The concentrations of dissolved solids in samples from wells and springs ranged from about 200 to 470 mg/1 (milligrams per liter); the chloride and sulfate concentrations ranged from 6.5 to 62 mg/1 and from 0.0 to 65 mg/1, respectively. The nitrate and phosphate contents of the ground water ranged from 0.0 to 15 mg/1 and from 0.00 to 0. 37 mg/1. The concentrations of these and other constituents show that the chemical quality of water in the Edwards aquifer has not been degraded significantly by domestic, industrial, or agricultural effluents. However, variations in the number of coliforms, the concentrations of nitrate and phosphate, and the presence of fecal coliforms and fecal streptococci in samples from some wells show that fecal pollution is reaching the aquifer. Most of these wells, which are located in or just downdip from the recharge zone, are poorly sealed or inadequately cased. The areal variation in the locations of these wells indicates that pollution of ground water in the aquifer is very localized. Prllution results principally from runoff from the land surface and from effluent from septic tanks which enters the aquifer through fractures in the recharge zone or which infiltrates through the thin soil into poorly sealed or inadequately cased wells in or adjacent to the recharge zone. Trace amounts of several pesticides have been detected in samples from two wells in the San Antonio area. Field investigations showed the source of pesticides in these wells to be. surface drainage that entered the wellbores. Water-quality data collected at sites on streams that cross the recharge zone of the Edwards aquifer show the chemical composition of surface water to be very similar to that of ground water in the area. Water in most streams is very hard and of the calcium bicarbonate type. Limited data on the bacteriological quality show that coliforms were present at each of the site sampled and that fecal coliforms and fecal streptococci were present at most sites. Although the number of these bacteria varied greatly in both time and place, their density in samples from most sites were low for untreated surface water.
Influence of water chemistry and travel distance on bacteriophage PRD-1 transport in a sandy aquifer
Blanford, W.J.; Brusseau, M.L.; Jim Yeh, T.-C.; Gerba, C.P.; Harvey, R.
2005-01-01
Experiments were conducted to evaluate the impact of groundwater chemistry and travel distance on the transport and fate behavior of PRD-1, a bacteriophage employed as a surrogate tracer for pathogenic enteric viruses. The experiments were conducted in the unconfined aquifer at the United States Geological Survey Cape Cod Toxic-Substances Hydrology Research Site in Falmouth, Massachusetts. The transport behavior of bromide (Br-) and PRD-1 were evaluated in a sewage-effluent contaminated zone and a shallower uncontaminated zone at this site. Several multilevel sampling devices located along a 13-m transect were used to collect vertically discrete samples to examine longitudinal and vertical variability of PRD-1 retardation and attenuation. The concentration of viable bacteriophage in the aqueous phase decreased greatly during the first few meters of transport. This decrease is attributed to a combination of colloid filtration (attachment) and inactivation. The removal was greater (10 -12 relative recovery) and occurred within the first meter for the uncontaminated zone, whereas it was lesser (10-9 relative recovery) and occurred over 4 m in the contaminated zone. The lesser removal observed for the contaminated zone is attributed to the influence of sorbed and dissolved organic matter, phosphate, and other anions, which are present in higher concentrations in the contaminated zone, on PRD-1 attachment. After the initial decrease, the aqueous PRD-1 concentrations remained essentially constant in both zones for the remainder of the tests (total travel distances of 13 m), irrespective of variations in geochemical properties within and between the two zones. The viable, mobile PRD-1 particles traveled at nearly the rate of bromide, which was used as a non-reactive tracer. The results of this study indicate that a small fraction of viable virus particles may persist in the aqueous phase and travel significant distances in the subsurface environment. ?? 2005 Elsevier Ltd. All rights reserved.
Sewage-derived nutrient dynamics in highly urbanized coastal rivers, western Japan
NASA Astrophysics Data System (ADS)
Onodera, S. I.; Saito, M.; Jin, G.; Taniguchi, M.
2016-12-01
Water pollution by domestic sewage is one of the critical environmental problems in the early stage of urbanization with significant growth of population. In case of Osaka metropolitan area in Japan, the pollution was significant until 1970s, while it has been improved by the development of sewage treatment systems. However, removal of nitrogen needs the advanced process therefore relatively large part of dissolved inorganic nitrogen (DIN) is usually discharged by treated sewage effluent. Besides, increase of sewage-derived pollutant loads through the combined sewage systems during rainfall events is recognized as a new problem in recent years. However, the impacts of sewage-derived loads on the water environment of river and coastal area have not been fully evaluated in previous studies. In the present research, we aimed to examine the dynamics of sewage-derived nutrients in highly urbanized coastal rivers. Study area is located on the coastal area of Osaka bay in Seto Inland Sea, western Japan. Treated sewage effluent is discharged from three sewage treatment plants (KH, SU and SA) to a river and channels. Water and sediment samples were collected and electric conductivity (EC), chlorophyll-a (Chl.-a) and dissolved oxygen concentration (DO) were measured from the discharging points to few kilometers offshore at 100-300 m intervals. Nutrients (nitrogen, phosphorus and silica), nitrogen and carbon contents and stable isotope ratios (δ15N and δ13C) of particulate organic matter (POM) and sediment, nitrogen and oxygen stable isotope ratios (δ15N and δ18O) in nitrate (NO3-) were measured. Nitrate-nitrogen (NO3-N) concentration were significantly high near the discharging point then it decreased to offshore suggesting that impact zone of sewage effluent is about 1 km from the discharging point. Significant NO3-N uptake by phytoplankton as well as dilution process were suggested in the area. However, the impact zone expanded more than twofold during the rainfall event (>20mm/h). Nutrient contents were significantly high both in the sediment and pore water near the discharging points and it caused relatively high diffusion flux to overlying water. It suggests nutrient regeneration process from the sediment is the secondary loading process in the study area.
