Science.gov

Sample records for reactive gas plasma

  1. A microfluidic chip for generating reactive plasma at gas-gas interface formed in laminar flow

    NASA Astrophysics Data System (ADS)

    Hashimoto, Masahiro; Tsukasaki, Katsuki; Kumagai, Shinya; Sasaki, Minoru

    2015-01-01

    A gas-gas interface is used for generating a localized reactive plasma flow at an atmospheric pressure. A microfluidic chip is fabricated as the reactor integrating a small plasma source located upstream. Within a Y-shaped microchannel, a discharging gas flows with a chemical gas. Owing to the small width of the microchannel, the gas flow is stabilized in a laminar flow. The resultant gas-gas interface is formed in the area where two gases flow facing each other activating the chemical gas through the energetic species in the discharging gas. A characteristic stream pattern is observed as the etching profile of a carbon film with a sub-µm sharp step change that can be explained by the spatial distribution of the reactive oxygen. This etching profile is different from that obtained when plasma discharging occurs near the channel exit being affected by the turbulent flow.

  2. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  3. Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity

    SciTech Connect

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2000-07-01

    This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

  4. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  5. Crucial roles of reactive chemical species in modification of respiratory syncytial virus by nitrogen gas plasma.

    PubMed

    Sakudo, Akikazu; Toyokawa, Yoichi; Imanishi, Yuichiro; Murakami, Tomoyuki

    2017-05-01

    The exact mechanisms by which nanoparticles, especially those composed of soft materials, are modified by gas plasma remain unclear. Here, we used respiratory syncytial virus (RSV), which has a diameter of 80-350nm, as a model system to identify important factors for gas plasma modification of nanoparticles composed of soft materials. Nitrogen gas plasma, generated by applying a short high-voltage pulse using a static induction (SI) thyristor power supply produced reactive chemical species (RCS) and caused virus inactivation. The plasma treatment altered the viral genomic RNA, while treatment with a relatively low concentration of hydrogen peroxide, which is a neutral chemical species among RCS, effectively inactivated the virus. Furthermore, a zero dimensional kinetic global model of the reaction scheme during gas plasma generation identified the production of various RCS, including neutral chemical species. Our findings suggest the nitrogen gas plasma generates RCS, including neutral species that damage the viral genomic RNA, leading to virus inactivation. Thus, RCS generated by gas plasma appears to be crucial for virus inactivation, suggesting this may constitute an important factor in terms of the efficient modification of nanoparticles composed of soft materials.

  6. Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization

    PubMed Central

    Kaneko, Toshiro; Sasaki, Shota; Takashima, Keisuke; Kanzaki, Makoto

    2017-01-01

    Gas-liquid interfacial atmospheric-pressure plasma jets (GLI-APPJ) are used medically for plasma-induced cell-membrane permeabilization. In an attempt to identify the dominant factors induced by GLI-APPJ responsible for enhancing cell-membrane permeability, the concentration and distribution of plasma-produced reactive species in the gas and liquid phase regions are measured. These reactive species are classified in terms of their life-span: long-lived (e.g., H2O2), short-lived (e.g., O2•−), and extremely-short-lived (e.g., •OH). The concentration of plasma-produced •OHaq in the liquid phase region decreases with an increase in solution thickness (<1 mm), and plasma-induced cell-membrane permeabilization is found to decay markedly as the thickness of the solution increases. Furthermore, the horizontally center-localized distribution of •OHaq, resulting from the center-peaked distribution of •OH in the gas phase region, corresponds with the distribution of the permeabilized cells upon APPJ irradiation, whereas the overall plasma-produced oxidizing species such as H2O2aq in solution exhibit a doughnut-shaped horizontal distribution. These results suggest that •OHaq is likely one of the dominant factors responsible for plasma-induced cell-membrane permeabilization. PMID:28163376

  7. Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization.

    PubMed

    Kaneko, Toshiro; Sasaki, Shota; Takashima, Keisuke; Kanzaki, Makoto

    2017-01-01

    Gas-liquid interfacial atmospheric-pressure plasma jets (GLI-APPJ) are used medically for plasma-induced cell-membrane permeabilization. In an attempt to identify the dominant factors induced by GLI-APPJ responsible for enhancing cell-membrane permeability, the concentration and distribution of plasma-produced reactive species in the gas and liquid phase regions are measured. These reactive species are classified in terms of their life-span: long-lived (e.g., H2O2), short-lived (e.g., O2(•-)), and extremely-short-lived (e.g., (•)OH). The concentration of plasma-produced (•)OHaq in the liquid phase region decreases with an increase in solution thickness (<1 mm), and plasma-induced cell-membrane permeabilization is found to decay markedly as the thickness of the solution increases. Furthermore, the horizontally center-localized distribution of (•)OHaq, resulting from the center-peaked distribution of (•)OH in the gas phase region, corresponds with the distribution of the permeabilized cells upon APPJ irradiation, whereas the overall plasma-produced oxidizing species such as H2O2aq in solution exhibit a doughnut-shaped horizontal distribution. These results suggest that (•)OHaq is likely one of the dominant factors responsible for plasma-induced cell-membrane permeabilization.

  8. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  9. Reactivity and analytical performance of oxygen as cell gas in inductively coupled plasma tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Virgilio, Alex; Amais, Renata S.; Amaral, Clarice D. B.; Fialho, Lucimar L.; Schiavo, Daniela; Nóbrega, Joaquim A.

    2016-12-01

    The reactivity and analytical performance of O2 as cell gas in inductively coupled plasma tandem mass spectrometry was investigated. Selected analytes in a wide mass range were divided in three groups according to their reactivity: G1 represents elements with high oxygen affinity (Ce, La, P, Sc, Ti, and Y), G2 contains elements that may partially react with oxygen (As, Ba, Mo, Si, Sr, and V), and G3 comprises elements expected to be less reactive towards oxygen (Al, Bi, Cu, Mg, Pb, and Pd). On-mass and mass-shift modes were evaluated by monitoring atomic and metal oxide ions, respectively. Analytical signal profiles, oxide percentages, sensitivities and limits of detection for oxygen flow rates varying from 0.1 to 1.0 mL min- 1 were also studied. Group 1 elements plus As and V presented better sensitivities and LODs when measuring oxides, which were the major species for all flow rates evaluated. Molybdenum and Si oxides presented intermediate behavior and MoO fraction was up to 47% and limit of detection was the same as that obtained in on-mass mode. For others G2 and G3 elements, on-mass mode presented higher sensitivity and better LODs, with estimated oxide contents lower than 10%. In most cases, increasing oxygen flow rates led to lower sensitivities and worse LODs.

  10. Control of reactive oxygen and nitrogen species production in liquid by nonthermal plasma jet with controlled surrounding gas

    NASA Astrophysics Data System (ADS)

    Ito, Taiki; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Setsuhara, Yuichi

    2017-01-01

    We present the development of a low-frequency nonthermal plasma-jet system, where the surrounding-gas condition of the plasma jet is precisely controlled in open air. By restricting the mixing of the ambient air into the plasma jet, the plasma jet can be selectively changed from a N2 main discharge to an O2 main discharge even in open air. In the plasma-jet system with the controlled surrounding gas, the production of reactive oxygen and nitrogen species is successfully controlled in deionized water: the concentration ratio of NO2 - to H2O2 is tuned from 0 to 0.18, and a high NO2 - concentration ratio is obtained at a N2 gas ratio of 0.80 relative to the total N2/O2 gas mixture in the main discharge gas. We also find that the NO2 - concentration is much higher in the plasma-activated medium than in the plasma-activated deionized water, which is mainly explained by the contribution of amino acids to NO2 - generation in the medium.

  11. Reactive species output of a plasma jet with a shielding gas device—combination of FTIR absorption spectroscopy and gas phase modelling

    NASA Astrophysics Data System (ADS)

    Schmidt-Bleker, A.; Winter, J.; Iseni, S.; Dünnbier, M.; Weltmann, K.-D.; Reuter, S.

    2014-04-01

    In this work, a simple modelling approach combined with absorption spectroscopy of long living species generated by a cold atmospheric plasma jet yields insight into relevant gas phase chemistry. The reactive species output of the plasma jet is controlled using a shielding gas device. The shielding gas is varied using mixtures of oxygen and nitrogen at various humidity levels. Through the combination of Fourier transform infrared (FTIR) spectroscopy, computational fluid dynamics (CFD) simulations and zero dimensional kinetic modelling of the gas phase chemistry, insight into the underlying reaction mechanisms is gained. While the FTIR measurements yield absolute densities of ozone and nitrogen dioxide in the far field of the jet, the kinetic simulations give additional information on reaction pathways. The simulation is fitted to the experimentally obtained data, using the CFD simulations of the experimental setup to estimate the correct evaluation time for the kinetic simulation. It is shown that the ozone production of the plasma jet continuously rises with the oxygen content in the shielding gas, while it significantly drops as humidity is increased. The production of nitrogen dioxide reaches its maximum at about 30% oxygen content in the shielding gas. The underlying mechanisms are discussed based on the simulation results.

  12. Effects of the electrical parameters and gas flow rate on the generation of reactive species in liquids exposed to atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Baek, Eun Jeong; Joh, Hea Min; Kim, Sun Ja; Chung, T. H.

    2016-07-01

    In this work, an atmospheric pressure plasma jet was fabricated and studied for plasma-liquid interactions. The plasma jet consists of a quartz-covered pin electrode and outer quartz tube with a tapered nozzle. Using the current-voltage (I-V) and optical emission characteristics of the plasma jet, the plasma density and the speed of the plume were investigated. The optical emission spectra clearly indicated the excited NO, O, OH, N2, and N2+ in the plasma plumes. Then the plasma jets were applied to the deionized water. We investigated the effects of the operating parameters such as applied voltage, pulse frequency, and gas flow rate on the generation of reactive species in the gas and liquid phases. The densities of reactive species including OH radicals were obtained at the plasma-liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. The nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of reactive oxygen and nitrogen species (RONS) in the plasmas and liquids.

  13. Effects of the electrical parameters and gas flow rate on the generation of reactive species in liquids exposed to atmospheric pressure plasma jets

    SciTech Connect

    Baek, Eun Jeong; Joh, Hea Min; Kim, Sun Ja; Chung, T. H.

    2016-07-15

    In this work, an atmospheric pressure plasma jet was fabricated and studied for plasma–liquid interactions. The plasma jet consists of a quartz-covered pin electrode and outer quartz tube with a tapered nozzle. Using the current–voltage (I-V) and optical emission characteristics of the plasma jet, the plasma density and the speed of the plume were investigated. The optical emission spectra clearly indicated the excited NO, O, OH, N{sub 2}, and N{sub 2}{sup +} in the plasma plumes. Then the plasma jets were applied to the deionized water. We investigated the effects of the operating parameters such as applied voltage, pulse frequency, and gas flow rate on the generation of reactive species in the gas and liquid phases. The densities of reactive species including OH radicals were obtained at the plasma–liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. The nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of reactive oxygen and nitrogen species (RONS) in the plasmas and liquids.

  14. Reactive plasma synthesis of nanocrystalline ceramic oxides

    NASA Astrophysics Data System (ADS)

    Sreekumar, K. P.; Vijay, M.; Thiyagarajan, T. K.; Krishnan, K.; Ananthapadmanabhan, P. V.

    2010-02-01

    Reactive plasma synthesis is an attractive route to synthesize nanocrystalline materials. A 40 kW DC non-transferred arc plasma reactor has been designed and developed in our laboratory for synthesis of nanocrystalline materials. The main components of the plasma reactor include a 40 kW DC plasma generator or plasma torch, water-cooled reactor segment, product collection facility, DC power supply, cooling-water system and exhaust gas vent. The system has been used to synthesize nano-crystalline oxides of aluminium, titanium and zirconium. Aluminium metal powder was used as the starting material to synthesize alumina. The hydrides of Ti and Zr were used as the precursor for synthesis of nanocrystalline titania and zirconia respectively. The precursor powders were injected into the thermal plasma jet and were allowed to react with oxygen injected downstream the jet. The precursor powder particles were oxidized 'in-flight' to form nano-sized powder of the respective metal, which deposited on the walls of the reactor and collector assembly. Various analytical tools were used to characterized the products.

  15. Plasma & reactive ion etching to prepare ohmic contacts

    DOEpatents

    Gessert, Timothy A.

    2002-01-01

    A method of making a low-resistance electrical contact between a metal and a layer of p-type CdTe surface by plasma etching and reactive ion etching comprising: a) placing a CdS/CdTe layer into a chamber and evacuating said chamber; b) backfilling the chamber with Argon or a reactive gas to a pressure sufficient for plasma ignition; and c) generating plasma ignition by energizing a cathode which is connected to a power supply to enable the plasma to interact argon ions alone or in the presence of a radio-frequency DC self-bias voltage with the p-CdTe surface.

  16. Generation of reactive species by an atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kelly, S.; Turner, M. M.

    2014-12-01

    The role of gas mixing in reactive species delivery to treatment surfaces for an atmospheric pressure capacitively coupled plasma helium jet is investigated by numerical modelling. Atomic oxygen in the jet effluent is shown to quickly convert to ozone for increasing device to surface separation due to the molecular oxygen present in the gas mixture. Surface profiles of reactive oxygen species show narrow peaks for atomic oxygen and broader surface distributions for ozone and metastable species. Production efficiency of atomic oxygen to the helium plasma jet by molecular oxygen admixture is shown to be dependent on electro-negativity. Excessive molecular oxygen admixture results in negative ion dominance over electrons which eventually quenches the plasma. Interaction of the plasma jet with an aqueous surface showed hydrogen peroxide as the dominant species at this interface. Gas heating by the plasma is found to be dominated by elastic electron collisions and positive ion heating. Comparison with experimental measurements for atomic oxygen shows good agreement.

  17. Smoothing single-crystalline SiC surfaces by reactive ion etching using pure NF{sub 3} and NF{sub 3}/Ar mixture gas plasmas

    SciTech Connect

    Tasaka, Akimasa; Kotaka, Yuki; Oda, Atsushi; Saito, Morihiro; Tojo, Tetsuro; Inaba, Minoru

    2014-09-01

    In pure NF{sub 3} plasma, the etching rates of four kinds of single-crystalline SiC wafer etched at NF{sub 3} pressure of 2 Pa were the highest and it decreased with an increase in NF{sub 3} pressure. On the other hand, they increased with an increase in radio frequency (RF) power and were the highest at RF power of 200 W. A smooth surface was obtained on the single-crystalline 4H-SiC after reactive ion etching at NF{sub 3}/Ar gas pressure of 2 Pa and addition of Ar to NF{sub 3} plasma increased the smoothness of SiC surface. Scanning electron microscopy observation revealed that the number of pillars decreased with an increase in the Ar-concentration in the NF{sub 3}/Ar mixture gas. The roughness factor (R{sub a}) values were decreased from 51.5 nm to 25.5 nm for the As-cut SiC, from 0.25 nm to 0.20 nm for the Epi-SiC, from 5.0 nm to 0.7 nm for the Si-face mirror-polished SiC, and from 0.20 nm to 0.16 nm for the C-face mirror-polished SiC by adding 60% Ar to the NF{sub 3} gas. Both the R{sub a} values of the Epi- and the C-face mirror-polished wafer surfaces etched using the NF{sub 3}/Ar (40:60) plasma were similar to that treated with mirror polishing, so-called the Catalyst-Referred Etching (CARE) method, with which the lowest roughness of surface was obtained among the chemical mirror polishing methods. Etching duration for smoothing the single-crystalline SiC surface using its treatment was one third of that with the CARE method.

  18. Degradation of reactive blue 19 by needle-plate non-thermal plasma in different gas atmospheres: Kinetics and responsible active species study assisted by CFD calculations.

    PubMed

    Sun, Yu; Liu, Yanan; Li, Rui; Xue, Gang; Ognier, Stéphanie

    2016-07-01

    This study investigated the degradation of a model organic compound, reactive blue (RB-19), in aqueous solution using a needle-plate non-thermal plasma (NTP) reactor, which was operated using three gas atmospheres (Ar, air, O2) at room temperature and atmospheric pressure. The relative discharge and degradation parameters, including the peak to peak applied voltage, power, ozone generation, pH, decolorization rates, energy density and the total organic carbon (TOC) reduction were analyzed to determine the various dye removal efficiencies. The decolorization rate for Ar, air and O2 were 59.9%, 49.6% and 89.8% respectively at the energy density of 100 kJ/L. The best TOC reduction was displayed by Ar with about 8.8% decrease, and 0% with O2 and air atmospheres. This phenomenon could be explained by the formation of OH• and O3 in the Ar and O2 atmospheres, which are responsible for increased mineralization and efficient decolorization. A one-dimension model was developed using software COMSOL to simulate the RB-19-ozone reaction and verify the experiments by comparing the simulated and experimental results. It was determined that ozone plays the most important role in the dye removal process, and the ozone contribution rate ranged from 0.67 to 0.82.

  19. Reactive Spark Plasma Sintering (SPS) of Nitride Reinforced Titanium Alloy Composites (Postprint)

    DTIC Science & Technology

    2014-08-15

    AFRL-RX-WP-JA-2014-0177 REACTIVE SPARK PLASMA SINTERING (SPS) OF NITRIDE REINFORCED TITANIUM ALLOY COMPOSITES (POSTPRINT) Jaimie S...titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and...lcomReactive spark plasma sintering (SPS) of nitride reinforced titanium alloy compositeshttp://dx.doi.org/10.1016/j.jallcom.2014.08.049 0925-8388

  20. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  1. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    SciTech Connect

    Wetering, F. M. J. H. van de; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-23

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10{sup −6}%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon–acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  2. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1990-01-01

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  3. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1989-01-01

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  4. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells.

    PubMed

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-02-08

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10-100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations.

  5. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-02-01

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10-100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations.

  6. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells

    PubMed Central

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-01-01

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10–100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations. PMID:28176800

  7. plasmatis Center for Innovation Competence: Controlling reactive component output of atmospheric pressure plasmas in plasma medicine

    NASA Astrophysics Data System (ADS)

    Reuter, Stephan

    2012-10-01

    The novel approach of using plasmas in order to alter the local chemistry of cells and cell environment presents a significant development in biomedical applications. The plasmatis center for innovation competence at the INP Greifswald e.V. performs fundamental research in plasma medicine in two interdisciplinary research groups. The aim of our plasma physics research group ``Extracellular Effects'' is (a) quantitative space and time resolved diagnostics and modelling of plasmas and liquids to determine distribution and composition of reactive species (b) to control the plasma and apply differing plasma source concepts in order to produce a tailored output of reactive components and design the chemical composition of the liquids/cellular environment and (c) to identify and understand the interaction mechanisms of plasmas with liquids and biological systems. Methods to characterize the plasma generated reactive species from plasma-, gas- and liquid phase and their biological effects will be presented. The diagnostic spectrum ranges from absorption/emission/laser spectroscopy and molecular beam mass spectrometry to electron paramagnetic resonance spectroscopy and cell biological diagnostic techniques. Concluding, a presentation will be given of the comprehensive approach to plasma medicine in Greifswald where the applied and clinical research of the Campus PlasmaMed association is combined with the fundamental research at plasmatis center.

  8. Measurement of reactive species for plasma medicine

    NASA Astrophysics Data System (ADS)

    Ono, Ryo

    2015-09-01

    Plasma medicine has been intensively studied over the last decade. Reactive oxygen and nitrogen species are responsible for the therapeutic effects in plasma medicine. To examine the therapeutic effects of reactive species, the densities of OH, O, and NO were measured using laser-induced fluorescence (LIF). A helium atmospheric-pressure plasma jet (10 kV, 10 kHz of 40 μs pulses) and a nanosecond streamer discharge (24 kV, 8 ns, 30 Hz) were utilized to treat mouse melanoma cells in a culture medium. Correlation between the dose of reactive species and deactivation rate of melanoma cells was measured with the aid of LIF. The results showed that the rate of cell death correlates with OH density, but not with O and NO densities. Next, a method to supply a specific reactive species to living organisms was developed. It utilizes photolysis of helium-buffered H2O and O2 by vacuum ultraviolet (VUV) light to produce reactive species. The VUV method was utilized to sterilize Bacillus atrophaeus on agar plate. With the VUV method, it was succeeded to show sterilization only by OH radicals. A 30 s treatment with approximately 0.1 ppm OH radicals caused visible sterilization.

  9. Effect of oxygen concentration on the spike formation during reactive ion etching of SiC using the mixed gas plasma of NF{sub 3} and O{sub 2}

    SciTech Connect

    Tasaka, A.; Watanabe, E.; Kai, T.; Shimizu, W.; Kanatani, T.; Inaba, M.; Tojo, T.; Tanaka, M.; Abe, T.; Ogumi, Z.

    2007-03-15

    Reactive ion etching (RIE) of poly-{beta}-SiC was investigated in the NF{sub 3}/O{sub 2} mixture gas plasma. The addition of 10% oxygen concentration to the NF{sub 3} plasma increased the etching rate to {approx}80 nm/min at a total pressure of 10 Pa and 997 nm/min at a total pressure of 20 Pa. The ratio of increase in etching rate against that in the pure NF{sub 3} plasma was {approx}43%. RIE for longer than 30 min in the 90% NF{sub 3} and 10% O{sub 2} mixture gas plasma gave a much smoother surface than that etched in the pure NF{sub 3} plasma. However, the further addition of O{sub 2} decreased the etching rate. Optical-emission spectra indicated the presence of an oxygen radical, in addition to fluorine radical and molecular nitrogen cations, in the NF{sub 3}/O{sub 2} mixture gas plasma. X-ray photoemission spectroscopy analysis of the etched samples revealed that the SiO{sub 2} layer was formed on the surface at the higher O{sub 2} concentration. The role of oxygen in the NF{sub 3}/O{sub 2} mixture gas plasma was elucidated. Scanning electron microscopy observation revealed that many thornlike substances, i.e., spikes, were formed on the SiC surface during RIE at the total pressure of 10 Pa. Images of the cross section of spike formed during RIE at the total pressure of 2 Pa also indicated that the sputtered aluminum particle from a mask may be preferentially deposited on the top of carbon-rich island formed on the SiC surface and act as a micromask together with carbon on the carbon-rich island to form a thornlike spike. An etching model of the SiC surface and the mechanism on formation and growth of the spike on the SiC surface in the NF{sub 3}/O{sub 2} mixture gas plasma are proposed.

  10. Effect of input power and gas pressure on the roughening and selective etching of SiO{sub 2}/Si surfaces in reactive plasmas

    SciTech Connect

    Zhong, X. X.; Huang, X. Z.; Tam, E.; Ostrikov, K.; Colpo, P.; Rossi, F.

    2010-09-15

    We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as 'laboratory on a chip' and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO{sub 2} can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO{sub 2}/Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.

  11. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Satoshi

    2013-07-01

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  12. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    SciTech Connect

    Hamaguchi, Satoshi

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  13. Investigation of plasma spokes in reactive high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Hecimovic, A.; Corbella, C.; Maszl, C.; Breilmann, W.; von Keudell, A.

    2017-05-01

    Spokes, localised ionisation zones, are commonly observed in magnetron sputtering plasmas, appearing either with a triangular shape or with a diffuse shape, exhibiting self-organisation patterns. In this paper, we investigate the spoke properties (shape and emission) in a high power impulse magnetron sputtering (HiPIMS) discharge when reactive gas (N2 or O2) is added to the Ar gas, for three target materials; Al, Cr, and Ti. Peak discharge current and total pressure were kept constant, and the discharge voltage and mass flow ratios of Ar and the reactive gas were adjusted. The variation of the discharge voltage is used as an indication of a change of the secondary electron yield. The optical emission spectroscopy data demonstrate that by addition of reactive gas, the HiPIMS plasma exhibits a transition from a metal dominated plasma to the plasma dominated by Ar ions and, at high reactive gas partial pressures, to the plasma dominated by reactive gas ions. For all investigated materials, the spoke shape changed to the diffuse spoke shape in the poisoned mode. The change from the metal to the reactive gas dominated plasma and increase in the secondary electron production observed as the decrease of the discharge voltage corroborate our model of the spoke, where the diffuse spoke appears when the plasma is dominated by species capable of generating secondary electrons from the target. Behaviour of the discharge voltage and maximum plasma emission is strongly dependant on the target/reactive gas combination and does not fully match the behaviour observed in DC magnetron sputtering.

  14. The effect of working gas impurities on plasma jets

    SciTech Connect

    Liu, X. Y.; He, M. B.; Liu, D. W.

    2015-04-15

    Air intrusion reduced the purity of working gas inside the tube for plasma jet, and thereby, affected the discharge dynamics. In this paper, the effect of using working gas with different purity level (helium purity 99.99999%, 99.99%, 99.9%, and 99%) on photoionization and the chemical reactivity of plasma jet were studied using a 2 dimensional plasma jet model. Photoionization of air species acted as a source of pre-ionization in front of the ionization region, which facilitated the transition from localized discharge to streamers inside the tube. The density of reactive species inside the tube was found to increase with the concentration of working gas impurities. For the highest purity helium (99.99999%), despite a low photoionization rate and the distance between the photoionization region and ionization region inside the tube, by increasing the applied voltage and decreasing the distance between the electrode and nozzle, plasma jets were formed.

  15. Discharge dynamics and plasma density recovery by on/off switches of additional gas

    SciTech Connect

    Lee, Hyo-Chang; Kwon, Deuk-Chul; Oh, SeungJu; Kang, Hyun-Ju; Kim, Yu-Sin; Chung, Chin-Wook

    2016-06-15

    Measurement of the plasma density is investigated to study plasma dynamics by adding reactive gas (O{sub 2}) or rare gas (He) in Ar plasmas. When the O{sub 2} or He gas is added, plasma density is suddenly decreased, while the plasma density recovers slowly with gas off. It is found that the recovery time is strongly dependent on the gas flow rate, and it can be explained by effect of gas residence time. When the He gas is off in the Ar plasma, the plasma density is overshot compared to the case of the O{sub 2} gas pulsing due to enhanced ionizations by metastable atoms. Analysis and calculation for correlation between the plasma density dynamics and the gas pulsing are also presented in detail.

  16. Gas Plasma Surface Chemistry for Biological Assays.

    PubMed

    Sahagian, Khoren; Larner, Mikki

    2015-01-01

    Biological systems respond to and interact with surfaces. Gas plasma provides a scalable surface treatment method for designing interactive surfaces. There are many commercial examples of plasma-modified products. These include well plates, filtration membranes, dispensing tools, and medical devices. This chapter presents an overview of gas plasma technology and provides a guide to using gas plasma for modifying surfaces for research or product development.

  17. Plasma-generated reactive oxygen species for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sousa, J. S.; Hammer, M. U.; Winter, J.; Tresp, H.; Duennbier, M.; Iseni, S.; Martin, V.; Puech, V.; Weltmann, K. D.; Reuter, S.

    2012-10-01

    To get a better insight into the effects of reactive oxygen species (ROS) on cellular components, fundamental studies are essential to determine the nature and concentration of plasma-generated ROS, and the chemistry induced in biological liquids by those ROS. In this context, we have measured the absolute density of the main ROS created in three different atmospheric pressure plasma sources: two geometrically distinct RF-driven microplasma jets (μ-APPJ [1] and kinpen [2]), and an array of microcathode sustained discharges [3]. Optical diagnostics of the plasma volumes and effluent regions have been performed: UV absorption for O3 and IR emission for O2(a^1δ) [4]. High concentrations of both ROS have been obtained (10^14--10^17cm-3). The effect of different parameters, such as gas flows and mixtures and power coupled to the plasmas, has been studied. For plasma biomedicine, the determination of the reactive species present in plasma-treated liquids is of great importance. In this work, we focused on the measurement of the concentration of H2O2 and NOX radicals, generated in physiological solutions like NaCl and PBS.[4pt] [1] N. Knake et al., J. Phys. D: App. Phys. 41, 194006 (2008)[0pt] [2] K.D. Weltmann et al., Pure Appl. Chem. 82, 1223 (2010)[0pt] [3] J.S. Sousa et al., Appl. Phys. Lett. 97, 141502 (2010)[0pt] [4] J.S. Sousa et al., Appl. Phys. Lett. 93, 011502 (2008)

  18. An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation.

    PubMed

    Gorbanev, Yury; Soriano, Robert; O'Connell, Deborah; Chechik, Victor

    2016-11-03

    Non-thermal atmospheric pressure ('cold') plasmas have received increased attention in recent years due to their significant biomedical potential. The reactions of cold plasma with the surrounding atmosphere yield a variety of reactive species, which can define its effectiveness. While efficient development of cold plasma therapy requires kinetic models, model benchmarking needs empirical data. Experimental studies of the source of reactive species detected in aqueous solutions exposed to plasma are still scarce. Biomedical plasma is often operated with He or Ar feed gas, and a specific interest lies in investigation of the reactive species generated by plasma with various gas admixtures (O2, N2, air, H2O vapor, etc.) Such investigations are very complex due to difficulties in controlling the ambient atmosphere in contact with the plasma effluent. In this work, we addressed common issues of 'high' voltage kHz frequency driven plasma jet experimental studies. A reactor was developed allowing the exclusion of ambient atmosphere from the plasma-liquid system. The system thus comprised the feed gas with admixtures and the components of the liquid sample. This controlled atmosphere allowed the investigation of the source of the reactive oxygen species induced in aqueous solutions by He-water vapor plasma. The use of isotopically labelled water allowed distinguishing between the species originating in the gas phase and those formed in the liquid. The plasma equipment was contained inside a Faraday cage to eliminate possible influence of any external field. The setup is versatile and can aid in further understanding the cold plasma-liquid interactions chemistry.

  19. An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation

    PubMed Central

    Gorbanev, Yury; Soriano, Robert; O'Connell, Deborah; Chechik, Victor

    2016-01-01

    Non-thermal atmospheric pressure ('cold') plasmas have received increased attention in recent years due to their significant biomedical potential. The reactions of cold plasma with the surrounding atmosphere yield a variety of reactive species, which can define its effectiveness. While efficient development of cold plasma therapy requires kinetic models, model benchmarking needs empirical data. Experimental studies of the source of reactive species detected in aqueous solutions exposed to plasma are still scarce. Biomedical plasma is often operated with He or Ar feed gas, and a specific interest lies in investigation of the reactive species generated by plasma with various gas admixtures (O2, N2, air, H2O vapor, etc.) Such investigations are very complex due to difficulties in controlling the ambient atmosphere in contact with the plasma effluent. In this work, we addressed common issues of 'high' voltage kHz frequency driven plasma jet experimental studies. A reactor was developed allowing the exclusion of ambient atmosphere from the plasma-liquid system. The system thus comprised the feed gas with admixtures and the components of the liquid sample. This controlled atmosphere allowed the investigation of the source of the reactive oxygen species induced in aqueous solutions by He-water vapor plasma. The use of isotopically labelled water allowed distinguishing between the species originating in the gas phase and those formed in the liquid. The plasma equipment was contained inside a Faraday cage to eliminate possible influence of any external field. The setup is versatile and can aid in further understanding the cold plasma-liquid interactions chemistry. PMID:27842375

  20. Time Dependent Studies of Reactive Shocks in the Gas Phase

    DTIC Science & Technology

    1978-11-16

    1 LEVEL NRL Memorandum Report 3W tO Time Dependent Studies of Reactive Shocks in the Gas Phase E.S. ORAN, ’T.R. YOUNG and J.P. BORIS Laboratory for...34-• TIME DEPENDENT STUDIES OF REACTIVE SHOCKS IN THE GAS PHASE I. Introduction This paper presents results obtained from a detailed numerical...chemical kinetics, reaction products, and intermediates produced in reactive gas mixtures ignited by the propagation of a shock front. The model is based

  1. Cerebrovascular reactivity mapping without gas challenges.

    PubMed

    Liu, Peiying; Li, Yang; Pinho, Marco; Park, Denise C; Welch, Babu G; Lu, Hanzhang

    2017-02-01

    Cerebrovascular reactivity (CVR), the ability of cerebral vessels to dilate or constrict, has been shown to provide valuable information in the diagnosis and treatment evaluation of patients with various cerebrovascular conditions. CVR mapping is typically performed using hypercapnic gas inhalation as a vasoactive challenge while collecting BOLD images, but the inherent need of gas inhalation and the associated apparatus setup present a practical obstacle in applying it in routine clinical use. Therefore, we aimed to develop a new method to map CVR using resting-state BOLD data without the need of gas inhalation. This approach exploits the natural variation in respiration and measures its influence on BOLD MRI signal. In this work, we first identified a surrogate of the arterial CO2 fluctuation during spontaneous breathing from the global BOLD signal. Second, we tested the feasibility and reproducibility of the proposed approach to use the above-mentioned surrogate as a regressor to estimate voxel-wise CVR. Third, we validated the "resting-state CVR map" with a conventional CVR map obtained with hypercapnic gas inhalation in healthy volunteers. Finally, we tested the utility of this new approach in detecting abnormal CVR in a group of patients with Moyamoya disease, and again validated the results using the conventional gas inhalation method. Our results showed that global BOLD signal fluctuation in the frequency range of 0.02-0.04Hz contains the most prominent contribution from natural variation in arterial CO2. The CVR map calculated using this signal as a regressor is reproducible across runs (ICC=0.91±0.06), and manifests a strong spatial correlation with results measured with a conventional hypercapnia-based method in healthy subjects (r=0.88, p<0.001). We also found that resting-state CVR was able to identify vasodilatory deficit in patients with steno-occlusive disease, the spatial pattern of which matches that obtained using the conventional gas method (r

  2. Etching radical controlled gas chopped deep reactive ion etching

    DOEpatents

    Olynick, Deidre; Rangelow, Ivo; Chao, Weilun

    2013-10-01

    A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.

  3. Destruction of Bacterial Biofilms Using Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Abramzon, Nina

    2005-03-01

    Biofilms are bacterial communities embedded in an exopolysaccharidic matrix with a complex architectural structure. Bacteria in biofilms show different properties from those in free life thus, conventional methods of killing bacteria are often ineffective with biofilms. The use of plasmas potentially offers an alternative to conventional sterilization methods since plasmas contain a mixture of charged particles, chemically reactive species, and UV radiation. 4 and 7 day-old biofilms were produced using two bacterial species: Rhizobium gallicum and Chromobacterium violaceum. Gas discharge plasma was produced by using an AtomfloTM reactor (Surfx Technologies) and bacterial biofilms were exposed to it for different periods of time. Our results show that a 10-minute plasma treatment was able to kill 100% of the cells in most cases. Optical emission spectroscopy was used to study plasma composition which is then correlated with the effectiveness of killing. These results indicate the potentiality of plasma as an alternative sterilization method. Supported by CSuperb.

  4. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    DOEpatents

    Carr; Jeffrey W.

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  5. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    NASA Astrophysics Data System (ADS)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  6. Transport equations for partially ionized reactive plasma in magnetic field

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-06-01

    Transport equations for partially ionized reactive plasma in magnetic field taking into account the internal degrees of freedom and electronic excitation of plasma particles are derived. As a starting point of analysis the kinetic equation with a binary collision operator written in the Wang-Chang and Uhlenbeck form and with a reactive collision integral allowing for arbitrary chemical reactions is used. The linearized variant of Grad's moment method is applied to deduce the systems of moment equations for plasma and also full and reduced transport equations for plasma species nonequilibrium parameters.

  7. Transport equations for partially ionized reactive plasma in magnetic field

    SciTech Connect

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-06-08

    Transport equations for partially ionized reactive plasma in magnetic field taking into account the internal degrees of freedom and electronic excitation of plasma particles are derived. As a starting point of analysis the kinetic equation with a binary collision operator written in the Wang-Chang and Uhlenbeck form and with a reactive collision integral allowing for arbitrary chemical reactions is used. The linearized variant of Grad’s moment method is applied to deduce the systems of moment equations for plasma and also full and reduced transport equations for plasma species nonequilibrium parameters.

  8. Transport equations for partially ionized reactive plasma in magnetic field

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-06-01

    Transport equations for partially ionized reactive plasma in magnetic field taking into account the internal degrees of freedom and electronic excitation of plasma particles are derived. As a starting point of analysis the kinetic equation with a binary collision operator written in the Wang-Chang and Uhlenbeck form and with a reactive collision integral allowing for arbitrary chemical reactions is used. The linearized variant of Grad's moment method is applied to deduce the systems of moment equations for plasma and also full and reduced transport equations for plasma species nonequilibrium parameters.

  9. A novel large-scale plasma source: two discharge modes and their correlation to the production of aqueous reactive species

    NASA Astrophysics Data System (ADS)

    Wang, Bingchuan; Liu, Dingxin; Zhang, Zhiquan; Li, Qiaosong; Liu, Zhijie; Guo, Li; Wang, Xiaohua; Kong, Michael G.

    2017-08-01

    In this paper, a novel large-scale plasma source is put forward, which can generate two modes of discharge, i.e. the surface dielectric barrier discharge and the plasma jet array, by just varying the helium gas flow rate. It is found that the discharge power changes a little with the increasing gas flow rate, but the densities of reactive species in the gas phase and in the treated water change a lot. In particular, the gaseous O3 has its density decreasing while the aqueous O3 has its concentration increasing with the increasing gas flow rate. In the plasma-treated water, the reactive nitrogen species such as nitrite and nitrate have their concentrations first increasing and then decreasing, while the reactive oxygen species such as H2O2, O3 and OH have their concentrations increasing monotonically, implying that the plasma source is well-adaptive for different application requirements.

  10. Modeling of neutral gas dynamics in high-density plasmas

    NASA Astrophysics Data System (ADS)

    Canupp, Patrick Wellington

    This thesis describes a physical model of chemically reactive neutral gas flow and discusses numerical solutions of this model for the flow in an inductively coupled plasma etch reactor. To obtain these solutions, this research develops an efficient, implicit numerical method. As a result of the enhanced numerical stability of the scheme, large time steps advance the solution from initial conditions to a final steady state in fewer iterations and with less computational expense than simpler explicit methods. This method would incorporate suitably as a module in currently existing large scale plasma simulation tools. In order to demonstrate the accuracy of the numerical technique, this thesis presents results from two simulations of flows that possess theoretical solutions. The first case is the inviscid flow of a gas through a converging nozzle. A comparison of the numerical solution to isentropic flow theory shows that the numerical technique capably captures the essential flow features of this environment. The second case is the Couette flow of a gas between two parallel plates. The simulation results compare well with the exact solution for this flow. After establishing the accuracy of the numerical technique, this thesis discusses results for the flow of chemically reactive gases in a chlorine plasma etch reactor. This research examines the influence of the plasma on the neutral gas and the dynamics exhibited by the neutral gas in the reactor. This research finds that the neutral gas temperature strongly depends on the rate at which inelastic, electron-impact dissociation reactions occur and on atomic chlorine wall recombination rates. Additionally, the neutral gas Aow in the reactor includes a significant mass flux of etch product from the wafer surface. Resolution of these effects is useful for neutral gas simulation. Finally, this thesis demonstrates that continuum fluid models provide reasonable accuracy for these low pressure reactor flows due to the fact

  11. Gas-discharge plasma sources for nonlocal plasma technology

    SciTech Connect

    Demidov, V. I.; DeJoseph, C. A. Jr.; Simonov, V. Ya.

    2007-11-12

    Nonlocal plasma technology is based on the effect of self-trapping of fast electrons in the plasma volume [V. I. Demidov, C. A. DeJoseph, Jr., and A. A. Kudryavtsev, Phys. Rev. Lett. 95, 215002 (2006)]. This effect can be achieved by changing the ratio of fast electron flux to ion flux incident on the plasma boundaries. This in turn leads to a significant change in plasma properties and therefore can be useful for technological applications. A gas-discharge device which demonstrates control of the plasma properties by this method is described.

  12. Gas Phase Reactivity of Carboxylates with N-Hydroxysuccinimide Esters

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; McGee, William M.; Bu, Jiexun; Barefoot, Nathan Z.; McLuckey, Scott A.

    2015-01-01

    N-hydroxysuccinimide (NHS) esters have been used for gas-phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ɛ-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O18 were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas phase, where they are shown to be reactive, and the solution phase, where they are not regarded as reactive with NHS esters.

  13. Gas Phase Reactivity of Carboxylates with N-Hydroxysuccinimide Esters

    PubMed Central

    Peng, Zhou; McGee, William M.; Bu, Jiexun; Barefoot, Nathan Z.; McLuckey, Scott A.

    2015-01-01

    N-hydroxysuccinimide (NHS) esters have been used for gas phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ε-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O18 were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas-phase, where they are shown to be reactive, and the solution-phase, where they are not regarded as reactive with NHS esters. PMID:25338221

  14. A Gas-Kinetic Scheme for Reactive Flows

    NASA Technical Reports Server (NTRS)

    Lian,Youg-Sheng; Xu, Kun

    1998-01-01

    In this paper, the gas-kinetic BGK scheme for the compressible flow equations is extended to chemical reactive flow. The mass fraction of the unburnt gas is implemented into the gas kinetic equation by assigning a new internal degree of freedom to the particle distribution function. The new variable can be also used to describe fluid trajectory for the nonreactive flows. Due to the gas-kinetic BGK model, the current scheme basically solves the Navier-Stokes chemical reactive flow equations. Numerical tests validate the accuracy and robustness of the current kinetic method.

  15. Investigation of Sterilization Mechanism for Geobacillus stearothermophilus Spores with Plasma-Excited Neutral Gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-09-01

    We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.

  16. Non-thermal plasmas as gas-phase advanced oxidation processes

    SciTech Connect

    Rosocha, L.A.

    1997-08-01

    Non-thermal plasmas are useful for generating reactive species (free radicals) in a gas stream. Because radical attack reaction rate constants are very large for many chemical species, entrained pollutants are readily decomposed by radicals. Such plasmas can generate both oxidative and reductive radicals; therefore, they show promise for treating a wide variety of pollutants.

  17. Investigation of Sterilization Effect by various Gas Plasmas and Electron Microscopic Observation of Bacteria

    NASA Astrophysics Data System (ADS)

    Sasaki, Yota; Takamatsu, Toshihiro; Uehara, Kodai; Oshita, Takaya; Miyahara, Hidekazu; Okino, Akitoshi; Ikeda, Keiko; Matsumura, Yuriko; Iwasawa, Atsuo; Kohno, Masahiro

    2014-10-01

    Atmospheric non-thermal plasmas have attracted attention as a new sterilization method. It is considered that factor of plasma sterilization are mainly reactive oxygen species (ROS). However, the sterilization mechanism hasn't been investigated in detail because conventional plasma sources have a limitation in usable gas species and lack variety of ROS. So we developed multi-gas plasma jet which can generate various gas plasmas. In this study, investigation of sterilization effect by various gas plasmas and electron microscopic observation of bacteria were performed. Oxygen, nitrogen, carbon dioxide, argon and air were used as plasma gas. To investigate gas-species dependence of sterilization effect, S.aureus was treated. As a result, nitrogen plasma and carbon dioxide plasma were effective for sterilization. To investigate sterilization mechanism, the surface of S.aureus was observed by scanning electron microscope. As a result, dimples were observed on the surface after irradiation of nitrogen plasma, but no change observed in the case of carbon dioxide plasma. These results suggest that bactericidal mechanism of nitrogen and carbon dioxide plasma should be different. In the presentation, Measurement result of ROS will be reported.

  18. Nanocrystalline films for gas-reactive applications

    DOEpatents

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  19. Reactive ion etching of indium-tin oxide films by CCl4-based Inductivity Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Poletayev, Sergey D.; Fomchenkov, Sergey; Khonina, Svetlana N.; Skidanov, Roman V.; Kazanskiy, Nikolay L.

    2016-08-01

    Indium tin oxide (ITO) films have been a subject of extensive studies in fabrication of micro-electronic devices for opto-electronic applications ranging from anti-reflection coatings to transparent contacts in photovoltaic devices. In this paper, a new and effective way of reactive ion etching of a conducting indium-tin oxide (ITO) film with Carbon tetrachloride (CCl4) has been investigated. CCl4 plasma containing an addition of gases mixture of dissociated argon and oxygen were used. Oxygen is added to increase the etchant percentage whereas argon was used for stabilization of plasma. The etching characteristics obtained with these gaseous mixtures were explained based on plasma etch chemistry and etching regime of ITO films. An etch rate as high as ∼20 nm/min can be achieved with a controlled process parameter such as power density, total flow rate, composition of reactive gases gas and pressure. Our Investigation represents some of the extensive work in this area.

  20. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    NASA Astrophysics Data System (ADS)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki; Ikehara, Yuzuru

    2016-10-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O2/He or N2/He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation.

  1. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  2. Suppression of Tritium Retention in Remote Areas of ITER by Nonperturbative Reactive Gas Injection

    SciTech Connect

    Tabares, F. L.; Ferreira, J. A.; Ramos, A.; Rooij, G. van; Westerhout, J.; Al, R.; Rapp, J.; Drenik, A.; Mozetic, M.

    2010-10-22

    A technique based on reactive gas injection in the afterglow region of the divertor plasma is proposed for the suppression of tritium-carbon codeposits in remote areas of ITER when operated with carbon-based divertor targets. Experiments in a divertor simulator plasma device indicate that a 4 nm/min deposition can be suppressed by addition of 1 Pa{center_dot}m{sup 3} s{sup -1} ammonia flow at 10 cm from the plasma. These results bolster the concept of nonperturbative scavenger injection for tritium inventory control in carbon-based fusion plasma devices, thus paving the way for ITER operation in the active phase under a carbon-dominated, plasma facing component background.

  3. Suppression of Tritium Retention in Remote Areas of ITER by Nonperturbative Reactive Gas Injection

    NASA Astrophysics Data System (ADS)

    Tabarés, F. L.; Ferreira, J. A.; Ramos, A.; van Rooij, G.; Westerhout, J.; Al, R.; Rapp, J.; Drenik, A.; Mozetic, M.

    2010-10-01

    A technique based on reactive gas injection in the afterglow region of the divertor plasma is proposed for the suppression of tritium-carbon codeposits in remote areas of ITER when operated with carbon-based divertor targets. Experiments in a divertor simulator plasma device indicate that a 4nm/min deposition can be suppressed by addition of 1Pa·m3s-1 ammonia flow at 10 cm from the plasma. These results bolster the concept of nonperturbative scavenger injection for tritium inventory control in carbon-based fusion plasma devices, thus paving the way for ITER operation in the active phase under a carbon-dominated, plasma facing component background.

  4. Plasma formation inside deformed gas bubbles submerged in water

    NASA Astrophysics Data System (ADS)

    Sommers, Bradley; Foster, John

    2012-10-01

    Plasma formation in liquids produces highly reactive products that may be desirable for a variety of applications, including water purification and waste processing. The direct ignition of plasma in these environments, however, is limited by the large breakdown strength of liquids, which imposes severe voltage and energy requirements on the design of practical devices. One way to address this issue is by first igniting plasma in gas bubbles injected into the water. These bubbles provide an environment with higher reduced electric field (E/N) that is more suitable for plasma formation. If the same bubbles can be excited into strong distortions of their shape and volume, then it is possible to further alter E/N, both by field enhancement at the bubble's highly distorted dielectric interface (via E) and by fluctuations in its internal gas pressure (via N). This principle is investigated by trapping a single bubble at the node of a 26.4 kHz underwater acoustic field and driving it into violent oscillations using an A.C electric field. A third high voltage needle is placed nearby and used to ignite plasma in the bubble at various points during its oscillation. The bubble response is captured using a high speed camera capable of up to 30,000 frames per second.

  5. Plasma effects on the generation of reactive oxygen and nitrogen species in cancer cells in-vitro exposed by atmospheric pressure pulsed plasma jets

    NASA Astrophysics Data System (ADS)

    Kim, Sun Ja; Chung, T. H.

    2015-08-01

    Atmospheric pressure pulsed helium plasma jets are utilized for plasma-cell interactions. The effect of operating parameters such as applied voltage, pulse repetition frequency, and duty ratio on the generation of specific reactive oxygen and nitrogen species in gas and liquid phases and within cells is investigated. The apoptotic changes detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling assay in cells caused by plasma exposure are observed to correlate well with the levels of extracellular and intracellular reactive oxygen and nitrogen species.

  6. Interaction of UV laser pulses with reactive dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, Ferdi; Beckers, Job; Nijdam, Sander; Oosterbeek, Wouter; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75 mJ pulse energy, repetition frequency 10Hz) can have a large effect on the global discharge characteristics. One particular example concerns the formation of a dust void in the center of the discharge. At sufficiently high pulse energies, this formation of a dust free region - which occurs without laser irradiation-is totally suppressed. Moreover the experiments indicate that the laser pulses influence the early stages of the particle formation. Although the interaction between the laser and the plasma is not yet fully understood, it is remarkable that these localized nanosecond laser pulses can influence the plasma on a global scale. Besides new insights into fundamental problems, this phenomenon opens also new possibilities for the controlled manipulation of particle growth and particle transport in reactive plasmas.

  7. [Development of microwave plasma atomic emission detectors for gas chromatography].

    PubMed

    Yuan, Mao; Shi, Yuhua; Yu, Aimin; Zhang, Hanqi; Jin, Qinhan

    2007-05-01

    Three microwave plasmas including microwave induced plasma, capacitively coupled microwave plasma and microwave plasma torch as atomic emission detectors for gas chromatography are evaluated in their history, application and restriction, separately. The development of microwave plasma atomic emission detectors for gas chromatography is prospected.

  8. Production characteristics of reactive oxygen/nitrogen species in water using atmospheric pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori; Kawaguchi, Hideki; Timoshkin, Igor; Given, Martin; MacGregor, Scott

    2016-07-01

    A pulsed discharge, a DC corona discharge, and a plasma jet are separately generated above a water surface, and reactive oxygen species and reactive nitrogen species (ROS/RNS) in the water are investigated. ROS/RNS in water after the sparging of the off-gas of a packed-bed dielectric barrier discharge (PB-DBD) are also investigated. H2O2, NO2 -, and NO3 - are detected after plasma exposure and only NO3 - after off-gas sparging. Short-lifetime species in plasma are found to play an important role in H2O2 and NO2 - production and long-lifetime species in NO3 - production. NO x may inhibit H2O2 production through OH consumption to produce HNO2 and HNO3. O3 does not contribute to ROS/RNS production. The pulsed plasma exposure is found to be effective for the production of H2O2 and NO2 -, and the off-gas sparging of the PB-DBD for the production of NO3 -.

  9. Liquid-Gas Interfacial Plasmas for the Formation of Novel Nanobiomaterials

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro; Baba, Kazuhiko; Hatakeyama, Rikizo

    The liquid-gas interfacial region, which is the boundary between plasmas and liquids, activates physical and chemical reactions, thus attracting much attention as a novel reactive field in nanobiomaterial creation. Owing to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we successfully created a reactive liquid-gas (ionic liquids-plasmas) interfacial field under a low gas pressure condition, in which the plasma ion behavior can be controlled. The effects of plasma ion irradiation on the liquid medium are for the first time revealed quantitatively. In connection with the plasma ion irradiation, the potential structure and optical emission properties of the liquid-gas interfacial plasma were investigated by changing the polarity of the electrode in the liquid to evaluate liquid-plasma interactions. These results may contribute to systematizing the field of liquid-gas interfacial plasma physics for certain applications. Furthermore, novel nanobiocomposite materials, such as DNA-encapsulated carbon nanotubes, were formed using liquid-phase plasma, and for the first time, modifications of the electrical properties of nanocarbons according to the types of encapsulated DNA were demonstrated.

  10. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  11. In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor.

    PubMed

    Suzuki, Atsushi; Nonaka, Hidehiko

    2009-09-01

    A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicability of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.

  12. PIC simulation of reactive radio-frequency plasma

    NASA Astrophysics Data System (ADS)

    Matthias, Paul; Kahnfeld, Daniel; Lueskow, Karl; Bandelow, Gunnar; Schneider, Ralf; Kemnitz, Stefan; Duras, Julia

    2016-10-01

    Reactive plasmas are important for industrial applications. For sputter processes and plasma etching especially asymmetric capacitively coupled plasmas with a radio-frequency modulated voltage are used. The latest experimental results show an unexpected high-energy peak of negative ions at the grounded anode, depending on the cathode material. Here the Particle-in-Cell (PIC) method was used to simulate this experiment. The main mechanism for the effect is identified as the production of negative ions near the surface of the cathode. In a one dimensional simulation the negative ions are trapped inside the plasma because of the symmetric potential. Thus it was shown that these high-energy peaks of negative ions at the anode only appear in asymmetric discharges, due to the self-bias voltage. To reproduce the asymmetry a two dimensional model will be used in the future. German Space Agency DLR Project 50 RS 1510.

  13. Supersonic gas injector for plasma fueling

    SciTech Connect

    Soukhanovskii, V A; Kugel, H W; Kaita, R; Roquemore, A L; Bell, M; Blanchard, W; Bush, C; Gernhardt, R; Gettelfinger, G; Gray, T; Majeski, R; Menard, J; Provost, T; Sichta, P; Raman, R

    2005-09-30

    A supersonic gas injector (SGI) has been developed for fueling and diagnostic applications on the National Spherical Torus Experiment (NSTX). It is comprised of a graphite converging-diverging Laval nozzle and a commercial piezoelectric gas valve mounted on a movable probe at a low field side midplane port location. Also mounted on the probe is a diagnostic package: a Langmuir probe, two thermocouples and five pickup coils for measuring toroidal, radial, vertical magnetic field components and magnetic fluctuations at the location of the SGI tip. The SGI flow rate is up to 4 x 10{sup 21} particles/s, comparable to conventional NSTX gas injectors. The nozzle operates in a pulsed regime at room temperature and a reservoir gas pressure up to 0.33 MPa. The deuterium jet Mach number of about 4, and the divergence half-angle of 5{sup o}-25{sup o} have been measured in laboratory experiments simulating NSTX environment. In initial NSTX experiments reliable operation of the SGI and all mounted diagnostics at distances 1-20 cm from the plasma separatrix has been demonstrated. The SGI has been used for fueling of ohmic and 2-4 MW NBI heated L- and H-mode plasmas. Fueling efficiency in the range 0.1-0.3 has been obtained from the plasma electron inventory analysis.

  14. Reactive deposition of tungsten and titanium carbides by induction plasma

    NASA Astrophysics Data System (ADS)

    Jiang, X. L.; Gitzhofer, F.; Boulos, M. I.; Tiwari, R.

    1995-05-01

    A study is reported on the use of induction plasma technology for the preparation of dense free-standing deposits of tungsten carbide and titanium carbide from metallic powders and methane. Phase analysis by X-ray diffraction indicates that primary carburization of the particles takes place in-flight giving rise to the formation of W2C and TiC(1 - x). Secondary carburization occurs in the deposits resulting in the formation of tungsten and titanium carbides. Microstructures revealed by optical and scanning electron microscopy show uniform small grains of the carbides. The reactive plasma spray-formed tungsten carbide shows transgranular fracture, while pure tungsten deposits show intergranular fracture.

  15. Quantitative diagnostics of reactive, multicomponent low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Schwarz-Selinger, Thomas

    2013-09-01

    The special emphasis in this work is put on the quantitative determination of the plasma composition of an inductively coupled low temperature plasma (ICP). Several standard plasma diagnostic techniques were applied. As a test case for a multi-component low-temperature plasma argon-hydrogen as well as argon-hydrogen-nitrogen mixed plasmas were investigated. For steady-state plasma operation the ion density and electron temperature were determined with a single tip Langmuir probe. A multi-grid miniature retarding-field analyzer was used to measure the mass integrated ion flux. An energy-dispersive mass spectrometer - a so-called plasma monitor (PM) - was applied to sample ions from the plasma to derive the ion composition. The degree of dissociation of hydrogen and the gas temperature were derived from optical emission spectroscopy. The gas temperature was estimated by the rotational distribution of the Q-branch lines of the hydrogen Fulcher- α diagonal band for the argon-hydrogen mixed plasmas and from the second positive system of N2 in argon-hydrogen-nitrogen mixed plasmas. The degree of dissociation of hydrogen was measured by actinometry. The influence of the substrate material of the counter electrode (stainless steel, copper, tungsten, Macor, and aluminium) on the atomic hydrogen concentration was investigated by OES. In addition, ionization-threshold mass spectrometry (ITMS) was used to determine the densities of atomic nitrogen (N) and atomic hydrogen (H and D). Pulsed plasma operation was applied to directly measure the loss rate of H, D and N in the afterglow from the temporal decay of the ITMS signal. From these data the wall loss probability of atomic hydrogen was determined. Furthermore, a zero-dimensional rate equation model was devised to explain the ion composition in these mixed plasmas with different admixture ratios. In addition to the experimental data on electron density, gas temperature, total pressure, atomic hydrogen density, and Ar, H2

  16. The reactive bed plasma system for contamination control

    NASA Technical Reports Server (NTRS)

    Birmingham, Joseph G.; Moore, Robert R.; Perry, Tony R.