Studies in nonlinear problems of energy. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matkowsky, B.J.
1998-12-01
The author completed a successful research program on Nonlinear Problems of Energy, with emphasis on combustion and flame propagation. A total of 183 papers associated with the grant has appeared in the literature, and the efforts have twice been recognized by DOE`s Basic Science Division for Top Accomplishment. In the research program the author concentrated on modeling, analysis and computation of combustion phenomena, with particular emphasis on the transition from laminar to turbulent combustion. Thus he investigated the nonlinear dynamics and pattern formation in the successive stages of transition. He described the stability of combustion waves, and transitions to wavesmore » exhibiting progressively higher degrees of spatio-temporal complexity. Combustion waves are characterized by large activation energies, so that chemical reactions are significant only in thin layers, termed reaction zones. In the limit of infinite activation energy, the zones shrink to moving surfaces, termed fronts, which must be found during the course of the analysis, so that the problems are moving free boundary problems. The analytical studies were carried out for the limiting case with fronts, while the numerical studies were carried out for the case of finite, though large, activation energy. Accurate resolution of the solution in the reaction zone(s) is essential, otherwise false predictions of dynamical behavior are possible. Since the reaction zones move, and their location is not known a-priori, the author has developed adaptive pseudo-spectral methods, which have proven to be very useful for the accurate, efficient computation of solutions of combustion, and other, problems. The approach is based on a combination of analytical and numerical methods. The numerical computations built on and extended the information obtained analytically. Furthermore, the solutions obtained analytically served as benchmarks for testing the accuracy of the solutions determined computationally. Finally, the computational results suggested new analysis to be considered. A cumulative list of publications citing the grant make up the contents of this report.« less
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Heath, Christopher M.; Anderson, Robert C.; Tacina, Kathleen M.
2012-01-01
This paper explores recent results obtained during testing in an optically-accessible, JP8-fueled, flame tube combustor using baseline Lean Direct Injection (LDI) research hardware. The baseline LDI geometry has nine fuel/air mixers arranged in a 3 x 3 array. Results from this nine-element array include images of fuel and OH speciation via Planar Laser-Induced Fluorescence (PLIF), which describe fuel spray pattern and reaction zones. Preliminary combustion temperatures derived from Stokes/Anti-Stokes Spontaneous Raman Spectroscopy are also presented. Other results using chemiluminescence from major combustion radicals such as CH* and C2* serve to identify the primary reaction zone, while OH PLIF shows the extent of reaction further downstream. Air and fuel velocities and fuel drop size results are also reported.
Process for operating equilibrium controlled reactions
Nataraj, Shankar; Carvill, Brian Thomas; Hufton, Jeffrey Raymond; Mayorga, Steven Gerard; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard
2001-01-01
A cyclic process for operating an equilibrium controlled reaction in a plurality of reactors containing an admixture of an adsorbent and a reaction catalyst suitable for performing the desired reaction which is operated in a predetermined timed sequence wherein the heating and cooling requirements in a moving reaction mass transfer zone within each reactor are provided by indirect heat exchange with a fluid capable of phase change at temperatures maintained in each reactor during sorpreaction, depressurization, purging and pressurization steps during each process cycle.
Araújo, Cristiano V M; Rodríguez, Elizabeth N V; Salvatierra, David; Cedeño-Macias, Luis A; Vera-Vera, Victoria C; Moreira-Santos, Matilde; Ribeiro, Rui
2016-11-01
Habitat selection by fish is the outcome of a choice between different stimuli. Typically, the presence of food tends to attract organisms, while contamination triggers an avoidance response to prevent toxic effects. Given that both food and contaminants are not homogeneously distributed in the environment and that food can be available in contaminated zones, a key question has been put forward in the present study: does a higher availability of food in contaminated areas interfere in the avoidance response to contaminants regardless of the contamination level? Tilapia fry (Oreochromis sp.; 2.5-3.0 cm and 0.5-0.8 g) were exposed to two different effluent samples, diluted along a free-choice, non-forced exposure system simulating a contamination gradient. Initially, avoidance to the effluents was checked during a one hour exposure. Afterwards, food was added to the system so that the availability of food increased with the increase in the level of contamination, and the avoidance response to contamination was checked during another hour. Results clearly showed a concentration-dependent avoidance response for both effluents during the first hour (i.e., with no food). However, in presence of the food, the avoidance pattern was altered: organisms were propelled to intermittently move towards contaminated areas where food availability was higher. The incursions were taken regardless of the potential risk linked to the toxic effects. In conclusion, even when the risk of toxicity was imminent, tilapia fry were more intensively stimulated by the attractiveness of the food than by repulsion to the contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
CMI Remedy Selection for HE- and Barium-Contaminated Vadose Zone and Alluvium at LANL
NASA Astrophysics Data System (ADS)
Hickmott, D.; Reid, K.; Pietz, J.; Ware, D.
2008-12-01
A high explosives (HE) machining building outfall at Los Alamos National Laboratory's Technical Area 16 discharged millions of gallons of HE- and barium-contaminated water into the Canon de Valle watershed. The effluent contaminated surface soils, the alluvial aquifer, vadose zone waters, and deep-perched and regional groundwaters with HE and barium, frequently at levels greater than regulatory standards. Site characterization studies began in 1995 and included extensive monitoring of surface water, groundwater, soils, and subsurface solid media. Hydrogeologic and geophysical studies were conducted to help understand contaminant transport mechanisms and pathways. Results from the characterization studies were used to develop a site conceptual model. In 2000 the principal source area was removed. The ongoing Corrective Measure Study (CMS) and Corrective Measure Implementation (CMI) focus on residual vadose zone contamination and on the contaminated alluvial system. Regulators recently selected a CMI remedy that combined: 1) augmented source removal; 2) grouting of an HE- contaminated surge bed; 3) deployment of Stormwater Management System (SMS) stormfilters in contaminated springs; and 4) permeable reactive barriers (PRBs) in contaminated alluvium. The hydrogeologic conceptual model for the vadose zone and alluvial system as well as the status of the canyon as habitat for the Mexican Spotted Owl were key factors in selection of these minimal-environmental-impact remedies. The heterogeneous vadose zone, characterized by flow and contaminant transport in fractures and in surge beds, requires contaminant treatment at a point of discharge. The canyon PRB is being installed to capture water and contaminants prior to infiltration into the vadose zone. Pilot-scale testing of the SMS and lab-scale batch and column tests of a range of media suggest that granular activated carbon, zeolite, and gypsum may be effective media for removal of HE and/or barium from contaminated waters.
Webcam camera as a detector for a simple lab-on-chip time based approach.
Wongwilai, Wasin; Lapanantnoppakhun, Somchai; Grudpan, Supara; Grudpan, Kate
2010-05-15
A modification of a webcam camera for use as a small and low cost detector was demonstrated with a simple lab-on-chip reactor. Real time continuous monitoring of the reaction zone could be done. Acid-base neutralization with phenolphthalein indicator was used as a model reaction. The fading of pink color of the indicator when the acidic solution diffused into the basic solution zone was recorded as the change of red, blue and green colors (%RBG.) The change was related to acid concentration. A low cost portable semi-automation analysis system was achieved.
Secondary Waste Form Down Selection Data Package – Ceramicrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Westsik, Joseph H.
2011-08-31
As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratorymore » is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.« less
NASA Astrophysics Data System (ADS)
Wintsch, Robert P.; Yeh, Meng-Wan
2013-03-01
Microstructures associated with cataclasites and mylonites in the Red River shear zone in the Diancang Shan block, Yunnan Province, China show evidence for both reaction hardening and softening at lower greenschist facies metamorphic conditions. The earliest fault-rocks derived from Triassic porphyritic orthogneiss protoliths are cataclasites. Brittle fractures and crushed grains are cemented by newly precipitated quartz. These cataclasites are subsequently overprinted by mylonitic fabrics. Truncations and embayments of relic feldspars and biotites show that these protolith minerals have been dissolved and incompletely replaced by muscovite, chlorite, and quartz. Both K-feldspar and plagioclase porphyroclasts are truncated by muscovite alone, suggesting locally metasomatic reactions of the form: 3K-feldspar + 2H+ = muscovite + 6SiO2(aq) + 2K+. Such reactions produce muscovite folia and fish, and quartz bands and ribbons. Muscovite and quartz are much weaker than the reactant feldspars and these reactions result in reaction softening. Moreover, the muscovite tends to align in contiguous bands that constitute textural softening. These mineral and textural modifications occurred at constant temperature and drove the transition from brittle to viscous deformation and the shift in deformation mechanism from cataclasis to dissolution-precipitation and reaction creep. These mylonitic rocks so produced are cut by K-feldspar veins that interrupt the mylonitic fabric. The veins add K-feldspar to the assemblage and these structures constitute both reaction and textural hardening. Finally these veins are boudinaged by continued viscous deformation in the mylonitic matrix, thus defining a late ductile strain event. Together these overprinting textures and microstructures demonstrate several oscillations between brittle and viscous deformation, all at lower greenschist facies conditions where only frictional behavior is predicted by experiments. The overlap of the depths of greenschist facies conditions with the base of the crustal seismic zone suggests that the implied oscillations in strain rate may have been related to the earthquake cycle.
Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor
NASA Astrophysics Data System (ADS)
Sadanandan, R.; Stöhr, M.; Meier, W.
2008-03-01
In highly turbulent environments, combustion is strongly influenced by the effects of turbulence chemistry interactions. Simultaneous measurement of the flow field and flame is, therefore, obligatory for a clear understanding of the underlying mechanisms. In the current studies simultaneous PIV and OH-PLIF measurements were conducted in an enclosed gas turbine model combustor for investigating the influence of turbulence on local flame characteristics. The swirling CH4/air flame that was investigated had a thermal power of 10.3 kW with an overall equivalence ratio of ϕ=0.75 and exhibited strong thermoacoustic oscillations at a frequency of approximately 295 Hz. The measurements reveal the formation of reaction zones at regions where hot burned gas from the recirculation zones mixes with the fresh fuel/air mixture at the nozzle exit. However, this does not seem to be a steady phenomenon as there always exist regions where the mixture has failed to ignite, possibly due to the high local strain rates present, resulting in small residence time available for a successful kinetic runaway to take place. The time averaged PIV images showed flow fields typical of enclosed swirl burners, namely a big inner recirculation zone and a small outer recirculation zone. However, the instantaneous images show the existence of small vortical structures close to the shear layers. These small vortical structures are seen playing a vital role in the formation and destruction of reaction zone structures. One does not see a smooth laminar flame front in the instantaneous OH-PLIF images, instead isolated regions of ignition and extinction highlighting the strong interplay between turbulence and chemical reactions.