    1990-01-01

    The contamination control capabilities of the Reactive Bed Plasma (RBP) system is described by delineating the results of toxic chemical composition studies, aerosol filtration work, and other testing. The RBP system has demonstrated its capabilities to decompose toxic materials and process hazardous aerosols. The post-treatment requirements for the reaction products have possible solutions. Although additional work is required to meet NASA requirements, the RBP may be able to meet contamination control problems aboard the Space Station.

  17. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    NASA Astrophysics Data System (ADS)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR

  18. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOEpatents

    Kong, P.C.

    1997-05-06

    A method is described for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap there between. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition. 6 figs.

  19. Method for cracking hydrocarbon compositions using a submerged reactive plasma system

    DOEpatents

    Kong, Peter C.

    1997-01-01

    A method for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap therebetween. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition.

  20. Battling Bacterial Biofilms with Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Zelaya, Anna; Vandervoort, Kurt; Brelles-Mariño, Graciela

    Most studies dealing with growth and physiology of bacteria have been carried out using free-living cells. However, most bacteria live in communities referred to as biofilms where cooperative interactions among their members make conventional methods of controlling microbial growth often ineffective. The use of gas discharge plasmas represents an alternative to traditional decontamination/sterilization methods. We studied biofilms using two organisms, Chromobacterium violaceum and Pseudomonas aeruginosa. With the first organism we demonstrated almost complete loss of cell culturability after a 5-min plasma treatment. However, additional determinations showed that non-culturable cells were still alive after short exposure times. We have recently reported the effect of plasma on P. aeruginosa biofilms grown on borosilicate coupons. In this paper, we present results for plasma treatments of 1-, 3-, and 7-day old P. aeruginosa biofilms grown on polycarbonate or stainless-steel coupons. Results indicate nearly 100% of ­biofilm inactivation after 5 min of exposure with similar inactivation kinetics for 1-, 3-, and 7-day-old biofilms, and for both materials used. The inactivation kinetics is similar for both organisms, suggesting that the method is useful regardless of the type of biofilm. AFM images show changes in biofilm structure for various plasma exposure times.

  1. [Reactivity of the limestone in wet flue gas desulfurization].

    PubMed

    Zhu, Tian-le; Li, Yao; Ling, Xuan; Liu, Hong-ju; Xu, Feng-gang; Liu, Han-qiang

    2005-11-01

    On the basis of the analysis of chemical components of the natural limestones from different deposits in China, the pore structures of the typical limestones, with the different CaCO3 content, were examined. The reactivity of the limestones was investigated by sulfuric acid titration and gas-liquid absorption methods. The research results showed that the specific surface area of the natural limestones studied in this work was about 1.8 m2/g. It was seen that the pH of the limestone slurry rapidly decreased and then back up when the sulfuric acid was added. The higher the CaCO3 content was, or the smaller the particle size was, the larger the pH back-up rate was, and similarly the faster the SO2 concentration of the reactor outlet increased. The Reactivity of the limestone obtained by the sulfuric acid titration had the same features as that obtained by the gas liquid absorption. Compared with the specific surface area, the CaCO3 content had more effect on the reactivity of the limestones. The particle size of the limestones had a significant effect on the reactivity when the particle size was relatively large, that is less than 300-360 mesh, vice versa.

  2. Fundamentals of gas phase plasmas for treatment of human tissue.

    PubMed

    Kushner, Mark J; Babaeva, Natalia Yu

    2011-01-01

    The use of gas phase plasmas for treating human tissue is at the intersection of two disciplines - plasma physics and engineering, and medicine. In this paper, a primer will be provided for the medical practitioner on the fundamentals of generating gas phase plasmas at atmospheric pressure in air for the treatment of human tissue. The mechanisms for gas phase plasmas interacting with tissue and biological fluids will also be discussed using results from computer modeling.

  3. Decomposition of tetrodotoxin using multi-gas plasma jet.

    PubMed

    Takamatsu, Toshihiro; Miyahara, Hidekazu; Azuma, Takeshi; Okino, Akitoshi

    2014-04-01

    In this study, non-thermal multi-gas plasma treatments were performed for Tetrodotoxin (TTX) solution, and TTX decomposition was analyzed by liquid chromatography coupled with electrospray time-of-flight mass spectrometry. The TTX mass spectrum signal was reduced by plasma irradiations to different levels by using various gas species. Nitrogen plasma exhibited the optimal capability for TTX decomposition, followed by oxygen, argon, and carbon dioxide plasmas. The TTX concentration decreased 100-fold by nitrogen plasma treatment for 10 min.

  4. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    SciTech Connect

    Vitelaru, Catalin; Lundin, Daniel; Brenning, Nils; Minea, Tiberiu

    2013-09-02

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  5. Plasma processes in inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters, particularly with large diameters, have continued to be of interest for space propulsion applications. Two plasma processes are treated in this study: electron diffusion across magnetic fields and double ion production in inert-gas thrusters. A model is developed to describe electron diffusion across a magnetic field that is driven by both density and potential gradients, with Bohm diffusion used to predict the diffusion rate. This model has applications to conduction across magnetic fields inside a discharge chamber, as well as through a magnetic baffle region used to isolate a hollow cathode from the main chamber. A theory for double ion production is presented, which is not as complete as the electron diffusion theory described, but it should be a useful tool for predicting double ion sputter erosion. Correlations are developed that may be used, without experimental data, to predict double ion densities for the design of new and especially larger ion thrusters.

  6. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma.

    PubMed

    Winter, Theresa; Bernhardt, Jörg; Winter, Jörn; Mäder, Ulrike; Schlüter, Rabea; Weltmann, Klaus-Dieter; Hecker, Michael; Kusch, Harald

    2013-09-01

    The applications of low-temperature plasma are not only confined to decontamination and sterilization but are also found in the medical field in terms of wound and skin treatment. For the improvement of already established and also for new plasma techniques, in-depth knowledge on the interactions between plasma and microorganism is essential. In an initial study, the interaction between growing Bacillus subtilis and argon plasma was investigated by using a growth chamber system suitable for low-temperature gas plasma treatment of bacteria in liquid medium. In this follow-up investigation, a second kind of plasma treatment-namely air plasma-was applied. With combined proteomic and transcriptomic analyses, we were able to investigate the plasma-specific stress response of B. subtilis toward not only argon but also air plasma. Besides an overlap of cellular responses due to both argon and air plasma treatment (DNA damage and oxidative stress), a variety of gas-dependent cellular responses such as growth retardation and morphological changes were observed. Only argon plasma treatments lead to a phosphate starvation response whereas air plasma induced the tryptophan operon implying damage by photooxidation. Biological findings were supported by the detection of reactive plasma species by optical emission spectroscopy and Fourier transformed infrared spectroscopy measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fast figuring of large optics by reactive atom plasma

    NASA Astrophysics Data System (ADS)

    Castelli, Marco; Jourdain, Renaud; Morantz, Paul; Shore, Paul

    2012-09-01

    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 μm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to λ/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours.

  8. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device

    NASA Astrophysics Data System (ADS)

    Schmidt-Bleker, Ansgar; Winter, Jörn; Bösel, André; Reuter, Stephan; Weltmann, Klaus-Dieter

    2016-02-01

    A novel approach combining experimental and numerical methods for the study of reaction mechanisms in a cold atmospheric \\text{Ar} plasma jet is introduced. The jet is operated with a shielding gas device that produces a gas curtain of defined composition around the plasma plume. The shielding gas composition is varied from pure {{\\text{N}}2} to pure {{\\text{O}}2} . The density of metastable argon \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) in the plasma plume was quantified using laser atom absorption spectroscopy. The density of long-living reactive oxygen and nitrogen species (RONS), namely {{\\text{O}}3} , \\text{N}{{\\text{O}}2} , \\text{NO} , {{\\text{N}}2}\\text{O} , {{\\text{N}}2}{{\\text{O}}5} and {{\\text{H}}2}{{\\text{O}}2} , was quantified in the downstream region of the jet in a multipass cell using Fourier-transform infrared spectroscopy (FTIR). The jet produces a turbulent flow field and features guided streamers propagating at several \\text{km}~{{\\text{s}}-1} that follow the chaotic argon flow pattern, yielding a plasma plume with steep spatial gradients and a time dependence on the \\text{ns} scale while the downstream chemistry unfolds within several seconds. The fast and highly localized electron impact reactions in the guided streamer head and the slower gas phase reactions of neutrals occurring in the plasma plume and experimental apparatus are therefore represented in two separate kinetic models. The first electron impact reaction kinetics model is correlated to the LAAS measurements and shows that in the guided streamer head primary reactive oxygen and nitrogen species are dominantly generated from \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) . The second neutral species plug-flow model hence uses an \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) source term as sole energy input and yields good agreement with the RONS measured by FTIR spectroscopy.

  9. Parameter manipulation in the Synthesis of Ti-Cd-C Films via Reactive Sputtering in a Magnetized Sheet Plasma Facility

    NASA Astrophysics Data System (ADS)

    Villanueva, Matthew Bryan; Ramos, Henry

    2013-09-01

    Titanium-cadmium-carbon (Ti-Cd-C) deposits were achieved through reactive sputtering in a magnetized sheet plasma facility (MSPF). Titanium and cadmium metals (99.9% purity) were used as sputter targets, and high purity methane as the reactive gas. Parameters investigated were target bias, deposition duration, filling pressure, gas ratio, gas type such as acetylene, and magnetic configuration. Through X-ray diffractometry, peak signals at 2 θ = 23.3° for the treatment which implemented an independent sputtering step at -200 V target bias, and 2 θ = 12.34° for direct reactive sputtering only with -800 V target bias were recorded. Both XRD results are indicative of the formation of Ti2CdC, a theorized solid solution of Mn+1AXn phase variety. Department of Science and Technology for the project grant.

  10. Influence of flowing helium gas on plasma plume formation in atmospheric pressure plasma

    SciTech Connect

    Yambe, Kiyoyuki; Konda, Kohmei; Ogura, Kazuo

    2015-05-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and a foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. The helium gas flowing out of quartz tube mixes with air, and the flow channel is composed of the regions of flowing helium gas and air. The plasma plume length is equivalent to the reachable distance of flowing helium gas. Although the amount of helium gas on the flow channel increases by increasing the inner diameter of quartz tube at the same gas flow velocity, the plasma plume length peaks at around 8 m/s of gas flow velocity, which is the result that a flow of helium gas is balanced with the amount of gas. The plasma plume is formed at the boundary region where the flow of helium gas is kept to the wall of the air.

  11. Effect of reactive gas (oxygen/chlorine/fluorine) etching on the magnetic flux of a high moment write pole material

    SciTech Connect

    Zhang Jinqiu; Liu Feng; Chen Lifan; Miloslavsky, Lena

    2010-05-15

    Effect of reactive gas (oxygen/chlorine/fluorine) etching on NiFe magnetic properties was investigated. Experimental data showed 40% magnetic property degradation for F-containing gas etching, 10% degradation for O-containing gas etching, and 5% degradation for Cl-containing gas etching processes. X-ray diffraction analysis indicated that the crystallographic orientation remained the same upon the reactive gas etching, which is due to the low ion energy in plasma etching process as opposed to ion milling process with high input energy. It is proposed that the reported magnetic property degradation was mainly caused by the nonmagnetic dead layer formation, rather than the changes in the crystallographic orientation. The dead layer was determined by the NiFe thickness dependence of remnant magnetic flux variations between pre-etched and postetched samples. The dead layer remained nearly constant for O-containing gas etching process with increasing plasma processing time. The nonmagnetic dead layer of {approx}40-50 A formed in O-containing etching gas was observed in transmission electron microscopy cross-sectional image and was in very good agreement with the calculated value based on magnetic flux measurements. Combined magnetic and physical characterizations suggest that the dead layer thickness saturates at the initial stage of the plasma etching and magnetic property remained unchanged with increasing etching duration upon formation of the dead layer.

  12. Surface Analysis of Reactive Ion Etched PZT Thin Films in SF6 Plasma

    DTIC Science & Technology

    2007-09-01

    Surface Analysis of Reactive Ion Etched PZT Thin Films in SF6 Plasma by Eugene Zakar ARL-TR-4284 September 2007...Surface Analysis of Reactive Ion Etched PZT Thin Films In SF6 Plasma Eugene Zakar Sensors and Electron Devices Directorate, ARL...September 2006 5a. CONTRACT NUMBER 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Surface Analysis of Reactive Ion Etched PZT Thin Films in SF6 Plasma

  13. Recent developments of DSMC within the reactive plasma flow solver PICLas

    NASA Astrophysics Data System (ADS)

    Reschke, W.; Binder, T.; Kleinert, J.; Mirza, A.; Nizenkov, P.; Pfeiffer, M.; Fasoulas, S.; Copplestone, S.; Ortwein, P.; Munz, C. D.

    2016-11-01

    In order to enable the numerical simulation of rarefied plasma flows in thermal and chemical non-equilibrium, electro-magnetic interactions as well as particle collisions have to be considered. A common approach is to use particle-based methods. The Particle-in-Cell (PIC) method simulates charged collisionless gas flows by solving the Vlasov-Maxwell equation system while particle collisions in neutral reactive flows are treated by the Direct Simulation Monte Carlo (DSMC) method. Therefore, PICLas is being developed, a coupled simulation code that enables three-dimensional particle-based simulations combining high-order PIC and DSMC schemes for the simulation of reactive, rarefied plasma flows. PICLas enables time-accurate simulations on unstructured hexahedral meshes and is parallelized for high-performance computing. In addition to an overview of PICLas, the current development status of the DSMC module is presented. This includes the relaxation of polyatomic gases, the extension of the chemical modeling to gas-surface interactions, and the implementation of steady-state detection routines.

  14. Sterilization of Bacillus subtilis Spores Using an Atmospheric Plasma Jet with Argon and Oxygen Mixture Gas

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Cheng, Cheng; Fang, Shidong; Xie, Hongbing; Lan, Yan; Ni, Guohua; Meng, Yuedong; Luo, Jiarong; Wang, Xiangke

    2012-03-01

    To determine an efficient sterilization mechanism, Bacillus subtilis spore samples were exposed to an atmospheric plasma jet. By using argon/oxygen mixture gas, the decimal reduction value was reduced from 60 s (using argon gas) to 10 s. More dramatically, after 5 min treatment, the colony-forming unit (CFU) was reduced by six orders. To understand the underlying mechanism of the efficient sterilization by plasma, the contributions from heat, UV radiation, charged particles, ozone, and reactive oxygen radicals were distinguished in this work, showing that charged particles and ozone were the main killing factors. The shape changes of the spores were also discussed.

  15. Plasma density perturbation caused by probes at low gas pressure

    NASA Astrophysics Data System (ADS)

    Sternberg, Natalia; Godyak, Valery

    2017-09-01

    An analysis of plasma parameter perturbations caused by a spherical probe immersed into a spherical plasma is presented for arbitrary collisionality and arbitrary ratios of probe to plasma dimensions. The plasma was modeled by the fluid plasma equations with ion inertia and nonlinear ion friction force that dominate plasma transport at low gas pressures. Significant depletion of the plasma density around the probe surface has been found. The area of plasma depletion coincides with the sensing area of different kinds of magnetic and microwave probes and will therefore lead to errors in data inferred from measurements with such probes.

  16. Feed gas humidity: a vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells

    NASA Astrophysics Data System (ADS)

    Winter, J.; Wende, K.; Masur, K.; Iseni, S.; Dünnbier, M.; Hammer, M. U.; Tresp, H.; Weltmann, K.-D.; Reuter, S.

    2013-07-01

    In this study, the effect of feed gas humidity on the reactive component generation of an atmospheric-pressure argon plasma jet and its effect on human skin cells are investigated. Feed gas humidity is identified as one key parameter that strongly influences stability and reproducibility of plasma medical studies. The plasma jet is investigated by absorption spectroscopy in the ultraviolet and infrared spectral region for its ozone production depending on the humidity concentration in the feed gas. By optical emission spectroscopy the dependence of present excited plasma species such as hydroxyl radicals, molecular nitrogen, argon and atomic oxygen on the feed gas humidity is investigated. As an interface layer between the plasma jet effluent and the biological cell, a buffer solution is treated and the hydrogen peroxide (H2O2) production is studied with two independent colorimetric assays as a function of humidity admixture to the feed gas. Ultimately, the effect of varying feed gas humidity on the cell viability of indirect plasma treated adherent HaCAT cells is investigated. The highest viability is found for the driest feed gas condition. Furthermore, this work shows answers for the relevance of unwanted—or intended—feed gas humidity in plasma medical experiments and their comparatively large relevance with respect to ambient humidity. The findings will lead to more reproducible experiments in the field of plasma medicine.

  17. Reactive oxygen species in plasma against E. coli cells survival rate

    NASA Astrophysics Data System (ADS)

    Zhou, Ren-Wu; Zhang, Xian-Hui; Zong, Zi-Chao; Li, Jun-Xiong; Yang, Zhou-Bin; Liu, Dong-Ping; Yang, Si-Ze

    2015-08-01

    In this paper, we report on the contrastive analysis of inactivation efficiency of E. coli cells in solution with different disinfection methods. Compared with the hydrogen peroxide solution and the ozone gas, the atmospheric-pressure He plasma can completely kill the E. coli cells in the shortest time. The inactivation efficiency of E. coli cells in solution can be well described by using the chemical reaction rate model. X-ray photoelectron spectroscopy (XPS) analysis shows that the C-O or C=O content of the inactivated E. coli cell surface by plasma is predominantly increased, indicating the quantity of oxygen-containing species in plasma is more than those of two other methods, and then the C-C or C-H bonds can be broken, leading to the etching of organic compounds. Analysis also indicates that plasma-generated species can play a crucial role in the inactivation process by their direct reactions or the decompositions of reactive species, such as ozone into OH radicals in water, then reacting with E. coli cells. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), and the Funds from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  18. Dusty Plasma Structures in Gas Mixtures

    SciTech Connect

    Popova, D. V.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    The possibility of attainment of large Mach numbers is analyzed for the case of heavy ions drifting in a light gas. Under conditions of typical experiments with dust structures in plasmas, the use of the mixture of light and heavy gases is shown to make it possible to suppress the ion heating in the electric field and to form supersonic flows characterized by large Mach numbers. The drift of krypton ions in helium is considered as an example. Experiments with dc glow discharge at 1-10% of Kr show that the transition to the discharge in mixture leads to increase of interaction anisotropy and reinforcement of coupling of dust particles in the direction of ion drift. On the other hand, under certain conditions the phenomenon of abnormal 'heating' of dust particles was observed when the particles can obtain high kinetic energy which is several orders of magnitude higher than typical.

  19. On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    NASA Astrophysics Data System (ADS)

    Nardon, E.; Fil, A.; Chauveau, P.; Tamain, P.; Guirlet, R.; Koslowski, H. R.; Lehnen, M.; Reux, C.; Saint-Laurent, F.; Contributors, JET

    2017-01-01

    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013).

  20. Reactive atom plasma (RAP) processing of mirrors for astronomy

    NASA Astrophysics Data System (ADS)

    Subrahmanyan, Pradeep K.; Gardopée, George

    2008-07-01

    Modern day telescopes for astronomy have very complex requirements. Both ground and space based telescopes are getting much larger placing significant productivity requirements on the manufacturing processes employed. Conventional manufacturing paradigms involving mechanical abrasion have limitations related primarily to the material removal mechanisms employed. Reactive Atom Plasma (RAPTM) processing is a sub-aperture, non-contact, deterministic figuring technology performed at atmospheric pressures. The process has high material removal rates, and given the non-contact and atmospheric nature lends itself very well to scaling up for large aperture mirrors/segments. The process also benefits from its ability to simultaneously remove sub-surface damage (SSD) while imparting the desired figure to the surface. Developments are under way currently to scale the process up towards larger clear apertures while being able to figure in high spatial frequency features.

  1. Caracterisation of Titanium Nitride Layers Deposited by Reactive Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Roşu, Radu Alexandru; Şerban, Viorel-Aurel; Bucur, Alexandra Ioana; Popescu, Mihaela; Uţu, Dragoş

    2011-01-01

    Forming and cutting tools are subjected to the intense wear solicitations. Usually, they are either subject to superficial heat treatments or are covered with various materials with high mechanical properties. In recent years, thermal spraying is used increasingly in engineering area because of the large range of materials that can be used for the coatings. Titanium nitride is a ceramic material with high hardness which is used to cover the cutting tools increasing their lifetime. The paper presents the results obtained after deposition of titanium nitride layers by reactive plasma spraying (RPS). As deposition material was used titanium powder and as substratum was used titanium alloy (Ti6Al4V). Macroscopic and microscopic (scanning electron microscopy) images of the deposited layers and the X ray diffraction of the coatings are presented. Demonstration program with layers deposited with thickness between 68,5 and 81,4 μm has been achieved and presented.

  2. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry.

    PubMed

    Zhang, Wei; Huang, Guangming

    2015-11-15

    Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Reactive plasma spraying of Al-Ti alloys

    SciTech Connect

    Entezarian, M.; Shanker, K.; Tsantrizos, P.G.; Allaire, F.; Immarigeon, J.P.; Drew, R.A.L.

    1995-12-31

    Reactive plasma spraying was used to synthesize Al alloys containing a dispersion of TiAl{sub 3} intermetallics. Either Al powder or Al wire and TiCl{sub 4} were the raw materials used. The size, distribution, and morphology of the intermetallic phase were a function of the injection manner of the starting materials, the plasma process parameters, and the molar ratio of the reactants (TiCl{sub 4}/Al). Under optimum conditions, a fine dispersion of micron sized intermetallics was obtained. Investigation of the reaction mechanism showed that the particle`s temperature was a critical factor in producing a fine dispersion of TiAl{sub 3} phase in an Al matrix. Materials produced at temperatures below the melting point of TiAl{sub 3} resulted in a microstructure containing an Al core with a TiAl{sub 3} shell. In contrast, materials produced at higher temperatures resulted in a fine TiAl{sub 3} phase precipitating from the Al-Ti melt during the solidification process. Products were collected as porous deposited layers whose surface was contaminated with chlorides. The products were subjected to purification followed by hot rolling for further consolidation. The effectiveness of vacuum thermal treatment on the removal of Cl was investigated. Al chlorides could be removed by thermal treatments at temperatures below the melting point of Al, while some of the Ti subchlorides required higher temperatures. The mechanical properties of the consolidated materials were also determined and are reported.

  4. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  5. Inert-Gas Diffuser For Plasma Or Arc Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Spencer, Carl N.; Hosking, Timothy J.

    1994-01-01

    Inert-gas diffuser provides protective gas cover for weld bead as it cools. Follows welding torch, maintaining continuous flow of argon over newly formed joint and prevents it from oxidizing. Helps to ensure welds of consistently high quality. Devised for plasma arc keyhole welding of plates of 0.25-in. or greater thickness, also used in tungsten/inert-gas and other plasma or arc welding processes.

  6. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    PubMed

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  7. Disposal pathway for tritiated reactive metals and tritiated hydrogen gas

    SciTech Connect

    Antoniazzi, A. B.; Morton, C. S.

    2008-07-15

    Kinectrics and its predecessor company Ontario Hydro Research Div. (a division of Ontario Hydro) had a fully operational tritium laboratory on site since the early 1980's. During those years numerous projects and experiments were undertaken using hydrogen and tritium for the most part. Metals with an affinity for hydrogen are commonly employed as scavengers of hydrogenic gases from process streams or as hydrogen storage mediums. The two most common of these metals used were depleted uranium and a zirconium-iron alloy (SAES St198). The break-up of Ontario Hydro through deregulation activities resulted in the building of a new, smaller, tritium laboratory and the decommissioning of the original tritium laboratory. Decommissioning activities resulted in the need to safely dispose of these reactive metals. Disposal of these metals is not straight forward. For safe, long term, disposal it has been decided to oxidize the metals in a controlled fashion. The oxidized beds, containing the metals, will be sent to a radioactive waste site for long term storage. Options for disposal of tritiated hydrogen gas are presented and discussed. This paper provides a disposal pathway for tritiated reactive metals and hydrogen thereby closing the loop in tritium handling. (authors)

  8. Nitrogen Gas Plasma Generated by a Static Induction Thyristor as a Pulsed Power Supply Inactivates Adenovirus

    PubMed Central

    Sakudo, Akikazu; Toyokawa, Yoichi; Imanishi, Yuichiro

    2016-01-01

    Adenovirus is one of the most important causative agents of iatrogenic infections derived from contaminated medical devices or finger contact. In this study, we investigated whether nitrogen gas plasma, generated by applying a short high-voltage pulse to nitrogen using a static induction thyristor power supply (1.5 kilo pulse per second), exhibited a virucidal effect against adenoviruses. Viral titer was reduced by one log within 0.94 min. Results from detection of viral capsid proteins, hexon and penton, by Western blotting and immunochromatography were unaffected by the plasma treatment. In contrast, analysis using the polymerase chain reaction suggested that plasma treatment damages the viral genomic DNA. Reactive chemical products (hydrogen peroxide, nitrate, and nitrite), ultraviolet light (UV-A) and slight temperature elevations were observed during the operation of the gas plasma device. Viral titer versus intensity of each potential virucidal factor were used to identify the primary mechanism of disinfection of adenovirus. Although exposure to equivalent levels of UV-A or heat treatment did not inactivate adenovirus, treatment with a relatively low concentration of hydrogen peroxide efficiently inactivated the virus. Our results suggest the nitrogen gas plasma generates reactive chemical products that inactivate adenovirus by damaging the viral genomic DNA. PMID:27322066

  9. Gas plasma sterilization of microorganisms and mechanisms of action

    PubMed Central

    SHINTANI, HIDEHARU; SAKUDO, AKIKAZU; BURKE, PETER; McDONNELL, GERALD

    2010-01-01

    The use of true gas plasmas for the inactivation of microorganisms is an area of dynamic research. Many types of gases are used as a source of plasma, and different plasma production methods have been applied. The antimicrobial mechanisms of oxygen-based gas plasmas may be due to an etching effect on microbial structures, particularly bacterial endospores resulting in shrinkage. By contrast, the definite mechanisms of actions of other gas plasma sources, such as N2, He, Ne, Ar and Xe gases, have not been clearly defined and indeed may be distinct. The speculated mechanisms of these gas plasmas involve the direct attack of metastable (excited molecular), UV and/or VUV to microbial structures, specifically the inner membrane and DNA in the core of bacterial endospores. According to this speculation, sterilized spore figures would remain unchanged. However, these mechanisms remain to be clarified. Future perspectives on the use of gas plasma for sterilization are of interest, as it is possible that appropriate sterility assurance levels can be obtained in parallel with material and functional compatibility. Traditional sterilization methods are often limited in these requirements. Therefore, gas plasma sterilization may prove to be an appropriate alternative sterilization procedure. PMID:22993596

  10. Reactive Plasma-Sprayed Aluminum Nitride-Based Coating Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Fukumoto, Masahiro; Egota, Kazumi; Okamoto, Kenji

    2015-12-01

    Recently, thick aluminum nitride/alumina (AlN/Al2O3) composite coatings were successfully fabricated through the reactive plasma spraying of fine Al2O3/AlN mixture in the N2/H2 atmospheric plasma. The coatings consist of AlN, Al5O6N, γ-Al2O3, and α-Al2O3 phases. This study will evaluate the thermal conductivity of these complicated plasma-sprayed coatings and optimize the controlling aspects. Furthermore, the influence of the process parameters on the coatings thermal conductivity will be investigated. The fabricated coatings showed very low thermal conductivity (2.43 W/m K) compared to the AlN sintered compacts. It is attributed to the phase composition of the fabricated coatings, oxide content, and porosity. The presence of Al2O3, Al5O6N and the high coating porosity decreased its thermal conductivity. The presence of oxygen in the AlN lattice creates Al vacancies which lead to phonon scattering and therefore suppressed the thermal conductivity. The formation of γ-Al2O3 phase in the coating leads to further decrease in its conductivity, due to its lower density compared to the α-phase. Moreover, the high porosity of the coating strongly suppressed the conductivity. This is due to the complicated microstructure of plasma spray coatings (splats, porosity, and interfaces, particularly in case of reactive spray process), which obviously lowered the conductivity. Furthermore, the measured coating density was lower than the AlN value and suppressed the coating conductivity. In addition, the spraying parameter showed a varied effect on the coating phase composition, porosity, density, and therefore on its conductivity. Although the N2 gas flow improved the nitride content, it suppressed the thermal conductivity gradually. It is attributed to the further increase in the porosity and further decrease in the density of the coatings with the N2 gas. Furthermore, increasing the arc did not show a significant change on the coating thermal conductivity. On the other hand

  11. Reactive species in humidity containing atmospheric pressure plasma jets - Numerical and experimental investigations

    NASA Astrophysics Data System (ADS)

    Schroeter, Sandra; Bredin, J.; Wijaikhum, A.; West, A.; Dedrick, J.; Niemi, K.; Gibson, A. R.; Foucher, M.; Booth, J.-P.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Gorbanev, Y.; Chechik, V.; Wagenaars, E.; Gans, T.; O'Connell, D.

    2016-09-01

    The formation and absolute densities of oxygen and hydrogen containing reactive species such as atomic oxygen (O), hydrogen (H), hydroxyl radicals (OH) and hydrogen peroxide (H2O2) in an atmospheric pressure plasma jet (APPJ) are investigated as a function of the humidity content in the helium feed gas. APPJs are effective sources for these species, which are known to be biologically active and form a central role in their potential for biomedical applications. To develop and tailor APPJs for therapeutics, quantification of the reactive species produced is necessary. In this work, different diagnostic techniques, such as UV and VUV absorption spectroscopy and picosecond two-photon absorption laser-induced fluorescence (ps-TALIF) and a 0-dimensional chemical kinetics model are applied. We find that the densities of hydrogen containing species increase non-linearly with increasing feed gas humidity. The trend of atomic oxygen depends strongly on impurities present in the APPJ. The model results show that the dominant formation and destruction mechanisms of the species of interest are strongly influenced by the humidity content with different processes dominating at high and low humidity. Supported by UK EPSRC (EP/K018388/1, EP/H003797/1), the York-Paris CIRC and LABEX Plas@par (ANR11-IDEX-0004-02).

  12. Degradation and inactivation of Shiga toxins by nitrogen gas plasma.

    PubMed

    Sakudo, Akikazu; Imanishi, Yuichiro

    2017-12-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) leads to food poisoning by causing hemorrhagic colitis and hemolytic uremic syndrome. Some STEC produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2), a relatively stable protein toxin, necessitating the development of an efficient inactivation method. Here we applied a nitrogen gas plasma apparatus to the inactivation of Stx. Samples of Stx1 and Stx2 were treated with a nitrogen gas plasma generated by a plasma device using a short high-voltage pulse applied by a static induction thyristor power supply at 1.5 kpps (kilo pulse per second). The recovered Stx samples were then analyzed for immunological and biological activities. Immunochromatography demonstrated that Stx1 and Stx2 were degraded by the gas plasma. Quantification by enzyme-linked immunosorbent assay (ELISA) showed that both toxins were efficiently degraded to less than 1/10th of their original concentration within 5 min of treatment. Western blotting further showed the gas plasma treatment degraded the A subunit, which mediates the toxicity of Stx. Moreover, an assay using HEp-2 cells as an index of cytotoxicity showed that gas plasma treatment reduced the toxic activity of Stx. Therefore, nitrogen gas plasma might be an efficient method for the inactivation of Stx.

  13. Stability of gas atomized reactive powders through multiple step in-situ passivation

    DOEpatents

    Anderson, Iver E.; Steinmetz, Andrew D.; Byrd, David J.

    2017-05-16

    A method for gas atomization of oxygen-reactive reactive metals and alloys wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a protective reaction film on the atomized particles. The present invention is especially useful for making highly pyrophoric reactive metal or alloy atomized powders, such as atomized magnesium and magnesium alloy powders. The gaseous reactive species (agents) are introduced into the atomization spray chamber at locations downstream of a gas atomizing nozzle as determined by the desired powder or particle temperature for the reactions and the desired thickness of the reaction film.

  14. Modeling of plasma-target interaction during reactive magnetron sputtering of TiN

    NASA Astrophysics Data System (ADS)

    Möller, W.; Güttler, D.

    2007-11-01

    The nitrogen incorporation at the target during reactive magnetron sputtering of TiN is described by a simple stationary global model of the magnetron plasma, in combination with an analytical two-layer stationary surface model or dynamic collisional computer simulation (TRIDYN) of the surface processes. Results are shown for different nitrogen gas additions in Ar /N2 and Xe /N2 gas mixtures at a total pressure of 0.3Pa and a magnetron current of 0.3A. The nitrogen incorporation predicted by the analytical model is significantly less than obtained from computer simulation. The computer simulation yields nitrogen depth profiles which extend to about 2.5nm, exhibiting a quasirectangular shape in case of stoichiometric saturation with an integrated nitrogen areal density of ˜1.25×1016N/cm2. The stationary-state nitrogen incorporation results from the balance of surface adsorption in connection with recoil implantation, direct ion implantation, and resputtering. The most relevant species are nitrogen gas molecules for adsorption, molecular nitrogen ions for implantation, and inert gas ions for recoil implantation and sputtering. The model results are in good agreement with experiment provided that nonzero sticking of nitrogen gas molecules is assumed on the unsaturated surface. The analytical surface model is preferable, which favors the picture of a continuous transition to bulk and surface saturation rather than discrete local saturation which is inherent in TRIDYN. Also the relative nitrogen incorporation for Xe /N2 versus Ar /N2 gas mixtures is well described.

  15. Pulse plasma carburizing and high pressure gas quenching -- Industrial applications

    SciTech Connect

    Preisser, F.; Schnatbaum, F.

    1995-12-31

    Pulse plasma carburizing with high pressure gas quenching up to 20 bar is the newly developed case hardening process now available in production size equipment. The first part of results demonstrates the tremendous potential of high pressure gas quenching for successful hardening of case hardening steels. The second part opens a window to glance at the pulse plasma carburizing of complex shaped parts. Both processes improve economical data and performance of carburizing processes.

  16. Transition of RF internal antenna plasma by gas control

    SciTech Connect

    Hamajima, Takafumi; Yamauchi, Toshihiko; Kobayashi, Seiji; Hiruta, Toshihito; Kanno, Yoshinori

    2012-07-11

    The transition between the capacitively coupled plasma (CCP) and the inductively coupled plasma (ICP) was investigated with the internal radio frequency (RF) multi-turn antenna. The transition between them showed the hysteresis curve. The radiation power and the period of the self-pulse mode became small in proportion to the gas pressure. It was found that the ICP transition occurred by decreasing the gas pressure from 400 Pa.

  17. Plasma induced by resonance enhanced multiphoton ionization in inert gas

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2007-12-15

    We present a detailed model for the evolution of resonance enhanced multiphoton ionization (REMPI) produced plasma during and after the ionizing laser pulse in inert gas (argon, as an example) at arbitrary pressures. Our theory includes the complete process of the REMPI plasma generation and losses, together with the changing gas thermodynamic parameters. The model shows that the plasma expansion follows a classical ambipolar diffusion and that gas heating results in a weak shock or acoustic wave. The gas becomes involved in the motion not only from the pressure gradient due to the heating, but also from the momentum transfer from the charged particles to gas atoms. The time dependence of the total number of electrons computed in theory matches closely with the results of coherent microwave scattering experiments.

  18. EDITORIAL: Gas plasmas in biology and medicine

    NASA Astrophysics Data System (ADS)

    Stoffels, Eva

    2006-08-01

    It is my great pleasure to introduce this special cluster devoted to recent developments in biomedical plasma technology. It is an even greater pleasure to behold the enormous progress which has been made in this area over the last five years. Research on biomedical plasma applications proceeds hand in hand with the development of new material processing technologies, based on atmospheric plasma sources. In the beginning, major research effort was invested in the development and control of new plasma sources—in this laborious process, novel devices were constructed and characterized, and also new plasma physical phenomena were discovered. Self-constriction of micro-plasmas, pattern formation, filamentation of glow discharges and various mode transitions are just a few examples. It is a real challenge for theorists to gain an understanding of these complex phenomena. Later, the devices had to be thoroughly tested and automated, and various safety issues had to be addressed. At present, many atmospheric plasma sources are ready to use, but not all fundamental and technical problems have been resolved by far. There is still plenty of room for improvement, as in any dynamic area of research. The recent trends are clear: the application area of plasmas expands into processing of unconventional materials such as biological scaffolds, and eventually living human, animal and plant tissues. The gentle, precise and versatile character of cold plasmas simply invites this new application. Firstly, non-living surfaces have been plasma-treated to attain desired effects in biomedical research; tissue engineering will soon fully profit from this powerful technique. Furthermore, studies on cultured plant and animal cells have provided many findings, which are both fundamentally interesting and potentially applicable in health care, veterinary medicine and agriculture. The most important and hitherto unique property of plasma treatment is that it can evade accidental cell death

  19. Discharge effects on gas flow dynamics in a plasma jet

    NASA Astrophysics Data System (ADS)

    Xian, Yu Bin; Hasnain Qaisrani, M.; Yue, Yuan Fu; Lu, Xin Pei

    2016-10-01

    Plasma is used as a flow visualization method to display the gas flow of a plasma jet. Using this method, it is found that a discharge in a plasma jet promotes the transition of the gas flow to turbulence. A discharge at intermediate frequency (˜6 kHz in this paper) has a stronger influence on the gas flow than that at lower or higher frequencies. Also, a higher discharge voltage enhances the transition of the gas flow to turbulence. Analysis reveals that pressure modulation induced both by the periodically directed movement of ionized helium and Ohmic heating on the gas flow plays an important role in inducing the transition of the helium flow regime. In addition, since the modulations induced by the high- and low-frequency discharges are determined by the frequency-selective effect, only intermediate-frequency (˜6 kHz) discharges effectively cause the helium flow transition from the laminar to the turbulent flow. Moreover, a discharge with a higher applied voltage makes a stronger impact on the helium flow because it generates stronger modulations. These conclusions are useful in designing cold plasma jets and plasma torches. Moreover, the relationship between the discharge parameters and the gas flow dynamics is a useful reference on active flow control with plasma actuators.

  20. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    PubMed

    Liang, Xiaozhen; Collins, Christopher M; Mendel, Justin B; Iwakoshi, Neal N; Speck, Samuel H

    2009-11-01

    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by

  1. Contrasting characteristics of aqueous reactive species induced by cross-field and linear-field plasma jets

    NASA Astrophysics Data System (ADS)

    Xu, Han; Chen, Chen; Liu, Dingxin; Xu, Dehui; Liu, Zhijie; Wang, Xiaohua; Kong, Michael G.

    2017-06-01

    A comparative study on aqueous reactive species in deionized water treated by two types of plasma jets is presented. Classified by the direction of the electric field in the jet device, a linear-field jet and cross-field jet have been set up. Concentrations of several aqueous reactive species are measured quantitatively by chemical fluorescent assays and electron spin resonance spectrometer. Results show that these two-type plasma jets would generate approximately the same gaseous reactive species under the same discharge power, but the linear-field plasma jet is much more efficient at delivering those species to the remote deionized water. This leads to a much more aqueous short-lived species including OH and \\text{O}2- produced in water, which are mainly correlated to the solvation of gaseous short-lived species such as ions and electrons. Regarding the long-lived species of aqueous H2O2, the concentration grows faster when treated by the linear-field plasma jet in the initial stage, but after 10 min it is similar to that treated by the cross-field counterpart due to the vapor-liquid equilibrium. The aqueous peroxynitrite is also predicted to be produced as a result of the air inclusion in the feeding gas.

  2. Atmospheric Electrodeless Microwave Plasma-torch for Gas Decomposition

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Hong, Y. C.; Uhm, H. S.

    2001-10-01

    Increasing environmental awareness and regulation have motivated research into new method to remediate toxins from atmospheric pressure gas streams. Plasma remediation was identified as a promising technology treating contaminated gas streams and air. Plasma remediation of toxic gas streams from mobile emitting sources (i. e., Nox, Sox, soot emission from diesel truck engines) and cleaning processes (i.e., global warming gases) require inexpensive, compact, and reliable systems which efficiently and selectively convert the toxic gas to benign or more treatable products. Environmental clean-up and energy efficiency enhancement utilize plasma generated from air at the atmospheric pressure. Electrodes of the arc plasma torches oxidize very quickly due to the oxygen molecules in air. That is why the conventional thermal plasma torch can not be used in environmental applications. In order to solve this difficult problem, we developed a thermal plasma source operating without electrodes. One of electrodeless torches is the microwave plasma which can produce plasmas in large quantities. We can generate plasma at the atmospheric pressure by making use of magnetrons in microwave-ovens. Most of the magnetrons are operated at the frequency of 2.45GHz. Typical magnetron power of home-microwave oven is about 1kW. Electromagnetic waves from magnetron propagate through a waveguide. Plasma is generated under resonant condition, by initiation of an auxiliary ignition system. The plasma is stabilized by vortex stabilization. The eventual application of this research is in air pollution control. Perfluorocarbon Compounds(PFCs), , , and any other global warming gases from etching and cleaning processes have very long lifetime and high global warming potential. We will conduct an experiment to eliminate global warming gases. FT-IR and QMS will be used to analyze and identify by-products after plasma treatment.

  3. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the

  4. Generation of reactive oxygen and nitrogen species and its effects on DNA damage in lung cancer cells exposed to atmospheric pressure helium/oxygen plasma jets

    NASA Astrophysics Data System (ADS)

    Chung, Tae Hun; Joh, Hea Min; Kim, Sun Ja; Choi, Ji Ye; Kang, Tae-Hong

    2016-09-01

    We investigated the effects of the operating parameters on the generation of reactive oxygen and nitrogen species (RONS) in the gas and liquid phases exposed to atmospheric pressure a pulsed-dc helium plasma jets. The densities of reactive species including OH radicals were obtained at the plasma-liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. And the nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of RONS in the plasmas and liquids. Exposure of plasma to cancer cells increases the cellular levels of RONS, which has been linked to apoptosis and the damage of cellular proteins, and may also indirectly cause structural damage to DNA. To identify the correlation between the production of RONS in cells and plasmas, various assay analyses were performed on plasma treated human lung cancer cells (A549) cells. In addition, the effect of additive oxygen gas on the plasma-induced oxidative stress in cancer cells was investigated. It was observed that DNA damage was significantly increased with helium/oxygen plasma compared to with pure helium plasma.

  5. A simple and straightforward expression for curling probe electron density diagnosis in reactive plasmas

    NASA Astrophysics Data System (ADS)

    Arshadi, Ali; Brinkmann, Ralf Peter; Hotta, Masaya; Nakamura, Keiji

    2017-04-01

    Active plasma resonance spectroscopy (APRS) refers to the family of plasma diagnostic methods which utilize the ability of plasmas to resonate at frequencies close to the plasma frequency. APRS operates by exciting the plasma with a weak RF signal by means of a small electric probe. The response of the plasma is recorded by a network analyzer (NA). A mathematical model is applied to derive characteristics like the electron density and the electron temperature. The curling probe is a promising realization of APRS. The curling probe is well-qualified for the local measurement of the electron density in reactive plasmas. This spiral probe resonates in plasma at a larger density dependent frequency than the plasma frequency. This manuscript represents a simple and straightforward expression relating this resonance frequency to the electron density of the plasma. A good agreement is observed between the proposed expression and the results obtained from previous studies and numerical simulations.

  6. Splat Morphology and Influence of Feeding Rate During Reactive Plasma Spray of Aluminum Powder

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Fukumoto, Masahiro

    2016-12-01

    Fabrication of aluminum nitride (AlN) coatings using conventional plasma spraying processes directly has been deemed impossible. It is attributed to the thermal decomposition of the AlN feedstock particles during spraying without a stable melting phase. Using the reactivity of the plasma (reactive plasma spraying: RPS) showed a promising consideration for in situ formation of AlN thermally sprayed coatings. Several AlN-based coatings were fabricated through the RPS of aluminum powders in the N2/H2 plasma. The focus of this study is in discussing the morphology of splat deposition during the nitriding of Al particles. Furthermore, the influence of the feeding rate during the RPS and nitriding of Al powders will be investigated. The nitride content, as well as the unreacted molten Al phase, strongly influences splat deposition and morphology during the RPS of Al. The collected splats can be divided into reacted, partially reacted, and unreacted splats. The reacted splats tend to show a disk or egg-shell shape. The partially reacted mainly had outside nitride shells and an unreacted molten Al part in the center. The unreacted splats tended to show a splash shape. The main controlling factor is the time of the droplet impact on the substrate during the reaction sequence. The particle size and spray distance showed significant effects on the splat formation due to their effect on the nitriding conversion and the melting behavior of the particles during RPS nitriding. The powder feeding rate was investigated through increasing the injection rate and by using a low carrier gas flow rate. Increasing the powder feeding rate significantly improved the coating thickness. However, it suppressed the nitriding conversion of the large Al particles. Thus, with increasing the amount of the powder in the plasma, the Al molten particles are easily aggregated and agglomerate together upon colliding on the substrate with an AlN shell on the surface. This prevents the N2 from having

  7. Gas-Liquid Interfacial Non-Equilibrium Plasmas for Structure Controlled Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro

    2013-10-01

    Plasmas generated in liquid or in contact with liquid have attracted much attention as a novel reactive field in the nano-bio material creation because the brand-new chemical and biological reactions are yielded at the gas-liquid interface, which are induced by the physical actions of the non-equilibrium plasmas. In this study, first, size- and structure-controlled gold nanoparticles (AuNPs) covered with DNA are synthesized using a pulse-driven gas-liquid interfacial discharge plasma (GLIDP) for the application to next-generation drug delivery systems. The size and assembly of the AuNPs are found to be easily controlled by changing the plasma parameters and DNA concentration in the liquid. On the other hand, the mono-dispersed, small-sized, and interval-controlled AuNPs are synthesized by using the carbon nanotubes (CNTs) as a template, where the CNTs are functionalized by the ion and radical irradiation in non-equilibrium plasmas. These new materials are now widely applied to the solar cell, optical devices, and so on. Second, highly-ordered periodic structures of the AuNPs are formed by transcribing the periodic plasma structure to the surface of the liquid, where the spatially selective synthesis of the AuNPs is realized. This phenomenon is well explained by the reduction and oxidation effects of the radicals which are generated by the non-equilibrium plasma irradiation to the liquid and resultant dissociation of the liquid. In addition, it is attempted to form nano- or micro-scale periodic structures of the AuNPs based on the self-organizing behavior of turbulent plasmas generated by the nonlinear development of plasma fluctuations at the gas-liquid interface.

  8. Effects of the pulse width on the reactive species production and DNA damage in cancer cells exposed to atmospheric pressure microsecond-pulsed helium plasma jets

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Kang, Tae Hong; Chung, T. H.

    2017-08-01

    Plasma-liquid and plasma-cell interactions were investigated using an atmospheric pressure dc microsecond-pulsed helium plasma jet. We investigated the effects of the electrical parameters such as applied voltage and pulse width (determined by the pulse frequency and duty ratio) on the production of reactive species in the gas/liquid phases and on the DNA damage responses in the cancer cells. The densities of reactive species including OH radicals were estimated inside the plasma-treated liquids using a chemical probe method, and the nitrite concentration was detected by Griess assay. Importantly, the more concentration of OH resulted in the more DNA base oxidation and breaks in human lung cancer A549 cells. The data are very suggestive that there is strong correlation between the production of OH in the plasmas/liquids and the DNA damage.

  9. Summarizing results on the performance of a selective set of atmospheric plasma jets for separation of photons and reactive particles

    NASA Astrophysics Data System (ADS)

    Schneider, Simon; Jarzina, Fabian; Lackmann, Jan-Wilm; Golda, Judith; Layes, Vincent; Schulz-von der Gathen, Volker; Bandow, Julia Elisabeth; Benedikt, Jan

    2015-11-01

    A microscale atmospheric-pressure plasma jet is a remote plasma jet, where plasma-generated reactive particles and photons are involved in substrate treatment. Here, we summarize our efforts to develop and characterize a particle- or photon-selective set of otherwise identical jets. In that way, the reactive species or photons can be used separately or in combination to study their isolated or combined effects to test whether the effects are additive or synergistic. The final version of the set of three jets—particle-jet, photon-jet and combined jet—is introduced. This final set realizes the highest reproducibility of the photon and particle fluxes, avoids turbulent gas flow, and the fluxes of the selected plasma-emitted components are almost identical in the case of all jets, while the other component is effectively blocked, which was verified by optical emission spectroscopy and mass spectrometry. Schlieren-imaging and a fluid dynamics simulation show the stability of the gas flow. The performance of these selective jets is demonstrated with the example of the treatment of E. coli bacteria with the different components emitted by a He-only, a He/N2 and a He/O2 plasma. Additionally, measurements of the vacuum UV photon spectra down to the wavelength of 50 nm can be made with the photon-jet and the relative comparison of spectral intensities among different gas mixtures is reported here. The results will show that the vacuum UV photons can lead to the inactivation of the E.coli bacteria.

  10. Gas-filled capillaries for plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  11. The desorption and reactivity of butanol adsorbed on lithium iron phosphate (LISICON) activated in a hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Pylinina, A. I.; Mikhalenko, I. I.; Yagodovskaya, T. V.; Yagodovskii, V. D.

    2010-12-01

    The reactivity and desorption of butanol-2 adsorbed on Li3Fe2(PO4)3 not subjected and subjected to treatment in a glow discharge hydrogen plasma were studied under flow conditions with a gas chromatographic analysis of products. X-ray photoelectron spectroscopy data showed that the number of phosphate groups on the surface of the phosphate was two times larger than the stoichiometric number and increased after plasma chemical treatment. The strength of butanol-phosphate bonds also increased, and the selectivity of alcohol decomposition with the formation of an olefin (dehydration) and ketone (dehydrogenation) changed. After plasma treatment, dehydrogenation centers were deactivated. The selectivities of alcohol transformations in the adsorbed state and under vapor phase conditions were different. Ketone was formed from adsorbed alcohol because the activation energies of dehydrogenation were equal for the two reaction variants.

  12. Fundamental limits on gas-phase chemical reduction of NOx in a plasma

    SciTech Connect

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Vogtlin, G.E.

    1997-12-31

    In the plasma, the electrons do not react directly with the NOx molecules. The electrons collide mainly with the background gas molecules like N{sub 2}, O{sub 2} and H{sub 2}O. Electron impact on these molecules result partly in dissociation reactions that produce reactive species like N, O and OH. The NOx in the engine exhaust gas initially consist mostly of NO. The ground state nitrogen atom, N, is the only species that could lead to the chemical reduction of NO to N{sub 2}. The O radical oxidizes NO to NO{sub 2} leaving the same amount of NOx. The OH radical converts NO{sub 2} to nitric acid. Acid products in the plasma can easily get adsorbed on surfaces in the plasma reactor and in the pipes. When undetected, the absence of these oxidation products can often be mistaken for chemical reduction of NOx. In this paper the authors will examine the gas-phase chemical reduction of NOx. They will show that under the best conditions, the plasma can chemically reduce 1.6 grams of NOx per brake-horsepower-hour [g(NOx)/bhp-hr] when 5% of the engine output energy is delivered to the plasma.

  13. Emission spectroscopic study on gas-gas interactions in glow discharge plasmas using several binary gas mixtures.

    PubMed

    Wagatsuma, Kazuaki

    2010-01-01

    Emission spectra of constituent gas species from glow discharge plasmas using argon-helium, krypton-helium, argon-krypton, and krypton-argon gas mixtures were analyzed to elucidate collisional energy transfer between these gas species occurring in the plasma. In the argon-helium mixed gas plasma, the enhancement or quenching of particular Ar II lines was observed when helium was added to an argon-matrix glow discharge plasma, meaning that a redistribution in the population among the excited levels could be induced through argon-helium collisions. On the other hand, the krypton-helium plasma showed little change in the emission intensities of Kr II lines when helium was added to a krypton-matrix glow discharge plasma, meaning that energy exchanges between krypton and helium excited species occur inactively. These phenomena are principally because the excitation energy as well as the spin multiplicity between collision partners follow both the energy resonance conditions and the spin conservation rule in collisions of the second kind in the argon-helium system, but not in the krypton-helium system. In the argon-krypton and krypton-argon mixed gas plasmas, significant intensity changes of particular Ar II or Kr II lines could not be found; therefore, there were no dominant channels for energy exchanges between argon and krypton species in the mixed gas plasmas.

  14. Heating effects on modifying carbon surface by reactive plasma

    NASA Astrophysics Data System (ADS)

    Izumi, Yori; Katoh, Masaaki; Ohte, Takeo; Ohtani, Sugio; Kojima, Akira; Saitoh, Naoya

    1996-07-01

    In the surface modification by plasma, surface properties changes with time after the plasma treatment. Such changes should be avoided for practical application. Glassy carbon (GC) was subjected to simultaneous plasma and heat treatments in order to investigate the respective effects. Source gases were tetrafluoromethane (CF 4) and oxygen (O 2). Treatment time and heating temperature of the GC plate were 30 min and 200-500°C, respectively. The surface properties before and after plasma treatment were studied with contact angle measurements and ESCA. When the GC was heated at 400°C during CF 4 plasma treatment, the contact angle after plasma treatment was 133° and constant even after 24 h. At 500°C during O 2 plasma treatment, the contact angle after plasma treatment was 0° and constant even after 24 h. It is found that heating carbon surface during CF 4 or O 2 plasma treatment is effective to stop the change with time after plasma treatment.

  15. A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces

    NASA Astrophysics Data System (ADS)

    Fanara, Carlo; Shore, Paul; Nicholls, John R.; Lyford, Nicholas; Sommer, Phil; Fiske, Peter

    2006-06-01

    The next generation of 30-100 metre diameter extremely large telescopes (ELTs) requires large numbers of hexagonal primary mirror segments. As part of the Basic Technology programme run jointly by UCL and Cranfield University, a reactive atomic plasma technology (RAP(tm)) emerged from the US Lawrence Livermore National Laboratory (LLNL), is employed for the finishing of these surfaces. Results are presented on this novel etching technology. The Inductively Coupled Plasma (ICP) operated at atmospheric pressure using argon, activates the chemical species injected through its centre and promotes the fluorine-based chemical reactions at the surface. Process assessment trials on Ultra Low Expansion (ULE(tm)) plates, previously ground at high material removal rates, have been conducted. The quality of the surfaces produced on these samples using the RAP process are discussed. Substantial volumetric material removal rates of up to 0.446(21) mm 3/s at the highest process speed (1,200 mm/min) were found to be possible without pre-heating the substrate. The influences of power transfer, process speed and gas concentration on the removal rates have been determined. The suitability of the RAP process for revealing and removing sub-surface damage induced by high removal rate grinding is discussed. The results on SiC samples are reported elsewhere in this conference.

  16. Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Xu, Dehui; Liu, Dingxin; Cui, Qingjie; Cai, Haifeng; Li, Qiaosong; Chen, Hailan; Kong, Michael G.