Improved hydrocracker temperature control: Mobil quench zone technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarli, M.S.; McGovern, S.J.; Lewis, D.W.
1993-01-01
Hydrocracking is a well established process in the oil refining industry. There are over 2.7 million barrels of installed capacity world-wide. The hydrocracking process comprises several families of highly exothermic reactions and the total adiabatic temperature rise can easily exceed 200 F. Reactor temperature control is therefore very important. Hydrocracking reactors are typically constructed with multiple catalyst beds in series. Cold recycle gas is usually injected between the catalyst beds to quench the reactions, thereby controlling overall temperature rise. The design of this quench zone is the key to good reactor temperature control, particularly when processing poorer quality, i.e., highermore » heat release, feeds. Mobil Research and Development Corporation (MRDC) has developed a robust and very effective quench zone technology (QZT) package, which is now being licensed to the industry for hydrocracking applications.« less
Solar heated fluidized bed gasification system
NASA Technical Reports Server (NTRS)
Qader, S. A. (Inventor)
1981-01-01
A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.
Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation.
Andreozzi, Roberto; Caprio, Vincenzo; Marotta, Raffaele; Radovnikovic, Anita
2003-10-31
The presence of pharmaceuticals or their active metabolites in surface and ground waters has been recently reported as mainly due to an incomplete removal of these pollutants in sewage treatment plants (STP). Advanced oxidation processes may represent a suitable tool to reduce environmental release of these species by enhancing the global efficiency of reduction of pharmaceuticals in the municipal sewage plant effluents. The present work aims at assessing the kinetics of abatement from aqueous solutions of clofibric acid (a metabolite of the blood lipid regulator clofibrate) which has been found in surface, ground and drinking waters. Ozonation and hydrogen peroxide photolysis are capable of fast removal of this species in aqueous solution, with an almost complete conversion of the organic chlorine content into chloride ions for the investigated reaction conditions. A validation of assessed kinetics at clofibric acid concentrations as low as those found in STP effluents is presented for both systems.
García-Diéguez, Carlos; Bernard, Olivier; Roca, Enrique
2013-03-01
The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that the main model features could be obtained with a minimum of two reactions. A reduced stoichiometric matrix was identified and the kinetic parameters were estimated on the basis of representative known biochemical kinetics (Monod and Haldane). The obtained reduced model takes into account the measured states in the anaerobic wastewater treatment (AWT) plant and reproduces the dynamics of the process fairly accurately. The reduced model can support on-line control, optimization and supervision strategies for AWT plants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Well sealing via thermite reactions
Lowry, William Edward; Dunn, Sandra Dalvit
2016-11-15
A platform is formed in a well below a target plug zone by lowering a thermite reaction charge into the well and igniting it, whereby the products of the reaction are allowed to cool and expand to form a platform or support in the well. A main thermite reaction charge is placed above the platform and ignited to form a main sealing plug for the well. In some embodiments an upper plug is formed by igniting an upper thermite reaction charge above the main thermite reaction charge. The upper plug confines the products of ignition of the main thermite reaction charge.
Ito, Toshihiro; Kato, Tsuyoshi; Hasegawa, Makoto; Katayama, Hiroyuki; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke
2016-12-01
The virus reduction efficiency of each unit process is commonly determined based on the ratio of virus concentration in influent to that in effluent of a unit, but the virus concentration in wastewater has often fallen below the analytical quantification limit, which does not allow us to calculate the concentration ratio at each sampling event. In this study, left-censored datasets of norovirus (genogroup I and II), and adenovirus were used to calculate the virus reduction efficiency in unit processes of secondary biological treatment and chlorine disinfection. Virus concentration in influent, effluent from the secondary treatment, and chlorine-disinfected effluent of four municipal wastewater treatment plants were analyzed by a quantitative polymerase chain reaction (PCR) approach, and the probabilistic distributions of log reduction (LR) were estimated by a Bayesian estimation algorithm. The mean values of LR in the secondary treatment units ranged from 0.9 and 2.2, whereas those in the free chlorine disinfection units were from -0.1 and 0.5. The LR value in the secondary treatment was virus type and unit process dependent, which raised the importance for accumulating the data of virus LR values applicable to the multiple-barrier system, which is a global concept of microbial risk management in wastewater reclamation and reuse.
Klamerth, N; Malato, S; Agüera, A; Fernández-Alba, A
2013-02-01
This study compares two different solar photo-Fenton processes, conventional photo-Fenton at pH3 and modified photo-Fenton at neutral pH with minimal Fe (5 mg L⁻¹) and minimal initial H₂O₂ (50 mg L⁻¹) concentrations for the degradation of emerging contaminants in Municipal Wastewater Treatment Plants effluents in solar pilot plant. As Fe precipitates at neutral pH, complexing agents which are able to form photoactive species, do not pollute the environment or increase toxicity have to be used to keep the iron in solution. This study was done using real effluents containing over 60 different contaminants, which were monitored during treatment by liquid chromatography coupled to a hybrid quadrupole/linear ion trap mass analyzer (LC-QTRAP-MS/MS) operating in selected reaction monitoring (SRM) mode. Concentrations of the selected contaminants ranged from a few ng L⁻¹ to tens of μg L⁻¹. It was demonstrated in all cases the removal of over 95% of the contaminants. Photo-Fenton at pH3 provided the best treatment time, but has the disadvantage that the water must be previously acidified. The most promising process was photo-Fenton modified with Ethylenediamine-N,N'-disuccinic acid (EDDS), as the pH remained in the neutral range. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ren, Qingkai; Yu, Yang; Zhu, Suiyi; Bian, Dejun; Huo, Mingxin; Zhou, Dandan; Huo, Hongliang
2017-06-01
A novel micro-pressure swirl reactor (MPSR) was designed and applied to treat domestic wastewater at low temperature by acclimating microbial biomass with steadily decreasing temperature from 15 to 3 °C. Chemical oxygen demand (COD) was constantly removed by 85% and maintained below 50 mg L -1 in the effluent during the process. When the air flow was controlled at 0.2 m 3 h -1 , a swirl circulation was formed in the reactor, which created a dissolved oxygen (DO) gradient with a low DO zone in the center and a high DO zone in the periphery for denitrification and nitrification. 81% of total nitrogen was removed by this reactor, in which ammonium was reduced by over 90%. However, denitrification was less effective because of the presence of low levels of oxygen. The progressively decreasing temperature favored acclimation of psychrophilic bacteria in the reactor, which replaced mesophilic bacteria in the process of treatment.
Hydroponic root mats for wastewater treatment-a review.
Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter
2016-08-01
Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.
Air plasma effect on dental disinfection
NASA Astrophysics Data System (ADS)
Duarte, S.; Kuo, S. P.; Murata, R. M.; Chen, C. Y.; Saxena, D.; Huang, K. J.; Popovic, S.
2011-07-01
A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formation was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.
Salas, P M; Sujatha, C H; Ratheesh Kumar, C S; Cheriyan, Eldhose
2018-02-01
Surface sediments from three zones (fresh water, estuarine, and riverine/industrial zones) of the Cochin estuary, Southwest coast of India, were seasonally analyzed to understand the nature and degradation status of organic matter. Amino acid-based indices such as total hydrolyzable amino acids (THAAs), percentage contributions of amino acid carbon to total organic carbon (THAA-C%) and those of amino acid nitrogen to total nitrogen (THAA-N%), and degradation index (DI) were calculated. Elevated levels of amino acids in the sediments of the estuary were attributed to river runoff, autochthonous production, allochthonous inputs, and industrial and domestic effluent discharges. Higher levels of THAA-C%, THAA-N%, THAA, and positive DI found in most of the stations suggest the fresh deposition of organic matter. Multivariate statistical analyses revealed that the dispersal pattern of amino acids depends on the sediment texture, organic matter, redox state, and microbial processes in the study region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Air plasma effect on dental disinfection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duarte, S.; Murata, R. M.; Saxena, D.
2011-07-15
A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formationmore » was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.« less
Dechlorination of TCE with palladized iron
Fernando, Quintus; Muftikian, Rosy; Korte, Nic
1997-01-01
The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.
Dechlorination of TCE with palladized iron
Fernando, Quintus; Muftikian, Rosy; Korte, Nic
1998-01-01
The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.
Dechlorination of TCE with palladized iron
Fernando, Q.; Muftikian, R.; Korte, N.
1998-06-02
The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.
Dechlorination of TCE with palladized iron
Fernando, Q.; Muftikian, R.; Korte, N.
1997-03-18
The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.
NASA Astrophysics Data System (ADS)
Kim, K. H.; Michael, H. A.; Ullman, W. J.; Cai, W. J.
2017-12-01
Beach aquifers host biogeochemically dynamic mixing zones between fresh and saline groundwaters of contrasting origins, histories, and compositions. Seawater, driven up the beachface by waves and tides, infiltrates into the sand and meets the seaward-discharging fresh groundwater, creating and maintaining a highly reactive intertidal circulation cell well-defined by salinity. Seawater supplies oxygen and reactive carbon to the circulation cell, supporting biogeochemical reactions within the cell that transform and attenuate dissolved nutrient fluxes from terrestrial sources. We investigated the spatial distribution of chemical reaction zones within the intertidal circulation cell at Cape Shores, Lewes, Delaware. Porewater samples were collected from multi-level wells along a beach-perpendicular transect. Samples were analyzed for particulate carbon and reactive solutes, and incubated to obtain rates of oxic respiration and denitrification. High rates of oxic respiration were observed higher on the beach, in the landward freshwater-saline water mixing zone, where dissolved oxygen availability was high. Denitrification was dominant in lower areas of the beach, below the intertidal discharge point. High respiration rates did not correlate with particulate carbon concentrations entrained within porewater, suggesting that dissolved organic carbon or immobile particulate carbon trapped within the sediment can contribute to and alter bulk reactivity. A better understanding of the sources and sinks of carbon within the beach will improve our ability to predict nutrient fluxes to estuaries and oceans, aiding the management of coastal environments and ecosystems.
NASA Astrophysics Data System (ADS)
Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine
2016-07-01
Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.
Barbee, T.W. Jr.; Weihs, T.
1996-07-23
A multilayer structure has a selectable, (1) propagating reaction front velocity V, (2) reaction initiation temperature attained by application of external energy, and (3) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as igniters, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t{sub i}, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D{sup n}){times}[1-(t{sub i}/D)] and n is about 0.8 to 1.2. 8 figs.
Barbee, Jr., Troy W.; Weihs, Timothy
1996-01-01
A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D.sup.n).times.[1-(t.sub.i /D)] and n is about 0.8 to 1.2.