    2017-05-01

    In this paper, atmospheric pressure N2/O2 plasma jets with homogeneous shielding gas excited by nanosecond pulse are obtained to generate simplex reactive nitrogen species (RNS) and reactive oxygen species (ROS), respectively, for the purpose of studying the simplex RNS and ROS to induce the myeloma cell apoptosis with the same discharge power. The results reveal that the cell death rate by the N2 plasma jet with N2 shielding gas is about two times that of the O2 plasma jet with O2 shielding gas for the equivalent treatment time. By diagnosing the reactive species of ONOO-, H2O2, OH and \\text{O}2- in medium, our findings suggest the cell death rate after plasma jets treatment has a positive correlation with the concentration of ONOO-. Therefore, the ONOO- in medium is thought to play an important role in the process of inducing myeloma cell apoptosis.

  17. 2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures

    NASA Astrophysics Data System (ADS)

    Bourdon, Anne

    2015-09-01

    Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves

  18. Microwave Plasma Sources for Gas Processing

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2008-03-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the non-thermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguide-based surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguide-based nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzle-type MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented.

  19. Microwave Plasma Sources for Gas Processing

    SciTech Connect

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2008-03-19

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the non-thermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguide-based surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguide-based nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzle-type MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented.

  20. Reactive oxygen species controllable non-thermal helium plasmas for evaluation of plasmid DNA strand breaks

    NASA Astrophysics Data System (ADS)

    Young Kim, Jae; Lee, Dong-Hoon; Ballato, John; Cao, Weiguo; Kim, Sung-O.

    2012-11-01

    Non-thermal, oxygen-rich helium plasmas were investigated to achieve an enhanced reactive oxygen species concentration at low voltage driving conditions. A non-thermal plasma device was fabricated based on a theta-shaped tube, and its potential was investigated for use in topological alteration of plasmid DNA. The optical emission spectra of the plasma showed that the oxygen flow affected the plasma properties, even though an oxygen plasma was not produced. The plasmid DNA strand breaks became more significant with the addition of oxygen flow to the helium in a single hollow, theta-shaped tube with other experimental conditions being unchanged.

  1. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    EPA Science Inventory

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  2. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    EPA Science Inventory

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  3. Gas laser with dual plasma mixing

    DOEpatents

    Pinnaduwage, L.A.

    1999-04-06

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity. 2 figs.

  4. Gas laser with dual plasma mixing

    DOEpatents

    Pinnaduwage, Lal A.

    1999-01-01

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity.

  5. Gas-phase Reactive Oxygen and Nitrogen Species in Air Surface Dielectric Barrier Discharges by FTIR and UV spectroscopy

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Wen; Sakiyama, Yukinori; Hsu, Cheng-Che; Graves, David B.

    2012-10-01

    Atmospheric pressure plasmas are considered promising for biomedical treatment purpose due to the production of reactive oxygen species and reactive nitrogen species during the discharge. In this study, a surface micro-discharge system which operates at 10 kHz, 0.01 -- 1 W/cm^2 in ambient air is used. FTIR and UV-absorbance are used to investigate the time-average gas phase composition and time-resolved ozone concentration, respectively. The results showed that the gas composition is greatly influenced by the power consumption in plasmas. At 0.3 W/cm^2, the gas phase is dominant by NOx species and nearly no ozone is observed while at 0.05 W/cm^2 the amount of NOx is less and the ozone is dominant. Also, time-resolved ozone measurement by means of UV (254 nm) absorbance shows that ozone concentration reaches higher than 1000 ppm in the first tens of seconds and quenched within 1 minutes at high power condition. However, at low power condition no obvious quench of ozone is observed and the ozone concentration attains a steady state in response to the equilibrium of ozone generation and diffusion loss

  6. Gas Permeability of Porous Plasma-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Wittmann-Ténèze, K.; Caron, N.; Alexandre, S.

    2008-12-01

    For different applications, such as solid oxide fuel cells, there is an interest in understanding the relationship between the microstructure and the gas permeability of plasma-sprayed coatings. Nevertheless, plasma spraying processes allow to elaborate coatings with singular microstructures, depending strongly on the initial material and plasma operating conditions. And so, the evolution of permeability is not directly linked to the porosity. In this work, coatings were manufactured using different initial feedstock and spray parameters to obtain various microporous structures. Measurements of their permeation with the pressure drop method and their open porosity just as the observation of the morphology and the structure by optical microscopy were achieved. The different data show that the evolution of the gas permeability with the open porosity follows the Kozeny-Carman equation. This result correlated with the microstructural observation highlights the relationship between the permeability and the physical properties of porous plasma-sprayed layers.

  7. Hybrid simulation of neutral gas interacting with a plasma

    NASA Astrophysics Data System (ADS)

    Karney, C. F. F.; Stotler, D. P.; Braams, B. J.

    1997-08-01

    Plasma in contact with a material surface is neutralized and recycled as a gas that in turn interacts with the plasma. The neutral gas may be in a kinetic regime (long mean free path) in some regions and in a fluid regime (short mean free path) elsewhere. In order to model this situation, we imagine the neutral gas as the superposition of two populations, one fluid and one kinetic, with transfer terms coupling the two populations. We model these populations by coupling together a plasma fluid code, B2.5,(B. J. Braams, Radiative Divertor Modelling for ITER and TPX, Contrib. Plasma Phys. 36), 276-281 (1996) and a neutral Monte Carlo code, Degas 2.footnote D. P. Stotler and C. F. F. Karney, Neutral Gas Transport Modeling with Degas 2, Contrib. Plasma Phys. 34, 392-397 (1994). The coupling terms conserve mass, momentum, and energy, and are chosen so that fluid neutrals are converted to kinetic neutrals where their mean free path is long and vice versa. In this scheme, self collisions are never a dominant term in the Monte Carlo code may be treated by a simplified BGK model.

  8. SIMPLODE: An Imploding Gas Puff Plasma Model. I. Neon.

    DTIC Science & Technology

    2014-09-26

    recent experimental results obtained on GAMBLE II. In addition, the influence of the Plasma Erosion Opening Switch on the K-shell yield is...LTE radiation physics model and is ideal for use with the gas puff experiments at NRL on the GAMBLE II facility. Recently the GAMBLE II pulse power...facility has been upgraded to accomodate gas puff loads. This modification enhances GAMBLE II’s versatility by expanding the types of material loads that

  9. Kinetics in Gas Mixtures for Problem of Plasma Assisted Combustion

    DTIC Science & Technology

    2010-05-01

    exothermal chemical hydrocarbon oxidation process, and (iii) subsequent thermal ignition. The role of gas temperature increase in the experiments on...the nonequilibrium plasma, (ii) chemical reactions of hydrocarbon oxidation with participa- tion of O atoms and gas heating due to net exothermal ...autoignition) the ignition delay de- pends upon the rate of the dissociation reaction which is endothermic . Generally the induction delay time is greatly

  10. Development and application of a sampling method for the determination of reactive halogen species in volcanic gas emissions

    NASA Astrophysics Data System (ADS)

    Rüdiger, Julian; Bobrowski, Nicole; Liotta, Marcello; Hoffmann, Thorsten

    2017-04-01

    Volcanoes are a potential large source of several reactive atmospheric trace gases including sulfur and halogen containing species. Besides the importance for atmospheric chemistry, the detailed knowledge of halogen chemistry in volcanic plumes can help to get insights into subsurface processes. In this study a gas diffusion denuder sampling method, using a 1,3,5-trimethoxybenzene (1,3,5-TMB) coating for the derivatization of reactive halogen species (RHS), was characterized by dilution chamber experiments. The coating proved to be suitable to collect selectively gaseous bromine species with oxidation states (OS) of +1 or 0 (such as Br2, BrCl, BrO(H) and BrONO2), while being ignorant to HBr (OS -1). The reaction of 1,3,5-TMB with reactive bromine species gives 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB) - other halogens give corresponding products. Solvent elution of the derivatized analytes and subsequent analysis with gas chromatography mass spectrometry gives detection limits of 10 ng or less for Br2, Cl2, and I2. In 2015 the method was applied on volcanic gas plumes at Mt. Etna (Italy) giving reactive bromine mixing ratios from 0.8 ppbv to 7.0 ppbv. Total bromine mixing ratios of 4.7 ppbv to 27.5 ppbv were obtained by simultaneous alkaline trap sampling (by a Raschig-tube) followed by analysis with ion chromatography and inductively coupled plasma mass spectrometry. This leads to the first results of in-situ measured reactive bromine to total bromine ratios, spanning a range between 12±1 % and 36±2 %. Our finding is in an agreement with previous model studies, which imply values < 44 % for plume ages < 1 minute, which is consistent with the assumed plume age at the sampling sites.

  11. Effect of sheath gas in atmospheric-pressure plasma jet for potato sprouting suppression

    NASA Astrophysics Data System (ADS)

    Nishiyama, S.; Monma, M.; Sasaki, K.

    2016-09-01

    Recently, low-temperature atmospheric-pressure plasma jets (APPJs) attract much interest for medical and agricultural applications. We try to apply APPJs for the suppression of potato sprouting in the long-term storage. In this study, we investigated the effect of sheath gas in APPJ on the suppression efficiency of the potato sprouting. Our APPJ was composed of an insulated thin wire electrode, a glass tube, a grounded electrode which was wound on the glass tube, and a sheath gas nozzle which was attached at the end of the glass tube. The wire electrode was connected to a rectangular-waveform power supply at a frequency of 3 kHz and a voltage of +/- 7 kV. Helium was fed through the glass tube, while we tested dry nitrogen, humid nitrogen, and oxygen as the sheath gas. Eyes of potatoes were irradiated by APPJ for 60 seconds. The sprouting probability was evaluated at two weeks after the plasma irradiation. The sprouting probability was 28% when we employed no sheath gases, whereas an improved probability of 10% was obtained when we applied dry nitrogen as the sheath gas. Optical emission spectroscopy was carried out to diagnose the plasma jet. It was suggested that reactive species originated from nitrogen worked for the efficient suppression of the potato sprouting.

  12. Carbon dioxide as working gas for laboratory plasmas

    NASA Technical Reports Server (NTRS)

    Kist, R.

    1976-01-01

    Measurements with a RF probe, retarding potential analyzer and mass spectrometer in a laboratory plasma tank were performed using the gases CO2, N2, A and He in order to compare their properties as working gases for laboratory plasma production. The overall result of that CO2 leads to higher plasma densities at lower neutral-gas pressures as well as to a larger Maxwellian component of the electron population, while the electron temperature is lower than that when N2, A and He are used.

  13. Combined Gas-Liquid Plasma Source for Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Burakov, V. S.; Kiris, V. V.; Nevar, A. A.; Nedelko, M. I.; Tarasenko, N. V.

    2016-09-01

    A gas-liquid plasma source for the synthesis of colloidal nanoparticles by spark erosion of the electrode material was developed and allowed the particle synthesis regime to be varied over a wide range. The source parameters were analyzed in detail for the electrical discharge conditions in water. The temperature, particle concentration, and pressure in the discharge plasma were estimated based on spectroscopic analysis of the plasma. It was found that the plasma parameters did not change signifi cantly if the condenser capacitance was increased from 5 to 20 nF. Purging the electrode gap with argon reduced substantially the pressure and particle concentration. Signifi cant amounts of water decomposition products in addition to electrode elements were found in the plasma in all discharge regimes. This favored the synthesis of oxide nanoparticles.

  14. Effects of various reactive gas atmospheres on the properties of bio-oil using microwave pyrolysis

    USDA-ARS?s Scientific Manuscript database

    Fast pyrolysis of lignocellulosic biomass produces organic liquids (bio-oil), bio-char, water, and non-condensable gases. The non-condensable gas component typically contains syngas (H2, CO and CO2) as well as small hydrocarbons (CH4, C2H6, and C3H8). Tail Gas Reactive Pyrolysis (TGRP), a patent p...

  15. Gas chromatograph-mass spectrometer (GC/MS) system for quantitative analysis of reactive chemical compounds

    DOEpatents

    Grindstaff, Quirinus G.

    1992-01-01

    Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.

  16. Reactive species in atmospheric pressure helium-oxygen plasmas with humid air impurities

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2012-10-01

    In most applications helium-based plasma jets operate in an open air environment. The presence of humid-air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in rf driven atmospheric-pressure helium-oxygen mixture plasmas (helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0 to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively- and negatively-charged ions (and its clusters). Effects of the air impurity containing water humidity on electronegativity and chemical activity are clarified with particular emphasis on reactive oxygen species.

  17. Complementary optical diagnostics of noble gas plasmas

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Stewart, R. S.

    2001-10-01

    In this talk we will discuss our theoretical modeling and application of an array of four complementary optical diagnostic techniques for low-temperature plasmas. These are cw laser collisionally induced fluorescence (LCIF), cw optogalvanic effect (OGE), optical emission spectroscopy (OES) and optical absorption spectroscopy (OAS). We will briefly present an overview of our investigation of neon positive column plasmas for reduced axial electrical fields ranging from 3x10-17 Vcm^2 to 2x10-16 Vcm^2 (3-20 Td), detailing our determination of five sets of important collisional rate coefficients involving the fifteen lowest levels, the ^1S0 ground state and the 1s and 2p excited states (in Paschen notation), hence information on several energy regions of the electron distribution function (EDF). The discussion will be extended to show the new results obtained from analysis of the argon positive column over similar reduced fields. Future work includes application of our multi-diagnostic technique to move complex systems, including the addition of molecules for EDF determination.

  18. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  19. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  20. Investigation of opening switch mechanisms based on chemically reactive plasmas

    NASA Astrophysics Data System (ADS)

    Lapatovich, W. P.; Piejak, R. B.; Proud, J. M.

    1985-11-01

    An investigation of discharge-induced chemical reactions resulting in high-density product vapors containing strongly attaching gases has been conducted to evaluate the feasibility and potential of such reactions in rapid opening plasma switches. This new concept of employing such reactions to limit and/or interrupt large currents on a microsecond time scale was studied in two element (electrodeless and electroded) devices and in three element (electroded) devices. Bimolecular and unimolecular reactions were considered. The plasma reaction between AlCl sub 3 and SiO sub 2 was studied. The electrical properties of one of the reaction products (SiCl sub 4) is reported.

  1. Composition control of InN/WO3 nanocomposite by in-situ reactive plasma annealing

    NASA Astrophysics Data System (ADS)

    Saroni, Azianty; Goh, Boon Tong; Alizadeh, Mahdi; Rahman, Saadah Abdul

    2016-05-01

    A composition control and formation of InN/WO3 nanocomposite on the as-grown In2O3 by in-situ reactive plasma annealing was investigated. The reactive plasma annealing changes the facets crystalline In2O3 structure to nanograin structure of InN/WO3 nanocomposite with the grain size of 100-200 nm. X-ray photoelectron spectroscopy (XPS) reveals the formation of In2O3, InN and WO3 nanostructures in the nanocomposite. In-situ reactive plasma annealing enhances the removing of In2O3 and facilitates the formation of InN/WO3 nanocomposite. Furthermore, the reduction of oxygen in In2O3 leads to a decreasing in optical energy gap from 2.91 to 2.63 eV.

  2. A possible explanation of the anomalous emissive probe behavior in a reactive RF plasma

    NASA Astrophysics Data System (ADS)

    Kar, R.; Barve, S. A.; Chopade, S. S.; Das, A. K.; Patil, D. S.

    2012-10-01

    Emissive probe diagnostics in saturated floating potential mode was carried out in RF plasmas of argon (Ar)-methane (CH4) and Ar-CH4-hexa methyl disiloxane (HMDSO). These plasmas are used for the deposition of diamond-like carbon (DLC) and SiOx-containing DLC films, respectively. While performing the experiments it was found that the probe characteristics had two saturation regions instead of one. The same measurements when repeated in Ar and Ar-N2 plasmas showed a single saturation as expected. The first experiments when repeated again showed the same anomaly. The experimental findings question the validity of emissive probe diagnostics in reactive plasmas. A possible model of dust formation inside the reactive plasma is predicted and the first saturation is linked to dust. The second saturation is credited as the actual plasma potential. The concept of dust was invoked after being sure that no effects of RF and reference electrode contamination are responsible for this behavior. The results indicate that we should remain cautious when using emissive probes in reactive plasmas as they may occasionally lead to erroneous results.

  3. Mathematical model of gas plasma applied to chronic wounds

    SciTech Connect

    Wang, J. G.; Liu, X. Y.; Liu, D. W.; Lu, X. P.; Zhang, Y. T.

    2013-11-15

    Chronic wounds are a major burden for worldwide health care systems, and patients suffer pain and discomfort from this type of wound. Recently gas plasmas have been shown to safely speed chronic wounds healing. In this paper, we develop a deterministic mathematical model formulated by eight-species reaction-diffusion equations, and use it to analyze the plasma treatment process. The model follows spatial and temporal concentration within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts, extracellular matrix material, nitric oxide (NO), and inflammatory cell. Two effects of plasma, increasing NO concentration and reducing bacteria load, are considered in this model. The plasma treatment decreases the complete healing time from 25 days (normal wound healing) to 17 days, and the contributions of increasing NO concentration and reducing bacteria load are about 1/4 and 3/4, respectively. Increasing plasma treatment frequency from twice to three times per day accelerates healing process. Finally, the response of chronic wounds of different etiologies to treatment with gas plasmas is analyzed.

  4. Gas phase plasma impact on phenolic compounds in pomegranate juice.

    PubMed

    Herceg, Zoran; Kovačević, Danijela Bursać; Kljusurić, Jasenka Gajdoš; Jambrak, Anet Režek; Zorić, Zoran; Dragović-Uzelac, Verica

    2016-01-01

    The aim of the study was to evaluate the effect of gas phase plasma on phenolic compounds in pomegranate juice. The potential of near infrared reflectance spectroscopy combined with partial least squares for monitoring the stability of phenolic compounds during plasma treatment was explored, too. Experiments are designed to investigate the effect of plasma operating conditions (treatment time 3, 5, 7 min; sample volume 3, 4, 5 cm(3); gas flow 0.75, 1, 1.25 dm(3) min(-1)) on phenolic compounds and compared to pasteurized and untreated pomegranate juice. Pasteurization and plasma treatment resulted in total phenolic content increasing by 29.55% and 33.03%, respectively. Principal component analysis and sensitivity analysis outputted the optimal treatment design with plasma that could match the pasteurized sample concerning the phenolic stability (5 min/4 cm(3)/0.75 dm(3) min(-1)). Obtained results demonstrate the potential of near infrared reflectance spectroscopy that can be successfully used to evaluate the quality of pomegranate juice upon plasma treatment considering the phenolic compounds.

  5. Mathematical model of gas plasma applied to chronic wounds

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Liu, X. Y.; Liu, D. W.; Lu, X. P.; Zhang, Y. T.

    2013-11-01

    Chronic wounds are a major burden for worldwide health care systems, and patients suffer pain and discomfort from this type of wound. Recently gas plasmas have been shown to safely speed chronic wounds healing. In this paper, we develop a deterministic mathematical model formulated by eight-species reaction-diffusion equations, and use it to analyze the plasma treatment process. The model follows spatial and temporal concentration within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts, extracellular matrix material, nitric oxide (NO), and inflammatory cell. Two effects of plasma, increasing NO concentration and reducing bacteria load, are considered in this model. The plasma treatment decreases the complete healing time from 25 days (normal wound healing) to 17 days, and the contributions of increasing NO concentration and reducing bacteria load are about 1/4 and 3/4, respectively. Increasing plasma treatment frequency from twice to three times per day accelerates healing process. Finally, the response of chronic wounds of different etiologies to treatment with gas plasmas is analyzed.

  6. Laser plasma emission of small particles in different gas atmospheres

    NASA Astrophysics Data System (ADS)

    Andreev, Alexander A.; Ueda, Toshitsugu; Wakamatsu, Muneaki

    2002-06-01

    The problem of laser pulse interaction with small solid particles in a gas atmosphere when detecting its parameters is a serous one in industrial and environmental applications. Previous investigations have shown the possibility of using the laser induced breakdown method. This method is very sensitive, but for a particle size of less than 0.1 micrometers the damage threshold of the solid target is very close to the breakdown point of pure gas. At breakdown, a small volume of dense hot plasma emits radiation by which the size and material of particles can be detected. We used an analytical model, simulation code and experiments to analyze this radiation and found that the emitted intensity varied with laser, gas and particle parameters. The increased dependence of SSP plasma emission rate on initial particle volume permits this method to be used for measuring small particle size by using emitted line spectrum at the late time stage.

  7. Positron transport: The plasma-gas interface

    SciTech Connect

    Marler, J. P.; Petrovic, Z. Lj.; Bankovic, A.; Dujko, S.; Suvakov, M.; Malovic, G.; Buckman, S. J.

    2009-05-15

    Motivated by an increasing number of applications, new techniques in the analysis of electron transport have been developed over the past 30 years or so, but similar methods had yet to be applied to positrons. Recently, an in-depth look at positron transport in pure argon gas has been performed using a recently established comprehensive set of cross sections and well-established Monte Carlo simulations. The key novelty as compared to electron transport is the effect of positronium formation which changes the number of particles and has a strong energy dependence. This coupled with spatial separation by energy of the positron swarm leads to counterintuitive behavior of some of the transport coefficients. Finally new results in how the presence of an applied magnetic field affects the transport coefficients are presented.

  8. In situ simple method for measuring size and density of nanoparticles in reactive plasmas

    SciTech Connect

    Nunomura, Shota; Kita, Makoto; Koga, Kazunori; Shiratani, Masaharu; Watanabe, Yukio

    2006-04-15

    A laser-light-scattering (LLS) method for measuring the size and density of nanoparticles generated in reactive plasmas has been developed. The size and density of the nanoparticles are determined from their thermal coagulation that takes place after turning off the discharge. The measurable size and density range of the LLS method is n{sub p} x 10{sup 13} (m{sup -3/2})xd{sub p}{sup -5/2}L{sup -2}n{sub g}{sup -1}, where n{sub p}, d{sub p}, L, and n{sub g} are the density, size, and diffusion length of the nanoparticles, and the density of a background gas, respectively. The method has been demonstrated by measurement of the size and density of nanoparticles formed by the radio-frequency discharge of dimethyldimethoxysilane Si(CH{sub 3}){sub 2}(OCH{sub 3}){sub 2} diluted with Ar. Using a simple optical setup for the LLS measurement, nanoparticles are detected down to {approx_equal}1 nm in size when they are generated at a density of {approx_equal}10{sup 12} cm{sup -3}. The developed method is widely applicable to other systems in which thermal coagulation takes place.

  9. Reactive spark plasma sintering (SPS) of nitride reinforced titanium alloy composites

    SciTech Connect

    Borkar, Tushar; Nag, Soumya; Ren, Yang; Tiley, Jaimie; Banerjee, Rajarshi

    2014-12-25

    Coupled in situ alloying and nitridation of titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and vanadium elemental powders, leading to a new class of nitride reinforced titanium alloy composites. The resulting microstructure includes precipitates of the d-TiN phase with the NaCl structure, equiaxed (or globular) precipitates of a nitrogen enriched hcp a(Ti,N) phase with a c/a ratio more than what is expected for pure hcp Ti, and fine scale plate-shaped precipitates of hcp a-Ti, distributed within a bcc b matrix. During SPS processing, the d-TiN phase appears to form at a temperature of 1400 C, while only hcp a(Ti,N) and a-Ti phases form at lower processing temperatures. Consequently, the highest microhardness is exhibited by the composite processed at 1400 C while those processed at 1300 C or below exhibit lower values. Processing at temperatures below 1300 C, resulted in an incomplete alloying of the blend of titanium and vanadium powders. These d-TiN precipitates act as heterogeneous nucleation sites for the a(Ti,N) precipitates that appear to engulf and exhibit an orientation relationship with the nitride phase at the center. Furthermore, fine scale a-Ti plates are precipitated within the nitride precipitates, presumably resulting from the retrograde solubility of nitrogen in titanium.

  10. Dynamics of inelastic and reactive gas-surface collisions

    SciTech Connect

    Smoliar, Laura Ann

    1995-04-01

    The dynamics of inelastic and reactive collisions in atomic beam-surface scattering are presented. The inelastic scattering of hyperthermal rare gaseous atoms from three alkali halide surfaces (LiF, NaCl, GI)was studied to understand mechanical energy transfer in unreactive systems. The dynamics of the chemical reaction in the scattering of H(D) atoms from the surfaces of LIF(001) and the basal plane of graphite were also studied.

  11. A study of reactive plasma deposited thin films

    NASA Technical Reports Server (NTRS)

    Gilchrist, J.; Williams, E.

    1986-01-01

    A state-of-the-art research laboratory was established to grow and characterize amorphous thin films that are useful in semi-conductor devices. Two film systems, nitride films and silicon dioxide films were studied. Over seventy deposition runs for nitride films were made. The films were deposited on silicon substrate using plasma enhanced chemical vapor deposition. It was found that the uniformity of the films were affected by the location of the film on the platen.

  12. Fast Gas Replacement in Plasma Process Chamber by Improving Gas Flow Pattern

    NASA Astrophysics Data System (ADS)

    Morishita, Sadaharu; Goto, Tetsuya; Akutsu, Isao; Ohyama, Kenji; Ito, Takashi; Ohmi, Tadahiro

    2009-01-01

    The precise and high-speed alteration of various gas species is important for realizing precise and well-controlled multiprocesses in a single plasma process chamber with high throughput. The gas replacement times in the replacement of N2 by Ar and that of H2 by Ar are measured in a microwave excited high-density and low electron-temperature plasma process chamber at various working pressures and gas flow rates, incorporating a new gas flow control system, which can avoid overshoot of the gas pressure in the chamber immediately after the valve operation, and a gradational lead screw booster pump, which can maintain excellent pumping capability for various gas species including lightweight gases such as H2 in a wide pressure region from 10-1 to 104 Pa. Furthermore, to control the gas flow pattern in the chamber, upper ceramic shower plates, which have thousands of very fine gas injection holes (numbers of 1200 and 2400) formed with optimized allocation on the plates, are adopted, while the conventional gas supply method in the microwave-excited plasma chamber uses many holes only opened at the sidewall of the chamber (gas ring). It has been confirmed that, in the replacement of N2 by Ar, a short replacement time of approximately 1 s in the cases of 133 and 13.3 Pa and approximately 3 s in the case of 4 Pa can be achieved when the upper shower plate has 2400 holes, while a replacement time longer than approximately 10 s is required for all pressure cases where the gas ring is used. In addition, thanks to the excellent pumping capability of the gradational lead screw booster pump for lightweight gases, it has also been confirmed that the replacement time of H2 by Ar is almost the same as that of N2 by Ar.

  13. Gas phase diffusion coefficients of reactive trace gases in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tang, Mingjin; Shiraiwa, Manabu; Cox, Tony; Pöschl, Ulrich; Kalberer, Markus

    2015-04-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions. However, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. We have compiled and evaluated, for the first time, the diffusivities (pressure independent diffusion coefficients) of atmospheric inorganic (Tang et al., 2014) and organic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed.

  14. Wound healing modeling: investigating ambient gas plasma treatment efficacy

    NASA Astrophysics Data System (ADS)

    Orazov, Marat; Sakiyama, Yukinori; Graves, David B.

    2012-11-01

    Chronic wounds are thought to be caused, in part, by the presence and persistence of aerobic microbes that deplete the local oxygen concentration and prevent or slow the rate of oxygen-dependent healing. Atmospheric-pressure gas plasmas have been shown to be strong bactericidal agents and there is evidence that plasma treatment can safely kill bacteria in wounds and speed wound healing. In this study, we adapted a six-species reaction-diffusion model of epithelial wound healing and used it to predict the efficacy of various plasma treatment protocols. We assume that the only effect of plasma application to the wound is to reduce the bacterial load and that this in turn reduces the bacterial oxygen consumption in the wound. The model follows the spatial and temporal concentration or density profiles within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts and extracellular matrix material. We highlight the importance of the effects of plasma application on the rate of bacterial regrowth in the wound. Even a relatively large initial reduction in the bacterial wound population may not be sufficient for improved healing if bacterial regrowth is not limited. Although it is clear that current efforts to model wound healing in general and the effects of plasma in particular are in their early stage, the present results suggest several important directions for coupling plasma models with models of tissue biochemical responses.

  15. Plasma remediation of gas streams contaminated by trichloroethylene

    SciTech Connect

    Evans, D.; Kushner, M.K.; Rosocha, L.A.

    1992-12-01

    There is increasing interest in using plasmas to cleanse gas streams of toxic gases and for toxic waste remediation. Silent discharges (or dielectric barrier discharges) are attractive in this regard because they operate stably at high power deposition and atmospheric pressure. The authors have experimentally and computationally investigated the removal of trichloroethylene (C{sub 2}HCl{sub 3}) or TCE from Ar/O{sub 2}/H{sub 2}O gas streams using a silent discharge. Experimental results will be discussed where TCE is removed from the gas stream (1000 ppm reduced to < 1 ppm) with moderate energy deposition (10s mJ-cm{sup {minus}3}). The desired reaction products are CO{sub 2} and UC1. The plasma removal of TCE, however, directly produces undesirable products such as CHOCl and COCl{sub 2} (phosgene). These products can also be oxidized and removed from the gas stream by further increasing power deposition beyond that required for removal of TCE. Reaction mechanisms will be discussed with results from a plasma chemistry computer model.

  16. Wavelength scaling of terahertz radiation in plasma gas targets

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; Huang, Suxia; Zhang, Cunlin; Zhang, Liangliang

    2016-11-01

    In our experiments, terahertz radiation via two-color generated laser plasma gas targets is studied using nitrogen and the noble gases (helium, neon, argon, krypton, and xenon) as the generation media. Carried out at the infrared beam of the advanced laser light source, we studied the effects of different pump wavelengths (between 1200 nm and 1600 nm) on THz generation. Terahertz pulse energy is measured as functions of input pulse energy, gas species, gas pressure. The experimental results show that the terahertz pulse energy approach a maximum value of 0.0578 μJ per pulse in xenon gas when the input 1600 nm pulse energy is 0.4 mJ per pulse.

  17. Gas flow driven by thermal creep in dusty plasma.

    PubMed

    Flanagan, T M; Goree, J

    2009-10-01

    Thermal creep flow (TCF) is a flow of gas driven by a temperature gradient along a solid boundary. Here, TCF is demonstrated experimentally in a dusty plasma. Stripes on a glass box are heated by laser beam absorption, leading to both TCF and a thermophoretic force. The design of the experiment allows isolating the effect of TCF. A stirring motion of the dust particle suspension is observed. By eliminating all other explanations for this motion, we conclude that TCF at the boundary couples by drag to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result provides an experimental verification, for the field of fluid mechanics, that TCF in the slip-flow regime causes steady-state gas flow in a confined volume.

  18. Optimisation of amorphous zinc tin oxide thin film transistors by remote-plasma reactive sputtering

    NASA Astrophysics Data System (ADS)

    Niang, K. M.; Cho, J.; Heffernan, S.; Milne, W. I.; Flewitt, A. J.

    2016-08-01

    The influence of the stoichiometry of amorphous zinc tin oxide (a-ZTO) thin films used as the semiconducting channel in thin film transistors (TFTs) is investigated. A-ZTO has been deposited using remote-plasma reactive sputtering from zinc:tin metal alloy targets with 10%, 33%, and 50% Sn at. %. Optimisations of thin films are performed by varying the oxygen flow, which is used as the reactive gas. The structural, optical, and electrical properties are investigated for the optimised films, which, after a post-deposition annealing at 500 °C in air, are also incorporated as the channel layer in TFTs. The optical band gap of a-ZTO films slightly increases from 3.5 to 3.8 eV with increasing tin content, with an average transmission ˜90% in the visible range. The surface roughness and crystallographic properties of the films are very similar before and after annealing. An a-ZTO TFT produced from the 10% Sn target shows a threshold voltage of 8 V, a switching ratio of 108, a sub-threshold slope of 0.55 V dec-1, and a field effect mobility of 15 cm2 V-1 s-1, which is a sharp increase from 0.8 cm2 V-1 s-1 obtained in a reference ZnO TFT. For TFTs produced from the 33% Sn target, the mobility is further increased to 21 cm2 V-1 s-1, but the sub-threshold slope is slightly deteriorated to 0.65 V dec-1. For TFTs produced from the 50% Sn target, the devices can no longer be switched off (i.e., there is no channel depletion). The effect of tin content on the TFT electrical performance is explained in the light of preferential sputtering encountered in reactive sputtering, which resulted in films sputtered from 10% and 33% Sn to be stoichiometrically close to the common Zn2SnO4 and ZnSnO3 phases.

  19. Closed cycle MHD generator with nonuniform gas-plasma flow driving recombinated plasma clots

    SciTech Connect

    Slavin, V.S.; Danilov, V.V.; Sokolov, V.S.

    1996-12-31

    A new concept of a closed cycle MHD generator without alkali seed has been suggested. The essence of it is the phenomenon of frozen conductivity for recombined plasma which appears for noble gas at T{sub e} > 4,000 K. At the inlet of the MHD channel in supersonic flow of noble gas (He or Ar) the plasma clots with electron density about 10{sup 15} cm{sup {minus}3} are formed by pulsed intense electron beam with energy about 300 keV. Gas flow drives these clots in a cross magnetic field along the MHD channel which has electrodes connected with the load by Faraday scheme. The gas flow pushes plasma layers and produces electric power at the expense of enthalpy extraction. The numerical simulation has shown that a supersonic gas flow, containing about 4 plasma layers in the MHD channel simultaneously, is braked without shock waves creation. This type of the MHD generator can provide more than 30% enthalpy extraction ratio and about 80% isentropic efficiency. The advantages of the new concept are the following: (a) possibility of working at higher pressure and lower temperature, (b) operation with alkali seed.

  20. Modeling of plasma etch profiles with ions and reactive neutrals

    NASA Astrophysics Data System (ADS)

    Wang, Chungdar Daniel

    1999-11-01

    The simulation of plasma etch profiles of semiconductor trenches in the wafer processing of integrated circuits is developed in a mixed analytic/numerical approach. The main contributions of this study are the derivation and use of explicit analytical expressions for the etch rates and the computation of the etch profiles by standard computer packages. The computation of the etch profiles is efficient, is used as a benchmark for more complex numerical computer codes and illuminates the parameter dependence. The etch rate due to the ions is assumed proportional to the ion energy flux as suggested by experimental evidence. The shadowing due to the mask is included in the simplified derivation of the ion energy flux in cylindrical velocity coordinates for a two-temperature ion drifting Maxwellian. Neutrals with varying sticking coefficients are modeled by interpolation between the etch rate for shadowed neutrals with unity sticking coefficients and isotropic neutrals. The etch profiles are determined by the method of characteristics from the nonlinear evolution equation for the etch profile surface. Standard Matlab packages for the graphics and integration of the ordinary differential equations for the characteristics make the computation of etch profiles more efficient and more transparent than many complicated computer codes. The SEM images for trenches etched in silicon in a SF6 plasma in a RIE reactor are modeled by the simulation method for etch profiles. The etch rate is a linear combination of the etch rates of ions and neutrals in the ion flux-limited regime. Monte Carlo simulation of ion distribution functions in a chlorine plasma are fit by a simulated annealing procedure to a set of two-temperature drifting Maxwellians. The Monte Carlo simulations are noisy due to insufficient numbers of simulation particles. Smoothing of the distribution functions produces the expected bimodal ion distribution functions in the ICP reactor. The resultant etch profiles for

  1. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma.

    PubMed

    Lapenna, D; Ciofani, G; Pierdomenico, S D; Giamberardino, M A; Cuccurullo, F

    2001-08-01

    The thiobarbituric acid (TBA) reactivity of human plasma was studied to evaluate its adequacy in quantifying lipid peroxidation as an index of systemic oxidative stress. Two spectrophotometric TBA tests based on the use of either phosphoric acid (pH 2.0, method A) or trichloroacetic plus hydrochloric acid (pH 0.9, method B) were employed with and without sodium sulfate (SS) to inhibit sialic acid (SA) reactivity with TBA. To correct for background absorption, the absorbance values at 572 nm were subtracted from those at 532 nm, which represent the absorption maximum of the TBA:MDA adduct. Method B gave values of TBA-reactive substances (TBARS) 2-fold higher than those detected with method A. SS lowered TBARS by about 50% with both methods, indicating a significant involvement of SA in plasma TBA reactivity. Standard SA, at a physiologically relevant concentration of 1.5 mM, reacted with TBA, creating interference problems, which were substantially eliminated by SS plus correction for background absorbance. When method B was carried out in the lipid and protein fraction of plasma, SS inhibited by 65% TBARS formation only in the latter. Protein TBARS may be largely ascribed to SA-containing glycoproteins and, to a minor extent, protein-bound MDA. Indeed, EDTA did not affect protein TBARS assessed in the presence of SS. TBA reactivity of whole plasma and of its lipid fraction was instead inhibited by EDTA, suggesting that lipoperoxides (and possibly monofunctional lipoperoxidation aldehydes) are involved as MDA precursors in the TBA test. Pretreatment of plasma with KI, a specific reductant of hydroperoxides, decreased TBARS by about 27%. Moreover, aspirin administration to humans to inhibit prostaglandin endoperoxide generation reduced plasma TBARS by 40%. In conclusion, reaction conditions affect the relationship between TBA reactivity and lipid peroxidation in human plasma. After correction for the interfering effects of SA in the TBA test, 40% of plasma TBARS

  2. Production of intracellular reactive oxygen species and change of cell viability induced by atmospheric pressure plasma in normal and cancer cells

    NASA Astrophysics Data System (ADS)

    Ja Kim, Sun; Min Joh, Hea; Chung, T. H.

    2013-10-01

    The effects of atmospheric pressure plasma jet on cancer cells (human lung carcinoma cells) and normal cells (embryonic kidney cells and bronchial epithelial cells) were investigated. Using a detection dye, the production of intracellular reactive oxygen species (ROS) was found to be increased in plasma-treated cells compared to non-treated and gas flow-treated cells. A significant overproduction of ROS and a reduction in cell viability were induced by plasma exposure on cancer cells. Normal cells were observed to be less affected by the plasma-mediated ROS, and cell viability was less changed. The selective effect on cancer and normal cells provides a promising prospect of cold plasma as a cancer therapy.

  3. Plasma spray gun having gas vortex producing nozzle

    SciTech Connect

    Smyth, R.T.; Zatorski, R.A.

    1985-03-19

    A plasma flame spray gun suitable for being constructed physically smaller than comparable power prior art plasma flame spray guns. The gun includes a nozzle having a tapering portion on the inlet side thereof. A cathode with a flat tip is positioned to at least partially extend into the tapering portion of the nozzle. A gas distribution ring is located around the cathode for creating a vortex around the cathode tip. This causes the arc formed between the tip and the nozzle to have a root which spins around the perimeter of the nozzle tip resulting in less wear and, therefore, extended part life.

  4. Simulation studies of plasma waves in the electron foreshock - The transition from reactive to kinetic instability

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to analyze the electron beam-plasma instability. It is shown that there is a transition from the reactive state of the electron beam-plasma instability to the kinetic instability of Langmuir waves. Quantitative tests, which include an evaluation of the dispersion relation for the evolving non-Maxwellian beam distribution, show that a quasi-linear theory describes the onset of this transition and applies again fully to the kinetic stage. This stage is practically identical to the late stage seen in simulations of plasma waves in the electron foreshock described by Dum (1990).

  5. Synthesis of Nano-ZrO2 by Reactive Plasma processing

    NASA Astrophysics Data System (ADS)

    Jayakumar, S.; Thiyagarajan, T. K.; Ananthapadmanabhan, P. V.; Sreekumar, K. P.; Perumal, K.; Mishra, S. C.; Su, L. T.; Tok, A. I. Y.

    2011-07-01

    A novel technique, reactive plasma processing was utilized to produce nano-crystalline Zirconia from zirconium hydride. XRD result showed mixture of monoclinic and tetragonal phases. TEM analysis reveals 95% of the particles were in the range 18-23 nm.

  6. Reactive Gas transport in soil: Kinetics versus Local Equilibrium Approach

    NASA Astrophysics Data System (ADS)

    Geistlinger, Helmut; Jia, Ruijan

    2010-05-01

    Gas transport through the unsaturated soil zone was studied using an analytical solution of the gas transport model that is mathematically equivalent to the Two-Region model. The gas transport model includes diffusive and convective gas fluxes, interphase mass transfer between the gas and water phase, and biodegradation. The influence of non-equilibrium phenomena, spatially variable initial conditions, and transient boundary conditions are studied. The objective of this paper is to compare the kinetic approach for interphase mass transfer with the standard local equilibrium approach and to find conditions and time-scales under which the local equilibrium approach is justified. The time-scale of investigation was limited to the day-scale, because this is the relevant scale for understanding gas emission from the soil zone with transient water saturation. For the first time a generalized mass transfer coefficient is proposed that justifies the often used steady-state Thin-Film mass transfer coefficient for small and medium water-saturated aggregates of about 10 mm. The main conclusion from this study is that non-equilibrium mass transfer depends strongly on the temporal and small-scale spatial distribution of water within the unsaturated soil zone. For regions with low water saturation and small water-saturated aggregates (radius about 1 mm) the local equilibrium approach can be used as a first approximation for diffusive gas transport. For higher water saturation and medium radii of water-saturated aggregates (radius about 10 mm) and for convective gas transport, the non-equilibrium effect becomes more and more important if the hydraulic residence time and the Damköhler number decrease. Relative errors can range up to 100% and more. While for medium radii the local equilibrium approach describes the main features both of the spatial concentration profile and the time-dependence of the emission rate, it fails completely for larger aggregates (radius about 100 mm

  7. Effect of plasma jet diameter on the efficiency of reactive oxygen and nitrogen species generation in water

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Kakuta, Maito; Furuta, Hiroshi; Akatsuka, Hiroshi; Hatta, Akimitsu

    2016-06-01

    The plasma jet generation of reactive oxygen and nitrogen species (RONS) in solution is important in biology, medicine, and disinfection. Studies using a wide variety of plasma jet devices have been carried out for this purpose, making it difficult to compare the performance between devices. In this study, we compared the efficiency of RONS generation in deionized (DI) water between 3.7-mm- and 800-µm-sized helium (He) plasma jets (hereafter mm-jet and µm-jet, respectively) at different treatment distances and times. The efficiency of RONS generation was determined by considering the total amount of RONS generated in DI water with respect to the input energy and gas consumption. We found that the mm-jet generated 20% more RONS in the DI water than the µm-jet at the optimized distance. However, when the input power and He gas consumption were taken into account, we discovered that the µm-jet was 5 times more efficient in generating RONS in the DI water. Under the parameters investigated in this study, the concentration of RONS continued to increase as a function of treatment time (up to 30 min). However treatment distance had a marked effect on the efficiency of RONS generation: treatment distances of 25 and 30 mm were optimal for the mm-jet and µm-jet, respectively. Our method of comparing the efficiency of RONS generation in solution between plasma jets could be used as a reference protocol for the development of efficient plasma jet sources for use in medicine, biology, and agriculture.

  8. Plasma quench technology for natural gas conversion applications

    SciTech Connect

    Detering, B.A.; Kong, P.C.; Thomas, C.P.

    1995-07-01

    This paper describes the experimental demonstration of a process for direct conversion of methane to acetylene in a thermal plasma. The process utilizes a thermal plasma to dissociate methane and form an equilibrium mixture of acetylene followed by a supersonic expansion of the hot gas to preserve the produced acetylene in high yield. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogen which persists throughout the expansion process. The presence of atomic hydrogen shifts the equilibrium composition by inhibiting complete pyrolysis of methane and acetylene to solid carbon. This process has the potential to reduce the cost of producing acetylene from natural gas. Acetylene and hydrogen produced by this process could be used directly as industrial gases, building blocks for synthesis of industrial chemicals, or oligomerized to long chain liquid hydrocarbons for use as fuels. This process produces hydrogen and ultrafine carbon black in addition to acetylene.

  9. Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

    PubMed Central

    Sensenig, Rachel; Kalghatgi, Sameer; Cerchar, Ekaterina; Fridman, Gregory; Shereshevsky, Alexey; Torabi, Behzad; Arjunan, Krishna Priya; Podolsky, Erica; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane; Brooks, Ari D.

    2012-01-01

    Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p<0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p<0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-L-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies. PMID:21046465

  10. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    PubMed Central

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  11. Is gas-discharge plasma a new solution to the old problem of biofilm inactivation?

    PubMed

    Joaquin, Jonathan C; Kwan, Calvin; Abramzon, Nina; Vandervoort, Kurt; Brelles-Mariño, Graciela

    2009-03-01

    Conventional disinfection and sterilization methods are often ineffective with biofilms, which are ubiquitous, hard-to-destroy microbial communities embedded in a matrix mostly composed of exopolysaccharides. The use of gas-discharge plasmas represents an alternative method, since plasmas contain a mixture of charged particles, chemically reactive species and UV radiation, whose decontamination potential for free-living, planktonic micro-organisms is well established. In this study, biofilms were produced using Chromobacterium violaceum, a Gram-negative bacterium present in soil and water and used in this study as a model organism. Biofilms were subjected to an atmospheric pressure plasma jet for different exposure times. Our results show that 99.6 % of culturable cells are inactivated after a 5 min treatment. The survivor curve shows double-slope kinetics with a rapid initial decline in c.f.u. ml(-1) followed by a much slower decline with D values that are longer than those for the inactivation of planktonic organisms, suggesting a more complex inactivation mechanism for biofilms. DNA and ATP determinations together with atomic force microscopy and fluorescence microscopy show that non-culturable cells are still alive after short plasma exposure times. These results indicate the potential of plasma for biofilm inactivation and suggest that cells go through a sequential set of physiological and morphological changes before inactivation.

  12. Reactive plasma upgrade of squalane - a heavy oil simulant

    SciTech Connect

    Kong, P.C.; Watkins, A.D.; Detering, B.A.; Thomas, C.P.

    1995-10-01

    U.S. light crude oil production has steadily declined over the last two decades. However, huge known heavy oil deposits in the North American continent remain largely untapped. In the past 10 years, the API gravity of crude oils has been decreasing by about 0.17% per year, and the sulfur content has been increasing by about 0.027% per year. As the API gravity of crude oil decreases, there will be an urgent need for economically viable new technologies to upgrade the heavy oil to a high API gravity feed stock for the refineries. The Idaho National Engineering Laboratory is investigating an innovative plasma process to upgrade heavy oil and refinery residuum. This paper will present some of the results and the implications of this technology for heavy oil upgrade and conversion.

  13. Method for atmospheric pressure reactive atom plasma processing for surface modification

    DOEpatents

    Carr, Jeffrey W.

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  14. Laser-plasma interactions in large gas-filled hohlraums

    SciTech Connect

    Turner, R.E.; Powers, L.V.; Berger, R.L.

    1996-06-01

    Indirect-drive targets planned for the National Ignition Facility (NIF) laser consist of spherical fuel capsules enclosed in cylindrical Au hohlraums. Laser beams, arranged in cylindrical rings, heat the inside of the Au wall to produce x rays that in turn heat and implode the capsule to produce fusion conditions in the fuel. Detailed calculations show that adequate implosion symmetry can be maintained by filling the hohlraum interior with low-density, low-Z gases. The plasma produced from the heated gas provides sufficient pressure to keep the radiating Au surface from expanding excessively. As the laser heats this gas, the gas becomes a relatively uniform plasma with small gradients in velocity and density. Such long-scale-length plasmas can be ideal mediums for stimulated Brillouin Scattering (SBS). SBS can reflect a large fraction of the incident laser light before it is absorbed by the hohlraum; therefore, it is undesirable in an inertial confinement fusion target. To examine the importance of SBS in NIF targets, the authors used Nova to measure SBS from hohlraums with plasma conditions similar to those predicted for high-gain NIF targets. The plasmas differ from the more familiar exploding foil or solid targets as follows: they are hot (3 keV); they have high electron densities (n{sub e}=10{sup 21}cm{sup {minus}3}); and they are nearly stationary, confined within an Au cylinder, and uniform over large distances (>2 mm). These hohlraums have <3% peak SBS backscatter for an interaction beam with intensities of 1-4 x 10{sup 15} W/cm{sup 2}, a laser wavelength of 0.351{micro}m, f/4 or f/8 focusing optics, and a variety of beam smoothing implementations. Based on these conditions the authors conclude that SBS does not appear to be a problem for NIF targets.

  15. In Situ Synthesis of FeAl Dense Coatings by Very Low Pressure Reactive Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Zhang, Baicheng; Bolot, Rodolphe; Liao, Hanlin; Coddet, Christian

    2013-03-01

    With the purpose of elaborating high-quality FeAl coatings, a so-called very low pressure reactive plasma spray technique that combines very low pressure plasma spray and self-propagation high-temperature synthesis processes was used in the present study. A dense and homogeneous FeAl coating was thus successfully in situ synthesized by reactive plasma spraying of an Al/Fe2O3 composite powder under 1 mbar. The phase composition and microstructural features of the coating were characterized by XRD and SEM. Results indicated that the B2 ordered FeAl phase was synthesized, and the coating featured a dense and defect-free microstructure. The fracture mechanism of the coating remains mainly a brittle failure but the appearance of some dimples in local zones suggested some unexpected toughness.

  16. Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate

    NASA Astrophysics Data System (ADS)

    Girault, M.; Le Garrec, J.-L.; Mitchell, J. B. A.; Jouvard, J.-M.; Carvou, E.; Menneveux, J.; Yu, J.; Ouf, F.-X.; Carles, S.; Potin, V.; Pillon, G.; Bourgeois, S.; Perez, J.; Marco de Lucas, M. C.; Lavisse, L.

    2016-06-01

    The influence of a reactive atmosphere on the formation of nanoparticles (NPs) in the plasma plume generated by nanosecond pulsed laser irradiation of metal targets (Ti, Al, Ag) was probed in situ using Small Angle X-ray Scattering (SAXS). Air and different O2-N2 gas mixtures were used as reactive gas within atmospheric pressure. SAXS results showed the formation of NPs in the plasma-plume with a mean radius varying in the 2-5 nm range. A decrease of the NPs size with increasing the O2 percentage in the O2-N2 gas mixture was also showed. Ex situ observations by transmission electron microscopy and structural characterizations by X-ray diffraction and Raman spectroscopy were also performed for powders collected in experiments done using air as ambient gas. The stability of the different metal oxides is discussed as being a key parameter influencing the formation of NPs in the plasma-plume.

  17. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment

    PubMed Central

    Hertwig, Christian; Steins, Veronika; Reineke, Kai; Rademacher, Antje; Klocke, Michael; Rauh, Cornelia; Schlüter, Oliver

    2015-01-01

    This study investigated the inactivation efficiency of cold atmospheric pressure plasma treatment on Bacillus subtilis endospores dependent on the used feed gas composition and on the surface, the endospores were attached on. Glass petri-dishes, glass beads, and peppercorns were inoculated with the same endospore density and treated with a radio frequency plasma jet. Generated reactive species were detected using optical emission spectroscopy. A quantitative polymerase chain reaction (qPCR) based ratio detection system was established to monitor the DNA damage during the plasma treatment. Argon + 0.135% vol. oxygen + 0.2% vol. nitrogen as feed gas emitted the highest amounts of UV-C photons and considerable amount of reactive oxygen and nitrogen species. Plasma generated with argon + 0.135% vol. oxygen was characterized by the highest emission of reactive oxygen species (ROS), whereas the UV-C emission was negligible. The use of pure argon showed a negligible emission of UV photons and atomic oxygen, however, the emission of vacuum (V)UV photons was assumed. Similar maximum inactivation results were achieved for the three feed gas compositions. The surface structure had a significant impact on the inactivation efficiency of the plasma treatment. The maximum inactivation achieved was between 2.4 and 2.8 log10 on glass petri-dishes and 3.9 to 4.6 log10 on glass beads. The treatment of peppercorns resulted in an inactivation lower than 1.0 log10. qPCR results showed a significant DNA damage for all gas compositions. Pure argon showed the highest results for the DNA damage ratio values, followed by argon + 0.135% vol. oxygen + 0.2% vol. nitrogen. In case of argon + 0.135% vol. oxygen the inactivation seems to be dominated by the action of ROS. These findings indicate the significant role of VUV and UV photons in the inactivation process of B. subtilis endospores. PMID:26300855

  18. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment.

    PubMed

    Hertwig, Christian; Steins, Veronika; Reineke, Kai; Rademacher, Antje; Klocke, Michael; Rauh, Cornelia; Schlüter, Oliver

    2015-01-01

    This study investigated the inactivation efficiency of cold atmospheric pressure plasma treatment on Bacillus subtilis endospores dependent on the used feed gas composition and on the surface, the endospores were attached on. Glass petri-dishes, glass beads, and peppercorns were inoculated with the same endospore density and treated with a radio frequency plasma jet. Generated reactive species were detected using optical emission spectroscopy. A quantitative polymerase chain reaction (qPCR) based ratio detection system was established to monitor the DNA damage during the plasma treatment. Argon + 0.135% vol. oxygen + 0.2% vol. nitrogen as feed gas emitted the highest amounts of UV-C photons and considerable amount of reactive oxygen and nitrogen species. Plasma generated with argon + 0.135% vol. oxygen was characterized by the highest emission of reactive oxygen species (ROS), whereas the UV-C emission was negligible. The use of pure argon showed a negligible emission of UV photons and atomic oxygen, however, the emission of vacuum (V)UV photons was assumed. Similar maximum inactivation results were achieved for the three feed gas compositions. The surface structure had a significant impact on the inactivation efficiency of the plasma treatment. The maximum inactivation achieved was between 2.4 and 2.8 log10 on glass petri-dishes and 3.9 to 4.6 log10 on glass beads. The treatment of peppercorns resulted in an inactivation lower than 1.0 log10. qPCR results showed a significant DNA damage for all gas compositions. Pure argon showed the highest results for the DNA damage ratio values, followed by argon + 0.135% vol. oxygen + 0.2% vol. nitrogen. In case of argon + 0.135% vol. oxygen the inactivation seems to be dominated by the action of ROS. These findings indicate the significant role of VUV and UV photons in the inactivation process of B. subtilis endospores.

  19. Temporally resolved plasma spectroscopy for analyzing natural gas components

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Tsumaki, Naomasa; Ito, Tsuyohito

    2016-09-01

    Temporally resolved plasma spectroscopy has been carried out in two different hydrocarbon gas mixtures (CH4/Ar and C2H6/Ar) to explore the possibility of a new gas sensor using plasma emission spectral analysis. In this experiment, a nanosecond-pulsed plasma discharge was applied to observe optical emissions representing the initial molecular structure. It is found that a CH emission intensity in CH4/Ar is higher than that in C2H6/Ar. On the other hand, C2 intensities are almost the same degree between CH4/Ar and C2H6/Ar. This finding indicates that the emission intensity ratio of CH to C2 might be an effective index for a gas analysis. In addition, a time for the highest emission intensities of CH and C2 is several nanoseconds later than that of Ar. This result suggests that spectra from the initial molecular structure may be observed at the early stage of the discharge before molecules are fully dissociated, and this is currently in progress.

  20. Ultra-Intense Laser Pulse Propagation in Gas and Plasma

    SciTech Connect

    Antonsen, T. M.

    2004-10-26

    It is proposed here to continue their program in the development of theories and models capable of describing the varied phenomena expected to influence the propagation of ultra-intense, ultra-short laser pulses with particular emphasis on guided propagation. This program builds upon expertise already developed over the years through collaborations with the NSF funded experimental effort lead by Professor Howard Milchberg here at Maryland, and in addition the research group at the Ecole Polytechnique in France. As in the past, close coupling between theory and experiment will continue. The main effort of the proposed research will center on the development of computational models and analytic theories of intense laser pulse propagation and guiding structures. In particular, they will use their simulation code WAKE to study propagation in plasma channels, in dielectric capillaries and in gases where self focusing is important. At present this code simulates the two-dimensional propagation (radial coordinate, axial coordinate and time) of short pulses in gas/plasma media. The plasma is treated either as an ensemble of particles which respond to the ponderomotive force of the laser and the self consistent electric and magnetic fields created in the wake of pulse or as a fluid. the plasma particle motion is treated kinetically and relativistically allowing for study of intense pulses that result in complete cavitation of the plasma. The gas is treated as a nonlinear medium with rate equations describing the various stages of ionization. A number of important physics issues will be addressed during the program. These include (1) studies of propagation in plasma channels, (2) investigation of plasma channel nonuniformities caused by parametric excitation of channel modes, (3) propagation in dielectric capillaries including harmonic generation and ionization scattering, (4) self guided propagation in gas, (5) studies of the ionization scattering instability recently

  1. Mobility in a strongly coupled dusty plasma with gas

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, J.