Abrams , Robert H.; Loague, Keith
2000-01-01
This paper, the first of two parts [see Abrams and Loague, this issue], takes the compartmentalized approach for the geochemical evolution of redox zones presented by Abrams et al. [1998] and embeds it within a solute transport framework. In this paper the compartmentalized approach is generalized to facilitate the description of its incorporation into a solute transport simulator. An equivalent formulation is developed which removes any discontinuities that may occur when switching compartments. Rate‐limited redox reactions are modeled with a modified Monod relationship that allows either the organic substrate or the electron acceptor to be the rate‐limiting reactant. Thermodynamic constraints are used to inhibit lower‐energy redox reactions from occurring under infeasible geochemical conditions without imposing equilibrium on the lower‐energy reactions. The procedure used allows any redox reaction to be simulated as being kinetically limited or thermodynamically limited, depending on local geochemical conditions. Empirical reaction inhibition methods are not needed. The sequential iteration approach (SIA), a technique which allows the number of solute transport equations to be reduced, is adopted to solve the coupled geochemical/solute transport problem. When the compartmentalized approach is embedded within the SIA, with the total analytical concentration of each component as the dependent variable in the transport equation, it is possible to reduce the number of transport equations even further than with the unmodified SIA. A one‐dimensional, coupled geochemical/solute transport simulation is presented in which redox zones evolve dynamically in time and space. The compartmentalized solute transport (COMPTRAN) model described in this paper enables the development of redox zones to be simulated under both kinetic and thermodynamic constraints. The modular design of COMPTRAN facilitates the use of many different, preexisting solute transport and geochemical codes. The companion paper [Abrams and Loague, this issue] presents examples of the application of COMPTRAN to field‐scale problems.
Method for fabricating an ignitable heterogeneous stratified metal structure
Barbee, T.W. Jr.; Weihs, T.
1996-08-20
A multilayer structure has a selectable: (1) propagating reaction front velocity V; (2) reaction initiation temperature attained by application of external energy; and (3) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as igniters, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t{sub i}, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D{sup n}){times}[1-(t{sub i}/D)] and n is about 0.8 to 1.2. 8 figs.
Method for fabricating an ignitable heterogeneous stratified metal structure
Barbee, Jr., Troy W.; Weihs, Timothy
1996-01-01
A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D.sup.n).times.[1-(t.sub.i /D)]and n is about 0.8 to 1.2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2008-03-18
The 100-F-26:15 waste site consisted of the remnant portions of underground process effluent and floor drain pipelines that originated at the 105-F Reactor. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.
Chihuahua: a water reuse case in the desert.
Espino, M S; Navarro, C J; Pérez, J M
2004-01-01
Water supply for all kind of uses in Chihuahua is mainly groundwater. During the last decade this city has been damaged with a heavy hydrologic crisis because of a persistent drought. This came up with the overexploitation of groundwater aquifers; therefore a deficit between demand and offer was done. To minimize this problem the government authorities have started an integral plan of optimizing hydrologic resources which considers the treatment of wastewater and the use of reclaimed water. The secondary wastewater treatment facility of the city treats about 30,000 m3/d of a wastewater with high organic contents, and produces an effluent with low concentration of suspended solids, organic matter, fats, detergents, and metals. Reclaimed water is conveyed toward strategic sites for the irrigation of great green areas in sport clubs, educational institutions and industrial zones, besides of its utilization on some manufacturing processes, road service, and also over construction industry. The potential reuse of this water goes farther from those activities; the treatment of the secondary effluent until the required levels of the water-bearing recharge criteria are met for drinking water supply is considered as the next step to achieve through a suitable planning strategy for the best integral resource advantage.
CR-100 synthetic zeolite adsorption characteristics toward Northern Banat groundwater ammonia.
Tomić, Željko; Kukučka, Miroslav; Stojanović, Nikoleta Kukučka; Kukučka, Andrej; Jokić, Aleksandar
2016-10-14
The adsorption characteristics of synthetic zeolite CR-100 in a fixed-bed system using continuous flow of groundwater containing elevated ammonia concentration were examined. The possibilities for adsorbent mass calculation throughout mass transfer zone using novel mathematical approach as well as zeolite adsorption capacity at every sampling point in time or effluent volume were determined. The investigated adsorption process consisted of three clearly separated steps indicated to sorption kinetics. The first step was characterized by decrease and small changes in effluent ammonia concentration vs. experiment time and quantity of adsorbed ammonia per mass unit of zeolite. The consequences of this phenomenon were showed in the plots of the Freundlich and the Langmuir isotherm models through a better linear correlation according as graphical points contingent to the first step were not accounted. The Temkin and the Dubinin-Radushkevich isotherm models showed the opposite tendency with better fitting for overall measurements. According to the obtained isotherms parameter data, the investigated process was found to be multilayer physicochemical adsorption, and also that synthetic zeolite CR-100 is a promising material for removal of ammonia from Northern Banat groundwater with an ammonia removal efficiency of 90%.
Urbain, V; Wright, P; Thomas, M
2001-01-01
Stringent effluent quality guidelines are progressively implemented in coastal and sensitive areas in Australia. Biological Nutrient Removal (BNR) plants are becoming a standard often including a tertiary treatment for disinfection. The BNR plant in Noosa - Queensland is designed to produce a treated effluent with less than 5 mg/l of BOD5, 5 mg/l of total nitrogen, 1 mg/l of total phosphorus, 5 mg/l of suspended solids and total coliforms of less than 10/100 ml. A flexible multi-stage biological process with a prefermentation stage, followed by sand filtration and UV disinfection was implemented to achieve this level of treatment. Acetic acid is added for phosphorus removal because: i) the volatile fatty acids (VFA) concentration in raw wastewater varies a lot, and ii) the prefermenter had to be turned off due to odor problems on the primary sedimentation tanks. An endogenous anoxic zone was added to the process to further reduce the nitrate concentration. This resulted in some secondary P-release events, a situation that happens when low nitrate and low phosphorus objectives are targeted. Long-term performance data and specific results on nitrogen removal and disinfection are presented in this paper.
Pari, Sangavi; Wang, Inger A; Liu, Haizhou; Wong, Bryan M
2017-03-22
Advanced oxidation processes that utilize highly oxidative radicals are widely used in water reuse treatment. In recent years, the application of sulfate radical (SO 4 ˙ - ) as a promising oxidant for water treatment has gained increasing attention. To understand the efficiency of SO 4 ˙ - in the degradation of organic contaminants in wastewater effluent, it is important to be able to predict the reaction kinetics of various SO 4 ˙ - -driven oxidation reactions. In this study, we utilize density functional theory (DFT) and high-level wavefunction-based methods (including computationally-intensive coupled cluster methods), to explore the activation energies of SO 4 ˙ - -driven oxidation reactions on a series of benzene-derived contaminants. These high-level calculations encompass a wide set of reactions including 110 forward/reverse reactions and 5 different computational methods in total. Based on the high-level coupled-cluster quantum calculations, we find that the popular M06-2X DFT functional is significantly more accurate for OH - additions than for SO 4 ˙ - reactions. Most importantly, we highlight some of the limitations and deficiencies of other computational methods, and we recommend the use of high-level quantum calculations to spot-check environmental chemistry reactions that may lie outside the training set of the M06-2X functional, particularly for water oxidation reactions that involve SO 4 ˙ - and other inorganic species.
NASA Astrophysics Data System (ADS)
Zhang, Zequn; Tan, Caiwang; Wang, Gang; Chen, Bo; Song, Xiaoguo; Zhao, Hongyun; Li, Liqun; Feng, Jicai
2018-03-01
Metallurgical bonding between immiscible system AZ31B magnesium (Mg) and Ti-6Al-4V titanium (Ti) was achieved by adding Cu interlayer using laser welding-brazing process. Effect of the laser power on microstructure evolution and mechanical properties of Mg/Cu-coated Ti joints was studied. Visually acceptable joints were obtained at the range of 1300 to 1500 W. The brazed interface was divided into three parts due to temperature gradient: direct irradiation zone, intermediate zone and seam head zone. Ti3Al phase was produced along the interface at the direct irradiation zone. Ti-Al reaction layer grew slightly with the increase in laser power. A small amount of Ti2(Cu,Al) interfacial compounds formed at the intermediate zone and the ( α-Mg + Mg2Cu) eutectic structure dispersed in the fusion zone instead of gathering when increasing the laser power at this zone. At the seam head zone, Mg-Cu eutectic structure was produced in large quantities under all cases. Joint strength first increased and then decreased with the variation of the laser power. The maximum fracture load of Mg/Cu-coated Ti joint reached 2314 N at the laser power of 1300 W, representing 85.7% joint efficiency when compared with Mg base metal. All specimens fractured at the interface. The feature of fracture surface at the laser power of 1100 W was characterized by overall smooth surface. Obvious tear ridge and Ti3Al particles were observed at the fracture surface with increase in laser power. It suggested atomic diffusion was accelerated with more heat input giving rise to the enhanced interfacial reaction and metallurgical bonding in direct irradiation zone, which determined the mechanical properties of the joint.
40 CFR 258.54 - Detection monitoring program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... reaction products in the unsaturated zone beneath the MSWLF unit; (iii) The detectability of indicator parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...
Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.
2008-01-01
In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (???2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ??V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 A??, forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 ?? 10-14 mol biotite m-2 s-1. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 ??m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 ?? 10-13 mol hornblende m-2 s-1: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O2 at the bedrock-saprolite interface. ?? 2008 Elsevier Ltd. All rights reserved.
Pressure polymerization of polyester
Maurer, Charles J.; Shaw, Gordon; Smith, Vicky S.; Buelow, Steven J.; Tumas, William; Contreras, Veronica; Martinez, Ronald J.
2000-08-29
A process is disclosed for the preparation of a polyester polymer or polyester copolymer under superatmospheric pressure conditions in a pipe or tubular reaction under turbannular flow conditions. Reaction material having a glycol equivalents to carboxylic acid equivalents mole ratio of from 1.0:1 to 1.2:1, together with a superatmospheric dense gaseous medium are fed co-currently to the reactor. Dicarboxylic acid and/or diol raw materials may be injected into any of the reaction zones in the process during operation to achieve the overall desired mole ratio balance. The process operates at temperatures of from about 220.degree. C. to about 320.degree. C., with turbannular flow achieved before the polymer product and gas exit the reactor process. The pressure in the reaction zones can be in the range from 15 psia to 2500 psia. A polymer product having a DP of a greater than 40, more preferably at least about 70, is achieved by the transfer of water from the reacting material polymer melt to the gaseous medium in the reactor.