    2014-04-01

    The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force F, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity up. The mobility μp=up/F of the projectile's motion is obtained. Two regimes depending on F are identified. In the high-force regime, μp∝F0.23, and the scattering cross section σs diminishes as up-6/5. Results for σs are compared with those for a weakly coupled plasma and for two-body collisions in a Yukawa potential. The simulation parameters are based on microgravity plasma experiments.

  2. Mobility in a strongly coupled dusty plasma with gas.

    PubMed

    Liu, Bin; Goree, J

    2014-04-01

    The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force F, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity up. The mobility μp=up/F of the projectile's motion is obtained. Two regimes depending on F are identified. In the high-force regime, μp∝F0.23, and the scattering cross section σs diminishes as up-6/5. Results for σs are compared with those for a weakly coupled plasma and for two-body collisions in a Yukawa potential. The simulation parameters are based on microgravity plasma experiments.

  3. Particle and gas velocity measurements in a dc plasma jet

    SciTech Connect

    Lesinski, J.; Mizera-Lesinska, B.; Jurewicz, J.; Boulos, M.I.

    1980-01-01

    Measurements were made, using Laser Doppler Anemometry (LDA), of the velocity of 53 ..mu..m alumina particles as they are injected in a dc plasma jet operated with an argon-nitrogen mixture (18.9 l/min argon and 4.7 l/min nitrogen) at a power level of 15.2 kW. Results obtained at distances between 5 and 150 mm from the nozzle showed the particles to penetrate the plasma jet and attain the gas velocity at about 50 mm from their point of injection. Plasma velocity measurements in the core region of the jet proved to be particularly difficult. Limitations of the LDA system with regard to its spatial resolution and seeding requirements are discussed.

  4. Reactive Plasma Nitriding of AL2O3 Powder in Thermal Spray

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    Among advanced ceramics, aluminum nitride (AlN) had attracted much attention in the field of electrical and structural applications due to its outstanding properties. However, it is difficult to fabricate AlN coating by conventional thermal spray processes directly. Due to the thermal decomposition of feedstock AlN powder during spraying without a stable melting phase (which is required for deposition in thermal spray). Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of AlN thermally sprayed coatings. In this study the possibility of fabrication of AlN coating by reactive plasma nitriding of alumina (Al2O3) powder using N2/H2 plasma was investigated. It was possible to fabricate a cubic-AlN (c-AlN) based coating and the fabricated coating consists of c-AlN, α-Al2O3, Al5O6N and γ-Al2O3. It was difficult to understand the nitriding process from the fabricated coatings. Therefore, the Al2O3 powders were sprayed and collected in water. The microstructure observation of the collected powder and its cross section indicate that the reaction started from the surface. Thus, the sprayed particles were melted and reacted in high temperature reactive plasma and formed aluminum oxynitride which has cubic structure and easily nitride to c-AlN. During the coatings process the particles collide, flatten, and rapidly solidified on a substrate surface. The rapid solidification on the substrate surface due to the high quenching rate of the plasma flame prevents AlN crystal growth to form the hexagonal phase. Therefore, it was possible to fabricate c-AlN/Al2O3 based coatings through reactive plasma nitriding reaction of Al2O3 powder in thermal spray.

  5. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  6. Transport in a field aligned magnetized plasma/neutral gas boundary: the end of the plasma

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher Michael

    The objective of this dissertation is to characterize the physics of a boundary layer between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. A series of experiments are performed at the Enormous Toroidal Plasma Device (ETPD) at UCLA to study this field aligned Neutral Boundary Layer (NBL) at the end of the plasma. A Lanthanum Hexaboride (LaB6) cathode and semi-transparent anode creates a magnetized, current-free helium plasma which terminates on a neutral helium gas without touching any walls. Probes are inserted into the plasma to measure the basic plasma parameters and study the transport in the NBL. The experiment is performed in the weakly ionized limit where the plasma density (ne) is much less than the neutral density (nn) such that ne/nn < 5%. The NBL is characterized by a field-aligned electric field which begins at the point where the plasma pressure equilibrates with the neutral gas pressure. Beyond the pressure equilibration point the electrons and ions lose their momentum by collisions with the neutral gas and come to rest. An electric field is established self consistently to maintain a current-free termination through equilibration of the different species' stopping rates in the neutral gas. The electric field resembles a collisional quasineutral sheath with a length 10 times the electron-ion collision length, 100 times the neutral collision length, and 10,000 times the Debye length. Collisions with the neutral gas dominate the losses in the system. The measured plasma density loss rates are above the classical cross-field current-free ambipolar rate, but below the anomalous Bohm diffusion rate. The electron temperature is below the ionization threshold of the gas, 2.2 eV in helium. The ions are in thermal equilibrium with the neutral gas. A generalized theory of plasma termination in a Neutral Boundary Layer is applied to this case using a two-fluid, current-free, weakly ionized transport model. The electron

  7. The interaction of atmospheric pressure plasma jets with cancer and normal cells: generation of intracellular reactive oxygen species and changes of the cell proliferation and cell cycle

    NASA Astrophysics Data System (ADS)

    Chung, Tae Hun; Joh, Hea Min; Kim, Sun Ja; Leem, Sun Hee

    2013-09-01

    The possibility of atmospheric pressure plasmas is emerging as a candidate in cancer therapy. The primary role is played by reactive oxygen species (ROS), UV photons, charged particles and electric fields. Among them, intracellular ROS induced by plasma are considered to be the key constituents that induce cellular changes and apoptosis. In this study, the effects of atmospheric pressure plasma jet on cancer cells (human lung carcinoma cells) and normal cells (embryonic kidney cells and bronchial epithelial cells) were investigated. The plasma treatment was performed under different working gases, applied voltages, gas flow rates, and with and without additive oxygen flow. Using a detection dye, we observed that plasma exposure leads to the increase of the intracellular ROS and that the intracellular ROS production can be controlled by plasma parameters. A significant ROS generation was induced by plasma exposure on cancer cells and the overproduction of ROS contributes to the reduced cell proliferation. Normal cells were observed to be less affected by the plasma-mediated ROS and cell proliferation was less changed. The plasma treatment also resulted in the alteration of the cell cycle that contributes to the induction of apoptosis in cancer cells. The selective effect on cancer and normal cells provides a promising prospect of cold plasma as cancer therapy. This work was supported by the National Research Foundation of Korea under Contract No. 2012R1A1A2002591 and 2012R1A1A3010213.

  8. Dynamic characteristics of gas-water interfacial plasma under water

    SciTech Connect

    Zheng, S. J.; Zhang, Y. C.; Ke, B.; Ding, F.; Tang, Z. L.; Yang, K.; Zhu, X. D.

    2012-06-15

    Gas-water interfacial plasmas under water were generated in a compact space in a tube with a sandglass-like structure, where two metal wires were employed as electrodes with an applied 35 kHz ac power source. The dynamic behaviors of voltage/current were investigated for the powered electrode with/without water cover to understand the effect of the gas-water interface. It is found that the discharge exhibits periodic pulsed currents after breakdown as the powered electrode is covered with water, whereas the electrical current reveals a damped oscillation with time with a frequency about 10{sup 6} Hz as the powered electrode is in a vapor bubble. By increasing water conductivity, a discharge current waveform transition from pulse to oscillation presents in the water covering case. These suggest that the gas-water interface has a significant influence on the discharge property.

  9. Interpretations of the OSCAR data for reactive-gas scavenging

    SciTech Connect

    Easter, R.C.; Hales, J.M.

    1982-11-01

    A description is given of the application of a reactive scavenging model for the interpretation of data from the Oxidation and Scavenging Characteristics of April Rains (OSCAR) field study to evaluate scavenging mechanisms. The OSCAR experiment, conducted during April 1982, was a cooperative field investigation of wet removal by cyclonic storms. A part of the experiment involved intensive measurements at a site in NE Indiana and was designed to provide needed inputs for diagnostic scavenging models. Sequential precipitation chemistry, surface and airborne air chemistry, cloud physics, and meteorological measurements were performed. The model application reported here involves a single storm event at the Indiana site. Although the work presented involves the analysis of only a single precipitation event over a limited geographical area (10/sup 4/ km/sup 2/), the data utilized have considerable uncertainties, and the model contains numerous approximations, it is nevertheless concluded that the ability of the model to reproduce much of the observed precipitation chemistry behavior for the event is quite encouraging.

  10. A (reactive) lattice-gas approach to economic cycles

    NASA Astrophysics Data System (ADS)

    Ausloos, Marcel; Clippe, Paulette; Miśkiewicz, Janusz; Peķalski, Andrzej

    2004-12-01

    A microscopic approach to macroeconomic features is intended. A model for macroeconomic behavior under heterogeneous spatial economic conditions is reviewed. A birth-death lattice gas model taking into account the influence of an economic environment on the fitness and concentration evolution of economic entities is numerically and analytically examined. The reaction-diffusion model can also be mapped onto a high-order logistic map. The role of the selection pressure along various dynamics with entity diffusion on a square symmetry lattice has been studied by Monte-Carlo simulation. The model leads to a sort of phase transition for the fitness gap as a function of the selection pressure and to cycles. The control parameter is a (scalar) “business plan”. The business plan(s) allows for spin-offs or merging and enterprise survival evolution law(s), whence bifurcations, cycles and chaotic behavior.

  11. Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides.

    PubMed

    Thalinger, Ramona; Opitz, Alexander K; Kogler, Sandra; Heggen, Marc; Stroppa, Daniel; Schmidmair, Daniela; Tappert, Ralf; Fleig, Jürgen; Klötzer, Bernhard; Penner, Simon

    2015-05-28

    Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic-electronic conducting perovskite-type materials La0.6Sr0.4FeO3-δ (LSF) and SrTi0.7Fe0.3O3-δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities.

  12. Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides

    PubMed Central

    2015-01-01

    Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities. PMID:26045733

  13. Co-processing of agricultural plastic waste and switchgrass via tail gas reactive pyrolysis

    USDA-ARS?s Scientific Manuscript database

    Mixtures of agricultural plastic waste in the form of polyethylene hay bale covers (PE) (4-37%) and switchgrass were investigated using the US Department of Agriculture’s tail gas reactive pyrolysis (TGRP) at different temperatures (400-570 deg C). TGRP of switchgrass and plastic mixtures significan...

  14. Non-reactive and reactive trace gas fluxes: Simultaneous measurements with ground based and vertically integrating methods

    NASA Astrophysics Data System (ADS)

    Mayer, J.-C.; Rummel, U.; Andreae, M. O.; Foken, T.; Meixner, F. X.

    2009-04-01

    The footprint area, i.e. the source region of a flux measured at a certain location, increases with increasing height above ground of the flux measurements. For non-reactive trace gases and horizontally homogeneous terrain (particularly with respect to deposition and emission processes), an increase in height should not alter the actual measured flux (constant flux layer assumption). For reactive trace gases, with chemical life times of about 30 s - 300 s, chemical production and loss processes within the measuring layer lead to vertical flux divergence. The magnitude of the flux divergence can be determined directly by comparing fluxes of reactive trace gases being affected by chemistry with fluxes of the same species being not altered by chemistry. In August 2006, the field experiment LIBRETTO (LIndenBerg REacTive Trace gas prOfiles) was carried out in cooperation with the German Meteorological Service (DWD) at the field site of the Richard Aßmann Observatory in Lindenberg. At a 99 m mast, profiles of air temperature, relative humidity, wind speed and direction were measured. The mast is equipped with an elevator, where sensors for trace gases (CO2, H2O, O3), air temperature and relative humidity have been installed. During the experiment, the elevator system was run continuously, providing scanned profiles of trace gas concentrations from 2 m to 99 m a.g.l. of the atmospheric boundary layer (ABL) approx. every 10 minutes. Between 0.15 m and 2.0 m, concentration differences of the trace gases CO2, H2O, O3, NO and NO2 were measured. Applying the modified Bowen ration (MBR) method to the measured concentration differences and directly measured sensible heat flux (eddy covariance data from DWD) yields surface fluxes of the trace gases. Integral fluxes of CO2, O3 and sensible heat were computed simultaneously by applying the nocturnal boundary layer budget method to the scanned elevator profiles. A direct comparison showed little deviations between the two methods

  15. Impact of the etching gas on vertically oriented single wall and few walled carbon nanotubes by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gohier, A.; Minea, T. M.; Djouadi, M. A.; Granier, A.

    2007-03-01

    Vertically oriented single wall nanotubes (SWNTs) and few walled nanotubes (FWNTs) have been grown by electronic cyclotron resonance plasma enhanced chemical vapor deposition (PECVD) on silica flat substrates. The impact of the plasma parameters on SWNT and FWNT growth has been investigated using two different etching gas mixtures, namely, C2H2/NH3 and C2H2/H2 with various ratios and applied bias voltages. Kinetic studies are also proposed in order to describe the FWNT growth mechanism by plasma techniques. A key role played by the reactive gas (NH3 and H2) is observed in the PECVD process, contrary to multiwalled nanotube growth. It is demonstrated that the balance between FWNT growth versus FWNT etching can be widely modulated by varying the gas mixture and bias voltage. It is shown that the use of hydrogen for hydrocarbon gas dilution restricts the destruction of SWNT and FWNT by the plasma species (ions and radicals).

  16. Targeting Cancer Cells with Reactive Oxygen and Nitrogen Species Generated by Atmospheric-Pressure Air Plasma

    PubMed Central

    Hoan, Nguyen Ngoc; Kim, Churl Ho; Moon, Eunpyo; Choi, Kyeong Sook; Yang, Sang Sik; Lee, Jong-Soo

    2014-01-01

    The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH−, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells. PMID:24465942

  17. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma.

    PubMed

    Ahn, Hak Jun; Kim, Kang Il; Hoan, Nguyen Ngoc; Kim, Churl Ho; Moon, Eunpyo; Choi, Kyeong Sook; Yang, Sang Sik; Lee, Jong-Soo

    2014-01-01

    The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH-, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells.

  18. Trial of Growth Control of Farm-raised Fish by Plasma-generated Reactive Species

    NASA Astrophysics Data System (ADS)

    Motomura, Hideki; Kubota, Yoshiki; Fukushima, Ryo; Ikeda, Yoshihisa; Jinno, Masafumi

    2016-09-01

    As one of the biological applications of plasmas, growth control of agricultural products attracts attentions. There are many papers on growth enhancement of crops by plasma treatment. However, there are few published papers concerning growth enhancement of fishery products excepting reports of goldfish growth enhancement in 1980s. In this study, growth characteristics of edible fish (tilapia) under the plasma treatment has been investigated. An arc discharge reactor was employed and plasma treated air was introduced to two aquariums with a flow rate of 2.5 L/min. Measured concentrations of main reactive species were 43 ppm for NO, 23 ppm for NO2 and 7.5 ppm for O3. Each aquarium had 60 L capacity and contained 15 tilapia fish. The plasma treated air was supplied to an aquarium once a day and to the other aquarium twice a day with total duration of 10 min. Compared to no plasma treatment case, the growth rate decreased by 18% by once a day plasma treatment, whereas almost same growth rate was observed by twice a day plasma treatment. A possible reason of growth suppression is excess concentrations of nitrite and nitrate in water. The relationship between their concentrations and growth characteristics under several treatment conditions will be shown at the conference. Tirapia fish was supplied from SEFREC of Ehime University.

  19. Direct evidence of reactive ion etching induced damages in Ge2Sb2Te5 based on different halogen plasmas

    NASA Astrophysics Data System (ADS)

    Li, Juntao; Xia, Yangyang; Liu, Bo; Feng, Gaoming; Song, Zhitang; Gao, Dan; Xu, Zhen; Wang, Weiwei; Chan, Yipeng; Feng, Songlin

    2016-08-01

    Chalcogenide glasses based on Ge-Te-Sb are processed using reactive ion etching (RIE) in the fabrication of phase change memory (PCM). These materials are known to be halogenated easily and apt to be damaged when exposed to halogen gas based plasmas which can cause severe halogenation-induced degradation. In this paper, we investigate the RIE induced damage of popular phase change material Ge2Sb2Te5 (GST) in different halogen based plasmas (CF4, Cl2 and HBr) highly diluted by argon. After blanket etching, results of scanning electron microscopy and atomic force microscopy directly showed that the surface of Cl2 etched samples were roughest with a Ge deficient damaged layer. X-ray photoelectron spectroscopy was performed to investigate the chemical shift of constituent elements. Selected scans over the valence band peaks of Te 3d revealed that electrons were transferred from chalcogenide to halogen and the highest halogenation was observed on the GST etched by CF4. The GST films masked with patterned TiN were also etched. High-resolution transmission electron microscopy and surface scan directly showed the line profile and the damaged layer. Almost vertical and smooth sidewall without damaged layer makes HBr a promising gas for GST etch in the fabrication of high-density memory devices.

  20. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    SciTech Connect

    Jablonowski, H.; Hammer, M. U.; Reuter, S.; Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  1. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    NASA Astrophysics Data System (ADS)

    Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.

    2015-12-01

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  2. Inductively-coupled-plasma reactive ion etching of single-crystal β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Zhang, Liheng; Verma, Amit; (Grace Xing, Huili; Jena, Debdeep

    2017-03-01

    Dry etching behavior of unintentionally-doped (\\bar{2}01) β-Ga2O3 has been studied in a BCl3/Ar chemistry using inductively-coupled-plasma reactive ion etching (ICP-RIE). The effects of various etch parameters like ICP and RIE powers, BCl3/Ar gas ratio and chamber pressure on etch rate are studied systematically. Higher ICP, RIE powers and lower pressure conditions are found to enhance the etch rate. A synergic etching mechanism between chemical and physical components is proposed and used to obtain fast Ga2O3 etch rates more than 160 nm/min, nearly-vertical sidewalls and smooth etched surfaces. The findings of this work will enable Ga2O3 vertical devices for power electronics.

  3. Interaction of radiatively cooled plasma jets with static gas and collimated supersonic gas jets

    NASA Astrophysics Data System (ADS)

    Suzuki-Vidal, F.; Lebedev, S. V.; Skidmore, J.; Bocchi, M.; Bland, S. N.; Burdiak, G.; Chittenden, J. P.; de Grouchy, P.; Hall, G. N.; Harvey-Thompson, A. J.; Khoory, E.; Pickworth, L. A.; Suttle, L.; Swadling, G. F.; Krishnan, M.; Madden, R. E.; Elliot, K. W.; Coleman, P. L.; Ciardi, A.

    2011-10-01

    The MAGPIE generator (1.4 MA, 240 ns) drives an ablative plasma from a thin Al foil. The convergence of the plasma from the foil on its axis leads to the formation of a supersonic plasma jet, with a typical velocity of ~100 km/s. Jet-ambient interactions are studied either by injecting a highly-collimated, supersonic, cold gas jet above the foil using a nozzle, or by enclosing the foil inside a cell filled with neutral, static gas. In both cases, the plasma jet creates several shock features in the ambient medium. Experimental results from varied ambient parameters such as gas pressure and composition are presented together with 3-D MHD simulations. Work supported at AASC by DOE SBIR Grant DE-FG02-08ER85030, and at Imperial College by EPSRC Grant No. EP/G001324/1, by the NNSA under DOE Cooperative Agreements No. DE-F03-02NA00057 and No. DE-SC-0001063, and by a Marie Curie ERG grant.

  4. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species

    PubMed Central

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-01

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm–2 had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm–2 plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization. PMID:21653568

  5. Calcium influx through TRP channels induced by short-lived reactive species in plasma-irradiated solution

    PubMed Central

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2016-01-01

    Non-equilibrium helium atmospheric-pressure plasma (He-APP), which allows for a strong non-equilibrium chemical reaction of O2 and N2 in ambient air, uniquely produces multiple extremely reactive products, such as reactive oxygen species (ROS), in plasma-irradiated solution. We herein show that relatively short-lived unclassified reactive species (i.e., deactivated within approximately 10 min) generated by the He-APP irradiation can trigger physiologically relevant Ca2+ influx through ruthenium red- and SKF 96365-sensitive Ca2+-permeable channel(s), possibly transient receptor potential channel family member(s). Our results provide novel insight into understanding of the interactions between cells and plasmas and the mechanism by which cells detect plasma-induced chemically reactive species, in addition to facilitating development of plasma applications in medicine. PMID:27169489

  6. Calcium influx through TRP channels induced by short-lived reactive species in plasma-irradiated solution

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2016-05-01

    Non-equilibrium helium atmospheric-pressure plasma (He-APP), which allows for a strong non-equilibrium chemical reaction of O2 and N2 in ambient air, uniquely produces multiple extremely reactive products, such as reactive oxygen species (ROS), in plasma-irradiated solution. We herein show that relatively short-lived unclassified reactive species (i.e., deactivated within approximately 10 min) generated by the He-APP irradiation can trigger physiologically relevant Ca2+ influx through ruthenium red- and SKF 96365-sensitive Ca2+-permeable channel(s), possibly transient receptor potential channel family member(s). Our results provide novel insight into understanding of the interactions between cells and plasmas and the mechanism by which cells detect plasma-induced chemically reactive species, in addition to facilitating development of plasma applications in medicine.

  7. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  8. Reactive sputtering of titanium in Ar/CH4 gas mixture: Target poisoning and film characteristics

    SciTech Connect

    Fouad, O.A.; Rumaiz, A.; Shah, S.

    2009-03-01

    Reactive sputtering of titanium target in the presence of Ar/CH{sub 4} gas mixture has been investigated. With the addition of methane gas to above 1.5% of the process gas a transition from the metallic sputtering mode to the poison mode was observed as indicated by the change in cathode current. As the methane gas flow concentration increased up to 10%, the target was gradually poisoned. The hysteresis in the cathode current could be plotted by first increasing and then subsequently decreasing the methane concentration. X-ray diffraction and X-ray photoelectron spectroscopy analyses of the deposited films confirmed the formation of carbide phases and the transition of the process from the metallic to compound sputtering mode as the methane concentration in the sputtering gas is increased. The paper discusses a sputtering model that gives a rational explanation of the target poisoning phenomenon and shows an agreement between the experimental observations and calculated results.

  9. Rapid Fabrication of Lightweight SiC Optics using Reactive Atom Plasma (RAP) Processing

    NASA Technical Reports Server (NTRS)

    Fiske, Peter S.

    2006-01-01

    Reactive Atom Plasma (RAP) processing is a non-contact, plasma-based processing technology that can be used to generate damage-free optical surfaces. We have developed tools and processes using RAP that allow us to shape extremely lightweight mirror Surfaces made from extremely hard-to-machine materials (e.g. SiC). We will describe our latest results using RAP in combination with other technologies to produce finished lightweight SiC mirrors and also discuss applications for RAP in the rapid fabrication of mirror segments for reflective and grazing incidence telescopes.

  10. Rapid Fabrication of Lightweight SiC Optics using Reactive Atom Plasma (RAP) Processing

    NASA Technical Reports Server (NTRS)

    Fiske, Peter S.

    2006-01-01

    Reactive Atom Plasma (RAP) processing is a non-contact, plasma-based processing technology that can be used to generate damage-free optical surfaces. We have developed tools and processes using RAP that allow us to shape extremely lightweight mirror Surfaces made from extremely hard-to-machine materials (e.g. SiC). We will describe our latest results using RAP in combination with other technologies to produce finished lightweight SiC mirrors and also discuss applications for RAP in the rapid fabrication of mirror segments for reflective and grazing incidence telescopes.

  11. High Power Light Gas Helicon Plasma Source For VASMIR

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  12. High Power Light Gas Helicon Plasma Source For VASMIR

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  13. The sub-micron hole array in sapphire produced by inductively-coupled plasma reactive ion etching.

    PubMed

    Shiao, Ming-Hua; Chang, Chun-Ming; Huang, Su-Wei; Lee, Chao-Te; Wu, Tzung-Chen; Hsueh, Wen-Jeng; Ma, Kung-Jeng; Chiang, Donyau

    2012-02-01

    The sub-micron hole array in a sapphire substrate was fabricated by using nanosphere lithography (NSL) combined with inductively-coupled-plasma reactive ion etching (ICP-RIE) technique. Polystyrene nanospheres of about 600 nm diameter were self-assembled on c-plane sapphire substrates by the spin-coating method. The diameter of polystyrene nanosphere was modified by using oxygen plasma in ICP-RIE system. The size of nanosphere modified by oxygen plasma was varied from 550 to 450 nm with different etching times from 15 to 35 s. The chromium thin film of 100 nm thick was then deposited on the shrunk nanospheres on the substrate by electron-beam evaporation system. The honeycomb type chromium mask can be obtained on the sapphire substrate after the polystyrene nanospheres were removed. The substrate was further etched in two sets of chlorine/Argon and boron trichloride/Argon mixture gases at constant pressure of 50 mTorr in ICP-RIE processes. The 400 nm hole array in diameter can be successfully produced under suitable boron trichloride/Argon gas flow ratio.

  14. Properties of AlN films deposited by reactive ion-plasma sputtering

    SciTech Connect

    Bert, N. A.; Bondarev, A. D.; Zolotarev, V. V.; Kirilenko, D. A.; Lubyanskiy, Ya. V.; Lyutetskiy, A. V.; Slipchenko, S. O.; Petrunov, A. N.; Pikhtin, N. A. Ayusheva, K. R.; Arsentyev, I. N.; Tarasov, I. S.

    2015-10-15

    The properties of SiO{sub 2}, Al{sub 2}O{sub 3}, and AlN dielectric coatings deposited by reactive ion-plasma sputtering are studied. The refractive indices of the dielectric coatings are determined by optical ellipsometry. It is shown that aluminum nitride is the optimal material for achieving maximum illumination of the output mirror of a semiconductor laser. A crystalline phase with a hexagonal atomic lattice and oxygen content of up to 10 at % is found by transmission electron microscopy in the aluminum-nitride films. It is found that a decrease in the concentration of residual oxygen in the chamber of the reactive ion-plasma sputtering installation makes it possible to eliminate the appearance of vertical pores in the bulk of the aluminum-nitride film.

  15. Inductively coupled plasma reactive ion etching of III-nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Shah, A. P.; Laskar, M. R.; Rahman, A. A.; Gokhale, M. R.; Bhattacharya, A.

    2013-02-01

    III-Nitride semiconductor materials are resistant to most wet chemical etch processes, and hence the only viable alternative is to use dry etching for device processing. However, the conventional Reactive Ion Etching (RIE) process results in very slow etch-rates because of low reactive ion density, and larger surface damage due to high energy ion bombardment. Using Inductively Coupled Plasma (ICP) RIE, a very fast etch-rate and smooth morphology is achieved due to independent control of ion density and ion energy. In this paper, we present our results on ICP-RIE of epitaxial III-N materials, namely c-plane and a-plane oriented GaN, AlN, AlxGa1-xN using various chlorine plasma chemistries based on Cl2 and BCl3. We have examined the role of BCl3 deoxidising pre-treatment on the etching of AlGaN alloys.

  16. Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2007-02-01

    The spatial distribution of neutral gas temperature and total pressure have been measured for pure N2, He/5%N2 and Ar/5%N2 in an inductively coupled plasma (ICP) reactor, and a significant rise in the neutral gas temperature has been observed. When thermal transpiration is used to correct total pressure measurements, the total pressure remains constant regardless of the plasma condition. Neutral pressure is depleted due to the pressure balance when the plasma pressure (mainly electron pressure) becomes comparable to the neutral pressure in high density plasma. Since the neutral gas follows the ideal gas law, the neutral gas density profile was obtained from the neutral gas temperature and the corrected neutral pressure measurements. The results show that the neutral gas density at the centre of the plasma chamber (factor of 2-4 ×) decreases significantly in the presence of a plasma discharge. Significant spatial variation in neutral gas uniformity occurs in such plasmas due to neutral gas heating and pressure balance.

  17. On the different regimes of gas heating in air plasmas

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2015-10-01

    Simulations of the gas temperature in air (N2-20%O2) plasma discharges are presented for different values of the reduced electric field, E/N g, electron density n e, pressure and tube radius. This study is based on the solutions to the time-dependent gas thermal balance in a cylindrical geometry coupled to the electron, vibrational and chemical kinetics, for E/{{N}\\text{g}}=50 and 100 Td (1 Td = 10-17 V cm2), 109  ⩽  n e  ⩽  1011 cm-3, pressure in the range 1-20 Torr, and also considering different tube radius, 0.5, 1 and 1.5 cm. The competing role of different gas heating mechanisms is discussed in detail within the time range 0.01-100 ms. For times below 1 ms, gas heating occurs from O2 dissociation by electron impact through pre-dissociative excited states, e + O2  →  e + \\text{O}2*   →  e + 2O(3P) and …  →  e + O(3P) + O(1D), as well as through the quenching of N2 electronically excited states by O2. For longer times, simulation results show that gas heating comes from processes N(4S) + NO(X)  →  N2(X, v ~ 3) + O, N2(A) + O  →  NO(X) + N(2D), V-T N2-O collisions and the recombination of oxygen atoms at the wall. Depending on the given E/N g and n e values, each one of these processes can be an important gas-heating channel. The contribution of V-T N2-O exchanges to gas heating is important in the analysis of the gas temperature for different pressures and values of the tube radius. A global picture of these effects is given by the study of the fraction of the discharge power spent on gas heating, which is always ~15%. The values for the fractional power transferred to gas heating from vibrational and electronic excitation are also presented and discussed.

  18. Supersonic gas jets for laser-plasma experiments.

    PubMed

    Schmid, K; Veisz, L

    2012-05-01

    We present an in-depth analysis of De Laval nozzles, which are ideal for gas jet generation in a wide variety of experiments. Scaling behavior of parameters especially relevant to laser-plasma experiments as jet collimation, sharpness of the jet edges and Mach number of the resulting jet is studied and several scaling laws are given. Special attention is paid to the problem of the generation of microscopic supersonic jets with diameters as small as 150 μm. In this regime, boundary layers dominate the flow formation and have to be included in the analysis.

  19. New Horizons: Gas and Plasma in the Pluto System

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Gladstone, Randy; Summers, Michael; Bagenal, Fran; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine B.; Ennico, Kimberly; Moore, Jeffrey M.; Grundy, William M.; New Horizons Atmospheres Science Theme Team, New Horizons Particles and Plasma Science Theme Team

    2016-10-01

    NASA's New Horizons mission gave us information about gas and plasma in the Pluto system from Pluto's surface up to a distance of ~200,000 km beyond Pluto. This review will give an overview of our current theories and observations of the near-surface atmospheric structure; the properties, production and settling of Pluto's ubiquitous haze; the minor atmospheric species and atmospheric chemistry; the energetics and high-altitude thermal structure; the escape rate and the pickup of methane ions; the effect of methane impacting Charon; and Pluto's heavy-ion tail. Details are given in other presentations at this conference.This work was supported by NASA's New Horizons project.

  20. Non-invasive in situ plasma monitoring of reactive gases using the floating harmonic method for inductively coupled plasma etching application.

    PubMed

    Lee, J H; Yoon, Y S; Kim, M J

    2013-04-01

    The floating harmonic method was developed for in situ plasma diagnostics of allowing real time measurement of electron temperature (Te) and ion flux (Jion) without contamination of the probe from surface modification by reactive species. In this study, this novel non-invasive diagnostic system was studied to characterize inductively coupled plasma of reactive gases monitoring Te and Jion for investigating the optimum plasma etching conditions and controlling of the real-time plasma surface reaction in the range of 200-900 W source power, 10-100 W bias power, and 3-15 mTorr chamber pressure, respectively.

  1. Kinetic simulations of gas breakdown in the dense plasma focus

    DOE PAGES

    Bennett, N.; Blasco, M.; Breeding, K.; ...

    2017-06-09

    We describe the first fully-kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus and are shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. In the past, researchers noted three breakdown patterns related to pressure. Simulationmore » and analytic results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.« less

  2. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  3. Kinetic simulations of gas breakdown in the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Bennett, N.; Blasco, M.; Breeding, K.; DiPuccio, V.; Gall, B.; Garcia, M.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Molnar, S.; O'Brien, R.; Ormond, E.; Robbins, L.; Savage, M.; Sipe, N.; Welch, D. R.

    2017-06-01

    The first fully kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus are described and shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission, and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. Previously, researchers noted three breakdown patterns related to pressure. Simulation and analytical results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.

  4. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  5. Nucleation and growth of Nb nanoclusters during plasma gas condensation

    SciTech Connect

    Bray, K. R.; Jiao, C. Q.; DeCerbo, J. N.

    2013-06-21

    Niobium nanoclusters were produced using a plasma gas condensation process. The influence of gas flow rate, aggregation length, and source current on the nanocluster nucleation and growth were analyzed. Nanoclusters with an average diameter from 4 nm to 10 nm were produced. Cluster size and concentration were tuned by controlling the process inputs. The effects of each parameter on the nucleation zone, growth length, and residence time was examined. The parameters do not affect the cluster formation and growth independently; their influence on cluster formation can be either cumulative or competing. Examining the nucleation and growth over a wide combination of parameters provided insight into their interactions and the impact on the growth process. These results provide the opportunity for a broader understanding into the nucleation and growth of nanoclusters and some insights into how process parameters interact during deposition. This knowledge will enhance the ability to create nanoclusters with desired size dispersions.

  6. Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea

    2016-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. MBMS sampling from highly heated gas mixtures (1000-3000 K) and weakly ionized RF plasmas (800-2800 K) or laser plasmas (5000-20,000 K)

    SciTech Connect

    Campargue, R.; Lebehot, A.

    1995-03-01

    The properties of the free jet expansion and molecular beam skimming can be applied to the sampling of a wide variety of gaseous media, as those considered in this workshop: reactive systems, high temperature gases, flames, plasma flows, shock zone gases, laser ablation plumes, gas phase in CVD or in high temperature corrosion, etc. In the authors` laboratory, as well as in many molecular beam groups, the MBMS sampling is not generally made for analysing the gas stagnating in the nozzle, but for optimizing and using the beam source in research experiments. Nevertheless, this beam optimization has been of great interest to investigate and minimize the distortions through the interface used for MS sampling. They are due to the reality of the gas, the deviations from ideal free jet expansion, and the possible interactions along the MBMS sampling system, from the nozzle sampler to the quadrupole analyser. The first part of this paper is an historical review on the various distortions observed at Saclay in skimming, or in MBMS sampling from room temperature gases or gas mixtures. The second part deals with neutral energetic particles resulting either from the cluster generation in expansion or from the seeding and/or heating techniques. Finally the last part of the paper is devoted to recent developments in MBMS sampling of weakly ionized RF plasmas (800-2800 K) and laser sustained plasmas (5000-20000 K). The presentation is made with large reference to the authors` previous papers, especially their later review on jets and beams.

  8. Modeling of gas ionization and plasma flow in ablative pulsed plasma thrusters

    NASA Astrophysics Data System (ADS)

    Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue

    2016-12-01

    A one-dimensional model to study the gas ionization and plasma flow in ablative pulsed plasma thrusters(APPTs) is established in this paper. The discharge process of the APPT used in the LES-6 satellite is simulated to validate the model. The simulation results for the impulse bit and propellant utilization give values of 29.05 μN s and 9.56%, respectively, which are in good agreement with experimental results. To test the new ionization sub-model, the discharge process of a particular APPT, XPPT-1, is simulated, and a numerical result for the propellant utilization of 62.8% is obtained, which also agrees well with experiment. The gas ionization simulation results indicate that an APPT with a lower average propellant ablation rate and higher average electric field intensity between electrodes should have higher propellant utilization. The plasma density distribution between the electrodes of APPTs can also be obtained using the new model, and the numerical results show that the plasma generation and flow are discontinuous, which is in good agreement with past experimental results of high-speed photography. This model provides a new tool with which to study the physical mechanisms of APPTs and a reference for the design of high-performance APPTs.

  9. Experimental and numerical studies of neutral gas depletion in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi

    The central theme of this dissertation is to explore the impact of neutral depletion and coupling between plasma and neutral gas in weakly ionized unmagnetized plasma. Since there have been few systematic studies of the mechanism which leads to non-uniform neutral distribution in processing plasmas, this work investigated the spatial profiles of neutral temperature and pressure experimentally, and the mechanism of resulting neutral depletion by simulation. The experimental work is comprised of neutral temperature measurements using high resolution atomic spectroscopy and molecular spectroscopy, and neutral pressure measurements considering thermal transpiration. When thermal transpiration effects are used to correct the gas pressure measurements, the total pressure remains constant regardless of the plasma condition. Since the neutral gas follows the ideal gas law, the neutral gas density profile is also obtained from the measured neutral gas temperature and the corrected pressure measurements. The results show that neutral gas temperature rises close to ˜ 900 [K], and the neutral gas density at the center of plasma chamber has a significant (factor of 2-4x) decrease in the presence of a plasma discharge. In numerical work, neutral and ion transport phenomena were simulated by a hybrid-type direct simulation Monte Carlo (DSMC) method of one dimensional (1D) electrostatic plasma to identify the mechanism of the neutral gas density depletion in Ar/N2 mixtures. The simulation reveals that the neutral depletion is the result of the interplay between plasma and neutral gas, and a parametric study indicates that neutral depletion occurs mainly due to gas heating and pressure balance for the typical condition of plasma processing. In high density plasma sources (Te ≈ 2-5 eV, ne ≈ 1011-1012 cm-3) where the plasma pressure becomes comparable to neutral pressure, total pressure (neutral pressure and plasma pressure) is conserved before and after the discharge. Therefore

  10. Studies on Mixed-Gas Plasmas and Segmented Flow Injection for Use with Inductively Coupled Plasma Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Craig, Jane Mary

    In this thesis, mixed gas plasmas and flow injection into air bubbles were investigated for use with inductively coupled plasma mass spectrometry (ICP-MS), in order to improve the technique's analytical capabilities. The mixed gas plasmas were created in two different ways: (i) by adding another gas, either argon, nitrogen, or hydrogen, to the nebulizer gas flow using a sheathing device or (ii) by adding nitrogen to the plasma gas flow. The introduction of each sheathing gas led to degraded analyte sensitivity but generally improved plasma stability, resulting in improved detection limits for a few elements. Introduction of nitrogen into the plasma gas, under the same operating conditions used for an all-argon plasma, resulted in degraded sensitivity but improved signal-to-noise and signal-to-background ratios for Cr, Fe, and Se. The tolerance of ICP-MS to effects caused by the concomitant elements Na and K was improved by addition of nitrogen to the plasma gas flow. Flow injection using a segmented air/water carrier resulted in improved precision, sensitivity, and detection limits compared to those obtained using an all-water carrier. The enhancement in sensitivity was found to be mass dependent and was attributable to more than simply a reduction in dispersion. Under optimized operating conditions, using segmented flow injection resulted in similar or improved detection limits for all analytes except Se when compared to those obtained using continuous nebulization. Changing the gas used to segment the carrier stream did not result in appreciable changes in analyte signals or positions of maximum ionization within the plasma, indicating that the fundamental properties of the plasma did not change. The tolerance of ICP-MS to effects caused by the concomitant elements Na and Ca was not improved by using a segmented carrier compared to that experienced using an all-water carrier.

  11. Gas purification by nonthermal plasma: a case study of ethylene.

    PubMed

    Aerts, R; Tu, X; Van Gaens, W; Whitehead, J C; Bogaerts, A

    2013-06-18

    The destruction of ethylene in a dielectric barrier discharge plasma is investigated by the combination of kinetic modeling and experiments, as a case study for plasma-based gas purification. The influence of the specific energy deposition on the removal efficiency and the selectivity toward CO and CO2 is studied for different concentrations of ethylene. The model allows the identification of the destruction pathway in dry and humid air. The latter is found to be mainly initiated by metastable N2 molecules, but the further destruction steps are dominated by O atoms and OH radicals. Upon increasing air humidity, the removal efficiency drops by ± 15% (from 85% to 70%), but the selectivity toward CO and CO2 stays more or less constant at 60% and 22%, respectively. Beside CO and CO2, we also identified acetylene, formaldehyde, and water as byproducts of the destruction process, with concentrations of 1606 ppm, 15033 ppm, and 185 ppm in humid air (with 20% RH), respectively. Finally, we investigated the byproducts generated by the humid air discharge itself, which are the greenhouse gases O3, N2O, and the toxic gas NO2.

  12. Inactivation of microorganisms and endotoxins by low temperature nitrogen gas plasma exposure.

    PubMed

    Shintani, Hideharu; Shimizu, Naohiro; Imanishi, Yuichiro; Sekiya, Takayuki; Tamazawa, Kahoru; Taniguchi, Akira; Kido, Nobuo

    2007-12-01

    The plasma of several different gases has shown a sporicidal activity. From these gases, nitrogen gas was most difficult to produce atomic nitrogen radicals. However, these radicals have a high energy, indicating that nitrogen gas plasma could be used to sterilize microorganisms and inactivate endotoxins. The sterilization mechanism of nitrogen gas plasma is the synergistic effect of a high rising-up voltage pulse, UV irradiation and atomic nitrogen radicals. Thus, the target cells were damaged by degradation, which resulted in death. The biological indicator (BI) used in this study was Geobacillus stearothermophilus ATCC 7953 at a population of 1 x 10(6) CFU/sheet. Sterility assurance was confirmed by using the BI. Moreover, endotoxins were successfully inactivated. More than 5 log reduction of endotoxins could be attained with 30 minutes of nitrogen gas plasma exposure. Material functionality influenced by nitrogen gas plasma presented a satisfactory result. No deterioration of polymers could be observed by nitrogen gas plasma exposure.

  13. Anxiety-induced plasma norepinephrine augmentation increases reactive oxygen species formation by monocytes in essential hypertension.

    PubMed

    Yasunari, Kenichi; Matsui, Tokuzo; Maeda, Kensaku; Nakamura, Munehiro; Watanabe, Takanori; Kiriike, Nobuo

    2006-06-01

    An association between anxiety and depression and increased blood pressure (BP) and cardiovascular disease risk has not been firmly established. We examined the hypothesis that anxiety and depression lead to increased plasma catecholamines and to production of reactive oxygen species (ROS) by mononuclear cells (MNC) in hypertensive individuals. We also studied the role of BP in this effect. In Protocol 1, a cross-sectional study was performed in 146 hypertensive patients to evaluate whether anxiety and depression affect BP and ROS formation by MNC through increasing plasma catecholamines. In Protocol 2, a 6-month randomized controlled trial using a subtherapeutic dose of the alpha(1)-adrenergic receptor antagonist doxazosin (1 mg/day) versus placebo in 86 patients with essential hypertension was performed to determine whether the increase in ROS formation by MNC was independent of BP. In Protocol 1, a significant relationship was observed between the following: trait anxiety and plasma norepinephrine (r = 0.32, P < .01); plasma norepinephrine and ROS formation by MNC (r = 0.36, P < .01); and plasma norepinephrine and systolic, diastolic, and mean BP (r = 0.17, P = .04; r = 0.26, P = .02; r = 0.23, P < .01, respectively). In Protocol 2, subtherapeutic doxazosin treatment (1 mg/day) had no significant effect on BP. However doxazosin significantly decreased ROS formation by MNC compared with placebo (P < .01). Trait anxiety may increase plasma norepinephrine and increase ROS formation by MNC independent of BP in hypertensive patients.

  14. Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma

    SciTech Connect

    Kang, Sung Kil; Lee, Jae Koo; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Collins, George J.; Mohamed, Abdel-Aleam H.

    2011-04-04

    We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H{sub 2}O{sub 2} entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state OH generation inside the plasma and relative OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing OH generation and reached a maximum 5-log{sub 10} reduction with 0.6%H{sub 2}O{sub 2} vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H{sub 2}O{sub 2} vapor to the plasma.

  15. Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Kang, Sung Kil; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Mohamed, Abdel-Aleam H.; Collins, George J.; Lee, Jae Koo

    2011-04-01

    We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H2O2 entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state •OH generation inside the plasma and relative •OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing •OH generation and reached a maximum 5-log10 reduction with 0.6% H2O2 vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H2O2 vapor to the plasma.

  16. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    PubMed Central

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  17. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet.

    PubMed

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T H; Kang, Tae-Hong

    2014-10-16

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  18. Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot

    SciTech Connect

    Al-Qurashi, Khalid; Boehman, Andre L.

    2008-12-15

    This paper expands the consideration of the factors affecting the nanostructure and oxidative reactivity of diesel soot to include the impact of exhaust gas recirculation (EGR). Past work showed that soot derived from oxygenated fuels such as biodiesel carries some surface oxygen functionality and thereby possesses higher reactivity than soot from conventional diesel fuel. In this work, results show that EGR exerts a strong influence on the physical properties of the soot which leads to enhanced oxidation rate. HRTEM images showed a dramatic difference between the burning modes of the soot generated under 0 and 20% EGR. The soot produced under 0% EGR strictly followed an external burning mode with no evidence of internal burning. In contrast, soot generated under 20% EGR exhibited dual burning modes: slow external burning and rapid internal burning. The results demonstrate clearly that highly reactive soot can be achieved by manipulating the physical properties of the soot via EGR. (author)

  19. Laser ablated copper plasmas in liquid and gas ambient

    SciTech Connect

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-15

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (n{sub e}) determined using Stark broadening of the Cu I (3d{sup 10}4d{sup 1} {sup 2}D{sub 3/2}-3d{sup 10}4p{sup 1} {sup 2}P{sub 3/2} at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (T{sub e}) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ∼590 nm.

  20. Gas-injection experiments on a dense plasma focus

    SciTech Connect

    Barnouin, O.; Javedani, J.; Del Medico, S.; Miley, G.H.; Bromley, B.

    1994-12-31

    Rockford Technology Associates, Inc. (RTA) has been doing experiments on the Dense Plasma focus (DPF) device at the Fusion Studies Laboratory of the University of Illinois. This DPF consists of four racks of five 2-{mu}F capacitors whose charge is switched onto the inner electrode of a plasma focus by four Trigatron spark gaps. The stored energy is 12.5 kJ at 25 kV. The bank is usually discharged in a static fill of H{sub 2} at {approx} 6 torr. Preliminary experiments aimed at exploring the potential of the DPF device as a magnetoplasmadynamic (MPD) thruster and as an x-ray source for lithography have investigated various alternative ways of injecting gas between the electrodes. One of those approaches consists of injecting gas from the tip of the inner electrode at a steady rate. In this operation, the DPF chamber pressure was held constant by running the vacuum pump at full throttle. This operation simulated simultaneous pulsed injection at the base insulator and electrode tip. Hydrogen was fed through a 1/16th-inch hole at a flow rate of {approx} 90 cm/s. Pulsing was then performed at 23 kV, and the corresponding variations of the current were observed using a Rogowski coil. It is found that the plasma collapses into a pinch at the same time as in conventional experiments using a static fill. The singularity in the current waveform is slightly smaller with tip injection, but its size and shape are easily reproducible. Further details and comparison of this operation with conventional pulsing will be presented.

  1. Establishing isokinetic flow for a plasma torch exhaust gas diagnostic for a plasma hearth furnace

    SciTech Connect

    Pollack, Brian R.

    1996-05-01

    Real time monitoring of toxic metallic effluents in confined gas streams can be accomplished through use of Microwave Induced Plasmas to perform atomic emission spectroscopy, For this diagnostic to be viable it is necessary that it sample from the flowstream of interest in an isokinetic manner. A method of isokinetic sampling was established for this device for use in the exhaust system of a plasma hearth vitrification furnace. The flow and entrained particulate environment were simulated in the laboratory setting using a variable flow duct of the same dimensions (8-inch diameter, schedule 40) as that in the field and was loaded with similar particulate (less than 10 μm in diameter) of lake bed soil typically used in the vitrification process. The flow from the furnace was assumed to be straight flow. To reproduce this effect a flow straightener was installed in the device. An isokinetic sampling train was designed to include the plasma torch, with microwave power input operating at 2.45 GHz, to match local freestream velocities between 800 and 2400 ft/sec. The isokinetic sampling system worked as planned and the plasma torch had no difficulty operating at the required flowrates. Simulation of the particulate suspension was also successful. Steady particle feeds were maintained over long periods of time and the plasma diagnostic responded as expected.

  2. Pore structure and reactivity changes in hot coal gas desulfurization sorbents

    SciTech Connect

    Sotirchos, S.V.

    1991-05-01

    The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

  3. Infrared spectroscopy study of electrochromic nanocrystalline tungsten oxide films made by reactive advanced gas deposition

    NASA Astrophysics Data System (ADS)

    Solis, J. L.; Hoel, A.; Lantto, V.; Granqvist, C. G.

    2001-03-01

    Nanocrystalline W oxide films were produced by advanced reactive gas deposition. The material consisted of ˜6 nm diameter tetragonal crystallites, as found from x-ray diffraction and electron microscopy. Optoelectrochemical measurements demonstrated electrochromism upon Li+ intercalation/deintercalation, and infrared absorption spectroscopy gave clear evidence for longitudinal and transversal optical modes being modified following the lithiation. Our data were consistent with ionic transport predominantly in disordered grain boundaries and intercrystalline regions and with electrochromism being associated with small polaron formation.

  4. Plasma Sprayed Pour Tubes and Other Melt Handling Components for Use in Gas Atomization

    SciTech Connect

    Byrd, David; Rieken, Joel; Heidloff, Andy; Besser, Matthew; Anderson, Iver

    2011-04-01

    Ames Laboratory has successfully used plasma sprayed ceramic components made from yttria stabilized zirconia as melt pouring tubes for gas atomization for many years. These tubes have proven to be strong, thermal shock resistant and versatile. Various configurations are possible both internally and externally. Accurate dimensions are achieved internally with a machined fugitive graphite mandrel and externally by diamond grinding. The previous study of the effect of spray parameters on density was extended to determine the effect of the resulting density on the thermal shock characteristics on down-quenching and up-quenching. Encouraging results also prompted investigation of the use of plasma spraying as a method to construct a melt pour exit stopper that is mechanically robust, thermal shock resistant, and not susceptible to attack by reactive melt additions. The Ames Laboratory operates two close-coupled high pressure gas atomizers. These two atomizers are designed to produce fine and coarse spherical metal powders (5{mu} to 500{mu} diameter) of many different metals and alloys. The systems vary in size, but generally the smaller atomizer can produce up to 5 kg of powder whereas the larger can produce up to 25 kg depending on the charge form and density. In order to make powders of such varying compositions, it is necessary to have melt systems capable of heating and containing the liquid charge to the desired superheat temperature prior to pouring through the atomization nozzle. For some metals and alloys this is not a problem; however for some more reactive and/or high melting materials this can pose unique challenges. Figure 1 is a schematic that illustrates the atomization system and its components.

  5. Reactivation of latent viruses is associated with increased plasma cytokines in astronauts.

    PubMed

    Mehta, S K; Crucian, B E; Stowe, R P; Simpson, R J; Ott, C M; Sams, C F; Pierson, D L

    2013-01-01

    Success of long duration space missions will depend upon robust immunity. Decreased immunity has been observed in astronauts during short duration missions, as evident by the reactivation of latent herpes viruses. Seventeen astronauts were studied for reactivation and shedding of latent herpes viruses before, during, and after 9-14 days of 8 spaceflights. Blood, urine, and saliva samples were collected 10 days before the flight (L-10), during the flight (saliva only), 2-3h after landing (R+0), 3 days after landing (R+3), and 120 days after landing (R+120). Values at R+120 were used as baseline levels. No shedding of viruses occurred before flight, but 9 of the 17 (designated "virus shedders") shed at least one or more viruses during and after flight. The remaining 8 astronauts did not shed any of the 3 target viruses (non-virus shedders). Virus-shedders showed elevations in 10 plasma cytokines (IL-1α, IL-6, IL-8, IFNγ, IL-4, IL-10, IL-12, IL-13, eotaxin, and IP-10) at R+0 over baseline values. Only IL-4 and IP-10 were elevated in plasma of non-virus shedders. In virus shedders, plasma IL-4 (a Th2 cytokine) was elevated 21-fold at R+0, whereas IFNγ (a Th1 cytokine) was elevated only 2-fold indicating a Th2 shift. The inflammatory cytokine IL-6 was elevated 33-fold at R+0. In non-shedding astronauts at R+0, only IL-4 and IP-10 levels were elevated over baseline values. Elevated cytokines began returning to normal by R+3, and by R+120 all except IL-4 had returned to baseline values. These data show an association between elevated plasma cytokines and increased viral reactivation in astronauts. Copyright © 2012. Published by Elsevier Ltd.

  6. Influence of reactive species on the modification of biomolecules generated from the soft plasma

    PubMed Central

    Attri, Pankaj; Kumar, Naresh; Park, Ji Hoon; Yadav, Dharmendra Kumar; Choi, Sooho; Uhm, Han S.; Kim, In Tae; Choi, Eun Ha; Lee, Weontae

    2015-01-01

    Plasma medicine is an upcoming research area that has attracted the scientists to explore more deeply the utility of plasma. So, apart from the treating biomaterials and tissues with plasma, we have studied the effect of soft plasma with different feeding gases such as Air, N2 and Ar on modification of biomolecules. Hence, in this work we have used the soft plasma on biomolecules such as proteins ((Hemoglobin (Hb) and Myoglobin (Mb)), calf thymus DNA and amino acids. The structural changes or structural modification of proteins and DNA have been studied using circular dichroism (CD), fluorescence spectroscopy, protein oxidation test, gel electrophoresis, UV-vis spectroscopy, dynamic light scattering (DLS) and 1D NMR, while Liquid Chromatograph/Capillary Electrophoresis-Mass Spectrometer (LC/CE-MS) based on qualitative and quantitative bio-analysis have been used to study the modification of amino acids. Further, the thermal analysis of the protein has been studied with differential scanning calorimetry (DSC) and CD. Additionally, we have performed docking studies of H2O2 with Hb and Mb, which reveals that H2O2 molecules preferably attack the amino acids near heme group. We have also shown that N2 gas plasma has strong deformation action on biomolecules and compared to other gases plasma. PMID:25649786

  7. Influence of reactive species on the modification of biomolecules generated from the soft plasma.

    PubMed

    Attri, Pankaj; Kumar, Naresh; Park, Ji Hoon; Yadav, Dharmendra Kumar; Choi, Sooho; Uhm, Han S; Kim, In Tae; Choi, Eun Ha; Lee, Weontae

    2015-02-04

    Plasma medicine is an upcoming research area that has attracted the scientists to explore more deeply the utility of plasma. So, apart from the treating biomaterials and tissues with plasma, we have studied the effect of soft plasma with different feeding gases such as Air, N2 and Ar on modification of biomolecules. Hence, in this work we have used the soft plasma on biomolecules such as proteins ((Hemoglobin (Hb) and Myoglobin (Mb)), calf thymus DNA and amino acids. The structural changes or structural modification of proteins and DNA have been studied using circular dichroism (CD), fluorescence spectroscopy, protein oxidation test, gel electrophoresis, UV-vis spectroscopy, dynamic light scattering (DLS) and 1D NMR, while Liquid Chromatograph/Capillary Electrophoresis-Mass Spectrometer (LC/CE-MS) based on qualitative and quantitative bio-analysis have been used to study the modification of amino acids. Further, the thermal analysis of the protein has been studied with differential scanning calorimetry (DSC) and CD. Additionally, we have performed docking studies of H2O2 with Hb and Mb, which reveals that H2O2 molecules preferably attack the amino acids near heme group. We have also shown that N2 gas plasma has strong deformation action on biomolecules and compared to other gases plasma.

  8. Influence of reactive species on the modification of biomolecules generated from the soft plasma

    NASA Astrophysics Data System (ADS)

    Attri, Pankaj; Kumar, Naresh; Park, Ji Hoon; Yadav, Dharmendra Kumar; Choi, Sooho; Uhm, Han S.; Kim, In Tae; Choi, Eun Ha; Lee, Weontae

    2015-02-01

    Plasma medicine is an upcoming research area that has attracted the scientists to explore more deeply the utility of plasma. So, apart from the treating biomaterials and tissues with plasma, we have studied the effect of soft plasma with different feeding gases such as Air, N2 and Ar on modification of biomolecules. Hence, in this work we have used the soft plasma on biomolecules such as proteins ((Hemoglobin (Hb) and Myoglobin (Mb)), calf thymus DNA and amino acids. The structural changes or structural modification of proteins and DNA have been studied using circular dichroism (CD), fluorescence spectroscopy, protein oxidation test, gel electrophoresis, UV-vis spectroscopy, dynamic light scattering (DLS) and 1D NMR, while Liquid Chromatograph/Capillary Electrophoresis-Mass Spectrometer (LC/CE-MS) based on qualitative and quantitative bio-analysis have been used to study the modification of amino acids. Further, the thermal analysis of the protein has been studied with differential scanning calorimetry (DSC) and CD. Additionally, we have performed docking studies of H2O2 with Hb and Mb, which reveals that H2O2 molecules preferably attack the amino acids near heme group. We have also shown that N2 gas plasma has strong deformation action on biomolecules and compared to other gases plasma.

  9. Removal of carbon contaminations by RF plasma generated reactive species and subsequent effects on optical surface

    SciTech Connect

    Yadav, P. K. Rai, S. K.; Modi, M. H.; Nayak, M.; Lodha, G. S.; Kumar, M.; Chakera, J. A.; Naik, P. A.

    2015-06-24

    Carbon contamination on optical elements is a serious issue in synchrotron beam lines for several decades. The basic mechanism of carbon deposition on optics and cleaning strategies are not fully understood. Carbon growth mechanism and optimized cleaning procedures are worldwide under development stage. Optimized RF plasma cleaning is considered an active remedy for the same. In present study carbon contaminated optical test surfaces (carbon capped tungsten thin film) are exposed for 30 minutes to four different gases, rf plasma at constant power and constant dynamic pressure. Structural characterization (thickness, roughness and density) of virgin samples and plasma exposed samples was done by soft x-ray (λ=80 Å) reflectivity measurements at Indus-1 reflectivity beam line. Different gas plasma removes carbon with different rate (0.4 to 0.65 nm /min). A thin layer 2 to 9 nm of different roughness and density is observed at the top surface of tungsten film. Ar gas plasma is found more suitable for cleaning of tungsten surface.

  10. Optimization of time on CF{sub 4}/O{sub 2} etchant for inductive couple plasma reactive ion etching of TiO{sub 2} thin film

    SciTech Connect

    Adzhri, R. Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M.; Arshad, M. K. Md. Hashim, U.; Ayub, R. M.

    2016-07-06

    In this work, we investigate the optimum etching of titanium dioxide (TiO{sub 2}) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF{sub 4}/O{sub 2} gases as plasma etchant with ratio of 3:1, three samples of TiO{sub 2} thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF{sub 4} gases with plasma enhancement by O{sub 2} gas able to break the oxide bond of TiO{sub 2} and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  11. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Boundary instability of an erosion laser plasma expanding into a background gas

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Grishina, V. G.; Derkach, O. N.; Kanevskiĭ, M. F.; Sebrant, A. Yu

    1993-12-01

    The stability of the contact region in the system consisting of an erosion plasma and a gas has been determined experimentally under conditions such that the length of the applied laser pulse is longer than the rise time of the instability, and the expansion of the erosion plume is accompanied by breakdown of the background gas. The evolution of perturbations of the plasma front following the introduction of initial perturbations with a fixed spatial period has been studied. It is possible to model the injection of plasma bunches into a low-pressure gas by studying the dynamics of the vaporization at moderate laser-light intensities, characteristic of technological applications.

  12. Chemical kinetics and reactive species in atmospheric pressure helium-oxygen plasmas with humid-air impurities

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2013-02-01

    In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium-oxygen mixture plasmas (He-O2, helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species.

  13. Reactive oxygen species produced via plasma membrane NADPH oxidase regulate anthocyanin synthesis in apple peel.

    PubMed

    Zhang, Jiangli; Chen, Changsheng; Zhang, Di; Li, Houhua; Li, Pengmin; Ma, Fengwang

    2014-11-01

    Solar ultraviolet irradiation regulates anthocyanin synthesis in apple peel by modulating the production of reactive oxygen species via plasma membrane NADPH oxidase instead of other pathways. The synthesis of anthocyanin in apple peels is dependent upon solar irradiation. Using 3-mm commercial glass to attenuate solar UV-A and UV-B light, we confirmed that solar UV irradiation regulated anthocyanin synthesis in apple peels after exposing previously bagged fruit to sunlight. During sunlight exposure, UV attenuation did not affect the expression of MdHY5, MdCOP1, or MdCRY2, but significantly lowered plasma membrane NADPH oxidase activity and superoxide anion concentrations. UV attenuation also reduced the expression levels of MdMYB10, MdPAL, MdCHS, MdF3H, MdDFR, MdANS and MdUFGT1, UDP-glycose:flavonoid 3-O-glycosyltransferase (UFGT) activity, and local concentrations of anthocyanin and quercetin-3-glycoside. In contrast, exogenous application of hydrogen peroxide could enhance anthocyanin and quercetin-3-glycoside synthesis. Xanthophyll cycle pool size on a chlorophyll basis was higher but its de-epoxidation was lower under direct sunlight irradiation than that under UV-attenuating conditions. This suggests that reactive oxygen species (ROS) produced in chloroplast are not major contributors to anthocyanin synthesis regulation. Inhibition of plasma membrane NADPH oxidase activity lowered the production of ROS through this mechanism, significantly inhibited the synthesis of anthocyanin, and increased the total production of ROS in apple peel under direct sunlight irradiation, suggesting that ROS produced via plasma membrane NADPH oxidase regulates anthocyanin synthesis. In summary, solar UV irradiation regulated anthocyanin synthesis in apple peels by modulating the production of ROS via plasma membrane NADPH oxidase.

  14. A simple far-infrared laser interferometer for measuring electron densities in reactive low-temperature plasmas

    SciTech Connect

    Pargmann, C.; Singh, S.V.; Soltwisch, H.

    2005-11-15

    A sensitive far-infrared (fir) interferometer for electron density measurements in reactive low-temperature plasmas is described. The instrument is based on an optically pumped fir laser (wavelength range 50-600 {mu}m depending on the working gas) and makes use of the nonlinear relation between output power and cavity loss. The fir beam, which leaves the resonator through a coupling hole in the end mirror, is reflected back into the cavity, such that the coupling hole behaves like a variable 'leak' with a loss rate depending on the phase of the reentering wave relative to the standing wave within the resonator. As a result of the feedback, the output intensity undergoes strong nonlinear variations if the optical distance of the external mirror is changed by small amounts, {delta}z. The power variation is monitored through a small opening in the external mirror. Test experiments using a wavelength of 432.6 {mu}m and a Schottky-diode detector have yielded a minimum detectable pathlength variation of {delta}z=0.4 {mu}m, corresponding to a change of the line-integrated electron density n{sub e}xL of about 5x10{sup 15} m{sup -2}. A first application to argon plasmas in inductively coupled rf discharges has been made, and the results have been compared to concomitant Langmuir probe measurements.

  15. Helium-based cold atmospheric plasma-induced reactive oxygen species-mediated apoptotic pathway attenuated by platinum nanoparticles.

    PubMed

    Jawaid, Paras; Rehman, Mati Ur; Zhao, Qing Li; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Shimizu, Tadamichi; Kondo, Takashi

    2016-09-01

    Plasma is generated by ionizing gas molecules. Helium (He)-based cold atmospheric plasma (CAP) was generated using a high-voltage power supply with low-frequency excitation (60 Hz at 7 kV) and He flow at 2 l/min. Platinum nanoparticles (Pt-NPs) are potent antioxidants due to their unique ability to scavenge superoxides and peroxides. These features make them useful for the protection against oxidative stress-associated pathologies. Here, the effects of Pt-NPs on He-CAP-induced apoptosis and the underlying mechanism were examined in human lymphoma U937 cells. Apoptosis was measured after cells were exposed to He-CAP in the presence or absence of Pt-NPs. The effects of combined treatment were determined by observing the changes in intracellular reactive oxygen species (ROS) and both mitochondrial and Fas dependent pathway. The results indicate that Pt-NPs substantially scavenge He-CAP-induced superoxides and peroxides and inhibit all the pathways involved in apoptosis execution. This might be because of the SOD/catalase mimetic effects of Pt-NPs. These results showed that the Pt-NPs can induce He-CAP desensitization in human lymphoma U937 cells. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Low-temperature growth of gallium nitride films by inductively coupled-plasma-enhanced reactive magnetron sputtering

    SciTech Connect

    Ni, Chih-Jui; Chau-Nan Hong, Franklin

    2014-05-15

    Gallium nitride (GaN) films were grown on sapphire substrate by reactive magnetron sputtering. Inductively coupled-plasma (ICP) source was installed between the substrate holder and the sputtering target to increase the plasma density and the degree of ionization of nitrogen gas. Liquid Ga and Ar/N{sub 2} were used as the sputtering target and sputtering gases, respectively. X-ray diffraction measurements confirmed that the authors could grow high quality GaN crystallites at 500 °C. However, the crystalline GaN (0002) peak remained even by lowering the growth temperature down to 300 °C. The N:Ga ratio of the film grown at 500 °C was almost 1:1, and the nitrogen composition became higher toward the 1:1 N:Ga ratio with increasing the growth temperature. The high degree of ionization induced by ICP source was essential to the growth of high crystalline quality GaN films.

  17. Investigations of nitrogen oxide plasmas: Fundamental chemistry and surface reactivity and monitoring student perceptions in a general chemistry recitation

    NASA Astrophysics Data System (ADS)

    Blechle, Joshua M.

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of these plasma systems. Understanding the kinetics and thermodynamics of processes in these systems is vital to realizing their potential in a range of applications. Unraveling the complex chemical nature of these systems, however, presents numerous challenges. As such, this work serves as a foundational step in the diagnostics and assessment of these NxOy plasmas. The partitioning of energy within the plasma system is essential to unraveling these complications as it provides insight into both gas and surface reactivity. To obtain this information, techniques such as optical emission spectroscopy (OES), broadband absorption spectroscopy (BAS), and laser induced fluorescence (LIF) were utilized to determine species energetics (vibrational, rotational, translational temperatures). These temperature data provide mechanistic insight and establish the relationships between system parameters and energetic outcomes. Additionally, these data are also correlated to surface reactivity data collected with the Imaging of Radicals Interacting with Surfaces (IRIS) technique. IRIS data demonstrate the relationship between internal temperatures of radicals and their observed surface scatter coefficients (S), the latter of which is directly related to surface reactivity (R) [R = 1-S]. Furthermore, time-resolved (TR) spectroscopic techniques, specifically TR-OES, revealed kinetic trends in NO and N2 formation from a range of precursors (NO, N2O, N2/O2). By examining the rate constants associated with the generation and destruction of various plasma species we can investigate possible mechanistic implications. All told, such data provides

  18. Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modeling

    USGS Publications Warehouse

    Amos, Richard T.; Mayer, K. Ulrich

    2006-01-01

    Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.

  19. Quantum State-Resolved Reactive and Inelastic Scattering at Gas-Liquid and Gas-Solid Interfaces

    NASA Astrophysics Data System (ADS)

    Grütter, Monika; Nelson, Daniel J.; Nesbitt, David J.

    2012-06-01

    Quantum state-resolved reactive and inelastic scattering at gas-liquid and gas-solid interfaces has become a research field of considerable interest in recent years. The collision and reaction dynamics of internally cold gas beams from liquid or solid surfaces is governed by two main processes, impulsive scattering (IS), where the incident particles scatter in a few-collisions environment from the surface, and trapping-desorption (TD), where full equilibration to the surface temperature (T{TD}≈ T{s}) occurs prior to the particles' return to the gas phase. Impulsive scattering events, on the other hand, result in significant rotational, and to a lesser extent vibrational, excitation of the scattered molecules, which can be well-described by a Boltzmann-distribution at a temperature (T{IS}>>T{s}). The quantum-state resolved detection used here allows the disentanglement of the rotational, vibrational, and translational degrees of freedom of the scattered molecules. The two examples discussed are (i) reactive scattering of monoatomic fluorine from room-temperature ionic liquids (RTILs) and (ii) inelastic scattering of benzene from a heated (˜500 K) gold surface. In the former experiment, rovibrational states of the nascent HF beam are detected using direct infrared absorption spectroscopy, and in the latter, a resonace-enhanced multi-photon-ionization (REMPI) scheme is employed in combination with a velocity-map imaging (VMI) device, which allows the detection of different vibrational states of benzene excited during the scattering process. M. E. Saecker, S. T. Govoni, D. V. Kowalski, M. E. King and G. M. Nathanson Science 252, 1421, 1991. A. M. Zolot, W. W. Harper, B. G. Perkins, P. J. Dagdigian and D. J. Nesbitt J. Chem. Phys 125, 021101, 2006. J. R. Roscioli and D. J. Nesbitt Faraday Disc. 150, 471, 2011.

  20. Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death

    NASA Astrophysics Data System (ADS)

    Yuyang, Wang; Cheng, Cheng; Peng, Gao; Shaopeng, Li; Jie, Shen; Yan, Lan; Yongqiang, Yu; Paul, K. Chu

    2017-02-01

    An atmospheric-pressure air plasma is employed to treat C6 glioma cells in vitro. To elucidate on the mechanism causing cell death and role of reactive species (RS) in the medium produced by the plasma, the concentration of the long-lived RS such as hydrogen peroxide, nitrate, and ozone in the plasma-treated liquid (phosphate-buffered saline solution) is measured. When vitamin C is added to the medium as a ROS quencher, the viability of C6 glioma cells after the plasma treatment is different from that without vitamin C. The results demonstrate that reactive oxygen species (ROS) such as H2O2, and O3 constitute the main factors for inactivation of C6 glioma cells and the reactive nitrogen species (RNS) may only play an auxiliary role in cell death.

  1. Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death

    NASA Astrophysics Data System (ADS)

    Wang, Yuyang; Cheng, Cheng; Gao, Peng; Li, Shaopeng; Shen, Jie; Lan, Yan; Yu, Yongqiang; Chu, Paul K.

    2017-02-01

    An atmospheric-pressure air plasma is employed to treat C6 glioma cells in vitro. To elucidate on the mechanism causing cell death and role of reactive species (RS) in the medium produced by the plasma, the concentration of the long-lived RS such as hydrogen peroxide, nitrate, and ozone in the plasma-treated liquid (phosphate-buffered saline solution) is measured. When vitamin C is added to the medium as a ROS quencher, the viability of C6 glioma cells after the plasma treatment is different from that without vitamin C. The results demonstrate that reactive oxygen species (ROS) such as H2O2, and O3 constitute the main factors for inactivation of C6 glioma cells and the reactive nitrogen species (RNS) may only play an auxiliary role in cell death.

  2. Unusually high reactivity of apolipoprotein B-100 among proteins to radical reactions induced in human plasma.

    PubMed

    Hashimoto, R; Narita, S; Yamada, Y; Tanaka, K; Kojo, S

    2000-01-17

    Relative reactivities of proteins to radical reactions caused in human plasma were studied for the first time utilizing an immunoblotting assay. When radical reactions were caused by Cu(2+), apolipoprotein B-100 (apoB) underwent extensive fragmentation concurrently with the decrease in alpha-tocopherol, while human serum albumin (HSA) and transferrin (TF) were not decreased at all. When radical reactions were initiated by Cu(2+) with hydrogen peroxide or 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), alpha-tocopherol and apoB were also decreased steadily but HSA and TF were not decreased. These observations indicate that apoB is extremely reactive, even comparable to alpha-tocopherol, towards radical reactions. These results also suggest that the radical reaction of apoB is a possible process in vivo and it is involved in atherogenesis along with low density lipoprotein lipid peroxidation, which has been studied extensively.

  3. ORIGIN OF THERMAL FLUIDS AT LASSEN VOLCANIC NATIONAL PARK: EVIDENCE FROM NOBLE AND REACTIVE GAS ABUNDANCES.

    USGS Publications Warehouse

    Truesdell, Alfred H.; Mazor, Emanuel; Nehring, Nancy L.

    1983-01-01

    Thermal fluid discharges at Lassen are dominated by high-altitude fumaroles and acid-sulfate hot springs in the Park, and lower altitude, neutral, high-chloride hot springs in Mill Valley 7-10 km to the south. The interrelations of these fluids have been studied by noble and reactive gas analyses. Atmospheric noble gas (ANG) contents of superheated fumaroles are similar to those of air-saturated recharge water (ASW) at 5 degree C and 2500-m elevation. Low-elevation, high-chloride, hot-spring waters are highly depleted in ANG, relative to the ASW. The surface temperatures and gas chemistry of the fumaroles and hot springs suggest that steam originating from partial to near-complete vaporization of liquid from a boiling, high-chloride, hot water aquifer is decompressed adiabatically, and more or less mixed with shallow groundwater to form superheated and drowned fumaroles within the Park. Refs.

  4. Plasma-gas interactions studies in a hybrid plume plasma rocket

    NASA Technical Reports Server (NTRS)

    Chang, F. R.; Krueger, W. A.; Yang, T. F.; Fisher, J. L.

    1985-01-01

    Plasma-gas interaction was investigated and the basic mechanisms for energy and particle transport. The solution approach assumes cylindrical geometry and includes a multiplicity of atomic reactions, and the presence of a strong magnetic field is described. The principal reactions are electron and ion impact ionization, and charge exchange between hot ions and cold neutrals. Radial particle and energy transport is mainly by diffusion. A modified Bohm diffusion model for plasma in the core of the plume, and classical neutral particle diffusion in the cooler regions of the flow are presented. Neutrals are allowed to free stream in the low density regions, where the collision mean-free-path becomes comparable, or even larger than the characteristic dimensions of the system.

  5. High Power Light Gas Helicon Plasma Source for VASIMR

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2004-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.

  6. High Power Light Gas Helicon Plasma Source for VASIMR

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2004-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.

  7. Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma.

    PubMed

    Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T

    2015-06-26

    It is shown, by simulation and theory, that circularly or elliptically polarized terahertz radiation can be generated when a static magnetic (B) field is imposed on a gas target along the propagation direction of a two-color laser driver. The radiation frequency is determined by √[ω(p)(2)+ω(c)(2)/4]+ω(c)/2, where ω(p) is the plasma frequency and ω(c) is the electron cyclotron frequency. With the increase of the B field, the radiation changes from a single-cycle broadband waveform to a continuous narrow-band emission. In high-B-field cases, the radiation strength is proportional to ω(p)(2)/ω(c). The B field provides a tunability in the radiation frequency, spectrum width, and field strength.

  8. Initial experiments of RF gas plasma source for heavy ionfusion

    SciTech Connect

    Ahle, L.; Hall, R.; Molvik, A.W.; Chacon-Golcher, E.; Kwan, J.W.; Leung, K.N.; Reijonen, J.

    2002-05-22

    The Source Injector Program for the US Heavy Ion Fusion Virtual National Laboratory is currently exploring the feasibility of using RF gas plasma sources for a HIF driver. This source technology is presently the leading candidate for the multiple aperture concept, in which bright millimeter size beamlets are extracted and accelerated electrostatically up to 1 MeV before the beamlets are allowed to merge and form 1 A beams. Initial experiments have successfully demonstrated simultaneously high current density, {approx} 100 mA/cm{sup 2} and fast turn on, {approx} 1 {micro}s. These experiments were also used to explore operating ranges for pressure and RF power. Results from these experiments are presented as well as progress and plans for the next set of experiments for these sources.

  9. Laboratory tests in support of the MSRE reactive gas removal system

    SciTech Connect

    Rudolph, J.C.; Del Cul, G.D.; Caja, J.; Toth, L.M.; Williams, D.F.; Thomas, K.S.; Clark, D.E.

    1997-07-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since December 1969, at which time the molten salt mixture of LiF-BeF{sub 2}-ZrF{sub 4}-{sup 233}UF{sub 4} (64.5-30.3-5.0-0.13 mol%) was transferred to fuel salt drain tanks for storage. In the late 1980s, increased radiation in one of the gas lines from the drain tank was attributed to {sup 233}UF{sub 6}. In 1994 two gas samples were withdraw (from a gas line in the Vent House connecting to the drain tanks) and analyzed. Surprisingly, 350 mm Hg of F{sub 2}, 70 mm Hg of UF{sub 6}, and smaller amounts of other gases were found in both of the samples. To remote this gas from above the drain tanks and all of the associated piping, the reactive gas removal system (RGRS) was designed. This report details the laboratory testing of the RGRS, using natural uranium, prior to its implementation at the MSRE facility. The testing was performed to ensure that the equipment functioned properly and was sufficient to perform the task while minimizing exposure to personnel. In addition, the laboratory work provided the research and development effort necessary to maximize the performance of the system. Throughout this work technicians and staff who were to be involved in RGRS operation at the MSRE site worked directly with the research staff in completing the laboratory testing phase. Consequently, at the end of the laboratory work, the personnel who were to be involved in the actual operations had acquired all of the training and experience necessary to continue with the process of reactive gas removal.

  10. Pain reactivity and plasma beta-endorphin in children and adolescents with autistic disorder.

    PubMed

    Tordjman, Sylvie; Anderson, George M; Botbol, Michel; Brailly-Tabard, Sylvie; Perez-Diaz, Fernando; Graignic, Rozenn; Carlier, Michèle; Schmit, Gérard; Rolland, Anne-Catherine; Bonnot, Olivier; Trabado, Séverine; Roubertoux, Pierre; Bronsard, Guillaume

    2009-08-26

    Reports of reduced pain sensitivity in autism have prompted opioid theories of autism and have practical care ramifications. Our objective was to examine behavioral and physiological pain responses, plasma beta-endorphin levels and their relationship in a large group of individuals with autism. The study was conducted on 73 children and adolescents with autism and 115 normal individuals matched for age, sex and pubertal stage. Behavioral pain reactivity of individuals with autism was assessed in three observational situations (parents at home, two caregivers at day-care, a nurse and child psychiatrist during blood drawing), and compared to controls during venepuncture. Plasma beta-endorphin concentrations were measured by radioimmunoassay. A high proportion of individuals with autism displayed absent or reduced behavioral pain reactivity at home (68.6%), at day-care (34.2%) and during venepuncture (55.6%). Despite their high rate of absent behavioral pain reactivity during venepuncture (41.3 vs. 8.7% of controls, P<0.0001), individuals with autism displayed a significantly increased heart rate in response to venepuncture (P<0.05). Moreover, this response (Delta heart rate) was significantly greater than for controls (mean+/-SEM; 6.4+/-2.5 vs. 1.3+/-0.8 beats/min, P<0.05). Plasma beta-endorphin levels were higher in the autistic group (P<0.001) and were positively associated with autism severity (P<0.001) and heart rate before or after venepuncture (P<0.05), but not with behavioral pain reactivity. The greater heart rate response to venepuncture and the elevated plasma beta-endorphin found in individuals with autism reflect enhanced physiological and biological stress responses that are dissociated from observable emotional and behavioral reactions. The results suggest strongly that prior reports of reduced pain sensitivity in autism are related to a different mode of pain expression rather than to an insensitivity or endogenous analgesia, and do not support opioid

  11. Positron transport and thermalization - the plasma-gas interface

    NASA Astrophysics Data System (ADS)

    Marler, Joan

    2008-11-01

    Low energy positrons are now used in many fields including atomic physics, material science and medicine [1]. Plasma physics is providing new tools for this research, including Penning-Malmberg buffer-gas traps to accumulate positrons and the use of rotating electric fields (the ``rotating wall'' technique) to compress positrons radially and create tailored beams [1]. These devices (now available commercially), which rely in key instances on positron-neutral interactions, are a convenient way to create plasmas and beams for a variety of applications. A deeper understanding of the relevant cooling and loss mechanisms is required to take full advantage of this technology. This talk focuses on a recent study of positrons in such a tenuous gaseous environment in the presence of an applied electric field [2]. Energy-resolved collision cross sections and a Monte Carlo code modified to include positrionium (Ps) formation are used to obtain transport coefficients and the thermalization and Ps-formation rates. A markedly different type of negative differential conductivity is observed (i.e., not seen in electron systems), due to the non-conservative nature of the Ps-formation process. It is particularly prominent in gases with large, highly energy dependent Ps-formation cross sections. The relevance of these calculations to other positron applications will also be discussed, including a currently planned study of positrons in gaseous water. It is hoped that these calculations will inspire a new generation of positron transport experiments.*Work done in collaboration with Z.Lj. Petrovi'c, A. Bankovi'c, M. Suvakov, G. Malovi'c, S. Dujko, S.J. Buckman. 1. C. M. Surko and R. G. Greaves, Phys. Plasmas 11, 2333-2348 (2004).2. A. Bankovi'c, J. P. Marler, M. Suvakov, G. Malovi'c, and Z. Lj. Petrovi'c, Nucl. Instrum. and Meth. in Phys. Res. B 266, 462-465 (2008).

  12. Rapid damage-free shaping of silicon carbide using reactive atom plasma (RAP) processing

    NASA Astrophysics Data System (ADS)

    Verma, Yogesh; Chang, Andrew K.; Berrett, John W.; Futtere, Kenneth; Gardopee, George J.; Kelley, Jude; Kyler, Thomas; Lee, Jeonghwa; Lyford, Nick; Proscia, David; Sommer, Phillip R.

    2006-06-01

    Mechanical grinding and shaping of optical materials imparts damage that manifests itself as defects and cracks that can propagate well below the surface of the optic. Mitigation of damage is necessary to preserve the integrity of the optic and relieve residual stress that can be detrimental to its performance. Typically, a sequence of subsequent polishing steps with finer and finer grit sizes is used to remove damage, but the process can be painfully slow especially for hard materials such as silicon carbide and often fails to remove all the damage. Reactive Atom Plasma (RAP TM) processing, a non-contact, atmospheric pressure plasma-based process, has been shown to reveal and mitigate sub-surface damage in optical materials. Twyman stress tests on thin glass and SiC substrates demonstrate RAP's ability to relieve the stress while at the same time improving surface form.

  13. Nonconventional ultra-precision manufacturing of ULE mirror surfaces using atmospheric reactive plasma jets

    NASA Astrophysics Data System (ADS)

    Arnold, Thomas; Böhm, Georg; Paetzelt, Hendrik

    2016-07-01

    In this paper we present a non-abrasive surface manufacturing technology suited for fast and efficient figuring of optical surfaces made of ULE (Corning Ultra Low Expansion) glass. Plasma Jet Machining (PJM) technology is based on an atmospheric chemical reactive plasma jet tool that locally interacts with the surface in order to remove material by chemical reactions forming volatile species. ULE has been proven to be suited for the PJM process. It has been found that the volume removal rate is approximately 25% higher than for fused silica and values up to 50mm3/min can be reached with our setup. Thus, figuring and figure error correction of large optics like mirror segments for earth based telescopes can be realized within a reasonable time. In the paper principles of the PJM process as well as ULE specific issues are discussed and machining results are presented.

  14. Gas-Phase Reactivity of Protonated 2-, 3- and 4-Dehydropyridine Radicals Toward Organic Reagents

    PubMed Central

    Adeuya, Anthony; Price, Jason M.; Jankiewicz, Bartłomiej J.; Nash, John J.; Kenttämaa, Hilkka I.

    2009-01-01

    In order to explore the effects of the electronic nature of charged phenyl radicals on their reactivity, reactions of the three distonic isomers of ndehydropyridinium cation (n = 2, 3 or 4) have been investigated in the gas phase by using Fourier-transform ion cyclotron resonance mass spectrometry. All three isomers react with cyclohexane, methanol, ethanol and 1-pentanol exclusively via hydrogen atom abstraction, and with allyl iodide mainly via iodine atom abstraction, with a reaction efficiency ordering: 2 > 3 > 4. The observed reactivity ordering correlates well with the calculated vertical electron affinities of the charged radicals (i.e., the higher the vertical electron affinity, the faster the reaction). Charged radicals 2 and 3 also react with tetrahydrofuran exclusively via hydrogen atom abstraction, but the reaction of 4 with tetrahydrofuran yields products arising from nonradical reactivity. The unusual reactivity of 4 is likely to result from the contribution of an ionized carbene-type resonance structure that facilitates nucleophilic addition to the most electrophilic carbon atom (C-4) in this charged radical. The influence of such a resonance structure on the reactivity of 2 is not obvious, and this may be due to stabilizing hydrogen-bonding interactions in the transition states for this molecule. Charged radicals 2 and 3 abstract a hydrogen atom from the substituent in both phenol and toluene, but 4 abstracts a hydrogen atom from the phenyl ring – a reaction that is unprecedented for phenyl radicals. Charged radical 4 reacts with tert-butyl isocyanide mainly by hydrogen cyanide (HCN) abstraction while CN abstraction is the principal reaction for 2 and 3. The different reactivity observed for 4 (compared to 2 and 3) is likely to result from different charge and spin distributions of the reaction intermediates for these charged radicals. PMID:19902945

  15. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Investigation of laser plasma expansion in an ambient gas by high-speed photography

    NASA Astrophysics Data System (ADS)

    Anan'in, O. B.; Bykovskiĭ, Yu A.; Eremin, Yu V.; Stupitskiĭ, E. L.; Novikov, I. K.; Frolov, S. P.

    1991-07-01

    A method was developed for investigating the behavior of a laser plasma in vacuum and in an ambient gas by high-speed photography. Photographs were obtained of laser plasma expansion in an ambient gas at various pressures. A hydrodynamic instability of the laser plasma front was observed during expansion in an ambient gas. The experimental results were analyzed theoretically.

  16. Improved Back-Side Purge-Gas Chambers For Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Ezell, Kenneth G.; Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved chambers for inert-gas purging of back sides of workpieces during plasma arc welding in keyhole (full-penetration) mode based on concept of directing flows of inert gases toward, and concentrating them on, hot weld zones. Tapered chamber concentrates flow of inert gas on plasma arc plume and surrounding metal.

  17. Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls

    NASA Astrophysics Data System (ADS)

    Yusupov, M.; Neyts, E. C.; Khalilov, U.; Snoeckx, R.; van Duin, A. C. T.; Bogaerts, A.

    2012-09-01

    In recent years there has been growing interest in the use of low-temperature atmospheric pressure plasmas for biomedical applications. Currently, however, there is very little fundamental knowledge regarding the relevant interaction mechanisms of plasma species with living cells. In this paper, we investigate the interaction of important plasma species, such as O3, O2 and O atoms, with bacterial peptidoglycan (or murein) by means of reactive molecular dynamics simulations. Specifically, we use the peptidoglycan structure to model the gram-positive bacterium Staphylococcus aureus murein. Peptidoglycan is the outer protective barrier in bacteria and can therefore interact directly with plasma species. Our results demonstrate that among the species mentioned above, O3 molecules and especially O atoms can break important bonds of the peptidoglycan structure (i.e. C-O, C-N and C-C bonds), which subsequently leads to the destruction of the bacterial cell wall. This study is important for gaining a fundamental insight into the chemical damaging mechanisms of the bacterial peptidoglycan structure on the atomic scale.

  18. Plasma lipoproteins in familial lecithin:cholesterol acyltransferase deficiency: lipid composition and reactivity in vitro

    PubMed Central

    Glomset, John A.; Norum, Kaare R.; King, Weiling

    1970-01-01

    Plasma lipoproteins from patients with familial lecithin:cholesterol acyltransferase (LCAT) deficiency have been fractioned by preparative ultra-centrifugation and gel filtration and their lipid content and reactivity studied. All of the lipoproteins are abnormal with respect to lipid concentration or relative lipid content. The low density lipoproteins (LDL) and high density lipoproteins (HDL) appear to react normally with partially purified LCAT from normal plasma. Also, the lipids of the very low density lipoproteins (VLDL) and LDL, like those of the corresponding lipoproteins of normal plasma, are indirectly altered by the action of LCAT on normal HDL. Thus, during incubation in vitro VLDL cholesteryl ester is increased and VLDL triglyceride is decreased, as described by others for VLDL from hyperlipemic plasma, and both the unesterified cholesterol and lecithin of the VLDL and LDL are decreased. The patients' VLDL and LDL are abnormal, however, in that they lose unesterified cholesterol and lecithin to normal HDL in the absence of LCAT. Also, the patients' HDL lose these lipids to erythrocyte membranes in the absence of the enzyme. Our results provide further evidence that the abnormal cholesterol and phospholipid composition of the patients' lipoproteins is caused by the LCAT deficiency. They support the postulate that an excess of unesterified cholesterol and lecithin develops as VLDL are converted to LDL and HDL and suggest that in the absence of LCAT this excess lipid distributes among plasma lipoproteins and plasma membranes. They further suggest that LCAT normally reduces this excess lipid through a combination of direct and indirect effects. PMID:5456796

  19. Measurement and modeling of plasma parameters in reactive high-power impulse magnetron sputtering of Ti in Ar/O2 mixtures

    NASA Astrophysics Data System (ADS)

    Čada, M.; Lundin, D.; Hubička, Z.

    2017-05-01

    A reactive high-power impulse magnetron sputtering (HiPIMS) process using a titanium target in a mixture of Ar/O2 has been investigated for different modes of operation including pure argon, metallic, transition, and compound mode. The trends and changes in the plasma density ne and the effective electron temperature Teff, have been measured by the time-resolved Langmuir probe technique. The same experimental process conditions have also been studied using a recently developed reactive ionization region model (R-IRM), making it possible to compare the acquired experimental results with the model results. It was found that trends in the plasma density and mean electron energy as measured by the Langmuir probe are in good agreement with the results obtained from the R-IRM model for different pulse discharge current densities. The effective electron temperature generally increases with an increasing oxygen flow rate. It is likely due to a reduction of sputtered Ti, due to compound formation on the target, which forces the discharge to increase the electron energy to increase the ionization rate of the process gas (Ar/O2) to maintain a high HiPIMS discharge current. Small variations in the plasma density were detected between the middle part of the plasma pulse as compared to the end of the plasma pulse, when transitioning from the metal mode to the poisoned mode. It is found that the time-evolution of the electron density is rather well correlated with the discharge current waveform. On the other hand, the mean electron energy did not change significantly between the middle and the end of the plasma pulse. For the lower pulse discharge current, both the model and experimental data have shown a slight increase in the plasma density with increasing O2 mass flow rate.

  20. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  1. An enhancement of plasma density by neutral gas injection observed in SEPAC Spacelab-1 experiment

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Kubota, S.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.; Williamson, P. R.

    1985-01-01

    An enhancement of plasma density observed during a neutral gas injection in Space Experiments with Particle Accelerators by the Space Shuttle/Spacelab-1 is presented. When a plume of nitrogen gas was injected from the orbiter into space, a large amount of plasma was detected by an onboard plasma probe. The observed density often increased beyond the background plasma density and was strongly dependent on the attitude of the orbiter with respect to the velocity vector. This effect has been explained by a collisional interaction between the injected gas molecules and the ionospheric ions relatively drifting at the orbital speed.

  2. Effects of gas flow on oxidation reaction in liquid induced by He/O{sub 2} plasma-jet irradiation

    SciTech Connect

    Nakajima, Atsushi; Uchida, Giichiro Takenaka, Kosuke; Setsuhara, Yuichi; Kawasaki, Toshiyuki; Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Shiratani, Masaharu

    2015-07-28

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

  3. Electron ranaway and ion-ion plasma formation in afterglow low-pressure plasma of oxygen-containing gas mixtures

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Kosykh, Nikolay; Gutsev, Sergey

    2012-10-01

    Experimental investigation of temporal evolution of charged plasma species in afterglow plasma of oxygen-containing mixtures have been investigated. The probe VAC and the time dependence of the saturation positive and negative particles currents to a probe in a fixed bias voltage were performed. The decay of afterglow low-pressure electronegative gas plasmas take place in two distinct stages (the electron-ion stage, and the ion-ion stage) as it was shown in [1] for pure oxygen. In the first stage, the negative ions are locked within a discharge volume and plasma is depleted of electrons and positive ions. The electron density decay is faster, than exponential, and practically all electrons leave plasma volume during finite time followed by the ion--ion (electron-free) plasma formation. The decay of the ion-ion plasma depends on the presence of detachment. With a large content of electronegative gas (oxygen) in a mixture, when there is a ``detachment particles,'' a small fraction of the electrons appearing as a result of the detachment continue to hold all negative ions in the discharge volume. In this case, the densities of all charged plasma components decay according to the same exponential law with a characteristic detachment time. At a low oxygen content in the gas mixture there is no detachment and plasma decays by an ion--ion ambipolar diffusion mechanism.[4pt][1]. S.A.Gutsev, A.A.Kudryavtsev, V.A.Romanenko. Tech.Phys. 40, 1131, (1995).

  4. A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Zheng, B. C.; Wu, Z. L.; Wu, B.; Li, Y. G.; Lei, M. K.

    2017-05-01

    A spatially averaged, time-dependent global plasma model has been developed to describe the reactive deposition of a TiAlSiN thin film by modulated pulsed power magnetron sputtering (MPPMS) discharges in Ar/N2 mixture gas, based on the particle balance and the energy balance in the ionization region, and considering the formation and erosion of the compound at the target surface. The modeling results show that, with increasing the N2 partial pressure from 0% to 40% at a constant working pressure of 0.3 Pa, the electron temperature during the strongly ionized period increases from 4 to 7 eV and the effective power transfer coefficient, which represents the power fraction that effectively heats the electrons and maintains the discharge, increases from about 4% to 7%; with increasing the working pressure from 0.1 to 0.7 Pa at a constant N2 partial pressure of 25%, the electron temperature decreases from 10 to 4 eV and the effective power transfer coefficient decreases from 8% to 5%. Using the modeled plasma parameters to evaluate the kinetic energy of arriving ions, the ion-to-neutral flux ratio of deposited species, and the substrate heating, the variations of process parameters that increase these values lead to an enhanced adatom mobility at the target surface and an increased input energy to the substrate, corresponding to the experimental observation of surface roughness reduction, the microstructure transition from the columnar structure to the dense featureless structure, and the enhancement of phase separation. At higher N2 partial pressure or lower working pressure, the modeling results demonstrate an increase in electron temperature, which shifts the discharge balance of Ti species from Ti+ to Ti2+ and results in a higher return fraction of Ti species, corresponding to the higher Al/Ti ratio of deposited films at these conditions. The modeling results are well correlated with the experimental observation of the composition variation and the microstructure

  5. Residual gas analysis of a dc plasma for carbon nanofiber growth

    SciTech Connect

    Cruden, Brett A.; Cassell, Alan M.; Hash, David B.; Meyyappan, M.

    2004-11-01

    We report the analysis of a plasma enhanced chemical vapor deposition process for carbon nanofiber growth. A direct current (dc) plasma is employed with a mixture of acetylene and ammonia. Residual gas analysis is performed on the downstream plasma effluent to determine degrees of precursor dissociation and high molecular weight species formation. Results are correlated to growth quality obtained in the plasma as a function of dc voltage/power, gas mixture, and pressure. Behaviors in plasma chemistry are understood through application of a zero-dimensional model.

  6. Atomic Force Microscope Investigations of Biofilm-Forming Bacterial Cells Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Renshaw, Andrew; Abramzon, Nina; Brelles-Marino, Graciela

    2009-03-01

    We present investigations of biofilm-forming bacteria before and after treatment from gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard killing methods. Chromobacterium violaceum were imaged before and after plasma treatment using an atomic force microscope (AFM). After 5 min. plasma treatment, 90% of cells were inactivated, that is, transformed to non-culturable cells. Results for cell surface morphology and micromechanical properties for plasma treatments lasting from 5 to 60 minutes were obtained and will be presented.

  7. Hollow Cathode Produced Electron Beams for Plasma Generation: Cathode Operation in Gas Mixtures

    DTIC Science & Technology

    2006-12-15

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6750--06-8992 Hollow Cathode Produced Electron Beams for Plasma Generation: Cathode...Operation in Gas Mixtures Scott Walton Darrin leonharDt richarD FernSler Charged Particle Physics Branch Plasma Physics Division December 15, 2006 Approved...17. LIMITATION OF ABSTRACT Hollow Cathode Produced Electron Beams for Plasma Generation: Cathode Operation in Gas Mixtures Scott Walton, Darrin

  8. Gas dynamic theory of flight of fast electron flux in plasma

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.

    The one-dimensional flight of a fast electron flux in plasma is investigated taking into account generation and absorption of plasma waves. The transition from the kinetic description to the gas dynamics is made. The closed set of gas dynamic equations for electrons and plasmons is derived and an automodel solution is obtained in the case of instantaneous injection. This solution represents the beam-plasma formation on natural oscillations in the system electrons+plasmons is considered.

  9. Gas-phase Reactivity of meta-Benzyne Analogs Toward Small Oligonucleotides of Differing Lengths

    NASA Astrophysics Data System (ADS)

    Widjaja, Fanny; Max, Joann P.; Jin, Zhicheng; Nash, John J.; Kenttämaa, Hilkka I.

    2017-07-01

    The gas-phase reactivity of two aromatic carbon-centered σ,σ-biradicals ( meta-benzyne analogs) and a related monoradical towards small oligonucleotides of differing lengths was investigated in a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer coupled with laser-induced acoustic desorption (LIAD). The mono- and biradicals were positively charged to allow for manipulation in the mass spectrometer. The oligonucleotides were evaporated into the gas phase as intact neutral molecules by using LIAD. One of the biradicals was found to be unreactive. The reactive biradical reacts with dinucleoside phosphates and trinucleoside diphosphates mainly by addition to a nucleobase moiety followed by cleavage of the glycosidic bond, leading to a nucleobase radical (e.g., base-H) abstraction. In some instances, after the initial cleavage, the unquenched radical site of the biradical abstracts a hydrogen atom from the neutral fragment, which results in a net nucleobase abstraction. In sharp contrast, the related monoradical mainly undergoes facile hydrogen atom abstraction from the sugar moiety. As the size of the oligonucleotides increases, the rate of hydrogen atom abstraction from the sugar moiety by the monoradical was found to increase due to the presence of more hydrogen atom donor sites, and it is the only reaction observed for tetranucleoside triphosphates. Hence, the monoradical only attacks sugar moieties in these substrates. The biradical also shows significant attack at the sugar moiety for tetranucleoside triphosphates. This drastic change in reactivity indicates that the size of the oligonucleotides plays a key role in the outcome of these reactions. This finding is attributed to more compact conformations in the gas phase for the tetranucleoside triphosphates than for the smaller oligonucleotides, which result from stronger stabilizing interactions between the nucleobases.

  10. Plasma channel created by ionization of gas by a surface wave

    SciTech Connect

    Konovalov, V. N.; Kuz’min, G. P.; Minaev, I. M. Rukhadze, A. A.; Tikhonevich, O. V.

    2015-09-15

    Conditions for gas ionization in the field of a slow surface wave excited by a microwave source are considered. The gas ionization rate and the plasma density distribution over the radius of the discharge tube were studied by the optical method. The experiments were conducted in a dielectric tube with a radius much smaller than the tube length, the gas pressure being ∼1–3 Torr. It is shown that the stationary distribution of the plasma density is determined by diffusion processes.

  11. Hybrid Particle-Continuum Methods for Nonequilibrium Gas and Plasma Flows

    DTIC Science & Technology

    2010-07-01

    boundary layers, and by rarefied flow conditions. Another form of nonequilibrium concerns different species in the gas or plasma having very different...Methods for Nonequilibrium Gas and Plasma Flows 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Iain D. Boyd (University of Michigan) 5d...Symposium on Rarefied Gas Dynamics, Monterey, CA, 10-15 July 2010. 14. ABSTRACT Two different hybrid particle-continuum methods are described for

  12. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice.

    PubMed

    Hu, Hailong; Guo, Qian; Wang, Changlin; Ma, Xiao; He, Hongjuan; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2015-10-01

    There have been few reports about the possible toxic effects of titanium dioxide (TiO2 ) nanoparticles on the endocrine system. We explored the endocrine effects of oral administration to mice of anatase TiO2 nanoparticles (0, 64 and 320 mg kg(-1) body weight per day to control, low-dose and high-dose groups, respectively, 7 days per week for 14 weeks). TiO2 nanoparticles were characterized by scanning and transmission electron microscopy (TEM) and dynamic light scattering (DLS), and their physiological distribution was investigated by inductively coupled plasma. Biochemical analyzes included plasma glucose, insulin, heart blood triglycerides (TG), free fatty acid (FFA), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and reactive oxygen species (ROS)-related markers (total SOD, GSH and MDA). Phosphorylation of IRS1, Akt, JNK1, and p38 MAPK were analyzed by western blotting. Increased titanium levels were found in the liver, spleen, small intestine, kidney and pancreas. Biochemical analyzes showed that plasma glucose significantly increased whereas there was no difference in plasma insulin secretion. Increased ROS levels were found in serum and the liver, as evidenced by reduced total SOD activity and GSH level and increased MDA content. Western blotting showed that oral administration of TiO2 nanoparticles induced insulin resistance (IR) in mouse liver, shown by increased phosphorylation of IRS1 (Ser307) and reduced phosphorylation of Akt (Ser473). The pathway by which TiO2 nanoparticles increase ROS-induced IR were included in the inflammatory response and phosphokinase, as shown by increased serum levels of TNF-α and IL-6 and increased phosphorylation of JNK1 and p38 MAPK in liver. These results show that oral administration of TiO2 nanoparticles increases ROS, resulting in IR and increasing plasma glucose in mice.

  13. Relative reactivities of N-chloramines and hypochlorous acid with human plasma constituents.

    PubMed

    Carr, A C; Hawkins, C L; Thomas, S R; Stocker, R; Frei, B

    2001-03-01

    Hypochlorous acid (HOCl), the major strong oxidant produced by the phagocyte enzyme myeloperoxidase, reacts readily with free amino groups to form N-chloramines. Since different N-chloramines have different stabilities and reactivities depending on their structures, we investigated the relative reactivities of three model N-chloramines and HOCl with human plasma constituents. TheN-chloramines studied were N(alpha)-acetyl-lysine chloramine (LysCA, a model of protein-associated N-chloramines), taurine chloramine (TaurCA, the primary N-chloramine produced by activated neutrophils), and monochloramine (MonoCA, a lipophilic N-chloramine). Addition of these chlorine species (100--1000 microM each) to plasma resulted in rapid loss of thiols, with the extent of thiol oxidation decreasing in the order TaurCA = LysCA > MonoCA = HOCl. The single reduced thiol of albumin was the major target. Loss of plasma ascorbate also occurred, with the extent decreasing in the order HOCl > LysCA > TaurCA > MonoCA. Experiments comparing equimolar albumin thiols and ascorbate showed that while HOCl caused equivalent loss of thiols and ascorbate, theN-chloramines reacted preferentially with thiols. The chlorine species also inactivated alpha(1)-antiproteinase, implicating oxidation of methionine residues, and ascorbate provided variable protection depending on the chlorine species involved. Together, our data indicate that in biological fluids N-chloramines react more readily with protein thiols than with methionine residues or ascorbate, and thus may cause biologically relevant, selective loss of thiol groups.

  14. Gas-phase reactivity of [Ca(formamide)](2+) complex: an example of different dynamical behaviours.

    PubMed

    Martin-Somer, Ana; Spezia, Riccardo; Yáñez, Manuel

    2017-04-28

    In the present contribution, we have summarized our recent work on the comprehension of [Ca(formamide)](2+) complex gas-phase unimolecular dissociation. By using different theoretical approaches, we were able to revise the original (and typical for such kind of problems) understanding given in terms of stationary points on the potential energy surface, which did not provide a satisfactory explanation of the experimentally observed reactivity. In particular, we point out how non-statistical and non-intrinsic reaction coordinate mechanisms are of fundamental importance.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  15. A study of gas flow pattern, undercutting and torch modification in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Hou, Haihui Ron

    1994-01-01

    A study on the plasma and shield gas flow patterns in variable polarity plasma arc (VPPA) welding was undertaken by shadowgraph techniques. Visualization of gas flow under different welding conditions was obtained. Undercutting is often present with aluminum welds. The effects of torch alignment, shield gas flow rate and gas contamination on undercutting were investigated and suggestions made to minimize the defect. A modified shield cup for the welding torch was fabricated which consumes much less shield gas while maintaining the weld quality. The current torch was modified with a trailer flow for Al-Li welding, in which hot cracking is a critical problem. The modification shows improved weldablility on these alloys.

  16. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  17. Nonthermal plasma systems and methods for natural gas and heavy hydrocarbon co-conversion

    DOEpatents

    Kong, Peter C.; Nelson, Lee O.; Detering, Brent A.

    2005-05-24

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  18. Fusion reactivity, confinement, and stability of neutral-beam heated plasmas in TFTR and other tokamaks

    SciTech Connect

    Park, Hyeon, K.; Sabbagh, S.A.

    1996-05-01

    The hypothesis that the heating beam fueling profile shape connects the edge condition and improved core confinement and fusion reactivity is extensively studied on TFTR and applied to other tokamaks. The derived absolute scalings based on beam fueling profile shape for the stored energy and neutron yield can be applied to the deuterium discharges at different major radii in TFTR. These include Supershot, High poloidal beta, L-mode, and discharges with a reversed shear (RS) magnetic configuration. These scalings are also applied to deuterium-tritium discharges. The role of plasma parameters, such as plasma current, Isdo2(p), edge safety factor, qsdo5(a), and toroidal field, Bsdo2(T), in the performance and stability of the discharges is explicitly studied. Based on practical and externally controllable plasma parameters, the limitation and optimization of fusion power production of the present TFTR is investigated and a path for a discharge condition with fusion power gain, Q > 1 is suggested based on this study. Similar physics interpretation is provided for beam heated discharges on other major tokamaks.

  19. Laser mass-spectrometry for online diagnosis of reactive plasmas with many species

    SciTech Connect

    Feng Chunlei; Gao Liang; Liu Jiahong; Zhang Lei; Ding Hongbin

    2011-06-15

    The purpose of this study is to design a diagnostic system for reactive plasma environment by combining molecular-beam time-of-flight (TOF) mass spectroscopy with laser spectroscopy technique. The combination of TOF mass spectrometers and pulsed lasers is favorable in the diagnosis of intermediate species distribution since they allow the simultaneous but separate recording of the spectra of different species. In the plasma system, the intermediate species in electronic ground state or low lying excited state is pumped to higher energy level with resonant laser excitation, and then, the ionization with a second laser system is possible which can readily be detected by the TOF analyzer. The ionization itself is only used as a detection mechanism for the observation of the excitation of these states. In this manner, the population distribution of intermediate species can be determined with state-selective and mass-selective feature. Also, in this article, a flexible data acquisition and automatic control system based on LABVIEW was designed to integrate all the stand-alone measurement instruments including a TOF spectrometer, a laser system, a high performance oscilloscope, and a digital delay generator into a single personal computer-based control unit. Moreover, a virtual Boxcar integrator with hundreds of channels has been developed to enhance the signal while filtering out the random noises. Finally, the many potentials of this technique in the application of plasma diagnosis will be discussed.

  20. Signature Biochemical Properties of Broadly Cross-Reactive HIV-1 Neutralizing Antibodies in Human Plasma

    PubMed Central

    Sajadi, Mohammad M.; Lewis, George K.; Seaman, Michael S.; Guan, Yongjun; Redfield, Robert R.

    2012-01-01

    The common properties of broadly cross-reactive HIV-1 neutralization antibodies found in certain HIV-1-infected individuals holds significant value for understanding natural and vaccine-mediated anti-HIV immunity. Recent efforts have addressed this question by deriving neutralizing monoclonal anti-envelope antibodies from memory B cell pools of selected subjects. However, it has been more difficult to identify whether broadly neutralizing antibodies circulating in plasma possess shared characteristics among individuals. To address this question, we used affinity chromatography and isoelectric focusing to fractionate plasma immunoglobulin from 10 HIV-1-infected subjects (5 subjects with broad HIV-1 neutralizing activity and 5 controls). We find that plasma neutralizing activity typically partitions into at least two subsets of antibodies. Antibodies with restricted neutralization breadth have relatively neutral isoelectric points and preferentially bind to envelope monomers and trimers versus core antigens from which variable loops and other domains have been deleted. In comparison, broadly neutralizing antibodies account for a minor fraction of the total anti-envelope response. They are consistently distinguished by more basic isoelectric points and specificity for epitopes shared by monomeric gp120, gp120 core, or CD4-induced structures. Such biochemical properties might be exploited to reliably predict or produce broad anti-HIV immunity. PMID:22379105

  1. Signature biochemical properties of broadly cross-reactive HIV-1 neutralizing antibodies in human plasma.

    PubMed

    Sajadi, Mohammad M; Lewis, George K; Seaman, Michael S; Guan, Yongjun; Redfield, Robert R; DeVico, Anthony L

    2012-05-01

    The common properties of broadly cross-reactive HIV-1 neutralization antibodies found in certain HIV-1-infected individuals holds significant value for understanding natural and vaccine-mediated anti-HIV immunity. Recent efforts have addressed this question by deriving neutralizing monoclonal anti-envelope antibodies from memory B cell pools of selected subjects. However, it has been more difficult to identify whether broadly neutralizing antibodies circulating in plasma possess shared characteristics among individuals. To address this question, we used affinity chromatography and isoelectric focusing to fractionate plasma immunoglobulin from 10 HIV-1-infected subjects (5 subjects with broad HIV-1 neutralizing activity and 5 controls). We find that plasma neutralizing activity typically partitions into at least two subsets of antibodies. Antibodies with restricted neutralization breadth have relatively neutral isoelectric points and preferentially bind to envelope monomers and trimers versus core antigens from which variable loops and other domains have been deleted. In comparison, broadly neutralizing antibodies account for a minor fraction of the total anti-envelope response. They are consistently distinguished by more basic isoelectric points and specificity for epitopes shared by monomeric gp120, gp120 core, or CD4-induced structures. Such biochemical properties might be exploited to reliably predict or produce broad anti-HIV immunity.

  2. [Plasma concentration of C-reactive protein in patients with high estrogen levels].

    PubMed

    Ricoux, R; Pontet, M; Tresca, J P; Engler, R

    1994-01-01

    The monitoring of inflammatory activity in patients with a high level of estrogen is controversial because the significance of a raised estradiol level on C-reactive protein (CRP) concentrations is a debated question. This prompted us to assay CRP by a sensitive Elisa in a sample of 30 patients with ovarian stimulation for in vitro fertilization, thus with high levels of estradiol. For 15 of these women, six to nine plasma samples were analyzed allowing a kinetic study of plasma levels of CRP, estradiol and sex steroid-binding plasma protein (SBP). No significant correlation was found between the concentrations of estradiol and CRP for the 30 patients. In the kinetic study, as mean estradiol levels rose exponentially from 50 to 1400 ng/l between day 5 and 14, the CRP level tended to vary markedly from one patient to another and sometimes from day to day, but there was never any relation with estradiol level. Furthermore, CRP did not significantly modify the slope of the regression line between estradiol concentration and the day of the menstrual cycle. In contrast, the effect of estradiol on SBP was clear, which supports the absence of estradiol effect on CRP level.

  3. Laser mass-spectrometry for online diagnosis of reactive plasmas with many species

    NASA Astrophysics Data System (ADS)

    Feng, Chun-Lei; Gao, Liang; Liu, Jia-Hong; Zhang, Lei; Ding, Hongbin

    2011-06-01

    The purpose of this study is to design a diagnostic system for reactive plasma environment by combining molecular-beam time-of-flight (TOF) mass spectroscopy with laser spectroscopy technique. The combination of TOF mass spectrometers and pulsed lasers is favorable in the diagnosis of intermediate species distribution since they allow the simultaneous but separate recording of the spectra of different species. In the plasma system, the intermediate species in electronic ground state or low lying excited state is pumped to higher energy level with resonant laser excitation, and then, the ionization with a second laser system is possible which can readily be detected by the TOF analyzer. The ionization itself is only used as a detection mechanism for the observation of the excitation of these states. In this manner, the population distribution of intermediate species can be determined with state-selective and mass-selective feature. Also, in this article, a flexible data acquisition and automatic control system based on LABVIEW was designed to integrate all the stand-alone measurement instruments including a TOF spectrometer, a laser system, a high performance oscilloscope, and a digital delay generator into a single personal computer-based control unit. Moreover, a virtual Boxcar integrator with hundreds of channels has been developed to enhance the signal while filtering out the random noises. Finally, the many potentials of this technique in the application of plasma diagnosis will be discussed.