Vidmar, Janja; Oprčkal, Primož; Milačič, Radmila; Mladenovič, Ana; Ščančar, Janez
2018-04-12
Zero-valent iron nanoparticles (nZVI) exhibit great potential for the removal of metal contaminants from wastewater. After their use, there is a risk that nZVI will remain dispersed in remediated water and represent potential nano-threats to the environment. Therefore, the behaviour of nZVI after remediation must be explored. To accomplish this, we optimised a novel method using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) for the sizing and quantification of nZVI in wastewater matrices. H 2 reaction gas was used in MS/MS mode for the sensitive and interference-free determination of low concentrations of nZVI with a low size limit of detection (36nm). This method was applied to study the influence of different iron (Fe) loads (0.1, 0.25, 0.5 and 1.0gL -1 ) and water matrices (Milli-Q water, synthetic and effluent wastewater) on the behaviour of nZVI, their interactions with Cd 2+ and the efficiency of Cd 2+ removal. The aggregation and sedimentation of nZVI increased with settling time. Sedimentation was slower in effluent wastewater than in Milli-Q water or synthetic wastewater. Consequently, Cd 2+ was more efficiently (86%) removed from effluent wastewater than from synthetic wastewater (73%), while its removal from Milli-Q water was inefficient (19%). The trace amounts of Cd 2+ that remained in the remediated water were either dissolved or sorbed to residual nZVI. The results of the nanoremediation of effluent wastewater with varying Fe loads showed that sedimentation was faster at higher initial concentrations of nZVI. After seven days of settling, low concentrations of Fe remained in the effluent wastewater at Fe loads of 0.5gL -1 or higher, which could indicate that the use of nZVI in nanoremediation under the described conditions may not represent an environmental nano-threat. However, further studies are needed to assess the ecotoxicological impact of Fe-related NPs used for the nanoremediation of wastewaters. Copyright © 2018 Elsevier B.V. All rights reserved.
The mechanisms of flame holding in the wake of a bluff body
NASA Technical Reports Server (NTRS)
Strehlow, R. A.; Malik, S.
1985-01-01
The flame holding mechanism for lean methane- and lean propane-air flames is examined under conditions where the recirculation zone is absent. The main objective of this work is to study the holding process in detail in an attempt to determine the mechanism of flame holding and also the conditions where this mechanism is viable and when it fails and blow-off occurs. Inverted flames held in the wake of a flat strip were studied. Experiments with different sizes of flame holders were performed. The velocity flow field was determined using a laser Doppler velocimetry technique. Equation of continuity was used to calculate the flame temperature from the change in area of flow streamlines before and after the flame. Observations of the inverted flame itself were obtained using schlieren and direct photography. Results show that there are different mechanisms operative at the time of blow-off for lean propane and methane flames. Blow-off or extinction occurs for lean propane-air flame in spite of the reaction going to completion and the disparity between the heat loss and the gain in mass diffusion in the reaction zone i.e., Le 1.0 causes the flame to blow-off. For methane-air flame the controlling factor or blow-off is incomplete reaction due to higher blowing rate leading to reduced residence time in the reaction zone.
Using Garnet to Reconstruct Subduction Zone Dehydration Flux
NASA Astrophysics Data System (ADS)
Baxter, E. F.; Dragovic, B.; Samanta, L. M.; Selverstone, J.; Caddick, M. J.
2011-12-01
Coupled geodynamic-thermodynamic models make predictions about the progressive dehydration flux from subducted lithologies. However, it has been difficult to test or confirm these predictions through direct petrologic assessment of natural systems. We have developed a method that may be used to reconstruct the rate, timing, and flux of dehydration from diverse lithologies within subduction zones. Here, we summarize the fundamentals of the method and highlight data from two blueschist facies lithologies from the island of Sifnos, Greece. The data indicate that garnet growth and related dehydration from individual lithologies can be focused into relatively brief (100,000s of years) pulses. In general, most garnet forming reactions (in initially hydrous lithologies) also involve the consumption of hydrous minerals (including chlorite, biotite, chloritoid, amphibole, epidote, lawsonite) and the consequent liberation of water. Depending on the exact reaction and on the pressure and temperature vector over which the reaction occurs, the stoichiometric (i.e. molar) ratio between garnet produced and water produced can vary. If this stoichiometry can be constrained via thermodynamic and textural reaction analysis, then garnet may be used as a direct monitor of the progressive dehydration of the rock for the P-T-t span over which garnet grew. To a first order, rocks with greater modal proportion of garnet have released greater amounts of water. Modern techniques are available to directly date the span of garnet growth from single crystals larger than about 5mm diameter. Sm-Nd geochronology of chemically contoured microsampled prograde garnet growth zones from single crystals can produce constraints on garnet growth duration at better than 1 million year resolution. Integration of zoned garnet geochronology and thermodynamic reaction analysis permits reconstruction of the dehydration rate and duration from individual samples. Recent studies of contrasting lithologies on Sifnos demonstrate the utility of the method for unlocking information about natural dehydration timescales within subduction zones. A mafic blueschist sample contains large garnet crystals (up to 1.5cm) whose growth occurred very rapidly, in only hundreds of thousands of years. A quartzofeldspathic rock containing larger (up to 5cm) garnets reveals rapidly accelerating garnet growth, most of which also occurred within just a few hundred thousand years. Both samples provide evidence for rapid dehydration associated with garnet-forming reactions over brief timespans. Observed garnet modal abundances and thermodynamically modeled garnet:water production ratios indicate that approximately 0.5 to 1.0 wt% water - a significant amount - was liberated from these lithologies during the brief time spans recorded by garnet growth. Whether these dehydration pulses require a kinetic-triggering explanation or whether they can be explained either geodynamically by rapid P-T shifts or thermodynamically by passage through narrowly spaced garnet reaction isopleths remains a question for further study.