  4. Simulation of emission spectra from nonuniform reactive laser-induced plasmas.

    PubMed

    Hermann, Jörg; Lorusso, Antonella; Perrone, Alessio; Strafella, Francesco; Dutouquet, Christophe; Torralba, Béatrice

    2015-11-01

    We demonstrate that chemical reactions leading to the formation of AlO radicals in plasmas produced by ablation of aluminum or Ti-sapphire with ultraviolet nanosecond laser pulses can be predicted by the model of local thermodynamic equilibrium. Therefore, emission spectra recorded with an echelle spectrometer and a gated detector were compared to the spectral radiance computed for uniform and nonuniform equilibrium plasmas. The calculations are based on analytical solutions of the radiation transfer equation. The simulations show that the plasmas produced in argon background gas are almost uniform, whereas temperature and density gradients are evidenced in air. Furthermore, chemical reactions exclusively occur in the cold plume periphery for ablation in air. The formation of AlO is negligible in argon as the plasma temperature is too large in the time interval of interest up to several microseconds. Finally, the validity of local thermodynamic equilibrium is shown to depend on time, space, and on the elemental composition. The presented conclusions are of interest for material analysis via laser-induced breakdown spectroscopy and for laser materials processing.

  5. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  6. Measurements of Plasma Expansion due to Background Gas in the Electron Diffusion Gauge Experiment

    SciTech Connect

    Kyle A. Morrison; Stephen F. Paul; Ronald C. Davidson

    2003-08-11

    The expansion of pure electron plasmas due to collisions with background neutral gas atoms in the Electron Diffusion Gauge (EDG) experiment device is observed. Measurements of plasma expansion with the new, phosphor-screen density diagnostic suggest that the expansion rates measured previously were observed during the plasma's relaxation to quasi-thermal-equilibrium, making it even more remarkable that they scale classically with pressure. Measurements of the on-axis, parallel plasma temperature evolution support the conclusion.

  7. Noble Gas Plasmas with Metallic Conductivity: A New Light Source from a New State of Matter

    DTIC Science & Technology

    2015-11-01

    Noble Gas Plasmas with Metallic Conductivity: A New Light Source from a New State of Matter Dense plasmas form a non-ideal, correlated state. We...New Light Source from a New State of Matter Report Title Dense plasmas form a non-ideal, correlated state. We have recreated the plasma inside sono...light, Applied Physics Letters, (12 2014): 223501. doi: A. Bataller, B. Kappus, C. Camara, S. Putterman. Collision Time Measurements in a

  8. A comparative study of ethylene oxide gas, hydrogen peroxide gas plasma, and low-temperature steam formaldehyde sterilization.

    PubMed

    Kanemitsu, Keiji; Imasaka, Takayuki; Ishikawa, Shiho; Kunishima, Hiroyuki; Harigae, Hideo; Ueno, Kumi; Takemura, Hiromu; Hirayama, Yoshihiro; Kaku, Mitsuo

    2005-05-01

    To compare the efficacies of ethylene oxide gas (EOG), hydrogen peroxide gas plasma (PLASMA), and low-temperature steam formaldehyde (LTSF) sterilization methods. The efficacies of EOG, PLASMA, and LTSF sterilization were tested using metal and plastic plates, common medical instruments, and three process challenge devices with narrow lumens. All items were contaminated with Bacillus stearothermophilus spores or used a standard biological indicator. EOG and LTSF demonstrated effective killing of B. stearothermophilus spores, with or without serum, on plates, on instruments, and in process challenge devices. PLASMA failed to adequately sterilize materials on multiple trials in several experiments, including two of three plates, two of three instruments, and all process challenge devices. Our results suggest that PLASMA sterilization may be unsuccessful under certain conditions, particularly when used for items with complex shapes and narrow lumens. Alternatively, LTSF sterilization demonstrates excellent efficacy and is comparable to EOG sterilization. LTSF could potentially act as a substitute if EOG becomes unavailable due to environmental concerns.

  9. Non-invasive in situ plasma monitoring of reactive gases using the floating harmonic method for inductively coupled plasma etching application

    SciTech Connect

    Lee, J. H.; Kim, M. J.; Yoon, Y. S.

    2013-04-15

    The floating harmonic method was developed for in situ plasma diagnostics of allowing real time measurement of electron temperature (T{sub e}) and ion flux (J{sub ion}) without contamination of the probe from surface modification by reactive species. In this study, this novel non-invasive diagnostic system was studied to characterize inductively coupled plasma of reactive gases monitoring T{sub e} and J{sub ion} for investigating the optimum plasma etching conditions and controlling of the real-time plasma surface reaction in the range of 200-900 W source power, 10-100 W bias power, and 3-15 mTorr chamber pressure, respectively.

  10. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    SciTech Connect

    Xu, T.; Senger, R.; Finsterle, S.

    2008-10-15

    Corrosion of steel canisters, stored in a repository for spent fuel and high-level nuclear wastes, leads to the generation and accumulation of hydrogen gas in the backfilled emplacement tunnels, which may significantly affect long-term repository safety. Previous studies used H{sub 2} generation rates based on the volume of the waste or canister material and the stoichiometry of the corrosion reaction. However, iron corrosion and H{sub 2} generation rates vary with time, depending on factors such as amount of iron, water availability, water contact area, and aqueous and solid chemistry. To account for these factors and feedback mechanisms, we developed a chemistry model related to iron corrosion, coupled with two-phase (liquid and gas) flow phenomena that are driven by gas-pressure buildup associated with H{sub 2} generation and water consumption. Results indicate that by dynamically calculating H{sub 2} generation rates based on a simple model of corrosion chemistry, and by coupling this corrosion reaction with two-phase flow processes, the degree and extent of gas pressure buildup could be much smaller compared to a model that neglects the coupling between flow and reactive transport mechanisms. By considering the feedback of corrosion chemistry, the gas pressure increases initially at the canister, but later decreases and eventually returns to a stabilized pressure that is slightly higher than the background pressure. The current study focuses on corrosion under anaerobic conditions for which the coupled hydrogeochemical model was used to examine the role of selected physical parameters on the H{sub 2} gas generation and corresponding pressure buildup in a nuclear waste repository. The developed model can be applied to evaluate the effect of water and mineral chemistry of the buffer and host rock on the corrosion reaction for future site-specific studies.

  11. Investigation of reactive plasma species created in SO2 by an inductively coupled RF discharge in E- and H-mode

    NASA Astrophysics Data System (ADS)

    Zaplotnik, Rok; Vesel, Alenka; Mozetic, Miran

    2016-10-01

    Optical emission spectroscopy (OES) and mass spectrometry were used to investigate the gas phase and surface reactions in inductively coupled SO2 plasma at various radiofrequency discharge powers up to 1000 W and gas pressures from 30 to 100 Pa. At such conditions, the plasma was created either in E- or in H-mode. In the E-mode, extensive radiation in the UV range was observed due to transitions of SO2 and SO molecules to the ground electronic states, whereas the other spectral features were marginal. At elevated powers, an abrupt transition to the H-mode occurred, where the total radiation increased for several orders of magnitude. Strong hysteresis was observed in the behaviour of all OES spectral features at the transitions between the E- and H-modes. In the H-mode, the atomic lines prevailed because of the relaxation of highly excited O and S atoms to the lower excited states, indicating high density of atoms. UV continuum was very weak and governed only by transitions of the SO radicals to the ground state. Thus, it was concluded that in the E-mode, predominantly SO and O radicals are formed during the partial dissociation of SO2 molecules, whereas in the H-mode, high dissociation to S and O atoms occurred, leading to the negligible concentration of SO2. However, in the flowing afterglow, the final gas composition was predominantly always SO2. The concentration of O2 was only approximately 3%, whereas the concentration of SO3 was marginal. This was explained by the recombination of the reactive plasma species formed in the plasma back to SO2 molecules on the surfaces of the remote plasma reactor.

  12. Laser wakefield signatures: from gas plasma to nanomaterials

    NASA Astrophysics Data System (ADS)

    Farinella, Deano; Zhang, Xiaomei; Shin, Youngmin; Tajima, Toshiki

    2016-10-01

    The signatures of laser wakefields have become increasingly important in recent years due to the invention of a novel laser compression technique that may enable the creation of single cycle x-ray pulses. This x-ray driver may be able to utilize solid density targets to create acceleration gradients of up to TeV/cm. On the other hand, Laser Wakefield Acceleration (LWFA) has been identified as a potential mechanism for the generation of Extreme High Energy Cosmic Rays (EHECR) in Active Galactic Nuclei (AGN). Though these disparate density regimes may include different physics, by investigating scalings of the ratio ncr/ne we are able to survey a wide range of parameters to gain insight into particle acceleration and photon emission properties. The scaling of electron acceleration and photon radiation from wakefields as a function of the parameter ncr/ne has been studied. Further, acceleration gradient as well as other scalings were investigated in solid density channels and compared to gas plasma. Funded in part by the Norman Rostoker Fund.

  13. Sterilization mechanism of nitrogen gas plasma: induction of secondary structural change in protein.

    PubMed

    Sakudo, Akikazu; Higa, Masato; Maeda, Kojiro; Shimizu, Naohiro; Imanishi, Yuichiro; Shintani, Hideharu

    2013-07-01

    The mechanism of action on biomolecules of N₂ gas plasma, a novel sterilization technique, remains unclear. Here, the effect of N₂ gas plasma on protein structure was investigated. BSA, which was used as the model protein, was exposed to N₂ gas plasma generated by short-time high voltage pulses from a static induction thyristor power supply. N₂ gas plasma-treated BSA at 1.5 kilo pulses per second showed evidence of degradation and modification when assessed by Coomassie brilliant blue staining and ultraviolet spectroscopy at 280 nm. Fourier transform infrared spectroscopy analysis was used to determine the protein's secondary structure. When the amide I region was analyzed in the infrared spectra according to curve fitting and Fourier self-deconvolution, N₂ gas plasma-treated BSA showed increased α-helix and decreased β-turn content. Because heating decreased α-helix and increased β-sheet content, the structural changes induced by N₂ gas plasma-treatment of BSA were not caused by high temperatures. Thus, the present results suggest that conformational changes induced by N₂ gas plasma are mediated by mechanisms distinct from heat denaturation.

  14. Neutral gas heating and ion transport in a constricted plasma flow

    NASA Astrophysics Data System (ADS)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2017-08-01

    Ion-neutral charge exchange collisions are demonstrated to be the dominant heating mechanism in a weakly ionised ˜1 Torr Ar capacitively coupled radiofrequency plasma flowing through a cylinder. In this rarefied regime, thermal conduction is ineffective. The neutral gas temperature is significantly higher in the plasma bulk than in the plasma sheath due to different plasma parameters and ion transport behaviours in these regions. This study is achieved in a computational fluid dynamics and plasma simulation, and is applicable to similar plasmas at different pressures and physical scales.

  15. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Modeling of gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Smirnov, Boris M.

    2009-06-01

    The condition for the self-maintenance of a gas discharge plasma (GDP) is derived from its ionization balance expressed in the Townsend form and may be used as a definition of a gas discharge plasma in its simplest form. The simple example of a gas discharge plasma in the positive column of a cylindrical discharge tube allows demonstrating a wide variety of possible GDP regimes, revealing a contradiction between simple models used to explain gas discharge regimes and the large number of real processes responsible for the self-maintenance of GDP. The variety of GDP processes also results in a stepwise change of plasma parameters and developing some instabilities as the voltage or discharge current is varied. As a consequence, new forms and new applications of gas discharge arise as technology progresses.

  16. Gas ionization induced by a high speed plasma injection in space

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.

    1986-01-01

    Gas ionization induced by a fast plasma injection has been observed with the Space Experiments with Particle Accelerators (SEPAC) Experiment on Spacelab-1. When an impulsive high-density plasma was injected from the orbiter, waves near the lower-hybrid frequency were enhanced, and the surrounding gas drifting with the orbiter was ionized for several tens of milliseconds after the plasma injection. The long-duration gas ionization was observed only when the plasma flux incoming to the orbiter cargo bay and the orbital velocity perpendicular to the magnetic field were relatively large. This effect has been explained by the concept of critical velocity ionization (CVI) for the gas drifting with the orbiter, although the gas velocity perpendicular to the magnetic field was less than the Alfven critical velocity.

  17. Role of neutral gas in scrape-off layer tokamak plasma

    SciTech Connect

    Bisai, N.; Jha, R.; Kaw, P. K.

    2015-02-15

    Neutral gas in scrape-off layer of tokamak plasma plays an important role as it can modify the plasma turbulence. In order to investigate this, we have derived a simple two-dimensional (2D) model that consists of electron continuity, quasi-neutrality, and neutral gas continuity equations using neutral gas ionization and charge exchange processes. Simple 1D profile analysis predicts neutral penetration depth into the plasma. Growth rate obtained from the linear theory has been presented. The 2D model equations have been solved numerically. It is found that the neutral gas reduces plasma fluctuations and shifts spectrum of the turbulence towards lower frequency side. The neutral gas fluctuation levels have been presented. The numerical results have been compared with Aditya tokamak experiments.

  18. Endotoxin removal by radio frequency gas plasma (glow discharge)

    NASA Astrophysics Data System (ADS)

    Poon, Angela

    2011-12-01

    -IR measurements were repeated after employing 3-minute RFGD treatments sequentially for more than 10 cycles to observe removal of deposited matter that correlated with diminished EU titers. The results showed that 5 cycles, for a total exposure time of 15 minutes to low-temperature gas plasma, was sufficient to reduce endotoxin titers to below 0.05 EU/ml, and correlated with concurrent reduction of major endotoxin reference standard absorption bands at 3391 cm-1, 2887 cm-1, 1646 cm -1 1342 cm-1, and 1103 cm-1 to less than 0.05 Absorbance Units. Band depletion varied from 15% to 40% per 3-minute cycle of RFGD exposure, based on peak-to-peak analyses. In some cases, 100% of all applied biomass was removed within 5 sequential 3-minute RFGD cycles. The lipid ester absorption band expected at 1725 cm-1 was not detectable until after the first RFGD cycle, suggesting an unmasking of the actual bacterial endotoxin membrane induced within the gas plasma environment. Future work must determine the applicability of this low-temperature, quick depyrogenation process to medical devices of more complicated geometry than the flat surfaces tested here.

  19. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    PubMed

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  20. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOEpatents

    Durai-Swamy, Kandaswamy

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  1. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    NASA Astrophysics Data System (ADS)

    Dunmore, R. E.; Hopkins, J. R.; Lidster, R. T.; Lee, J. D.; Evans, M. J.; Rickard, A. R.; Lewis, A. C.; Hamilton, J. F.

    2015-03-01

    Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London), which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20-30% of the total hydrocarbon mixing ratio but comprise more than 50% of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that, 60% of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50% of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for but, very significant under-reporting of diesel related hydrocarbons; an underestimation of a factor ~ 4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  2. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    NASA Astrophysics Data System (ADS)

    Dunmore, R. E.; Hopkins, J. R.; Lidster, R. T.; Lee, J. D.; Evans, M. J.; Rickard, A. R.; Lewis, A. C.; Hamilton, J. F.

    2015-09-01

    Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London), which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20-30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  3. A comparison between micro hollow cathode discharges and atmospheric pressure plasma jets in Ar/O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Lazzaroni, C.; Chabert, P.

    2016-12-01

    Using global models, micro hollow cathode discharges (MHCDs) are compared to radiofrequency atmospheric pressure plasma jets (APPJs) in terms of reactive oxygen species (ROS) production. Ar/O2 gas mixtures are investigated, typically with a small percentage of oxygen in argon. The same chemical reaction set, involving 17 species and 128 chemical reactions in the gas phase, is used for both devices, operated in the typical geometries previously published; the APPJ is driven by a radiofrequency voltage across a 1 mm gap, at atmospheric pressure, while the MHCD is driven by a DC voltage source, at 100 Torr and in a 400 μm hole. The MHCD may be operated either in the self-pulsing or in the normal (stationary) regime, depending on the driving voltage. The comparison shows that in both regimes, the MHCD produces larger amounts of \\text{O}2\\ast , while the APPJ produces predominantly reactive oxygen ground state species, \\text{O} and {{\\text{O}}3} . These large differences in ROS composition are mostly due to the higher plasma density produced in the MHCD. The difference in operating pressure is a second order effect.

  4. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  5. CFD methods for the reduction of reactive gas emission from a paper laminating machine.

    PubMed

    Horvath, Andras; Jordan, Christian; Forstner, Gerhard; Altacher, Peter; Harasek, Michael

    2007-06-18

    In cooperation with the world's second largest manufacturer of beverage cartons (SIG Combibloc) for liquid foodstuffs an innovative off-take for neutralisation of reactive gas in a paper laminating machine was constructed. A great challenge during engineering work was ensuring a high concentration of the reactive gas where needed and at the same time minimising work place impact in a machine basically without housing. Preliminary 2D-models of the machine geometry proved to be insufficient in describing all the governing flow phenomena. A simplified 3D-geometry containing all important parts of the complex machinery was necessary for accurate predictions. It was found that the driving force of air movement and transport of reactive gas (which acts as an adhesive agent) from the reaction zone in the interior of the laminating machine to the outside is a boundary flow caused by the rapid movement of carton material and rotating cylinders. A physically correct simulation result of the boundary flow is a premise for correct prediction of air flow in and around the machinery. Lacking experimental data (due to an inaccessible geometry) a worst case scenario was constructed by generating a grid and using turbulence models that maximised mass transport in the boundary layer region and thus emission of (tracer)gas from the machine. CFD simulations were done using the geometry preprocessor Gambit, and the finite volume solver Fluent. The results of the analysis of the emission paths from the machine were surprising and led to the construction of an effective off-take relatively far away from the emission source. The chosen position ensures low disturbance of highly sensitive flow patterns inside the machine and diffusive mixing, dilution and contamination of the surroundings. The effect of the new off-take is an immediate and significant rise in air quality in the vicinity of the laminating machine and ensures maximum allowed concentration in the plant area. The product

  6. Plasma C-Reactive Protein and Clinical Outcomes after Acute Ischemic Stroke: A Prospective Observational Study

    PubMed Central

    Matsuo, Ryu; Ago, Tetsuro; Hata, Jun; Wakisaka, Yoshinobu; Kuroda, Junya; Kuwashiro, Takahiro; Kitazono, Takanari; Kamouchi, Masahiro

    2016-01-01

    Background and Purpose Although plasma C-reactive protein (CRP) is elevated in response to inflammation caused by brain infarction, the association of CRP with clinical outcomes after acute ischemic stroke remains uncertain. This study examined whether plasma high-sensitivity CRP (hsCRP) levels at onset were associated with clinical outcomes after acute ischemic stroke independent of conventional risk factors and acute infections after stroke. Methods We prospectively included 3653 patients with first-ever ischemic stroke who had been functionally independent and were hospitalized within 24 h of onset. Plasma hsCRP levels were measured on admission and categorized into quartiles. The association between hsCRP levels and clinical outcomes, including neurological improvement, neurological deterioration, and poor functional outcome (modified Rankin scale ≥3 at 3 months), were investigated using a logistic regression analysis. Results Higher hsCRP levels were significantly associated with unfavorable outcomes after adjusting for age, sex, baseline National Institutes of Health Stroke Scale score, stroke subtype, conventional risk factors, intravenous thrombolysis and endovascular therapy, and acute infections during hospitalization (multivariate-adjusted odds ratios [95% confidence interval] in the highest quartile versus the lowest quartile as a reference: 0.80 [0.65–0.97] for neurological improvement, 1.72 [1.26–2.34] for neurological deterioration, and 2.03 [1.55–2.67] for a poor functional outcome). These associations were unchanged after excluding patients with infectious diseases occurring during hospitalization, or those with stroke recurrence or death. These trends were similar irrespective of stroke subtypes or baseline stroke severity, but more marked in patients aged <70 years (Pheterogeneity = 0.001). Conclusions High plasma hsCRP is independently associated with unfavorable clinical outcomes after acute ischemic stroke. PMID:27258004

  7. An argon-nitrogen-hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2014-09-01

    Multivariate optimization of an argon-nitrogen-hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being - 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N2 in the outer plasma gas, and 0.50% v/v H2 to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO+ and Ar2+ as well as oxide levels by over an order of magnitude. On the other hand, the background from NO+ and ArN+ increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization.

  8. Rare Gas Metastable Atom Density in Diluted O2 RF Plasmas

    NASA Astrophysics Data System (ADS)

    Kitajima, Takeshi; Takahashi, Kei; Nakano, Toshiki; Makabe, Toshiaki

    Rare gas diluted O2 plasmas are gaining interests for application to high quality SiO2 film formation. The density of rare gas metastable atoms and O atom in rare gas diluted O2 radio frequency (RF) capacitively coupled plasma (CCP) was measured by optical absorption spectroscopy (OAS). Decreases of rare gas metastable densities due to addition of O2 indicate efficient O atom production by rare gas metastables via collisional quenching. Krypton metastable had highest density among four rare gas species for fixed RF power. The decrease of Ar metastable density due to O2 addition showed quantitative agreement with reported quenching rate coefficient. Detailed discussion on different gas pressures illustrates reduced O2 fraction is the key for selective production of O atoms through rare gas metastables.

  9. Effect of Deuterium Gas Puff On The Edge Plasma In NSTX

    SciTech Connect

    Zweben, S. J.

    2014-02-20

    This paper describes a detailed examination of the effects of a relatively small pulsed deuterium gas puff on the edge plasma and edge turbulence in NSTX. This gas puff caused little or no change in the line-averaged plasma density or total stored energy, or in the edge density and electron temperature up to the time of the peak of the gas puff. The radial profile of the Dα light emission and the edge turbulence within this gas puff did not vary significantly over its rise and fall, implying that these gas puffs did not significantly perturb the local edge plasma or edge turbulence. These measurements are compared with modeling by DEGAS 2, UEDGE, and with simplified estimates for the expected effects of this gas puff.

  10. Conclusive evidence of abrupt coagulation inside the void during cyclic nanoparticle formation in reactive plasma

    SciTech Connect

    Wetering, F. M. J. H. van de; Nijdam, S.; Beckers, J.

    2016-07-25

    In this letter, we present scanning electron microscopy (SEM) results that confirm in a direct way our earlier explanation of an abrupt coagulation event as the cause for the void hiccup. In a recent paper, we reported on the fast and interrupted expansion of voids in a reactive dusty argon–acetylene plasma. The voids appeared one after the other, each showing a peculiar, though reproducible, behavior of successive periods of fast expansion, abrupt contraction, and continued expansion. The abrupt contraction was termed “hiccup” and was related to collective coagulation of a new generation of nanoparticles growing in the void using relatively indirect methods: electron density measurements and optical emission spectroscopy. In this letter, we present conclusive evidence using SEM of particles collected at different moments in time spanning several growth cycles, which enables us to follow the nanoparticle formation process in great detail.

  11. Conclusive evidence of abrupt coagulation inside the void during cyclic nanoparticle formation in reactive plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Nijdam, S.; Beckers, J.

    2016-07-01

    In this letter, we present scanning electron microscopy (SEM) results that confirm in a direct way our earlier explanation of an abrupt coagulation event as the cause for the void hiccup. In a recent paper, we reported on the fast and interrupted expansion of voids in a reactive dusty argon-acetylene plasma. The voids appeared one after the other, each showing a peculiar, though reproducible, behavior of successive periods of fast expansion, abrupt contraction, and continued expansion. The abrupt contraction was termed "hiccup" and was related to collective coagulation of a new generation of nanoparticles growing in the void using relatively indirect methods: electron density measurements and optical emission spectroscopy. In this letter, we present conclusive evidence using SEM of particles collected at different moments in time spanning several growth cycles, which enables us to follow the nanoparticle formation process in great detail.

  12. Deposition of titanium nitride and hydroxyapatite-based biocompatible composite by reactive plasma spraying

    NASA Astrophysics Data System (ADS)

    Roşu, Radu Alexandru; Şerban, Viorel-Aurel; Bucur, Alexandra Ioana; Dragoş, Uţu

    2012-02-01

    Titanium nitride is a bioceramic material successfully used for covering medical implants due to the high hardness meaning good wear resistance. Hydroxyapatite is a bioactive ceramic that contributes to the restoration of bone tissue, which together with titanium nitride may contribute to obtaining a superior composite in terms of mechanical and bone tissue interaction matters. The paper presents the experimental results in obtaining composite layers of titanium nitride and hydroxyapatite by reactive plasma spraying in ambient atmosphere. X-ray diffraction analysis shows that in both cases of powders mixtures used (10% HA + 90% Ti; 25% HA + 75% Ti), hydroxyapatite decomposition occurred; in variant 1 the decomposition is higher compared with the second variant. Microstructure of the deposited layers was investigated using scanning electron microscope, the surfaces presenting a lamellar morphology without defects such as cracks or microcracks. Surface roughness values obtained vary as function of the spraying distance, presenting higher values at lower thermal spraying distances.

  13. Atomic Force Microscope Investigations of Bacterial Biofilms Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Zelaya, Anna; Brelles-Marino, Graciela

    2012-02-01

    We present investigations of bacterial biofilms before and after treatment with gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve biofilm communities, where bacteria grow embedded in an exopolysaccharide matrix, and cooperative interactions between cells make organisms less susceptible to standard inactivation methods. In this study, biofilms formed by the opportunistic bacterium Pseudomonas aeruginosa were imaged before and after plasma treatment using an atomic force microscope (AFM). Through AFM images and micromechanical measurements we observed bacterial morphological damage and reduced AFM tip-sample surface adhesion following plasma treatment.

  14. Influence of the gas-flow Reynolds number on a plasma column in a glass tube

    SciTech Connect

    Jin, Dong Jun; Uhm, Han S.; Cho, Guangsup

    2013-08-15

    Atmospheric-plasma generation inside a glass tube is influenced by gas stream behavior as described by the Reynolds number (Rn). In experiments with He, Ne, and Ar, the plasma column length increases with an increase in the gas flow rate under laminar flow characterized by Rn < 2000. The length of the plasma column decreases as the flow rate increases in the transition region of 2000 < Rn < 4000. For a turbulent flow beyond Rn > 4000, the length of the plasma column is short in front of the electrode, eventually leading to a shutdown.

  15. Effect of taurine and caffeine on plasma c-reactive protein and calcium in Wistar rats.

    PubMed

    Owoyele, B V; Oyewole, A L; Biliaminu, S A; Alashi, Y

    2015-09-01

    Caffeine is a component of several beverages such as coffee and tea. It has been shown to possess psychoactive properties because it increases alertness, energy and ability to concentrate at moderate doses. Taurine on the other hand, is an amino acid which has the capacity to promote neural development, osmoregulation and neuroprotection. There is paucity of information on the effect of the combined administration of taurine and caffeine on C-reactive protein (CRP)--a marker of inflammation and plasma calcium level in rats. The present study was designed to investigate the effects of combined taurine and caffeine on the plasma level of CRP, Ca2+ as well as the effect of nifedipine on calcium level. Fifty four rats weighing 120-140 g were used for these studies. The animals were divided into nine groups consisting of six animals each. Group 1 was treated with 10 m/kg of normal saline, Groups 2 and 3 were given 100 mg/kg and 200 mg/kg of taurine respectively, groups 4 and 5 received 7.5 mg/kg and 15 mg/kg of caffeine respectively while group 6 was administered taurine (200 mg/kg) and caffeine (15 mg/kg), groups 7 and 8 were treated with taurine (200 mg/kg) plus nifedipine (10 mg/kg) and taurine (200 mg/kg)plus furosemide (20 mg/kg) respectively while group 9 was given taurine plu caffeine plus nifdipine plus furosemide. Treatment was done once daily for 21 days and blood was finally collected via cardiac puncture for the assay of CRP and calcium while the animals were under anaesthesia. The results showed that CRP was significantly decreased in five of the treated groups compared with the control with the exception of the group treated with taurine alone (Group 2), and that treated with combined taurine and caffeine (Group 6). The Ca2+ level of groups treated with caffeine (11.70 ± 0.29 mg/dL) and taurine with caffeine (11.64 ± 0.15 mg/dL) were significantly (p < 0.05) increased compared with the control (10.70 ± 0.29 mg/dL). However, treatment with taurine and

  16. [Plasma endotoxin, procalcitonin, C-reactive protein, and organ functions in patients with major burns].

    PubMed

    Ulrich, D; Noah, E M; Pallua, N

    2001-07-01

    Sepsis is one of the most frequent causes of death after major burn injury. Usually, sepsis appears as a consequence of a gram-negative bacteriaemia with release of endotoxins. In this study, the plasma endotoxin levels of seven patients (three female, four male; average age 51.3 +/- 23.8 years) with burns between 43.5 and 78 % Total Body Surface Area (Abbreviated Burn Severity Index 8 - 12) were determined for five days after thermal trauma every three hours by ELISA and compared with the concentration of procalcitonin (PCT) and C-reactive protein (CRP). A calculation of the Horrowitz-Index (PaO(2)/FiO(2)) and the Pressure-Adjusted Heart Rate (HR x CVP/MAP) took place to show a possible correlation between the endotoxin concentration and the cardiopulmonary organ function. Additionally, we analysed whether operative treatment can influence the level of plasma endotoxin in the early phase after burn injury. At any time after burn trauma, endotoxins could be detected in the plasma of all patients. Between the second and third day, there was a considerable increase in the endotoxin concentration with a maximum after 57 hours of 0.48 +/- 0.32 EU/ml. Two patients with sepsis and death in the further course had a rather distinctive increase. From the fourth day on, occasional episodes of increases in endotoxin concentration were noted. Postoperatively, there was a short increase in plasma endotoxin on the second and fourth day. The plasma endotoxin level showed no correlation with the PCT and CRP or with the oxygenation in the patients' blood. However, a positive correlation could be observed with the Pressure-Adjusted Heart Rate (p = 0.0061; r(2) = 0.212). An explanation for the endotoxin increase after 57 hours could be the translocation of intestinal bacteria, the beginning of bacterial colonisation or decomposition products of the burn wound with protein-protein complexes. Later on, infectious diseases such as pneumonia with gram-negative bacteria are of importance

  17. Uranium plasma emission at gas-core reaction conditions

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Jalufka, N. W.; Hohl, F.; Lee, J. H.

    1976-01-01

    The results of uranium plasma emission produced by two methods are reported. For the first method a ruby laser was focused on the surface of a pure U-238 sample to create a plasma plume with a peak plasma density of about 10 to the 20th power/cu cm and a temperature of about 38,600 K. The absolute intensity of the emitted radiation, covering the range from 300 to 7000 A was measured. For the second method, the uranium plasma was produced in a 20 kilovolt, 25 kilojoule plasma-focus device. The 2.5 MeV neutrons from the D-D reaction in the plasma focus are moderated by polyethylene and induce fissions in the U-235. Spectra of both uranium plasmas were obtained over the range from 30 to 9000 A. Because of the low fission yield the energy input due to fissions is very small compared to the total energy in the plasma.

  18. An effusive molecular beam technique for studies of polyatomic gas-surface reactivity and energy transfer.

    PubMed

    Cushing, G W; Navin, J K; Valadez, L; Johánek, V; Harrison, I

    2011-04-01

    An effusive molecular beam technique is described to measure alkane dissociative sticking coefficients, S(T(g), T(s); ϑ), on metal surfaces for which the impinging gas temperature, T(g), and surface temperature, T(s), can be independently varied, along with the angle of incidence, ϑ, of the impinging gas. Effusive beam experiments with T(g) = T(s) = T allow for determination of angle-resolved dissociative sticking coefficients, S(T; ϑ), which when averaged over the cos (ϑ)/π angular distribution appropriate to the impinging flux from a thermal ambient gas yield the thermal dissociative sticking coefficient, S(T). Nonequilibrium S(T(g), T(s); ϑ) measurements for which T(g) ≠ T(s) provide additional opportunities to characterize the transition state and gas-surface energy transfer at reactive energies. A resistively heated effusive molecular beam doser controls the T(g) of the impinging gas striking the surface. The flux of molecules striking the surface from the effusive beam is determined from knowledge of the dosing geometry, chamber pressure, and pumping speed. Separate experiments with a calibrated leak serve to fix the chamber pumping speed. Postdosing Auger electron spectroscopy is used to measure the carbon of the alkyl radical reaction product that is deposited on the surface as a result of alkane dissociative sticking. As implemented in a typical ultrahigh vacuum chamber for surface analysis, the technique has provided access to a dynamic range of roughly 6 orders of magnitude in the initial dissociative sticking coefficient for small alkanes on Pt(111).

  19. Compilation and evaluation of gas-phase diffusion coefficients of inorganic reactive trace gases in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Cox, R. A.; Kalberer, M.

    2014-06-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed.

  20. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water

    NASA Astrophysics Data System (ADS)

    Wu, Songjie; Zhang, Qian; Ma, Ruonan; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing

    2017-08-01

    The combined effects of plasma activated water (PAW) and hydrogen peroxide (H2O2), PAW/HP, in sterilization were investigated in this study. To assess the synergistic effects of PAW/HP, S. aureus was selected as the test microorganism to determine the inactivation efficacy. Also, the DNA/RNA and proteins released by the bacterial suspensions under different conditions were examined to confirm membrane integrity. Additionally, the intracellular pH (pHi) of S. aureus was measured in our study. Electron spin resonance spectroscopy (ESR) was employed to identify the presence of radicals. Finally, the oxidation reduction potential (ORP), conductivity and pH were measured. Our results revealed that the inactivation efficacy of PAW/HP is much greater than that of PAW, while increased H2O2 concentration result in higher inactivation potential. More importantly, as compared with PAW, the much stronger intensity ESR signals and higher ORP in PAW/HP suggests that the inactivation mechanism of the synergistic effects of PAW/HP: more reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially OH and NO radicals, are generated in PAW combined with H2O2 resulting in more deaths of the bacteria.

  1. Polygenic Overlap Between C-Reactive Protein, Plasma Lipids, and Alzheimer Disease.

    PubMed

    Desikan, Rahul S; Schork, Andrew J; Wang, Yunpeng; Thompson, Wesley K; Dehghan, Abbas; Ridker, Paul M; Chasman, Daniel I; McEvoy, Linda K; Holland, Dominic; Chen, Chi-Hua; Karow, David S; Brewer, James B; Hess, Christopher P; Williams, Julie; Sims, Rebecca; O'Donovan, Michael C; Choi, Seung Hoan; Bis, Joshua C; Ikram, M Arfan; Gudnason, Vilmundur; DeStefano, Anita L; van der Lee, Sven J; Psaty, Bruce M; van Duijn, Cornelia M; Launer, Lenore; Seshadri, Sudha; Pericak-Vance, Margaret A; Mayeux, Richard; Haines, Jonathan L; Farrer, Lindsay A; Hardy, John; Ulstein, Ingun Dina; Aarsland, Dag; Fladby, Tormod; White, Linda R; Sando, Sigrid B; Rongve, Arvid; Witoelar, Aree; Djurovic, Srdjan; Hyman, Bradley T; Snaedal, Jon; Steinberg, Stacy; Stefansson, Hreinn; Stefansson, Kari; Schellenberg, Gerard D; Andreassen, Ole A; Dale, Anders M

    2015-06-09

    Epidemiological findings suggest a relationship between Alzheimer disease (AD), inflammation, and dyslipidemia, although the nature of this relationship is not well understood. We investigated whether this phenotypic association arises from a shared genetic basis. Using summary statistics (P values and odds ratios) from genome-wide association studies of >200 000 individuals, we investigated overlap in single-nucleotide polymorphisms associated with clinically diagnosed AD and C-reactive protein (CRP), triglycerides, and high- and low-density lipoprotein levels. We found up to 50-fold enrichment of AD single-nucleotide polymorphisms for different levels of association with C-reactive protein, low-density lipoprotein, high-density lipoprotein, and triglyceride single-nucleotide polymorphisms using a false discovery rate threshold <0.05. By conditioning on polymorphisms associated with the 4 phenotypes, we identified 55 loci associated with increased AD risk. We then conducted a meta-analysis of these 55 variants across 4 independent AD cohorts (total: n=29 054 AD cases and 114 824 healthy controls) and discovered 2 genome-wide significant variants on chromosome 4 (rs13113697; closest gene, HS3ST1; odds ratio=1.07; 95% confidence interval=1.05-1.11; P=2.86×10(-8)) and chromosome 10 (rs7920721; closest gene, ECHDC3; odds ratio=1.07; 95% confidence interval=1.04-1.11; P=3.38×10(-8)). We also found that gene expression of HS3ST1 and ECHDC3 was altered in AD brains compared with control brains. We demonstrate genetic overlap between AD, C-reactive protein, and plasma lipids. By conditioning on the genetic association with the cardiovascular phenotypes, we identify novel AD susceptibility loci, including 2 genome-wide significant variants conferring increased risk for AD. © 2015 American Heart Association, Inc.

  2. Performance scaling of gas-fed pulsed plasma thrusters

    NASA Astrophysics Data System (ADS)

    Ziemer, John Kenneth

    The performance scaling of gas-fed pulsed plasma thrusters (GFPPTs) is investigated theoretically and experimentally. Analytical models of the discharge current suggest that close to critically damped current waveforms provide the best energy transfer efficiency. A characteristic velocity for GFPPTs that depends on the inductance-per-unit-length and the square root of the capacitance-to-initial-inductance ratio is also derived in these models. The total efficiency is predicted to be proportional to the ratio of the exhaust velocity to the GFPPT characteristic velocity. A numerical non-dimensional model is used to span a large parameter space of possible operating conditions and suggest optimal configurations. From the non-dimensional model, the exhaust velocity is predicted to scale with a non-dimensional parameter called the dynamic impedance parameter to a power that depends on the mass loading prior to the discharge. To test the validity of the predicted scaling relations, the performance of two rapid-pulse-rate GFPPT designs, PT5 (coaxial electrodes) and PT9 (parallel-plate electrodes), has been measured over 70 different operating conditions with argon propellant. The performance measurements are made in a recently renovated facility that uses liquid nitrogen cooled baffles and a micro-thrust stand capable of measuring impulses <20 muNs within <10%. The measurements demonstrate that the impulse bit scales linearly with the integral of the discharge current squared, as expected for an electromagnetic accelerator. The measured performance scaling in both electrode geometries is shown to be in good agreement with theoretical predictions using the GFPPT characteristic velocity. Normalizing the exhaust velocity and the impulse-to-energy ratio by the GFPPT characteristic velocity collapses almost all the measured data onto single curves that represent the scaling relations for these GFPPTs.

  3. Space-time evolution of ejected plasma for the triggering of gas switch

    NASA Astrophysics Data System (ADS)

    Liu, Shanhong; Liu, Xuandong; Shen, Xi; Feng, Lei; Tie, Weihao; Zhang, Qiaogen

    2016-06-01

    Ejected plasma has been widely applied to the discharge process of gas spark switches as a trigger technology, and the development process of ejected plasma has a direct and important effect on the discharge characteristics of gas switches. In this paper, both the injection characteristics and space-time evolution of ejected plasma for the triggering of gas spark switch with different stored energies, pulse polarities, and pressures are studied. The discharge characteristics and breakdown process of a gas switch ignited by ejected plasma under different working coefficients are also discussed briefly. The results show that stored energy has significant influence on the characteristics of ejected plasma. With the increase of stored energy, the propulsion mode of ejected plasma in the axial direction transforms from "plasmoid" to "plasma flow," and the distribution of the ejected plasma goes through "cloud," "core-cloud," and "branch" in sequence. The velocity of ejected plasma under negative pulse polarity is obviously higher than that under positive pulse polarity, especially at the very beginning time. The radial dimensions of ejected plasma under two kinds of pulse polarities follow the similar varying pattern over time, which increase first and then decrease, assuming an inverted "U"-shaped curve. With the increase of pressure, the velocity of ejected plasma significantly decreases and the "branch" channels droop earlier. Applying the ejected plasma to the triggering of a gas switch, the switch can be triggered reliably in a much wide working coefficient range of 10%-90%. With the increase of working coefficient, the breakdown process of the switch translates from slow working mode to fast working mode, and the delay time reduces from tens of μs to hundreds of ns.

  4. Space-time evolution of ejected plasma for the triggering of gas switch

    SciTech Connect

    Liu, Shanhong Liu, Xuandong; Shen, Xi; Feng, Lei; Zhang, Qiaogen; Tie, Weihao

    2016-06-15

    Ejected plasma has been widely applied to the discharge process of gas spark switches as a trigger technology, and the development process of ejected plasma has a direct and important effect on the discharge characteristics of gas switches. In this paper, both the injection characteristics and space-time evolution of ejected plasma for the triggering of gas spark switch with different stored energies, pulse polarities, and pressures are studied. The discharge characteristics and breakdown process of a gas switch ignited by ejected plasma under different working coefficients are also discussed briefly. The results show that stored energy has significant influence on the characteristics of ejected plasma. With the increase of stored energy, the propulsion mode of ejected plasma in the axial direction transforms from “plasmoid” to “plasma flow,” and the distribution of the ejected plasma goes through “cloud,” “core-cloud,” and “branch” in sequence. The velocity of ejected plasma under negative pulse polarity is obviously higher than that under positive pulse polarity, especially at the very beginning time. The radial dimensions of ejected plasma under two kinds of pulse polarities follow the similar varying pattern over time, which increase first and then decrease, assuming an inverted “U”-shaped curve. With the increase of pressure, the velocity of ejected plasma significantly decreases and the “branch” channels droop earlier. Applying the ejected plasma to the triggering of a gas switch, the switch can be triggered reliably in a much wide working coefficient range of 10%–90%. With the increase of working coefficient, the breakdown process of the switch translates from slow working mode to fast working mode, and the delay time reduces from tens of μs to hundreds of ns.

  5. Plasma oxytocin is related to lower cardiovascular and sympathetic reactivity to stress

    PubMed Central

    Grewen, Karen M.; Light, Kathleen C.

    2011-01-01

    In addition to known reproductive and social affiliation functions, oxytocin (OT) has been identified as a cardiovascular hormone. OT synthesis and receptors are found in cardiac and vascular tissue. Animal studies suggest that OT activates an ‘anti-stress’ response that reduces cardiovascular and neuroendocrine stress reactivity. We tested 28 early postpartum mothers, obtaining multiple blood samples for OT, the sympathetic marker, norepinephrine (NE), and the lactation hormone, prolactin, while monitoring their cardiovascular responses to two stressors: public speaking and forehead cold pressor. Although plasma OT did not increase reliably from pre-stress levels during stressors, greater overall OT level was related to greater vasodilation and cardiac stroke volume responses to both tasks, to reduction in heart rate to the cold pressor, as well as to lower plasma NE and higher prolactin levels. In contrast, higher NE was linked to increases in heart rate and decreases in stroke volume. These data support a cardioprotective role for OT, which may influence the magnitude and hemodynamic determinants of cardiovascular stress responses. PMID:21540072

  6. Plasma C-Reactive Protein Levels Are Associated With Improved Outcome in ARDS

    PubMed Central

    Bajwa, Ednan K.; Khan, Uzma A.; Januzzi, James L.; Gong, Michelle N.; Thompson, B. Taylor; Christiani, David C.

    2009-01-01

    Background: C-reactive protein (CRP) has been studied as a marker of systemic inflammation and outcome in a number of diseases, but little is known about its characteristics in ARDS. We sought to examine plasma levels of CRP in patients with ARDS and their relationship to outcome and measures of illness severity. Methods: We measured CRP levels in 177 patients within 48 h of disease onset and tested the association of protein level with 60-day mortality, 28-day daily organ dysfunction scores, and number of ventilator-free days. Results: We found that CRP levels were significantly lower in nonsurvivors when compared with survivors (p = 0.02). Mortality rate decreased with increasing CRP decile (p = 0.02). An increasing CRP level was associated with a significantly higher probability of survival at 60 days (p = 0.005). This difference persisted after adjustment for age and severity of illness in a multivariable model (p = 0.009). Multivariable models were also used to show that patients in the group with higher CRP levels had significantly lower organ dysfunction scores (p = 0.001) and more ventilator-free days (p = 0.02). Conclusions: Increasing plasma levels of CRP within 48 h of ARDS onset are associated with improved survival, lower organ failure scores, and fewer days of mechanical ventilation. These data appear to be contrary to the established view that CRP is solely a marker of systemic inflammation. PMID:19411291

  7. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    SciTech Connect

    Ciocarlan, C.; Wiggins, S. M.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.

    2013-09-15

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive self-focusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.0 × 10{sup 18} cm{sup −3}, the peak normalized laser vector potential, a{sub 0}, increases from 1.0 to 1.85 close to the entrance plane of the capillary compared with a{sub 0} = 1.41 when the plume is neglected.

  8. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling

    USGS Publications Warehouse

    Amos, Richard T.; Mayer, K. Ulrich

    2006-01-01

    In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O2 to waters otherwise depleted in O2. Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given

  9. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling

    NASA Astrophysics Data System (ADS)

    Amos, Richard T.; Ulrich Mayer, K.

    2006-09-01

    In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O 2 to waters otherwise depleted in O 2. Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given

  10. Invited Review Article: Gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion devices

    DOE PAGES

    Zweben, S. J.; Terry, J. L.; Stotler, D. P.; ...

    2017-04-27

    Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less

  11. Formation of an out-of-electrode plasma in a high-voltage gas discharge

    NASA Astrophysics Data System (ADS)

    Kolpakov, V. A.; Kolpakov, A. I.; Podlipnov, V. V.

    2013-04-01

    The formation of an out-of-electrode plasma in a high-voltage gas discharge is studied. The occurrence and self-maintenance of a gas discharge and its associated plasma fluxes on the straight portions of electrical field lines are predicted theoretically and confirmed experimentally. It is shown that the focusing of the gas discharge and plasma fluxes is provided by increasing the length of the field line straight portions toward the symmetry axis of a hole in the anode. It is found that, when the discharge power (more specifically, an accelerating voltage applied to the electrodes of the gas-discharge tube) rises, the straight portions of the field lines elongate and concentrate near the symmetry axis of the hole in the anode. Recommendations are given on using the out-of-electrode plasma in surface micro- and nanostructuring.

  12. Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics

    NASA Astrophysics Data System (ADS)

    Atif, Hussain; Xun, Gao; Qi, Li; Zuoqiang, Hao; Jingquan, Lin

    2017-01-01

    In this work, we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography. A particular emphasis was given to the plume dynamics (shape, size) with the combined effects of ambient gas pressures and an external magnetic field. Free expansion, sharpening effect, and hemi-spherical structures of the aluminum plasma were observed without a magnetic field under different gas pressures. Analysis of the resulting plume images with the combined effects of air gas pressures and a magnetic field show significant changes, such as plume splitting, elliptical geometry changes, radial expansion, and plume confinement. Furthermore, the total size of the plasma plume with a magnetic field was measured to be smaller than the plasma plume without a magnetic field at several background pressures.

  13. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode

    SciTech Connect

    Kaneko, T.

    2009-05-15

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changing a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.

  14. HI-6 oxime (an acetylcholinesterase reactivator): blood plasma pharmacokinetics and organ distribution in experimental pigs.

    PubMed

    Kuneš, Martin; Květina, Jaroslav; Bureš, Jan; Karasová, Jana Zdárová; Pavlík, Michal; Tachecí, Ilja; Musílek, Kamil; Kuca, Kamil

    2014-01-01

    Oxime HI-6 DMS (dimethanesulfonate) is an asymmetric bis-pyridinium aldoxime and essential acetylcholinesterase (AChE) reactivator. The high effectiveness is due to its wide spectrum of therapeutic activity against different structures of nerve agents. Aim of this study was to compare plasma time profiles and tissue distribution (to delimitation of potential toxicity risks) after its intramuscular (i.m.) and intragastric (i.g.) administration to experimental pigs. The study entered female Landrace pigs (Sus scrofa f. domestica), 4-5 months old animals, 29 ± 3.2 kg of body weight. Before the HI-6 DMS administration (i.m. injection or i.g. using a gastric tube), vena auricularis was cannulated (under general anaesthesia) for collection of blood samples. The tissue distribution study was carried out at expected t-max. Concentrations of HI-6 DMS in blood plasma and other tissue samples were detected by means of HPLC method. Fast absorption after i.m. administration, relatively slow absorption and no even elimination after i.g. administration were found. Tissue distribution showed low accumulation in the liver, but a higher content in the kidneys and high concentrations in the brain and gastrointestinal wall. Plasma time profiles after i.g. administration has a prolonged pharmacokinetics. Tissue distribution study showed potential side effects to the stomach due to a higher accumulation of HI-6 in this tissue after i.g. administration but not after a standard i.m. administration. Higher content of HI-6 in the kidneys after i.m. administration suggests the main way of the oxime elimination.

  15. Enhancement of gas sensor response of nanocrystalline zinc oxide for ammonia by plasma treatment

    NASA Astrophysics Data System (ADS)

    Hou, Yue; Jayatissa, Ahalapitiya H.

    2014-08-01

    The effect of oxygen plasma treatment on nanocrystalline ZnO thin film based gas sensor was investigated. ZnO thin films were synthesized on alkali-free glass substrates by a sol-gel process. ZnO thin films were treated with oxygen plasma to change the number of vacancies/defects in ZnO. The effect of oxygen plasma on the structural, electrical, optical and gas sensing properties was investigated as a function of plasma treatment time. The results suggest that the microstructure and the surface morphology can be tuned by oxygen plasma treatment. The optical transmission in the visible range varies after the oxygen plasma treatment. Moreover, it is found that the oxygen plasma has significant impact on the electrical properties of ZnO thin films indicating a variation of resistivity. The oxygen plasma treated ZnO thin film exhibits an enhanced sensing response towards NH3 in comparison with that of the as-deposited ZnO sensor. When compared with the as-deposited ZnO film, the sensing response was improved by 50% for the optimum oxygen plasma treatment time of 8 min. The selectivity of 8 min plasma treated ZnO sensor was also examined for an important industrial gas mixture of H2, CH4 and NH3.

  16. Influence of dissolved inorganic carbon and calcium on gas formation and accumulation in iron permeable reactive barriers.

    PubMed

    Ruhl, Aki S; Weber, Anne; Jekel, Martin

    2012-11-01

    Uncertainties in long-term reactivity and gas accumulation in Fe(0) permeable reactive barriers still hinder a broad application of this groundwater remediation technology. In this study long-term column experiments were conducted under varying geochemical conditions. Generation of hydrogen by anaerobic corrosion in Fe(0) reactive filters was mainly influenced by the mass flux of dissolved inorganic carbon. Both increased concentrations and volume flows led to a substantial rise in gas generation but only to slight differences of gas accumulation within the pores of the reactive filter. Comparisons of columns with different lengths showed higher averaged corrosion rates in the shorter and lower corrosion rates in the longer columns. Calcium in conjunction with dissolved inorganic carbon formed compact and localized aragonite minerals, while in the absence of calcium chukanovite dominated, which covered and passivated the reactive surface to a higher extent. Magnetite was the major crystalline corrosion product in the absence of carbonate and no decline in long term corrosion rates was observed within up to 700 days of operation. Total gas yields of columns were restricted by passivation and approached a volume of approximately 13.5 mL/g granulated cast iron. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Gas Discharge and Experiments for Plasma Display Panel

    DTIC Science & Technology

    2000-07-01

    margin, luminance, luminous efficiency, Penning effect and Paschen curve with varying gas composition and pressure. For pure helium and neon gas ...The discharge energy of a Xenon atom is easily eliminated by activated gases such as hydrogen. Xenon has been the predominant noble gas dopant that has...mobility of Xe ion in He gas . 9 5. PENNING EFFECT Penning effect does not play a significant role in mixtures of neon with more than a few percent of xenon

  18. REACTIVE OXYGEN SPECIES IN WHOLE BLOOD, BLOOD PLASMA AND BREAST MILK: VALIDATION OF A POTENTIAL MARKER OF EXPOSURE AND EFFECT

    EPA Science Inventory

    Reactive oxygen species (ROS) are recognized to contribute to the pathobiology of many diseases. We have applied a simple chemiluminescent (CL) probe to detect ROS in various biological fluids (plasma, whole blood, urine and breast milk) in an environmental arsenic drinking wate...

  19. REACTIVE OXYGEN SPECIES IN WHOLE BLOOD, BLOOD PLASMA AND BREAST MILK: VALIDATION OF A POTENTIAL MARKER OF EXPOSURE AND EFFECT

    EPA Science Inventory

    Reactive oxygen species (ROS) are recognized to contribute to the pathobiology of many diseases. We have applied a simple chemiluminescent (CL) probe to detect ROS in various biological fluids (plasma, whole blood, urine and breast milk) in an environmental arsenic drinking wate...

  20. Cytochromes c': Structure, Reactivity and Relevance to Haem-Based Gas Sensing.

    PubMed

    Hough, Michael A; Andrew, Colin R

    2015-01-01

    Cytochromes c' are a group of class IIa cytochromes with pentacoordinate haem centres and are found in photosynthetic, denitrifying and methanotrophic bacteria. Their function remains unclear, although roles in nitric oxide (NO) trafficking during denitrification or in cellular defence against nitrosoative stress have been proposed. Cytochromes c' are typically dimeric with each c-type haem-containing monomer folding as a four-α-helix bundle. Their hydrophobic and crowded distal sites impose severe restrictions on the binding of distal ligands, including diatomic gases. By contrast, NO binds to the proximal haem face in a similar manner to that of the eukaryotic NO sensor, soluble guanylate cyclase and bacterial analogues. In this review, we focus on how structural features of cytochromes c' influence haem spectroscopy and reactivity with NO, CO and O2. We also discuss the relevance of cytochrome c' to understanding the mechanisms of gas binding to haem-based sensor proteins. © 2015 Elsevier Ltd. All rights reserved.

  1. Different reactivities of amphetamines with N-methyl-bis(trifluoroacetamide) in heated gas chromatographic injectors.

    PubMed

    Hidvégi, E; Hideg, Zs; Somogyi, G P

    2008-03-01

    A fast gas chromatographic mass spectrometric method has been developed earlier for the determination of amphetamine derivatives in human serum and urine. For derivatization, N-methyl-bis(trifluoroacetamide) (MBTFA) was used. Derivatization was performed using an on-line mode, since 1 microl of MBTFA and 1 microl sample extract, dissolved in toluene were injected simultaneously. In this study, the reactivity of the several amphetamine type analytes with MBTFA was investigated. MBTFA used for flash derivatization was applied undiluted on the one hand and diluted 4--4096-fold with acetonitrile on the other hand. Studying several amphetamines in the test sample spiked at the same concentrations we found that they could be divided into 3 groups based on relative target ion peak areas as a function of MBTFA dilution. Group 1, containing only primary amines showed an early increase of the relative peak areas if we increased MBTFA concentration, where group 2 (mainly N-methyl secondary amines) showed that relative peak areas started to increase intensively at higher MBTFA concentrations. Finally, MDEA as an N-ethyl secondary amine, representing group 3, showed significant increase if only slightly diluted MBTFA was used as a flash reagent. This phenomenon can be explained mainly with the less and less reactivity of amine groups in the case of groups 2 and 3, compared to group 1. These findings could help to optimise analytical methods involving flash derivatization processes.

  2. Reactive gas pulsing sputtering process, a promising technique to elaborate silicon oxynitride multilayer nanometric antireflective coatings

    NASA Astrophysics Data System (ADS)

    Farhaoui, A.; Bousquet, A.; Smaali, R.; Moreau, A.; Centeno, E.; Cellier, J.; Bernard, C.; Rapegno, R.; Réveret, F.; Tomasella, E.

    2017-01-01

    The oxynitride materials present a high versatility, which enables their properties to be controlled by tuning their elemental composition. This is the case for silicon oxynitrides used for multilayer antireflective coatings (ARCs), where several thin films with various refractive indexes are needed. Different techniques allow for the modification of the thin film composition. In this paper, we investigate the reactive gas pulsing sputtering process to easily tune the thin film composition, from an oxide to a nitride, by controlling the averaged oxygen flow rate, without reducing the deposition rate, compared to a conventional reactive process (CP). We then demonstrated that the refractive indexes of films deposited by this pulsing process (PP) can be varied in the same range compared to films obtained by CP (from 1.83 to 1.45 at 1.95 eV), whereas their extinction coefficients remain low. Finally, the multilayer ARC has been simulated and optimized by a genetic algorithm for wavelength at 600 nm and for the silicon substrate. Various optimized multilayer (mono-, bi- and tri-layers) structures have been deposited by the PP technique and characterized. They are presented in good agreement with the simulated reflectivity. Hence, the PP allows for an easy depositing tri-layer system with a reasonable deposition rate and low reflectivity (8.1% averaged on 400-750 nm visible light range).

  3. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    PubMed

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g(-1)) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O2), nitrogen (N2), and water vapor (H2O). We find that while dry O2 and N2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  4. Tumor-selective mitochondrial network collapse induced by atmospheric gas plasma-activated medium.

    PubMed

    Saito, Kosuke; Asai, Tomohiko; Fujiwara, Kyoko; Sahara, Junki; Koguchi, Haruhisa; Fukuda, Noboru; Suzuki-Karasaki, Miki; Soma, Masayoshi; Suzuki-Karasaki, Yoshihiro

    2016-04-12

    Non-thermal atmospheric gas plasma (AGP) exhibits cytotoxicity against malignant cells with minimal cytotoxicity toward normal cells. However, the mechanisms of its tumor-selective cytotoxicity remain unclear. Here we report that AGP-activated medium increases caspase-independent cell death and mitochondrial network collapse in a panel of human cancer cells, but not in non-transformed cells. AGP irradiation stimulated reactive oxygen species (ROS) generation in AGP-activated medium, and in turn the resulting stable ROS, most likely hydrogen peroxide (H2O2), activated intracellular ROS generation and mitochondrial ROS (mROS) accumulation. Culture in AGP-activated medium resulted in cell death and excessive mitochondrial fragmentation and clustering, and these responses were inhibited by ROS scavengers. AGP-activated medium also increased dynamin-related protein 1-dependent mitochondrial fission in a tumor-specific manner, and H2O2 administration showed similar effects. Moreover, the vulnerability of tumor cells to mitochondrial network collapse appeared to result from their higher sensitivity to mROS accumulation induced by AGP-activated medium or H2O2. The present findings expand our previous observations on death receptor-mediated tumor-selective cell killing and reinforce the importance of mitochondrial network remodeling as a powerful target for tumor-selective cancer treatment.

  5. Tumor-selective mitochondrial network collapse induced by atmospheric gas plasma-activated medium

    PubMed Central

    Saito, Kosuke; Asai, Tomohiko; Fujiwara, Kyoko; Sahara, Junki; Koguchi, Haruhisa; Fukuda, Noboru; Suzuki-Karasaki, Miki; Soma, Masayoshi; Suzuki-Karasaki, Yoshihiro

    2016-01-01

    Non-thermal atmospheric gas plasma (AGP) exhibits cytotoxicity against malignant cells with minimal cytotoxicity toward normal cells. However, the mechanisms of its tumor-selective cytotoxicity remain unclear. Here we report that AGP-activated medium increases caspase-independent cell death and mitochondrial network collapse in a panel of human cancer cells, but not in non-transformed cells. AGP irradiation stimulated reactive oxygen species (ROS) generation in AGP-activated medium, and in turn the resulting stable ROS, most likely hydrogen peroxide (H2O2), activated intracellular ROS generation and mitochondrial ROS (mROS) accumulation. Culture in AGP-activated medium resulted in cell death and excessive mitochondrial fragmentation and clustering, and these responses were inhibited by ROS scavengers. AGP-activated medium also increased dynamin-related protein 1-dependent mitochondrial fission in a tumor-specific manner, and H2O2 administration showed similar effects. Moreover, the vulnerability of tumor cells to mitochondrial network collapse appeared to result from their higher sensitivity to mROS accumulation induced by AGP-activated medium or H2O2. The present findings expand our previous observations on death receptor-mediated tumor-selective cell killing and reinforce the importance of mitochondrial network remodeling as a powerful target for tumor-selective cancer treatment. PMID:26942565

  6. Generation of terahertz radiation by focusing femtosecond bichromatic laser pulses in a gas or plasma

    SciTech Connect

    Chizhov, P A; Volkov, Roman V; Bukin, V V; Ushakov, A A; Garnov, Sergei V; Savel'ev-Trofimov, Andrei B

    2013-04-30

    The generation of terahertz radiation by focusing two-frequency femtosecond laser pulses is studied. Focusing is carried out both in an undisturbed gas and in a pre-formed plasma. The energy of the terahertz radiation pulses is shown to reduce significantly in the case of focusing in a plasma. (extreme light fields and their applications)

  7. [Comparative study on the gas temperature of a plasma jet at atmospheric pressure].

    PubMed

    Jia, Peng-Ying; Li, Xue-Chen; Yuan, Ning

    2011-08-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce jet plasma in flowing work gas (argon mixed with trace nitrogen) at atmospheric pressure. The relation between the plasma length and the gas flow rate was obtained by taking the images of the jet plasma. A high-resolution optical spectrometer was used to collect the optical emission spectrum. The emission spectra of the first negative band of N(2+) (B2 Sigma(u+)-->Chi2 Sigma(g+), 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The gas temperature was investigated by this optical method and results show that the gas temperature increases with increasing the applied voltage. For comparison, a thermometer was used to measure the temperature of the gas emitted from the jet. The results also show that the gas temperature increases with increasing the applied voltage. The gas temperatures obtained by the two methods are consistent. The difference was analyzed.

  8. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    NASA Astrophysics Data System (ADS)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  9. He+O{sub 2}+H{sub 2}O plasmas as a source of reactive oxygen species

    SciTech Connect

    Liu, D. X.; Wang, X. H.; Rong, M. Z.; Iza, F.; Kong, M. G.

    2011-05-30

    The effect of water in the chemistry of atmospheric-pressure He+O{sub 2} plasmas is studied by means of a comprehensive global model. Water enables the generation of reactive oxygen species (ROS) cocktails that are rich not only in O, O{sub 2}*, and O{sub 3} but also in OH and H{sub 2}O{sub 2}. Due to its polar nature, water also leads to cluster formation, possibly affecting the plasma dynamics. Since the lifetime of many of the ROS is short, the plasma chemistry plays two roles: (i) direct interaction with superficial cells and (ii) triggering of a secondary chemistry that propagates the plasma treatment to regions away from the plasma-surface interface.

  10. Modelisation de la synthese reactive de poudres ultrafines dans un reacteur a plasma thermique

    NASA Astrophysics Data System (ADS)

    Desilets, Martin

    La presente these s'inscrit dans le cadre de la modelisation mathematique des ecoulements a plasmas thermiques inertes et reactifs. Elle vise plus precisement a combler les lacunes des modeles existants en portant une attention particuliere aux phenomenes de transport multicomposant et a la prediction des transformations chimiques. Pour repondre a ces attentes et ainsi poursuivre le developpement dans ce domaine, un modele global a ete developpe. Il combine la resolution d'equations conservatives pour la masse, l'energie et le momentum. La generation d'un plasma inductif (h.f ) y est traitee au moyen d'equations representant les champs electromagnetiques. La nucleation et la croissance de poudres ultrafines sont incluses dans le modele via l'analyse des principaux moments de la distribution des tailles de particules. Enfin, tous les phenomenes physico-chimiques d'importance dans un milieu comme les plasmas thermiques, de meme que lem interactions, sont consideres. Le modele est applique ici a l'analyse de trois problematiques differentes et complementaires. La premiere concerne l'etude du melange gazeux d'un jet froid (He, N 2 ou O2), injecte au coeur d'une decharge d'argon/hydrogene ou d'argon/oxygene. La comparaison des predictions du modele avec des mesures experimentales obtenues par une sonde enthalpique permet une validation partielle de ce dernier. La deuxieme problematique a trait a l'etude numerique de la pyrolyse du methane en reacteur a plasma h.f. Elle met en evidence les difficultes de convergence de la methode numerique lorsque appliquee a la resolution d'ecoulements reactifs a haute temperature. Finalement, le dernier sujet aborde dans cette these, soit l'analyse systematique des principales conditions d'operation d'un reacteur h.f utilise pour la synthese reactive de poudres ultrafines de silicium, engage tous les elements theoriques du modele. Il implique en effet la decomposition thermique d'un precurseur gazeux, le tetrachlorure de silicium, la

  11. Gas Temperature Determination in Argon-Helium Plasma at Atmospheric Pressure using van der Waals Broadening

    SciTech Connect

    Munoz, Jose; Yubero, Cristina; Calzada, Maria Dolores; Dimitrijevic, Milan S.

    2008-10-22

    The use of the van der Waals broadening of Ar atomic lines to determine the gas temperature in Ar-He plasmas, taking into account both argon and helium atoms as perturbers, has been analyzed. The values of the gas temperature inferred from this broadening have been compared with those obtained from the spectra of the OH molecular species in the discharge.

  12. Co-CoO nanoparticles prepared by reactive gas-phase aggregation

    NASA Astrophysics Data System (ADS)

    González, J. A.; Andrés, J. P.; De Toro, J. A.; Muñiz, P.; Muñoz, T.; Crisan, O.; Binns, C.; Riveiro, J. M.

    2009-11-01

    The technique of gas-phase aggregation has been used to prepare partially oxidized Co nanoparticles films by allowing a controlled flow of oxygen gas into the aggregation zone. This method differs from those previously reported, that is, the passivation of a beam of preformed particles in a secondary chamber and the conventional (low Ar pressure) reactive sputtering of Co to produce Co-CoO composite films. Transmission electron microscopy shows that the mean size of the particles is about 6 nm. For sufficiently high oxygen pressures, the nanoparticles films become super-paramagnetic at room temperature. X-ray diffraction patterns display reflections corresponding to fcc Co and fcc CoO phases, with an increasing dominance of the latter upon increasing the oxygen pressure in the aggregation zone, which is consistent with the observed reduction in saturation magnetization. The cluster films assembled with particles grown under oxygen in the condensation zone exhibit exchange-bias fields (about 8 kOe at 20 K) systematically higher than those measured for Co-CoO core-shell nanoparticles prepared by oxidizing preformed particles in the deposition chamber, which we attribute, in the light of results from annealing experiments, to a higher ferromagnetic-antiferromagnetic (Co-CoO) interface density.

  13. Compact laser plasma EUV source based on a gas puff target for metrology

    NASA Astrophysics Data System (ADS)

    Fiedorowicz, Henryk; Bartnik, Andrzej; Jarocki, Roman; Kostecki, Jerzy; Mikolajczyk, Janusz; Rakowski, Rafal; Szczurek, Miroslaw

    2003-06-01

    In the paper a newly developed compact laser plasma EUV source is presented. The source is based on the double-stream gas puff target approach. The targets are formed by pulsed injection of high-Z gas (xenon) into a hollow stream of low-Z gas (helium) using the valve system composed of two electromagnetic valves and equipped with the double-nozzle setup. The outer stream of gas confines the inner stream improving the gas puff target characteristics (higher density of high-Z gas at longer distance from the nozzle output). It causes efficient absorption of laser energy in a plasma and strong EUV production. The source has been developed in the frame of the EUV sources development project under the MEDEA+ program.

  14. Fault reactivation and seismicity risk from CO2 sequestration in the Chinshui gas field, NW Taiwan

    NASA Astrophysics Data System (ADS)

    Sung, Chia-Yu; Hung, Jih-Hao

    2015-04-01

    The Chinshui gas field located in the fold-thrust belt of western Taiwan was a depleted reservoir. Recently, CO2 sequestration has been planned at shallower depths of this structure. CO2 injection into reservoir will generate high fluid pressure and trigger slip on reservoir-bounding faults. We present detailed in-situ stresses from deep wells in the Chinshui gas field and evaluated the risk of fault reactivation for underground CO2 injection. The magnitudes of vertical stress (Sv), formation pore pressure (Pf) and minimum horizontal stress (Shmin) were obtained from formation density logs, repeat formation tests, sonic logs, mud weight, and hydraulic fracturing including leak-off tests and hydraulic fracturing. The magnitude of maximum horizontal stress (SHmax) was constrained by frictional limit of critically stressed faults. Results show that vertical stress gradient is about 23.02 MPa/km (1.02 psi/ft), and minimum horizontal stress gradient is 18.05 MPa/km (0.80 psi/ft). Formation pore pressures were hydrostatic at depths 2 km, and increase with a gradient of 16.62 MPa/km (0.73 psi/ft). The ratio of fluid pressure and overburden pressure (λp) is 0.65. The upper bound of maximum horizontal stress constrained by strike-slip fault stress regime (SHmax>Sv>Shmin) and coefficient of friction (μ=0.6) is about 18.55 MPa/km (0.82 psi/ft). The orientation of maximum horizontal stresses was calculated from four-arm caliper tools through the methodology suggested by World Stress Map (WMS). The mean azimuth of preferred orientation of borehole breakouts are in ~65。N. Consequently, the maximum horizontal stress axis trends in 155。N and sub-parallel to the far-field plate-convergence direction. Geomechanical analyses of the reactivation of pre-existing faults was assessed using 3DStress and Traptester software. Under current in-situ stress, the middle block fault has higher slip tendency, but still less than frictional coefficient of 0.6 a common threshold value for

  15. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    SciTech Connect

    Asaji, T. Ohba, T.; Uchida, T.; Yoshida, Y.; Minezaki, H.; Ishihara, S.; Racz, R.; Biri, S.; Kato, Y.

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  16. An evidence of period doubling bifurcation in a dc driven semiconductor-gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Mansuroglu, D.; Uzun-Kaymak, I. U.; Rafatov, I.

    2017-05-01

    We present an experimental study of nonlinearity observed in a dc driven semiconductor-gas discharge system. The plasma glow is generated using planar electrodes in a vacuum chamber filled with nitrogen gas at partial atmospheric pressure. The discharge behaves oscillatory in time, showing single and sometimes multiple periodicities in plasma current and voltage measurements. Harmonic frequency generations and period doubling cascade are investigated experimentally by varying the applied voltage. To identify the stability condition, numerical simulations are conducted using COMSOL® Multiphysics software. The discharge is modeled as a one dimensional plasma slab. Numerical results are in good agreement with the experimental measurements.

  17. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    PubMed

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  18. Forebody and base region real gas flow in severe planetary entry by a factored implicit numerical method. II - Equilibrium reactive gas

    NASA Technical Reports Server (NTRS)

    Davy, W. C.; Green, M. J.; Lombard, C. K.

    1981-01-01

    The factored-implicit, gas-dynamic algorithm has been adapted to the numerical simulation of equilibrium reactive flows. Changes required in the perfect gas version of the algorithm are developed, and the method of coupling gas-dynamic and chemistry variables is discussed. A flow-field solution that approximates a Jovian entry case was obtained by this method and compared with the same solution obtained by HYVIS, a computer program much used for the study of planetary entry. Comparison of surface pressure distribution and stagnation line shock-layer profiles indicates that the two solutions agree well.

  19. Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine

    NASA Astrophysics Data System (ADS)

    Yusupov, M.; Neyts, E. C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A. C. T.; Bogaerts, A.

    2014-01-01

    The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.

  20. On anomalous temporal evolution of gas pressure in inductively coupled plasma

    SciTech Connect

    Seo, B. H.; Chang, H. Y.; You, S. J.; Kim, J. H.; Seong, D. J.

    2013-04-01

    The temporal measurement of gas pressure in inductive coupled plasma revealed that there is an interesting anomalous evolution of gas pressure in the early stage of plasma ignition and extinction: a sudden gas pressure change and its relaxation of which time scales are about a few seconds and a few tens of second, respectively, were observed after plasma ignition and extinction. This phenomenon can be understood as a combined result between the neutral heating effect induced by plasma and the pressure relaxation effect for new gas temperature. The temporal measurement of gas temperature by laser Rayleigh scattering and the time dependant calculations for the neutral heating and pressure relaxation are in good agreement with our experimental results. This result and physics behind are expected to provide a new operational perspective of the recent plasma processes of which time is very short, such as a plasma enhanced atomic layer deposition/etching, a soft etch for disposal of residual by-products on wafer, and light oxidation process in semiconductor manufacturing.

  1. Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction

    DOEpatents

    Rosocha, Louis A.

    2006-06-20

    A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.

  2. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua.

    PubMed

    Noriega, Estefanía; Shama, Gilbert; Laca, Adriana; Díaz, Mario; Kong, Michael G

    2011-10-01

    Gas plasmas generated at atmospheric pressure and ambient temperatures offer a possible decontamination method for poultry products. The efficacy of cold atmospheric gas plasmas for decontaminating chicken skin and muscle inoculated with Listeria innocua was examined. Optimization of operating conditions for maximal bacterial inactivation was first achieved using membrane filters on which L. innocua had been deposited. Higher values of AC voltage, excitation frequency and the presence of oxygen in the carrier gas resulted in the greatest inactivation efficiency, and this was confirmed with further studies on chicken muscle and skin. Under optimal conditions, a 10 s treatment gave > 3 log reductions of L. innocua on membrane filters, an 8 min treatment gave 1 log reduction on skin, and a 4 min treatment gave > 3 log reductions on muscle. These results show that the efficacy of gas plasma treatment is greatly affected by surface topography. Scanning electron microscopy (SEM) images of chicken muscle and skin revealed surface features wherein bacteria could effectively be protected from the chemical species generated within the gas plasma. The developments in gas plasma technology necessary for its commercial application to foods are discussed.

  3. Aqueous extractive upgrading of bio-oils created by tail-gas reactive pyrolysis to produce pure hydrocarbons and phenols

    USDA-ARS?s Scientific Manuscript database

    Tail-gas reactive pyrolysis (TGRP) of biomass produces bio-oil that is lower in oxygen (~15 wt% total) and significantly more hydrocarbon-rich than traditional bio-oils or even catalytic fast pyrolysis. TGRP bio-oils lend themselves toward mild and inexpensive upgrading procedures. We isolated oxyge...

  4. Distillation and isolation of commodity chemicals from Bio-oil made by tail-gas reactive prolysis

    USDA-ARS?s Scientific Manuscript database

    Owing to instabilities, very little has been accomplished with regards to simple cost-effective separations of fast-pyrolysis bio-oil. However, recent developments in the use of tail-gas reactive pyrolysis (TGRP) (Mullen and Boateng 2013) provide higher quality bio-oils that are thermally stable. We...

  5. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOEpatents

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  6. Evaluation of the effect of elastic joints on the auto-oscillation of spacecraft with gas-reactive direction systems

    NASA Technical Reports Server (NTRS)

    Sasin, G. G.

    1979-01-01

    A mathematical model was obtained, on the basis of the method of mixed coordinates, of a generalized flexible spacecraft at one end of which was appended the directive action of a system of gas reactive nozzles. Various structural forms were obtained functionally describing flexible spacecraft, as systems consisting of a solid central body with flexible structural elements joined to it.

  7. Preparation of Surface Organometallic Catalysts by Gas-Phase Ligand Stripping and Reactive Landing of Mass-Selected Ions

    SciTech Connect

    Johnson, Grant E.; Laskin, Julia

    2010-12-27

    Organometallic complexes immobilized on surfaces combine the high selectivity of homogeneous catalysts with the ease of separation of catalyst from products of heterogeneous materials. Here we report a novel approach for the highly controlled preparation of surface organometallic catalysts by gas-phase ligand stripping combined with reactive landing of mass-selected ions onto self assembled monolayer surfaces. Collision induced dissociation is used to generate highly reactive undercoordinated metal complexes in the gas-phase for subsequent surface immobilization. Complexes with an open coordination shell around the metal center are demonstrated to show enhanced activity towards reactive landing in comparison to fully ligated species. In situ TOF-SIMS analysis indicates that the immobilized complexes exhibit behaviour consistent with catalytic activity when exposed to gaseous reagents.

  8. Fiber Bragg grating-based temperature sensor for neutral gas in capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Zigeng; Han, Daoman; Zhang, Xinpu; Liu, Yongxin; Peng, Wei; Wang, Younian

    2016-11-01

    A fiber Bragg grating (FBG) has been utilized in capacitively coupled plasmas (CCP) for thermometry of neutral gas. We studied the effects of high frequency and low frequency power on radial distribution of neutral gas temperature. The result shows that the neutral gas temperature increases with increasing high frequency power. However, the presence of low frequency power will decrease the neutral gas temperature. Particularly, we eliminated the effect of ion bombardment on temperature measurement by studying axial distribution near plasma-sheath boundary. With features of immune to electromagnetic interference, high precision, and spatial resolving power, the FBG is a commendable candidate for CCP or other radio-frequency plasmas thermometry in both laboratory and industry.

  9. Modification of plasma flows with gas puff in the scrape-off layer of ADITYA tokamak

    SciTech Connect

    Sangwan, Deepak; Jha, Ratneshwar; Brotankova, Jana; Gopalkrishna, M. V.

    2013-06-15

    The parallel Mach numbers are measured at three locations in the scrape-off layer (SOL) plasma of ADITYA tokamak by using Mach probes. The flow pattern is constructed from these measurements and the modification of flow pattern is observed by introducing a small puff of working gas. In the normal discharge, there is an indication of shell structure in the SOL plasma flows, which is removed during the gas puff. The plasma parameters, particle flux and Reynolds stress are also measured in the normal discharge and in the discharge with gas puff. It is observed that Reynolds stress and Mach number are coupled in the near SOL region and decoupled in the far SOL region. The coupling in the near SOL region gets washed away during the gas puff.

  10. On the penetration depth of reactive oxygen and nitrogen species generated by a plasma jet through real biological tissue

    NASA Astrophysics Data System (ADS)

    Duan, J.; Lu, X.; He, G.

    2017-07-01

    In this work, an actual biological tissue is used to investigate how thick the reactive oxygen and nitrogen species (RONS) produced by a plasma jet can penetrate through the tissue. This is one of the most critical questions in plasma medicine. The concentration of RONS (O3, H2O2, OH, NO2-, NO2- + NO3-) produced by the plasma jet penetrating through different thickness of the tissue is measured. It is found that the reactive oxygen species (ROS) produced by the plasma are significantly consumed by the tissue. For the tissue thickness of 500 μm, there is only about five percent or even less of the ROS (O3, H2O2, and OH) penetrating through the tissue. On the other hand, more than 80% of the reactive nitrogen species (NO2- + NO3-) are able to penetrate through the 500 μm biological tissue. Furthermore, under certain experimental conditions, some of the RONS can penetrate through 1.25 mm of the biological tissue. Finally, besides H2O2, NO2-, and NO3-, there is some other unknown RONS that penetrate through the biological tissue.

  11. Reactivity studies of plasma-synthesized aluminum trifluoride and electrochemical synthesis of non-stoichiometric silver selenide nanowire arrays

    NASA Astrophysics Data System (ADS)

    Hajime, Evan Koon Lun Yuuji

    A high surface area aluminum trifluoride material ("plasma-AIF3 ") has previously been synthesized in our laboratory by decomposition of zeolitic precursors in fluorine-containing, low-temperature plasmas. The characterization of the halogen exchange reactivity of this unique fluoride material is presented in Part 1 of the dissertation. A gas flow reactor was designed and built to study the isothermal and temperature-dependent halogen exchange activity of plasma-AIF3, with comparisons being made to the well-known halogen exchange catalyst beta-AIF3. Isothermal experiments showed that plasma-AIF3 is an active halogen exchange catalyst for the dismutation of dichlorodifluoromethane, while temperature-programmed reaction (TPR) experiments revealed a lower temperature onset of activity with plasma-AIF3 when compared to beta-AIF3. The existence of two distinct active sites for halogen exchange on aluminum fluoride is proposed, with sites characteristic of plasma-AIF3 and R-AIF3 having lower and higher temperature onsets of activity, respectively. TPR data for hydrated plasma-AIF3 showed a significant attenuation of the lower temperature active sites, while the higher temperature site remained relatively unchanged in activity. Temperature-programmed X-ray diffraction of plasma-AIF3 revealed the existence of beta-AIF 3 crystallites at temperatures between 225 and 500°C, thus rationalizing the existence of the higher temperature active site (associated with beta-AIF 3) in plasma-AIF3 during heating. Plasma-AIF3 also displayed a high affinity for crystalline hydrate formation with extended exposure to moist air, and TPR experiments performed on commercially available AIF3·3H2O produced plots similar in shape and features when compared to plasma-AIF3. The thermal transformation processes of the trihydrate suggest the origin of the lower temperature active site to be associated with an amorphous bulk AIF3 structure. Part 2 of the dissertation summarizes the current efforts

  12. Synergistic catalytic removal NOX and the mechanism of plasma and hydrocarbon gas

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Sha, Xiang-ling; Zhang, Lei; He, Hui-bin; Ma, Zhen-hua; Wang, Long-wei; Wang, Yu-xin; She, Li-xia

    2016-07-01

    This paper using a method of catalytic adsorption combined with dielectric barrier discharge plasma which added to hydrocarbon gases. The different background gases, different dielectric properties and different pore sizes of the hydrolysis coke on the denitrification performance was studied. The effect of the coaction of plasma and the different properties of the removal of NO in flue gas was investigated, and the catalytic mechanism of the synergistic effect of plasma and hydrocarbon gas was discussed. The results shown that: The denitrification rate was significantly affected by plasma power and the initial concentration of NO; the reaction was restrained by the presence of oxygen and greatly promoted by the hydrocarbon gases. The permittivity of the catalyst has a great influence on the activity and the porous structure of the catalyst can obviously promote the reaction when the low temperature plasma combined with hydrocarbon gases.

  13. Association of plasma concentrations of salicylic acid and high on ASA platelet reactivity in type 2 diabetes patients.

    PubMed

    Postula, Marek; Janicki, Piotr K; Rosiak, Marek; Przybylkowski, Adam; Kaplon-Cieslicka, Agnieszka; Grygorowicz, Tomasz; Trzepla, Ewa; Filipiak, Krzysztof J; Czlonkowski, Andrzej; Opolski, Grzegorz

    2013-01-01

    The objective of this study was to investigate the association between plasma concentrations of salicylic acid (SA) and other minor acetylsalicylic acid (ASA) metabolites and high on ASA platelet reactivity assessed with different methods in type 2 diabetic patients (T2DM). Study cohort consisted of 293 T2DM patients on chronic ASA therapy. Platelet function inhibition was analyzed using measurements of serum thromboxane B2 (S-TxB2), VerifyNow Aspirin and Platelet Function Analyzer (PFA)-100 assays. The concentration of ASA metabolites in plasma was measured with a high-performance liquid chromatography (HPLC). In logistic regression analysis both ASA dose/kg of body weight and plasma SA concentration were found to be predictive of S-TxB2 concentrations above 0.72 ng/mL cut-off point (OR 16.9, 95% CI 2.29-125.8, p = 0.006 and OR 5.34, 95% CI 2.67-10.68, p < 0.001, respectively). When using the VerifyNow Aspirin Assay, the concentrations of SA were significantly lower (p = 0.007) in the group with high on ASA platelet reactivity when compared with the group with normal on ASA platelet reactivity. In logistic regression analysis plasma SA concentration was found to be predictive of VerifyNow Aspirin Reaction Units (ARU) ≥ 550 (OR 3.86, 95% CI 1.86-8.00, p < 0.001). Our study suggests that disturbances of pharmacokinetic mechanisms might contribute to lower plasma SA levels, and subsequently incomplete inhibition of thromboxane A2 synthesis as measured with S-TxB2 concentrations and increased platelet reactivity measured with VerifyNow in T2DM patients.

  14. Synthesis and characterization of InN nanocrystals on glass substrate by plasma assisted reactive evaporation

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Alizadeh, M.; Shuhaimi, A.; Sundaram, S.; Hakim, K. M.; Goh, B. T.; Rahman, S. A.

    2017-07-01

    InN nanocrystals were grown on glass substrate by plasma assisted reactive evaporation technique and the quality was compared with InN on Si (111) substrate. Single phase InN was confirmed by X-ray diffraction and micro Raman analysis on both the substrates. Agglomerated and Hexagonal faceting nanocrystals observed by field emission scanning electron microscopy. Energy dispersive X-ray analysis shows InN nanocrystals are nearly stochiometric. Photoluminescence reveals a broad emission near bandedge at 2 .04 eV and defect band at 1.07 eV. The Hall measurement on both the substrates reveals high electron carrier concentration. These encouraging results obtained suggested that high quality single crystalline InN can be obtained on glass substrate further optimizing the growth parameters. This novel growth of InN nanocrystals on glass substrate is an important step towards the development of monolithic, high efficiency low-cost InGaN-based renewable energy sources.

  15. Reactive impulse plasma ablation deposited barium titanate thin films on silicon

    NASA Astrophysics Data System (ADS)

    Werbowy, A.; Firek, P.; Kwietniewski, N.; Olszyna, A.

    2013-07-01

    Thin (100 nm) nanocrystalline dielectric films of lanthanum doped barium titanate were produced on Si substrates by means of reactive impulse plasma ablation deposition (IPD) from BaTiO3 + La2O3 (2 wt.%) target. Scanning electron microcopy and atomic force microscopy showed that the obtained layers were dense ceramics of uniform thickness with average roughness Ra = 2.045 nm and the average grain size of the order of 15 nm. Measurements of current-voltage (IV) characteristics of metal-insulator-semiconductor (MIS) structures, produced by evaporation of metal (Al) electrodes on top of barium titanate films, allowed to determine that the leakage current density and critical electric field intensity (EBR) of investigated layers ranged from 10-12 to 10-6 A cm-2 and from 0.2 to 0.5 MV cm-1, respectively. Capacitance-voltage (C-V) measurements of the same structures were performed in accumulation state showing that the dielectric constant value (ɛri) of films is of the order of 20.

  16. Controlled Growth of Conductive AlN Thin Films by Plasma-Assisted Reactive Evaporation

    NASA Astrophysics Data System (ADS)

    Alizadeh, M.; Goh, B. T.; Rahman, S. A.

    2017-07-01

    In this work, the growth of conductive AlN thin films by plasma-assisted reactive evaporation at different filament-to-substrate distances was presented and discussed. The elemental composition, surface morphology, structural, optical, and electrical properties of the films were examined by energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, grazing incidence X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FTIR), optical measurement, and current-voltage ( I- V) characterizations. The electrical study revealed that the films are conductive, as ohmic conductivity was observed from I- V results. The GIXRD results of AlN thin films showed that by decreasing the distance, the intensity of the peak corresponding to metallic Al decreases while that of AlN increases. EDX and XPS results indicated that at shorter distances, the incorporation of N into the AlN films is enhanced. This was further confirmed by FTIR results, which showed that the incorporation of Al-N bonds in the grown AlN films was enhanced by decreasing the distance. It was shown that the optical absorption edge of the grown films shifts from the near-ultraviolet (UV) region to far-UV as the distance is decreased.

  17. Deposition of titanium nitride layers by electric arc - Reactive plasma spraying method

    NASA Astrophysics Data System (ADS)

    Şerban, Viorel-Aurel; Roşu, Radu Alexandru; Bucur, Alexandra Ioana; Pascu, Doru Romulus

    2013-01-01

    Titanium nitride (TiN) is a ceramic material which possesses high mechanical properties, being often used in order to cover cutting tools, thus increasing their lifetime, and also for covering components which are working in corrosive environments. The paper presents the experimental results on deposition of titanium nitride coatings by a new combined method (reactive plasma spraying and electric arc thermal spraying). In this way the advantages of each method in part are combined, obtaining improved quality coatings in the same time achieving high productivity. Commercially pure titanium wire and C45 steel as substrate were used for experiments. X-ray diffraction analysis shows that the deposited coatings are composed of titanium nitride (TiN, Ti2N) and small amounts of Ti3O. The microstructure of the deposited layers, investigated both by optical and scanning electron microscopy, shows that the coatings are dense, compact, without cracks and with low porosity. Vickers microhardness of the coatings presents maximum values of 912 HV0.1. The corrosion tests in 3%NaCl solution show that the deposited layers have a high corrosion resistance compared to unalloyed steel substrate.

  18. Polishing of Optical Media by Dielectric Barrier Discharge Inert Gas Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Gerhard, C.; Weihs, T.; Luca, A.; Wieneke, S.; Viöl, W.

    2013-12-01

    In this paper, surface smoothing of optical glasses, glass ceramic and sapphire using a low-power dielectric barrier discharge inert gas plasma at atmospheric pressure is presented. For this low temperature treatment method, no vacuum devices or chemicals are required. It is shown that by such plasma treatment the micro roughness and waviness of the investigated polished surfaces were significantly decreased, resulting in a decrease in surface scattering. Further, plasma polishing of lapped fused silica is introduced. Based on simulation results, a plasma physical process is suggested to be the underlying mechanism for initialising the observed smoothing effect.

  19. Study Of The Gas Balance By Injection Of Hydrocarbons Into The Plasma Simulator PSI 2

    SciTech Connect

    Bohmeyer, Werner; Markin, Andrey; Koch, Bernd; Fussmann, Gerd; Krenz, Gordon

    2006-01-15

    The stationary plasma of the plasma generator PSI 2 is used to study the gas balance of hydrocarbons and hydro-gen by means of mass spectrometers. For this purpose H2, acetylene and ethylene are injected into argon and hydrogen plasmas. It is found that hydrogenation of the hydrocarbon layers is strongly influenced by the hydrocarbon species injected previously. Furthermore, time constants of more than 1000 s for achieving stationary conditions are identified in some cases. The H/C ratio of the hydrocarbon layers is found to vary from about 1 to 1.4 for argon and hydrogen plasmas, respectively.

  20. Immune response to enzyme replacement therapy: 4-sulfatase epitope reactivity of plasma antibodies from MPS VI cats.

    PubMed

    Turner, C T; Hopwood, J J; Bond, C S; Brooks, D A

    1999-07-01

    The mucopolysaccharidoses (MPS) are a group of multiple pathology disorders which are part of a larger group of genetic diseases known as lysosomal storage disorders. Enzyme replacement therapy (ERT) has been developed as a therapy for MPS patients. However, immune responses to ERT have been reported in MPS animal models and in human Gaucher patients. Antibodies can have adverse effects during ERT, which include hypersensitivity/anaphylactic reactions, enzyme inactivation, and enzyme degradation. This study aimed to characterize the immune response to ERT in a feline model of MPS VI, by defining the epitope reactivity of cat plasma antibody against human recombinant N-acetylgalactosamine 4-sulfatase (4-sulfatase) replacement protein. For MPS VI cat plasma, antibody reactivity was observed prior to ERT, with distinct regions of 4-sulfatase linear sequence displaying low affinity antibody reactivity. There was an increase in antibody titer to 4-sulfatase for MPS VI cats post-ERT, with the majority of the immune response detected to linear sequence epitopes. One cat displayed a high titer and high affinity epitope reactivity following prolonged exposure (>/=9 months) to the replacement protein. MPS VI cats on shorter term ERT (3 months) showed high titers to 4-sulfatase and similar patterns of epitope reactivity, but lower affinity antibody reactivity, when compared to the latter cat. This study reports the linear amino acid sequence reactivity and nature of the immune response produced to 4-sulfatase before and after ERT. The monitoring of antibody production during replacement therapy is an important consideration for patient management, as high titer antibodies can affect the efficacy of therapy. Copyright 1999 Academic Press.

  1. Field and laboratory studies of atmospheric reactive mercury: Gas-particle partitioning and sources

    NASA Astrophysics Data System (ADS)

    Rutter, Andrew Philip

    Certain aspects of atmospheric reactive mercury (RM) source-receptor relationships are not well understood. The objective of this dissertation was to improve the understanding of these relationships in the following areas: (i) gas-particle partitioning, and; (ii) the local impacts of RM source emissions. A novel aerosol reactor was developed to study gas-particle partitioning of RM using synthetic atmospheric aerosol containing picogram concentrations of RM. The RM in the aerosol was collected in an offline mode with filters and sorbent, and analyzed with Thermal Desorption Analysis (TDA). The offline-TDA collection and analysis method was compared with a commercial real time ambient mercury analyzer and two wet analysis methods using ambient measurements. The offline-TDA method performed well in comparison to the established techniques. The dependencies of gas-particle partitioning coefficients upon temperature and particle composition were determined and parameterized from field studies and laboratory experiments. The volatility of RM increased with ambient temperature in urban aerosol and laboratory aerosol of ammonium sulfate and adipic acid. The dependence of RM gas-particle partitioning on particle composition were determined using synthetic atmospheric aerosol generated in the laboratory. RM partitioned predominantly to the particle phase in particles of sodium nitrate, sodium chloride and potassium chloride, but was much more volatile in particles made of ammonium sulfate, levoglucosan and adipic acid. The impacts of RM sources on local receptors were studied in southern Wisconsin and Mexico City. RM measurements were made over a year in Milwaukee, WI (urban) and Devil's Lake State Park, WI (rural). An urban excess of all three mercury species was detected in Milwaukee, WI. The urban excess was attributed to a higher density of mercury emissions in the Milwaukee, WI-Chicago, IL area. The impact of local sources of RM on both sites was found to dominate the

  2. The Instability of Terahertz Plasma Waves in Two Dimensional Gated and Ungated Quantum Electron Gas

    NASA Astrophysics Data System (ADS)

    Zhang, Liping

    2016-04-01

    The instability of terahertz (THz) plasma waves in two-dimensional (2D) quantum electron gas in a nanometer field effect transistor (FET) with asymmetrical boundary conditions has been investigated. We analyze THz plasma waves of two parts of the 2D quantum electron gas: gated and ungated regions. The results show that the radiation frequency and the increment (radiation power) in 2D ungated quantum electron gas are much higher than that in 2D gated quantum electron gas. The quantum effects always enhance the radiation power and enlarge the region of instability in both cases. This allows us to conclude that 2D quantum electron gas in the transistor channel is important for the emission and detection process and both gated and ungated parts take part in that process. supported by National Natural Science Foundation of China (No. 10975114)

  3. Decorative black TiCxOy film fabricated by DC magnetron sputtering without importing oxygen reactive gas

    NASA Astrophysics Data System (ADS)

    Ono, Katsushi; Wakabayashi, Masao; Tsukakoshi, Yukio; Abe, Yoshiyuki

    2016-02-01

    Decorative black TiCxOy films were fabricated by dc (direct current) magnetron sputtering without importing the oxygen reactive gas into the sputtering chamber. Using a ceramic target of titanium oxycarbide (TiC1.59O0.31), the oxygen content in the films could be easily controlled by adjustment of total sputtering gas pressure without remarkable change of the carbon content. The films deposited at 2.0 and 4.0 Pa, those are higher pressure when compared with that in conventional magnetron sputtering, showed an attractive black color. In particular, the film at 4.0 Pa had the composition of TiC1.03O1.10, exhibited the L* of 41.5, a* of 0.2 and b* of 0.6 in CIELAB color space. These values were smaller than those in the TiC0.29O1.38 films (L* of 45.8, a* of 1.2 and b* of 1.2) fabricated by conventional reactive sputtering method from the same target under the conditions of gas pressure of 0.3 Pa and optimized oxygen reactive gas concentration of 2.5 vol.% in sputtering gas. Analysis of XRD and XPS revealed that the black film deposited at 4.0 Pa was the amorphous film composed of TiC, TiO and C. The adhesion property and the heat resisting property were enough for decorative uses. This sputtering process has an industrial advantage that the decorative black coating with color uniformity in large area can be easily obtained by plain operation because of unnecessary of the oxygen reactive gas importing which is difficult to be controlled uniformly in the sputtering chamber.

  4. [Investigation on the gas temperature of a plasma jet at atmospheric pressure by emission spectrum].

    PubMed

    Li, Xue-chen; Yuan, Ning; Jia, Peng-ying; Niu, Dong-ying

    2010-11-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce plasma plume in atmospheric pressure argon. Spatially and temporally resolved measurement was carried out by photomultiplier tubes. The light emission signals both from the dielectric barrier discharge and from the plasma plume were analyzed. Furthermore, emission spectrum from the plasma plume was collected by high-resolution optical spectrometer. The emission spectra of OH (A 2sigma + --> X2 II, 307.7-308.9 nm) and the first negative band of N2+ (B2 sigma u+ --> X2 IIg+, 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The rotational temperature obtained is about 443 K by fitting the emission spectrum from the OH, and that from the first negative band of N2+ is about 450 K. The rotational temperatures obtained by the two method are consistent within 5% error band. The gas temperature of the plasma plume at atmospheric pressure was obtained because rotational temperature equals to gas temperature approximately in gas discharge at atmospheric pressure. Results show that gas temperature increases with increasing the applied voltage.

  5. Reduction of NOx and PM in marine diesel engine exhaust gas using microwave plasma

    NASA Astrophysics Data System (ADS)

    Balachandran, W.; FInst, P.; Manivannan, N.; Beleca, R.; Abbod, M.

    2015-10-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power.

  6. Enhanced tunability of the composition in silicon oxynitride thin films by the reactive gas pulsing process

    NASA Astrophysics Data System (ADS)

    Aubry, Eric; Weber, Sylvain; Billard, Alain; Martin, Nicolas

    2014-01-01

    Silicon oxynitride thin films were sputter deposited by the reactive gas pulsing process. Pure silicon target was sputtered in Ar, N2 and O2 mixture atmosphere. Oxygen gas was periodically and solely introduced using exponential signals. In order to vary the injected O2 quantity in the deposition chamber during one pulse at constant injection time (TON), the tau mounting time τmou of the exponential signals was systematically changed for each deposition. Taking into account the real-time measurements of the discharge voltage and the I(O*)/I(Ar*) emission lines ratio, it is shown that the oscillations of the discharge voltage during the TON and TOFF times (injection of O2 stopped) are attributed to the preferential adsorption of the oxygen compared to that of the nitrogen. The sputtering mode alternates from a fully nitrided mode (TOFF time) to a mixed mode (nitrided and oxidized mode) during the TON time. For the highest injected O2 quantities, the mixed mode tends toward a fully oxidized mode due to an increase of the trapped oxygen on the target. The oxygen (nitrogen) concentration in the SiOxNy films similarly (inversely) varies as the oxygen is trapped. Moreover, measurements of the contamination speed of the Si target surface are connected to different behaviors of the process. At low injected O2 quantities, the nitrided mode predominates over the oxidized one during the TON time. It leads to the formation of Si3N4-yOy-like films. Inversely, the mixed mode takes place for high injected O2 quantities and the oxidized mode prevails against the nitrided one producing SiO2-xNx-like films.

  7. The effect of inductively-coupled-plasma reactive ion etching power on the etching rate and the surface roughness of a sapphire substrate.

    PubMed

    Chang, Chun-Ming; Shiao, Ming-Hua; Yang, Chin-Tien; Cheng, Chung-Ta; Hsueh, Wen-Jeng

    2014-10-01

    In this study, patterned sapphire substrates are fabricated using nanosphere lithography (NSL) and inductively-coupled-plasma reactive ion etching (ICP-RIE). Polystyrene nanospheres of approximately 600 nm diameter are self-assembled on c-plane sapphire substrates by spin-coating. The diameter of the polystyrene nanospheres is modified to adjust the etching mask pitch cycle using oxygen plasma in the ICP-RIE system. A nickel thin film mask of 100 nm thickness is deposited by electron-beam evaporation on a substrate covered with treated nanospheres. The sapphire substrate is then etched in an inductively coupled plasma system using BCl3/Ar gas, to fabricate a structure with a periodic sub-micron hole array with different sidewall intervals. The DC bias voltage, the sapphire etching rate, the surface roughness, are studied as a function of the ICP and the RF power. Different sub-micron hole arrays with spacing cycles of 89 nm, 139 nm and 167 nm are successfully fabricated on the sapphire substrate, using suitable etching parameters.

  8. Mechanisms of gas precipitation in plasma-exposed tungsten

    SciTech Connect

    R. D. Kolasinski; D. F. Cowgill; D. C. Donovan; M. Shimada

    2012-05-01

    Precipitation in subsurface bubbles is a key process that governs how hydrogen isotopes migrate through and become trapped within plasma-exposed tungsten. We describe a continuum-scale model of hydrogen diffusion in plasma-exposed materials that includes the effects of precipitation. The model can account for bubble expansion via dislocation loop punching, using an accurate equation of state to determine the internal pressure. This information is used to predict amount of hydrogen trapped by bubbles, as well as the conditions where the bubbles become saturated. In an effort to validate the underlying assumptions, we compare our results with published positron annihilation and thermal desorption spectroscopy data, as well as our own measurements using the tritium plasma experiment (TPE).

  9. Effects of Couple Interactions and Relationship Quality on Plasma Oxytocin and Cardiovascular Reactivity: Empirical Findings and Methodological Considerations

    PubMed Central

    Smith, Timothy W.; Uchino, Bert N.; MacKenzie, Justin; Hicks, Angela; Campo, Rebecca A.; Reblin, Maija; Grewen, Karen; Amico, Janet A.; Light, Kathleen C.

    2016-01-01

    Cardiovascular reactivity is a potential mechanism underlying associations of close relationship quality with cardiovascular disease. Two models describe oxytocin as another mechanism. The “calm and connect” model posits an association between positive relationship experiences and oxytocin levels and responses, whereas the “tend and befriend” model emphasizes the effects of negative relationship experiences in evoking oxytocin release. In this study of 180 younger couples, relationship quality had a small, marginally significant inverse association with plasma oxytocin levels, and neither positive nor negative couple interactions evoked change in plasma oxytocin. Negative couple interactions evoked significant cardiovascular reactivity, especially among women. Hence, in the largest study of these issues to date, there was little support for key tenets of the “calm and connect” model, and only very modest support for the ”tend and befriend” model. However, findings were consistent with the view that CVR contributes to the effects of relationship difficulties on health. PMID:22543270

  10. A gas-puff-driven theta pinch for plasma-surface interaction studies

    NASA Astrophysics Data System (ADS)

    Jung, Soonwook; Kesler, Leigh; Yun, Hyun-Ho; Curreli, Davide; Andruczyk, Daniel; Ruzic, David

    2012-10-01

    DEVeX is a theta pinch device used to investigate fusion-related material interaction such as vapor shielding and ICRF antenna interactions with plasma-pulses in a laboratory setting. The simulator is required to produce high heat-flux plasma enough to induce temperature gradient high enough to study extreme conditions happened in a plasma fusion reactor. In order to achieve it, DEVeX is reconfigured to be combined with gas puff system as gas puffing may reduce heat flux loss resulting from collisions with neutral. A gas puff system as well as a conical gas nozzle is manufactured and several diagnostics including hot wire anemometer and fast ionization gauge are carried out to quantitatively estimate the supersonic flow of gas. Energy deposited on the target for gas puffing and static-filled conditions is measured with thermocouples and its application to TELS, an innovative concept utilizing a thermoelectric-driven liquid metal flow for plasma facing component, is discussed.

  11. Equilibrium gas pressure in various operating modes of ion-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Korolev, C. V.; Movsesyants, Yu B.; Tyuryukanov, P. M.

    2017-07-01

    The results of measurements gas equilibrium pressure and elemental composition for various operating modes of two-stage ion-plasma accelerators using a discharge in a transverse strongly inhomogeneous magnetic field are presented. It is established that the gas pressure in the chamber is most strongly changed at small ion currents to the collector. The main process of gas separation is the desorption from the surface of the electrodes under the action of low-energy ions. In steady state, with an accelerating voltage more than 1 kV, the gas pressure changes slightly. The main process is spraying.

  12. Magnetically controlled deposition of metals using gas plasma. Final report

    SciTech Connect

    1998-04-02

    This is the first phase of a project that has the objective to develop a method of spraying materials on a substrate in a controlled manner to eliminate the waste and hazardous material generation inherent in present plating processes. The project is considering plasma spraying of metal on a substrate using magneto-hydrodynamics to control the plasma/metal stream. The process being developed is considering the use of commercially available plasma torches to generate the plasma/metal stream. The plasma stream is collimated, and directed using magnetic forces to the extent required for precise control of the deposition material. The project will be completed in phases. Phase one of the project, the subject of this grant, is the development of an analytical model that can be used to determine the feasibility of the process and to design a laboratory scale demonstration unit. The contracted time is complete, and the research is still continuing. This report provides the results obtained to date. As the model and calculations are completed those results will also be provided. This report contains the results of the computer code that have been completed to date. Results from a ASMEE Benchmark problem, flow over a backward step with heat transfer, Couette flow with magnetic forces, free jet flow are presented along with several other check calculations that are representative of the cases that were calculated in the course of the development process. The final cases that define a velocity field in the exit of a plasma spray torch with and without a magnetic field are in process. A separate program (SPRAY) has been developed that can track the plating material to the substrate and describe the distribution of the material on the substrate. When the jet calculations are complete SPRAY will be used to compare the distribution of material on the substrate with and without the effect of the magnetic focus.

  13. Three-dimensional modeling of the neutral gas depletion effect in a helicon discharge plasma

    NASA Astrophysics Data System (ADS)

    Kollasch, Jeffrey; Schmitz, Oliver; Norval, Ryan; Reiter, Detlev; Sovinec, Carl

    2016-10-01

    Helicon discharges provide an attractive radio-frequency driven regime for plasma, but neutral-particle dynamics present a challenge to extending performance. A neutral gas depletion effect occurs when neutrals in the plasma core are not replenished at a sufficient rate to sustain a higher plasma density. The Monte Carlo neutral particle tracking code EIRENE was setup for the MARIA helicon experiment at UW Madison to study its neutral particle dynamics. Prescribed plasma temperature and density profiles similar to those in the MARIA device are used in EIRENE to investigate the main causes of the neutral gas depletion effect. The most dominant plasma-neutral interactions are included so far, namely electron impact ionization of neutrals, charge exchange interactions of neutrals with plasma ions, and recycling at the wall. Parameter scans show how the neutral depletion effect depends on parameters such as Knudsen number, plasma density and temperature, and gas-surface interaction accommodation coefficients. Results are compared to similar analytic studies in the low Knudsen number limit. Plans to incorporate a similar Monte Carlo neutral model into a larger helicon modeling framework are discussed. This work is funded by the NSF CAREER Award PHY-1455210.

  14. Ion temperature and gas pressure effects on the magnetized sheath dynamics during plasma immersion ion implantation

    SciTech Connect

    Khoram, M.; Ghomi, H. Navab Safa, N.

    2016-03-15

    Here, a collisional magnetized plasma with finite ion temperature is considered to examine the effects of the ion temperature and gas pressure on the plasma-sheath dynamics. We use the two-fluid model of plasma-sheath where the nonlinear equations of a dynamic sheath are solved using a full implicit scheme of finite difference method along with some convenient initial and boundary conditions at the plasma center and target. It is found that the ion temperature only has a significant effect on the characteristics of low voltage sheath, while the gas pressure (collision rate) seriously affects the dynamic characteristics of the low and high voltage plasma-sheath. One can see, increasing the ion temperature in low voltage plasma-sheath causes to increase the temporal curve of the ion dose and the ion impact energy on the target, reduces the temporal curve of the sheath width, and has no any effect on the temporal curve of the ion incident angle on the target. However, rising the gas pressure in low and high voltage plasma-sheath reduces all of these temporal curves.

  15. A study of laser-plasma expansion into the background gas by means of high-speed photography

    NASA Astrophysics Data System (ADS)

    Anan'in, O. B.; Bykovskii, Iu. A.; Eremin, Iu. V.; Stupitskii, E. L.; Novikov, I. K.; Frolov, S. P.

    1991-07-01

    A method for studying laser-plasma behavior in a vacuum and in a background gas by means of high-speed photography is presented. Photographs of laser-plasma expansion into the background gas at different pressures are analyzed. The detection of hydrodynamic instability of the laser plasma front during expansion into the background gas is reported. A theoretical analysis of the experimental results is presented.

  16. A soliton gas model for astrophysical magnetized plasma turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.; Sheerin, J. P.

    1982-06-01

    Plasma turbulence is considered as an ensemble of solitons. The derivation of the Alfven soliton by Spangler and Sheering (1981) is reviewed, and expressions are derived for the magnetic irregularity spectrum and the relationship between the magnetic and density irregularity power spectra. A derived expression also provides the answer to the question of the correlation between magnetic field and density enhancements. The properties of the turbulence model are compared with observations of plasma turbulence in the solar wind, and are found to reasonably account for them.

  17. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    NASA Astrophysics Data System (ADS)

    Khattak, N. A. D.; Ahmad, Zahoor; Zakaullah, M.; Murtaza, G.

    2008-04-01

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field Bz (in magnitudes), if the switching time for the additional current is properly synchronized.

  18. Gas-Phase Reactivity of Cesium-Containing Species by Quantum Chemistry.

    PubMed

    Šulková, Katarína; Cantrel, Laurent; Louis, Florent

    2015-09-03

    Thermodynamics and kinetics of cesium species reactions have been studied by using high-level quantum chemical tools. A systematic theoretical study has been done to find suitable methodology for calculation of reliable thermodynamic properties, allowing us to determine bimolecular rate constants with appropriate kinetic theories of gas-phase reactions. Four different reactions have been studied in this work: CsO + H2 = CsOH + H (R1), Cs + HI = CsI + H (R2), CsI + H2O = CsOH + HI (R3), and CsI + OH = CsOH + I (R4). All reactions involve steam, hydrogen, and iodine in addition of cesium. Most of the reactions are fast and (R3) and (R4) proceed even without energetic barrier. In terms of chemical reactivity in the reactor coolant system (RCS) in the case of severe accident, it can be expected that there will be no kinetic limitations for main cesium species (CsOH and CsI) transported along the RCS. Cs chemical speciation inside the RCS should be governed by the thermodynamics.

  19. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Prather, Michael J.; Holmes, Christopher D.; Hsu, Juno

    2012-05-01

    Knowledge of the atmospheric chemistry of reactive greenhouse gases is needed to accurately quantify the relationship between human activities and climate, and to incorporate uncertainty in our projections of greenhouse gas abundances. We present a method for estimating the fraction of greenhouse gases attributable to human activities, both currently and for future scenarios. Key variables used to calculate the atmospheric chemistry and budgets of major non-CO2 greenhouse gases are codified along with their uncertainties, and then used to project budgets and abundances under the new climate-change scenarios. This new approach uses our knowledge of changing abundances and lifetimes to estimate current total anthropogenic emissions, independently and possibly more accurately than inventory-based scenarios. We derive a present-day atmospheric lifetime for methane (CH4) of 9.1 ± 0.9 y and anthropogenic emissions of 352 ± 45 Tg/y (64% of total emissions). For N2O, corresponding values are 131 ± 10 y and 6.5 ± 1.3 TgN/y (41% of total); and for HFC-134a, the lifetime is 14.2 ± 1.5 y.

  20. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  1. N2 Gas Plasma Inactivates Influenza Virus by Inducing Changes in Viral Surface Morphology, Protein, and Genomic RNA

    PubMed Central

    Shimizu, Naohiro; Imanishi, Yuichiro

    2013-01-01

    We have recently treated with N2 gas plasma and achieved inactivation of bacteria. However, the effect of N2 gas plasma on viruses remains unclear. With the aim of developing this technique, we analyzed the virucidal effect of N2 gas plasma on influenza virus and its influence on the viral components. We treated influenza virus particles with inert N2 gas plasma (1.5 kpps; kilo pulses per second) produced by a short high-voltage pulse generated from a static induction thyristor power supply. A bioassay using chicken embryonated eggs demonstrated that N2 gas plasma inactivated influenza virus in allantoic fluid within 5 min. Immunochromatography, enzyme-linked immunosorbent assay, and Coomassie brilliant blue staining showed that N2 gas plasma treatment of influenza A and B viruses in nasal aspirates and allantoic fluids as well as purified influenza A and B viruses induced degradation of viral proteins including nucleoprotein. Analysis using the polymerase chain reaction suggested that N2 gas plasma treatment induced changes in the viral RNA genome. Scanning electron microscopy analysis showed that aggregation and fusion of influenza viruses were induced by N2 gas plasma treatment. We believe these biochemical changes may contribute to the inactivation of influenza viruses by N2 gas plasma. PMID:24195077

  2. N 2 gas plasma inactivates influenza virus by inducing changes in viral surface morphology, protein, and genomic RNA.

    PubMed

    Sakudo, Akikazu; Shimizu, Naohiro; Imanishi, Yuichiro; Ikuta, Kazuyoshi

    2013-01-01

    We have recently treated with N2 gas plasma and achieved inactivation of bacteria. However, the effect of N2 gas plasma on viruses remains unclear. With the aim of developing this technique, we analyzed the virucidal effect of N2 gas plasma on influenza virus and its influence on the viral components. We treated influenza virus particles with inert N2 gas plasma (1.5 kpps; kilo pulses per second) produced by a short high-voltage pulse generated from a static induction thyristor power supply. A bioassay using chicken embryonated eggs demonstrated that N2 gas plasma inactivated influenza virus in allantoic fluid within 5 min. Immunochromatography, enzyme-linked immunosorbent assay, and Coomassie brilliant blue staining showed that N2 gas plasma treatment of influenza A and B viruses in nasal aspirates and allantoic fluids as well as purified influenza A and B viruses induced degradation of viral proteins including nucleoprotein. Analysis using the polymerase chain reaction suggested that N2 gas plasma treatment induced changes in the viral RNA genome. Scanning electron microscopy analysis showed that aggregation and fusion of influenza viruses were induced by N2 gas plasma treatment. We believe these biochemical changes may contribute to the inactivation of influenza viruses by N2 gas plasma.

  3. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  4. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  5. Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi Hoong

    2015-04-24

    Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56 MHz ICP were found to fall within the range of 500 − 800 K for input power of 140 − 200 W and pressure of 0.05 − 0.2 mbar. Comparing spectrometers with 0.2 nm and 0.5 nm resolution, improved fitting sensitivity was observed for the 0.2 nm resolution.

  6. Cold atmospheric pressure gas plasma enhances the wear performance of ultra-high molecular weight polyethylene.

    PubMed

    Perni, Stefano; Kong, Michael G; Prokopovich, Polina

    2012-03-01

    Ultra-high molecular weight polyethylene (UHMWPE) is frequently employed in joint replacements because of its high biocompatibility; however, this material does not exhibit particularly strong wear performance, thus potentially reducing the longevity of such devices. Numerous techniques have been investigated to increase the resistance to wear of UHMWPE, but they are all based on expensive machinery and require a high level of safety precautions. Cold atmospheric pressure gas plasma treatment is an inexpensive process that has been used as a surface modification method and as a sterilization technique. We demonstrate for the first time that a helium/oxygen cold atmospheric pressure gas plasma can be used to enhance the wear performance of UHMWPE without affecting the cytocompatibility of the material. The exposure to a cold atmospheric pressure gas plasma results in a greater level of crosslinking of the polyethylene chains. As a consequence of the higher crosslinking, the material stiffness of the treated surface is increased.

  7. Polygenic Overlap Between C-Reactive Protein, Plasma Lipids and Alzheimer's Disease

    PubMed Central

    Desikan, Rahul S.; Thompson, Wesley K.; Dehghan, Abbas; Ridker, Paul M; Chasman, Daniel I.; McEvoy, Linda K.; Holland, Dominic; Chen, Chi-Hua; Karow, David S.; Brewer, James B.; Hess, Christopher P.; Williams, Julie; Sims, Rebecca; O'Donovan, Michael C.; Choi, Seung Hoan; Bis, Joshua C.; Ikram, M. Arfan; Gudnason, Vilmundur; DeStefano, Anita L.; van der Lee, Sven J.; Psaty, Bruce M.; van Duijn, Cornelia M.; Launer, Lenore; Seshadri, Sudha; Pericak-Vance, Margaret A.; Mayeux, Richard; Haines, Jonathan L.; Farrer, Lindsay A.; Hardy, John; Ulstein, Ingun Dina; Aarsland, Dag; Fladby, Tormod; White, Linda R.; Sando, Sigrid B.; Rongve, Arvid; Witoelar, Aree; Djurovic, Srdjan; Hyman, Bradley T.; Snaedal, Jon; Steinberg, Stacy; Stefansson, Hreinn; Stefansson, Kari; Schellenberg, Gerard D.; Andreassen, Ole A.; Dale, Anders M.

    2015-01-01

    Background Epidemiological findings suggest a relationship between Alzheimer's disease (AD), inflammation and dyslipidemia, although the nature of this relationship is not well understood. We investigated whether this phenotypic association arises from a shared genetic basis. Methods and Results Using summary statistics (p-values and odds ratios) from genome-wide association studies of over 200,000 individuals, we investigated overlap in single nucleotide polymorphisms (SNPs) associated with clinically diagnosed AD and C-reactive protein (CRP), triglycerides (TG), high- (HDL) and low-density lipoprotein (LDL) levels. We found up to 50-fold enrichment of AD SNPs for different levels of association with CRP, LDL, HDL and TG SNPs using an FDR threshold < 0.05. By conditioning on polymorphisms associated with the four phenotypes, we identified 55 loci associated with increased AD risk. We then conducted a meta-analysis of these 55 variants across four independent AD cohorts (total n = 29,054 AD cases and 114,824 healthy controls) and discovered two genome-wide significant variants on chromosome 4 (rs13113697, closest gene HS3ST1, odds ratio (OR) = 1.07, 95% confidence interval (CI) = 1.05-1.11, p = 2.86 × 10−8) and chromosome 10 (rs7920721, closest gene ECHDC3, OR = 1.07, 95% CI = 1.04-1.11, p = 3.38 × 10−8). We also found that gene expression of HS3ST1 and ECHDC3 was altered in AD brains compared with control brains. Conclusions We demonstrate genetic overlap between AD, CRP, and plasma lipids. By conditioning on the genetic association with the cardiovascular phenotypes, we identify novel AD susceptibility loci including two genome-wide significant variants conferring increased risk for Alzheimer's disease. PMID:25862742

  8. Analysis of whole blood samples with low gas flow inductively coupled plasma-optical emission spectrometry.

    PubMed

    Nowak, Sascha; Künnemeyer, Jens; Terborg, Lydia; Trümpler, Stefan; Günsel, Andreas; Wiesmüller, Gerhard A; Karst, Uwe; Buscher, Wolfgang

    2015-01-01

    Low gas flow ICP-OES with a total argon consumption below 0.7 L/min is introduced for the analysis of trace elements in blood samples to investigate the influence of samples containing an organic solvent in a demanding matrix on the performance of this plasma for the first time. Therefore, gadolinium was determined in human plasma samples and mercury in red blood cells, human plasma, and precipitated plasma protein fraction. Limits of detection (LOD) were determined to be in the low microgram per liter range for the analytes and the accuracy of the method was assessed by comparison with a conventional Fassel-type torch-based ICP-OES. It was proven that the low gas flow ICP-OES leads to comparable results with the instrument based on the Fassel-type torch.

  9. Note: Design and investigation of a multichannel plasma-jet triggered gas switch.

    PubMed

    Tie, Weihao; Liu, Xuandong; Zhang, Qiaogen; Liu, Shanhong

    2014-07-01

    We described the fabrication and testing of a multichannel plasma-jet triggered gas switch (MPJTGS). A novel six-channel annular micro-plasma-gun was embedded in the trigger electrode to generate multichannel plasma jets as a nanosecond trigger pulse arrived. The gas breakdown in multiple sites of the spark gap was induced and fixed around jet orifices by the plasma jets. We tested the multichannel discharge characteristics of the MPJTGS in two working modes with charge voltage of 50 kV, trigger voltage of +40 kV (25 ns rise time), and trigger energy of 240 J, 32 J, and 2 J, respectively, at different working coefficients. Results show that the average number of discharge channels increased as the trigger energy increased, and decreased as the working coefficient decreased. At a working coefficient of 87.1% and trigger energy of 240 J, the average number of discharge channels in Mode II could reach 4.1.

  10. Stability of polyphenols in chokeberry juice treated with gas phase plasma.

    PubMed

    Bursać Kovačević, Danijela; Gajdoš Kljusurić, Jasenka; Putnik, Predrag; Vukušić, Tomislava; Herceg, Zoran; Dragović-Uzelac, Verica

    2016-12-01

    Chokeberry juice was subjected to cold atmospheric gas phase plasma and changes in hydroxycinnamic acids, flavonols and anthocyanins were monitored. Plasma treatments were carried out under different treatment times and juice volumes under constant gas flow (0.75dm(3)min(-1)). The results were compared against control (untreated) and pasteurized chokeberry juice (80°C/2min). During pasteurization, the most unstable were hydroxycinnamic acids with losses of up to 59%, while flavonols and anthocyanins increased by 5% and 9%, respectively. On the contrary, plasma treated chokeberry juice showed higher concentrations of hydroxycinnamic acids and 23% loss of anthocyanins in comparison to untreated juice. In order to obtain the optimal cold plasma treatment parameters principal component and sensitivity analysis were used. Such parameters can be potentially used for pasteurization in terms of phenolic stability of chokeberry juice. Optimal treatment was at 4.1min and sample volume of 3cm(3).

  11. Time evolution of a laser-generated silver plasma expanding in a background gas

    NASA Astrophysics Data System (ADS)

    Neri, F.; Ossi, P. M.; Trusso, S.

    2010-10-01

    The expansion dynamics of a laser-generated silver plasma were investigated by means of a fast imaging technique. Spots of the plasma expanding in the presence of an inert gas (Ar) atmosphere were acquired by means of a gateable intensified charge coupled device. The position of the moving front edge of the plasma at different background gas pressures were obtained from images acquired at different time delays with respect to the arrival of the laser pulse. The time evolution of plasma expansion was studied in the framework of available phenomenological models: drag, shock wave and diffusion models. A two-step mixed-propagation model based on a modification of the drag and the diffusion models provides the initial (free expansion-like) and the late (diffusion-like) expansion stages when proper input parameters are taken into account.

  12. Reactive Ion Etching of SiC in SF_6/He Plasmas

    NASA Astrophysics Data System (ADS)

    Alapati, Ramakanth; Nordheden, Karen J.

    2003-10-01

    Etch rates of greater than 400 Åmin have been achieved for 6H SiC in a Plasma Therm 790 RIE system using SF_6/He gas mixtures. Both pressure and composition are strong determining factors in optimizing the etch rate. For an rf power of 175 W, the etch rate maximizes at a pressure of 125 mTorr and a composition of 50% SF_6. Microwave measeurements indicate that the addition of helium results in an increase in the average electron density, although significant electron attachment is apparent. The electron density also exhibits a maximum at a pressure of 125 mTorr. Optical emission spectroscopy shows that the addition of helium results in increased emission of F and F_2, and these emissions also exhibit maxima at a pressure of 125 mTorr. The higher electron density and possibility of increased electron temperature, as a result of electron attachment heating, are believed to be responsible for an increase in the dissociation of SF6 which results in an enhanced SiC etch rate.

  13. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows

    SciTech Connect

    Eck, H. J. N. van; Koppers, W. R.; Rooij, G. J. van; Goedheer, W. J.; Cardozo, N. J. Lopes; Kleyn, A. W.; Engeln, R.; Schram, D. C.

    2009-03-15

    The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial magnetic field. In this way, the neutrals are prevented to reach the target region. The neutral flux to the target must be lower than the plasma flux to enable ITER relevant plasma-surface interaction (PSI) studies. It is therefore essential to control the neutral gas dynamics. The DSMC method was used to model the expansion of a hot gas in a low pressure vessel where a small discrepancy in shock position was found between the simulations and a well-established empirical formula. Two stage differential pumping was modeled and applied in the linear plasma devices Pilot-PSI and PLEXIS. In Pilot-PSI a factor of 4.5 pressure reduction for H{sub 2} has been demonstrated. Both simulations and experiments showed that the optimum skimmer position depends on the position of the shock and therefore shifts for different gas parameters. The shape of the skimmer has to be designed such that it has a minimum impact on the shock structure. A too large angle between the skimmer and the forward direction of the gas flow leads to an influence on the expansion structure. A pressure increase in front of the skimmer is formed and the flow of the plasma beam becomes obstructed. It has been shown that a skimmer with an angle around 53 deg. gives the best performance. The use of skimmers is implemented in the design of the large linear plasma generator Magnum-PSI. Here, a three stage differentially pumped vacuum system is used to reach low enough neutral pressures near the target, opening a door to PSI research in the ITER relevant regime.

  14. Vertical and bevel-structured SiC etching techniques incorporating different gas mixture plasmas for various microelectronic applications.

    PubMed

    Sung, Ho-Kun; Qiang, Tian; Yao, Zhao; Li, Yang; Wu, Qun; Lee, Hee-Kwan; Park, Bum-Doo; Lim, Woong-Sun; Park, Kyung-Ho; Wang, Cong

    2017-06-20

    This study presents a detailed fabrication method, together with validation, discussion, and analysis, for state-of-the-art silicon carbide (SiC) etching of vertical and bevelled structures by using inductively coupled plasma reactive ion etching (ICP-RIE) for microelectronic applications. Applying different gas mixtures, a maximum bevel angle of 87° (almost vertical), large-angle bevels ranging from 40° to 80°, and small-angel bevels ranging from 7° to 17° were achieved separately using distinct gas mixtures at different ratios. We found that SF6 with additive O2 was effective for vertical etching, with a best etching rate of 3050 Å/min. As for the large-angle bevel structures, BCl3 + N2 gas mixtures show better characteristics, exhibiting a controllable and large etching angle range from 40° to 80° through the adjustment of the mixture ratio. Additionally, a Cl2 + O2 mixture at different ratios is applied to achieve a small-angel bevels ranging from 7° to 17°. A minimum bevel angel of approximately 7° was achieved under the specific volume of 2.4 sccm Cl2 and 3.6 sccm O2. These results can be used to improve performance in various microelectronic applications including MMIC via holes, PIN diodes, Schottky diodes, JFETs' bevel mesa, and avalanche photodiode fabrication.

  15. High temperature reactive ion etching of iridium thin films with aluminum mask in CF4/O2/Ar plasma

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Pin; Lisker, Marco; Kalkofen, Bodo; Burte, Edmund P.

    2016-08-01

    Reactive ion etching (RIE) technology for iridium with CF4/O2/Ar gas mixtures and aluminum mask at high temperatures up to 350 °C was developed. The influence of various process parameters such as gas mixing ratio and substrate temperature on the etch rate was studied in order to find optimal process conditions. The surface of the samples after etching was found to be clean under SEM inspection. It was also shown that the etch rate of iridium could be enhanced at higher process temperature and, at the same time, very high etching selectivity between aluminum etching mask and iridium could be achieved.

  16. Formation of a Multi-Charged Plasma in the Directed Gas Flow

    NASA Astrophysics Data System (ADS)

    Abramov, I. S.; Gospodchikov, E. D.; Shalashov, A. G.

    2016-05-01

    We consider a gas-dynamic model describing the formation of a plasma with multiply ionized ions under the conditions of resonant heating of the electron component. Based on the isothermal approximation, possible regimes of the plasma flow are classified, the influence of the geometric divergence of the flow on the formation of the ion charge distribution is studied, and optimal regimes for the achievement of the maximum ion charge are identified. The model can be used for optimization and interpretation of modern experiments on generation of the extreme ultraviolet radiation due to the excitation of lines of multiply ionized atoms in a gas flow heated by strong millimeter or submillimeter waves.

  17. Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes

    SciTech Connect

    Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun; Chen, Fu-Rong; Tsai, Chuen-Horng

    2010-07-15

    This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fitting the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.

  18. Chemical reaction by plasma in gas-liquid two-phase flow system

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu; Mano, Kakeru; Hayashi, Yui; Takada, Noriharu; Kanda, Hideaki

    2016-09-01

    Two plasma processes using gasliquid two-phase flow were developed. One is gas/liquid slug flow in capillary glass tube where gas bubbles moved stably in liquid flow. Plasma was generated in bubbles by pulsed bipolar voltage and the liquid phase was mixed by circulated convection due to shearing force. As a gas, air, argon, helium, oxygen, or nitrogen was used. The pulsed bipolar voltage of 10 kV was applied at 10 kHz. The generated plasma was evaluated by ICCD image and high speed camera. The optical emission spectra was analyzed to identify the active species. By using this process, organic compound dissolved in liquid aqueous phase was reacted with oxidation. Another process was creeping plasma on flowing liquid film along glass tube outer surface. Owing to the thin film thickness, organic compound dissolved in liquid phase was reacted effectively. Therefore, effective reaction process could be established in gas/liquid two-phase flow by controlling the gas/liquid flow.

  19. Simulating Titan's upper atmosphere reactivity with a N2-CH4 plasma discharge

    NASA Astrophysics Data System (ADS)

    Carrasco, N.; Gautier, T.; Mahjoub, A.; Pernot, P.; Cernogora, G.

    2012-12-01

    Titan is the largest satellite of Saturn. It has a dense atmosphere of 1.5 bar at the surface mainly composed of nitrogen and methane. One of the most important results delivered by the ongoing Cassini space mission was to affirm that Titan's aerosols synthesis begins in the upper atmosphere. However, the Cassini mission has also highlighted the incompleteness of our knowledge on Titan's ionopheric chemistry, showing numerous unexplained species and a fortiori unknown processes coupling nitrogen and hydrocarbon chemistry, and involving neutrals, and positive and negative ions. The complex mechanisms leading to the production of the organic aerosols surrounding Titan remain thus mostly unknown. One way to study this reactivity is to reproduce in the laboratory the whole chain of reactions occurring in Titan's atmosphere. Several experimental setups have been developed in order to reproduce Titan's atmospheric chemistry in the laboratory. Among them the RF-CCP device PAMPRE provided significant clues on the understanding of the polymeric chemical structure of tholins, analogs of the atmospheric aerosols. The influence of the methane initial concentration on the aerosol production efficiency was studied, highlighting a surprising decrease of the aerosol production yield with the methane concentration. In order to find some clues on the volatile products controlling the aerosol production, we performed an extensive study on the gas phase composition correlated with the aerosol production. Moreover, in Titan's atmosphere, the CH4 concentration may have varied through time during the evolution of this atmosphere. So we studied the sensitivity of the optical constants of tholins towards different CH4 concentration.

  20. Modeling of gas flow in the cylindrical channels of high-voltage plasma torches with rod electrodes

    NASA Astrophysics Data System (ADS)

    Borovskoy, A. M.; Popov, S. D.; Surov, A. V.

    2013-08-01

    The article is devoted to the calculation of gas dynamic parameters of gas flow in various areas of low-temperature plasma generator, therefore, target area's grid was built for the simulation of plasma gas flow in channels of studied high-voltage AC plasma torches and calculations of three-dimensional gas flow was made using GAMBIT and FLUENT soft-ware and Spalart-Allmares turbulence model, air flow was simulated in the tangential feed's areas, in the cylindrical channel, in the tapering nozzle chamber and in the mixing chamber of plasma torches and outside (in the environment); thus, 3D-modelling of the cold plasma-forming gas flow was performed in cylindrical channels of studied high-voltage AC plasma torches with rod electrodes for the first time.

  1. Gas flow dependence for plasma-needle disinfection of S. mutans bacteria

    NASA Astrophysics Data System (ADS)

    Goree, J.; Liu, Bin; Drake, David

    2006-08-01

    The role of gas flow and transport mechanisms are studied for a small low-power impinging jet of weakly-ionized helium at atmospheric pressure. This plasma needle produces a non-thermal glow discharge plasma that kills bacteria. A culture of Streptococcus mutans (S. mutans) was plated onto the surface of agar, and spots on this surface were then treated with plasma. Afterwards, the sample was incubated and then imaged. These images, which serve as a biological diagnostic for characterizing the plasma, show a distinctive spatial pattern for killing that depends on the gas flow rate. As the flow is increased, the killing pattern varies from a solid circle to a ring. Images of the glow reveal that the spatial distribution of energetic electrons corresponds to the observed killing pattern. This suggests that a bactericidal species is generated in the gas phase by energetic electrons less than a millimetre from the sample surface. Mixing of air into the helium plasma is required to generate the observed O and OH radicals in the flowing plasma. Hydrodynamic processes involved in this mixing are buoyancy, diffusion and turbulence.

  2. Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization.

    PubMed

    Lerouge, S; Wertheimer, M R; Marchand, R; Tabrizian, M; Yahia, L

    2000-07-01

    The aim of this work was to investigate possible mechanisms of sterilization by low-temperature gas plasma: spore destruction by plasma is compared with etching of synthetic polymers. Bacillus subtilis spores were inoculated at the bottom of glass vials and subjected to different plasma gas compositions (O(2), O(2)/Ar, O(2)/H(2), CO(2), and O(2)/CF(4)), all known to etch polymers. O(2)/CF(4) plasma exhibited much higher efficacy than all other gases or gas mixtures tested, with a more than 5 log decrease in 7.5 min, compared with a 2 log decrease with pure oxygen. Examination by scanning electron microscopy showed that spores were significantly etched after 30 min of plasma exposure, but not completely. We speculate about their etch resistance compared with that of synthetic polymers on the basis of their morphology and complex coating structure. In contrast to so-called in-house plasma, sterilization by Sterrad(R) tended to increase the observed spores' size; chemical modification (oxidation), rather than etching, is believed to be the sterilization mechanism of Sterrad(R).

  3. Effect of air plasma treatment on the dyeing of Tencel fabric with C.I. Reactive Black 5

    NASA Astrophysics Data System (ADS)

    Zhang, L. S.; Liu, H. L.; Yu, W. D.

    2015-02-01

    The Tencel fabrics were treated by the atmospheric pressure plasma with air for different length of time and dyed with the C.I. Reactive Black 5 at 1%, 5% and 10% o.m.f. The effect of the prolonged plasma treatment time was characterized by both the weight loss and the whiteness index analyses, which implied that with the increase of the plasma treatment time, the treated fabrics were lighter and yellower than the untreated ones. The contact angle decreased dramatically from 139° to instantly spread. The results of SEM showed that, with the prolonged treatment time, more significant crater-like surface morphology on the fiber of Tencel samples was formed. Compared with untreated samples, the values of dye bath exhaustion and total fixation effect were higher. But they did not increase with the prolonged plasma treatment time. With the prolonged storage time after the plasma treatment, the result to ageing effect indicated that the values of dye bath exhaustion and total fixation effect reduced. The Integ values for characterizing the coloring effect were evaluated by the CIE system of color measurement. In most cases, the Integ values reached the highest ones when the plasma treatment time was 10 or 20 min. When the concentration of the dye bath was low (at 1% o.m.f.), the longer plasma treatment time was, the higher the Integ value was. However, if the fabrics after plasma treatment were stored for 21 days, the longer plasma treatment time did not cause the larger Integ value. When the concentration was 1%, the Integ value increased with the weight loss increasing, which was different from the values of fabrics with 5% and 10% concentration. If the dyeing concentration was low, the fixation had a more significant effect on the color fastness to wet rubbing; in contrast, if the dyeing concentration was high, the surface roughness had a more important effect on it.

  4. Effect of chemically reactive species on properties of ZnO nanowires exposed to oxygen and hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Ra, Hyun-Wook; Im, Yeon-Ho

    2008-12-01

    We present a systematic study on the effect of oxygen and hydrogen plasma-generated reactive species on the properties of ZnO nanowires. Upon exposure to oxygen plasma, the electrical conductivity of an individual ZnO nanowire decreased with substantial changes in the surface chemistry, indicating a decrease in the number of donor-like defects and an increase in the number of electron-trapping species. In contrast, an individual ZnO nanowire exposed to hydrogen plasma showed a drastic increase in conductivity up to two orders of magnitude due to the incorporated hydrogen acting as a shallow donor inside the ZnO nanowires without a sputtering process.

  5. Structural modification of the skin barrier by OH radicals: a reactive molecular dynamics study for plasma medicine

    NASA Astrophysics Data System (ADS)

    Van der Paal, J.; Verlackt, C. C.; Yusupov, M.; Neyts, E. C.; Bogaerts, A.

    2015-04-01

    While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.

  6. Collision of an Arched Plasma-Filled Flux Rope with a Target Cloud of Initially Neutral Gas

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Bellan, Paul M.

    2015-11-01

    The Caltech solar loop experiment apparatus had been used to create an arched plasma-filled flux rope that expands to collide with a pre-injected initially-neutral gas. We investigated such a situation in two regimes: (i) plasma made by heavy gas impacting a much lighter neutral gas cloud and (ii) a light-gas plasma impacting much heavier neutral gas. The neutral gas became ionized immediately upon impact. In regime (i), multiple shock layers were formed in the target cloud; these magnetized collisionless shocks are relevant to solar physics as such shocks develop ahead of Coronal Mass Ejections and occur in Co-rotating Interaction Regions. In regime (ii), plasma expansion was inhibited. In both cases, fast camera images, magnetic probe measurements, and spectroscopy data will be reported. The analysis of plasma and shock expansion, as well as associated density and temperature changes, will be presented.

  7. An atmospheric-pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium

    NASA Astrophysics Data System (ADS)

    Ma, R. N.; Feng, H. Q.; Liang, Y. D.; Zhang, Q.; Tian, Y.; Su, B.; Zhang, J.; Fang, J.

    2013-07-01

    A non-thermal plasma is known to induce apoptosis of various cells but the mechanism is not yet clear. A eukaryotic model organism Saccharomyces cerevisiaewas used to investigate the cellular and biochemical regulations of cell apoptosis and cell cycle after an atmospheric-pressure cold plasma treatment. More importantly, intracellular calcium (Ca2+) was first involved in monitoring the process of plasma-induced apoptosis in this study. We analysed the cell apoptosis and cell cycle by flow cytometry and observed the changes in intracellular reactive oxygen species (ROS) and Ca2+ concentration, cell mitochondrial membrane potential (Δψm) as well as nuclear DNA morphology via fluorescence staining assay. All experimental results indicated that plasma-generated ROS leads to the accumulation of intracellular ROS and Ca2+ that ultimately contribute to apoptosis associated with cell cycle arrest at G1 phase through depolarization of Δψm and fragmenting nuclear DNA. This work provides a novel insight into the physical and biological mechanism of apoptosis induced by a plasma which could benefit for promoting the development of plasmas applied to cancer therapy.

  8. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Cox, R. A.; Kalberer, M.

    2014-09-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed. A different version of this compilation/evaluation, which will be updated when new data become available, is uploaded online (https://sites.google.com/site/mingjintang/home/diffusion).

  9. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    SciTech Connect

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  10. TiN films fabricated by reactive gas pulse sputtering: A hybrid design of multilayered and compositionally graded structures

    NASA Astrophysics Data System (ADS)

    Yang, Jijun; Zhang, Feifei; Wan, Qiang; Lu, Chenyang; Peng, Mingjing; Liao, Jiali; Yang, Yuanyou; Wang, Lumin; Liu, Ning

    2016-12-01

    Reactive gas pulse (RGP) sputtering approach was used to prepare TiN thin films through periodically changing the N2/Ar gas flow ratio. The obtained RGPsbnd TiN film possessed a hybrid architecture containing compositionally graded and multilayered structures, composed of hcp Ti-phase and fcc TiN-phase sublayers. Meanwhile, the RGP-TiN film exhibited a composition-oscillation along the film thickness direction, where the Ti-phase sublayer had a compositional gradient and the TiN-phase retained a constant stoichiometric ratio of Ti:N ≈ 1. The film modulation ratio λ (the thicknesses ratio of the Ti and TiN-phase sublayer) can be effectively tuned by controlling the undulation behavior of the N2 partial flow rate. Detailed analysis showed that this hybrid structure originated from a periodic transition of the film growth mode during the reactive sputtering process.

  11. [Study on Spectral Characteristics of Micro Plasma Channels of Different Gas-Gap in Dielectric Barrier Discharge].

    PubMed

    Gao, Ye-nan; Dong, Li-fang; Liu, Ying

    2015-10-01

    By optical emission spectrum, we report on the first investigation on the plasma parameters of micro plasma channels which are generated in two gas-gaps with different thickness in a triple-layer dielectric barrier discharge system. Different from the micro plasma channels formed in traditional two-layer dielectric barrier discharge, micro plasma channels formed in the triple-layer dielectric barrier discharge system reflect a unique discharge characteristic. From the pattern images taken by an ordinary camera, it shows that micro plasma channels generated in two discharge gas-gaps discharge with different sizes and light intensities. The micro plasma channels in wide gas-gap are much bigger than those in narrow gas-gap, and their light intensities are obvious stronger. By collecting the emission spectra of N2 second positive band (C3∏u --> B3∏g ) and calculating the relative intensity ratio method of N2 molecular ion line at 391.4 and the N2 molecular line at 394.1, the molecular vibration temperature and the average electron energy of micro plasma channels in two gas-gaps as functions of Argon concentration and applied voltage are investigated, respectively. It is found that the molecular vibration temperature and the average electron energy of micro plasma channels in wide gas-gap are lower than those in narrow gas-gap, and they both decrease with the increasing of the Argon concentration. As the applied voltage increases, micro plasma channels in wide gas-gap vary in a small range on the above two plasma investigations, while those in narrow gas-gap vary obviously. It indicates that micro plasma channels in narrow gas-gap are more sensitive to the applied voltage and they have a wider variation range of electric field than those in wide gas-gap.

  12. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    NASA Astrophysics Data System (ADS)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  13. DCT-TCI: Real Gas Characterization of Plasma Flow Control - An Integrated Approach

    DTIC Science & Technology

    2011-12-23

    code) 23-12-2011 Final 1 June 2009 - 30 November 2011 DCT- TCI : Real Gas Characterization of Plasma Flow Control-An Integrated Approach FA9550-09-1...Geometry, Multi-Barrier Plasma Actuators, Stereo PIV Experiment, MIG Plasma Kinetic Simulation U U U U 18 Dr. S Roy 352-392-9823 Reset 1 DCT- TCI ...chamber shown in FIG. 6a. The floor of the chamber is connected to a single axis manual traverse (Velmex A1503P40-S1.5), which allows the floor to

  14. Development and application of a sampling method for the determination of reactive halogen species in volcanic gas emissions.

    PubMed

    Rüdiger, Julian; Bobrowski, Nicole; Liotta, Marcello; Hoffmann, Thorsten

    2017-08-29

    Volcanoes release large amounts of reactive trace gases including sulfur and halogen-containing species into the atmosphere. The knowledge of halogen chemistry in volcanic plumes can deliver information about subsurface processes and is relevant for the understanding of the impact of volcanoes on atmospheric chemistry. In this study, a gas diffusion denuder sampling method using 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated glass tubes for the in situ derivatization of reactive halogen species (RHS) was characterized by a series of laboratory experiments. The coating proved to be applicable to collect selectively gaseous bromine species with oxidation states (OS) of +1 or 0 (such as Br2, BrCl, HOBr, BrO, and BrONO2) while being unreactive to HBr (OS -1). The reaction of 1,3,5-TMB with reactive bromine species forms 1-bromo-2,4,6-TMB-other halogens give corresponding derivatives. Solvent elution of the derivatives followed by analysis with GC-MS results in absolute detection limits of a few nanograms for Br2, Cl2, and I2. In 2015, the technique was applied on volcanic gas plumes at Mt. Etna (Italy) measuring reactive bromine mixing ratios between 0.8 and 7.0 ppbv. Total bromine mixing ratios between 4.7 and 27.5 ppbv were derived from alkaline trap samples, simultaneously taken by a Raschig tube and analyzed with IC and ICP-MS. This leads to the first results of the reactive bromine contribution to total bromine in volcanic emissions, spanning over a range between 12% (±1) and 36% (±2). Our finding is in an agreement with previous model studies, which imply values <44% for plume ages <1 min, which is consistent with the assumed plume age at the sampling sites. Graphical abstract Illustration of the measurement procedure for the determination of reactive halogen species in volcanic plumes.

  15. On the Internal Gas Dynamics and Efficiency of a Vortex Water-Vapor Plasma Generator

    NASA Astrophysics Data System (ADS)

    Charakhovski, L.; Essiptchouk, A.; Otani, C.; Petraconi, G.; Marquesi, A.; Sauchyn, V.; Khvedchyn, I.; Olenovich, A.; Liavonchyk, A.; Skamarokhau, D.; Halinouski, A.

    2017-05-01

    Results of experimental investigations of a new-type generator of an arc water plasma, having a high thermal efficiency close to 100%, are presented. This generator represents a system comprising a vortex arc plasma generator, in which an electric arc is stabilized by water vapor and a straight-through-flow tubular electric steam generator. Such a high efficiency of the plasma generator system was achieved due to the refinement of the internal gas dynamics of the plasma generator and the heat and mass transfer in its discharge channel as a result of the improvement of the vortex stabilization and thermal insulation of an arc discharge in it by the specially organized ″instantly permeable″ channel wall cooled by only the working water used for generation of the plasma.

  16. Pore structure and reactivity changes in hot coal gas desulfurization sorbents. Final report, September 1987--January 1991

    SciTech Connect

    Sotirchos, S.V.

    1991-05-01

    The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

  17. Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Gounder, J. D.; Kutne, P.; Meier, W.

    2012-08-01

    The ability of laser induced breakdown spectroscopy (LIBS) technique for on line simultaneous measurement of elemental concentrations has led to its application in a wide number of processes. The simplicity of the technique allows its application to harsh environments such as present in boilers, furnaces and gasifiers. This paper presents the design of a probe using a custom optic which transforms a round beam into a ring (Donut) beam, which is used for forming a plasma in an atmosphere of nitrogen at high pressure (20 bar) and temperature (200 °C). The LIBS experiments were performed using a high pressure cell to characterize and test the effectiveness of the donut beam transmitted through the LIBS probe and collect plasma signal in back scatter mode. The first tests used the second harmonic of a Nd:YAG laser, pulse width 7 ns, to form a plasma in nitrogen gas at five different pressures (1, 5, 10, 15 and 20 bar) and three different gas temperatures (25, 100 and 200 °C). The uniqueness of this probe is the custom made optic used for reshaping the round laser beam into a ring (Donut) shaped laser beam, which is fed into the probe and focused to form a plasma at the measurement point. The plasma signal is collected and collimated using the laser focusing lens and is reflected from the laser beam axis onto an achromatic lens by a high reflection mirror mounted in the center section of the donut laser beam. The effect of gas pressure and temperature on N(I) lines in the high pressure cell experiment shows that the line intensity decreases with pressure and increases with temperature. Mean plasma temperature was calculated using the ratios of N(I) line intensities ranging from 7400 K to 8900 K at 1 bar and 2400 K to 3200 K at 20 bar for the three different gas temperatures. The results show that as a proof of principle the donut beam optics in combination with the LIBS probe can be used for performing extensive LIBS measurements in well controlled laboratory

  18. A parallel hybrid numerical algorithm for simulating gas flow and gas discharge of an atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Lin, K.-M.; Hu, M.-H.; Hung, C.-T.; Wu, J.-S.; Hwang, F.-N.; Chen, Y.-S.; Cheng, G.

    2012-12-01

    Development of a hybrid numerical algorithm which couples weakly with the gas flow model (GFM) and the plasma fluid model (PFM) for simulating an atmospheric-pressure plasma jet (APPJ) and its acceleration by two approaches is presented. The weak coupling between gas flow and discharge is introduced by transferring between the results obtained from the steady-state solution of the GFM and cycle-averaged solution of the PFM respectively. Approaches of reducing the overall runtime include parallel computing of the GFM and the PFM solvers, and employing a temporal multi-scale method (TMSM) for PFM. Parallel computing of both solvers is realized using the domain decomposition method with the message passing interface (MPI) on distributed-memory machines. The TMSM considers only chemical reactions by ignoring the transport terms when integrating temporally the continuity equations of heavy species at each time step, and then the transport terms are restored only at an interval of time marching steps. The total reduction of runtime is 47% by applying the TMSM to the APPJ example presented in this study. Application of the proposed hybrid algorithm is demonstrated by simulating a parallel-plate helium APPJ impinging onto a substrate, which the cycle-averaged properties of the 200th cycle are presented. The distribution patterns of species densities are strongly correlated by the background gas flow pattern, which shows that consideration of gas flow in APPJ simulations is critical.

  19. Bacterial inactivation using a low-temperature atmospheric plasma brush sustained with argon gas.

    PubMed

    Yu, Q S; Huang, C; Hsieh, F-H; Huff, H; Duan, Yixiang

    2007-01-01

    This study investigated the bacterial inactivation/sterilization effects of a new atmospheric plasma source, which is a brush-shaped argon glow discharge created under 1 atm pressure. Such an atmospheric plasma brush requires extremely low power of less than 20 W to operate; and therefore is essentially a low-temperature discharge as confirmed by gas-phase temperature measurements. Two bacteria, Escherichia coli (E. coli) and Micrococcus luteus (M. luteus), seeded in various media were subjected to plasma treatment and their survivability was examined. It was found that such argon atmospheric plasma brush is very effective in destruction of the bacteria cells. With nutrient broth and standard methods agar as supporting media, a cell reduction in a level of 6 orders of magnitude was observed for E. coli within 3-4 min plasma treatment. A similar level of cell reduction was also observed for M. luteus in the two media with 2 or 3 min plasma treatment. The plasma treatment effects on the bacteria cell structures were also examined using scanning electron microscopy and the cell structure damages due to the plasma exposure were observed on both bacteria. The possible sterilization mechanism of the argon plasmas is also discussed in this article.

  20. Emerging applications of low temperature gas plasmas in the food industry.

    PubMed

    Shaw, Alex; Shama, Gilbert; Iza, Felipe

    2015-06-16

    The global burden of foodborne disease due to the presence of contaminating micro-organisms remains high, despite some notable examples of their successful reduction in some instances. Globally, the number of species of micro-organisms responsible for foodborne diseases has increased over the past decades and as a result of the continued centralization of the food processing industry, outbreaks now have far reaching consequences. Gas plasmas offer a broad range of microbicidal capabilities that could be exploited in the food industry and against which microbial resistance would be unlikely to occur. In addition to reducing the incidence of disease by acting on the micro-organisms responsible for food spoilage, gas plasmas could also play a role in increasing the shelf-life of perishable foods and thereby reduce food wastage with positive financial and environmental implications. Treatment need not be confined to the food itself but could include food processing equipment and also the environment in which commercial food processing occurs. Moreover, gas plasmas could also be used to bring about the degradation of undesirable chemical compounds, such as allergens, toxins, and pesticide residues, often encountered on foods and food-processing equipment. The literature on the application of gas plasmas to food treatment is beginning to reveal an appreciation that attention needs also to be paid to ensuring that the key quality attributes of foods are not significantly impaired as a result of treatment. A greater understanding of both the mechanisms by which micro-organisms and chemical compounds are inactivated, and of the plasma species responsible for this is forming. This is significant, as this knowledge can then be used to design plasma systems with tailored compositions that will achieve maximum efficacy. Better understanding of the underlying interactions will also enable the design and implementation of control strategies capable of minimizing variations in

  1. Dynamics of Imploding Neon Gas Puff Plasmas. I.

    DTIC Science & Technology

    2014-09-26

    g/cm 3 and temperature near the axis is slightly above 300 eV. The hot , moderately dense plasma near the origin is radiating strongly in the K-shell...state taking account of ionization energy and degeneracy pressure can be employed in cases where the density exceeds solid density.) A single temperature ...model was employed, PkT - = , (5) (p/min) (l+Z) where ml is ion mass, and T is temperature . The ionization energy, eI, and effective charge, Z are

  2. Imaging gas and plasma interactions in the surface-chemical modification of polymers using micro-plasma jets

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Olabanji, Olumuyiwa T.; Hale, Craig; Mariani, Raffaello; Kontis, Konstantinos; Bradley, James W.

    2011-04-01

    This paper reports on the correlation between gas flow and plasma behaviour in the outflow of a micro-atmospheric pressure plasma jet operating in helium using both 2D optical imaging and Schlieren photography. Schlieren photography shows that the helium outflow changes from laminar to turbulent conditions after distances between 20 and 50 mm from the nozzle. Above a flow rate of 1.4 slm, the length of the laminar region decreases with increasing flow rate. However, by contrast the visible plasma plume increases in length with increasing flow rate until its extension just exceeds that of the laminar region. At this point, the plasma becomes turbulent and its length decreases. Exposing polystyrene (PS) samples to the plasma jet significantly alters the water contact angle in a defined area, with the hydrophobic PS surface becoming more hydrophilic. This modification occurs both with and without direct contact of the visible glow on the surface. The radius of the treated area is much larger than the width of the visible jet but much smaller than the area of the turbulence on the surface. The treated area reduces with increasing nozzle-substrate distance.

  3. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding

    SciTech Connect

    Rao, Z. H.; Liao, S. M.; Tsai, H. L.

    2010-02-15

    This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As helium increases in the shielding gas, the droplet size increases but the droplet detachment frequency decreases. For helium-rich gases, the current converges at the workpiece with a 'ring' shape which produces non-Gaussian-like distributions of arc pressure and temperature along the workpiece surface. Detailed explanations to the physics of the very complex but interesting transport phenomena are given.

  4. A microwave plasma cleaning apparatus

    NASA Technical Reports Server (NTRS)

    Tsai, C. C.; Nelson, W. D.; Schechter, D. E.; Thompson, L. M.; Glover, A. L.

    1995-01-01

    In a microwave electron cyclotron resonance plasma source, reactive plasmas of oxygen and its mixtures of argon have been used for evaluating plasma cleaning technologies. Small aluminum samples (0.95 x 1.9 cm) were coated with thin films (less than or equal to 20 micrometers in thickness) of Shell Vitrea oil and cleaned with reactive plasmas. The discharge parameters, such as gas pressure, magnetic field, substrate biasing, and microwave power, were varied to change cleaning conditions. A mass spectroscopy (or residual gas analyzer) was used to monitor the status of plasma cleaning. Mass loss of the samples after plasma cleaning was measured to estimate cleaning rates. Measured cleaning rates of low-pressure (0.5-m torr) argon/oxygen plasmas were as high as 2.7 micrometers/min. X-ray photoelectron spectroscopy was used to determine cleanliness of the sample surfaces. In this paper, significant results of the plasma cleaning are reported and discussed.

  5. Study of Gas and Plasma Conditions in the High Isp VASIMR Thruster

    NASA Astrophysics Data System (ADS)

    Batishchev, O.; Molvig, K.

    2002-01-01

    Internal electrode-free VASIMR thruster [1-3] consists of three major sections: plasma production, plasma heating, and plasma exhaust. In our previous works [6-10] we have performed an extensive study of plasma dynamics in the plasma source. We have developed several models of helicon plasma discharge utilizing hydrogen (deuterium) gas, and analyzed its performance in the experimental set-up [4-5]. In the present work we are trying to expand and apply existing models to the helium gas propellant case. Though the specific impulse is somewhat lower with heavier helium atoms, but unlike hydrogenic species helium doesn't form molecules, and therefore shows less radiative losses. We extend 0-D plasma-chemistry, 1-D mixed-collisional and kinetic gas flow models [11] to characterize gas/plasma composition and condition in the helium helicon discharge. Recent experiments suggest that there is a strong dependence of both VASIMR 1st and 2nd stage performance on the magnetic field mirror ratio in the VX-10 experimental configuration. We study effects of the plasma particles trapping in a strong magnetic field and their acceleration by the combination of the mirror force and ambipolar potential for the typical VASIMR experiment conditions. We also discuss possibility for plasma instabilities and comment on the micro-scale plasma transport in the VASIMR thruster. [1] Chang Díaz F.R., "Research Status of The Variable Specific Impulse Magnetoplasma Rocket", Proc. 39th Annual Meeting of the Division of Plasma Physics (Pittsburgh, PA, 1997), Bulletin of APS, 42 (1997) 2057. [2] Chang Díaz, F. R., Squire, J. P., Carter, M., et al., `'Recent Progress on the VASIMR'', Proc. 41th Annual Meeting of the Division of Plasma Physics (Seattle, WA, 1999), Bulletin of APS, 44 (1999) 99. [3] Chang Díaz, F. R., Squire, J. P., Ilin, A. V., et al. "The Development of the VASIMR Engine", Proceedings of International Conference on Electromagnetics in Advanced Applications (ICEAA99), Sept. 13

  6. Hampering Effect of Cholesterol on the Permeation of Reactive Oxygen Species through Phospholipids Bilayer: Possible Explanation for Plasma Cancer Selectivity

    NASA Astrophysics Data System (ADS)

    van der Paal, Jonas; Verheyen, Claudia; Neyts, Erik C.; Bogaerts, Annemie

    2017-01-01

    In recent years, the ability of cold atmospheric pressure plasmas (CAPS) to selectively induce cell death in cancer cells has been widely established. This selectivity has been assigned to the reactive oxygen and nitrogen species (RONS) created in CAPs. To provide new insights in the search for an explanation for the observed selectivity, we calculate the transfer free energy of multiple ROS across membranes containing a varying amount of cholesterol. The cholesterol fraction is investigated as a selectivity parameter because membranes of cancer cells are known to contain lower fractions of cholesterol compared to healthy cells. We find that cholesterol has a significant effect on the permeation of reactive species across a membrane. Indeed, depending on the specific reactive species, an increasing cholesterol fraction can lead to (i) an increase of the transfer free energy barrier height and width, (ii) the formation of a local free energy minimum in the center of the membrane and (iii) the creation of extra free energy barriers due to the bulky sterol rings. In the context of plasma oncology, these observations suggest that the increased ingress of RONS in cancer cells can be explained by the decreased cholesterol fraction of their cell membrane.

  7. Hampering Effect of Cholesterol on the Permeation of Reactive Oxygen Species through Phospholipids Bilayer: Possible Explanation for Plasma Cancer Selectivity

    PubMed Central

    Van der Paal, Jonas; Verheyen, Claudia; Neyts, Erik C.; Bogaerts, Annemie

    2017-01-01

    In recent years, the ability of cold atmospheric pressure plasmas (CAPS) to selectively induce cell death in cancer cells has been widely established. This selectivity has been assigned to the reactive oxygen and nitrogen species (RONS) created in CAPs. To provide new insights in the search for an explanation for the observed selectivity, we calculate the transfer free energy of multiple ROS across membranes containing a varying amount of cholesterol. The cholesterol fraction is investigated as a selectivity parameter because membranes of cancer cells are known to contain lower fractions of cholesterol compared to healthy cells. We find that cholesterol has a significant effect on the permeation of reactive species across a membrane. Indeed, depending on the specific reactive species, an increasing cholesterol fraction can lead to (i) an increase of the transfer free energy barrier height and width, (ii) the formation of a local free energy minimum in the center of the membrane and (iii) the creation of extra free energy barriers due to the bulky sterol rings. In the context of plasma oncology, these observations suggest that the increased ingress of RONS in cancer cells can be explained by the decreased cholesterol fraction of their cell membrane. PMID:28059085

  8. Estimation of Plasma Parameters in a Gas-Discharge Tube Using the Terminal Characteristics and a Transient Computer Model

    DTIC Science & Technology

    1997-06-01

    ESTIMATION OF PLASMA PARAMETERS IN A GAS - DISCHARGE TUBE USING THE TERMINAL CHARACTERISTICS AND A TRANSIENT COMPUTER MODEL G. B. Masten Logicon RDA...REPORT DATE JUN 1997 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Estimation Of Plasma Parameters In A Gas - Discharge Tube Using

  9. Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction.

    PubMed

    Dorranian, Davoud; Starodubtsev, Mikhail; Kawakami, Hiromichi; Ito, Hiroaki; Yugami, Noboru; Nishida, Yasushi

    2003-08-01

    Using a gas-jet flow, via the interaction between an ultrashort high-intensity laser pulse and plasma in the presence of a perpendicular external dc magnetic field, the short pulse radiation from a magnetized plasma wakefield has been observed. Different nozzles are used in order to generate different densities and gas profiles. The neutral density of the gas-jet flow measured with a Mach-Zehnder interferometer is found to be proportional to back pressure of the gas jet in the range of 1 to 8 atm. Strength of the applied dc magnetic field varies from 0 to 8 kG at the interaction region. The frequency of the emitted radiation with the pulse width of 200 ps (detection limit) is in the millimeter wave range. Polarization and spatial distributions of the experimental data are measured to be in good agreement with the theory based on the V(p)xB radiation scheme, where V(p) is the phase velocity of the electron plasma wave and B is the steady magnetic field intensity. Characteristics of the radiation are extensively studied as a function of plasma density and magnetic field strength. These experiments should contribute to the development of a new kind of millimeter wavelength radiation source that is tunable in frequency, pulse duration, and intensity.

  10. Bright nitriding of Cr-Mo-steels in plasma and gas

    SciTech Connect

    Larisch, B.; Spies, H.J.; Hoeck, K.

    1995-12-31

    Although the reduction of the white layer in special gas atmospheres directly after nitriding and bright nitriding were reported a long time ago, the white layer is mostly removed by mechanical or chemical means in industrial practice. The main reason for this is poor process control. However, new requirements such as the duplex treatment (nitriding + hardcoating), demand a more detailed examination of bright nitriding. Today, new possibilities exist for process control in gas nitriding by solid electrolyte sensors. Steel grades 17CrMoV10 and 31CrMoV9 were bright nitrided in gas and plasma. In contrast to the above experiments, in the two-step technology no white layer forms in the first step (20min) at a higher nitriding potential. By this, the formation of a soft surface layer (of iron) can be avoided. Limits of this technology--for instance in the depth of the formed nitrided case--are discussed. Reasons for the often discussed faster nitriding in plasma are explained on the basis of the experimental results. The influence of ion bombardment in plasma nitriding on the activation of the surface and the nitriding results is discussed in comparison to gas nitriding. In this context the advantages of plasma nitriding--with respect to higher chromium alloyed steels (>5%Cr), which tend to passivation--are shown.

  11. Gas plasmas treatment of cathodes to improve Li/So2 cell performance

    NASA Astrophysics Data System (ADS)

    Bibder, Michael; Mammone, Robert J.; Thurston, Edward P.; Reddy, Thomas B.

    1993-12-01

    Overall performance after storage at 71 C of spirally wound, hermetically sealed, Li/SO2 squat 'D' sized cells discharged at 3 A at -29 C can be improved by exposing the porous carbon cathodes to a room temperature, low pressure gas plasma prior to cell assembly.

  12. [Determination of cyclohexanone concentration in the plasma separator by gas chromatography].

    PubMed

    Huang, Min-Ju; Yan, Lin; He, Yan-Ying; Lin, Wei-Cong

    2009-09-01

    This essay is to determine the cyclohexanone concentration of the plasma separator. The compound was introduced into the GC analytical system by the carrier gas. The determination was performed by the measurement of their peak area and by the external standard method.

  13. Activation of peroxydisulfate by gas-liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol

    NASA Astrophysics Data System (ADS)

    Shang, Kefeng; Wang, Hao; Li, Jie; Lu, Na; Jiang, Nan; Wu, Yan

    2017-06-01

    Pulsed discharge in water and over water surfaces generates ultraviolet radiation, local high temperature, shock waves, and chemical reactive species, including hydroxyl radicals, hydrogen peroxide, and ozone. Pulsed discharge plasma (PDP) can oxidize and mineralize pollutants very efficiently, but high energy consumption restricts its application for industrial wastewater treatment. A novel method for improving the energy efficiency of wastewater treatment by PDP was proposed, in which peroxydisulfate (PDS) was added to wastewater and PDS was activated by PDP to produce more strong oxidizing radicals, including sulfate radicals and hydroxyl radicals, leading to a higher oxidation capacity for the PDP system. The experimental results show that the increase in solution conductivity slightly decreased the discharge power of the pulse discharge over the water surface. An increase in the discharge intensity improved the activation of PDS and therefore the degradation efficiency and energy efficiency of p-nitrophenol (PNP). An increase in the addition dosage of PDS greatly facilitated the degradation of PNP at a molar ratio of PDS to PNP of lower than 80:1, but the performance enhancement was no longer obvious at a dosage of more than 80:1. Under an applied voltage of 20 kV and a gas discharge gap of 2 mm, the degradation efficiency and energy efficiency of the PNP reached 90.7% and 45.0 mg kWh-1 for the plasma/PDS system, respectively, which was 34% and 18.0 mg kWh-1 higher than for the discharge plasma treatment alone. Analysis of the physical and chemical effects indicated that ozone and hydrogen peroxide were important for PNP degradation and UV irradiation and heat from the discharge plasma might be the main physical effects for the activation of PDS.

  14. Gas temperature measurement in CF{sub 4}, SF{sub 6}, O{sub 2}, Cl{sub 2}, and HBr inductively coupled plasmas

    SciTech Connect

    Cunge, G.; Ramos, R.; Vempaire, D.; Touzeau, M.; Neijbauer, M.; Sadeghi, N.

    2009-05-15

    Neutral gas temperature (T{sub g}) is measured in an industrial high-density inductively coupled etch reactor operating in CF{sub 4}, SF{sub 6}, O{sub 2}, Cl{sub 2}, or HBr plasmas. Two laser diodes are used to deduce T{sub g} from the Doppler widths of 772.38 and 811.5 nm lines absorbed by Ar*({sup 3}P{sub 2}) metastable atoms, when a small amount of argon (5%) is added to the gas flow. With the 811.5 nm beam passing parallel to the wafer, T{sub g} near the wafer surface is obtained by laser absorption technique. With the 772.38 nm beam entering the top of the reactor perpendicular to the wafer surface, the volume averaged temperature is deduced by laser induced fluorescence technique. The volume averaged T{sub g} increases with radio frequency power and with pressure, although the temperature near the walls is only weakly dependent on gas pressure. The main effect of increasing the pressure is an enhancement of the temperature gradient between the discharge center and the wall boundary. Due to the thermal accommodation, the authors always observe a significant temperature jump between the surface and the gas in its vicinity. This gap is typically about 200 K. Gas temperatures for a wide range of pressure and rf powers are reported. These data will be useful to validate and improve numerical models of high-density reactive plasmas.

  15. Simulation of beam-induced plasma in gas-filled rf cavities

    NASA Astrophysics Data System (ADS)

    Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; Freemire, Ben

    2017-03-01

    Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion and ion-ion recombination and electron attachment to dopant molecules, have been studied. Through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. The experimentally validated code space is capable of predictive simulations of muon cooling devices.

  16. Simulation of beam-induced plasma in gas-filled rf cavities

    DOE PAGES

    Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; ...

    2017-03-07

    Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion andmore » ion-ion recombination and electron attachment to dopant molecules, have been studied. Here, through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. Lastly, the experimentally validated code space is capable of predictive simulations of muon cooling devices.« less

  17. Digital image analysis of four-frame holographic plasma and neutral gas interferograms

    SciTech Connect

    Mastin, G.A.; Allen, G.R.

    1985-01-01

    Diagnostic interferograms characterizing the dynamics of plasma and neutral in the anode-cathode gap of magnetically insulated transmission lines (MITL) are well suited for digital image analysis. The presence of plasma or a neutral gas near the cathode surface produces bending of a pattern of background fringes on the interferogram; the fringes would be straight and uniformly spaced in the absence of such a perturbation. Because the fringes are periodic, we can perform a Fast Fourier Transform (FFT) and extract the phase of the dominant spatial frequency component of the fringe pattern. The fringe phase shift is proportional to the plasma electron or neutral gas density. Futhermore, the location of the plasma-cathode interface can be estimated from the interferogram so that electron density as a function of distance from the cathode surface can be computed. This report introduces the technical problem, examines the image analysis algorithm and presents diagnostic interferogram analysis results. The ability to reliably extract and estimate quantitative parameters from interferograms via digital image analysis is emphasized. This image analysis technique is applicable to a broad class of interferograms where a background fringe pattern is distorted by the refractive index of a plasma or gas.

  18. Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: A reactive transport modeling study

    USGS Publications Warehouse

    Molins, S.; Mayer, K.U.

    2007-01-01

    The two-way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate-rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.

  19. Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: A reactive transport modeling study

    NASA Astrophysics Data System (ADS)

    Molins, S.; Mayer, K. U.

    2007-05-01

    The two-way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane